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We explore the merits of applying a simple angle-dependent correction to the correlation kernel

within the framework of Hartree–Fock–Wigner theory. Based on numerical results for the first

eighteen atoms, we conclude that such a correction offers a significant improvement over the

action kernel that we and others have explored previously.

I. Introduction

Hartree–Fock (HF) theory1–3 often yields fairly accurate pre-

dictions of molecular structure but it is much less satisfactory

for many other properties. In particular, its simplistic treat-

ment of electron motion fails to account properly for the

formation of an electron pair during bond formation and it

has been known for many years that quantitative predictions

are possible only if the theoretical model is extended to

account for electron correlation. Allowing the electrons to

avoid one another stabilizes the system and the difference

between its exact and HF energies is known4,5 as the correla-

tion energy Ec. The difficulty of calculating Ec is known as ‘‘the

correlation problem’’ and has been the most challenging

obstacle to the progress of quantum chemistry during its

eighty-year history.

A few years ago, Rassolov argued6 that the strength of the

correlation of two electrons depends on both their separation

u = r1 � r2 in position space and their separation v = p1 � p2
in momentum space. We believe that this insight is a profound

one but, because the Heisenberg uncertainty principle pre-

cludes the construction of a phase-space wavefunction, we

have turned instead to Wigner’s7,8 reduced second-order

phase-space distribution W(r1,r2,p1,p2) to provide a relatively

simple function, the Omega intracule O(u,v,o), that gives the
joint quasi-probability density of u, v and o, the last of these

being the angle between u and v.9,10 Besley has argued11 that it

may be preferable to derive phase-space intracules from the

rigorously non-negative Husimi distribution12 but we do not

explore this possibility here.

We have suggested that the correlation energy of a system

can be found by contracting its HF Omega intracule with a

suitable correlation kernel G(u,v,o). Using arguments based

on the known correlation energies of the helium-like ions, we

have assumed in our work to date that the correlation kernel

depends on the product s = uv but is independent of o. A
number of investigations9,13–16 of this assumption have been

published and they have concluded that, although such kernels

can provide surprisingly good estimates of ground-state atom-

ic correlation energies, they seem to be less effective in

describing the variations of Ec across isoelectronic molecules.

To obtain even higher accuracy, it is clear that more flexible

kernels are needed. In this paper, we explore the possibility of

adding a small o-based correction and present results for a

number of atoms. We define the correlation energy to be the

difference between the complete-basis UHF energy and the

exact eigenvalue of the non-relativistic Schrödinger equation

and we use atomic units throughout.

II. Angle intracules

In calculations using one-electron basis functions fa(r),

the Omega intracule is10

Oðu; v;oÞ ¼
X
abcd

Gabcd ½abcd�O ð2:1Þ

where Gabcd is a two-particle density matrix element and the

Omega integrals

½abcd�O ¼
R
F�adðu; vÞFbcðu; vÞdðyuv � oÞdXu dXv ð2:2Þ

are formed from the phase functions

Fadðu; vÞ ¼ ð2pÞ�3=2
R
faðrÞfdðrþ uÞeiv�r dr ð2:3Þ

The Omega integrals are more difficult than the analogous

[ab|cd] Coulomb integrals but we have shown how they can be

calculated efficiently over Gaussian basis functions, exploiting

Boys’ approach17 in which the fundamental [ssss]O integral is

found and differentiated with respect to the coordinates of the

Gaussians to yield [abcd]O of higher angular momentum.

We have reported intracules for various atoms and mole-

cules, in ground and excited states (see ref. 9 and references

therein) and, most recently, we have studied the Angle

intracule

UðoÞ ¼
Z1

0

Z1

0

Oðu; v;oÞdudv ð2:4Þ

which gives the (quasi-)probability density of o. In a system

where the directions of u and v are statistically independent,

such as two identical harmonic oscillators,18 the Angle intra-

cule is determined entirely by the appropriate geometric
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Jacobian and it is easy to show that

U0ðoÞ ¼
nðn� 1Þ

2

sino
2

ð2:5Þ

In more interesting systems, it is useful to take this as a

baseline and write

UðoÞ ¼ U0ðoÞ þ DUðoÞ ð2:6Þ

Because both U(o) and U0(o) are normalized to n(n � 1)/2, the

differential intracule DU(o) has no net content. However, its

subtle features provide a lens through which one can perceive

important changes in the mutual orbital motion of electrons.

For example, we found that DU(o) for a helium atom is

positive around o= p/2 and correspondingly negative around

o = 0 and o = p. This is significant because, at o = p/2, the
electrons’ relative momentum vector is perpendicular to their

relative position vector, indicating a circular orbit. In the H2

molecule, DU(o) is also positive in this region, but less so than

in the helium atom, indicating that the tendency for the

electrons to orbit one another is weaker in the molecule than

in the atom. Moreover, as the molecule is stretched, DU(o)
flattens even further until, in the dissociated limit, it vanishes

completely. (See Fig. 4 in ref. 10.)

A similar trend is observed as a neon atom is transmuted

successively into HF, H2O, NH3 and CH4, indicating that the

localization of the neon lone-pair electrons into the s bonds of

the molecules increases the ellipticity of their orbits. (See Fig. 8

in ref. 10)

It is convenient to characterize the differential intracule via

its Fourier expansion

DUðoÞ ¼ d1 sinoþ d3 sin 3oþ d5 sin 5oþ . . . ð2:7Þ

dk ¼
2

p

Z p

0

DUðoÞ sin ko do ð2:8Þ

and we note that the integration of (2.7) yields the sum rule

0 ¼ d1 þ
d3

3
þ d5

5
þ . . . ð2:9Þ

We have evaluated d1, d3, d5 and d7 for the UHF/6-311G

wavefunctions of the first 18 atoms in the periodic table and

they are listed in columns 3–6 of Table 1. By comparing the dk
with n(n �1)/4, we see that DU(o) is never more than a small

component of U(o) and that its contribution falls from roughly

20% in the helium atom, to 10% in neon, and to less than 2%

in argon. Further examination reveals that the Fourier expan-

sion (2.7) seems to converge rapidly and d3 is always the

largest coefficient. Moreover, we find d3 E �3d1 in all cases,

as the sum rule (2.9) would predict for a rapidly converging

series. From these observations, we conclude that the d3 values

capture most of the information in the DU(o).
The d3 values are plotted as a function of the atomic number

Z in Fig. 1 and it is immediately clear that they reflect the

atomic shell structure. The detailed variations can be rationa-

lized by recognizing that d3 is a sum of contributions from all

n(n � 1)/2 pairs of electrons in the atom and that, whereas two

electrons in the same shell give a negative contribution, two

electrons in different shells give a smaller positive contri-

bution.10

Table 1 Fourier coefficients, exact correlation energies, LYP errors and kernel-based errorsa–f

nðn�1Þ
4

d1 �d3 d5 �d7 Ec DELYP
c DE2

c DE3
c

Cs 0.1060 0.1008
Co 0 0.0075
z 0.9163 0.9101
H 0.0 0.0000 0.0000 0.0000 0.0000 0.0 0.0 0.0 0.0
He 0.5 0.0237 0.0804 0.0183 0.0054 42.1 1.7 1.3 0.5
Li 1.5 0.0213 0.0698 0.0114 0.0029 45.4 8.1 2.3 1.3
Be 3.0 0.0194 0.0630 0.0125 0.0104 94.4 0.2 �3.3 �5.9
B 5.0 0.0466 0.1447 0.0112 0.0072 120.8 5.5 0.2 �2.2
C 7.5 0.0950 0.3019 0.0211 0.0057 151.3 8.2 3.3 2.2
N 10.5 0.1723 0.5412 0.0440 0.0065 184.7 7.5 7.3 8.6
O 14.0 0.2495 0.7868 0.0682 0.0070 248.5 9.8 2.5 5.2
F 18.0 0.3408 1.0763 0.0955 0.0082 317.8 4.4 �4.3 0.5
Ne 22.5 0.4657 1.4792 0.1474 0.0153 390.8 �7.2 �11.3 �3.0
Na 27.5 0.4199 1.3141 0.0927 0.0018 395.9 12.5 �7.8 �1.5
Mg 33.0 0.3644 1.1269 0.0591 0.0066 438.4 21.1 �3.3 �0.7
Al 39.0 0.3341 1.0226 0.0379 0.0104 465.2 29.6 0.8 1.5
Si 45.5 0.3303 1.0046 0.0281 0.0143 500.2 30.6 �2.5 �2.5
P 52.5 0.3195 0.9631 0.0191 0.0281 539.8 26.5 �1.9 �2.8
S 60.0 0.3216 0.9701 0.0277 0.0431 596.8 33.1 1.5 �0.8
Cl 68.0 0.3200 0.9652 0.0361 0.0621 658.3 33.0 4.1 0.4
Ar 76.5 0.3139 0.9434 0.0400 0.0826 722.7 28.1 7.6 2.3
RMSD 19.0 4.7 3.2
MAD 14.8 3.6 2.3

a All energies in millihartrees. Correlation energies are taken to be positive numbers. b Ec = exact value taken from ref. 21. c DELYP
c = error of the

LYP density functional. d DE2
c = error of the two-parameter kernel, eqn (3.15). e DE3

c = error of the three-parameter kernel, eqn (3.17).
f LYP and kernel calculations used UHF/6-311G wavefunctions.

This journal is �c the Owner Societies 2007 Phys. Chem. Chem. Phys., 2007, 9, 5340–5343 | 5341



The d3 value in helium is �0.0804 and, as described above,

this reflects the fact that the two electrons are often found

orbiting each other. When a third electron is added (Li), it goes

into the 2s subshell. Through its interaction with the two 1s

electrons, this electron introduces two new positive contribu-

tions and, as a result, d3 becomes slightly smaller. The addition

of a fourth electron (Be) creates two positive contributions and

one larger negative contribution and the value of d3 remains

almost unchanged. However, as the next six electrons (B to

Ne) are successively added to the 2p subshell, the additional

negative contributions significantly outweigh the positive con-

tributions and d3 grows quadratically.

As we move to sodium, an electron is added to the 3s

subshell, leading to ten new positive contributions and a

precipitous drop in d3. The addition of the twelfth electron

(Mg) has a similar effect but the subsequent six additions (Al

to Ar) reduce d3 much less, as the new positive and negative

contributions almost balance.

3. Intracule-based correlation models

We have conjectured9 that an Omega correlation energy

functional exists, i.e.

Ec ¼ F ½Oðu; v;oÞ� ð3:10Þ

and we have additionally speculated that it can be written

Ec ¼
Z 1
0

Z 1
0

Z p

0

Oðu; v;oÞGðu; v;oÞdo dvdu ð3:11Þ

where G(u,v,o) is a universal correlation kernel. Substituting

eqn (2.1) into eqn (3.11) yields

Ec ¼
X
abcd

Gabcd ½abcd�G ð3:12Þ

where we have introduced the correlation integral

½abcd�G ¼
Z

F�adðu; vÞFbcðu; vÞGðu; v;oÞdudv ð3:13Þ

In the case where each of the basis functions is an s-type

Gaussian, this becomes

½ssss�G ¼
1

½4ðaþ dÞðbþ gÞ�3=2
Z Z

e�l
2u2�m2v2�iZu�v�P�u�iQ�v�R

� Gðu; v;oÞdudv
ð3:14Þ

and the various constants depend on the Gaussian exponents

and centers.9

We and others have explored the two-parameter correlation

kernel

Gðu; v;oÞ ¼ Csj0ðzsÞ ð3:15Þ

where s = uv, and this produces the concentric fundamental

integral

½ssss�j0 ¼
p3

½ðaþ dÞðbþ gÞ�3=2

4l2m2 þ ðz� ZÞ2
h i�1=2

� 4l2m2 þ ðzþ ZÞ2
h i�1=2

2zZ

ð3:16Þ

However, in the light of the discussion in the preceding

section, we expect that the correlation energy of a pair of

electrons will be influenced by the ellipticity of their orbit, and

we are now led to consider the three-parameter angle-cor-

rected correlation kernel

Gðu; v;oÞ ¼ Csj0ðzsÞ þ Cosin3o ð3:17Þ

The term sin(2k + 1)o gives rise to the concentric funda-

mental integral

½ssss�sin ¼
p3ð1þ z2Þ3=2ð�z2Þk

½ðaþ bÞðgþ dÞ�3=2
G kþ 3

2

� �2
ð2kÞ!

F kþ 3

2
; kþ 3

2
; 2kþ 2;�z2

� � ð3:18Þ

where z = Z/(2lm) and F(a,b,c,x) is the hypergeometric func-

tion.19 Concentric integrals of higher angular momentum are

similar to (3.16) and (3.18) but contain several such terms.

Because these correlation integrals have only four-fold permu-

tational symmetry,20 the cost of computing each set of them is

approximately double that of the two-electron repulsion in-

tegrals required for the preceding HF calculation. Thus, the

total cost of computing the HFW correlation energy using the

two-parameter kernel is roughly equivalent to two SCF itera-

tions, and the total cost of computing the HFW correlation

energy using the three-parameter kernel is similar to perform-

ing four SCF iterations.

We have optimized the values of Cs, Co and z by a least-

squares fit to the exact unrestricted correlation energies21 of

the first 18 atoms in the periodic table. In Table 1, we report

both the root-mean-square deviation (RMSD), which is the

quantity that was minimized, and the mean absolute deviation

(MAD). All of our intracule functional calculations are based

on UHF/6-311G wavefunctions.

The optimized values of Cs and z in the two-parameter

kernel (3.15) are 0.1060 and 0.9163, respectively. When the

additional sin3o term is included, the coefficient Cs diminishes

by 5% but z, which is more robust,9 changes by less than 1%.

Table 1 compares the exact correlation energies with the

estimates obtained using the popular LYP density func-

tional,22 the two-parameter kernel and the three-parameter

kernel. The errors DE2
c and DE3

c from the two kernels are

shown in Fig. 2. The inclusion of the sin3o term reduces the

mean absolute deviation by 36%, from 3.6 to 2.3 mEh, but its

Fig. 1 The d3 Fourier coefficients for the first 18 atoms. Based on

UHF/6-311G wavefunctions.
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benefits are felt primarily by the heavier atoms (F to Ar) whose

MAD is reduced by almost a factor of three. Both kernels are

much more accurate than the LYP functional and we have

found that other commonly used correlation functionals (such

as PW91) perform even worse.

Although the three-parameter kernel is significantly more

accurate than its two-parameter predecessor, there is still room

for improvement. The largest error (8.6 mEh) occurs for the

nitrogen atom, which is also the most spin-polarized system in

our set, and we are encouraged by the fact that the errors

across the 2p block (i.e. from Be to Ne) appear to be very

systematic. We are currently investigating the reason for this.

4. Concluding remarks

In this paper, we have sought to improve the accuracy of

intracule-based electron correlation treatments through the

explicit inclusion of a term that depends on the angle o
between the interelectronic position and momentum vectors,

u and v. We have argued that extracting the sin3o component

of the intracule captures the majority of the chemically

relevant correlation between u and v and we have explored

the merits of using this as a small additive correction to the

usual action-based scheme. In tests on the first eighteen atoms

in the periodic table, we have shown that this correction can be

applied through the introduction of a single empirical para-

meter and that this leads to an accuracy improvement of more

than 30%.
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