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ABSTRACT 

With the increasing emphasis of performance-based earthquake engineering (PBEE) in 

the engineering community, several investigations have been presented outlining simplified 

approaches suitable for performance-based seismic design (PBSD).  Central to most of these 

PBSD approaches is the use of closed-form analytical solutions to the probabilistic integral 

equations representing the rate of exceedance of key performance measures.  Situations where 

such closed-form solutions are not appropriate primarily relate to the problem of extrapolation 

outside of the region in which parameters of the closed-form solution are fit.  This study 

presents a critical review of the closed form solution for the annual rate of structural collapse.  

The closed form solution requires the assumptions of lognormality of the collapse fragility 

and power model form of the ground motion hazard, of which the latter is more significant 

regarding the error of the closed-form solution.  Via a parametric study, the key variables 

contributing to the error between the closed-form solution and solution via numerical 

integration are illustrated.  As these key variables can not be easily measured it casts doubt on 

the use of such closed-form solutions in future PBSD, especially considering the simple and 

efficient nature of using direct numerical integration to obtain the solution. 

KEYWORDS 

Performance-based seismic design (PBSD), performance-based earthquake engineering 

(PBEE), ground motion hazard, annual rate of collapse, deaggregation. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35462744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

INTRODUCTION 

Performance-based earthquake engineering (PBEE) and performance-based seismic 

design (PBSD) concepts are growing in popularity amongst the engineering community 

because of their consistent nature with respect to the socio-economic aims of seismic design.  

PBEE and PBSD also allow for incorporation of the uncertainties in all aspects of seismic 

design and assessment.   The growing importance of PBEE and PBSD is illustrated by its 

inclusion in recent significant documents [1-5] . 

Typical key performance measures in PBEE include the annual rate of exceedance of a 

given level of demand or financial loss, and the annual rate of structural collapse.  The direct 

incorporation of uncertainties in the aforementioned performance measures results in an 

integral equation, which is an application of the total probability theorem.  In such equations, 

a cumulative density function (CDF) is integrated over all intensities with the ground motion 

hazard curve for a specific site. 

A key concept advocated by researchers in this area is that for PBSD to be accepted in 

design, simplified methods must be available which allow reasonably accurate evaluations to 

be made based on sound underlying assumptions.  For the aforementioned key performance 

measures, numerous references are available for ‘closed-form’ analytical solutions.  The first 

closed-form solutions were published for the demand hazard in References [6, 7], and using 

similar assumptions, annual frequencies of limit state exceedance and structural collapse can 

also be computed [8-10]. 

Such closed-form solutions have been used extensively since their development.  

Cornell et al. [9] used the closed-form drift hazard solution in a load and resistance factor 

design (LRFD) approach, which is implemented in FEMA-350 [3]. Mackie and Stojadinovic 

[11] used closed-form solutions for damage and loss limit states to propose a PBSD approach 

for bridges.  Zareian and Krawinkler [10] used the closed form solution for the annual rate of 
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collapse, to propose a PBSD methodology considering structural collapse.  The above three 

implementations also separate epistemic and aleatory uncertainties in the structural response 

and use the mean ground motion hazard curve.  These two treatments allow the determination 

of the mean annual rate of exceedance of a particular performance measure with a specified 

level of confidence. 

The closed-form solution for the annual exceedance rate of demand (i.e. demand 

hazard) is based on the following three assumptions: (i) the ground motion hazard curve is 

approximated by a linear line in log-log space; (ii) the median demand given intensity is a 

linear function in log-log space; and (iii) the demand given intensity distribution is assumed 

lognormal with constant logarithmic standard deviation (herein referred to as the ‘dispersion’) 

over the range of intensity that is of interest.  Because these assumptions are made only in the 

regions of interest of the relationships, then the resulting closed-form solution may be 

considered as a ‘local approximation’ of the key performance measure around the region of 

interest.  For example, it is stated in Kennedy and Short [6] that “over any ten-fold difference 

in exceedance probabilities, such hazard curves may be approximated by the PSDA analytical 

equation”. 

Aslani and Miranda [12] compared the closed-form solution for the demand hazard with 

that obtained by direct numerical integration using parametric relationships for the mean and 

dispersion of the demand given intensity relationships.  They illustrated the resulting error in 

the demand hazard curves due to each of the three aforementioned assumptions required in the 

closed-form solution becomes significant as the demand levels become significantly different 

from those which the parameters were fit too. 

Recently, Bradley et al. [13] proposed a ‘hyperbolic’ parametric equation to represent 

the ground motion hazard which is significantly more accurate over a larger range of 

exceedance frequencies than the power-model equation used to obtain the closed form 
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solution for the demand hazard (i.e. [6, 7]).  It was then illustrated how a semi-analytical 

solution for the demand hazard could be obtained using the ‘hyperbolic’ hazard model.  This 

work offered a potential solution to the problem of ‘extrapolation’ of the local approximation 

of the closed-form demand hazard solution to a larger range of exceedance frequencies.  

However, in computing the exceedance rate of a single value of demand, the semi-analytical 

solution of Bradley et al. [13] and the closed-form solution using the power-model equation 

are identical.  Also, the semi-analytical solution given by Bradley et al. [13] still requires the 

two assumptions for the demand given intensity relationship which also introduce some 

extrapolation error [12]. 

From the above discussions, it is clear that the criticism of the closed-form solutions is 

primarily due to their inability to accurately extrapolate outside the immediate range over 

which the parametric relationships are fit.  This paper investigates the error in the closed-form 

solution for the annual rate of structural collapse (collapse hazard), which does not suffer from 

the problems of extrapolation as the demand hazard mentioned above; implications related to 

the demand hazard are also briefly addressed.  Deaggregation [14-16] of the integral equation 

is used to determine the regions of ground motion intensity which significantly contribute to 

the numerical value of the collapse hazard.  Via a parametric study, key features of the 

integral equations that contribute to the error between the closed-form and exact numerical 

solutions are identified.  Various means of fitting the power-model equation to the ground 

motion hazard data are discussed in light of the resulting errors in the parametric study. 

CLOSED-FORM SOLUTION FOR THE ANNUAL RATE OF 

STRUCTURAL COLLAPSE 

Firstly, the Pacific Earthquake Engineering Research (PEER) Centre PBEE framework 

terminology is adopted herein.  Therefore, seismic demand is referred to as an engineering 
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demand parameter (EDP), and ground motion intensity as an intensity measure (IM).  The 5% 

damped elastic spectral acceleration at the fundamental period of the structure (Sa(T1,5%), 

herein Sa for brevity) is used as the IM. 

The annual rate of structural collapse (collapse hazard) can be obtained by integrating 

(over the entire range of ground motion intensity) the conditional probability of collapse for a 

given level of intensity with the incremental probability of occurrence of that ground motion 

intensity.  The mathematical formulation of the collapse hazard is given in Equation (1), 

which is an application of the Total Probability Theorem [17]: 

 
 


0

)(
dIM

dIM

imIMd
imIMCPC

  
(1)

where λC = the annual rate of collapse;  P(C | IM = im) = the conditional probability of 

collapse given IM = im (collapse fragility curve); and λ(IM > im) = the annual rate of 

exceedance of IM = im (ground motion hazard) at the site.  The absolute value signs around 

the derivative of the ground motion hazard are used as its value is negative. 

In order to obtain a closed-form solution of Equation (1), several simplifying 

assumptions are required.  Firstly, the intensity at which collapse is observed to occur is 

assumed to be of the form given in Equation (2): 

  )ln()ln()ln(|ln RZUZZCIM    (2)

where ηZ = the median IM causing collapse; and  RZln  and  UZln  are aleatory and 

epistemic uncertainties having a normal distribution with zero mean and standard deviations 

of βRZ and βUZ, respectively.  Equation (2) results in a collapse fragility curve (due to aleatory 

randomness) which has a cumulative lognormal distribution, and ηZ  also having a lognormal 

distribution. 

The ground motion hazard is also assumed to have a linear form in log-log space given 

by Equation (3): 
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  )ln()ln(.)ln()(ln 0 UIMIMkkIM    (3)

where k0 and k are constants fitted to the ground motion hazard in the region of interest [13], 

and  UIMln  is a normal random variable with zero mean and standard deviation βUIM, 

representing epistemic uncertainty in the ground motion hazard.  Hence, the mean of Equation 

(3) is kIMkIM  0)( .  One further assumption is that  UZln  and  UIMln  are independent 

of each other, but within each random variable there is a perfect correlation at various levels 

of intensity (e.g.  UZln  is perfectly correlated to itself at various levels of intensity). 

Based on the aforementioned assumptions, the evaluation of Equation (1) using 

integration by parts leads to the following closed-form solution for the mean collapse hazard 

(See Jalayer [18] for details on a similar process to obtain the demand hazard): 
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(4)

Furthermore, C  is a lognormal random variable with dispersion: 

222
ln UZUIM k

C
    (5)

Equation 4 indicates that the expected value of the annual rate of collapse can be 

obtained from the annual frequency of exceedance of the median IM value causing collapse, 

ηZ, and then a multiplying factor (the exponential term) which represents the effect of 

uncertainty on the annual frequency of structural collapse.  This factor indicates that 

increasing the uncertainty in the collapse fragility curve and the log-log slope of the ground 

motion hazard curve, increases the expected frequency of collapse.  In particular, it is noted 

that while increasing the dispersion of the collapse fragility curves increases the probability of 

collapse at IM values lower than the median IM but reduces the probability of collapse at IM 

values larger than the median IM, it is the small IM values which occur significantly more 

frequently. 

Figure 1a gives a typical probabilistic seismic demand analysis (PSDA) plot which has 
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been derived via Incremental Dynamic Analysis (IDA) [19] of a single-degree-of-freedom 

(SDOF) model of a New Zealand bridge pier.  The SDOF model uses a lumped plasticity 

(frame) element with the modified Takeda hysteresis having both strength and stiffness 

degradation.  Further details on the bridge structure and its modelling can be found in 

Reference [20].  Each of the lines in Figure 1a represent the result of an individual record 

scaled over a range of IM, and the dots at the end of the lines represent the projection (to the 

right boundary of the figure) of the last IM value before structural collapse was observed.  

Structural collapse is considered as the limit state of global sidesway instability (indicated 

numerically by non-convergence of the analysis).  Global collapse associated with loss of 

vertical carrying capacity (due to axial and/or shear failures) is not considered here due to the 

lack of reliable analysis tools for capturing such phenomena [10].  Others have also defined 

global collapse when the slope of the tangent of the IDA curve drops below 20% of the initial 

tangent [3, 21], but this was not done here.  Based on the sample mean and standard deviation 

of the IM’s causing collapse, a lognormal distribution of collapse given IM, can be defined, 

which is also shown in Figure 1a.  Figure 1b gives a typical comparison between the seismic 

hazard curve for Wellington, New Zealand, and the approximation of the power-model 

(Equation (3)), fitted tangentially to the median IM causing collapse of the bridge structure 

considered. 

SOURCES OF ERROR IN COLLAPSE HAZARD CLOSED-FORM 

SOLUTION 

Firstly, discussions are restricted to the error associated with the expected value of the 

collapse hazard (i.e. Equation (4)), and consider only one source of uncertainty in the collapse 

fragility curve.  This uncertainty may be solely aleatory, or a square-root sum squares (SRSS) 

[10] combination of both aleatory and epistemic uncertainties. 
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Equation (1) illustrates that the collapse hazard is a function of both the collapse 

fragility curve and the derivative of the ground motion hazard curve.  Figure 2 gives a 

comparison of the lognormal collapse fragility curve and the empirical CDF based on the IDA 

data in Figure 1a.  It can be seen that the typical [10] lognormal approximation is acceptable 

for this data, based on Kolmogorov-Smirnov (K-S) goodness of fit test [17].  Various other 

studies have illustrated that this assumption is adequate and it has been used via direct 

numerical integration with the full representation of the seismic hazard of the site [10, 12].  A 

non-parametric form of the collapse fragility can be used, however care should be taken to 

ensure that enough ground motions are used such that the annual frequency of structural 

collapse is not sensitive to the ‘steps’ in the empirical CDF.  As an alternative to developing 

collapse fragility curves via IDA data, various data is available for collapse capacities for 

generic moment resisting frames and shear walls, which are useful for preliminary design 

assessments [22]. 

Based on the above discussion as the lognormal assumption for the collapse fragility 

curve is adequate, it will be shown that the most restrictive assumption in order to derive 

Equation (4) is the power-model approximation of the ground motion hazard curve.  The 

power-model therefore assumes that the ground motion hazard is linear in log-log space which 

is considered as a ‘local approximation’.  The potential error comes from the fact that as 

Equation (1) involves integration over the entire range of IM, the power-model solution will 

potentially inaccurately approximate the likelihood of ground motions of IM = im occurring 

over a large range of IM.  This potential inaccurate approximation is due to the typical 

‘concave from below’ shape of ground motion hazard curves in log-log space [13], compared 

with the linear (in log-log space) curve of the power-model.   

As the power-model assumes that the ground motion hazard is linear in log-log space, 

the error will likely be a function of the ‘curvature’ of the hazard curve.  Here, ‘curvature’ ( ) 
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is defined as the second derivative of the ground motion hazard curve in log-log space (i.e. the 

rate of change of the tangential slope, k).  Because Equation (1) combines the ground motion 

hazard curve with the cumulative probability of collapse, the major contribution to the integral 

will occur from ground motion intensities around the central IM value causing structural 

collapse, ηZ.  For example, in the limiting deterministic case (when there is no uncertainty), 

only ηZ is used to evaluate Equation (1).  The range of IM values that significantly contribute 

to the integral (and hence the error in the closed-form solution) will therefore be a function of 

the likelihood of these IM values causing collapse to occur,  imIMCP | .  Hence, any error 

in the closed-form solution (Equation (4)) will also be a function of the dispersion in the 

collapse fragility curve (herein denoted simply as β). 

PARAMETRIC STUDY ON ERROR IN CLOSED-FORM SOLUTION 

USING A TANGENT-FIT TO HAZARD DATA 

To investigate the effects of curvature,  , and dispersion, β on the error in the closed-

form solution, a parametric study was carried out which is described in the following 

paragraphs.  For brevity, the term ‘hazard’ will be used in reference to ‘ground motion 

hazard’.  Note that both the closed-form solution and ‘exact’ numerical integration solution 

compared here use the lognormal assumption for the collapse fragility curve (i.e. not the raw 

data depicted in Figure 2).  Therefore, differences between the outcomes of these two 

approaches are solely due to the representation of the ground motion hazard curve. 

To obtain an estimate of the curvature of the hazard curve around the region of interest, 

the parametric form for the ground motion hazard model proposed by Bradley et al. [13] is 

used, which is given by: 
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where λasy, IMasy, and α are constants to be fit by nonlinear regression.  For the above 

parametric form the curvature at a given point can be found from: 
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where the central and right-hand side algebraic expressions are the curvature as a function of 

IM and λ, respectively.  Herein, unless otherwise stated,   is calculated at the median IM 

corresponding to the collapse, ηZ.   

To account for the fact that this simple definition of curvature will not be an exact 

measure of the error, five hazard curves for the major centres in New Zealand [23] were used.  

The hazard curves for these five regions, along with their curvatures as a function of rate of 

exceedance are presented in Figure 3a and Figure 3b, respectively.  It can be seen that these 

hazard curves represent a wide range of site seismicity, from low in Auckland, to high in 

Otira.  Figure 3b shows that the curvature of the hazard curves increases as the rate of 

exceedance reduces.  It is also interesting to note that the curvature of the hazard curves is not 

directly related to the seismicity of the site.  For example, the Christchurch hazard has a far 

larger curvature than the Wellington hazard, despite the Wellington hazard having a larger 

seismicity.  A similar comparison between the Auckland and Dunedin hazards can also be 

made.  As it will be shown later, the error in the closed-form solution increases as the 

curvature of the ground motion hazard increases.  This indicates that the error is not directly 

related to the seismicity of the site. 

In order to illustrate that the error in the closed-form solution (Equation (4)) is a 

function of both   and β the concept of deaggregation [14-16] is used.  Deaggregation allows 

the contribution of different values of the integrand to the integral to be graphically illustrated.  

Figure 4 shows four deaggregation plots of Equation (1) using both the ‘exact’ numerical 

solution and the closed-form solution, where the parameters of the power-model of the ground 
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motion hazard (Equation (3)) have been obtained by fitting the model tangentially to the raw 

hazard data at IM = ηZ.  In these figures, the Christchurch ground motion hazard curve (which 

is of moderate seismicity) was used.  Two frequencies for the median IM causing collapse and 

two values of the dispersion were considered.  The frequencies for the median IM causing 

collapse considered were λ = 2.1x10-3 and λ = 1x10-4 (i.e. from the ground motion hazard 

curve, the median IM causing collapse, ηZ, has these exceedance frequencies).  These two 

frequencies represent the upper and lower ranges of likely collapse frequencies.  For example, 

non-ductile flexure-shear critical structures typically have an annual rate of collapse which 

can be greater than 2.1x10-3 (e.g. [24]), while for current code-conforming structures the 

collapse hazard is typically lower than 1x10-4 (e.g. [25]). 

The first dispersion value used was β = 0.3.  This dispersion value would typically occur 

for ‘efficient’ [8, 26] IM such as the inelastic spectral displacement, Sdi, proposed by Tothong 

and Luco [27].  The second value of β = 0.5 was used as a value representative of dispersions 

due to a relatively inefficient IM (such as elastic spectral acceleration, Sa, which is the most 

commonly used IM).  For example, although not explicitly mentioned, the dispersion (due to 

aleatory uncertainty) in the collapse fragility (using the first mode spectral acceleration as the 

IM) given in Reference [10] is approximately 0.42.  Other cases where a large dispersion may 

be measured could be where: (i) several designs are to be compared, which do not have the 

same characteristics (e.g. fundamental period), in which case the use of a structure-dependent 

IM’s (such as Sa) may not be appropriate (e.g. Reference [11] gives 13 dispersion values 

ranging from 0.33 to 0.56 for simple bridge structures using IM = PGV); (ii) higher-mode 

effects are important (e.g. in flexible structures an IM such as Sa may not accurately predict a 

multi-mode dominated response [28]); and (iii) near-fault velocity-pulse effects [28].   

It can be seen in Figure 4 that as the curvature and dispersion increase so does the error 

between the closed-form solution and the ‘exact’ solution using numerical integration.  Here, 
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the error has been represented in the form of an error ratio, defined as:  

exactC

approxC
ratioE

,

,




  (8)

where approxC ,  = the closed-form solution (Equation (4)); and exactC ,  = the ‘exact’ numerical 

solution of Equation (1). Figure 4a-Figure 4c therefore have errors of 16%, 60%, and 77%, 

respectively, while Figure 4d has a 7-fold (700%) error.  It is also observed that the 

integration error contributed by IM values larger than the median IM causing collapse, ηZ, is 

negligible compared to the error contributed by IM values below ηZ.  This consistent nature of 

the error in the closed-form solution potentially allows other means of fitting the ground 

motion power-model which is discussed in the following section. 

Based on typical values for the dispersion observed in the literature [7-13, 18-20, 26-30] 

and exceedance rates of collapse that could occur for a wide range of structures [24, 25], a 

parametric study was performed using β = 0.2-0.6 and λ = 10-2-10-5.  The results of the 

parametric study are presented graphically in Figure 5.  Figure 5a shows the error ratios (as 

defined in Equation 8) for β = 0.2 and 0.3.  The dashed lines surrounding the data points are 

used to clearly define the data points for each β value.  The relatively small scatter between 

the data points for the five different hazard curves indicates that β and   capture the salient 

features of the error between the closed-form solution and the ‘exact’ numerical solution.  

Figure 5b shows the results for β = 0.4 - 0.6.  Again, the dashed lines are used to distinguish 

between different β values.  It is obvious from both figures that the variation in error between 

the results for different hazard curves increases as β increases. 

To give a practical viewpoint of Figure 5, consider the use of the closed-form solution 

with β = 0.42.  This value of β is that (approximately) obtained in Reference [10], and is 

below the median of the β values used in Reference [11].  Assume that the structure is 

designed to current ductile design philosophy and has a fundamental period of T=1.5s (i.e. so 
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that the hazard curves of Figure 3a are used), and a median collapse intensity, ηZ = 1.4g (this 

is slightly less than ηZ ~ 1.75g used in Reference [10], in which the structure had a period of 

T = 1.2s).  Based on the results of Figure 5b the error ratios for the Wellington and Otira sites 

would be approximately 3.1 and 10.1, respectively.  This means that if the collapse rate for 

Otira was found (using the closed-form solution) to be on the order of λ = 10-4, then its actual 

value is likely to be in the region of λ = 10-5.  Note also, that the value of β = 0.42 represents 

aleatory uncertainty only.  If epistemic uncertainty (which is typically in the region of 0.4-

0.45 [10, 30] is also included in an SRSS form, then β ~ 0.6 and the error ratio will be in 

excess of 20.  Such large errors defeat the purpose of using a probabilistic-based measure of 

performance. 

ALTERNATIVE NON-TANGENT POWER-MODEL FITS TO GROUND 

MOTION HAZARD 

The deaggregation results of Figure 5 illustrated that using a tangent based fit of the 

hazard curve to determine k results in significant over-approximation of the contribution of 

ground motions with IM < ηZ.  This occurs because the log-log slope of the hazard curve, k, is 

too large over the region IM < ηZ.  Therefore, a reduction in the value of k will likely reduce 

such an over-approximation.  Such non-tangent methods have been suggested previously by 

others.  For example, when computing the demand hazard around the design basis earthquake 

(DBE) and maximum considered earthquake (MCE) frequency region, Jalayer [18] suggested 

using fitting the power-model hazard as a secant through the DBE and MCE points of the 

ground motion hazard. 

In this work, several alternative methods of fitting k were investigated, which include 

some of the following: (i) multiply the tangent-based fit of k by some constant; (ii) fit k 

tangential to hazard curve at some rate less than ηZ; (iii) use a secant-based fit of k between 
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two points either side of ηZ; and (iv) use regression over some region of the ground motion 

hazard to determine the power-model parameters.  Table 1 gives a summary of the resulting 

error ratios for a selection of the different fitting methods used, for the Christchurch hazard.  

For example, using the secant-based fit with one point at IM = ηZ, and the other at a value of 

IM which has rate of exceedance equal to ten times that of ηZ (first row for base case (iii) in 

Table 1) resulted in relatively accurate (compared to the tangent-fit) results over the wide 

range of values (and different hazard curves) used in the parametric study.  Figure 6a and 

Figure 6b give the deaggregation plots obtained using the secant-based fitting of k at IM = ηZ 

and IM10λ, which are for the same (φ, β) scenarios as Figure 4b and Figure 4d which used the 

tangential fit of k.  The two vertical dashed lines in Figure 6a and Figure 6b show the IM 

values through which the secant-fit was performed.  In particular, for β = 0.3 and λ = 10-4 

(Figure 6a), the error ratio for the secant-based fit is 2% (Figure 6a) compared to the 77% 

error using the tangent-based fit (Figure 4b).  From the discrepancies between the numerical 

and closed-form solutions relative to the points where the secant-fit was performed, it 

becomes obvious that for this type of fitting, the closed-form solution under-predicts the 

contribution from ground motion intensities with IM > IM10λ and over-predicts the 

contribution of ground motion intensities with (approximately) IM < IM10λ.  Hence, the 

accuracy reflected in the error ratio of 1.02 is the result of ‘subtractive cancellation’, that is 

errors in one region are negated by errors (of opposite nature) in another region.  Obviously, 

over a large range of β and φ values it is unlikely that such ‘subtractive cancellation’ will 

consistently occur.  This is illustrated in Figure 6b, where for β = 0.5, λ = 10-4, the error ratio 

is 1.86; still a significant reduction however compared to the 7-fold error using the tangent-

based solution (Figure 4d). 

Several other fitting methods such as ‘k=0.75kt’ and ‘ 5.0IM ’ from Table 1 appear to be 

more accurate, particularly at large values of β and φ.  This however results from the 
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aforementioned ‘subtractive cancellation’, and these results significantly under-predict the 

exact value for small β and φ, yielding error ratios of 0.93 and 0.67 for the (λ, φ, β) = (2.1x10-

3, 2.0, 0.3) scenario.  It is also interesting to note that based on discussions in the previous 

section regarding the majority of the error ratio being contributed by IM < ηZ one would 

expect that if the power-model hazard is fit tangentially at a rate greater than that of IM = ηZ 

the error would be smaller than that which occurs when the power-model hazard is fit at a rate 

less than IM = ηZ.  Thus, it would be expected that the IM2λ fitting method is better than the 

IM0.5λ fitting method.  Rows 6 and 7 of Table 1 illustrates that this assumption is not correct, 

in fact one would argue that based on Table 1 the IM0.5λ fitting method is better than the IM2λ 

fitting method.  Figure 6c and Figure 6d show the deaggregation of the collapse hazard for the 

case of (λ, φ, β) = (1.1x10-4, 4.0, 0.3).  Figure 6c illustrates that using the low error ratio for 

the IM0.5λ fitting method is due to ‘subtractive cancellation’ as the analytical solution under-

predicts the contribution around the region where the power-model is fit, and over-predicts the 

region where IM >> ηZ.  Figure 6d illustrates that in this case fitting the power-model 

tangentially at a rate less than that of the λ(ηZ) results in over approximation of the integral 

over the entire range of IM values. 

For the regression fitting method we solve the least squares optimisation problem with 

various weighting functions: 

Minimise     



n

i
iii IMwR

1

2)(lnln   (9)

where λi = data points of ground motion hazard curve; λ(IMi) = value of λ obtained from the 

power-model parametric equation (Equation (3)); and wi = the weighting function for data 

point i.  It would seem logical that the weights would be directly proportional to the range of 

IM values which contribute to the integrand.  This will be a function of the distance between 

the data point (IMi, λi) and IM = ηZ, as well as the aleatory uncertainty in the collapse fragility 

curve, β.  The weight will therefore be related to the number of standard deviations of IM 
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points from ηZ.  As the weight should reduce as the number of standard deviations increases 

then we use the inverse of the number of standard deviations for the weighting function: 

   

















Zi

RZ
i IM

w
lnln

 
(10)

where γ is a parameter which controls the degradation of the weights as the number of 

standard deviations increases which is varied in the analysis to follow.  The value γ = 0 would 

give a uniform weight to all data points.  It is found that values of γ from 1-3.5 produce 

reasonable approximations to the integral.  Figure 7a illustrates the hazard curves which are 

obtained for several different γ values by determining the parameters of Equation (3) via the 

solution of Equation (9).  It can be seen that as the value of γ increases the power-model 

hazard curve approaches the tangent to the raw ground motion hazard data.  Table 1 (base 

case (iv)) gives the error ratios when these parameters for the power-model are used.  The 

tabulated values are also shown graphically in Figure 7b.  It is evident that as before the error 

ratios generally increase as a function of dispersion, β, however, the error ratio is no longer 

directly proportional to the curvature which occurred in the tangent fit case (this is also true 

for several of the other non-tangent fits in Table 1)  This is due to the method employed to 

compute the curvature (which uses only the second derivative of the hazard in log-log space at 

a single point), which was adequate when using a tangent-based fit, but does not appear 

adequate here.  From Figure 7b it is also seen that no clear value of γ gives error ratios 

consistently close to 1.0, although out of all of the values of γ, one would probably suggest 

that γ = 2.0 yields the best results. 

EPISTEMIC UNCERTAINTY IN COLLAPSE HAZARD 

As previously mentioned, when epistemic uncertainties are considered in (either or both 

of) the collapse fragility curve and the ground motion hazard curve, it is possible to compute 
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the epistemic uncertainty in the collapse hazard, 
C

 ln  (Equation (5)).  Epistemic uncertainties 

arise in the collapse fragility due to finite sample uncertainty (estimating the parameters of the 

collapse fragility curve based on a finite number of points) and from analysis modelling 

uncertainty (assumptions on soil-structure-interaction, hysteresis models, 3-dimensional 

effects etc.), while epistemic uncertainty in the ground motion hazard is due to assumptions in 

Probabilistic Seismic Hazard Analysis (PSHA) (e.g. type and parameters for attenuation 

relations, magnitude recurrence relationships etc.).  In the following paragraphs examples are 

given of the computation of the epistemic uncertainty (and the resulting distribution) in the 

collapse hazard using both the exact and closed-form solutions. 

To compute the epistemic uncertainty in the ‘exact’ numerical solution, 5000 Monte-

Carlo (MC) simulations were used (which was checked manually to verify it was sufficient 

for convergence of the non-parametric distribution).  In the MC simulation the median IM 

causing collapse, ηz, and the ground motion hazard, λ(IM), are assumed to be lognormal 

random variables as stated to obtain the closed-form solution for 
C

 ln  (Equation (5)).  Figure 

8a illustrates the empirical CDF using epistemic uncertainties of (βUZ, βUIM) = (0.4, 0.3) which 

are typical epistemic uncertainties appearing in literature [8, 34].  As the actual ground motion 

hazard is used in the exact solution (as opposed to the power-model approximation) the 

distribution of the collapse hazard no longer has a lognormal distribution (which is the case 

for the closed-form solution).  It is seen in Figure 8a that while a lognormal distribution 

(based on the sample median and standard deviation) is an adequate approximation over the 

central region of the distribution, its accuracy diminishes toward the tails of the distribution.  

It is also apparent that the magnitude of the epistemic dispersion, 
C

 ln , is significant (a value 

of 
C

 ln =1.75 means that assuming a lognormal distribution, the 84th percentile collapse rate 

is 33 times the 16th percentile collapse rate, and that the 90th percentile is 3.85 times more than 

of the mean).  This large epistemic dispersion is consistent with the closed-form solution, in 
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which the k2 term amplifies the effect of the epistemic uncertainty in the collapse fragility 

curve, βUZ. 

It would seem intuitive that if the error ratio (Eratio) in the closed-form solution for the 

expectation of λC is significant, then the error in 
C

 ln  will also be significant.  Of more 

importance however is: if the error λC from the closed-form solution is small, then will the 

error in 
C

 ln also be small?  Possible reasons for significant error in 
C

 ln  when Eratio is small 

could be due to the aforementioned ‘subtractive cancellation’ in the expectation of the 

collapse hazard.  Consider a single case using regression to fit the power-model (to the 

Christchurch hazard) with γ = 2.0, and using fragility and hazard parameters of βRZ = 0.3, 

βUZ = 0.4 and βUIM = 0.3, φ = 4.0, respectively.  These values are those used to obtain Figure 

8a and from Table 1 give an error ratio of 1.0 for the expectation of the mean collapse rate.  

Using the regression approach with γ = 2.0 gives k = 3.79, and thus Equation (5) gives 

C
 ln = 1.54.  This is a 12% error compared to the actual value of 1.75 given in Figure 8a. 

Figure 8b illustrates the effect of the underestimation of the dispersion on the distribution of 

the collapse hazard.  It is evident that the error in the dispersion primarily induces error in the 

collapse hazard for smaller levels of confidence.  For example, the 12% error in the dispersion 

(Figure 8b) gives an error of 150% in predicting the median (with respect to epistemic 

uncertainties) value of the collapse hazard. 

DISCUSSION 

Numerous methods have been considered for the determination of the parameters of the 

power-model ground motion hazard.  Although for each specific scenario it is possible to find 

a method for determining the parameters which gives a small error ratio, it has been 

rigorously shown that no method in general is adequate over the large range of likely values 

of the factors primarily influencing the error.  From these results it is apparent that the 
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accuracy of the collapse hazard closed-form solution is very sensitive to the values of k and k0 

used (especially when the values of β and   are significantly large).  Hence if the closed-form 

solution is to be used then a great amount of care should be taken in selecting the values of 

these parameters.  Based on the results of the parametric study it should be noted that there is 

unlikely to be any significant error when the closed-form solution is used to predict the annual 

rate of collapse for collapse-prone structures (i.e. those with an annual rate of collapse around 

λ = 1x10-2).  This is because Figure 3b illustrates that for frequent events,   is typically less 

than 2, and Figure 5 shows that the error for this range of φ is small.  Also, the error is 

strongly a function of the dispersion in the collapse fragility curve.  This dependence on the 

dispersion further illustrates the need for advanced IM’s which can accurately predict the 

effects of inelasticity and higher modes in complex structural behaviour [8, 26-28]. 

Another potential problem with the closed-form solution in its current form, as given in 

References [6-12], is that since the error is sensitive to the value of k used, in design 

environments either: (i) a large number of k values would have to be provided at different 

exceedance rates; or (ii) the raw hazard data would have to be provided, and designers should 

perform the necessary curve-fitting to obtain the value of k.  It is likely, however, that the 

effort of the user to perform the power-model fit of the ground motion hazard (particularly if 

regression is used) is more than that required to directly numerically integrate Equation (1).   

As a final remark, the results presented in this manuscript for the error between the 

closed-form solution for the annual rate of collapse and the direct numerical solution are also 

insightful toward the errors in the closed-form demand hazard solutions given in [7, 12, 29].  

It is already acknowledged from previous work (e.g. [12]) that the simplifying assumptions 

necessary for arriving at the closed-form solution of the demand hazard could lead to 

significant error if the region in which the local approximations are made is distant from the 

region of major contribution to the integral (i.e. extrapolation from the region of parameter 
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fitting).  This work has investigated the error in the closed-form solution for the collapse 

hazard where the above comments regarding extrapolation are not applicable.  It has been 

shown that no method of determining the parameters of the power-model for the ground 

motion hazard, k0, k, is in general, accurate over a range of ground motion hazard curves and 

collapse fragility curves which are likely to occur in practise.  In addition to the error 

associated with the power-model representation of ground motion hazard, the demand hazard 

closed-form solution also assumes a power-model for the median demand-intensity 

relationship and constant logarithmic standard deviation.  These additional two assumptions 

will introduce further error in the demand hazard [12] in addition to the assumptions in the 

ground motion hazard. 

CONCLUSIONS 

This study has investigated the error associated with the assumptions necessary to obtain the 

closed form for the annual frequency of structural collapse.  The potential sources 

contributing to the error between the closed-form analytical solution and the exact solution for 

the annual rate of structural collapse were identified to be the curvature of the ground motion 

hazard and the dispersion in the collapse fragility curve, and the influence of these sources 

was been investigated via a parametric study.  It was shown that the error in the closed-form 

solution is very sensitive to the log-log slope of the ground motion hazard curve, k, used, and 

while several fitting methods can be used to determine the value of k none are effective over 

the large range of likely values of parameters used.  While the closed form analytical solution 

for the annual frequency of structural collapse is without doubt insightful, considering that the 

numerical evaluation of the annual rate of collapse is straightforward, the authors recommend 

that future performance-based design methods should not consider use of the closed-form 

solution a necessity. 
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Table 1: Error ratios for various ground motion hazard curve fitting methods. 
Type Fit factor 

/location 
φ = 2.01 φ = 3.01 φ = 4.01 

  β = 0.3 β = 0.5 β = 0.3 β = 0.5 β = 0.3 β = 0.5 
Base-case tangent 1.16 1.78 1.28 2.72 1.51 5.49 

(i) k=0.85kt 1.01 1.20 1.03 1.47 1.08 2.14 
k=0.75kt 0.93 0.96 0.92 1.03 0.88 1.24 

(ii) 5.0IM  0.67 1.34 0.78 2.39 0.99 5.95 

2IM  2.05 2.54 2.15 3.39 2.38 5.67 

(iii) 10IM , Z  0.95 1.03 0.967 1.25 1.02 1.86 

5IM , 2.0IM  0.89 1.31 0.99 2.02 1.20 4.09 

(iv) γ = 1 0.52 0.71 0.65 0.73 0.47 0.46 
γ = 2 0.79 1.01 0.67 1.24 1.65 1.00 
γ = 2.5 0.90 1.48 1.15 2.32 0.84 1.67 
γ = 3 0.98 1.65 1.27 3.11 1.02 2.69 
γ = 3.5 1.02 1.74 1.37 3.90 1.17 3.81 

1φ = 2.0, 3.0 and 4.0 correspond to the Christchurch ground motion hazard at approximately 
λ(IM) = 2.1x10-3, 3.5x10-4 and 1.0x10-4, respectively. 
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Figure 2: Collapse Fragility curve for the IDA curves in Figure 1a. 
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