
A minimal C-peptide sampling method to

capture peak and total pre-hepatic insulin

secretion in model-based experimental insulin

sensitivity studies

Thomas Lotz (PhD), Uli Göltenbott, J Geoffrey Chase (PhD),

Paul Docherty and Christopher E Hann (PhD)

May 29, 2009

Department of Mechanical Engineering, Centre for Bio-Engineering

University of Canterbury

Private Bag 4800

Christchurch, New Zealand

Corresponding Author: Prof J. G. Chase

Email: geoff.chase@canterbury.ac.nz

Financial Support: Dr Hann was supported by a NZ Foundation for Research

Science and Technology Post-Doctoral Fellowship Grant (Grant: PD20030223)

and Dr Lotz by a University of Canterbury Doctoral Scholarship.

Conflicts of Interest: None.

Short Running Title: Minimal C-Peptide Sampling Methods for insulin sensi-

tivity testing

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35462747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Aims and Background: Model-based insulin sensitivity testing via the

intravenous glucose tolerance test (IVGTT) or similar is clinically very

intensive due to the need for frequent sampling to accurately capture the

dynamics of insulin secretion and clearance. The goal of this study is to

significantly reduce the number of samples required in intravenous glu-

cose tolerance test protocols to accurately identify C-Peptide and insulin

secretion characteristics.

Methods: Frequently sampled, intravenous glucose tolerance test (IVGTT)

data from 12 subjects (5 Normal Glucose Tolerant (NGT), 7 Type 2 Di-

abetes (T2D)) are analyzed to calculate insulin and C-Peptide secretion

using a well-accepted C-Peptide model. Samples are reduced in a series

of steps based on the critical IVGTT profile points required for accurate

estimation of C-Peptide secretion. The full data set of 23 measurements

is reduced to sets with 6 or 4 measurements. Peak secretion rate and to-

tal secreted C-peptide during 10 and 20 minutes post glucose input, and

during the total test time are calculated. Results are compared to those

from the full data set Wilcoxon Rank Sum to assess any differences.

Results: In each case, the calculated secretion metrics are largely un-

changed, within expected assay variation, and not significantly differ-

ent from the results obtained using the full 23 measurement data set

(P < 0.05).

Conclusions: Peak and total C-peptide and insulin secretory character-

istics can be accurately estimated in an IVGTT from as few as 4 system-

atically chosen samples, providing an opportunity to minimize sampling,

cost, and burden.

Keywords: Insulin, C-Peptide, secretion, IVGTT
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1 Introduction

Assessing pancreatic insulin secretion is important in the diagnosis and moni-

toring of type-2 diabetes [1–4]. Different tests and markers have been proposed

to quantify pre-hepatic insulin secretion. These tests include intravenous tests,

such as the hyperglycaemic clamp [5] and the IVGTT [6], oral tests like the

OGTT [2, 7], and fasting state assessments [8, 9]. They also vary in resolution

and the range of information provided, with the intravenous tests generally pro-

viding more details about the bi-phasic secretory characteristics [2].

Good estimation of pre-hepatic insulin secretion can be achieved by estimat-

ing C-peptide secretion through modelling of its kinetics [10–14]. This approach

is unbiased by first pass hepatic extraction of insulin and is a valid marker due

to the equimolar secretion of both peptides [11]. A two compartment model

initially proposed by Eaton et al. [11] has been shown to accurately repre-

sent C-peptide kinetics. To avoid individual model parameter estimation, Van

Cauter et al. [12] proposed a regression model to calculate population param-

eters from known subject specific characteristics, such as height, weight, age,

gender and diagnosis of diabetes. This population methodology has been vali-

dated in several studies with peak errors of 10 %− 20 % [12, 15–17].

Accurate estimation of peak secretion rate and total first phase secreted in-

sulin (first 10 minutes) is currently only possible with very frequent sampling

during this interval. However, precisely capturing the peak C-peptide concen-

tration and timing is crucial for accurate assessment. Especially given the rel-

atively fast first phase secretion dynamics. Frequent sampling protocols during

an IVGTT or similar test, sample C-peptide up to every minute, making these

protocols burdensome to the patient, and difficult and costly to perform, as well

as requiring significant blood sampling.

For a method to be useful in a clinical diagnostic setting, simplicity, robust-

ness and cost of the protocol are important factors. In this study, a simple
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method to estimate C-peptide secretion is proposed, using integrals instead of

a typical deconvolution approach. Furthermore, errors introduced by reduced

sampling are assessed by comparing different reduced sampling approaches to

the full, original frequently sampled data set estimations and values. The anal-

ysis is performed on frequently sampled C-peptide data during an IVGTT in

five Normal Glucose Tolerant (NGT) and seven subjects with Type 2 Diabetes

(T2D).

2 Subjects, Materials and Methods

The C-peptide data from IVGTT studies in this research have been kindly pro-

vided by Dr. Andrea Mari (Institute of Biomedical Engineering, Padova, Italy)

and Dr. Angelo Avogaro (Department of Clinical and Experimental Medicine,

University of Padova, Italy). The data have been previously published [18], with

full description of subjects and experimental protocol. The critical aspects are

briefly reproduced here for clarity.

2.1 Subjects

The study was performed on 12 subjects, 5 with normal glucose tolerance (NGT,

age 24 ± 2, weight 73 ± 6 kg, fasting glucose 5.2 ± 0.1 mmol/l, fasting insulin

50±5 pmol/l) and 7 with type 2 diabtes (T2D, age 49±5, weight 81±3 kg, fasting

glucose 8.6 ± 0.8 mmol/l, fasting insulin 125 ± 27 pmol/l). Pharmacological

treatment in T2D was stopped 3 days before the study and all subjects received

a 2000 kcal/day diet (50% carbohydrate, 35% fat, 15% protein) for at least 30

days prior to the study.

2.2 Experimental Protocol

An insulin-modified IVGTT was performed on all subjects in the morning after

an overnight fast. After three fasting samples at -30, -15 and 0 min, a 0.3 g/kg

glucose bolus was injected. At 20 minutes, insulin was infused for 5 minutes,

totalling 0.03 U/kg (NGT) and 0.05 U/kg (T2D). Blood samples were collected
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at 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 40, 60, 80, 100, 120, 140, 160, 180, 210, and

240 min, and analyzed for C-peptide, glucose and insulin concentrations. Only

the C-peptide samples are of interest in this study.

2.3 C-peptide model

A well accepted two compartment model of C-peptide kinetics is employed, as

initially described by Eaton et al. [11]. The equations describing the mass

transport between compartments are defined:

Ċ(t) = −(k1 + k3)C(t) + k2Y (t) +
S(t)
VC

(1)

Ẏ (t) = k1C(t)− k2Y (t) (2)

where C(t) is the concentrations in the central (or plasma) compartment (pmol/l),

Y (t) is the concentration in the peripheral (or interstitial) compartment (pmol/l),

k1 and k2 are transport rates between the compartments (1/min), k3 is the re-

nal loss from the central compartments (1/min), S(t) is the pancreatic secretion

rate (pmol/min), and VC is the central distribution volume (l). A-priori iden-

tification of the kinetic parameters is done with known subject information, as

described by Van Cauter et al. [12], which is a well utilized, validated and

accurate methodology [15–17].

2.4 Integral-based estimation of C-peptide secretion

Estimation of C-peptide secretion rate S(t) is performed with an integral-based

method, previously employed in real-time parameter identification in glycemic

control trials in the critically ill [19–21] and related biomedical applications.

To best compute the integrals in all time steps, the profile of C-peptide is ap-

proximated using linear interpolation between data points, which introduces no

additional error over model error [21]. The integral functions also have the ad-

5



vantage of being robust to noise in the measured data, effectively providing a

low-pass filter in the summations involved in numerical integrations [21].

C-peptide secretion rate, S(t), is estimated as a step function, with stepsize

of 1 min. Thus, during any given 1 min time interval t ∈ [t0, t1 = t0 + 1], S(t)

is assumed constant. Integrating Equation 1 in the interval [t0, t1] yields:

∫ t1

t0

Ċ(t)dt = −(k1 + k3)
∫ t1

t0

C(t)dt + k2

∫ t1

t0

Y (t)dt +
1

VC

∫ t1

t0

S(t)dt (3)

Solving Equation 2 analytically for Y (t) yields:

Y (t) =
∫ t

0

Cest(τ)e−k2(t−τ)dτ (4)

where Cest represents the interpolated C-peptide values estimated from the dis-

crete sampled measurements. Combining Equations 3 and 4 and solving for the

assumed constant secretion rate S0,1 in this time interval yields:

S0,1 · t1 − t0
VC

= Cest(t1)− Cest(t0) + (k1 + k3)
∫ t1

t0

Cest(t)dt

−k2

∫ t1

t0

∫ t

0

Cest(τ)e−k2(t−τ)dτdt (5)

Repeating this process for the intervals [t1, t2], [t2, t3] etc, results in a 1-min

stepwise constant secretion profile S(t). This estimated S(t) profile is (physi-

ologically) constrained to be non-negative. Smoothing the estimated stepwise

6



constant profile with a zero-phase 3-point moving average is done to avoid over-

fitting to noisy data and interpolated measurements [21]. This particular filter

was picked as a simple choice that does not require further assumptions and

does not introduce a phase lag. This last step is not required in frequently

sampled data, but results in a more physiological profile between more sparsely

sampled data.

2.5 Points of discontinuity

To minimize the number of samples required to describe secretion character-

istics, it is crucial to identify key points of physiological discontinuity in the

C-peptide concentration profile. These points of discontinuity are caused by

sudden changes in C-peptide concentration due to either endogenous or ex-

ogenous input. Common changes in C-Peptide secretion that occur during an

IVGTT are shown in Figure 1 and defined:

1. Injection of glucose (D1): A sudden increase in plasma glucose triggers

a secretion burst of stored insulin (first phase) lasting 5-10 minutes, which

is often reduced or blunted in type-2 diabetes [22, 23]. In the C-peptide

concentration profile this dynamic is seen as a very steep rise immediately

after administration of glucose. As glucose is administered between t = 0

and t = 1 minutes, a lag of one minute is chosen here to account for glucose

injection and pancreatic response time.

2. Peak first phase secretion rate (D2): Peak C-peptide secretion rate

determines peak C-peptide concentration during the first 10 min post glu-

cose input. In the concentration profile this point is the maximum value

CPmax, located at tCPmax, assumed between 0-10 minutes.

3. End of first phase/Start of second phase secretion (D3): First

phase secretion ends after approximately 10 minutes. If high glucose con-

centrations persist, pancreatic insulin secretion continues to rise or remains

elevated over basal levels (second phase) [24]. In the concentration profile,

this point can be identified as a local minimum around 10 minutes.
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4. Injection of insulin (D4): A sudden increase in plasma insulin inhibits

pancreatic insulin secretion [24]. This response can be significantly delayed

or not evident in type-2 diabetes [24]. In the concentration profile this

point can be seen as a steepening of the negative slope soon after an

exogenous insulin input.

5. Return to basal secretion rate (D5): This step varies widely in in-

dividuals, but is usually more gradual than the preceding factors. In the

concentration profile this change is evident when the slopes are tending

towards zero and the C-peptide concentrations return to fasting values.

To pick a clear point in the curve, this study uses the time of the first

value to reach the fasting level.

All five of these points are typically very pronounced and consistent in

healthy individuals, but can be very gradual, blunted or non-existent in in-

dividuals with diabetes, who have an impaired first phase secretion and often

have delays in pancreatic response to glucose and insulin concentration changes.

Figure 1 shows examples for NGT and T2D subjects with the identified points

of discontinuity. Note that points D2, D3 and D5 can be very variable in differ-

ent individuals and may introduce errors when generic points are chosen.

2.6 Minimal sampling options

The minimal sample optimization analysis is performed in 5 steps. The original

complete data set (Step 1) is the reference to which all of the following steps or

simplifications are compared to assess any loss in accuracy or utility. This full

data set consists of 23 samples.

Steps 2 and 3 are sample-reduced to keep only the optimal median points

of discontinuity identified in NGT (Step 2) and T2D (Step 3) subjects. These

two reduced sets require only 6 samples. The points of discontinuity chosen are

the median time point values observed over all subjects in the data set utilized.
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Figure 1: Example of points of discontinuity identified in the C-peptide profile

during an IVGTT in NGT (top) and T2D (bottom) subjects. The time axis in

T2D is not to scale between 100-240 min.
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Using these median values over this diverse data set creates a generic approach

that will generalize or extrapolate to any similar data set or study.

Step 4 analyzes a further reduction to 4 samples. This set thus keeps only

the most critical points for identifying the dynamics. Specifically, the peak and

the return to basal points.

Whereas Steps 1-4 keep the maximal C-peptide sample (D2)during the first

phase response, Step 5 assesses a different approach. More specifically, it is a

method that does not rely on exactly capturing the peak concentration. The

first sample taken is the sample 2-3 minutes after the median peak time observed

over all subjects. To correct for the missing peak sample and timing, an esti-

mated ’correction’ sample is introduced at 3 minutes. This estimated point is

given a value 10% larger than the actual sample taken 2-3 minutes later. Thus,

this estimated value is used to increase the area under the concentration curve

to a more physiological value without having to capture it explicitly. Note that

while the timing of 3 minutes works well in the data used in this study, this

might not be the case for all people and could be a potential source of error. Its

validity would have to be assessed in a larger validation study.

These five steps are further clarified in Figure 2 and summarized:

• Step 1: Original data set without reduction of samples.

• Step 2: Optimized for NGT subjects. 6 Samples at D1, tCPmax, D3, D4, D5, tend.

• Step 3: Optimized for T2D subjects. 6 Samples at D1, tCPmax, D3, D4, D5, tend.

• Step 4: Further reduction of samples to only include most critical points.

4 Samples at D1, tCPmax, D5, tend.

• Step 5: Sampling missing peak by 2-3 minutes, with ’correction’ sam-

ple introduced at 2 minutes. 6 Samples at D1, (tCPmax − 3), tCPmax +

3, D3, D4, D5, tend.
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Figure 2: Sample optimization Steps 1-5 and samples used for the calculations

in each step. Real samples are marked as ’x’, the introduced ’correction’ sample

in Step 5 is marked with a circle.

The results from each are compared to Step 1 to assess the performance of these

reduced sampling schemes in comparison to the original data set.

2.7 Performance metrics

The performance metrics used in this study try to capture all possible secretory

characteristics of interest. The goal is to assess possible errors introduced by a

reduced sampling protocol. These metrics are defined:

1. First phase peak secretion rate (Smax) and timing of peak (tpeak):

Missing samples in the first minutes after glucose input can lead to large

errors in the estimated peak secretion rate due to a slower observed in-

crease in C-peptide concentration than actually occurs.

2. Total C-peptide secreted in first phase, 0-10 min (AUC10): The

area under curve (AUC), or also described as acute insulin response (AIR),

is a common metric to describe total insulin secreted during first phase

response [2, 9]. It is calculated by integrating estimated secretion rate

between 0-10 minutes.
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3. Total C-peptide secreted between glucose and insulin inputs,

0-20 min (AUC20): As the exogenous insulin inhibits pancreatic insulin

secretion, it could be of interest to assess the endogenously secreted insulin

until it is inhibited by exogenous insulin.

4. Total C-peptide secreted during the IVGTT (AUCtotal): Calcu-

lated by integrating over the complete test, this metric assesses total pan-

creatic effort.

C-Peptide assays also introduce errors for any data set that will affect the

outcome values assessed. These expected error ranges are assessed by Monte

Carlo analysis of the estimated secretion rate (104 runs), employing normally

distributed, zero-mean noise with a coefficient of variation (CV) of 3%. This CV

matches currently reported state of the art assays ([25]), and is thus a conserva-

tive choice, as older radio immunoassays have CV’s of up to twice this value [26],

which would result in larger allowable errors from the reduced sampling protocol.

Therefore, the Monte Carlo analysis provides an expected variation for the

full set of Step 1 due to assay error. Reduced sampling schemes with results

within this assay error range of the Step 1 results would be considered not

different. The use of a small, state of the art CV thus restricts this allowable

variation to a minimum value.

2.8 Statistical analysis

Non-parametric hypothesis testing with the Wilcoxon Rank Sum test is used

to assess if Steps 2-5 are significantly different to Step 1. Normality of results

is assessed by the single sample Kolmogorov-Smirnov (KS) test. Where results

were log-normally distributed, the log-normal geometric mean and multiplica-

tive standard deviation [27] are used, and specifically noted in the respective

results presented.
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Table 1: Integral method performance compared to metrics obtained by Mari

[18] using a deconvolution approach on the same data. ISRb is basal secretion

rate, ISR1 mean secretion rate over basal in the 6 minutes post glucose injection,

ISR2 mean secretion rate over basal from 7 minutes until glucose reaches basal

levels. Values from this study are converted to match units used by Mari [18].

ISRb ISR1 ISR2

Mean (SEM) in pmol · min−1· m−2

NGT

Deconvolution 71 (7) 900 (233) 127 (37)

Integral method 71 (10) 851 (216) 132 (25)

Correlation (P<0.001) 0.93 1.00 0.95

T2D

Deconvolution 141 (29) 218 (120) 121 (31)

Integral method 136 (30) 277 (136) 130 (34)

Correlation (P<0.001) 0.98 1.00 0.99

3 Results

Pre-hepatic insulin secretion rate was estimated well with the full data set using

the integral-based method, resulting in the stepwise constant profiles in Figure 3.

The qualitative shape of the secretory curves compare well to the clinical data

in the original publication [18]. Mean peak secretion rate is slightly higher in

this study for both subgroups, likely due to the smaller stepsize (1 minute vs.

2 minutes) for the estimated secretion rate fitting in this study. Performance of

the presented integral method is equivalent to the deconvolution method used

by Mari [18], as can be seen by the matching metrics shown in Table 1.

Points of discontinuity are partly given by the protocol, as the timing of

glucose and insulin inputs (D1 = 1 min), and are otherwise identified from the

sampled C-peptide profile in each subject (D2, D3, D4, D5). All identified points
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are given in Table 2. More variability in all points and especially a distinct lag

in D4 (response to insulin input) and D5 (return to basal) are evident in T2D

subjects, as expected.

Resulting deviations in performance metrics for Steps 2-5, compared to the

original sample sets, are shown in Table 3. None of the metrics in Steps 2-4 were

significantly different to the corresponding reference metrics in Step 1 in both

subgroups (all P < 0.05). The distribution of the resulting performance metrics

is log-normal and results are thus given using log-normal statistics. Relative

differences are normally distributed and are described using normal statistics.

Correlations of Steps 2-5 compared to Step 1 are also shown in Table 3.

Errors in performance metrics due to assay errors were assessed by Monte

Carlo analysis (104 runs) and are given as a CV for each metric, with the median

and 100% range over all 12 subjects:

• Smax: CV=5.47 %, range 2.97− 11.01 %

• AUC10: CV=4.10 %, range 1.92− 9.39 %

• AUC20: CV=3.13 %, range 1.90− 4.26 %

• AUCtotal: CV=1.11 %, range 0.97− 1.25 %

Reconstruction of C-peptide concentrations from the identified secretion pro-

files during the analyzed steps resulted in the residuals shown in Figure 4. Resid-

uals are given as relative values (decimal percentages), compared to the complete

sampling protocol of Step 1. Deviations from the original sample set are caused

by smoothing of the estimated secretion profile, by errors introduced through

linear interpolation and, obviously, by the reduced number of sampling steps

being examined. The ideal goal is to have all variation within the dashed lines

due to assay error.
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Table 2: Points of discontinuity identified in all subjects. Note that points

D2−D5 have significant differences between subgroups. The median values are

used in the generic selection of points for reduced sample analysis to enable a

generalizable approach.

Subject D1 D2 D3 D4 D5

NGT

7 1 4 10 20 100

8 1 4 10 25 60

9 1 3 10 25 80

10 1 3 8 25 60

11 1 4 10 25 80

median 1 4 10 25 80

SD 0.00 0.55 0.89 2.24 16.73

T2D

1 1 3 10 60 240

2 1 6 8 60 160

3 1 2 8 30 100

4 1 2 15 25 240

5 1 4 8 40 180

6 1 2 8 40 120

12 1 3 10 20 240

median 1 3 8 40 180

SD 0.00 1.46 2.57 15.92 59.36

Overall

median 1 3 10 25 100

SD 0.00 1.15 1.98 14.22 71.07
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Table 3: Outcomes of sample reduction steps. Shown are the relative percentile changes

of Steps 2-5 compared to the reference Step 1 (tpeak is given as absolute difference in min).

Results from Step 1 have a log-normal distribution and are described by the log-normal ge-

ometric mean (geom) and the multiplicative standard deviation (multipl). Relative changes

in Steps 2-5 are normally distributed and are described by the mean and standard deviation

(SD). Correlations shown are Steps 2-5 compared to Step 1 (P < 0.001).

Steps (# samples) 1 (23) 2 (6) 3 (6) 4 (4) 5 (6)

Reference Percentile change [%]

NGT

Smax mean (geom) 2578.8 mean -5.52 -7.58 -5.52 -1.80

[pmol/min] SD (multipl) 1.8 SD 1.61 5.68 1.59 5.27

correlation 1.00 0.99 1.00 1.00

tpeak median 3 median 0 0 0 0

[min] SD 0.0 SD 0.0 0.0 0.0 0

AUC10 mean (geom) 10301.8 mean -5.21 2.23 10.10 -0.71

[pmol] SD (multipl) 1.8 SD 1.56 3.10 9.28 2.243

correlation 1.00 1.00 0.99 1.00

AUC20 mean (geom) 15110.8 mean -3.24 -0.54 8.40 -0.62

[pmol] SD (multipl) 1.7 SD 9.97 9.84 9.34 9.56

correlation 0.97 0.97 0.97 0.97

AUCtotal mean (geom) 42648.9 mean 4.95 19.44 9.30 5.70

[pmol] SD (multipl) 1.4 SD 4.42 6.53 3.98 3.76

correlation 0.99 0.99 1.00 1.00

T2D

Smax mean (geom) 826.3 mean -15.64 -2.36 -15.30 -0.61

[pmol/min] SD (multipl) 2.5 SD 14.32 12.07 13.91 21.47

correlation 1.00 1.00 1.00 0.96

tpeak median 3 median 0 0 0 0

[min] SD 0.8 SD 0.8 0.8 3.0 1.11

AUC10 mean (geom) 4600.7 mean -6.40 -0.73 5.42 -2.39

[pmol] SD (multipl) 2.5 SD 5.83 9.27 27.14 10.88

correlation 1.00 1.00 0.99 1.00

AUC20 mean (geom) 9439.8 mean -4.23 -4.47 -6.76 -2.23

[pmol] SD (multipl) 2.4 SD 9.38 12.74 20.27 8.66

correlation 0.99 0.98 0.95 0.99

AUCtotal mean (geom) 82523.7 mean 0.43 -0.52 -1.32 0.63

[pmol] SD (multipl) 2.2 SD 5.18 4.36 6.21 5.39

correlation 1.00 1.00 1.00 1.00
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is introduced by assay error, as estimated by Monte Carlo analysis.
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4 Discussion

Estimating pre-hepatic insulin secretion through modelling of C-peptide kinet-

ics has been a common methodology and is relatively less-invasive to perform

in research settings [12–14, 28]. In particular, the population method proposed

by Van Cauter et al. [12] enables the estimation of secretion rate with a sin-

gle experiment. By employing this method, model parameters are consistent

across studies, enabling a better comparison, as tradeoffs between estimated

parameters and secretion rates are reduced. Nonetheless, the estimation of

peak secretion rate and insulin secreted during first phase is still highly depen-

dent on assay errors and sampling frequency during the initial minutes. Ideally,

sampling should be performed every minute to assess an accurate profile, which

introduces significant labor, cost, and burden, as well as reducing the robustness

of the method.

It is important to keep in mind that significant errors are also introduced due

to assay inaccuracy. Thus, for example, peak estimated secretion rate, Smax,

has a median CV= 5.47 % and can therefore vary between ±11 % (±2 σ), even

with a 1-minute step sampling protocol. Most of the performance metrics are

within, or slightly outside of ±2 σ of assay error. This result implies that they

are, in fact, just within the natural variability that can be identified [26].

Using the same model and Van Cauter et al.’s parameter estimation method,

estimation of secretion rate has previously been proposed by deconvolution [11]

and a more elaborate constrained regularization method [14]. The main draw-

backs of these methods are the individualized method adjustments required for

each subject, including knot placements for cubic spline interpolations [11], or a

separate step to find the optimal proportionality constant in each subject [14].

All of these extra steps introduce time, computation and human variability into

the results. While criteria are available to determine optimal regularization

parameters, such as Maximum Likelihood, these methods require underlying

a-priori assumptions about the parameter solutions and thus add complexity to
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the approach.

In contrast, the integral-based method described in this study is a single

step, computationally convex and fast method that only requires linearly inter-

polated data. By constraining the resulting linear least squares estimation to

non-zero values and smoothing the estimated secretion rate, the resulting profile

is physiologically accurate and the effects caused by noisy data are reduced [21].

First and second phase secretion characteristics were clearly identified, with

slight quantitative, but not qualitative, deviations from the profiles originally

reported with this data by Mari [18]. In addition, these smaller deviations can

be readily explained by the longer stepsize used in that study. In a quantita-

tive comparison, the secretion metrics obtained with the integral-based method

compare very well to the secretion metrics calculated by Mari [18] using a de-

convolution method, as seen in Table 1. Correlations of the subgroup results

are all very high, showing equality in performance of both methods when the

full sample data set is used.

The reduction of samples was approached by identifying key points of dis-

continuity and reducing the sample set to those points. Points of discontinuity

varied only slightly during first phase secretion in both subgroups, but were

significantly delayed in T2D during the second secretion phase. This delay can

be attributed to a delay in pancreatic response to insulin input in the case of

D4 [24] and an increased total demand and production rate during this stage,

in D5 [1].

Comparing Steps 2 and 3, which are optimized for the NGT and T2D sub-

groups respectively, it can be seen that maximum secretion rate Smax is more

accurate in the subgroup for which it was optimized. This result is especially

valid for the T2D subjects in Step 3. This result also holds is for total secreted

C-peptide AUCtotal in NGT and T2D, but is not the case in the other metrics.
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The standard deviations of the metrics are mostly very broad in T2D, espe-

cially in the metrics during the first minutes. This result indicates a very broad

variability in the estimated metric. This variability may be due in part to the

strongly blunted first phase response in T2D, resulting in a weak signal to noise

ratio and thus exaggerating the effects of assay errors. Nonetheless, none of the

sample reduced steps were statistically significantly different than the reference

Step 1 (P < 0.05).

As can be seen in the residuals reported in Figure 4, Step 2 has a clear ad-

vantage over Step 3 in NGT subjects. In T2D subjects a slight advantage for

Step 3 is evident between 0-20 minutes, but the remaining time is equivalent to

Step 2. This behavior could be due to the fact that the points of discontinuity

in the time after insulin input are not as distinct in T2D, and thus not as critical

if inaccurately chosen. Larger residuals appear after t = 20 minutes in all cases,

where sampling is less frequent. During the first section up to t = 20 minutes,

residuals are mostly within the assay variation bounds shown for the full sample

set (Step 1), giving accurate estimations of the most dynamic secretory char-

acteristics. Overall, Step 2 seems to be the better choice if one generic setting

were chosen for both types of subjects examined.

In Step 4, where samples are further reduced to a total of 4, residuals are

more variable, but still within similarly tight ranges, as in the previous steps.

In particular, the first phase section is well represented and captured. In NGT

subjects, residuals are even tighter than in Step 3, which has two additional

samples that are not optimally placed for this group.

Finally, Step 5 analyzes a different approach by introducing a calculated

’correction’ sample to make up for the missing concentration peak sample. This

step appears to give the tightest residuals during the first phase, even tighter

than the full sampling set. This unexpected result is due to a more accurate fast

rise in concentration, as the sample is introduced at t = 2 minutes, resulting
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in a higher secretory peak. Without this correction sample, linear interpolation

from 1-6 minutes would result in a far slower secretion rate increase and a more

constant and non-physiological estimated secretion rate during these initial 5

minutes. Hence, the resulting area under the concentration curve is more phys-

iological, which results in a more accurate integrated secretion curve and thus

better residuals. During the later phase of these tests, the residuals are identical

to Step 2 because the same sample timings are used.

Overall, it can be seen that reduced sampling does not necessarily compro-

mise the information that can be gathered from such a test. This is clearly

visible by the very high correlations shown in Table 3 between the full and the

sample reduced steps. However, smart sample placement is critical and needs

to be chosen correctly according to the secretory information of interest to the

researcher. Steps 2 and 3 propose optimized sampling protocols for NGT and

T2D subgroups respectively, enabling the investigator to decide on an optimal

sampling schedule when designing a test protocol. Even a heavily reduced and

generic protocol using only 4 (17%) of the original 23 samples (Step 4), results

in acceptable accuracy in the stated performance metrics, most of which are

still within reported assay errors.

While the methods developed in this study performed well on the presented

dataset, it could be argued that the number of subjects is insufficient to validate

the approach. We acknowledge that the number of subjects used to derive the

presented method is limited. The goal of the study was not to clinically vali-

date the method, but to derive and present a new method to estimate insulin

secretion, that is more robust and automated compared to previously presented

methods. In that sense, it should be regarded as a pilot study to derive a new

method. This new method would have to be validated in a separate study on

a different dataset to prove its validity. In addition, the use of physiologically

relevant points of discontinuity that are readily recognizable and well-accepted

adds weight to the underlying assumption that the results of this limited pilot
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analysis would carry through in a larger study.

In a similar approach, the analysis presented in this study could also be

applied to a C-peptide dataset without insulin administration. New points of

discontinuity would have to be defined as they could differ slightly, particularly

around the time when insulin is administered. We believe that the approach

would work just as well on such a dataset, but it is out of the scope of this study

to analyze different trial protocols. This could be analyzed in a separate study

with a corresponding dataset.

We believe that our approach is novel compared to other methods to esti-

mate insulin secretion presented in the past. Strong emphasis was placed on

developing a robust and convex method that would allow automated analysis

of C-peptide data without requiring manual intervention or a-priori assump-

tions about the solutions. While methods presented in the past have primarily

focused on accuracy on full data sets, our approach has been primarily on a

method that could be applied to reduced data sets and thus be more useful in

routine clinical testing environments, where time and cost contribute greatly to

the success of a test.

5 Conclusions

Estimation of pre-hepatic insulin or C-peptide secretion can be achieved using

an easy to apply population model in combination with a simple and consistent

integral-based deconvolution method. Reduction of samples to reduce test com-

plexity, clinical burden, and cost can be done without significantly reducing the

accuracy of the test. If smart sample placements are chosen by identifying key

points of discontinuity these reductions are readily enabled, saving significant

cost and burden.

The approaches presented in this study include sampling optimized for NGT
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or T2D subjects (6 samples), a further reduction to 4 samples, and a final option

that does not require samples during the first 5 minutes after glucose adminis-

tration by introducing an additional calculated ’correction’ sample. Each step

further reduces the sampling stress, cost and blood taken. Overall, the results

show that reduced sampling has no clinical or research "cost" in the outcome

metrics derived, as shown by Monte Carlo and statistical results, but can enable

significantly simpler test protocols.
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