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Abstract of a thesis submitted in partial fulfilment of the requirements for the 

degree of M.C.M. 

Exchange Rate Forecasting with An Artificial Neural 

Network Model: Can We Beat a Random Walk Model? 

byY. SUN 

Developing an understanding of exchange rate movements has long been an extremely 

important task because an ability to produce accurate forecasts of exchange rates has 

practical as well as theoretical value. The practical value lies in the ability of good 

forecasts to provide useful information for investors in asset allocation, business firms 

in risk hedging, and governments in policy making. On the theoretical side, whether a 

currency price is predictable or not has important implications for the efficient market 

hypothesis in the foreign exchange market and for theoretical modelling in 

international finance. 

Owing to the importance of the movements of exchange rates in our real life, such as 

financial hedges and investment abroad, this research investigates the possibility of an 

accurate pattern of the exchange rate movement. The purpose of this research is to 

carry out an empirical investigation into the extent to which nonlinear econometric 

models can improve upon the predictability of foreign exchange rates compared to a 

standard regression model. We will use the artificial neural network approach and 

employ macroeconomic fundamental variables, including relative money supply, 

relative income, interest rate differential and inflation rate differential to examine 

whether or not the artificial neural network model could significantly improve the 

accuracy of describing the movement of exchange rates and the predictability of 

exchange rates, especially out-of-sample. The empirical research will focus on the New 

Zealand exchange rate with the currencies of its major trading partners (Australia and 

the United States). 
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Chapter 1 Introduction 

1.1 Introduction 

An exchange rate is the price of one currency indicated by another currency, which 

widely influences the country's international economic circumstances. Therefore, it is 

very important to understand the continuous movement of exchange rates because 

nowadays financial connections, both among industrialised countries and between 

developed countries and developing countries, have grown increasingly close and 

intense. 

In fact, exchange rates tend to be very volatile in the short run, causing theory based 

models (PPP: Purchasing Power Parity, CIP: Covered Interest Rate Parity, UIP: 

Uncovered Interest Rate Parity etc) to empirically fail over short periods. Hence this 

research is focused on evaluating the ability of theory-based econometric models to 

forecast exchange rates over a relatively long horizon. 

1.2 Study Rationale 

Meese and Rogoff (1983) found that a simple random walk model performed no 

worse than a range of competing representative time-series and structural exchange 

rate models. Especially, these competing models have little out-of-sample forecasting 

power over various short term forecasting horizons (1-, 6- and 12-months). Since the 

publication of the seminal paper (Meese and Rogoff, 1983), researchers have been 

formulating all kinds of theoretical models and developing many powerful forecasting 

techniques in order to gain a better understanding of exchange rate movements, and to 

attempt to beat the naIve random walk model. 
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Among a wide range of competitive models, the forward model might be the simplest 

one. Also, for ordinary people, the forward model is used most frequently because the 

forward exchange rate is a simple and easy acquired (minimum search cost) indicator 

of spot exchange rate in a future period. People, even academic staff often view the 

forward exchange rate as an expected spot exchange rate value in the future time. In 

the forward market, "pure" speculation, which can be expressed as F, = S,e+ 1 (where 

S,e+
1 

is the log expected spot exchange rate for the time at t+ 1, and F, is the log 

forward rate at the time t), is a special speculation in foreign exchange. In this 

situation, it suggests that a foreign currency does not require to be bought or held in 

the forward market. "Pure" speculation could happen when the majority of market 

players are risk neutral. 

On the other hand, the monetary model is based on solid economic theory. This 

model, which was originally developed by Dornbusch (1976) and Frankel (1979), can 

be expressed as in equation (1.1): 

SI = f30 + f3l m l + /32YI + f33 it + f34 1r 1 + 8 1 (1.1) 

where m = log relative money, 

Y = log relative real GDP, 

= interest rate differential, 

1r = inflation rate differential. 

This specification reflects the traditional sticky-price monetary approach 1 to exchange 

rate modelling. However, recent studies (Conway and Franulovich, 2002) have 

indicated that the traditional monetary model should be modified to include the 

Current Account Balance (CAf Based on this statement, we modify Dornbusch-

Frankel's model as equation (1.2). 

SI = f30 + f3l nt l + f32YI + f33 i l + f34 1r1 + f3 sca l + 8t (1.2) 

where ca is the current account balance differential. 

1 It is the basic Dombusch (1976) and Frankel (1979) model. 
2 Conway and Franulovich (2002) argue that the current account should be included in the monetary 
model because that current account indicates a country's relative wealth level. 
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However, the monetary model is a simple linear model which entirely ignores non-

linear factors. There are three methods which can possibly catch the non-linearity 

factors. 

1. Markov switching models can catch the non-linearity in both parameters and 

regimes. 

2. Threshold autoregressive models (TAR: threshold autoregressive models, 

STAR: smooth transition autoregressive models, and SET AR: self-exciting 

threshold autoregressive models) can catch the nonlinearities in the data sets 

especially financial time-series data. 

3. Artificial Neural Network (ANN) procedure is a general class of non-linear 

method which can capture any universal non-linearity element. 

We propose to carry out an empirical investigation by using the ANN approach into 

the extent to which a nonlinear econometric model can improve upon the 

predictability of foreign exchange rates (especially in the long run) compared to the 

random walk model and a standard regression model. 

1.3 Research Objectives 

Owing to the importance of exchange rate movements in the international economy, 

such as financial hedge and investment abroad, this research investigates the 

possibility of developing empirical models capable of describing and forecasting the 

exchange rate movements. We use the artificial neural network approach and employ 

macroeconomic fundamental variables, including relative money supply, relative real 

GDP, interest rate differential, inflation rate differential, and current account balance 

differential to examine whether or not the artificial neural network could significantly 

improve the accuracy of describing the movement of exchange rates and the 

predictability of exchange rates, especially out-of-sample predictability. The empirical 

3 



research will focus on the New Zealand exchange rate with the currencies of its major 

trading partners - Australia, and USA (New Zealand statistical data3
). 

In more detail, this research has the following specific objectives. 

1. To test whether the Random Walk model can well describe the movement of 

exchange rates in-sample and out-of-sample; and further examine whether a 

pure Random Walk model can also well mimic the pattern of exchange rate 

movements 

2. To empirically analyse exchange rate movements using a Monetary model (a 

linear regression) in-sample and out-of-sample; and further employ the 

Artificial Neural Network (ANN) approach to repeat the test and compare the 

results using several criteria to see whether this approach can significantly 

improve the ability of capturing short-run fluctuation or long-run trend in 

exchange rate forecasting 

3. To measure the accuracy of predicted exchange rate movement direction 

(turning-point) by using the ANN approach to compare the change in actual 

values and change in predicted values 

4. To compare the forecasting accuracy of different models (especially by 

examining whether the RW model can provide better forecasts than the ANN 

model) by using the Diebold-Mariano (DM) test 

This research uses the New Zealand dollar vs. the Australian dollar and the US dollar, 

because Australia and the US are the main commercial partners of New Zealand, and 

because the US economy always influences the rest of the world. Also this research 

employs a long horizon period from 1990:01 to 2003:12 over 14 years to mitigate 

extreme exchange rate volatility in the short term. 

3 During the year from June, 2003 to June, 2004, total New Zealand's total imports and exports were 
63.3 billion. Australia and USA, the two biggest trading partners occupied 21.7% and 13.0%, 
respectively. 
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1.4 Data and Software 

This research considers the NZ exchange rate (NZ dollar vs. Australian dollar, and 

NZ dollar vs. American dollar) movement for the period from 1990 to 2003. 

Explanatory variables considered now are relative money supply, relative real GDP, 

interest rate differential, inflation rate differential, and current account balance 

differential. These time series data can be found in the International Finance Statistics 

(IPS) on a monthly or a quarterly base (which will be converted into a monthly base 

before starting the empirical analysis). 

The software of EViews 5.1 is employed to run the standard regression model. This 

software does not require writing a programme, what is needed is to accurately put 

data into this software, run the regression, obtain the results, and carry out some 

diagnostic tests as well. 

The software ofNeuroShell 2 is employed to run the artificial neural networks model. 

The first step is to enter data into a spreadsheet, and define inputs and actual output(s) 

to form a data file. The second is to set the minimum and maximum values tightly 

around the actual input and output data since neural networks require variables to be 

scaled into the range 0 to 1 (a logistic function 4) or -1 to 1 (a hyperbolic tangent 

functionS), hence the network needs to know the variable's real value range. The third 

step is to do some preparatory work such as specifying the level of the problem 

complexity, selecting the training pattern, setting the number of hidden neurons, and 

choosing an appropriate method to extract a validation set and a test set from the 

whole data set. After that, a suitable architecture of the network for solving the 

problem should be chosen and training criteria set accordingly. Then we can start 

training until the minimum average error in the validation set is unlikely to be any 

lower. Finally, the results can be obtained once the training process stops. 

1 
4 Logistic function: I(x) = _ 

1 + e x 

eX _ e-X 
5 Hyperbolic tangent function: I(x) = _. 

eX + e x 
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1.5 Chapter Outline of This Thesis 

The remainder of this thesis is presented as follows. Chapter 2 gives a review of the 

literature on exchange rate determination and forecasting, provides a summary of 

existing empirical tests results of exchange rate models to date, and identifies the gaps 

and limitations in these previous studies. Chapter 3 discusses the methods which are 

used in this research including a simple linear regression model, but with a focus on 

the artificial neural network model, introduces forecasting measurements and 

followed by the report format outlined, provides the explanation of the economic 

theory supporting the selection of the explanatory variables considered for the 

forecasting models, and describes the data to be used in this research. Chapter 4 

presents, interprets and discusses the empirical results obtained. Finally, Chapter 5 

points out the limitations of this research, and makes suggestions for further studies in 

this area. 
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Chapter 2 Literature Review 

2.1 Introduction 

Forecasting exchange rates is an extremely difficult task and has long posed a 

challenge to academicians (Qi and Wu, 2003, pp637). This chapter provides a 

literature review of the relevant aspects of exchange rate detennination and 

forecasting in two major perspectives --- the theoretical development of models and 

the empirical findings of models. Also, this chapter identifies the gaps and limitations 

in these previous studies, and outlines the basic framework of this research. 

2.2 The Background of the Exchange Rate 

2.2.1 Purchasing Power Parity 

Purchasing power parity (PPP) is a simple theory which consists of 'Absolute PPP' 

and 'Relative PPP'. 'Absolute PPP' means that the exchange rate between two nations 

is equal to the ratio of the two nations' aggregate price levels which are expressed in 

the same currency. The concept of 'Relative PPP' is that if one currency depreciates 

relative to another, then the aggregate price level in the nation the currency of which 

has been experiencing depreciation will be higher than before, and the degree of 

depreciation just matches the aggregate price inflation differential (Sarno and Taylor, 

2002). 

However, PPP theory does not always hold in the real world (Sarno and Taylor, 2002) 

mainly for a basket of reasons --- non-tradable goods/service, trade barriers, actual or 

threatened trade protection, transportation costs, infonnation costs, limited 

international labour mobility, and imperfect competition markets and so on 

(Salvatore, 2001). The most serious reason causing deviation from PPP theory is the 

7 



non-tradable goods/service. That is, not all products and service are tradable, but a 

nation's aggregate price level is determined by both tradable and non-tradable 

products and service (Salvatore, 2001). Actually, the non-tradable products and 

service often have unequal prices in different areas/nations largely due to productivity 

level differential (Hallwood and MacDonald, 2000). 

Because of the existence of factors which lead to deviation from PPP, the 

consequence of various adjustment costs makes exchange rates move a great deal in 

order to gradually respond to the relative domestic prices (Salvatore, 2001). 

Therefore, deviations from purchasing power parity die out very slowly (Frankel, 

1986 and 1990), and hence PPP theory fails in the short run, but it is theoretically 

retained in the long run which is evidenced by the fact that national price levels 

(consumer price indices and produce price indices) of the two nations (US and UK), 

expressed in the same currency (US dollar), did tend to move together over long 

periods (1820-2001 and 1971-2001 respectively) (Taylor and Taylor, 2004). 

However quite a few of the empirically tested results of PPP in the long run are also 

not very supportive. This is the result of shocks especially the real shocks (Salvatore, 

2001), such as the change of taste and technology development, and the application of 

non-suitable methodology of investigating the PPP theory (Taylor and Taylor, 2004). 

The latter factor means that many previous studies built a linear framework which 

caused the adjustment speed of PPP deviations to be the same at all times (Taylor and 

Taylor, 2004); but in practice, the process of adjustment itself might not be linear 

(Heckscher, 1916). 

2.2.2 Non-Linearity 

Adopting nonlinear dynamics in real exchange rate adjustment is a good way to solve 

the PPP puzzles (Taylor and Taylor, 2004). That is, transactions costs exist in 

international arbitrage (Heckscher, 1916); hence the adjustment speed of PPP 

deviations from parity is no longer uniform as in the linear framework (Taylor and 

Taylor, 2004). 
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Moreover, it is suggested (Gradojevic and Yang, 2000) that exchange rate changes are 

strongly non-linearly dependent (Hsieh, 1989), and hence exchange rates could not be 

linearly predicted (Bailie and McMahon, 1989), Therefore, many elegant models and 

sophisticated forecasting techniques, which are based on a linear framework, have 

lacked the capability to beat the naive random walk model since the pUblication of the 

seminal paper of Meese and Rogoff (1983) (Preminger and Franck, 2005; Qi and Wu, 

2003), 

From the point of view of an asset pnce, exchange rates are likely to contain 

significant nonlinearities (Pippenger and Goering, 1998) as well as other economic 

and financial time-series data; and the nonlinearity has been found by a SET AR (self-

exciting threshold autoregressive) model rather than a standard non-linear ARCH 

(autoregressive conditional heteroskedasticity) model6, As a result of the SETAR 

model capturing the nonlinearity occurring in economic data, this model is superior to 

the naive random walk model in terms of accuracy of forecasting changes in the 

exchange rate for both in-sample forecasts and one-step-ahead out-of-sample 

forecasts (forecast horizon is 1 month), and it further provides more accurate 

predictions of the direction 7 of change in the exchange rate (Pippenger and Goering, 

1998)8, 

More recently, many empirical studies (Taylor, Peel and Sarno, 2001; Sarno, Taylor 

and Chowdhury, 2004) have discovered that the exchange rate deviation from PPP 

follows a nonlinear process in nature, and it is increasingly mean reverting9 with the 

size of the deviation from the equilibrium level (Sarno and Taylor, 2002), In order to 

deal with the neglected non-linearitylO, which cannot be detected by a traditional 

linear regression, we can therefore build an estimation model by allowing the 

6 The threshold autoregressive (TAR) model can be described as additive nonlinear dependence while 
the autoregressive conditional heteroskedasticity (ARCH) model can be described as multiplicative 
nonlinear dependence (Hsieh, 1989). 
7 Not only the SETAR model, but also the Markov switching model appears to predict a more 
accurately directional change in the exchange rates (Engel, 1994). 
8 This paper uses monthly observations of the Austrian schilling, Belgian franc, Danish krone, French 
franc, German mark, Irish punt, Italian lira, Netherlands guilder, Norwegian krone, Swiss franc, UK 
pound and US dollar. 
9 This new finding implies that the prevalent null hypothesis of unit root behaviour in exchange rate 
series is not true which is opposite to Bailie and Bollerslev (1989, 1994). 
10 The nonlinear nature in the exchange rate may arise from the heterogeneity of opinion in the foreign 
exchange market (Kilian and Taylor, 2003) or from the intervention operations of central banks 
(Taylor, 2004). 
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parameter(s) to varyll (Taylor and Taylor, 2004) or leaving the parameter(s) to be 

unspecified (Sharma, Tarboton and Lall, 1997). The latter of non-parametric models 

no longer hold the prevalent linear and/or distributional assumptions about the 

parametric form of the functional relationship between the variables in the regression 

models (Fernandes and Gramming, 2005). Therefore, non-parametric models are 

more easily applicable and can further capture both linear and nonlinear relations 

because of computational advances and increased computational power (Medeiros, 

Terasvirta and Rech, 2002; Sharma, Tarboton and Lall, 1997). 

Since the early 1990s, a number of researchers have been building all kinds of 

nonlinear models to explain the movements of exchange rates (Qi and Wu, 2003). A 

powerful nonparametric prediction technique --- locally weighted regression (Diebold 

and Nason, 1990)12 --- only occasionally provides a lower mean squared prediction 

error (MSPE) and/or a lower mean absolute prediction error (MAPE) for one-step-

ahead out-of-sample prediction (forecast horizon is 1 week) relative to a random walk 

model with weekly data. A multivariate model with nearest-neighbour non-parametric 

technique l3 (Mizrach, 1992)14 improves upon the random walk model for only one of 

three exchange rates (Italian lira vs. US dollar) explored for out-of-sample forecasts in 

a 3-year horizon with daily data, and the improvement is limited. These unsatisfactory 

results could be caused by the fact that 'the high frequency data may contain more 

than one type of nonlinearity thus decreasing the explanatory power of the non-

parametric model' (Pippenger and Goering, 1998, pp 166). 

By usmg a non-parametric estimatorl5 to handle non-linearity, all five estimated 

structural models l6 (Meese and Rose, 1991)17, with locally weighted regression 

technique, cannot significantly out-predict the random walk model for one-step-ahead 

II One of these kinds of models is well known as the "threshold autoregressive" model. 
12 This paper uses weekly observations of the Belgian franc, Canadian dollar, Danish krone, Dutch 
guilder, French franc, German mark, Italian lira, Japanese yen, Swiss franc, UK pound and US dollar. 
13 This is a special case oflocally weighted regression (Meese and Rose, 1991). 
14 This paper uses daily observations of the French franc, German mark, Italian lira and US dollar. 
15 An estimator has no assumption about the parametric form because the enor distribution is unknown 
due to lack of a priori information (Levy, 2000). 
16 The five stlUctural models are the flexible-price monetary model, the stick-price monetary model 
with trade-balance, the stick-price monetary model without trade-balance, the Lucas model and the 
quadratic flexible-price (Hodrick) model. 
17 This paper uses monthly observations (seasonally adjusted) of the Canadian dollar, German mark, 
Japanese yen, UK pound and US dollar. 
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out-of-sample prediction (forecast horizon is 1 month). The results from Meese and 

Rose (1991), which supplement those of Diebold and Nason (1990) and Mizrach 

(1992), suggest that even sophisticated non-linear models have great difficulties in 

beating the random walk model for out-of-sample forecasting. However, we cannot 

simply infer that the poor explanatory power is not mainly contributed by non-

linearity; in fact, a specific non-linear model cannot capture too many possible non-

linear patterns in a given data set, and some extremely complicated forms of 

nonlinearities may be· far beyond the ability of these nonlinear models to detect 

(Zhang, Patuwo and Hu, 1998). 

2.2.3 Macroeconomic and Microeconomic Foundations 

2.2.3.1 Macroeconomic Items 

Recent research (Taylor, Peel and Sarno, 2001) does provide convincing evidence in 

favour of long-run purchasing power parity (PPP) holding when exchange rates are 

applied among major industrialised countries, and nonlinearity in the exchange rates 

is apparent (Clarida, Sarno, Taylor and Valente, 2003). 

On the other hand, monetary models also behave as a long-run equilibrium 

relationship in the determination and forecasting of exchange rates (MacDonald and 

Taylor, 1993). This finding supports the existence oflong-run correlation between the 

exchange rate and the relative macroeconomic fundamentals 18 . 

A nonlinear adjustment of the exchange rates is necessary in the way of the exchange 

rates getting towards the long-run monetary fundamentals and towards the long-run 

PPP equilibrium. The empirical findings on the nonlinear nature of exchange rates are 

consistent (Sarno and Taylor, 2002). Hence we can use monetary fundamentals in a 

nonlinear form as a base to improve the predictability of exchange rates. 

18 Basically, they are relative money supply, relative income level, interest rate differential and 
inflation rate differential. 
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2.2.3.2 Microeconomic Items 

There is little evidence that macroeconomic fundamentals can provide a high level of 

satisfaction in explaining exchange rate determination (Frankel and Rose, 1995), and 

hence the negative findings lead to a more updated branch (micro economic approach) 

to attempt to understand the deviations from macroeconomic fundamentals. 

The microstructure information is also called technical information (Rubio, 2004), 

and it competes with fundamental information in terms of the ability to forecast 

foreign exchange rates. The microstructure literature is concerned with a wide range 

of issues including the transmission of information between market participants, the 

behaviour of market agents, the relationship between information flows, the 

importance of order flow and the heterogeneity of agents' expectations (Sarno and 

Taylor, 2002). The new studies of the microstructure of the foreign exchange market 

seem to be able to supply more positive empirical results on foreign exchange rates 

determination and forecasting (Frankel and Rose, 1995). 

Because the microeconomic variables are hardly available to the public, and hence are 

extremely difficult to gather because of time and resource restrictions, this research 

focuses only on macroeconomic fundamentals models. 

2.3 The Theoretical Models and the Empirical Findings of the 

Exchange Rate 

2.3.1 Random Walk Model 

The random walk model, which was first presented in the foreign exchange field by 

the seminal paper --- Meese and Rogoff (1983), provides a forecast of no change in 

the level of the exchange rate. That is, the observed spot exchange rate at time t is 

exactly same as the expected value of the spot exchange rate in the next period t+ 1. 

Empirically, the simple random walk model performs no worse than a range of 

competing representative time-series and structural exchange rate models 

12 



(Gradojevic and Yang, 2000, ppl) in tenns of out-of-sample forecast accuracy for 

various short tenn forecasting horizons (1-, 6-, and 12-months) based on the work of 

Meese and Rogoff (1983)19. 

One of the competing models --- the Markov-Switching modeeo, generally does not 

produce superior out-of-sample forecasts to the random walk model with drift over 

short horizons within one year (1-,2-,3-, and 4- quarters) (Engel and Hamilton, 1990; 

Engel, 1994)21. However, there is more positive evidence supporting regression-based 

models for out-of-sample forecasting in the longer horizon. For example, the out-of-

sample forecasts from the flexible-price monetary model which contains 

"fundamental,,22 infonnation do outperfonn those of the driftless random walk model 

. in longer horizons (12- and 16-quarters) (Mark, 1995)23. 

2.3.2 Forward Model 

In the foreign exchange market, in any time t the spot exchange rate is observed, and 

the forward rate is also observed and it further releases the market's expectation of the 

spot rate in the next period at t+ 1, and hence the forward rate is often interpreted as 

the expected value of the spot rate in the future (Hallwood and MacDonald, 2000). On 

the other hand, the hypothesis that the forward rate is an unbiased predictor of the 

future spot rate has been rejected by many empirical researches (Bilson, 1981; Chiang 

and Chiang, 1987; Fama, 1984; Giddy and Dufey, 1975; Hansen and Hodrick, 1980 

and 1983; Hsieh, 1984 and Levich, 1979). The reasons for rejecting this hypothesis 

19 This paper uses monthly (seasonally unadjusted) observations of the US dollar, UK pound, German 
mark, Japanese yen and the trade-weighted dollar (which consists of ten countries' currencies, and the 
weight is measured by the share of the total trade in the period 1972 through 1976). 
20 Basically, Markov switching models assume that there is more than one 'state' (For example, a 
medium or long term GDP includes both contraction and expansion phases) in the long horizontal time 
series data, and also assume that the first difference of a time series follows a nonlinear stationary 
process rather than a linear stationary process; therefore, this allows the Markov switching models to 
capture the non-linearity in both parameters and regimes (Hamilton, 1989). 
21 These two papers use quarterly observations of the German mark, French franc, UK pound and US 
dollar. 
22 This fundamental value is defined as a linear combination of log relative money stocks and log 
relative real incomes (Mark, 1995). 
23 This paper uses quarterly observations of the US dollar, Canadian dollar, Gelman mark, Japanese 
yen and Swiss fi:anc. 
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are that market behaviour is inconsistent with rational-expectations24 (Lewis, 1989) 

and/or there exists a time-varying risk premium25 (Domowitz and Hakkio, 1985). In 

otl)er words, if the conditions of rational expectations and risk neutrality hold, then a 

one-to-one relationship, which is between the forward rate and its corresponding 

future spot rate, should exist in reality (Delcoure, Barkoulas, Baum and Chakraborty, 

2003). Therefore, the forward rate can be viewed as a reasonably good (even though 

not optimal) predictor (with a low search cost) of the spot exchange rate in the (near) 

future, at least in the· sense that the term of the forward premium/discount does 

contain valuable information III forecasting spot exchange rate 

appreciation/depreciation (Hallwood and MacDonald, 2000). 

Empirical findings of a simple forward rate model are very similar to those of the 

random walk model. That is, the forward rate model also can not be beaten by 

structural exchange rate models, at least in the short run. For example, the simple 

forward rate model is superior to the Markov switching model regarding the accuracy 

of out-of-sample forecasts at short horizons within one year (1-, 2-, and 4- quarters) 

(Engel, 1994). 

2.3.3 Monetary Models26 

The early explanation of exchange rate determination and movements from long-run 

monetary models is within the scope of the Keynesian approach27, which mainly 

relies on the elasticities of demand for, and supply of exports and imports28, and the 

demand for and supply of foreign currency (Lerner, 1936; Metzler, 1942a and 1942b 

24 Systematic forecast errors will be induced when market behaviour is in the process of rationally 
leaming a new exchange rate regime or a new monetary policy, instead of immediately believing that 
the change would persist (Lewis, 1989). 
25 Risk premium implies that market participants set the forward rate above their expectation of the 
future spot rate to require compensation for taking a forward position. Moreover, the risk premium is 
not constant over time (Domowitz and Hakkio, 1995). 
26 The theory of this section is mainly based on Hallwood and MacDonald (2000), Samo and Taylor 
(2002), Mark (2001), Salvatore (2001), Shapiro (1999), Mankiw (2002) and Frankel (1979). 
27 Keynesian theory is a very broad area. The greatest contribution of Keynes to the development of 
exchange rate modelling is that he asserted the importance of the aggregate demand because he 
strongly believed that the aggregate demand or effective demand (rather than adjustments in prices) 
determines the level of output and employment in the economy (Samo and Taylor, 2002). 
28 The sufficient condition for a devaluation of the exchange rate to improve the balance of trade - that 
the sum of the demand elasticities of imports and exports should be greater than unity in absolute value 
(Marshall-Lemer -Harberger condition). 
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and Harberger, 1950). However, the simple Keynesian approach can only capture 

short-term fluctuations in exchange rate movements. Therefore, Meade (1951) 

developed the theory of the simple Keynesian approach to provide the Keynesian 

income-expenditure model, which was able to explain the exchange rate movements 

in the medium term through "multiplier". Later, this model was further extended by 

Mundell (1961, 1962 and 1963) and Fleming (1962) introduced capital flows into the 

analysis. 

The major advance in exchange rate modelling took place after 1973 because the 

Bretton Woods system29 broke down and many exchange rates started to emerge into 

a floating system. 

We now have a few of the monetary-based exchange rate models on hand: the stick-

price monetary model (Dornbush-Frankel), the flexible-price monetary model 

(Frenkel-Bilson) and the general equilibrium model. 

2.3.3.1 Stick-Price Monetary (Dornbush-Frankel) Model (SPMM) 

The stick-price monetary model was originally developed by Dornbusch and Frankel 

in late 1970s. This model assumes that prices are rigid, at least in the short run. 

Therefore, if the nominal domestic money supply is reduced, then in this model, the 

real domestic money supply will follow since the prices cannot immediately respond 

to the change but remain the same in the short run. However, the domestic money 

demand remains unchanged compared to a contraction of real domestic money supply 

due to the same reason of rigid prices in the short run. In order to release the pressure 

of the shortage of real domestic money supply, nominal domestic interest rates will 

rise to hold back domestic residents' consumption. The rise of nominal domestic 

interest rates will then lead to a capital inflow, and consequently an appreciation of 

domestic currency and a depreciation of the nominal exchange rate30 (defined as the 

price of foreign currency, that is, direct quotation: Home Currency/Foreign Currency). 

29 The IntemationaI Monetary Fund was established at the Bretton Woods Conference in 1944. And 
this conference introduced a system of fixed exchange rates, to which most major exchange rates had 
been officially pegged. Later, this monetary system became known as the Bretton Woods system 
(Samo and Taylor, 2002). 
30 The exchange rate is defined as direct quotation (Home Currency/Foreign Currency) through the 
whole thesis. 
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Rational foreign investors are likely to be aware that the value of domestic currency is 

artificially forced up and that they might suffer a foreign exchange loss when they 

convert the domestic currency into foreign currency once their investment is mature. 

But as long as the expected foreign exchange loss (the expected rate of domestic 

currency depreciation) is less than the nominal interest rate differential, risk-neutral 

investors will continue investing in the domestic country until the expected rate of 

domestic currency depreciation is just equal to the nominal interest rate differential. 

Only when the expected rate of domestic currency depreciation is greater than zero in 

an absolute value, will there be a differential between the two nations' nominal 

interest rates. So we can infer that the initial appreciation of domestic currency has 

overshot its long run equilibrium. In the medium run, domestic prices will start to fall 

to respond to the relatively fixed level of outputs (output is assumed at its natural 

level) and the reduced nominal money supply. Once domestic prices go down, and 

then the real money supply rises, more outputs can be consumed. This results in a 

decrease in the interest rate, the capital inflow will be reduced, and the domestic 

currency will start to depreciate to its long run equilibrium. In summary, a cut in the 

nominal domestic money supply causes interest rates to rise, and consequently leads 

to a dramatic increase in the value of the domestic currency. But when the prices 

gradually fall, the domestic currency depreciates somewhat to reach the long run 

equilibrium. 

In the stick-price monetary model, the exchange rate is positively related to the 

relative money supply and expected long run inflation rate differential, and negatively 

related to relative real GDP (real income) and nominal short run interest rate 

differential. 

2.3.3.2 Flexible-Price Monetary (Frenkel-Bilson) Model (FPMM) 

The flexible-price monetary model was originally developed by Frenkel and Bilson in 

the late 1970s. This model assumes that prices are perfectly flexible, and are 

determined by the domestic money supply because the output level is relatively fixed 

(output is also assumed at its natural level). Moreover, in the flexible-price monetary 

model, purchasing power parity is assumed to hold. Therefore, it is concluded that the 

domestic money supply determines the exchange rate. Hence, if the domestic money 
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supply is reduced, then in this model, the domestic currency will appreciate. On the 

other hand, if real income falls, then the demand for domestic money stock will 

shrink. In this case, real money supply is excess real money demand, residents will 

expand their consumption and prices will go up because of a relatively fixed level of 

outputs. Since domestic prices are higher, which implies that the inflation rate in the 

domestic country is higher; consequently, the value of the domestic currency will be 

reduced in the long run according to the theory of purchasing power parity. 

In the flexible-price monetary model, the exchange rate is positively related to the 

relative money supply, nominal short run interest rates differential and expected long 

run inflation rates differential, and negatively related to relative real GDP (real 

income). 

2.3.3.3 Comparison of SPMM and FPMM 

In the stick-price monetary model, changes in the nominal interest rates imply 

monetary policy is changing. However, in the flexible-price monetary model, changes 

in nominal interest rates directly reflect that the expected inflation rates are changing. 

The flexible-price monetary model is more suitable to describe the cases of large 

inflation differential. For example, FPMM successfully captured the main features in 

the German hyperinflation of the 1920s (Frenkel, 1976). While the stick-price 

monetary model is more realistically applied in the opposite case of having a relative 

small inflation differential such as the Canadian Dollar against the United States 

Dollar in the 1950s (Mundell, 1964 and 1968). 

2.3.3.4 General Equilibrium Model 

The general equilibrium model is an extension of the flexible-price monetary model 

that additionally takes multiple trade goods and real shocks across countries into 

account. In this model, we consider that in a two-country, two-goods world that prices 

are flexible; but in contrast to the flexible-price monetary model, domestic and 

foreign goods are not perfectly substitutive. If the domestic money supply is extended, 

then the domestic currency will depreciate. Also, if domestic real income increases, 
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then the demand for money will arise and hence induce a relative contraction of the 

money supply; consequently domestic prices will fall as well which implies that 

domestic currency will appreciate under the circumstances that purchasing power 

parity is held. These analyses are the same as in the flexible-price monetary model, 

but the case of preference shift is beyond the capability of FPMM. A shift in 

preference away from foreign goods to domestic goods caused by an increase in 

domestic productivity (output per capita) results in 'relative price effect' and 'money 

demand effect'. The former effect implies the relative domestic goods prices are 

reduced, and then domestic currency will tend to depreciate. The latter effect implies 

that the demand for domestic money increases as a result of an appreciation of 

domestic currency. Whether the exchange rate appreciates or depreciates IS 

determined by the relative size of these two opposite effects. In other words, the 

degree of substitutability between domestic and foreign goods highly influences the 

relative value of the two currencies concerned. If the degree of substitutability is high, 

then the relative price effect will be small (Obstfeld and Stockman, 1985); that is, the 

money demand effect dominates the relative price effect, and therefore the domestic 

currency will appreciate eventually. 

2.3.3.5 The Empirical Findings of Monetary Models 

Macroeconomic fundamentals (such as money supply, industrial production, interest 

rate and inflation rate) seem important in determining exchange rate movements over 

relatively long horizons, the substantial and often persistent movements in exchange 

rates in the short run (even medium run), especially within one year or less, are 

largely unexplained by macroeconomic fundamentals (Sarno and Taylor, 2002). 

Many empirical studies have strong evidence to support this statement. For example, 

Diebold, Gardeazabal and Yilmaz (1994)31 incorporated the cointegration relationship 

among exchange rates, which is demonstrated in Bailie and Bollerslev (1989 and 

1994), to build an error correction model (ECM), but it had found no improvement 

upon the accuracy for out-of-sample forecasts within one-year (1-, 21-, 42-, 63-, 84-, 

105- and 126-days). The remaining unexplained parts of exchange rate movements 

could be logically attributed to innovations in unobservable fundamentals such as 

31 This paper uses daily observations of the Canadian dollar, French franc, German mark, Italian lira, 
Japanese yen, Swiss franc and UK pound. 
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productivity shocks, or non-fundamental factors such as speculative bubbles (Frankel 

and Rose, 1995). 

Regarding the accuracy of exchange rate out-of-sample forecasting with short 

forecasting horizons, a short run model (ARIMA (autoregressive integrated moving 

average) model) does perform better than a long run model incorporating economic 

fundamentals. This ARIMA model utilises only past values of exchange rates to 

generate future values of exchange rates based on criteria MAE (mean absolute error) 

and RMSE (root mean square error). For most of the forecast horizons from 1 to 12 

months, the ARIMA model out-predicts a long run monetary based model (Hock and 

Tan, 1996)32. However, we cannot jump to conclude that in the foreign exchange 

market, the investors who believe the exchange rate will converge to the long-run 

equilibrium will not be at more of an advantage than those who only have the 

information of past values of spot exchange rates in a relatively longer horizon (Hock 

and Tan, 1996). In fact, the investors can substantially gain greater economic value 

based on monetary fundamentals than those who only use a random walk model 

across a range of horizons from 1 to 10 years, and more important is that the longer 

the forecast horizon, the more the economic value (Abhyankar, Sarno and Valente, 

2004)33. 

A special model (Baharumshah, Sen and Ping, 2003) consisting of a linear 

combination of a long-run function (based on purchasing power parity) and a short-

run function (based on its time series) does outperform the naIve random walk model 

in terms of out-of-sample exchange rate forecasting for all the forecast horizons 

ranging from 1 to 14 quarters. Introducing a short-run function, which captures the 

deviations of the exchange rate from its long-run path, is critical for the research 

(Baharumshah, Sen and Ping, 2003) to achieve the thrilling result that a monetary 

fundamentals based model can overturn the result of Meese and Rogoff (1983) even 

in a short (within one year) forecast horizon. Although Baharumshah, Sen and Ping 

(2003) focuses on the currencies34 that are not free-tradable, the positive results 

32 This paper uses monthly observations of the US dollar, UK pound, German mark and Japanese yen. 
33 This paper uses monthly observations of the US dollar, Canadian dollar, UK pound and Japanese 
yen. 
34 The chosen currencies are the Malaysian ringgit, Singapore dollar, and Thailand baht, which were 
pegged to a basket of cUlTencies (Among these cUlTencies, the US dollar had the highest weight). 
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encourage us to use a fundamental monetary model with an ingenious adaptation, 

such as incorporating more dynamic econometric specifications (Edison, 1991; Chinn 

and Meese, 1995; Conway and Franulovich, 2002) to obtain a reasonably accurate 

forecast. 

Similar satisfactory results, where the monetary fundamentals model dominates the 

random walk model for 13 out of 18 exchange rates at I-quarter forecasting horizon 

and for 17 out of 18 exchange rates at 16-quarter forecasting horizon by employing a 

panel regression, and moreover the out-of-sample forecast accuracy of monetary 

fundamentals relative to the random walk model tends to improve with the prediction 

horizon (Mark and SuI, 2001)35, also confinn the infonnation that monetary 

fundamentals do contain significant prediction power especially in the long run. 

2.3.4 Portfolio Balance Model36 

It is assumed that domestic and foreign assets are not perfectly substitutive in the 

portfolio balance model, which is not the case in the stick-price monetary model or 

the flexible-price monetary model. The wealth of domestic residents consists of 

domestic money, domestic bonds and foreign bonds (dominated by foreign currency). 

If domestic monetary authorities decide to sell domestic bonds, then the domestic 

money supply will be reduced because domestic residents pay for the bonds with 

domestic money supply, and the price of domestic bonds will fall and domestic 

interest rate will rise (implying a higher yield or return to attract investors). The rise 

of the domestic interest rate causes domestic residents to hold fewer foreign bonds 

and more domestic bonds, and domestic money demand will be reduced. The reduced 

demand for foreign bonds leads to a decrease in the price of foreign bonds and an 

increase in the foreign interest rate. Since the foreign interest rate starts increasing, the 

capital outflow to foreign countries will increase, and thus will moderate the increase 

in the domestic interest rate. Moreover, the relatively higher demand for domestic 

bonds and relatively less demand for foreign bonds imply the demand for domestic 

35 This paper uses quarterly observations of the Australian dollar, Austrian schilling, Belgian franc, 
Canadian dollar, Danish krone, Finnish markka, French fioanc, German mark, Greek drachma, Italian 
lira, Korean won, Netherlands guilder, Norwegian krone, Spanish peseta, Swedish krona, Swiss franc, 
UK pound and US dollar. 
36 Same as Footnote 26 
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currency is relatively higher and the demand for foreign currency is relatively less; 

consequently, domestic currency will appreciate against foreign currency. From the 

simple analysis, we can see that the assets sector determines the spot exchange rate 

and the domestic interest rate. 

The wealth effect positively related to asset demand strongly provides the evidence 

for the portfolio balance model (Lewis, 1988)37; moreover, three out of four bonds 

(Canadian dollar, German mark and Japanese yen) wealth elasticities are significantly 

different from zero. Karfakis and Kim (1995) stated that when there was an 

announcement that the Australian current account deficit was larger than expected 

then the Australian dollar would depreciate, which supports the theory of the portfolio 

balance model. 

2.3.5 Artificial Neural Networks Model38 

Artificial neural networks (ANNs) are inspired by biological systems, and are being 

used in wide research fields, including medical diagnostics, biological investigation, 

product selection, system control, pattern recognition, functional synthesis, computer 

science, and general business (Hu, Zhang and Patuwo, 1999), due to their special 

ability to learn from and generalize from experience. 

Currently, one of main application areas for ANNs is forecasting because ANNs have 

some distinguishing features over the traditional model-based methods and which 

make them more suitable and useful in this area. First, ANNs are data-driven self-

adaptive methods, and therefore they can capture the relationship between input and 

output data even if it is hard to specify the relationship by traditional methods. 

Therefore, very few a priori assumptions are required in ANNs approach, which 

saves a lot of the work required to build theoretical laws in the system. Second, ANNs 

have a high degree of capability of generalization. Having learned pattern(s) among 

the data on hand, ANNs are able to draw an accurate inference about the other data 

(out of the sample) in the population regardless of whether the data in the sample are 

37 This paper estimated foreign bonds demand equations from the portfolio balance model for five 
countries: the US, the UK, Germany, Japan and Canada. 
38 The theory of this section is mainly based on Zhang, Patuwo and Hu (1998). 
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masked by noise or not. In this sense, it is believed with confidence that ANNs can do 

a good job of forecasting by predicting future behaviour (out-of-sample data) from 

learning about the existence of past behaviour (in-sample data). Third, the much more 

general and flexible functional forms obtained lead to ANNs being competent to 

describe precisely the extremely complicated underlying relationship between inputs 

(the past/current values) and outputs (the future values). On the other hand, traditional 

methods do not have this advantage of being universal functional approximators. 

Finally, ANNs are a general nonlinear mechanism. Many previous forecasting studies 

assume that the relationship between inputs and outputs is linear. This is not 

reasonable in that, in the real world, many given time series are generated nonlinearly 

and have too many possible nonlinear patterns. As mentioned firstly, ANNs can 

perform well without having a prior knowledge about the functional relationships 

among the data; therefore, ANNs are superior to the nonlinear models as well as 

linear models in the forecasting field from this point of view. 

Although ANNs have several obvious advantages compared to traditional methods, 

the performance of ANNs for forecasting tasks over a large number of reports is not 

consistent. The primary reasons why ANNs could not compete with the traditional 

linear models in some cases are that the data is linearly generated with no or 

minimum disturbance (it is not rational to expect that ANNi forecast linear 

relationships more accurate than linear statistical models), and the data set is not 

trained under an ideal network structure. There is no an explicit guideline to choose a 

suitable network structure for a particular data set, and the only way of doing so is 

based on limited experiments. 

It is realised that ANNs also have some weaknesses39, and they can never be viewed 

as a universal panacea which is capable of predicting everything well in all situations. 

In other words, ANNs cannot replace the traditional statistical methods; instead they 

are a very useful supplementary tool for the latter: ANNs do perform much better 

when time series data with high frequency is available, and when the underlying 

relationship among the data is nonlinear (Gonzalez, 2000). 

39 The biggest one is that ANNs approach involves a considerable degree of uncertainty caused by the 
limited solid theoretical framework available (more detail will be discussed in the subsection 2.3.5.2 ---
Strengths and Weaknesses of Neural Networks). 
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2.3.5.1 A Few Restatements of Neural Networks4o 

First, on the basis of economic theory, it can be inferred which explanatory variables 

should be included in the regression models. However, in specifying a functional fonn 

of a relation in a model there is generally a lack of theoretical ground. Therefore, 

building the architecture of a neural network model without the support from 

economic theory is not a unique shortcoming for the ANN modelling. Second, to 

some extent, many neural network models are theoretically equivalent to the standard 

statistical models. The conventionally distributional assumptions, which constrain the 

standard regression models, are also needed for neural network models to provide an 

optimal outcome to make sure that estimates are unbiased and consistent, and 

variance is minimised. Finally, neural networks can capture the features of the 

patterns (between input and output variables) well by applying an algorithm to 

minimise the error (the difference between actual and estimated output values); hence 

neural networks can provide more desirable estimated outputs compared to traditional 

regression models for the same data sets. The positive result is from the more 

advanced methods used in neural networks rather than the nature of neural networks 

themselves which are mistakenly called intelligent systems. 

2.3.5.2 Strengths and Weaknesses of Neural Networks41 

The neural network modelling has three major advantages compared to traditional 

statistical modelling. First, it is superior to linear regression models in tenns of 

modelling nonlinear relations because nonlinear activation functions in the use of 

neural networks can more effectively capture the features of nonlinear patterns. 

Second, it relaxes a priori functional fonn assumptions which are required in the 

other nonlinear modelling. In reality, infonnation about the function fonn of a relation 

is not always available. The lack of knowledge is likely to cause a mistake to be made 

by selecting a wrong function fonn in the regression model, which in tum, greatly 

reduces the accuracy of forecasts in the other nonlinear models. Finally, the 

architecture in neural networks is relatively flexible. The architecture of neural 

networks hannonises with a wide range of often used statistical techniques as long as 

40 The theory of this section is based on Gonzalez (2000). 
41 Same as Footnote 40 
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these statistical methods modify their structures a little. This implies that a neural 

network modelling has a variety of capacities. 

On the other hand, four undesirable aspects of the neural network are also detected. 

First, the existence of hidden layer(s) in the neural networks makes the impact of an 

individual input on the estimated output very complex and difficult to identify, and 

hence the weights from the estimated neural networks are hard to interpret. Second, 

the global minimum is likely to be masked by some local minima and hence not easily 

found. This often happens when using all nonlinear estimation methods since some 

local minima are very close to the global minimum. Third, a large sample is 

particularly necessary for neural networks to provide a high quality forecast because 

too many weights involved in the neural networks (compared to standard regression 

modelling) reduce the degrees of freedom. Finally, to design and estimate a neural 

network architecture is a time-consuming task owint?; to the complicated experiment-

based procedure of building neural networks. 

2.3.5.3 Empirical Findings of Artificial Neural Network Technique 

It is generally accepted that exchange rate dynamics cannot be fully captured by 

standard linear models largely due to linear modelling niisspecification42
. 

Theoretically, the causal relation between economic fundamentals and exchange rates 

is very likely to be too inherently complicated to be specified accurately. Therefore, 

traditional linear models (and some traditional nonlinear models) fail to capture the 

features of exchange rate dynamics adequately, although economic fundamentals are 

essentially important in driving exchange rates (Qi and Wu, 2003). The existence of 

too many possible nonlinear patterns between exchange rates and their fundamentals 

makes it extremely difficult to fornlUlate a particular nonlinear model that can 

effectively capture all nonlinear features in a given data set (Zhang, Patuwo and Hu, 

1998). 

In order to further exploit the relation between exchange rates and fundamentals, and 

explain better the exchange rates movements and hence provide more accurate 

42 For more detail, see the discussions ofQi and Wu (2003) and Gradojevic and Yang (2000). 
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exchange rates forecasts, artificial neural networks (ANN) technique --- a very 

powerful tool capable of approximating almost any nonlinear function (Franses and 

Dijk, 2000; Gradojevic and Yang, 2000) --- has been widely used in the area of 

exchange rate forecasting. The ANN model is a typical case of the flexible functional 

forms that do not specify any functional form of the relationship (Medeiros, 

Terasvirta and Rech, 2002). Moreover, ANN models, which are distinguishable from 

traditional nonlinear models, are good at performing nonlinear modelling without the 

requirement of a priori knowledge about the underlying relationships between 

explained and explanatory variables (Gonzalez, 2000), and hence they can be viewed 

as a more general and flexible modelling for the purpose of forecasting (Zhang, 

Patuwo and Hu, 1998). 

Unfortunately, very few articles have been published on the application of ANNs with 

a foundation of a structural exchange rate modelling. Most studies, which aim to 

forecast exchange rates more accurately by ANNs, have not employed a theory-based 

structural model. On the contrary, these studies either are keen on more generally 

nonlinear and/or nonparametric issues (Deboeck, 1994) or are restricted to the purely 

empirical nature of ANN itself (Refenes, Azema-Barac, Chen and Karoussos, 1993; 

Kuan and Liu, 1995). Here, we only choose some examples which implement 

structural exchange rate models accompanied by the ANN technique.-

Three structural models (the flexible-price monetary model, the stick-price monetary 

model and the portfolio model) employing ANN specification (Plamans, Verkooijen, 

and Daniels, 1998)43 generally could not produce satisfactory short run one-step-

ahead forecasts (forecast horizon is 1 month). Similarly, ANN procedures employed 

by (Oi and Wu, 2003)44 and chosen, with the guidelines of economic theory, a set of 

monetary fundamentals could not out-predict a random walk model or a simple linear 

monetary model with no ANN technique at 1-, 6- and 12-months forecast horizons. 

These studies suggest that neither market fundamentals nor nonlinearity can improve 

the performance of exchange rates forecasting. The negative results may largely be 

attributed to the problems that the true potential power of the ANNs has not been fully 

43 These papers use monthly observations of the Dutch guilder, German mark, Japanese yen, UK pound 
and US dollar. 
44 This paper uses monthly observations of the Canadian dollar, German mark, Japanese yen, UK 
pound and US dollar. 
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exploited (Gonzalez, 2000) because of only limited heuristic guidelines available for 

designing an appropriate ANN's architecture for a given data set (Zhang, Patuwo and 

Hu, 1998), or the forecast horizons are too short45 (within one year in these cases). 

The latter problem can be confirmed with the empirical finding (Verkooijen, 1996)46 

that neural network models guided by monetary fundamentals provide more accurate 

out-of-sample forecasts than linear regression models and random walk forecasts for 

horizons varying between 1 and 36 months ahead (1-, 6-, 12-, 24-, and 36-months) 

especially for longer horizons. 

2.4 The Outline of This Research 

In order to successfully forecast, at least one of the following criteria should be met 

(Baharumshah, Sen and Ping, 2003; Granger and Newbold, 1977; Giddy and Duffey, 

1975): 

1. A superior forecasting model is employed; 

2. A modifiable forecasting mechanism is used; 

3. A consistent access to information is available; and 

4. Small and temporary deviations from equilibrium can be exploited. 

Accordingly, this research uses a stick-price monetary model together with the ANN 

technique to predict monthly exchange rates (NZ dollar vs Australian dollar; NZ 

dollar vs US dollar) movements for the period between January 1990 and December 

2003. 

The monetary model is chosen since the exchange rates between major industrialised 

countries in the floating system cannot move independently of macroeconomic 

fundamentals for a long time, and theory-based macroeconomic fundamental models 

with significant components do display explanatory power for the exchange rates 

prediction at long horizons over two years (Chinn and Meese, 1995; Mark, 1995). 

45 ANNs perform better as the forecast horizon increases (Hill, Marquez, O'Connor and Remus, 1994) 
which is as same as monetary fundamentals (discussed in subsection 2.3.3 --- Monetary Models). 
46 This paper uses monthly observations of German mark and US dollar. 
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And the stick-price monetary model is further confirmed in this research because it is 

more realistically applied in the case of a relatively small inflation differential which 

is suitable for our data set (New Zealand, Australia and US did not experience a high 

inflation differential over the last 14 years). 

Having chosen the monetary model as a baseline for the forecasting model, we then 

also employ a universal nonlinear pattern detecting device (ANN technique) 

(Gonzalez, 2000) to adequately capture exchange rate deviations from the long run 

equilibrium. The reason we use monthly data47 in our research is that ANN works 

better for the high frequency data (Hill, Marquez, O'Connor and Remus, 1994; Hill, 

O'Connor and Remus, 1996), where the underlying pattern between input and output 

variables has more chance of being masked by noisy factors such as irregularities48 

(seasonality, cyclicity, nonlinearity, noise) (Zhang, Patuwo and Hu, 1998). Also our 

data set is relatively large since ANNs perform better in a large data set (Gorr, 1994) 

and are less appropriate for a small sample (Ter a svirta, Dijk and Medeiros, 2004). In 

addition, this research will examine the percentage of correctly predicted exchange 

rate changes (PERC) of ANNs forecasts according to the positive empirical finding 

that ANNs forecasts can capture remarkably more tuning points (Kohzadi, Boyd, 

Kermanshahi and Kaastra, 1996). 

The new microstructure approach does provide some hope of better mimicking and 

predicting exchange rates movements (Frankel and Rose, 1995), but this is beyond the 

scope of this research largely due to micro economic data sets being not yet readily 

available (Lyons, 2002). 

47 All our data is fi-om the same source to make sure that the information is consistent. 
48 ANNs perform even better for the time series with more irregularity (Sharda and Patil, 1992). 
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Chapter 3 Econometric Methods and Data 

3.1 Introduction 

This chapter will first discuss the methodology of this research employed with a focus 

on the techniques of artificial neural networks, and in tum introduce forecasting 

measurements followed by the outline of the report format which will be used in the 

next chapter. Then, the explanation of the economic theory supporting the selection of 

the explanatory variables is provided. Finally, the data are described in detail. 

3.2 Methodology 

3.2.1 Simple Linear Regression Model 

It has been discussed in Chapter 2 (Literature Review) that it is extremely difficult to 

get the microstructure data of "order flow" due to this micro economic variable not yet 

being readily available. This research, therefore, employs a macroeconomic model 

(Meese and Rogoff, 1983) excluding microstructure variable(s) to estimate exchange 

rates monthly. In other words, this model implies that the foreign market is efficient in 

the sense that information is widely available to all market participants and that all 

relevant and ascertainable information is already reflected in exchange rate 

movements, and microstructure variables hence do not contain information relevant to 

exchange rate determination (Sarno and Taylor, 2002). 

The macroeconomic model to be used in this research is: 

t=I, ... N (3.1) 

28 



where E[ is in the logarithm of the spot exchange rate over the month of 

observations; and M[ is a vector of typical macroeconomic variables, namely, the 

relative money supply, relative GDP, nominal interest rate differential, and the long-

run expected inflation differential; E[ is a random error term under the conventional 

assumptions. 

The exact specification used in this thesis is as follows: 

where X, ~ natural log of relative money supply (index) [Ln( ~~ ) J 

X, ~ natural log of relative GDP (index) [Ln( C:~z ) J 
X3 = nominal interest rate differential (Int"z - Int j ) 

X 4 = long-run expected inflation differential (In/NZ - Infj) 

j = Australia, USA 

3.2.2 Introduction to Artificial Neural Network (ANN) Methods49 

An artificial neural network, which collects a set of interconnected neurons, is like the 

human brain. The neurons in the networks are usually grouped in three layers, and 

information is continuously transmitted among these layers. By changing the neurons' 

connections and adjusting the connection weights50, ANNs, a representation of a 

general class of non-linear models, are able to provide a much more accurate solution 

in a variety of areas and industries, including medical diagnostics, biological 

investigation, product selection, system control, pattern recognition, functional 

49 This overview of the ANN approach draws upon the discussions in Gonzalez (2000), Gradojevic and 
Yang (2000), Kaashoek and van Dijk (2001) and Zhang, Patuwo and Hu (1998). 
50 The various weights express the relative impOliance of a particular input to the output, and they are 
mathematically equivalent to the estimated coefficients of unknown parameters in a standard linear 
regression model. 
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synthesis, computer science and general business. One of the major applications for 

ANNs is forecasting, such as exchange rate forecasting. Although a lot of forecasting 

methods are available, generally the accuracy of their outcome is largely reduced 

when non-linear relationships and/or missing data are present, which often occurs 

when analyzing historical financial data. Neural networks, however, are a powerful 

and widely used technique for such complex prediction problems. 

As mentioned above, the neurons (elements) are typically arranged into three layers: 

input layer, hidden layer and output layer. A general three-layer ANN model is 

described in Figure 3.1, which indicates the relationship among these three layers, and 

points out how each element in the previous layer contributes to the next layer with a 

different weight (Gonzalez, 2000). 

Input 
Layer 

Figure 3.1: A General Three-Layer ANN Model 

Hidden 
Layer 

Output 
Layer 

The input layer receives data, and the elements in this layer are equivalent to the 

'explanatory variables' in the standard linear model and each element represents one 
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input. At the other end of the model, the element(s) in the output layer is (are) similar 

to the 'dependent variable(s), in the standard linear model and each element 

represents one actual output. After the training process (mainly taking place in the 

hidden layer), an estimated output is supplied by the network in the output layer 

which can be interpreted as an in-sample forecast in response to the new input(s) that 

has (have) not been 'seen' by the network. 

The hidden layer, being the bridge between the input and output layers, is critical for 

successful modelling since the signals have been continuously transmitted from the 

input layer to the output layer by the elements51 in the hidden layer. The hidden layer, 

which is like the brain's interneurons, captures the correlations between the input and 

output data and further records this internal mapping. These functions of the hidden 

layer provide the network with an intuitive predictability and intelligence such as 

learning the present input-output patterns, adjusting the connection weights, and 

correctly inferring the new (unseen) input-output relations. 

There is no theory-based rule for predetermining the optimal number52 of hidden 

layers in a network. However, a trade-off between network learning ability and 

generalising abilitl3 is recommended to be considered when the number of hidden 

layers needs to be decided. Too few layers will raise the problem-that the network 

could not learn the input-output pattern well and hence reduce the network's power to 

accurately record the fact. On the other hand, too many hidden layers involved in a 

network could prevent the network from providing a good general solution for the 

'unseen' parts of the data. In reality, the number of hidden layers in a particular 

network is purely data dependent and experimentally determined. 

The elements in the hidden layer do not contain any real meamngs, which are 

different from those in the input and output layers. But from the view of behavioural 

51 These elements in the hidden layer could be viewed as unobserved components in the linear model, 
and a sufficient number of hidden elements ensure that network can approximate almost any linear or 
nonlinear function to a desired level of precision. 
52 The number of hidden layer(s) can be more than one. However, one hidden layer is sufficient for 
most financial forecasting (Cybenko, 1989; Hornik, Stinchcombe and White, 1989), so the three-
layered network is the most popular network to be applied for predicting. 
53 Generalization ability means to what extent a network can conectly infer the future 'unseen' parts of 
data by learning the present parts of data. 
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mannerisms, the elements in hidden layer are very similar to those in the output layer. 

Hidden elements compute the weighted sum of the input variables in the input layer 

by employing an activation function54 and then provide an intermediate result in the 

hidden layer, and output elements calculate the weighted sum of the intermediate 

results in the hidden layer also by an activation function and then offer an estimated 

output value in the output layer. 

During the learning55 process, the connection weights are initially set to be a group of 

small random values and the inputs and actual outputs are introduced to the network. 

Then the model's estimated output is calculated and further compared to the actual 

output to produce a network error. Since they are the key to modifying the values of 

the connection weights in order to provide an accurate forecast in the network, the 

inputs weights in the hidden layer are changed several times. Consequently the hidden 

elements' weights in the output layer are also changed several times until the global 

minimum network error is found. After training, connection weights are re-

determined and an input-output data pattern is revealed; ultimately, a much more 

precise estimated output can be obtained in analysing historical business data such as 

exchange rates forecasting. 

3.2.3 Basic Principle of Artificial Neural Networks Model56 

3.2.3.1 A Nonlinear Activation Function 

It is necessary to introduce a nonlinear activation function for the potential of neural 

networks to be truly exploited. Some degree of nonlinearity brought by the activation 

function allows the neural networks to detect and further reproduce nonlinear patterns 

in the complicated data, which is a great advantage of using artificial neural networks. 

The ideal nonlinear activation function should have the characteristics of being 

continuous, differentiable, monotonic and bounded (Zhang, Patuwo and Hu, 1998) 

54 The most common activation function is a logistic function. 
55 It is said that the network is learning when the connection weights are changing with each iteration. 
56 The basic principle of the ANN draws upon the discussions in Gonzalez (2000), Zhang, Patuwo and 
Hu (1998) and Qi and Wu (2003). 
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since these characteristics aid the network algorithm to find the appropriate 

connection weights. 

In practice, there are a few well-behaved activation functions that have the 

characteristics discussed above: 

• The sigmoid (logistic) function 

1 
l(x)=l -x +e 

• The hyperbolic tangent (tanh) function 

eX _e-x 

I(x) = X -x e +e 

• Gaussian function 

• The sine or cosine function 

I(x) = sin(x) or J(x) = cos(x) 

• Threshold function 

I (x) = 0 if x < 0 

l(x)=l if x~o 

Among these activation functions, the logistic cumulative distribution function is the 

most common one in the application of the neural network, and is depicted in Figure 

3.2 below (for further detail see Gonzalez (2000». 
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Figure 3.2: The Logistic Function 

o· I~==~~--------------------------~ 

-6 -3 a 3 6 

Through the use of the logistic function, which is mathematically bounded between 0 

and 1, it is possible to mimic the way a real neuron from a human brain responds to 

the impulse received in order to further understand how an element from a data set 

responds to the information received. The level of an element in response to the 

information received monotonically increases from nearly nothing to highly activating 

as the value of the activation function increases nonlinearly from 0 to 1. 

3.2.3.2 The Expression of Artificial Neural Network Model 

Although many kinds of ANNs are available, the three-layer feedforward57 network 

depicted in Figure (3.1) is the most popular network and is used widely. Within the 

three-layer feedforward network depicted in Equation (3.3), the vector of input 

variables is X = (X1,X 2, ... ,X k )' through the nonlinear function g and further using the 

linear or nonlinear functionfto estimate the output variable. Therefore, a three-layer 

ANN model can be generally represented as: 

where k is the number of input-layer units, and n is the number of hidden-layer units; 

a matrix of {aij, i = 1,2, ... , k; j = 1,2, ... , n} stands for the connection coefficients of the 

57 Forward refers to the activations propagated forward during the learning progress. 
58 In this equation, the reason that time subscripts are omitted is just for simplicity. 
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input-layer units to the hidden-layer units (aij denotes the weight that links input-

layer unit i to hidden-layer unit}). Similarly, a vector of {Pj,j = 1,2, ... ,n} indicates the 

connection coefficients of the hidden-layer units to the output-layer units (P j denotes 

the weight that links hidden-layer unit) to output-layer unit Y). s is the error term 

. which usually has a Gaussian conditional distribution that is the same as in the 

standard linear model. 

Note: Both a ij and Pj are the parameters to be estimated in the equation. 

The next two sections are going to further discuss the relationship between input, 

hidden and output layers under the condition of whether or not the dependent variable 

(output) is bounded. 

3.2.3.2.1 The Dependent Variable Is Bounded (0,1) 

Similar to the standard linear model, one of input variables, which is called the bias 

(intercept term), is set to 1. In a simple input-output (two layers) neural network, it is 

assumed that Xo is the bias, the output (Y) of the network is given as Y = 

aoXo + alXI + a2X2 , which is equivalent to Y = ao + alXI + a2X2 • The same principle 

is also applied to hidden units. 

In an explicit way, we assume that there are three input units (X), two hidden units 

(H), and one output unit (Y). If the dependent variable is bounded, the hidden units 

and the output unit generally use a logistic activation function. That is, both f and g 

are logistic activation functions. 

In general, the output unit (Y) is expressed as some function of the two hidden units 

(HI and H2): 

When Y is bounded this can then be formulated as a logistic function as follows: 

35 

" -- -. - . • w •• _.,_." 



Moreover, expressing each hidden unit as a logistic function of the Xj inputs, we 

have: 

(3.6) 

3.2.3.2.2 The Dependent Variable Is Not Bounded (0, 1) 

On the other hand, if the dependent variable is not bounded, the hidden units employ a 

logistic activation function as usual, but the output unit often follows an identity 

activation function such asf(x) = x. That is, g is still a logistic activation function, hut 

f is an identity activation function. 

In this case, the output unit (Y) can still have the general form: 

In contrast to Eq (3.5), here the unbounded output Y is a linear function of the hidden 

units (Namely, the value of the output can be expressed as the sum of the weighted 

hidden units): 

However, as for Eq (3.6'), the hidden units are a nonlinear (logistic) function of the 

Xj input units: 
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To sum up, the use of the logistic activation function and the identify activation 

function allows the network to produce a continuous, nonlinear, bounded or 

unbounded output. 

Note: Both aij and b j are the parameters to be estimated in the equations. 

3.2.4 Important Techniques of the Artificial Neural Networks Model59 

3.2.4.1 The Steps of the Network Development 

1. Select a set of explanatory variables6o
• 

2. Choose a suitable architecture. 

3. Set initial connection weights, the number of hidden layers, the number 

of units in each hidden layer and other foundational arrangements. 

4. Organise the whole sample data in ascending time order, and then divide 

it into three sets (training set, validation set and test set) by the most 

common ratio of 6:2:2. 

5. Get the predictions from artificial neural networks through software 

(NeuroShe112 is used in this research). 

6. Evaluate the performance of forecasting from ANN, and further 

compare it with other linear and/or nonlinear models. 

7. Steps 3-6 are repeated until the error goal (the minimum of the mean 

square error in the validation set) is reached. 

8. Steps 2-7 are repeated until the enor goal (the minimum of MSE in all 

possible architectures) is reached. 

9. Decide whether the existing explanatory variables need to be added and 

lor removed. 

59 The important teclmiques of Artificial Neural Networks Model draw upon the discussions in 
Gonzalez (2000), Zhang, Patuwo and Hu (1998), Gradojevic and Yang (2000), Medeiros, Terasvirta 
and Rech (2002) and Software of NeuroShell2 Help Menu (Ward Systems Group Incorporated). 
60 It is far more efficient to start using a linear regression model to experiment with different sets of 
explanatory variables. Once a satisfactory set of variables has been identified, the researcher can 
proceed to evaluate different architectures. Thus, one of the three levels of minimization identified can 
be greatly shortened through using a linear regression model. 
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10. Steps 1-9 are repeated until the error goal (the mllllmum of MSE 

associated with all possible sets of input variables) is reached. 

3.2.4.2 The Technical Items of the Artificial Neural Networks 

• Data Normalization 

The logistic function being the representative of the nonlinear activation functions has 

the 'squashing' role of restricting the data into the range of (0, 1). Since nonlinear 

transfer functions are commonly used in the neural networks, data normalization is 

necessary for the output values as well as the input values, especially for the time 

series forecasting problems. Technically, normalising the data meets algorithm 

requirements that can aid the network to learn the data patterns more effectively and 

simultaneously largely mitigate computational problems. Having introduced the 

inputs and actual outputs into the network, immediately both minimum and maximum 

values for each variable are recognised by the network and then the software 

(NeuroShell 2) automatically scales the variables to lie between a and I before the 

training process begins. Later the same software automatically rescales inputs and 

outputs to the original range after estimation andlor forecasting as the result of 

providing convenience for measuring the performance and comparing the accuracy 

obtained by ANNs with other models. 

• Architecture Determination 

The major task of determining an appropriate architecture for an artificial neural 

network is to set some important parameters such as the number of layers, the number 

of elements in each layer, and the number of connection weights. However, selecting 

these parameters is basically dependent on the particular problem being considered 

through experiments to minimise the error because a solid theoretically-based method 

is not available. This research will use the exclusively fully-connected-feedforward 

network61 as a basis with only one hidden layer for the forecasting purpose, since a 

single hidden layer is sufficient for the network to approximate almost any complex 

61 The exclusively fully-connected-feedforward network is a network which is fully connected in that 
all units in one layer are only fully connected to all units in the next layer except for the output layer. 
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nonlinear relation with a desired level of accuracy (Cybenko, 1989; Hornik, 

Stinchcombe and White, 1989). The exclusively fully-connected-feedforward network 

has been adopted for most forecasting applications. 

For more detail, in this research recurrent networks (one type of backpropagation 

networks62
) will be applied because recurrent networks are particularly good at 

learning sequences, so they are suitable for forecasting time series data to provide 

more accurate financial predictions. The reason is that the recurrent networks have a 

unique feature, in that they have an extra slab in the input layer, compared to the 

standard backpropagation networks. The extra slab is usually connected to the 

ordinary input layer, the hidden layer, or the output layer. In the case of forecasting, 

the recurrent networks with the extra slab linking to the hidden layer are chosen so 

that the hidden layer can introduce the features detected in all previous patterns into 

the new raw data in the input layer. Hence the network immediately grasps the feature 

about the last pattern, cumulates previous knowledge in a more timely way about the 

existing sequence data, more effectively adjusts the connection weights during the 

current training and ultimately enhances its forecasting ability. 

• Training Algorithm 

The backpropagation algorithm, which is characterized by hidden layers to extract the 

data patterns, is the most common training algorithm for the neural networks; hence it 

will be used in this research. For the training process, observations in the training set 

first enter into the input layer to be inputs, and next these inputs are sum weighted by 

an activation function and then are transformed into the hidden layer to produce 

estimated values for the hidden units. The same weighting and accumulating 

procedure is repeated for the hidden units and then these hidden units are transformed 

to the output layer to set the value for the estimated output. If there is a difference 

between the actual and the estimated output during the training process, then the 

backpropagation training algorithm will repeat the training process continuously, and 

62 Backpropagation is a widely used training algorithm in the neural networks which refers to the 
manner of a backward pass of elTor to each internal element within the network, and the standard 
backpropagation networks, which generalize well on a vast variety of problems, are exactly exclusively 
fully-connected-feedforward networks. 
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make the connection weights readjust to get this difference minimized for the entire 

sample. 

The sequence of the patterns plays an important role in the successful training of the 

data sets in the recurrent networks to be successfully trained. In other words, for a 

given input pattern, a recurrent network tends to produce a different output pattern 

each time, which is largely influenced by the previous input patterns that have just 

been presented. This· is completely different from the response of a standard 

backprogation network, which always provides exactly the same output pattern 

anytime as long as the given input pattern presented is the same. Therefore, the 

rotational pattern selection63 must be used for both training set and test set, and the 

random pattern selection is not allowed when recurrent networks are employed in this 

research. 

• The Global Minimum 

Nonlinear estimation techniques do detect the nonlinear data patterns better due to the 

nonlinearity nature of the data itself, but the application of nonlinear models (artificial 

neural networks model employed in this research) has a unique difficulty during the 

estimation procedure compared to that of a linear model. That is, nonlinear models 

can hardly be sure whether the global minimum is attained because it is very likely to 

be masked by too many local minima with close mathematical figures. In order to 

reduce the possibility of introducing this problem into the estimation, which might 

ruin the potential performance of nonlinear models, it is necessary to repeat the 

process of neural network estimation as many times as possible with different 

blankets of random starting values for the initial connection weights in this research. 

Ultimately, the best estimation will be saved as the final one. 

• Sample Size 

Artificial neural networks models with more observations can detect more complex 

structure and more effectively handle irregularities in the data to achieve a higher 

63 The data pattems are presented in time order without gaps in the data set. 
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accuracy in modelling as long as the underlying relationship between inputs and 

outputs is truly nonlinear. On the other hand, a small sample could restrict the number 

of degrees of freedom in the ANN's model because of the existence of many weights 

(especially hidden units weights), which might induce an overfitting in the training 

set. Therefore, a relative large sample with 168 observations64 (from 1990 January to 

2003 December) will be used by applying the artificial neural network approach in 

this research. 

• Model Evaluation 

First, the final model, which has defined the potential variables and has selected a 

subset of them, should be evaluated by passing in-sample misspecification tests65
• If 

the model does not pass any in-sample test, then, at least principally, it is necessary to 

reconsider the variables included and/or the functional form chosen in this model. 

Out-of-sample forecasting66
, which is typically used for neural networks, is another 

method of evaluating a model. For carrying out this kind of model evaluation, the last 

observations in the series are saved to perform forecasting, and then the forecast 

results from different models67 are compared and/or contrasted according to accuracy 

criteria. 

• Performance Measures 

As artificial neural networks are widely used for the application of forecasting, the 

most important performance measure68 for an artificial neural network model is the 

prediction accuracy for out-of-sample observations. Practically, the degree of 

64 ANN forecasting models can perform well even with a sample size of less than 50 observations 
(Zhang, Patuwo and Hu, 1998). 
65 The most important in-sample test is to test the assumption of no serial cOlTelation in the elTors, and 
this test will be taken in this research in the next chapter (Chapter 4 --- Empirical Results). 
66 The out-of-sample forecasting is the main purpose of this research, and it will be described in detail 
in the next subsection 3.2.5 --- Out-of-Sample Forecasting of Aliificial Neural Networks Model, and 
will be further calTied out in the next chapter (Chapter 4 --- Empirical Results). 
67 It is common to have at least one benchmark model for calTying out out-of-sample forecasting. 
68 The most frequently used performance measures for ANNs will be described in more detail in the 
following subsection 3.2.5.2.1 --- Accuracy Measures of Out-of-Sample Forecasting. 
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prediction accuracy is measured by the forecasting error, which IS the difference 

between the actual value and the predicted value. 

3.2.5 Out-of-Sample Forecasting of Artificial Neural Networks Model69 

3.2.5.1 Introduction of the Problem of Overfit 

The outstanding character of neural networks is their flexiblility which makes it 

convenient in building econometric models, but on the other hand over-flexibility can 

bring the problem of 'overfitting' 70. Theoretically, more hidden layers and hidden 

units can better detect the data patterns, but there is no rule to determine the number 

of hidden layers and the number of hidden units, and it is really up to the nature of the 

application problem itself. If the number of hidden units is greatly increased without 

adding more input variables, then 'overfitting' in neural networks may occur because 

too many data pattems are drawn which make the neural network too specific to the 

training data set which worsens the ability to generalise. Once having acquired the 

'overfitting' problem, a neural network model no longer accurately infers the real data 

generating process and consequently negatively affects the quality of the forecasts. 

This unique possibility of 'overfitting' for the neural networks makes it necessary to 

provide some principle for mitigating this problem in neural network -inodelling. 

3.2.5.1.1 Pruning Technique 

Since the existence of too many hidden units causes the problem of 'overfitting', 

pruning, a popular application technique, is introduced in the area of neural network 

forecasting. Pruning can dynamically eliminate insignificant weights and/or 

unnecessary hidden units during the training process and thus ensure a neural network 

has the appropriate size and can offer a good forecast as well as a good data fitting. 

Empirically, there are three frequently used pruning algorithms: information criterion 

pruning, cross-validation pruning and interactive pruning. However, this research 

69 The out-of-sample forecasting of the ANNs model draws upon the discussions in Kaashoek and van 
Dijk (2001), Gonzalez (2000), Zhang, Patuwo and Hu (1998), Qi and Wu (2003) and Rech (2002). 
70 A network is said to overfit the data if too many input-output patterns are drawn from the data set, 
and an overfit network generally has low bias (small in-sample errors) but high variance (large out-of-
sample errors which remarkably reduce the predictability of a network). 
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adopts a more common technique of "early stopping procedure", which will be 

discussed in more detail in the following section, rather than the pruning technique. 

3.2.5.1.2 Early Stopping Technique 

The purpose of employing the early stopping technique in neural networks application 

is exactly the same as that of the pruning technique. By using this technique, the 

whole data set needs to be split into three subsets in order: a training set, a validation 

set, and a test set. The training set is used to estimate the network connection weights, 

whereas the test set is used to yield the network out-of-sample forecasts .. The 

validation set, which is never applied by the algorithm, is used as an indicator of the 

out-of-sample forecasting accuracy of the network by monitoring the error in this set 

during the estimation process. Having the validation set is the key for the early 

stopping technique to ensure the neural network model can successfully forecast. 

An early stopping estimation technique can be described as in Figure 3.3, which 

depicts the inverse relationship between the number of iterations and the mean 

squared error (MSE) (Gonzalez, 2000). 

Figure 3.3: Early Stopping Estimation Technique .. 

MSE 

Validation Set .-----
Training Set 

m Iterations 
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Figure 3.3 compares the development of the training set MSE with that of the 

validation set MSE throughout the whole estimation process. First, the MSE in both 

the training set and validation set continues falling by conducting more iterations. 

However, after a specific number of iterations (after m iterations in Figure 3.3), the 

MSE in the validation set begins to rise because the network starts to 'overfit' the data 

and hence significantly reduces its generality ability, while the MSE in the training set 

keeps declining since the network 'overfitting' the data is still 'fitting' the data. The 

estimation procedure must stop when it reaches the minimum error in the validation 

set rather than in the training set in order to avoid the network specialising in the 

observations of the training set, and to make sure that the network has the 

generalization capacity and can provide reliable forecasts. 

Out-of-sample forecasts will be handled in the next stage after the coefficients 

estimated at the point that the error in the validation set just starts to increase have 

been saved as the final estimates. Using the early stopping technique causes the 

forecasting errors performed by the data in the validation set to be optimistically 

biased because the MSE in the validation set is already minimised before forecasting. 

Instead, out-of-sample forecasts from the data in the test set supply the given model 

with an unbiased estimate of the forecasting accuracy for the total population. 

3.2.5.2 Out-or-Sample Forecasting 

Generally, in order to provide artificial neural networks forecasts, time series data first 

need to be estimated through Eq (3.7) from the beginning until the observation 

(Xlo - h, Ylo ) when forecasting starts from to (to < T) 71 to produce forecasts with h-

period forecast horizon. Then the first h-period forecast available is expressed as: 

71 It is assumed that a whole sample has T observations. 
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The same procedure should be repeated at time of to + 1, to + 2, ... , T -h to produce N 

(N=T - to - h + 1) forecasts with h-period forecast horizon. 

In this research, forecast accuracy is measured by the Root Mean Square Error 

(RMSE), Root Mean Square Percentage Error (RMS Percentage Error), Percentage of 

Correctly Predicted Turning Points (PERC), Pesaran-Timmermann test (1992, PT), 

and Diebold and Mariano forecast test (1995, DM). These measurements are 

described in detail in the following section. 

3.2.5.2.1 Accuracy Measures of Out-of-Sample Forecasting 

For both exchange rates (NZ-AU rate, and NZ-US rate) several measures are used to 

evaluate the forecasting accuracy of the empirical models (Pindyck and Rubinfeld, 

1998, pp384-389; Preminger and Franck, 2005) because one specific forecast 

evaluation criterion is rarely suitable for any case (Perez-Rodriguez, Torra and 

Andrada-Felix, 2005). These evaluation measures include: 

1 T ( )2 RMSE (Root Mean Square Error) = T t; y: -yt (3.8) 

( J
2 

1 T ys_ya 
RMS Percentage Error (Root Mean Square Percentage Error) = - L t t 

T1=1 ya 
t 

(3.9) 

where yt and yt are the estimated value and the actual value, respectively, and Tis 

the number of periods in the data set. 

In addition, we consider an indicator of PERC (Percentage of Correctly Predicted 

Turning Points) which is more suitable for the investors who usually focus on the total 

profits and are less interested in the technical accuracy of forecasts. The Pesaran-

Timmermann test (1992) is a more formal test (compared to the PERC indicator) to 

check whether there exists significant economic value for a forecasting model in 

predicting the direction of change (Preminger and Franck, 2005). Also, these two 
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measures can be viewed as the tools that check the forecasting accuracy about the 

direction of the change of the exchange rate in level. In other words, PERC and the 

PT test are the measures to examine which model can more accurately predict 

whether the exchange rate will go up or go down in the next period, but not 

necessarily the amount of the change. 

PERC (Percentage of Correctly Predicted Turning Points) = N) + N2 (3.10) 
. N 

where N) and N2 are the number of correctly predictions with positive sign, and 

negative sign, respectively, and N is the total number ofthe predictions. 

" " P-P. PT (Pesaran-Timmermann) Test Statistic = ---;====== 

V(p )-v(A) 
a N(O,l) (3.11) 

1\ 

where P, which has the same concept as that of PERC, is the ratio of the number of 

times a forecasting model produces correct predictions of the sign of the actual series 

direction of change to the total number of times a forecasting .. model produces 
1\ 

predictions of the sign of the actual series direction of change, and P. is an estimate 

" of P under the null hypothesis that the actual and the predicted series are independent 

of each other, and V (p) and V (p.) are the estimates of the variance of P and P. , 
respectively72. 

Furthermore, the Diebold and Mariano (DM) forecast test (1995) is employed to 

examine the null hypothesis that the forecast accuracy of different models is the same. 

72 Pesaran and Timmermann (1992) provided more detail about the PT test. For a two-sided test, the 
null hypothesis of the PT test will be rejected if the PT test statistic is larger than 1.96 in an absolute 
value. 
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where d( (d( = e;,(+/I - e~'I+/I) is the difference between the forecast errors (the squared 

forecast errors are adopted in this research) of the benchmark model (e;,I+}I) and the 

alternative model (e~,(+/I)' (Note: h (h ;::: 1) is denoted as the forecast horizon), The 

actual DM test statistic is then 

lfd 
DM Test Statistic73 = -;::=T===(=:=) =( = 

v(l fd(J 
T (=1 

(3,12) 

where Tis the total number of the forecasting periods, and v(l fd(J is the estimate 
T (=) 

1 T 
of the variance of - Id( . 

T (=) 

3.2.5.2.2 The Format for Reporting Forecasting Results 

For our results we follow an important paper by Mark (1995) that foC-uses on different 

models' ability to predict exchange rates over a 'long run' horizon, Mark (1995) 

employs a regression model theoretically based on economic fundamentals to predict 

movements in exchange rates74 with 1-, 4-, 8-, 12-, and 16-quarters forecasting 

horizons. His general conclusion is that changes in (the logarithm of) spot exchange 

rates over long-horizons (especially 12- and 16-quarters) are predictable by the 

regression model in comparison to a benchmark (Random Walk) model that is 

presented in Meese and Rogoff (1983), 

Mark's regression model, which predicts the k-period-ahead change in the log spot 

exchange rates, is: 

73 Diebold and Mariano (1995), Luger (2004) and Brand, Reimers and Seitz (2004) provide more detail 
about the DM test. 
74 This paper uses quarterly observations of the Canadian dollar, Gem1an mark, Japanese yen and Swiss 
fi-ane vs US dollar from 1973 to 1991. 
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where I:::.ek is the k-period-ahead actual change in the log spot exchange rate. We note 

that the ZI is actually an error correction term, that is, the deviation of the spot 

exchange rate (el ) from the rate associated with economic fundamentals (f), which 

can be presented as ZI == !, - el 75, where ak and Pk are linear least-squares regression 

coefficients, and v1+k 1 is the prediction error. Hence, equation (3.13) can be viewed as 

an error correction model. 

In our research, we compute f by relaxing Mark's restriction that A, = 1, and by 

incorporating two more economic fundamentals variables (interest rate and inflation 

rate) in our normal linear monetary model (see Eq (3.2)) rather than an error 

correction model. In other words, we predict the exchange rate movement in levels 

rather than in changes. Also we employ artificial neural network methods to form the 

nonlinear monetary model, and the reason for doing that is clearly stated in Chapter 2 

--- Literature Review. 

In Mark (1995) the data set started in 1973 when the observed exchange rates were 

already engaged in the floating system, and this is the prerequisite for examining the 

models' forecasting ability. Otherwise, the exchange rate movement was always 

within the target when the Bretton Woods System was prevalent, and was relatively 

independent of the economic fundamentals. Therefore, our data set chosen is also 

after the Bretton Woods System collapsed, which is from 1990 to 2003. 

Mark (1995) presents empirical results including the ratio of RMSE of the regression 

model to that of the Random Walk model, as well as DM statistics for out-of-sample 

forecasting. He found, in general, the regression model based on economic 

fundamentals outperforms the Random Walk model for long-horizon (12-, and 16-

quarters) forecasts. Hence, our research focuses on the accuracy of predictability in 

75 J; == (1111 - 111; ) - A, (YI -Y;) is the economic fundamentals with the restriction of A, = 1 , and m 

and y stand for US money supply and income, respectively; and * denotes variables for the foreign 
countries. 
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ternls of out-of-sample forecasting over the long-horizon, which is a 38-month 

horizon (from November, 2000 to December, 2003) in our case, from the different 

models. In addition to evaluating accuracy in predicting levels, we also evaluate the 

ability of the fundamentals' based model to predict changes or turning points relative 

to the Random Walk model. This is carried out with the PT test. 

In the next chapter (Chapter 4---Empirical Results), we will first present the results 

for the NZ/ AU exchange rate, then in tum for the NZIUS exchange rate. 

3.3 Relevant Variables 

3.3.1 Introduction 

Since the monetary model (Sticky-Price Monetary (Dornbush-Frankel) Model) is 

chosen in this research (see Chapter 2 --- Literature Review for more detail), the 

independent variables, which explain exchange rates movements, are chosen as 

follows. 

3.3.2 Dependent Variable 

The natural logarithm of the spot exchange rate76 (direct quotation: Home 

Currency/Foreign Currency) 

3.3.3 Independent Variables 

• Natural logarithm of the relative money supply 

• Natural logarithm of the relative gross domestic production (GDP) 

• Interest rate differential 

76 The spot exchange rate rather than the real exchange rate is chosen because of the forecasting 
purpose --- exploiting the h'ue forecasting ability in the financial markets (Meese and Rogoff, 1983). 
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• Inflation rate differential 

• Savings/investment balance (current account balance) differential 

3.4 Data Description 

The data in this research (from month 1 of 1990 to month 12 of2003) are described as 

follows: 

Spot rate: Monthly average market rate77 of US Dollars per Australian Dollar and US 

Dollars per New Zealand Dollar, International Finance Statistics (IFS). The original 

data is then converted into New Zealand Dollars per US Dollar and New Zealand 

Dollars per Australian Dollar, and both are in log form. 

Money suppl/8:. Monthly in millions of Australian Dollars, monthly in millions of 

New Zealand Dollars and monthly in billions of US Dollars, International Finance 

Statistics (IFS). The original data is then converted into index figures (2000 year is 

the base of figure 100), and all three are in log form. 

Real GDP: Quarterly in billions of Australian Dollars of Gross Domestic Production, 

and Australian GDP Deflator (2000 year is the base of figure 100); Quarterly in 

millions of New Zealand Dollars of Gross Domestic Production, and New Zealand 

GDP Deflator (2000 year is the base of figure 100); Quarterly in billions of US 

Dollars of Gross Domestic Production, and US GDP Deflator (2000 year is the base 

offigure 100); International Finance Statistics (IFS). The Gross Domestic Production 

is first deflated by GDP Deflator, and is then converted into index figures (2000 year 

is the base of figure 100), and is further converted into monthly figures79
, and all three 

are in log fmID. 

77 Monthly average market rate chosen can almost eliminate the daily outliers. 
78 The data of money supply (broad money) with no seasonal adjustment are selected in order to exploit 
the true forecasting ability of the theory-based models (Meese and Rogoff, 1983). 
79 The quarterly-to-monthly conversion is done with the nonlinear interpolator feature in Eviews 5.1 
software. 
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Short-run interest rate: Monthly average rate on the money market, International 

Finance Statistics (IFS). 

Expected inflation rate: Quarterly index numbers of Consumer Prices of Australia and 

New Zealand, and Monthly index number of Consumer Prices of United States, 

International Finance Statistics (IFS). Quarterly index numbers are first converted 

into monthly index numbers8o
, and then the percentage change of the consumer price 

within one month is worked out to get the approximator of monthly inflation rates. 

Current Account Balance: Quarterly in millionslbillions of US Dollars from Australia, 

New Zealand and U.S.A., International Finance Statistics (IFS). Quarterly original 

data is first converted into index numbers (2000 year is the base of figure -100), and is 

then converted into monthly numbers81
• 

80 Same as footnote 79 
81 Same as footnote 79 
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Chapter 4 Empirical Results 

4.1 Introduction 

In the early 1970s, th¥ United States abandoned the fixed value of the dollar, which 

was pegged to gold, and allowed it to floatlfluctuate against other currencies, and 

hence the fixed exchange rate system of Bretton Woods (major currencies were 

pegged to the US dollar) collapsed. Since then, the exchange rates among major 

industrialised countries have fallen into the floating system. In Australia, the fixed 

exchange rate system moved to a managed floating system in 1973, and further 

evolved into an independently floating system, which is market-determined, at the end 

of 1983. Similarly, the New Zealand Dollar was placed on a controlled floating basis 

in 1973, and then switched to a crawling-peg system in 1979, and ultimately engaged 

into the floating system as a part of a broad-based deregulation of the financial market 

in 1985. 

-
This chapter presents the results from the three approaches to exchange rate 

forecasting, namely the Random Walk Model, the Monetary Model in linear form, 

and the Monetary Model estimated with nonlinear ANN methods. For each approach 

the data set (1990MOl - 2003M12) is partitioned into 130 'in sample' observations 

(1990MO 1 - 2000M1 0), which are used to estimate the parameters of each model; and 

38 'out of sample' observations (2000Mll - 2003M12)82. The estimated models from 

the 'in sample' period are then used to produce ex post forecasts for the 'out of 

sample' period of2000Ml1-2003M12. By comparing these 'forecasts' with the actual 

observed values of the exchange rates, we may evaluate the relative accuracy of each 

of the three forecasting approaches. 

82 The reason for dividing the whole data set in this way is based on the purpose of this thesis ---
exploiting the forecasting ability of the ANNs technique with a long-run horizon, the horizon in this 
case is just over 3 years which is also convenient for approximately meeting the special rule of dividing 
the data set in the application of ANNs (more detail in Chapter 3 --- Econometric Method and Data). 
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4.2 Results for the New Zealand-Australia Exchange Rate 

4.2.1 The Random Walk Model 

As a 'benchmark' for comparing the possible improvements offered by the theory-

based monetary model (linear and nonlinear cases), the Random Walk model may be 

written in the form 

where 1'; is the spot exchange rate expressed as the price of foreign currency (direct 

quotation: Home Currency/Foreign Currency) at time t (in natura/log form), e = 1 

and Ii, is a random walk error process. According to this model, the current value of Y 

is equal to its previous value plus a random component, suggesting that all the 

relevant information regarding the value of Y is already incorporated in the data. 

Hence, the value of Y cannot be forecasted by using information on other 

economic/financial variables. In this thesis the ex post 'forecasts' of the exchange rate 

are produced by generating the random variable Et ~ Normal(O, 0';) yvhere 0'; has the 

same variance as the 'in sample' observations. 

4.2.1.1 Ex Post 'Out of Sample' Forecasting 

This section will discuss the empirical results of 'Out of Sample' forecasting from the 

Random Walk model for the period 2000Mll-2003M12. 
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Figure 4.1: Random Walk (RW) Model 'Out of Sample' Forecasting (NZ-AU) 

NZ-AU Spot Rate, Actual and RW_Prediction: 2000M11-2003M12) 
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The predictions from the random walk model mimic the pattern of actual exchange 

rate movements quite well (R 2 = 0.85) with a relatively small error (RMSE = 0.02, 

and RMSPE = 0.16). However this model does not capture enough turning points (the 

percentage of correct predictions of the directional change = 49%, 18 out of 37). The 

forecasts from the two versions of the theory-based monetary models will be 

compared to the random walk forecasts. 

4.2.2 Monetary Model (Linear Version) 

As shown in Chapter 3, the Monetary Model may be expressed as 

t = 1, ... ,N (4.2) 
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where Yt is in the logarithm of the spot exchange rate over the month of observations, 

and M t is a vector of typical macroeconomic variables, and Et is a random error term 

under the conventional assumptions. From Chapter 3, the exact specification used in 

this thesis is as follows: 

y, = 130 + PI XII + P2X 21 + f33 X 31 + f34 X 41 + &1 (4.3)83 

where XI ~ natural log of relative money supply (index) ( Ln ( :~ ;: J J 

X 2 = natural log of relative GDP (index) (Ln( GDPNZ JJ 
GDPAU 

X3 = nominal interest rate differential (Intllz - Int AU ) 

X 4 = long-run expected inflation differential (InfNz -InfAu) 

The empirical 'in sample' estimated results are shown in Table 4.1. 

83 With the additional explanatOlY variable of the CUlTent account (Conway and Franulovich, 2002),the 
monetary model did not provide a reasonable result. That is, the variable of the CUlTent account did not 
have an expected sign, which was contrary to the theory. In other words, the CUlTency of a wealthier 
nation tends to depreciate relative to the other. This is opposite to the macroeconomic theory. 

This problem might come from the data set, or might be due to the odd economic event(s) happening in 
that period. Here we do not investigate the source of/reason for the problem. In order to provide a 
reliable analysis, we do not include the variable of CUlTent account in the monetary model (linear 
version). The same principle is applied in the ANN method. 
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Table 4.1: Monetary Model (Linear Version) 'In Sample' Estimating (NZ-AU) 

Dependent Variable: Spot 

Method: Least Squares 

Date: 05/15/05 Time: 14:45 

Sample: 1990:01 2000:10 

Included observations: 130 

Variable Coefficient Std. Error t-Statistic P-value 

C (Constant) 0.222369 0524 16.44230 0.0000 

M3 (Money Supply) 0.157974 0.160170 0.986290 0.3259 

GDP (Gross -0.249710 0.234675 -1.064067 0.2893 

Domestic Product) 

INT (Interest Rate) -2.874567 0.453804 -6.334386 0.0000 

INF (Inflation Rate) 0.130324 2.616768 0.049803 0.9604 

R-squared 0.294709 Mean dependent var 0.207577 

Adjusted R-squared 0.272140 S.D.dependentvar 0.072279 

S.E. of regression 0.061665 Akaike info criterion -2.696499 

Sum squared resid 0.475321 Schwarz criterion -2.586210 

Log likelihood 180.2725 F-statistic 13.05798 

Durbin-Watson stat 0.209138 Prob(F-statistic) 0.000000 

In this model, all signs of explanatory variables are expected, but only the coefficient 

of the interest rate differential is statistically significantly different from zero. 

Moreover, an auto-correlation problem84 is present in this model which is indicated by 

the Durbin-Watson statistic (0.21) that is far away from 2 (which indicates that there is 

no auto-correlation problem found). 

Based on the 'in sample' estimation, the 'in sample' predicting for the period between 

January 1990 and October 2000 and the 'out of sample' forecasting for the period 

84 The enor term in the model should follow the conventional condition, however a re-specification of 
the function that includes a lag of dependent variable to be an explanatory variable produces an even 
worse result with unexpected signs and non-significance although the auto-conelated problem is solved. 
Therefore we leave the linear model with the auto-conelated problem unchanged because the focus of 
our research is on the forecasting abilities of the models. 

The same principle of the enor term is also applied to the artificial neural network. However, in this 
case, we choose to leave the auto-conelated problem in the ANN models, which theoretically reduces 
the accuracy of the prediction in the application of the ANN model. 
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between November 2000 and December 2003 from the monetary model (linear 

version) are then produced. 

4.2.2.1 'In Sample' Predicting 

This section is going to discuss the empirical result of 'In Sample' predicting from the 

Monetary Model (Linear Version) for the period 1990MOl-2000MIO. 

Figure 4.2: Monetary (M) Model (Linear Version) 'In Sample' Predicting (NZ-AU) 

NZ-AU Spot Rate, Actual and M_Prediction: 1990M01-2000M10) 
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From the graph above, we can see that for the 'in sample' period of 1990Ml - 2000M10 

the linear monetary model cannot mimic the pattern of exchange rate movement well in 

general (R 2 = 0.29), and only provides 47% (61 out of 129) correction rate of prediction 

of the next period's directional change. From January 1990 to December 1994, the 

monetary model under-predicted the spot rate, while it tended to over-predict the spot 

rate after then and until October 2000. 
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4.2.2.2 Ex Post 'Qut of Sample' Forecasting 

This section is going to discuss the empirical result of 'Out of Sample' forecasting 

from the Monetary Model (Linear Version) for the period 2000MII-2003MI2. 

Figure 4.3: Monetary Model (Linear Version) 'Out of Sample' Forecasting (NZ-AU) 

NZ- AU Sopt Rate, Actual and M_Prediction: 2000M 11-2003M 12 
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Obviously, in the 'out of sample' data set, the linear monetary model performed even 

worse (R2 = 0.18) than for the 'in sample' data set. Moreover, the deviations (RMSE 

= 0.06, and RMSPE = 0.64) from the actual spot rates become remarkably larger when 

the forecast horizon is extended (especially beyond one year). After one year, the 

forecasts from the linear monetary model totally lose the ground of prediction ability. 

Moreover, the linear monetary model provides only 42% (16 out of 38) correct 

predictions of the directional change in the out of sample, which is similar to that in 

random walk model (49%,18 out of37). 
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In summary, the monetary model (linear version) cannot beat the simple random walk 

model in tenns of providing a better forecast, especially in a long horizon. 

4.2.3 Nonlinear Monetary Model (Artificial Neural Networks Version) 

The Monetary Model (Artificial Neural Networks Version) has the same specification 

as that of the monetary model (linear version) 

where the variables are as defined previously. 

The only difference between these two monetary-based models is that with ANN 

methods85 we have a nonlinear approach which employs the universal nonlinear 

pattern approximator (artificial neural networks), while the monetary model (linear 

function) is a traditional linear function. The empirical 'in sample' estimated results 

are shown in Table 4.2. 

Table 4.2: Monetary Model (Artificial Neural Networks) 

'In Sample' Estimating (NZ-AU) 

Contribution Factors8o
: 

M3 (Money Supply) 0.23673 

GDP (Gross Domestic Product) 0.29277 

INT (Interest Rate) 0.27544 

INF (Inflation Rate) 0.19506 

85 In this research, one hidden layer of artificial neural network is employed because a single hidden 
layer is good enough to detect any nonlinear pattem for most forecasting problems. 
86 In the non-linear modelling, the contribution factor can never be as precise as that in the linear model 
due to the inherently complicated nature of the non-linear model, and actually the contribution factor 
only provides the guideline of the relative importance of independent variables to the dependent 
variable. 
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In this model, the effects from the four explanatory variables on spot rate movement 

are relatively equal, which is not the case in the linear version where the relative 

interest rate has the biggest impact on the exchange rate movement. 

Based on the 'in sample' estimating, the 'in sample' predicting for the period between 

January 1990 and October 2000 and the 'out of sample' forecasting for the period 

between November 2000 and December 2003 from the monetary model (artificial 

neural networks) are then produced. 

4.2.3.1 'In Sample' Predicting 

This section will discuss the empirical result of 'In Sample' predicting from the 

Monetary Model (Artificial Neural Networks) for the period 1990MOI-2000MI0. 

Figure 4.4: Monetary Model (Artificial Neural Networks) (ANN) 

'In Sample' Predicting (NZ-AU) 

NZ-AU Spot Rate, Actual and ANN_Prediction: 1990M01-2000M10 
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From Figure 4.4 above, we can see that the ANN model mimics the pattern of 

exchange rate movement well in general (R2 = 0.85 which is much higher than 0.29 in 

the linear function). Moreover, the ANN model provides 67% (87 out of 129) correct 

prediction of the next period's directional change which is significantly higher than 

47% (61 out of 129) in the linear version). 

However, the predictions of spot rates are more volatile than those of actual ones. 

Intuitively, the predictions are' good at grasping the directional changes (currency 

appreciation or depreciation) but tend to over-predict or under-predict, especially 

around the local maxima and minima. For example, the artificial neural networks over-

predicted the spot rate as 0.085 in June 1995, instead of the actual rate of 0.057. That 

is, ANN greatly over-predicted the value of the Australian dollar, up to 50% at the 

point of June 1995. 

4.2.3.2 Ex Post 'Out of Sample' Forecasting 

This section is going to discuss the empirical result of 'Out of Sample' forecasting 

from the Monetary Model (Artificial Neural Networks) for the period 2000Mll-

2003M12. 
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Figure 4.5: Monetary Model (Artificial Neural Networks) (ANN) 

'Out of Sample' Forecasting (NZ-AU) 

NZ-AU Spot Rate, Actual and ANN_Prediction: 2000M 11-2003M 12 
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Obviously, in the out of sample data set, artificial neural networks provide an even 

better forecast (R2 = 0.83) (compared to in-sample predictions) because the networks 

have learnt the input-output pattern well in the in-sample data set, hence they use what 

they have learnt to better predict the future movement of the exchange rate. 

Artificial neural networks provide 74% (28 out of 38) correct predictions of the 

directional change in the out of sample, which is higher than 67% (87 out of 129) in 

the in-sample data set. Moreover, the predictions are much less volatile and much 

closer to the actual ones (RMSE = 0.02, and RMSPE = 0.14) compared to those of the 

in-sample set, that is, the predictions just slightly over-predict or under-predict during 

the whole out of sample horizon. At the last point of time horizon, although ANNs 

over-predict, the two lines clearly suggest that they will converge into some point with 

the upward actual spot rate and the downward prediction one. 
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4.2.4 Summary 

As this thesis is concerned with evaluating the forecasting abilities of the alternative 

approaches, we summarise the 'out of sample' results below. 

Table 4.3: Forecasting Results Summary (NZ-AU) 

Out_oCSample Rsq RMSE RMSPE Turning Point PT87 

Random Walk 0.8470 0.0199 0.1637 0.4865 -
Linear Function 0.1813 0.0630 0.6374 0.4211 -0.5639 

ANN Technique 0.8307 0.0202 0.1368 0.7368 2.9223 

Note: These five criteria are R-Square, Root Mean Square Enor, Root Mean Square Percentage Enor, 

Percentage of Conectly Predicted Turning Points, and Pesaran-Timmermann Test Statistic from 

the left to the right.. 

Regarding out-of-sample forecasts, although the Random Walk Model provides a 

slightly higher R2 and a negligibly smaller RMSE compared to ANN modelling, the 

monetary model with the ANN technique predicts the exchange rate (NZ-AU) 

significantly better than the Random Walk Model based on the criteria of RMSPE and 

Turning Point, and has market-timing ability based on the PT statistic. Overall, ANN 

provides a reliable forecast (containing economic value) with a good magnitude and a 

good directional forecast of exchange rate movement in a long horizon (more than 3 

years) based on this case. 

However, this general conclusion is not fully consistent with the results from the DM 

test. The DM test suggests that there is no difference between the Random Walk 

Model and the monetary model with the ANN technique in terms of forecast accuracy 

although the DM test shows that the Random Walk Model is more accurate than the 

monetary model with a linear function, and the monetary model with the ANN 

87 The Random Walk Model might either generate all positive or all negative series, making the PT 
statistic meaningless in such a case (Preminger and Franck, 2005); therefore, PT statistics do not apply 
in the RW model. In addition, PT test statistics in Table 4.3 suggest that the predicted spot rates are 
closely associated with the actual values in the ANN modelling (12.92231>1.96) but this does not happen 
(actually, the situation is the opposite) in the case of the linear model (1-0.56391<1.96). 
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technique is superior to the monetary model with a linear function. This result from 

the DM test is supported by the evidence of error ratios. 

Table 4.4: Error Ratios Summary (NZ-AU) 

Out_oCSample OutlRW (RMSE) OutlRW (RMSPE) 

Linear Function 3.1683 3.8941 

ANN Technique 1.0153 0.8357 

Note: The figures in the first line are the ratios of the error from the linear function model to the error 

from the random walk model, and the errors are Root Mean Square Error and Root Mean Square 

Percentage Error from the left to the right; the figures in the second line are the ratios of the error from 

the ANN technique model to the error from the random walk model, and the errors are Root Mean 

Square Error and Root Mean Square Percentage Error from the left to the right. 

It seems clear that the Random Walk model outperforms the monetary model with a 

linear function based on two error ratios that are much higher than 1 (even beyond 3), 

but it is hard to tell whether Random Walk model is better or the monetary model with 

the ANN technique is better, because one error ratio is higher than 1 (RMSE) but the 

other is less than 1 (RMSPE). 

The detail ofDM forecasting accuracy tests: 

where dt = e~.t+h - e~.t+h 

We use one-sided tests so that each model can be treated as the maintained (i.e., null) 

hypothesis. 

(1) The Random Walk model tested against the linear monetary model 

H~: The RW model and the linear monetary model forecast equally well 

H~ : The RW model forecasts better than the linear monetary model 
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The computed value of the test statistic and its P-value are: 

DM\ = -2.4328 [0.0075] 

Hence, the DM\ test statistic favours the R W model over the linear monetary model. 

(2) Now we reverse the previous null hypothesis and test the linear monetary model 

against the Random Walk model 

H~ : The linear monetary model and the R W model forecast equally well 

H:: The linear monetary model forecasts better than the R W model 

The computed value of the test statistic and its P-value are: 

DM2 = 2.4328 [0.9925] 

Hence, the DM2 test statistic indicates that we do not reject H~ in favour of H:. That 

is, the test statistic unequivocally indicates that the linear version of the monetary 

model cannot forecast the NZ_AU exchange rate more accurately than the RW model. 

In similar manner, we also tested the RW forecasts against those of the nonlinear ANN 

version of the monetary model. These results are summarised below: 

(3) The R W model tested against the ANN model 

Hg: The RW model and the ANN model forecast equally well 

H:: The RW model forecasts better than the ANN model 

DM3 = -0.0976 [0.4611] --- Not reject Hg 

(4) The ANN model tested against the R W model 

H o4: The ANN model and the RW model forecast equally well 

H:: The ANN model forecasts better than the RW model 

DM4 = 0.0976 [0.5389] --- Not reject H; 
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Conclusion: ill neither case does the DM test reject the equality of the forecasting 

accuracy of the RW and ANN models. 

(5) The linear model tested against the ANN model 

Hg : The linear model and the ANN model forecast equally well 

H~ : The linear model forecasts better than the ANN model 

DM5 = 2.3636 [0.9910] --- Not reject Hg 

(6) The ANN model tested against the linear model 

H~ : The ANN model and the linear model forecast equally well 

H: : The ANN model forecasts better than the linear model 

DM6 = -2.3636 [0.0091] --- Reject H~ 

Conclusion: The DM test statistic rejects the equality of the forecasting accuracy of the 

linear and ANN models, and favours the ANN model over the linear monetary model. 

In summary, the RW model cannot be beaten by either the li~~ar or nonlinear 

monetary model (although the nonlinear monetary model performs better than the 

linear version) in the case of the NZ_AU exchange rate. 

4.3 Results for the New Zealand~United States Exchange Rate 

4.3.1 The Random Walk Model 

The Random Walk model can be written in the form 

66 



where the variables are as defined previously. The ex post 'forecasts' of the exchange 

rate are also produced by generating the random variable Et ~ Normal(O,cr~) where cr~ 

has the same variance as the 'in sample' observations. 

4.3.1.1 Ex Post 'Out of Sample' Forecasting 

This section is going to discuss the empirical result of 'Out of Sample' forecasting 

from the Random Walkmodel for the period 2000Mll-2003M12. 

Figure 4.6: Random Walk (RW) Model 'Out of Sample' Forecasting (NZ-US) 

NZ-US Spot Rate, Actual and RW_Prediction: 2000M11-2003M12 
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The predictions from the random walk model mimic the pattern of the actual exchange 

rate movements quite well (R 2 = 0.94) with a relatively small error (RMSE = 0.04, 

and RMSPE = 0.06), but this model does not capture enough turning points (the 

percentage of correct predictions of the directional change = 65 %, 24 out of 37). 
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4.3.2 Monetary Model (Linear Version) 

The Monetary Model (Artificial Neural Networks Version) has the same specification 

as that of the monetary model (linear version) 

where the variables are as defined previously. 

The empirical 'in sample' estimated results are shown in Table 4.5. 

Table 4.5: Monetary (M) Model (Linear Version) 'In Sample' Estimating (NZ-VS) 

Dependent Variable: Spot 

Method: Least Squares 

Date: 05/30105 Time: 21 :35 

Sample: 1990:01 2000:10 

Included observations: 130 

Variable Coefficient Std. Error t-Statistic P-value 

C (Constant) 0.699641 0.008183 85.50239 0.0000 

M3 (Money Supply) -0.399553 0.042598 -9.379683 0.0000 

GOP (Gross -3.733830 0.231450 -16.13235 0.0000 

Domestic Product) 

INT (Interest Rate) -1.781092 0.280946 -6.339614 0.0000 

INF (Inflation Rate) 6.943710 1.893070 3.667963 0.0004 

R-squared 0.837038 Mean dependent var 0.550447 

Adjusted R-squared 0.831823 S.D. dependentvar 0.119151 

S. E. of regression 0.048863 Akaike info criterion -3.161896 

Sum squared resid 0.298447 Schwarz criterion -3.051606 

Log likelihood 210.5232 F-statistic 160.5127 

Durbin-Watson stat 0.438636 Prob(F-statistic) 0.000000 

In this model, the signs of the three explanatory variables (except the variable of 

relative money supply) are expected, and all explanatory variables are statistically 

significantly different from zero. As in the case ofNZ-AU, an auto-correlated problem 
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is also present in this model, which is indicated by the Durbin-Watson statistics (0.44) 

that is far away from 2. 

Based on the 'in sample' estimating, the 'in sample' predictions for the period between 

January 1990 and October 2000 and the 'out of sample' forecasts for the period 

between November 2000 and December 2003 from the monetary model (linear 

version) are then produced. 

4.3.2.1 'In Sample' Predicting 

This section is going to discuss the empirical result of 'In Sample' predicting from the 

Monetary Model (Linear Version) for the period 1990MOl-2000M10. 

Figure 4.7: Monetary (M) Model (Linear Version) 'In Sample' Predicting (NZ-US) 

NZ-US Spot Rate, Actual and M_Prediction: 1990M01·2000M10 
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From the graph above, we can see that the linear monetary model can mimic the 

pattern of exchange rate movement well in general (R 2 = 0.84), and provides 64% (82 

out of 129) correction rate of prediction of the next period's directional change). The 

difference between the actual spot rates and estimated ones is quite small, but it seems 

there is a big deviation in late 2000. 

Generally speaking, these results suggest that the linear monetary model can far better 

explain the exchange rate ofNZ-US than that of NZ-AD. 

4.3.2.2 Ex Post 'Out of Sample' Forecasting 

This section is going to discuss the empirical result of 'Out of Sample' forecasting 

from the Monetary Model (Linear Version) for the period 2000Mll-2003M12. 
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Figure 4.8: Monetary (M) Model (Linear Version) 

'Out of Sample' Forecasting (NZ-US) 

NZ-US Spot Rate, Actual and M_Prediction: 2000M 11-2003M 12 
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Obviously, in the 'out of sample' data set, the linear monetary model performed much 

worse (R2 = 0.41) than the 'in sample' data set. However, the huge deviation (RMSE 

= 0.26, and RMSPE = 0.33) from the actual spot rates was becoming smaller in late 

2003. That is, from November 2000 to October 2003, the linear monetary model 

always remarkably under-predicted the exchange rate, but it tended to over-predict 

after November 2003. In general, the linear monetary model does not provide the 

evidence that it contains any prediction power at all. 

Moreover, the linear monetary model provides only 47% (18 out of 38) correct 

predictions of the directional change in the out of sample, which is quite a bit lower 

than that in the random walk model (65%, 24 out of37). 
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In summary, the monetary model with the linear version cannot beat the simple 

random walk model in terms of providing a better forecast even in a very short 

horizon. 

4.3.3 Nonlinear Monetary Model (Artificial Neural Networks Version) 

The Monetary Model (Artificial Neural Networks Version) has the same specification 

as that of the monetary model (linear version) 

where the variables are as defined previously. 

The empirical 'in sample' estimated results are shown in Table 4.6. 

Table 4.6: Monetary Model (Artificial Neural Networks) 

'In Sample' Estimating (NZ-US) 

Contribution Factors: 

M3 (Money Supply) 0.34905 

GDP (Gross Domestic Product) 0.13224 

INT (Interest Rate) 0.44542 

INF (Inflation Rate) 0.07329 

In this model, the effects from relative money supply and interest rate differential are 

much bigger than the other two, which is the opposite case in the linear version where 

the relative GDP and inflation rate differential have more influence on the exchange 

rate movement. 

Based on the 'in sample' estimating, the 'in sample' predicting for the period between 

January 1990 and October 2000 and the 'out of sample' forecasting for the period 

between November 2000 and December 2003 from the monetary model (artificial 

neural networks) are then produced. 
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4.3.3.1 'In Sample' Predicting 

This section will discuss the empirical result of 'In Sample' predicting from the 

Monetary Model (Artificial Neural Networks) for the period 1990MOl-2000M10. 

Figure 4.9: Monetary Model (Artificial Neural Networks) (ANN) 

'In Sample' Predicting (NZ-US) 

NZ-US Spot Rate, Actual and ANN_Prediction: 1990M01-2000M10 
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From the graph above, we can see that the ANN model performs worse than the linear 

function in general (R 2 = 0.80), and the ANN model provides 52% (67 out of 129) 

correct rate of prediction of the next period's directional change which is lower than 

64% (82 out of 129) in the linear version. Moreover, the predictions from ANN are 

very volatile especially during the period 1992M12-1994M07. However, the deviation 

for late 2000 is significantly smaller than that in the linear function. 
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4.3.3.2 Ex Post 'Out of Sample' Forecasting 

This section is going to discuss the empirical result of 'Out of Sample' forecasting 

from the Monetary Model (Artificial Neural Networks) for the period 2000Mll-

2003M12. 

Figure 4.10: Monetary Model (Artificial Neural Networks) (ANN) 

, 'Out of Sample' Forecasting (NZ-US) 

NZ-US Spot Rate, Actual and ANN_Prediction: 2000M 11-2003M 12 
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Generally speaking, the pattern from ANN is quite similar to that of actual exchange 

rate movement (R2 = 0.47), and the deviation (RMSE = 0.12, and RMSPE = 0.17) is 

much smaller than that in the linear function. However, ANN under-predicted the 

exchange rate before 2003, and then it tended to over-predict the exchange rate. 

Obviously, ANN has some prediction power (although the ANN model does not 

mimic very well in the case ofNZ-US) and can capture more turning points (53%, 20 

out of38) compared to the linear function (47%, 18 outof38). 

74 

1- ,-, 0.-< _~,~.:.-.:._ 
f-,-:-- ___ ". 



In summary, ANNs provide a better forecast than the linear function in a long horizon 

(more than 3 years) based on this case. However, this performance is not very good. 

4.3.4 Summary 

The 'out of sample' results are summarised below. 

Table 4.7: Forecasting Results Summary (NZ-US) 

Out_of_Sample Rsq RMSE RMSPE Turning Point PT 

Random Walk 0.9447 0.0381 0.0551 0.6486 -
Linear Function 0.4169 0.2567 0.3273 0.4737 -0.6376 

ANN Technique 0.4723 0.1224 0.1686 0.5263 -0.1303 

Note: These five criteria are R-Square, Root Mean Square Error, Root Mean Square Percentage Error, 

Percentage of Correctly Predicted Turning Points, and Pesaran-Timmermann Test Statistic from 

the left to the right.. 

Regarding out-of-sample forecasts for NZ-US, where the situation is very different 

from the case of NZ-AU, all criteria are supportive of the Random Walk Model. But 

ANN modelling is still better than the linear function in terms of the f{)tir measurement 

criteria (excluding the PT test statistic) chosen. Overall, ANNs provide a better 

forecast (although with no significant economic value: the PT test statistic suggests 

that the ANN modelling could not forecast the exchange rate directional change well, 

and the percentage of successful capturing the Turning Point is also relatively lower 

(with just over 50%) than the linear function in a long horizon (more than 3 years) 

based on this case. 

This general conclusion is supported by the results from the DM test. The DM test 

suggests that the Random Walk Model performs better than both monetary models 

with linear function and with ANN technique, but the monetary model with ANN 

technique no doubt beats the monetary model with linear function regarding the 

forecasting accuracy. This general conclusion is also consistent with the finding of 

en-or ratios. 
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Table 4.8: Error Ratios Summary (NZ-US) 

Out_oCSample Out/RW (RMSE) Out/RW (RMSPE) 

Linear Function 6.7399 5.9423 

ANN Technique 3.2150 3.6000 

Note: The figures in the first line are the ratios of the error from the linear function model to the error 

from the random walk model, and the errors are Root Mean Square Error and Root Mean Square 

Percentage Error from the ~eft to the right; the figures in the second line are the ratios of the error from 

the ANN technique model to the error from the random walk model, and the errors are Root Mean 

Square Error and Root Mean Square Percentage Error from the left to the right. 

It is obvious that the Random Walk model provides more accurate out-of-sample 

forecasts with a long horizon than both monetary models with linear function and with 

ANN technique supported by the evidence of two error ratios that are much higher 

than 1 (even roughly around 6 and 3, respectively). 

The details ofDM forecasting accuracy tests: 

(l) The R W model tested against the linear model 

H~: The RW model and the ANN model forecast equally well 

H! : The RW model forecasts better than the ANN model 

DM\ = -4.29626 [0.0000] --- Reject H~ 

(2) The linear model tested against the RW model 

H~: The linear model and the RW model forecast equally well 

H:: The linear model forecasts better than the RW model 

DM2 = 4.29626 [0.9999] --- Not reject H~ 

Conclusion: The DM tests reject the equality of the forecasting accuracy of the RW 

and linear models, and favour the RW model over the linear monetary model. 
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(3) The RW model tested against the ANN model 

Hg: The RW model and the ANN model forecast equally well 

H3 : The R W model forecasts better than the ANN model n 

DM3 = -2.61150 [0.0045] --- Reject Hg 

(4) The ANN model tested against the RW model 

H; : The ANN model and the R W model forecast equally well 

H:: The ANN model forecasts better than the RW model 

DM4 = -2.61150 [0.9955] --- Not reject H; 
Conclusion: The DM tests reject the equality of the forecasting accuracy of the RW 

and ANN models, and favour the RW model over the ANN monetary model. 

(5) The linear model tested against the ANN model 

Hg: The linear model and the ANN model forecast equally well 

H: : The linear model forecasts better than the ANN model 

DM5 = 4.08188 [0.9999] --- Not reject Hg 

(6) The ANN model tested against the linear model 

H; : The ANN model and the linear model forecast equally well 

H: : The ANN model forecasts better than the linear model 

DM6 = -4.08188 [0.0000] --- Reject H; 
Conclusion: The DM tests reject the equality of the forecasting accuracy of the linear 

and ANN models, and favour the ANN model over the linear monetary model. 
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In summary, the R W model does forecast better than both linear and nonlinear 

monetary models (although the nonlinear monetary model performs better than the 

linear version) in the case ofNZ-US exchange rate. 

4.4 Summary 

Based on the empirioal analyses, the monetary model with the artificial neural 

networks method, which has a solid economic rationale, provides the best result with a 

good forecast in magnitude and a good forecast in direction associated with market 

timing ability for the NZ-AU case. Although the ANN technique cannot beat the 

Random Walk model for the NZ-US case, it does not perform worse than the Random 

Walk model and it still improves the performance compared to the linear function. 

Therefore, although the ANN technique empirically provides a better forecast than a 

purely linear function, the general conclusion88
, that the artificial neural networks 

model can always beat the Random Walk model, does not hold. This means the result 

of Meese and Rogoff (1983) can not be overturned based on the mixed empirical 

results from this research. 

88 The empirical results obtained here largely depend on the observations in the particular forecasting 
period and might not allow us to hold a very general and consistent conclusion about these estimation 
models. 
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Chapter 5 Conclusion and Suggestions 

5.1 Introduction 

This chapter will summarise and discuss the empirical results from the previous 

chapter, and conclude whether the artificial neural networks technique can beat the 

random walk model to significantly improve the performance of exchange rate 

forecasting, and further provide suggestions for future studies in the same area. 

5.2 Conclusion and Discussion 

The central research question in this thesis is whether the artificial neural networks 

model can perform better than the random walk model in terms of long-run exchange 

rate forecasting. The overall answer for this question tends to be negative based on the 

empirical results in Chapter 4 --- Empirical Results. 

In the NZ-AU case, the ANN technique can forecast better than the Random Walk 

model according to the criteria of RMSPE and Turning Point Accuracy, and has 

market-timing ability based on the PT statistic. However, DM test results suggest that 

there is no difference between the Random Walk Model and the monetary model with 

ANN technique in terms of forecast accuracy. 

In the NZ-US case, all criteria support the Random Walk Model, and DM test results 

also suggest that the Random Walk Model produces more accurate out-of-sample 

forecasts with a long horizon than those from the monetary model with ANN 

technique. 

From these empirical results, we conclude that using the ANN technique does not 

significantly improve the performance over the Random Walk model. Does this 
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conclusion suggest that nonlinear modelling is not entirely suitable for investigating 

the exchange rate movements? 

5.2.1 Confirmation of the Use of the Nonlinear Modelling 

As the appearance of nonlinearity can sometimes be due to the presence of instability 

in the empirical relationships within the data, it is necessary to check for evidence of 

such instability. Considering the linear version of the monetary model, a popular test 

for instability of an unspecified nature is the CUSUM test. The results are shown 

below. 

5.2.1.1 Testing for Instability in NZ-AU Relations 

Figure 5.1: Parameter Instability Test (NZ-AU) 

I CUSUM of Squares Test (NZ-AU: 1990M1-2000M1 0) I 
1.2~-------------------------------------------------------------------------------------~ 
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As shown in Figure 5.1, there is some evidence of instability in the linear relationship 

(NZ-AU) from 1992 to 1998. Hence, the next task is to try to pinpoint the possible 

source of this instability by examining the Recursive Least Squares (RLS) estimates 

for each parameter. The RLS coefficients are displayed in Figure 5.2 below. 

Figure 5.2: Parameters Estimation by RLS (NZ-AU) 

I Recursive Coefficients (NZ-AU: 1990M1-2000M10) I 
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From the graphs above, we can easily tell that at least the estimated parameters of the 

relative GDP (U shape) and the interest rate differential (continuously drops down) 

display clear evidence that there was some nonlinearity in the NZ-AU relations from 

1990 to 2000. 

81 

i,:::,._:;::-,~:c:,:; 

ht~~~~t:~;·~: 



5.2.1.2 Testing for Instability in NZ-US Relations 

Figure 5.3: Parameter Instability Test (NZ-US) 

I CUSUM of Squares Test (NZ-US: 1990M1-2000M1 0) I 
1.2~----------------------------------~ 
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The results are similar to those of NZ-AU, but the graph shows that there is more 

percentage beyond the line of the 5% significance, which suggests that the evidence 

of instability in the data set from 1992 to 2000 is even stronger than that of NZ-AU 

case. The RLS results are shown below. 
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Figure 5.4: Parameters Estimation by RLS (NZ-US) 

I Recursive Coefficients (NZ-US: 1990M1-2000M10) I 
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From the graphs above, we can easily tell that at least the estimated parameters of the 

relative money supply (inverted U shape), GDP differential (continuously decreases) 

and interest rate differential (inverted U shape) are non-constant, which may present 

themselves as evidence that there is nonlinearity in the NZ-US relations from 1990 to 

2000. 

It is clear that there is indeed nonlinearity in both data sets (NZ-AU and NZ-US) 

which confinns that the use of nonlinear modelling is correct and suitable. However, 

the perfonnance of the nonlinear modelling, whilst improving on the linear models, is 

not entirely satisfactory. This outcome might well be attributed to factors other than 

inherent shortcomings in the nonlinear modelling methodology (ANN) itself. For 
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example, the monetary model could be subject to specification errors (improper 

functional form, lack of dynamics, etc). 

5.3 Limitations and Suggestions 

5.3.1 Autocorrelation 

In Chapter 4 --- Empirical Results, we have found that there is an auto-correlation 

problem in the linear monetary model. In order to solve the auto-correlation problem, 

we re-specified the function form that includes a lag of dependent variable to be an 

explanatory variable. Unfortunately, the re-specification function produced an even 

worse result with unexpected signs and non-significance although the auto-correlation 

problem was solved. Therefore we chose to leave the linear model with the auto-

correlation problem unchanged because the focus of our research was on the 

forecasting abilities of the models. 

The same principle was also applied to the artificial neural networks in order to make 

it easy to compare the performance from the ANN modelling with the linear monetary 

model. However, in this case, leaving the auto-correlation problem in the ANN 

modelling could theoretically reduce the accuracy of the prediction in the application 

of ANN models. 

5.3.2 Stationarity 

In a neural network model, all variables (inputs and actual output) should be stationary 

and bounded because the value produced by a hidden unit is bounded due to the use of 

the logistic activation function. If an input variable is non-stationary or grows 

continuously over time, then the hidden units could eventually reach the maximal or 

minimal value, which in tum causes the output to remain constant. Therefore, it is 

highly desirable to determine whether or not all inputs in our neural network models 

are stationary - if so, then the estimated output will automatically meet the same 

criteria. To this end, we employed two different tests regarding the stationarity status 
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of each of the variables. However, we note the caution in Johnston and DiNardo 

(1997, pp223) that "". the available tests have low power and so the distinction 

between the two types of series [stationary and nonstationaryj, although of theoretical 

importance, may be of little practical significance." The following tables present the 

results of the unit root tests. 

Table 5.1: Unit Root Tests for NZ-AU Data 

ADF test HO:YNI(l) KPSS test HO:YNI(O) 

Variable Lags Statistic Band Statistic 

Spot (Spot Rate) 0 -2.212 10 0.222* 

M3 (Money Supply) 0 -2.784 10 0.193* 

GOP (Gross Domestic 3 -2.655 10 0.133 

Product) 

Int (Interest Rate) 0 -4.067* 9 0.257* 

Inf (Inflation Rate) 4 -6.881* 8 0.085 

Note: Critical Values (ADF, 5%): -3.437 (Levels) (with trend and intercept tenn) 

Critical Values (KPSS, 5%): 0.146 (Levels) (with trend and intercept telm) 

The value with * means that the null hypothesis is rejected at 5% significance level. 

From Table 5.1, we can see that the results for the NZ-AU unit root tests (ADF and 

KPSS tests) are not consistent with each other. For the ADF test, the variables of spot 

rate, relative money supply, and relative GDP are detected to be non-stationary; but for 

the KSPP test, the variables of spot rate, relative money supply, and interest rate 

differential are detected to be non-stationary. The two unit root tests provide different 

results for the variables of relative GDP and interest rate differential, which suggests 

that these unit root tests are not able to unambiguously classify finite time series 

variables. 
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Table 5.2: Unit Root Tests for NZ-US Data 

ADF test Ho:Y~I(l) KPSS test Ho:Y~I(O) 

Variable Lags Statistic Band Statistic 

Spot (Spot Rate) 0 -0.471 10 0.181* 

M3 (Money Supply) 0 -2.085 10 0.356* 

GDP (Gross Domestic 3 -2.418 10 0.120 

Product) 

Int (Interest Rate) 0 -2.007 10 0.194* 

Inf (Inflation Rate) 1 -8.607* 7 0.077 

Note: Critical Values (ADF, 5%): -3.437 (Levels) (with trend and intercept term) 

Critical Values (KPSS, 5%): 0.146 (Levels) (with trend and intercept term) 

The value with * means that the null hypothesis is rejected at 5% significance level. 

Similar to those of NZ-AU unit root tests, the ADF test and KPSS test are also not 

consistent with each other in the case of NZ-US. For the ADF test, the variables of 

spot rate, relative money supply, relative GDP and interest rate differential are 

detected to be non-stationary; but for the KSPP test, only the variables of spot rate, 

relative money supply and interest rate differential are detected to be non-stationary. 

The two unit root tests provide different results for the variables of relative GDP, 

which also suggests that the unit root tests are not able to unambiguously classify 

finite time series variables. Again, Johnston and DiNardo (1997, pp 227) advises, 

"Low Power in statistical tests is an often unavoidable fact of life, with which one must 

live and not expect to be able to make definitive pronouncements." 

Having received the message that the unit root tests have low power to unambiguously 

classify finite time series variables, we decided that it is better leave the variables 

unadjusted for the application of artificial neural networks in case all variables used in 

this thesis are possibly near the unit root process rather than the restricted unit root 

process. 
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5.3.3 Microeconomic Items 

Empirical evidence does not unequivocally support that macroeconomic fundamentals 

have consistently strong effects on exchange rate determination and forecasting 

(Frankel and Rose, 1995), and hence the negative findings lead to a more updated 

branch (micro economic approach) to attempt to better understand the deviations from 

macroeconomic fundamentals. The microstructure information is also called technical 

information, and it competes with fundamental information in terms of the ability to 

forecast foreign exchange rates. Rubio (2004) focused on technical analysis to forecast 

foreign exchange rates at different horizons in five different markets. His main 

findings, relevant to this research, were similar to those of Hutcheson (2000), Cheung 

and Chinn (2001), Menkhoff (1997), and Cheung, Chinn and Marsh (2004), namely 

that technical analysis models performed better in short horizons, whereas long-run 

exchange rate movements could be explained better by fundamentals based models. 

The microstructure literature concerns a wide range of issues including the 

transmission of information between market participants, the behaviour of market 

agents, the relationship between information flows, the importance of order flow and 

the heterogeneity of agents J expectations (Sarno and Taylor, 2002, pp264). Among 

these micro economic variables, order flow is the most important because order flow 

actually reveals aggregate market participants' expectation and therefore can be 

viewed as an approximate determinant of market price (Evans and Lyons, 1999). 

It has been found that incorporating the 'non-public' information of order flow in a 

model is useful for forecasting exchange rates because this type of information cannot 

be widely attained by all market-makers contemporaneously, and thus causes the 

unanticipated exchange rate innovation (Evans and Lyons, 2005). The micro-based 

model, which mainly contains the information of order flow, forecasts exchange rates 

significantly better than both a standard macro-model and a random walk model at the 

various short horizons (1-, 5-, 10-, 15-, and 20-days), especially as the forecasting 

horizon rises (Evans and Lyons, 2005). 

A mixed model that includes both a new variable (order flow) reflecting the 

microeconomics of asset pricing and macroeconomic fundamentals, is able to 
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significantly improve on the pure macroeconomic models and produce more precise 

short run out-of-sample forecasts (one-day, one-week and two-weeks horizons) than a 

random walk model (Evans and Lyons, 1999)89. Similarly, but more elegantly, 

(Gradojevic and Yang, 2000)90 introduced the variable of order flow along with a set 

of macroeconomic· variables together with the use of an ANN technique. Their 

"hybrid" model yielded more accurate short run out-of-sample forecasts (one-day and 

one-week forecasts) compared to the standard linear and the random walk models in 

terms of criteria of root mean squared error (RMSE) and the percentage of correctly 

predicted exchange rate directional changes (PERC). 

These results about the models which introduce the microeconomic variable of order 

flow are quite successful because they include the information indeed relevant to the 

exchange rate (Evans and Lyons, 1999), which is entirely ignored by traditional 

macroeconomic models. Actually, macroeconomic models are built on the assumption 

that markets are efficient and release all relevant information to every market 

participant (Sarno and Taylor, 2002), but macroeconomic models' information does 

not include micro economic variables which are grouped as an error term in the 

macroeconomic models (Gradojevic and Yang, 2000). In conclusion, further studies of 

the microstructure of the foreign exchange market are necessary for attempting better 

understanding in this area (Frankel and Rose, 1995). 

5.3.4 Conclusion 

Throughout this thesis, we can not overturn the finding from (Meese and Rogoff, 

1983) that random walk model performs no worse than other competing theory-based 

models in terms of exchange rates forecasting. For future research, the data sets should 

be examined and chosen carefully in order to avoid variable non-stationary and auto-

correlation problems. By doing so, we can enhance the chance that nonlinear models 

forecast exchange rates more accurately than the random walk model. More 

impOliantly, microeconomic items should be incorporated (if the micro-information is 

89 This paper uses daily observations of the German mark, Japanese yen and US dollar. 
90 This paper uses daily observations of the Canadian dollar and US dollar. 
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valid and easy to get) in the nonlinear models in order to make the forecasting models 

more powerful. 
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