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whereRS = rS � r and the integralsI1, I2, andI9 are given by
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with f = f(�) = j�R�RS j andh = h(�) = exp(�jk(�R+ f)).
The results of the analytical evaluations of these integrals are given in
[7, (51), (56), (61)]. Inserting these expressions for the integrals into
(26), the final expression in (14) is obtained.
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Polynomial Approximations to Bessel Functions

R. P. Millane and J. L. Eads

Abstract—A polynomial approximation to Bessel functions that arises
from an electromagnetic scattering problem is examined. The approx-
imation is extended to Bessel functions of any integer order, and the
relationship to the Taylor series is derived. Numerical calculations show
that the polynomial approximation and the Taylor series truncated to the
same order have similar accuracies.

Index Terms—Approximation, Bessel functions, polynomial.

I. INTRODUCTION

Bessel functions appear in numerous physical problems, and play an
important role in many electromagnetic scattering problems. There is
no closed form expression for Bessel functions so that approximations
suitable for numerical evaluation are necessary in applications. Gross
[1] has derived interesting polynomial approximations to the zeroth-
and first-order Bessel functions of the first kind for small arguments,
that arise from an integral that occurs in an electromagnetic scattering
problem. We study here in detail properties of these approximations.
First we extend the analysis in [1] to derive corresponding polynomial
approximations for Bessel functions of any integer order. Second we
show that as the degree of the polynomial approximation increases, it
converges to the Taylor series expansion. Third we compare the accu-
racy of the polynomial approximations to that of the truncated Taylor
series of the same order.

II. BACKGROUND

Gross [1] begins by considering the integral

f2n(k) =
2
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that occurs in the expression for the current density on a conducting
strip grating illuminated by a plane electromagnetic wave [2]. The in-
tegral is evaluated as [1]

f2n(k) =

n
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2n�2m (3)

where
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(4)

and(2n)!! = 2 � 4 � 6 � � � 2n. Making the substitutionx = w� in (1)
gives
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Fig. 1. Bessel functionsJ (x)(——–), the polynomial approximationsJ (x)(- - -), and the truncated Taylor seriesJ (x)(� � �), on the interval0 < x <

n + p and for ordersx as shown.

and taking the limit� ! 0 on the left- and right-hand sides of (5) and
using (2) shows that for largen

f2n(�) ' 2
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1

0

cos(2n�w)p
1� w2

dw: (6)

Using the integral form of the Bessel functions [3] then shows that

J0(x) ' f2n
x

2n
0 � x � 2n (7)

the approximation improving with increasingn. Using (3) and (4), (7)
provides a polynomial approximation toJ0(x). Note that the domain
on which the approximation (7) is defined increases with increasingn.
Using (7) and the properties of Bessel functions also gives the approx-
imation

J1(x) ' � d

dx
f2n

x

2n
(8)
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on the same domain. Numerical evaluation of (7) and (8) for2n = 10
and 20, and 0< x <5, shows that they are substantially more accurate
than the first term of the Taylor series for the Bessel functions [1].

III. A PPROXIMATIONS FORANY BESSELORDER

The approach described above can be extended to any Bessel order
as follows. Substituting (3) into (7), rearranging the summation, and
using (4) allows the approximation (7) it to be written as

J0(x) '

n
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2m; 0 � x � 2n (9)

where
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(�1)mn1�2m(n+m� 1)!

22m(n�m)!(m!)2
: (10)

Applying the relationship [3]
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recursively to (9) gives
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where
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We denote byJG;np (x) the approximation (12) for which the highest
order isxn, i.e.

JG;np (x) =
m=p

d
p; ;m

x2m�p 0 � x � n+ p: (14)

IV. RELATIONSHIP TO THETAYLOR SERIES

The Taylor series forJp(x) is [3]

Jp(x) =
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where
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We denote the Taylor series truncated to orderxn by JT;np (x) and, to
ease comparison with (14), write it as

JT;np (x) =
m=p

tp;m�px
2m�p: (17)

We show that as the order of the polynomial approximation (14) in-
creases, it approaches the Taylor series on a term-by-term basis, i.e.

lim
n!1

JG;np (x) = JT;np (x) 0 � x <1: (18)

Referring to (14) and (17) shows that (18) is equivalent to
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where
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Using, (13) and (16), changing the factorials to gamma functions and
simplifying, shows that
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Using (21) and the relationship [3]limx!1 �(x + a) = �(x)xa

for x 2
+ shows thatepnm satisfies (19), confirming (18). The

polynomial approximation therefore approaches the Taylor series, on a
term-by-term basis.

V. NUMERICAL COMPARISONWITH THE TAYLOR SERIES

The polynomial and truncated Taylor series approximations of the
same order were calculated, on the domain for which the former is de-
fined, using (14) and (17), respectively, and compared with the actual
values of the Bessel functions. All of the approximations were evalu-
ated numerically using Horner’s method [4]. The results of these cal-
culations are presented in Fig. 1 for Bessel functions of orderp = 0, 1,
4, and 5, and for two different ordersn of the approximations that cor-
respond to 4 and 6 terms in the series. Inspection of the figure shows
consistent behavior in the relative accuracies of the two approxima-
tions. The truncated Taylor series approximationJT;np (x) is slightly
more accurate than the polynomial approximationJG;np (x) in the re-
gion 0 � x n=2. The Taylor series diverges rapidly from the true
value ofJp(x) for x n=2. The polynomial approximation is more
accurate than the Taylor series forn=2 x n, although it is prob-
ably not usefully accurate in this region. Forx n the polynomial
approximation also diverges rapidly from the Bessel function.

VI. CONCLUSION

The polynomial approximations [1] have been extended to Bessel
functions of any integer order, and they approach the Taylor series ex-
pansion as the order of the polynomial increases. Although the poly-
nomial approximation [1] has integer coefficients, both the polynomial
approximation and the Taylor series have good numerical stability if
they are evaluated using standard numerical methods. Comparison of
the accuracies of the two approximations (of identical orders) shows
that the polynomial approximation has no practical advantage over the
Taylor series, and that such approximations must be used with caution.
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