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Abstract of a thesis submitted in partial fulfilment of the requirements for the 

Degree of Master of Applied Science 

 

Ecology of long-tailed bats Chalinolobus tuberculatus (Forster, 1844) in the 

Waitakere Ranges: implications for monitoring 

by Jane Alexander 
 

The long-tailed bat (Chalinolobus tuberculatus) is a threatened species endemic to New Zealand. 

Historical anecdotes indicate that long-tailed bat populations have declined. However, it is 

unknown if all populations have declined and if declines are historical or ongoing. Thus, the 

development and implementation of a national network of long-tailed bat monitoring sites is a 

priority of the Department of Conservation’s Bat Recovery Plan. Potentially, information gained 

from a national monitoring programme would assist conservation managers to target resources 

towards those areas where bat populations are declining and provide baseline information to 

assist managers to gauge the impact of management techniques on bat populations. Of critical 

importance is that unless it can be demonstrated that long-tailed bat populations have declined 

and that, that decline is real, management will not be initiated.  

 

The aim of this research was to investigate aspects of the ecology of long-tailed bats that would 

influence the development of a monitoring programme. The distribution, roost selection, habitat 

use, and activity patterns of a long-tailed bat population that persisted in the Waitakere Ranges, 

Auckland, were investigated. A study of the Waitakere Ranges long-tailed bat population was 

significant because (1) the Waitakere Ranges is the northern most location at which long-tailed 

bats have been researched; (2) the study was the first to be conducted on a long-tailed bat 

population that persisted in kauri Agathis australis dominated forest remnants; (3) the long-tailed 

bat population in the Waitakere Ranges is the only known extant population in close proximity to 

a major urban area; and (4) the factors that are attributed to long-tailed bat population declines 

(i.e., forest clearance, predation and urbanisation; O’Donnell, 2000) are likely to be ongoing and 

intensified in the Waitakere Ranges. 
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Twenty roosts were located. Most roosts (85%) were in kauri, 2 were in mature rimu (Dacrydium 

cupressinum) and 1 was in a kahikatea (Dacrycarpus dacrydioides). All roosts were in large, 

live, emergent trees. Mean height of roost trees was 38.4 ± 1.3 m and average DBH was 186 ± 

12 cm. The entrances of six roost cavities were identified all were located in minor lateral 

branches in the crown of the tree and were primarily near the tip of branches. Roosts were a 

mean height of 24.6 ± 3.7 m above ground level. It was argued that roosts in the crowns of kauri 

were inaccessible to terrestrial mammalian predators. 

 

Twenty-eight roost watches were conducted. The average number of bats counted leaving roosts 

was 10.0 ± 1.5 (maximum = 24).  Roosts were occupied by radio-tagged bats for an average of 

2.0 ± 0.4 days, and 11 (55 %) were occupied for only one day. Roost size was the lowest 

reported for long-tailed bats. Roost switching also appeared higher than in other populations that 

have been studied. It was argued that morepork predation may have a significant impact on the 

population viability of the population. 

 

As in other studies long-tailed bats were found to forage over modified habitats including over 

farmland, dwellings, orchards and along streams and roads with little vehicular traffic. Long-

tailed bats foraged throughout the Waitakere Ranges and their foothills. Bat activity was highly 

variable. Of the environmental variables analysed, temperature was found to have the greatest 

influence on bat activity. There were seasonal and habitat influences on bat activity. The 

relationship between sample sizes, variation in bat detection rates and desired statistical power 

using automatic bat detectors to monitor populations of bats was explored. A power analysis on 

activity data collected with automatic bat detectors indicated that declines in bat populations 

would need to be reflected in declines of greater than fifty percent in bat activity before 

monitoring programmes would have sufficient power to detect declines in activity. It was 

recommended that monitoring programmes should concentrate on intensive presence – absence 

surveys rather than long-term studies at a few sites.  
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Chapter 1: Introduction 

Introduction to New Zealand bats 
Bats are New Zealand’s only native terrestrial mammals. Three species, all endemic to New 

Zealand, are known: the long-tailed bat (Chalinolobus tuberculatus Forster, 1844), the lesser 

short-tailed bat (Mystacina tuberculata Gray, 1843) and the greater short-tailed bat (M. robusta 

Dwyer, 1962). The greater short-tailed bat became extinct during 1967 (Daniel, 1990). Both 

extant species are classified as threatened (Molloy, 1995). The short-tailed bat is listed by the 

Department of Conservation in category A (species of highest conservation priority) and the 

long-tailed bat in category B (second priority species for conservation action) (Molloy and 

Davis, 1994). Species in category B are considered to be at risk of extinction in the medium term 

if population trends continue (Molloy and Davis, 1994; O’Donnell, 2000a). 

 

Taxonomy 

The long-tailed bat belongs to an almost cosmopolitan family, Vespertilionidae. The genus 

Chalinolobus contains five other species distributed among Australia, New Guinea and New 

Caledonia (Hill and Smith, 1984). Three of the six Chalinolobus species are described as 

threatened (G. C. Richards pers. comm. cited in O’Donnell, 1999a). No subspecies of the long-

tailed bat are formally recognised. However, there is geographic variation in echolocation calls 

(Parsons, 1997), morphology (Daniel, 1990), and there are genetic differences among 

populations. The level of genetic distinctiveness between the North and South Island populations 

is similar to that found between the recognised short-tailed bat subspecies (Winnington, 1999). 

Winnington (1999) recommended that North and South Island long-tailed bat populations should 

be treated as separate conservation management units. 

 

Distribution and population declines 

Since European settlement, anecdotal evidence suggests a steady decline in the number and size 

of long-tailed bat populations (O’Donnell, 2000a). Prior to the mid-1800s long-tailed bats were 

common and widely distributed throughout New Zealand (O’Donnell, 2000a). Buller (1892) and 

Cheeseman (1893) reported roosts containing hundreds or thousands of bats. By the 1930s 

naturalists had begun noting declines in long-tailed bat populations. For example, Stead (1936) 

recalled that ‘It is, unfortunately, no longer correct perhaps, to refer to the long-tailed bat as a 
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common species, for it is quite gone from most districts, and is rapidly becoming scarcer in those 

where it still remains’. 

 

O’Donnell (2000a) reviewed published distribution maps for long-tailed bats (Dwyer, 1960, 

1962; Daniel and Williams, 1984; Molloy, 1995). The maps were based on presence or absence 

in each square of the 10 000 yard national grid. While the maps showed sightings made during 

different periods (pre-1930, 1930-1960, 1961-1983 and 1980-1995), they were inadequate for 

examining population trends and status (O’Donnell, 2000a). The maps were large-scale and 

contained errors. For example, Molloy (1995) attributed sightings to long-tailed bats when the 

bat species was not known (O’Donnell, 2000a). While bats were recorded in a grid square no 

data was given on the number of sightings, the number of bats present, or measures of survey 

effort (O’Donnell, 2000a).  

 

Despite very limited data, some authors have reached conclusions on the status, population 

trends, and causes of decline of long-tailed bats. For example, Dwyer (1960, 1962) found that 

although long-tailed bats were widespread throughout New Zealand their distribution had 

significantly contracted since European settlement. He suggested there was no evidence that 

long-tailed bat populations had declined in areas of unmodified forest and attributed the 

reduction in long-tailed bat distribution to the clearance of indigenous forest cover and 

increasing urbanisation. Daniel and Williams (1984) considered that long-tailed bats had a secure 

conservation status. Daniel (1990) concurred, suggesting long-tailed bats were common and 

widely distributed throughout New Zealand. 

 

During the 1990s, survey effort mostly in the South Island found that long-tailed bats were 

absent from some areas where they had previously been observed. Where they persisted, with the 

exception of the Eglinton and Dart Valleys, they were uncommon or rare (O’Donnell, 2000a). At 

Banks Peninsula and South Westland the declines have occurred during the last thirty years and 

while some population declines have occurred in very modified and fragmented habitats (e.g., 

Arahura and Geraldine) others have declined despite the retention of large areas of indigenous 

forest (e.g., Northern Nelson, South Westland) (O’Donnell, 2000a). In Eglinton Valley, where 
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bats are considered common (O’Donnell, 2000a), the average colony was small, averaging 35 

bats (O’Donnell and Sedgeley, 1999).  

 

Similar surveys were not undertaken in the North Island therefore it is unclear whether a similar 

population decline has occurred there (O’Donnell, 2000a). In some North Island populations, 

there has been a reduction in the number of bats reported. For example, as early as the 1930s 

concern was expressed that long-tailed bats had declined in Waikato and there is anecdotal 

evidence that declines have continued (Borkin, 1999). Demographic studies undertaken at Balls 

Clearing, Hawkes Bay (Gillingham, 1996) and at Grand Canyon Cave near Te Kuiti (Ryan, 

1999) paint a different picture. Both populations appear to be healthy with relatively high 

numbers of reproductive females and juveniles (Gillingham, 1996; Ryan, 1999). In fact, 

Gillingham (1996) reported communal tree roosts with an average of 86 occupants, and up to 

200 bats in a roost, the most reported during the 20th century.  

 

Other than circumstantial evidence, there is little information on the causes of long-tailed bat 

population declines. Forest clearance, predation and competition from introduced species, and 

disturbance at roost sites may all contribute to declines in long-tailed bat populations 

(O’Donnell, 2000a). Bats have been killed by cats (Felis cattus) and moreporks (Ninox 

novaeseelandiae), and when trees containing roosts were felled (Daniel and Williams, 1984). 

Introduced species have been reported making nests in long-tailed bat roosts (starlings Sturnus 

vulgaris and ship rats Rattus rattus; Sedgeley and O’Donnell, 1999a) and in cavities that 

appeared to be suitable for bat roosts (wasps Vespula spp., sparrows Passer domesticus and feral 

pigeons Columbia livia; Griffiths, 1996). However, the relative impact of these factors on long-

term population viability has not been assessed (O’Donnell, 2000a). 

 

Long-tailed bat ecology 

Habitat use and movements 

Long-tailed bats are largely associated with indigenous forest (Daniel, 1990), though roosts have 

been found in limestone cliffs, caves, buildings and exotic trees such as willows (Salix fragilis), 

macrocarpas (Cupressus macrocarpa) (Griffiths, 1996) and radiata pine Pinus radiata, (Daniel 

and Williams, 1984). Foraging long-tailed bats frequent forest edges (O’Donnell and Sedgeley, 



 12 

1994), regenerating Kunzea ericoides and Leptospermum scoparium forest (O’Donnell, 2001b) 

and utilise linear landscape features such as streams and roads (Griffiths, 1996; O’Donnell, 

2001a; G. Moore pers. comm). They also forage over farmland and open water (Molloy, 1995; 

Griffiths, 1996; Borkin, 1999). 

 

Patterns of activity vary during the night, through the year and between habitats (e.g., Griffiths, 

1996; O’Donnell, 2001a). In the Eglinton Valley, activity was constant through the night along 

roads and within the forest but peaked along the forest edge and grassland during the two hours 

following sunset (O’Donnell, 2000b). Foraging over K. ericoides and L. scoparium was greatest 

post-lactation (late summer/autumn) (O’Donnell, 2001a). Different temporal patterns of bat 

activity are probably closely correlated with the availability of invertebrates in the different 

habitats (O’Donnell, 2000b). In contrast to overseas studies, there were single peaks in activity at 

dusk rather than bimodal peaks at both dusk and dawn which coincide with invertebrate activity. 

O’Donnell (2000b) suggested that the all night foraging may be necessary if food was limited 

and bats could not satisfy their hunger through shorter feeding bouts.   

 

The home range sizes of long-tailed bats are amongst the largest of the Microchiroptera 

(O’Donnell, 2001b). The maximum home range of long-tailed bats in Eglinton Valley was 5629 

ha and the maximum range length was 19 km (O’Donnell, 2001b). In Geraldine, the maximum 

home range size was 642 ha and maximum range lengths only 4.4 km (Griffiths, 1996). At least 

two explanations have been proposed to explain the reported differences. Griffiths (1996) 

suggested that because habitats in Eglinton Valley are homogenous compared with Geraldine, 

bats there would need to travel further to utilise alternative habitats. However, O’Donnell 

(2001b) hypothesised that food resources may be limited in Eglinton Valley and bats need to 

travel further to obtain enough adequate food. Despite variability in home range sizes, different 

long-tailed bat populations exhibit similar movement patterns each night, returning to optimal 

foraging areas most nights (Grifiths, 1996; O’Donnell, 2001a). 

 

Roost site selection and use 

Tree cavities used by long-tailed bats are not a random selection of those available. Roost trees 

in forested habitat are generally close to the forest edge. In Eglinton Valley, 95% of roosts were 
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within 500 m of the forest edge (Sedgeley and O’Donnell, 1999a) and at Hawkes Bay, all roosts 

were within 280 m of the forest edge (Gillingham, 1996). Sedgeley and O’Donnell (1999a) 

found that while long-tailed bats selected particular tree species (including standing dead trees) 

for roosts. Analysis indicated that rather than discriminating between tree species, trees were 

selected on the basis of functional characteristics associated with those trees (i.e. availability of 

cavities, greater trunk surface area and relatively low canopy cover). Generally, long-tailed bats 

select the largest mature trees with cavities (Gillingham, 1996; Griffiths, 1996; Sedegley and 

O’Donnell, 1999a). They select cavities that are relatively high from the ground. For example, 

the average height of cavities was 15.9 m in Balls Clearing, Hawkes Bay (Gillingham, 1996) and 

17 m in Eglinton Valley (Sedegley and O’Donnell, 1999b). In Eglinton Valley, compared with 

random available cavities, roost cavities were all located in knot hole cavities that were dry and 

had little surrounding vegetation (Sedgeley and O’Donnell, 1999b). Bats used a higher 

proportion of cavities which had medium sized entrances and internal cavities with thick cavity 

walls (Sedgeley and O’Donnell, 1999b). 

 

Long-tailed bats roost in solitary and colonial roosts. Females are more likely than males to roost 

in colonies (Gillingham, 1996; O’Donnell and Sedgeley, 1999). Roost-site lability is 

exceptionally high compared to other microchiroptera (O’Donnell and Sedgeley, 1999). For 

example, in Eglinton Valley the mean number of days that bats would use a roost for was 1.7 

days and rates of reuse were very low, with 300 new roosts found over three years (O’Donnell 

and Sedgeley, 1999). In Geraldine, while the mean was 1.6 days/roost (Griffiths, 1996), the same 

roosts were revisited during the study period by different bats, suggesting that roosts may be 

limited. 

 

Nocturnal activity patterns  

Habitat, season, time of night, dusk temperature, minimum overnight temperature, and 

invertebrate activity all influence long-tailed bat activity (O’Donnell, 2000) as does moon phase 

(Griffiths, 1996), cloud cover, moonlight and maximum daily temperature (Gillingham, 1996). 

Factors that are correlated with bat activity differ among studies and may be area specific 

(Hayes, 1997). An effective monitoring program that aimed to detect population trends of long-

tailed bats would need to account for both temporal and spatial variation in bat populations 
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(O’Donnell, 2000b). Otherwise valid comparisons between successive counts and other 

populations could not be made (O’Donnell, 2000b) and researchers may have little ability to 

detect small differences, which may be biologically significant (Hayes, 1997). It is important to 

design monitoring programmes that can adequately account for this variation or be effective 

despite it. 

 

Current management of long-tailed bat populations 

The Department of Conservation bat recovery plan suggested that the development of survey and 

monitoring techniques for long-tailed bats was a priority (Molloy, 1995). A number of 

Department of Conservation conservancies have undertaken broad scale surveys with automatic 

bat detectors (O’Donnell and Sedgeley, 1994). Critically, other than very limited 

presence/absence surveys there has been no research into kauri (Agathis australis) forest 

dwelling long-tailed bat populations (S. McManus, pers. comm.). The Department has 

established long-term monitoring of bat populations at four sites (C. O’Donnell, pers. comm.). 

Three of the sites are in the South Island: Dart Valley and Eglinton Valley, Fiordland and 

Geraldine, South Canterbury. The only site in the North island is at Te Kuiti in the King 

Country, a cave dwelling population.  

 

Monitoring 

Monitoring is an integral part of conservation management (Noss, 1990). Potentially, 

information gained from a national bat monitoring programme would assist conservation 

managers to effectively target resources towards areas where bat populations are declining and 

provide baseline information to assist managers to gauge the effect of management techniques on 

bat populations. Understanding population trends of a variety of long-tailed bat populations may 

also assist researchers to identify factors limiting populations (O’Donnell, 2000a).  

 

Monitoring requires considerable planning, statistical evaluation (Zielinski and Stauffer, 1996) 

and an understanding of the ecology of the species that is being monitored (Norton, 1996). 

Monitoring can be very expensive (Norton, 1996). Sample size and the magnitude of the real 

change all affect the likelihood of a monitoring program being powerful enough to detect a trend 

(Cohen, 1988). Unless the probability of detecting a decline is known managers may rely on 
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monitoring programs that are not capable of detecting a decline before it is to late to prevent 

local extinctions (Taylor and Gerrodette, 1993). For example, in the case of the northern spotted 

owl (Strix occidentalis caurina) a monitoring programme indicated that the population was 

stable. However, on closer examination it was found that the monitoring programme had little 

power to determine whether the population was declining (Taylor and Gerrodette, 1993). 

Misguided mitigation techniques may waste valuable resources and future conservation efforts 

may be compromised (Blaustein, Wake and Sousa, 1994).  

 

Monitoring bat populations overseas has primarily involved counting active or hibernating bats 

in roosting aggregations (e.g., in hollow trees, the foliage of vegetation, house attics, caves and 

mineshafts) and counting bats as they leave large maternity roosts, or by conducting 

demographic studies (Thomas and La Val, 1988; Gannon and Willig, 1998). Long-tailed bats 

move to new roosts almost every day, not all colony members share the same roost (O’Donnell 

and Sedgeley, 1999), they do not hibernate for long periods (O’Donnell, 2000b), and they may 

be susceptible to disturbance at their roosts (O’Donnell, 2000a). Therefore, most monitoring 

methods used overseas either cannot be applied to long-tailed bats, or would be impractical, too 

expensive, or would involve unacceptable levels of disturbance at roosts.  

 

Low-cost bat detectors are now used extensively to monitor bat populations (Hayes, 1997). 

While they can be used to confirm the presence of bats and provide estimates of bat activity, 

there is no clear and consistent relationship between activity levels and the number of bats 

present (Hayes, 1997; O’Donnell and Sedgeley 1994). Knowledge of activity patterns can be 

used to guide the design of surveys and assess the relative importance of different habitats 

(Hayes, 1997). Attempts are being made to understand the relationship between levels of bat 

activity and actual population size. This is being tested by comparing index counts (primarily 

obtained through automatic bat detectors (O’Donnell and Sedgeley, 1994) and standardized road 

transects (Walsh and Harris, 1996)) with a range of known population sizes and productivity 

(O’Donnell, 1999). This has lead to the development of draft monitoring guidelines for long-

tailed bats (C. O’Donnell pers. comm.).  
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Study area 

This research was undertaken in the Waitakere Ranges, Auckland, New Zealand (36° 57'S, 174° 

32'E; Figure 1). The Waitakere Ranges were selected as a study site because: 

1.  They are 15 km west of Auckland City, New Zealand’s largest city and home to one in four 

New Zealanders (Denyer et al., 1993). A predominant feature of the Waitakere Ranges is the 

Auckland Centennial Memorial Park, comprising 14 899 ha of protected land, managed 

primarily by the Auckland Regional Council as part of the regional park network (Denyer et 

al., 1993). There are between 1.7 and 2.5 million annual visits to the Waitakere Ranges 

parkland (Waitakere City Council, 2000). Therefore the Waitakere Ranges are an area where 

many New Zealanders experience nature. The long-tailed bat population in the Ranges, is 

thus a key population for advocacy and provides opportunities for public involvement in bat 

conservation. 

2.  The Waitakere Ranges have a long and intensive history of human induced change and these 

changes are ongoing (Denyer et al., 1993). They are likely to intensify given the unparalleled 

pressure for development around the periphery of the park (Denyer et al., 1993). No where 

else in New Zealand has development occurred within such a forested area (Denyer et al., 

1993). Therefore, it may be expected that factors that have been implicated in the decline of 

long-tailed bats elsewhere are heightened in the Waitakere Ranges. Given that other long-

tailed bat populations near urban areas have become extinct and those populations that have 

persisted in highly modified environments are declining (e.g., O’Donnell, 2000a), it is likely 

that the Waitakere bat population is under threat. Thus, obtaining baseline data on this 

population is essential.   

 

The Ranges are an uplifted dissected plateau and one of the two largest remaining areas of 

continuous indigenous vegetation in the Auckland region. Altitude ranges from 474 m down to 

sea level along the western and southern boundaries, where the Ranges give way to the Tasman 

Sea and Manukau Harbour respectively. The northern boundary is delineated by Mokoroa stream 

catchment and the eastern slopes merge with the western suburbs of Auckland where the 

boundary is indistinct. The northern Waitakere Ranges are relatively undulating, the southern 

Waitakere Ranges are extremely rugged with a deeply dissected topography (Denyer et al., 

1993). Annual rainfall averages 1569 mm (Grace, 1992) and average daily minimum and 
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maximum temperatures are between 5°C in July to 24°C in February respectively (New Zealand 

Meteorological Service, 1980). 

 

 
 

Figure 1: Location of the Waitakere Ranges 

 

The vegetation is a mosaic of original podocarp-broadleaf forest and kauri forest, cut-over, burnt 

and completely cleared forest (Esler, 1983). Mature kauri forest in the Waitakere Ranges are 

different in structure and associated mid tier species compared to other mature kauri forests  

(Denyer et al., 1993). For example in Hunua, kauri is associated with hard beech Nothofagus 

truncata, in Rodney and Waipoua forests kauri emerges over a taraire Beilschmiedia tarairi 

canopy. In the Waitakere Ranges, kauri and the occasional podocarp emerge over a very low mid 

tier of cutty-grass (Gahnia spp.), kauri grass (Astelia trinervia), kiekie (Freycinetia banksii) and 

mingimingi (Cyathodes fasciculata) (Denyer et al., 1993). Vegetation distinctive of cut over 

forest includes scattered emergent northern rata (Meterosideros robusta) and smaller quantities 

of tawa (Beilschmiedia tawa), rewerewa (Knightia excelsa) and rimu (Dacrydium cupressinum). 

Pigeonwood (Hedycarya arborea), Coprosma spp., mahoe (Melicytus ramiflourus), tree ferns 

(Dicksonia spp. and Cyathea spp.) and nikau palms (Rhopalostylis sapida) dominate the sub-

canopy (Esler, 1983). Scrubland is a feature of burnt or completely cleared farmland that is 
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converting to forest. Species that are dominant in scrubland include: manuka (Leptospermum 

scoparium), kanuka (Kunzea ericoides), akepiro (Olearia furfuracea), hangehange (Geniostoma 

rupestre), karamu (Coprosma lucida) and mamangi (C. arborea) (Esler, 1983). 

 

Research objectives 

 

General aim  

• To provide information on aspects of long-tailed bat ecology in the Waitakere Ranges which 

will assist the development of a long-term monitoring program 

 

Specific objectives 

• To determine the distribution of long-tailed bats in the Waitakere Ranges 

• To investigate the factors influencing the distribution of long-tailed bats in the Waitakere 

Ranges 

• To determine temporal and spatial patterns of long-tailed bat activity in the Waitakere 

Ranges 

• To determine whether Automatic bat detectors can be used to detect population trends  

 

Thesis structure 

Chapters two, three and four of this thesis are written as stand alone papers intended for 

publication in scientific journals. Therefore, there are similarities in the introductions and 

methods sections of each. In the final chapter, I highlight the key management implications of 

this research and make recommendations on future research and management of long-tailed bat 

populations.     
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Chapter 2: The distribution and roosts of long-tailed bats in the Waitakere 

Ranges 
 

Introduction 

The New Zealand long-tailed bat (Chalinolobus tuberculatus Forster, Vespertilionidae) is one of 

two extant New Zealand bat species. It is an endemic small insectivorous bat which is largely 

forest dwelling (O’Donnell, 2001). The long-tailed bat is listed by the Department of 

Conservation as a category B species (second priority species for conservation action) (Molloy 

and Davis, 1994). Species in this category are considered to be at risk of extinction in the 

medium term if population trends continue (Molloy and Davis, 1994; O’Donnell, 2000a). 

 

Prior to the mid-1800s long-tailed bats were common and widespread throughout New Zealand. 

Buller (1892) related Maori describing bats congregating in roosts that contained ‘hundreds or 

thousands, and clinging to the sides in successive tiers, packed so closely as to occupy the 

interior surface’. By the 1900s naturalists had noticed declines in some long-tailed bat 

populations. For example, Stead (1936) recalled that ‘It is, unfortunately, no longer correct 

perhaps, to refer to the long-tailed bat as a common species, for it is quite gone from most 

districts, and is rapidly becoming scarcer in those where it still remains’. By the 1930s bats were 

absent from most urban centres including Wellington, Invercargill, Christchurch, and Dunedin 

(Hutton and Drummond, 1904; Bathgate, 1922; Dwyer 1960).  

 

During the 1990s, survey effort concentrated in the South Island indicated that long-tailed bats 

were absent from some areas where they had previously been observed. Where they persisted, 

with the exception of the Eglinton and Dart Valleys, they were uncommon or rare (O’Donnell, 

2000a). At Banks Peninsula and South Westland the declines have occurred during the last thirty 

years and while some population declines have occurred in very modified and fragmented habitat 

(e.g., Arahura and Geraldine), populations in some forested areas (e.g., Northern Nelson, South 

Westland) have feared no better (Griffiths, 1996; O’Donnell, 2000a). In Eglinton Valley, where 

bats are considered common (O’Donnell, 2000a), the average colony was small, averaging 35 

bats (O’Donnell and Sedgeley, 1999). 
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Factors attributed to the decline of long-tailed bats include forest clearance, urbanisation, 

predation, competition from introduced species, and disturbance at roost sites (O’Donnell, 

2000a). However, these suggestions are speculative and unsubstantiated (O’Donnell, 2000a). 

Dwyer (1960) suggested that there was no evidence of long-tailed bat population declines in 

areas of unmodified forest and attributed the reduction in long-tailed bat distribution to the 

clearance of indigenous forest cover and increasing urbanisation. The extirpation of long-tailed 

bats from Canterbury, Otago and Southland coincided with forest clearance (Hutton and 

Drummond, 1904; Barrie, 1995). Prior to 1930s bat sightings were generally closer to towns and 

the coast than observations made after 1930 (Dwyer 1960). This was interpreted as reflecting the 

increased development of these areas post 1930 (Dwyer 1960; Barrie, 1995). 

 

Bats have been killed by cats (Felis cattus) and moreporks (Ninox novaeseelandiae), and when 

roost trees were felled (Daniel and Williams, 1984). Although stoats (Mustela erminea) and rats 

(Rattus spp.) probably prey on long-tailed bats (e.g., Daniel and Williams, 1984; Daniel, 1990; 

Molloy, 1995; Griffiths, 1996) no instances have been reported and there is little evidence to 

support or reject this suggestion (O’Donnell, 2000). Introduced species have been reported 

making nests in long-tailed bat roosts (starlings Sturnus vulgaris and ship rats R. rattus, Sedgeley 

and O’Donnell, 1999b) and in cavities that appeared to be suitable for bat roosts (wasps Vespula 

spp, sparrows Passer domesticus and feral pigeons Columbia livia; Griffiths, 1996). However, 

the relative impact of these factors on the long-term population viability has not been assessed 

(O’Donnell, 2000a).  

 

Few remaining long-tailed bat populations survive near urban areas or in highly fragmented 

habitat (O’Donnell, 2000a). A long-tailed bat population has survived in the Waitakere Ranges, 

West Auckland. Since the 1980s bats have been regularly observed foraging at a grass clearing at 

Cascade Kauri Park during summer and Auckland Regional Council Park Rangers have guided 

walks to watch long-tailed bats foraging (G. Wittmer, pers. comm.). Given documented declines 

in other bat populations it is likely that the Waitakere bat population is in a similar predicament. 

The first step in developing a conservation management plan for long-tailed bats in the 

Waitakere Ranges is to determine their distribution. The aims of this study were to: (1) 
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determine the distribution of long-tailed bats in the Waitakere Ranges, (2) locate and describe bat 

roosts, and (3) examine the use of roosts by bats.   

 

Methods 

Study area 

This research was undertaken in the Waitakere Ranges, Auckland, New Zealand (36° 57'S, 174° 

32'E). The Ranges are an uplifted dissected plateau of volcanic origin, and one of two largest 

remaining areas of continuous indigenous vegetation in the Auckland region. Altitude ranges 

from 474 m down to sea level along the western and southern boundaries, where the Ranges give 

way to the Tasman Sea and Manukau Harbour respectively. The northern boundary is delineated 

by Mokoroa stream catchment and the eastern slopes merge with the western suburbs of 

Auckland. The northern Waitakere Ranges are relatively undulating, the southern Waitakere 

Ranges are extremely rugged with a deeply dissected topography (Denyer et al., 1993). Annual 

rainfall averages 1569 mm (Grace, 1992) and average daily minimum and maximum 

temperatures are between 5°C in July to 24°C in February (New Zealand Meteorological 

Service, 1980). 

 

The vegetation is a mosaic of remnants of non-cutover podocarp-broadleaf forest and kauri 

(Agathis australis) forest, cutover, burnt and completely cleared forest (Esler, 1983). Typically 

kauri and the occasional podocarp emerge over a low mid tier of cutty-grass (Gahnia spp.), kauri 

grass (Astelia trinervia), kiekie (Freycinetia banksii) and mingimingi (Cyathodes fasciculata), 

Corokia spp., Dracophyllum spp. and Alseuosmia macrophylla (Esler, 1983; Denyer et al., 

1993). In the Waitakere Ranges, vegetation characteristic of cut over forest includes scattered 

emergent northern rata (Meterosideros robusta) and smaller numbers of tawa (Beilschmiedia 

tawa), rewerewa (Knightia excelsa) and rimu (Dacrydium cupressinum). Pigeonwood 

(Hedycarya arborea), Coprosma spp., mahoe (Melicytus ramiflourus), tree ferns (Dicksonia 

spp., Cyathea spp.) and nikau palms (Rhopalostylis sapida) dominate the sub-canopy (Esler, 

1983). Scrubland is a feature of burnt or completely cleared farmland that is reverting to forest. 

The species that dominate scrubland include manuka (Leptospermum scoparium), kanuka 

(Kunzea ericoides),akepiro (Olearia furfuracea), hangehange (Geniostoma rupestre), karamu 

(Coprosma lucida) and mamangi (C. arborea) (Esler, 1983).  
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Public sightings 

Literature relating to the Waitakere Ranges was reviewed for references to bats. The National 

Bat Database administered by the Department of Conservation was also searched for records of 

bats from the study area. Sightings of bats were elicited from the public by placing notices in 

local newsletters, newspapers, shop windows, speaking at various local interest group meetings, 

and by interviewing current and former Waitakere Ranges Park Rangers. Where possible, 

surviving members of pioneer families were also contacted. 

 

Automatic bat detector survey 

This survey was undertaken between November 1998 and March 2001. The automatic bat 

detection system described by O’Donnell and Sedgeley (1994) was used to survey 92 sites that 

were selected on the basis of vegetation characteristics, landforms, topography and water 

features that would be attractive to bats. Bat detectors were set to 40 khz to maximise the 

likelihood of detecting long-tailed bats (O’Donnell and Sedgeley, 1994). The presence or 

absence of bats was recorded for each site. 

 

Line transects 

Standardised 1 km transects were undertaken during the summer of 1999/2000. They involved 

walking a length of road slowly (3 km h -1), while holding a bat detector. They were only 

undertaken during the first two hours after sunset when the weather was fine (no rain or strong 

wind) and the minimum temperature was greater than 100 C (see O’Donnell, 2000a for a full 

description of the method). Presence or absence of bat passes on each transect was recorded. 

 

Personal observations 

One observation of a bat was made at a site where no other method revealed the presence of bats. 

 

Locating roosts 

Roosts were located by following radio-tagged bats during the day. Eleven bats (eight females 

and three males) were radio-tracked between 10 December 1999 and 11 March 2001. Bats were 

captured using double-framed harp traps (Austbat, Melbourne, Australia) or mist nets (Dilks, 

Elliott and O’Donnell, 1995) set across bat flight paths. Bats were fitted with 0.7 g radio 
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transmitters (Type BD-2A, Holohil, Ontario, Canada) and tracked using a radio receiver (model 

Regal 1000, I. Trethowen, Waipara, New Zealand) and a hand held, three element, yagi antenna 

(Sirtrack, Havelock North, New Zealand). 

 

Describing roosts 

For each roost tree located, the species, tree height, DBH (diameter at breast height in 

centimetres; i.e., trunk diameter at 1.4 m above ground level on the uphill side of the tree), forest 

type, slope, aspect, distance from capture site, distance from forest edge, and the position in the 

catchment was recorded. Whenever possible roost trees were watched at dusk to locate the cavity 

entrance, count the number of bats departing (not necessarily the number of roost occupants), 

and determine the number of days each roost was occupied. During roost watches, the presence 

of any potential predators was noted. Five characteristics of the cavity entrances were described: 

entrance orientation, height of cavity from the ground, diameter of cavity entrance (estimated 

from the ground, therefore subjective), cavity type (knot hole or hollow branch tip) and location 

on the tree (trunk, major or minor lateral branch). A clinometer (Suunto, Helsinki, Finland) was 

used to measure tree height, the height of the cavity from the ground, and the slope of the 

ground. 

 

Locating foraging areas 

Locating bats’ day roosts was a priority of this research but when possible, bats were also 

tracked during the night to locate foraging areas. A bat was considered to be active when the 

signal strength and direction constantly changed and inactive when the signal did not alter in 

intensity or direction (Harris et al., 1990). Both the direction and strength of the signal was 

recorded. Location estimates were made using two methods: close approach and triangulation 

(White and Garrott, 1990). To ensure fixes were independent, fixes were recorded every 15 

minutes during the night. Estimated bat locations were recorded as a six digit grid reference 

determined from the Waitakere Ranges topographical map (New Zealand Map Series 260 Q11 

and Pt. R11). As there is considerable error associated with radio tracking, only those locations 

that were not revealed with other methods are shown.  
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Results 

Public sightings 

Seventeen historical and recent sightings were found (Table 1; Figure 1 and 2) 

 

Automatic bat detector surveys 

A total of 341 nights at 92 sites was sampled (Table 1; Figure 2 and 3). Bats were recorded at 32 

of the sites. At 27 (84.4%) of the 32 sites where bats were recorded, they were detected on the 

first night of recording (Figure 4). Only at one (1.1%) of these sites did it take more than three 

nights to detect them. At that site, bats were detected on the fourth night of sampling. At the 60 

sites where bats were not detected, between one and seven nights were sampled (Figure 5). The 

proportion of sites where bats were recorded varied significantly between habitats. Bats were 

recorded at fewer sites than expected in forest (excluding grassland and lake habitats as sample 

sizes were too small) (χ2 = 7.32, d.f = 2, P < 0.05; Figure 6). 

 

Line transects 

Seventy 1km line transects were completed in the Waitakere Ranges, Long-tailed bats were 

recorded on two of the transects. One was along Huia Dam Rd and the other was along 

Anawhata Rd.  
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Table 1: Summary of bat sightings reported by the public in the Waitakere Ranges 
Site Date Number of bats Comments Source 
Whatipu 1920s Several Roosting in caves Miriam Cameron 
Huia 1920s Many A number of bats hung upside down on 

the branches of a loquat tree that grew 
near the Higham’s farmhouse (Huia 
Reserve)   

Norm Laing (1985) 

Karamatura 1930s-1970s Up to 10 Numerous observations over farmland Dave Fletcher 
Huia 1950s Colony Roost in old kauri tree behind the Huia 

Store, has since been cut down 
Greg Wittmer 

Bendall Bluff, 
Waiatarua 

1950s, 1980s  Roosting in crevice in rocky bluff Tom Whyte, Harry Beacham 

Bush Rd, 
Waiatarua 

1960s 2+ Flying over orchards Tom Whyte 

View Rd, 
Waima 

1960s 12+ Roosting in a Cupressus macrocarpa 
which has since been cut down 

Bill Beveridge 

Mount 
Atkinson, 
Titirangi 

1970s 1 Roosting in the trig on the summit Greg Wittmer 

Huia  1982 Several Roosting on ceiling of a coastal cave DOC National Bat Database 
Waimauku 1985 Several Flying over farmland DOC National Bat Database 
Cascades 1983, 1986 Several Detected flying along Waitakere River John Powell, DOC National 

Bat Database 
Lower Nihotupu 
Dam 

no date Colony Roosting in a Cupressus macrocarpa 
which has since been cut down 

Ormiston Walker (1990) 

Henderson 
Valley 

1990s 1+ Foraging over orchard Morris Coglan 

Arataki 1999 2+ Roosting in train tunnel Steve Knox 
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Table 1: (continued) 

Site Date Number of bats Comments Source 
Piha Rd/ 
Anawhata Rd 

1999 several Occasionally seen when outside light is 
on 

Jim Forbes 

Karekare 1998 several Observed chasing puriri moths near 
outside light 

John Edgar 

Karekare 1999 7+ Seen on several occasions at same site, 
foraging under and above taraire canopy 

Dave Bryan 
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Figure 1: Catchment areas and place names mentioned in the text. 
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Figure 2: Distribution of long-tailed bats in the Waitakere Ranges. 
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Figure 3: Dominant land classes in the Waitakere Ranges, and the distribution of long-
tailed bats and their roost sites. 
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Table 2: Frequency of occurrence of long-tailed bats at automatic bat detector sites in 
different areas of the Waitakere Ranges 
 
Area Number 

of 
nights 

sampled 

Number 
of nights 
with bats 

% of 
nights bats 

present 

Number 
of sites 

surveyed 

Number 
of sites 

with bats 

% of 
sites with 

bats 

Cascade Kauri 113 66 58.4 20 8 40.0 

Huia 74 50 67.6 17 10 58.8 

Piha 19 0 0 7 0 0 

Karekare 15 1 6.7 5 1 20.0 

Arataki / Rangemore 
/ Bendall’s Bluff 

16 0 0 3 0 0 

Nihotupu 15 3 20.0 6 2 33.3 

Swanson 10 2 20.0 3 1 33.3 

Karamatura 9 0 0 2 0 0 

Goodfellow / Fairy 
Falls / Opanuku 

51 19 37.3 20 9 45.0 

Waitakere Dam 5 0 0 3 0 0 

Anawhata 6 1 16.7 3 1 33.3 

Whatipu 3 0 0 1 0 0 

Goldie's Bush 6 0 0 2 0 0 

Total 342 142 41.5 92 32 34.8 
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Figure 4: The number of sites that long-tailed bats in the Waitakere Ranges were detected 

on the 1st, 2nd, 3rd and 4th nights of recording. 
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Figure 5: Survey effort at sites where long-tailed bats were not detected in the Waitakere 

Ranges. 
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Figure 6: Proportion of sites where bats were and were not recorded in each habitat type. 

 

Additional sites revealed by radio tracking 

Radio tracking revealed that long-tailed bats roosting at Cascades Kauri Park foraged over 

farmland and scrubland in the Upper Bethels Valley and towards Anawhata Rd and 

Swanson. Long-tailed bats roosting in Fairy Falls / Opanuku catchments were found to 

forage along Mountain Rd, Stoney Creek and along Opanuku Stream in the Lower 

Henderson Valley region (Figure 2). 

 

Roost tree and cavity characteristics 

Twenty long-tailed bat day roosts were located. All were in live, mature trees (Table 3). No 

night roosts were found. Most roosts (85%) were in kauri, 2 (10%) were in mature rimu 

(Dacrydium cupressinum) and 1 (5%) was in a kahikatea (Dacrycarpus dacrydioides). All 

roosts were in large, live, emergent trees. Mean height of roost trees was 38.4 ± 1.3 m and 

average DBH was 186 ± 12 cm (Table 3). Mean distance of roosts from the forest edge 

was 557 ± 48 m (Table 3). The entrances of six roost cavities were identified (Table 4). 

Entrances were all located in minor lateral branches in the crown of the tree and were 

primarily near the tip of branches (67 %; Table 4). Roosts were a mean height of 24.6 ± 3.7 

m above ground level (Table 4). Entrances were generally circular, and entrances appeared 

to have a mean diameter of between 6 and 7cm (Table 4). 
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Use of roosts 

The average number of bats counted leaving roosts was 10.0 ± 1.5 (maximum = 24) but 

summer counts were significantly higher than autumn counts (Mann-Whitney U-test, P < 

0.05; Table 4). All roosts watched during summer (n = 18 roost watches) were communal, 

with an average of 13.7 ± 1.8 occupants. Ten roost watches were undertaken during 

autumn. The average number of bats was 3.3 ± 0.7. Roosts were occupied by radio-tagged 

bats for an average of 2.0 ± 0.4 days, and 11 (55 %) were occupied for only one day (Table 

4). 
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Table 3: Characteristics of long-tailed bat roost trees located in the Waitakere Ranges.  

Roost 
number 

Tree 
species 

Tree 
height 

(m) 

Trunk 
DBH 
(cm) 

Distance 
to forest 
edge (m) 

Distance 
to capture 
site (m) 

Slope 
(°) 

Catchment  
position     

Tree 
aspect 

Habitat 
type 

Cascades            
1 Kauri 41 210 700 1000 30 Ridge top E Mature kauri forest 
2 Kauri 42 127 700 1000 40 Ridge side SE Mature kauri forest 
3 Kauri 35 237 750 1000 25 Ridge top SE Mature kauri forest 
4 Kauri 50 190 650 1000 65 Stream bank   NE Mature kauri forest 
5 Kauri 33 225 250 600  9 Ridge top SW Mature kauri forest 
6 Kauri 41 210 300 500 35 Ridge side N Mature kauri forest 
7 Kauri 33 174 310 660 18 Ridge top SW Mature kauri forest 
8 Kauri 42 262 280 630 20 Ridge top SW Mature kauri forest 
9 Kauri 46 173 600 1500 19 Ridge side NW Mature kauri forest 
10 Kauri 50 220 500 750 47 Ridge side SE Mature kauri forest 
11 Kauri 40 156 750 350 35 Ridge side E Mature kauri forest 
12 Kauri 36 170 750 350 37 Ridge top E Mature kauri forest 
13 Kauri 37 188 750 350 12 Ridge top E Mature kauri forest 

Huia          
14 Kauri 38 309 1000 2500 25 Ridge top SE Podocarp forest 
16 Kauri 30 213 500 1000 4 Ridge side W Mature kauri forest 
17 Kahikatea 43 130 600 1000 45 Gully W Podocarp forest 

Opanuku-Fairy Falls         
15 Kauri 33 210 300 N/A 4 Ridge top W Podocarp forest 
18 Rimu 30 108 450 3000 60 Ridge top N Podocarp forest 
19 Rimu 33 87 300 2000 8 Ridge top W Podocarp forest  
20 Kauri 35 124 700 3000 45 Ridge side S Mature kauri forest 
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Table 4: Summary of bat roost cavity entrance characteristics and roost use by long-tailed bats in the Waitakere Ranges. 
Roost 
No. 

Season No. of bats 
emerging  

Days 
roost 

occupied  

Roost 
height (m) 

Cavity entrance type Location within 
tree 

Estimated 
entrance 
diameter  

(cm) 

Entrance 
orientatio

n 

Cascades        
1 Summer 15 1 13.5 Hole at branch tip  Small lateral 

branch 
6 E 

2 Summer 10, 5, 24 3 23 Hole at branch tip Small lateral 
branch 

6 N 

3 Summer  1      
4 Summer 7 1      
5 Summer 10, 24, 18, 

13, 19, 16, 23 
7 15 Hole at branch tip   Small lateral 

branch 
7 W 

6 Summer  4 1      
7 Summer 19 1      
8 Summer 11 1      
9 Summer ?, 23 2 32 Hole in branch 

side 
Small lateral 

branch 
5 N 

10 Summer 9 1 35 Hole in branch 
side 

Small lateral 
branch 

6 NW 

11 Autumn 8, 5, 4, 1, 1 5 29 Hole at branch tip Small lateral 
branch 

5 E 

12 Autumn 5 1      
13 Autumn 1, 1 2      

Huia         
14 Autumn  3      
16 Autumn 1, 2 2      
17 Autumn 2 1      
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Table 4: (continued) 
 
 
Roost 
No. 

Season No. of bats 
emerging  

Days 
roost 

occupied  

Roost 
height (m) 

Cavity entrance type Location within 
tree 

Estimated 
entrance 
diameter  

(cm) 

Entrance 
orientation 

Opanuku-Fairy Falls      
15 Autumn  2     
18 Autumn  2     
19 Autumn 3 1     
20 Autumn  1     
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Discussion 

Presence of bats 

In the Waitakere Ranges most records of long-tailed bats were associated with indigenous 

forest. Bats appeared to be largely absent from urban areas around the periphery of the forest. 

Given that public sightings are more likely to reflect the distribution of observers than of bats 

(O’Donnell, 2000), the scarcity of records from residential sites is significant. Where bats were 

recorded near urban areas, they were using less developed areas such as orchards, riparian 

strips and roads with little vehicular traffic. At one site bats were recorded flying along a 

stream that was <1 km from dense housing. At this site bats were foraging beneath a road 

bridge, even during periods of heavy traffic flow. The stream margins were weed infested and 

the stream appeared to be polluted with household rubbish and car parts. These findings 

support previous assertions that if bats have persisted in an area their foraging strategy may be 

flexible enough to allow them to forage in highly modified habitats (Griffiths, 1996). Thus 

populations are more likely to be limited by a lack of suitable roosting habitat than a lack of 

foraging habitat (Griffiths, 1996). Long-tailed bats may benefit from programmes that maintain 

and enhance riparian corridors, however this requires further research. 

 

If bats were not detected at a site, it does not mean that they were absent. The type of bat 

detector used in this study has a range of 50 metres (O’Donnell and Sedgeley, 1994). Long-

tailed bats often fly higher than this and occasionally they fly without echolocating (pers. obs.). 

Furthermore, bats may use certain habitats or sites at only certain times of the year (O’Donnell, 

2001a). These factors mean that surveys with bat detectors are not strictly presence - absence 

surveys, rather, they should be considered ‘presence - presence not confirmed’ surveys. 

However, in this study, if the presence of bats was confirmed at a site, they were usually 

detected on the first nights sampling at that site. This suggests that future survey efforts should 

focus on sampling a greater number of sites rather than sampling more intensively at fewer 

sites. The results of this study indicate that for distribution studies sampling more than three or 

four nights at a site is unproductive. 
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Roost location 

In the Waitakere Ranges mature kauri forest appears to be the most important roosting habitat 

for long-tailed bats and it may be particularly important for breeding bats. All communal roosts 

found during the breeding season were in large mature kauri trees. These findings are 

significant because kauri forest represents less than 5% (Denyer et al., 1993) of the total 

forested area of the Waitakere Ranges. The three non-kauri roost trees were found during 

autumn (post lactation), when bats’ roost requirements are probably less specific (Sedgeley, 

2001). Thus I predict that cavities in mature kauri provide the most suitable microclimate 

conditions for long-tailed bats, especially during the breeding season. 

 

The findings of this study support Sedgeley and O’Donnell’s (1999b) prediction that trees with 

greater numbers of cavities, larger surface area and lower canopy closure are likely to be used 

as roosts by long-tailed bats. Because so few roost trees were located, roost trees were not 

compared with random available trees (cf. Sedegeley and O’Donnell, 1999b). Therefore, it is 

not possible to accurately quantify roost site selection by long-tailed bats in the Waitakere 

Ranges. However, trees used as roosts by long-tailed bats in the Waitakere Ranges were 

amongst the largest and oldest trees recorded in the Waitakere Ranges and elsewhere in New 

Zealand (Ahmed and Ogden, 1987; Salmon, 1996). Nine of the twenty roost trees exceeded 2 m 

DBH and one exceeded 3 m DBH. In a study of twenty-five stands of mature kauri forest 

throughout northern New Zealand, Admed and Ogden (1987) found that kauri in such large 

diameter classes are rare. Most kauri greater than 2 m (DBH) are probably more than 1000 

years old (Ahmed and Ogden, 1987) and rimu trees in the diameter classes used by bats in this 

study have been calculated to be over 650 years old (Lusk and Ogden, 1992). As both tree 

diameter and height are positively correlated with tree age (e.g., Ahmed and Ogden, 1987; Lusk 

and Ogden, 1992), it is possible that bats selected trees on the basis of functional characteristics 

associated with age, diameter or height (e.g., older trees generally have more cavities than 

younger trees; Sedgeley and O’Donnell, 1999a). 

 

Sedgeley and O’Donnell (1999a) suggested that bats may select trees with large stem diameter 

because cavities within such trees are the best insulated cavities available. While bats roosted in 

large diameter trees in this study, they appeared to roost mostly in cavities in lateral branches in 
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the crown of the tree. Such cavities probably do not provide greater insulation than cavities in 

trees in smaller trunk diameter classes therefore they must select such cavities for other reasons 

(e.g., predator avoidance). Internal cavity characteristics were not measured so it is possible 

that cavities extended down into the trunk of tree. However, this is unlikely in the case of kauri 

for two reasons: 1) when decay occurs in a kauri branch, resin flows and hardens around the 

site forming a barrier to further damage (Ecroyd, 1982), and 2) kauri has the ability to self-

prune, and damage or decay has been found to trigger self-pruning of the affected branch 

(Wilson et al., 1998).  

 

Compared to other vegetation types in the Waitakere Ranges, the structure of mature kauri 

forest may be advantageous for long-tailed bat flight. O’Donnell (1999) concluded that long-

tailed bat wing morphology probably limits their use of dense forest, and that the species is 

more suited to edge foraging (O’Donnell, 1999). In the Eglinton Valley, Sedgeley and 

O’Donnell (1999a; 1999b) found long-tailed bats selected for roosts, trees with open structured 

canopies, and cavities with uncluttered entrances. Mature kauri forest is usually open-structured 

and uncluttered between the crown and top of the subcanopy, and there are often large gaps 

between emergent trees (Ahmed and Ogden, 1987; Ogden, Wardle and Ahmed, 1987).  

 

Gray and Craig (1991) highlighted the problems that can arise when habitat requirements are 

inferred from observed current patterns of habitat use. Long-tailed bats may preferentially 

select kauri because they offer optimal roosting opportunities or alternatively, human induced 

ecological changes may have rendered other historically important roost sites unsuitable or 

removed them altogether. The Waitakere kauri forest remnants have been subjected to a lower 

level of disturbance than most of the surrounding landscape (Denyer et al., 1993) and this could 

mean that the occurrence of long-tailed bats in kauri is a result of logging of other important 

roost tree species. However, this is unlikely because while rimu, matai (Prumnopitys taxifolia), 

tawa, totara (Podocarpus hallii and P. totara), kahikatea, puriri (Vitex lucens), manukua and 

northern rata were logged in the Waitakere Ranges, kauri was by far the most extensively 

logged species (Cheeseman, 1872; Esler, 1983; Denyer et al., 1993).  
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Roosting in the crowns of kauri trees may be an artefact of introduced mammalian predators 

having located other more accessible roosts. Cavities in the crowns of kauri may be 

inaccessible to non-volant predators because the abscission of lower branches results in a 

straight, branchless, lower trunk (Ecroyd, 1982). Furthermore, kauri trunks shed bark in large 

scales often preventing the establishment of epiphytes and climbers (Ecroyd, 1982) which may 

further hinder the ability of predators to access roosts in the crown of kauri trees. Historical 

accounts of long-tailed bats formerly roosting in caves and under rocky outcrops in the 

Waitakere Ranges do indicate that long-tailed bats have in the past utilised a wider range of 

roosting habitats.  

 

The results of this study indicate that in the Waitakere Ranges, long-tailed bat roosts are 

clustered in remnant patches of mature kauri forest. Suitable roosting habitat may therefore be 

more fragmented than might be inferred from overall forest cover both in the Waitakere Ranges 

and elsewhere in New Zealand. For example only 5% of New Zealand’s pre-European kauri 

forest remains, only 12% (7455 ha) of which can be regarded as mature, and those remnants are 

highly fragmented (Ahmed and Ogden, 1987). The availability of suitable roosts may limit 

dispersal and connectivity of bat populations. The only long-tailed bat population that has been 

the subject of intensive long-term research was found to consist of at least three social groups 

that rarely roosted together even though their foraging ranges overlapped (O’Donnell, 2000b). 

If this type of population sub-structuring occurs in other long-tailed bat populations then forest 

fragmentation may have a greater impact on population viability than would be the case for 

populations than do not exhibit sub-structuring (O’Donnell, 2000b). Further research on the 

population structure of long-tailed bat populations in fragmented habitats is required. Kauri 

forest would be suitable for such a case study because where it occurs it is probably the most 

suitable roosting habitat and it may be possible to compare bat populations in fragments with 

different characteristics (e.g., size and isolation). 

 

Roost use 

The average number of bats in communal roosts in the Waitakere Ranges was the lowest 

reported in any forested environment in New Zealand (O’Donnell, 2001a). The rate of roost 

reuse appears to be higher in the Waitakere Ranges than in Fiordland, where communal roosts 
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were occupied for an average of 1.4 days (O’Donnell and Sedgeley, 1999), and Geraldine 

where each roost was used for an average of 1.7 days (Griffiths, 1996). These apparent 

differences could be a result of the small sample size obtained in this study. However, if the 

differences are real, they may indicate that there is a relatively small pool of suitable roosts or 

alternatively, that the roosts used by bats are of such high quality that do not need to switch 

roosts as often as in other areas. As in Geraldine where roosts are probably limited (Griffiths, 

1996), but in contrast to the Eglinton Valley where roosts are abundant (Sedgeley and 

O’Donnell, 1996), roosting occupants did not abandon roosts simultaneously in the Waitakere 

Ranges. Furthermore, at least one communal roost was used during consecutive breeding 

seasons. Further research is required to determine if bats in the Waitakere Ranges are cycling 

around a relatively small number of roosts and if so, why. 

 

If there are limited roosting sites predators may target bats at their roosts more effectively, 

thereby heightening predation pressure on the population. In particular, if predators are able to 

home in on maternity roosts, they could have a significant impact on population viability. 

Pregnant females, mothers carrying their young, and newly volant young bats are probably easy 

targets for a predator such as the morepork (Ninox novaeseelandiae), which is known to prey 

on bats (Dwyer, 1962; Daniel, 1990; O’Donnell, 2001a). Moreporks attempted to prey on 

emerging bats during six percent of roosts watches in Eglinton Valley (O’Donnell and 

Sedgeley, 1999). In the Waitakere Ranges, moreporks were observed attempting to catch 

emerging bats during twenty percent of roost watches. The impact that predation by moreporks 

has on long-tailed bat populations requires further investigation. 
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Chapter 3: Nocturnal activity patterns of the long-tailed bat in the Waitakere 
Ranges 
 

Introduction 

The New Zealand long-tailed bat (Chalinolobus tuberculatus Forster, Vespertilionidae) is a 

small insect-eating bat that is largely forest dwelling (Daniel and Williams, 1984; O’Donnell, 

2001b). During the 1800s long-tailed bats were common and widespread throughout New 

Zealand. Evidence suggests that since the 1900s there has been a steady decline in long-tailed 

bat populations and these declines have continued during the last decade (O’Donnell, 2000a). 

The long-tailed bat is considered to be threatened with extinction in the medium term if 

declines cannot be reversed (Molloy, 1995; O’Donnell, 2000a). The development and 

implementation of rigorous monitoring at an extensive network of sites throughout New 

Zealand is urgently required (Molloy, 1995; O’Donnell, 2000a). Such a monitoring network 

would enable managers to identify which populations are stable, declining or increasing. 

Restoration efforts could then be directed towards those bat populations that are declining. 

 

An effective monitoring programme that aimed to detect population trends of long-tailed bats 

would need to account for both temporal and spatial variation in bat populations otherwise 

valid comparisons between successive counts, and with other populations, could not be made 

(O’Donnell, 2000b), and researchers may have limited ability to detect small differences, which 

may be biologically significant (Hayes, 1997). Habitat, season, time of night, dusk temperature, 

minimum overnight temperature, maximum daily temperature, invertebrate activity, cloud 

cover, moon phase, and moonlight have all been reported to influence patterns of long-tailed 

bat activity (Gillingham, 1996; Griffiths, 1996; O’Donnell, 2000b). However, factors that are 

correlated with bat activity differ among studies and may be area-specific (Hayes, 1997).  

 

As the ability of monitoring programmes to detect population change is greatest when sample 

sizes are large and there is little variation between counts (Cohen, 1988), activity patterns in 

relation to season, temperature, weather conditions and habitat types should be assessed when 

designing a monitoring programme in a new area (O’Donnell, 2000b). Nocturnal activity 

patterns have been investigated in Eglinton Valley, Fiordland, Geraldine, South Canterbury and 
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Hawkes Bay (O’Donnell, 2000b; Griffiths, 1996; Gillingham, 1996). However, the activity 

patterns of long-tailed bats may differ in the Northern regions of New Zealand. For example, 

the temperature thresholds that long-tailed bats are active may be different (C. O’Donnell pers. 

comm.). In this study I examine the nocturnal activity patterns of a kauri (Agathis australis) 

forest dwelling long-tailed bat population. I aim to identify the influence that season, habitat 

and environmental variables have on the nocturnal activity of long-tailed bats in the Waitakere 

Ranges. I examine the implications of nocturnal activity patterns of long-tailed bats for 

designing a monitoring programme.  

 

Study site and Methods 

Study site 

This study was conducted in the Waitakere Ranges, in northern New Zealand (36° 57'S, 174° 

32'E). The Ranges are an uplifted dissected plateau of volcanic origin (Searle, 1981). The 

average altitude is 330 m, ranging from 474 m above mean sea level down to sea level. The 

area harbors one of the two largest remnants of indigenous forest in the Auckland region. A 

predominant feature of the Waitakere Ranges is the Auckland Centennial Memorial Park, 

comprising 14 899 ha of largely forested protected land, surrounded by rural and semi-urban 

development. The northern Waitakere Ranges are relatively undulating whereas the southern 

Waitakere Ranges are extremely rugged with a deeply dissected topography (Denyer et al., 

1993). Average annual rainfall varies from 1397 mm in the foothills to 2032 mm in the higher 

central region (Grace, 1992). Average daily temperatures range from a minimum of 5°C in July 

to a maximum of 24°C in February (New Zealand Meteorological Service, 1980). 

 

The vegetation in the Waitakere Ranges is a mosaic of original podocarp-broadleaf forest and 

kauri (Agathis australis) forest, cutover forest, burnt and completely cleared forest (Esler, 

1983). In pre-European times kauri dominated the forest but between 1840s and 1940s it was 

targeted for logging and its distribution is now patchy. In the Waitakere Ranges, clusters of 

kauri, or individual kauri trees, and the occasional podocarp tree emerge over a low mid tier of 

shrubs, vines and small trees. The understorey is dominated by ferns, shrubs and tall grasses 

(Esler, 1983; Denyer et al., 1993). Vegetation characteristic of cut over forest in the region 

includes scattered emergent northern rata (Meterosideros robusta) and smaller quantities of 
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hardwood tree species. Scrubland is a feature of burnt or completely cleared land that is 

reverting to forest. It is dominated by manuka (Leptospermum scoparium) and kanuka (Kunzea 

ericoides) (Esler, 1983).  

 

Recording bat activity 

Bat activity was sampled in four habitats (forest, road, stream, lake) between November 1998 

and March 2001. Bat activity was recorded using automatic bat detection units described by 

O’Donnell and Sedgeley (1994). For this study, a bat pass was defined as a set of two or more 

echolocation calls (heard as clicks) as a bat flew within the range of the detector’s microphone 

(Furlonger, Dewar and Fenton, 1987). Bat activity was assessed as total number of bat passes 

per night and as the number of bat passes during each hour after sunset. Feeding attempts were 

easily recognised because the pulse rate of a feeding bat’s echolocation calls was much faster 

and sounded like a buzz when heard through a bat detector. An index of feeding activity was 

recorded as the number of bat passes that contained feeding buzzes.  

 

Automatic bat detectors were set opportunistically rather than systematically or randomly (see 

appendices one and two for a summary of sampling effort at each site per season). At the start 

of this study, only one site was known in the Waitakere Ranges where bats were regularly 

present (G. Wittmer pers. comm.). While another 91 sites were sampled with automatic bat 

detectors during this study, and bats were recorded at 31 of them, only two further sites were 

used by bats on a regular enough basis to be considered suitable for ongoing monitoring. A 

third site was found only near the end of the study, therefore, most data were obtained from 

only two sites, one a road habitat and the other a stream. However, bat activity data from all 

sites where bats were recorded were included in all analyses. 

 

Bat activity patterns were compared, among habitats and seasons (spring = September-

November; summer = December-February; autumn = March-May; winter = June-August). 

Forest habitats were not sampled during autumn and winter and sampling effort was not equal 

between seasons and habitats. Huia and Cascades were chosen to compare the influence of bat 

reproductive stages on bat activity because a concurrent demographic study indicated that the 

Huia bat population consisted mostly, if not entirely, of males whereas at Cascades, more 
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females than males were captured (S. Chapman unpubl. data). Pregnancy and lactation periods 

were assumed to approximate those recorded in Hawkes Bay (the nearest long-tailed bat 

population from which data on both pregnancy and lactation are available; O’Donnell, 2001b). 

In the Hawkes Bay, pregnancy has been documented as occurring from September until mid-

November, and lactation from mid-November until the end of December (Gillingham, 1996). 

Measuring environmental variables 
Moon phase and times of sunset and sunrise were obtained from sun, moon and tide charts for 

the Auckland region (The New Zealand Herald, 1999, 2000 and 2001). Maximium and 

minimum temperatures and humidity data recorded at Henderson, West Auckland, were 

supplied by the National Institute of Weather and Atmosphere (NIWA). Dusk temperatures 

were obtained from a privately owned weather station in Massey, West Auckland. A range of  

estimates of climatic conditions at dusk were also made. Wind strength was estimated as one of 

four categories: calm, light, moderate or strong. Precipitation was recorded as one of three 

categories: fine, drizzle/showers or rain. Dusk temperature was estimated as cool, mild or warm 

and cloud cover was estimated on a scale from 0-8 where 0 was clear skies and 8 was overcast. 

 

Data analysis 

Most data sets could not be analysed using parametric tests because even when transformed the 

data did not conform to the assumption of normality, therefore, non-parametric statistical tests 

were used (Conover, 1980). Where three or more categories were compared, a Kruskal-Wallis 

one-way analysis of variance by ranks (H-test) (Zar, 1999) was used to assess differences in 

numbers of bat passes per night and per hour both among habitats and seasons. If a significant 

difference was detected in a comparison of three or more categories, Kruskal-Wallis pairwise 

comparisons of mean ranks, using Z-tests, were used to determine which categories differed 

(Conover and Iman, 1981). In comparisons of two categories, Mann-Whitney U-tests were used 

to test for differences in the number of bat passes per night, between habitats and seasons. The 

Mann-Whitney U-test was used to test differences in levels of bat activity between Huia and 

Cascades. Spearman’s rank correlation coefficient (rs) was used to test for correlation between 

environmental variables. All statistical analyses were conducted using Statistix for Windows 

(version 1.0, Analytical Software, Tallahassee, FL, U.S.A). While all statistical tests are carried 

out on ranks, for clarity data are presented graphically as means ± 1 standard error. 
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Limitations of the study 

Despite intentions of having a randomized block design (or, in the case of comparing pass rates 

between Huia and Cascades, a paired design) to reduce experimental error, this was not 

achieved. This was due to several factors including the high rate of equipment failure and that 

other aspects of the research programme (e.g., a distribution survey, locating and describing bat 

roosts) were given higher priority. There were also logistical difficulties with operating 

automatic bat detectors simultaneously at two or more sites that were considerable distances 

apart. The sampling design used in this study falls short of many of the requirements for 

rigorously testing hypotheses. For example, in this study samples and sample units may not 

have been truly independent or representative (Underwood, 1994). The problems encountered 

during this study have also been highlighted by other authors (e.g., Hayes, 1997). An 

unbalanced sampling design is a feature likely to be common to other long-tailed bat studies, 

except where studies are in areas where long-tailed bats are common and research is long-term 

(e.g., Eglinton Valley; O’Donnell, 2000b). Given the above constraints the results from this 

study must be interpreted cautiously and all conclusions are considered tentative. 

 

Results 

Patterns of bat activity 

Activity levels did not differ significantly between years (Kruskal-Wallis H-tests, P > 0.05). 

Therefore, data for all years were pooled and year was ignored as a factor in all subsequent 

analysis. Stream and road habitats were sampled in all seasons, forest was only sampled during 

spring and summer. A total of 5050 bat passes, 663 (12.5 %) of which contained feeding 

buzzes, were detected during 182 nights of recording in the three habitats included in the 

analyses. Overall pass rates averaged 27.7 ± 4.7 s.e. passes per night.  

 

Pass rates per night varied among seasons (all habitats combined; H 3, 178 = 12.3, P < 0.01) and 

among habitats (all seasons combined; H 2, 179 = 7.2, P < 0.05). In spring, the number of bat 

passes per night varied among habitats (H 2, 55 = 11.0, P < 0.01) where they were higher along 

roads than along streams and in forest, but those for stream and forest did not differ 

significantly (pairwise comparison of mean ranks, P < 0.01; Fig. 1), although the sample size 

for forest (n = 3) was very small. During summer there were no significant differences in the 
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average pass rates among habitats (H 2, 68 = 0.1, P > 0.1; Fig. 2). There were no differences in 

the average number of feeding buzzes among habitats during spring (H 2, 55 = 6.2, P > 0.05; Fig. 

1) or summer (H 2, 68 = 1.3, P> 0.1; Fig. 2). During autumn and winter, average pass rates and 

feeding buzzes were significantly higher along roads than streams (Fig. 3 and Fig. 4).  

 

The percentage of total bat passes that contained feeding buzzes was greatest along roads and 

lowest in forest (all seasons pooled; Fig. 5). The overall pattern of bat activity during the night 

appeared to be bimodal, with a peak during the first two hours after sunset and during the ninth 

hour after sunset. However, the pattern varied according to habitat. Bat activity peaked along 

roads during the first two hours after sunset. Activity within the forest and along streams was 

greatest during the ninth hour after sunset (Fig. 6). 
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Figure 1: Number of (a) bat passes and (b) number of passes containing feeding buzzes per 

night during spring in three habitats: stream (n = 31 nights), road (n = 24) and forest (n = 3). 

Means presented ± 1 standard error; different letters denote groups that are significantly 

different from each other at P < 0.05 (Kruskal-Wallis pairwise comparisons of average ranks). 
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Figure 2: Number of (a) bat passes and (b) number of passes containing feeding buzzes per 

night during summer in three habitats: stream (n = 45 nights), road (n = 10) and forest (n = 16). 

Means presented ± 1 standard error; different letters denote groups that are significantly 

different from each other at P < 0.05 (Kruskal-Wallis pairwise comparisons of average ranks). 
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Figure 3: Number of (a) bat passes and (b) number of passes containing feeding buzzes per 

night during autumn in two habitats: stream (n = 21 nights) and road (n = 10). Means presented 

± 1 standard error; different letters denote significant differences among means at P < 0.05 

(Mann-Whitney U-tests).  
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Figure 4: Number of (a) bat passes and (b) number of passes containing feeding buzzes per 

night during winter in two habitats: stream (n = 10 nights) and road (n = 12). Means presented 

± 1 standard error; different letters denote significant differences between means at P < 0.05 

(Mann-Whitney U-tests).  
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Figure 5: Percentage of bat passes containing feeding buzzes in three different habitats (all 

seasons combined). 
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Figure 6: (continued over page) Mean number of bat passes (all seasons combined) through the 

night in three habitat types: (a) stream (n = 107 nights ), (b) road (n = 56), and (c) forest (n = 

19). Means presented ± 1 standard error. Different letters denote significant differences 

between means at P < 0.05 (Kruskal-Wallis pairwise comparisons of average ranks). 
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c. FOREST 
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Figure 6: (continued) 

Influence of environmental variables on bat activity 
Bat activity was significantly positively correlated with dusk temperature, maximum 

temperature and minimum temperature (Table 1). Average pass rates varied significantly 

among the categories of minimum overnight temperature (H 3, 178 = 15.9, P < 0.01) and 

increased exponentially with increasing temperature (Fig. 7). However, average pass rates were 

not significantly curtailed in the lower categories of minimum overnight temperature (0-5°C 

and 5-10°C; Fig. 7) where pass rates were approximately 19 and 20 per night on average. 
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Table 1: Association of bat activity with environmental variables as indicated by Spearman’s 

Rank correlation coefficent (r s) for sample size n (* significant association at P < 0.05; ** 

significant association at P < 0.01). 

Variable rs n 

Altitude  0.053 185 

Estimated cloud cover 0.024 101 

Dusk temperature 0.189* 156 

Humidity 0.001 185 

Maximum temperature 0.163* 185 

Minimum temperature 0.257** 185 

Moon phase 0.003 173 

Estimated temperature 0.012   74 

Estimated wind 0.123   99 

Estimated precipitation 0.003 122 
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Figure 7: Bat activity levels during different minimum overnight temperature categories (all 

seasons and habitats pooled; 0-5°C: n = 19 nights; 5-10°C: n = 50; 10-15°C: n = 92; 15-20°C: n 

= 21.). Different letters denote significant differences between means at P < 0.05 (pairwise 

comparison of mean ranks). Mean passes are presented ± standard error. 
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The influence of reproduction on patterns of bat activity 

At Cascades there appeared to be a change in the pattern of bat activity that coincided with 

assumed pregnancy and lactation periods. During pregnancy bat activity did not vary 

throughout the night (H 10, 231 = 9.9, P > 0.05; Fig. 8). However, during lactation an overall 

Kruskal-Wallis test did indicate that bat activity did vary throughout the night with two 

apparent main peaks in activity (H 10, 242 = 50.1, P < 0.001; Fig. 8). However, a pairwise 

comparison of mean ranks did not reveal any significant pairwise differences between activity 

in any single hour. Bat activity at Huia varied throughout the night during the assumed 

pregnancy period (H 10, 118 = 20.0, P < 0.05; Fig. 9), but not during lactation  (H 8, 45 = 3.3, P > 

0.05; Fig. 9). However, again there were no significant pairwise differences between activity in 

any hour for either lactation or pregnancy at Huia. At Cascades, the mean number of bat passes 

per night was significantly greater during lactation than during pregnancy (Mann-Whitney U-

test P > 0.001; Fig. 10). However, there were no differences in the mean number of bat passes 

during pregnancy and lactation at Huia (Mann-Whitney U-test P > 0.1; Fig. 10). 
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Figure 8: Patterns of bat activity throughout the night at Cascades during lactation (n=22 

nights) and pregnancy (n=23). 
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Figure 9: Patterns of bat activity throughout the night at Huia during lactation (n=13 nights) 

and pregnancy (n=6) (all habitats combined).  
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Figure10: Comparison of bat activity between pregnancy and lactation at Huia and Cascades 

(all habitats combined; n = number of nights sampled). 
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Discussion 

Bat activity was most variable in forests, particularly during the ninth and tenth hours after 

sunset. While this may be due to simple random variation alternatively, bats may have 

occasionally roosted in the vicinity of some sampling sites resulting in high levels of bat 

activity being recorded on some nights, and little or no activity being recorded on other nights. 

The influence of nearby roosts on the forest sites is further supported by the lower proportion of 

passes containing feeding passes in forests and that bat activity within forest was concentrated 

within the 1-2 hours prior to sunrise, indicating that bats may have primarily used forest 

habitats while they were commuting back to their diurnal roosts. However, bats were frequently 

observed foraging above the canopy and radio-tracking also indicates that long-tailed bats 

forage extensively within the forest (S. Chapman pers. comm.). Bats flying above the forest 

canopy were often not detected because they were outside the range (≤ 50 m) of the bat 

detectors (O’Donnell and Sedgeley, 1994). Therefore, bat activity in forest habitats was 

probably underestimated in this study. 

 

The results of this study indicate that temperature is the environmental variable that most 

influences long-tailed bat activity. This is consistent with other studies on the nocturnal activity 

patterns of the long-tailed bat (Gillingham, 1996; Griffiths, 1996; O’Donnell, 2000b). While 

long-tailed bat activity patterns are difficult to predict and are influenced by a range of 

interacting variables (Gillingham, 1996), a complete understanding of all the factors that 

influence bat activity may not be necessary or achievable when designing a monitoring 

programme to detect trends in bat populations. Rather, monitoring programmes primarily need 

to control for temporal variation by ensuring that repeat surveys are undertaken at the same site, 

during similar weather conditions and at the same time of year (O’Donnell, 2000b). The design 

of such programmes should aim to maximise indices of bat activity while keeping variability 

between consecutive counts low. Bat activity was positively correlated with dusk, maximum 

diurnal temperature and minimum overnight temperature. However, minimum overnight 

temperature showed the strongest correlation with bat activity and it can be easily incorporated 

into monitoring programmes (e.g., by placing a maximum-minimum thermometer with each 

automatic bat detector). While average pass rates were greater in higher categories of minimum 

overnight temperature, activity was less variable on nights where minimum overnight 
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temperature was between 10 and 15°C. Monitoring programmes could account for temperature 

by comparing activity in each temperature category separately in addition to controlling for 

habitat and season.  

 

Compared with other areas in New Zealand where long-tailed bats have been studied, the 

Waitakere Ranges may represent a climatically benign environment. The average dusk 

temperature over all the nights sampled was 16.3°C (range = 9.8-22.7°C) and minimum 

overnight temperature was rarely below 5°C (cf. the Eglinton Valley; O’Donnell, 2000b). Bat 

activity through the night generally appeared to consist of two or three peaks in bat activity. 

This is not consistent with results from other New Zealand studies. For example, in the 

Eglinton Valley, bat activity was generally unimodal, with a peak at dusk (O’Donnell, 1999). In 

Geraldine, bat activity was bimodal during summer and unimodal during winter (Griffiths, 

1996). In contrast to the Eglinton Valley, there were significant peaks in pass rates during the 

first two hours after sunset along roads, and activity peaked two hours prior to sunrise along 

streams. In the Eglinton Valley, bat activity along roads was constant through the night 

(O’Donnell, 2000b). O’Donnell (2000b) suggested that this may be because sheltered roads are 

less exposed to the heat sink of the sky than open habitats and roads may provide more 

favourable foraging conditions, than other habitats, later during the night.  

 

Peaks in bat activity generally mirror peaks in invertebrate activity that occur at dusk and just 

prior to dawn (Rydall, Entwistle and Racey, 1996). Bimodal patterns of activity are more 

obvious when prey density is high (Erkert, 1982). The number of bat passes that included 

feeding buzzes was three times greater than in the cool temperate Eglinton Valley, where 

(O’Donnell, 2000b) suggested that prey was limited because invertebrate activity is largely 

governed by temperature (Williams, 1940; Taylor, 1963; O’Donnell, 2000b). Compared with 

Eglinton Valley and South Canterbury the mild climate in the Waitakere Ranges may mean that 

the reduction in prey abundance during winter is less pronounced and movement of bats are not 

greatly governed by the invertebrate availability in different habitats.  

 

If long-tailed bat activity in the Waitakere Ranges is not restricted by temperature or associated 

invertebrate availability, then there are a number of predictions that follow, all of which would 
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require testing. These predictions are that long-tailed bats in the warmer northern regions of 

New Zealand have: 

1)  Smaller home ranges (cf. O’Donnell, 2001a). 

2)  Longer breeding season (C. O’Donnell pers. comm.).  

3)  Higher productivity (C. O’Donnell pers. comm.). 

4)  Less dependence on stable roost microclimate (cf. Sedgeley, 2001). 

5)  Less need to forage throughout the night (cf. O’Donnell, 2000b).  

6)  Shorter duration of torpor (cf. Webb, 1998).  

 

The shift from a unimodal pattern of activity during pregnancy to a bimodal pattern during 

lactation has been observed in overseas studies (e.g., Maier, 1992; Wilkinson and Barclay, 

1997). It occurs because energy demands are greater during lactation (Racey and Speakman, 

1997) and female bats need to feed throughout the night. However, in the Eglinton Valley 

O’Donnell (1999) found no difference in the level or pattern of foraging activity by 

reproductive female bats. He postulated that this may have been a result of limited food 

availability forcing all classes of bats to be active throughout the night. In contrast to Cascades, 

at Huia the level and pattern of activity did not appear to differ between assumed reproductive 

stages. In a concurrent trapping study at Huia and Cascades, all bats captured at Huia were 

male (n = 16 captures of 10 individual bats; S. Chapman pers. comm.) whereas most bats 

captured at Cascades were female. Therefore, if reproduction influences the level and/or pattern 

of bat activity, and if only males are present at Huia, changes due to reproduction would only 

occur at Cascades. However, the sample size at Huia during summer was small and the 

observed changes in pass rates at Cascades may be due to other factors. For example, during 

pregnancy pass rates at Cascades may have been lower than during lactation because bats were 

utilising habitats that were under sampled during this study. But, if there are differences in 

patterns of activity between areas due to differences in population structure, it would be 

worthwhile investigating the potential to use bat detectors as a means of identifying if there are 

reproductive females in a population without the cost of a trapping study. 
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Appendix 1: Number of nights sampled at each site per season. 
 
 
Site 
number 

Habitat 
type 

Number of nights sampled  

  Summer Autumn Winter Spring Total 
1 Stream  1  4 5 
2 Stream  1   1 
3 Stream 30 5 5 25 65 
4 Stream  5 5 1 11 
5 Lake    1 1 
6 Stream 1    1 
7 Stream 4    4 
8 Stream 6   1 7 
9 Road 2    2 
10 Road 5 7 12 20 44 
11 Road 1    1 
12 Road  1   1 
13 Road  1   1 
14 Stream  1   1 
15 Stream  2   2 
16 Road 1    1 
17 Road 1    1 
18 Stream 1    1 
19 Forest 7   3 10 
20 Lake 2    2 
21 Stream 3    3 
22 Road    3 3 
23 Road    1 1 
24 Forest 4    4 
25 Forest 2    2 
26 Forest 3    3 
27 Road  1   1 
28 Stream  1   1 
29 Stream  1   1 
30 Stream  2   2 
31 Stream  1   1 
32 Stream  1   1 

Total  73 31 22 59 185 
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Appendix 2: Number of sampling nights per habitat type per season (number of sites sampled 
in parenthesis; *total of numbers of sites in the last column are lower than the sum of the 
number of sites for each row because some sites were sampled in more than one season). 
 
Habitat Number of nights sampled per season 
 Summer Autumn Winter Spring Total* 
Stream 45 (6) 21 (11) 10 (2) 31 (4) 107 (16) 
Road 10 (5)    10 (4) 12 (1) 24 (3) 56 (10) 
Forest 16 (4) - - 3 (1)      19 (4) 
Lake 2 (1) - - 1 (1)        3 (2) 
Total 73 (16) 31 (15) 22 (3) 59 (9) 185 (32) 
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Chapter 4: Can bat detectors be used to detect changes in long-tailed bat 
populations? 
 

Introduction 

The New Zealand long-tailed bat (Chalinolobus tuberculatus Forster, Vespertilionidae) is one 

of only two surviving bat species endemic to New Zealand. It is a moderately small insect 

eating bat that primarily inhabits forest, roosting singly or in colonies (O’Donnell, 2001a). 

According to the International Union for the Conservation of Nature’s (IUCN) criteria the long-

tailed bat is a vulnerable species. This means it is at risk of extinction in the medium term 

(O’Donnell, 2000a). 

 

There have been significant declines in the distribution and abundance of long-tailed bats 

during the last 150 years (O’Donnell, 2000a). During the 1990s, survey effort concentrated in 

the South Island found that long-tailed bats were absent from some areas where they had 

previously been observed. Where they persisted, with the exception of the Eglinton and Dart 

Valleys, they were uncommon or rare (O’Donnell, 2000a). At Banks Peninsula and South 

Westland the declines have occurred during the last thirty years and while some population 

declines have occurred in very modified and fragmented habitat (e.g., Arahura and Geraldine) 

others have been in forested areas (e.g., Northern Nelson, South Westland) (O’Donnell, 2000a). 

However, whether all populations have declined or whether declines are historical or ongoing is 

also unclear (O’Donnell, 2000a). 

 

The development and implementation of a national network of long-tailed bat monitoring sites 

is a priority of the Department of Conservation’s Bat Recovery Plan (O’Donnell, 2000a). 

Potentially, information gained from a national monitoring programme would assist 

conservation managers to effectively target resources towards those areas where bat 

populations are declining and provide baseline information to assist managers to gauge the 

impact of management techniques on bat populations (O’Donnell, 2000a). Of critical 

importance is that unless it can be demonstrated that long-tailed bat populations have declined 

and that, that decline is real, management will not be initiated (O’Donnell and Sedgeley, 1994; 

Molloy, 1995). Therefore, when designing a monitoring programme, it is essential to determine 
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the probability that we will be able to detect a biologically significant population change if one 

occurs (Zielinski and Stauffer, 1996).   

 

The probability of detecting a change or trend if one has occurred is called statistical power. It 

is calculated as 1-β where β is the probability of failing to reject a false null hypothesis. There 

are two main ways that statistical power is used in conservation biology: 1) data from a pilot 

study are used to evaluate potential study designs in terms of their ability to detect changes or 

trends if they occur, and 2) testing whether non-significant results can be interpreted with 

confidence or whether the test had inadequate power to detect changes or trends (Taylor and 

Gerrodette, 1993; Norton, 1996). Generally, a study is considered to have adequate power if 

power exceeds 0.80 (Cohen, 1988; Zielinski and Stauffer, 1996; Thomas, 1997). 

 

Sample size, data variability and the magnitude of the real change or trend all affect the 

likelihood of a monitoring program being powerful enough to detect a trend (Cohen, 1988). 

Unless the probability of detecting a biologically significant decline is known, managers may 

rely on monitoring programs that are incapable of detecting a decline before it is to late to 

prevent local extinctions (Taylor and Gerrodette, 1993). Misguided mitigation techniques may 

waste valuable resources and future conservation efforts may be compromised (Blaustein, 

Wake and Sousa, 1994). 

 

At present the only means available to accurately determine long-tailed bat population sizes 

and trends are long-term mark-recapture studies. Typically, such studies are expensive as they 

are labour-intensive and time-consuming. As such, few populations are monitored in this way. 

The availability of low-cost bat detectors has resulted in an international surge in their use for 

monitoring the activity of bat populations (Hayes, 1997). In New Zealand several studies have 

investigated long-tailed bat activity patterns over time (e.g., Griffiths, 1996; Gillingham, 1996; 

Winnington; 1999; O’Donnell, 2000b) while other studies have focused on the presence or 

absence of long-tailed bats over a range of sites (Borkin, 1999; O’Donnell, 2000a; A. Arkins, S. 

Mcmanus, G. Moore pers. comm.). 
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Several authors have suggested that bat detectors may have application in the monitoring of bat 

populations (e.g., Hayes, 1997; Gannon and Willig, 1998; O’Donnell, 2000a and 2000b). While 

they can be used to confirm the presence of bats and provide estimates of bat activity, the 

relationship between activity levels and the number of bats present is unclear (Hayes, 1997; 

O’Donnell and Sedgeley 1994). This relationship is currently being explored for long-tailed 

bats (C. O’Donnell pers. comm.). If bat detectors can provide an index of bat abundance, then it 

is important to explore the power to detect changes in that index when designing a monitoring 

programme. 

 

Bat detectors could potentially be used to detect changes in bat populations in at least two 

ways: 1) monitoring bat activity levels over time to determine trends; and 2) undertaking a 

baseline survey of a number of sites to determine the presence or absence of bats, and 

comparing data from an initial survey with a future survey of the same sites to determine 

whether there has been a change in the proportions of sites with and without bats. In this paper 

I use data gathered with automatic bat detectors (Sedgeley and O’Donnell, 1994) to examine 

the power to detect changes in the level of long-tailed bat activity and the proportion of sites 

with bats present. I explore the relationship between a range of feasible sample sizes, effect 

sizes, potential levels of variance and desired levels of α and statistical power. I discuss the 

implications for developing a long-tailed bat monitoring programme.  

 

Methods 

Study site  

This study was conducted in the Waitakere Ranges, Auckland, New Zealand (36° 57'S, 174° 

32'E). The Ranges are an uplifted dissected plateau and one of the two largest remaining areas 

of continuous indigenous vegetation in the Auckland region. Altitude ranges from 474 m down 

to sea level. The northern Waitakere Ranges are relatively undulating and the southern 

Waitakere Ranges are extremely rugged with a deeply dissected topography (Denyer et al., 

1993). Annual rainfall averages 1569 mm (Grace, 1992) and average daily minimum and 

maximum temperatures are between 5°C in July to 24°C in February (New Zealand 

Meteorological Service, 1980). Vegetation is a mosaic of original podocarp-broadleaf forest 
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and kauri forest, cut-over, burnt and completely cleared forest (Esler, 1983). Urban 

development occurs around the periphery of the forest. 

 

Selecting sites for monitoring 

Between November 1998 and March 2001, automatic bat detector units set to record at 40 kHz 

(the optimum frequency for detecting long-tailed bats; O’Donnell and Sedgeley, 1994) were 

placed at 92 sites throughout the Waitakere Ranges. Units were not placed randomly or 

systematically. Rather, as the long-tailed bat is a rare species and is uncommon almost 

everywhere it occurs (O’Donnell, 2000a), detectors were placed for one or more nights in 

habitats bats were likely to use. Bats were recorded at 32 (34.8%) of the 92 sites. A bat pass 

was defined as a set of two or more echolocation calls (heard as clicks) as a bat flew within the 

range of the detector’s microphone (Furlonger, Dewar and Fenton, 1987). The number of bat 

passes per night was used as an index of bat activity. A site was selected for ongoing 

monitoring if it met the following criteria: bats were regularly present (> 40% of nights), bat 

activity levels were relatively high (> 10 bat passes per night on most nights), and variability 

between nights in the number of passes as measured by the coefficent of variability was low 

(CV% < 200 where CV% = (S.D. /  mean) × 100). Three sites met these criteria, one in each of 

the following areas: Huia, Cascades and Opanuku Stream. Two of the sites (Cascades and 

Opanuku) sampled stream habitats and the third site (Huia) monitored a road habitat. A 

concurrent trapping and banding study indicated that the monitoring sites were sampling three 

separate populations (S. Chapman, unpubl. data). 

 

Determining the number of sample units 

To ensure that potential bat monitoring programmes are cost effective, it is important to 

determine the influence that the number of nights sampled has on estimates of bat activity. 

Using the method outlined by Hayes (1997), the number of sample units (nights) required to 

obtain an index of activity (bat passes per night) closely approximating the mean was 

determined using an Excel spreadsheet (Microsoft Corporation, Redmond, WA, U.S.A). The 

random subset function in Excel was used to randomly sample 2-20 night subsets one hundred 

times each for the entire data set collected at Huia (n = 44 nights). The mean index of activity 

was calculated for each random sample. The percentage of the random samples were assigned 
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to the following categories of percentage deviation from the mean (unless they were not within 

50% of the mean, in which case they were ignored): ≤ 10, ≤ 20, ≤ 30, ≤ 40, ≤ 50. The data from 

Cascades were less variable and much of the variability resulted from many zero counts during 

winter and autumn. Therefore, the sub-sampling process for 2-12 nights was repeated for each 

of the summer (n = 30 nights) and spring (n = 25 nights) data sets from Cascades. The sample 

size from Opanuku (n = 6 nights) was too small for meaningful analysis. 

 

Two of the main factors that influence variation in long-tailed bat activity are season and 

minimum overnight temperature (O’Donnell, 2000b). For each season, the mean number of bat 

passes was calculated for the following arbitrary minimum overnight temperature categories 

(°C): 0-5, 5-10, 10-15, 15-20. Minimum overnight temperatures were recorded at Henderson, 

West Auckland, by the National Institute of Weather and Atmosphere (NIWA). 

 

Estimating statistical power 

Two computer-based power analysis software packages were used to calculate power, PASS 

(version 6.0; NCSS, Kaysville, UT, U.S.A) and Monitor (version 6.2; Gibbs, 1995; see Thomas 

and Krebs, 1997 for a review of power analysis software packages). PASS uses the non-central 

t-distribution to calculate power (Thomas and Krebs, 1997). PASS was used because it one of 

very few power analysis packages that calculates statistical power for non-parametric tests 

(Thomas and Krebs, 1997). Bat activity data sets were not normally distributed and unable to 

be transformed to a normal distribution with commonly used transformations (tested with Wilk-

Shapiro Statistic W). PASS was used to calculate power to detect a change in bat activity 

between baseline data and any subsequent single survey using standard non-parametric Mann-

Whitney U-tests. Monitor was used because it is available free of charge (see Thomas and 

Krebs, 1997) and it has been used in other studies of threatened species, including at least one 

New Zealand study (e.g., Lawrence and Palmer, 2000). A specialised package for estimating 

power to detect population trends over time, Monitor estimates power using Monte-Carlo 

simulations (Gibbs, 1995). In monitor, the user is able to specify the number of iterations to be 

used in the analysis. In this study Monitor was used to examine the power of detecting changes 

in the index of bat activity over time using annual surveys. The number of iterations used to 

generate power estimates was 1000. PASS was used calculate power to detect changes in the 
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proportion of sites where bats are present during a baseline survey and during future surveys 

using Fishers-exact tests. 

 

The ability to manipulate survey effort is restricted because: (1) spatial variation in levels of bat 

activity meant that the number of monitoring sites in each area could not be increased, and (2) 

there are logistical limitations on the number of nights sampled at each site. However, given the 

serious consequences of failing to detect a decline if one is occurring (Type II error) power 

estimates obtained using one- and two-tailed tests at the conventional significance level of α = 

0.05 and the less stringent level of α = 0.10, were compared. 

 

Results 

The mean number of bat passes per night and variability was greater at Huia than at Cascades 

(Table 1). Overall, the mean coefficient of variation (all sites and seasons pooled) was 121.6. 

Precision and therefore power was not increased by only including sites, seasons and 

temperature ranges with a high mean number of bat passes (J. Alexander, unpubl. data). This is 

because the standard deviation generally increased in proportion to the mean (Table 1-2). 

Power was increased by only including data from nights when variability was reduced (Figure 

1). During winter and spring at Huia bat activity increased with increasing minimum overnight 

temperature category. In contrast to Cascades, the minimum overnight temperature during 

different seasons had little influence on the variability of bat activity. As the proportion of 

nights with very high and low levels of activity was greater at Huia than Cascades, almost 

twice as many nights need to be sampled at Huia to ensure reasonable levels of precision in 

estimates of activity (Table 3-6). 
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Table 1: Summary of seasonal bat activity recorded at Huia, Cascades and Opanuku. 

Site Season Number 
of nights 

Mean number of 
bat passes per 

night 

1 standard 
deviation 

(SD) 

Coefficient of 
Variation 

(CV) 

Huia Summer 5 25.6 21.7 84.6 
 Autumn 7 57.6 101.4 176.1 
 Winter 12 92.7 126.3 136.3 
 Spring 20 32.3 57.9 179.4 
 All 

seasons 
44 52.0 88.1 169.5 

Cascades Summer 30 42.3 47.4 111.8 
 Autumn 5 0 0 N/A 
 Winter 5 2.4 0.9 37.3 
 Spring 25 2.7 2.3 84.6 
 All 

seasons 
65 20.8 37.8 181.8 

Opanuku Autumn 6 13.4 7.3 55.0 
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Table 2: The level and variability of bat activity at Huia and Cascades during different seasons 

and on nights with different minimum overnight temperature. 

Season Temperature 
category ( °C) 

Mean number of 
bat passes per 

night 

1 Standard 
deviation (SD) 

Coefficient of 
variation (CV) 

Huia     

Summer 15-20 31.0 20.9 66.9 

Autumn 5-10 131.7 128.2 97.3 

Winter 0-5 55.8 70.9 126.9 

 5-10 108.0 147.1 136.2 

 10-15 140.3 192.5 137.3 

Spring 5-10 8.2 11.5 139.9 

 10-15 57.1 74.7 130.7 

Cascades     

Summer 5-10 11.3 6.9 62.2 

 10-15 43.0 56.4 131.1 

 15-20 52.3 39.2 74.3 

Winter 15-20 3.0 1.4 47.1 

Spring 0-5 0.3 0.5 200.0 

 5-10 2.7 2.4 88.1 

 10-15 3.8 1.9 49.1 
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Figure 1: Influence of variability in count data (CV%) on power to detect a decline with a 

single future survey using Mann-Whitney U-tests (calculated using PASS). 

 

A power analysis using Monitor indicated that the statistical power to detect a 10 % annual 

decline in bat activity during winter at Huia after ten years is only 0.40 using annual surveys 

(Figure 2). At Cascades, statistical power is adequate (0.80; Cohen, 1988) to detect a 10% 

annual decline in bat activity after eight years if only nights with high minimum overnight 

temperatures (between 15-20°C) are included (Figure 3). Using summer counts only, power 

may also be adequate (0.80) to detect an annual decline of 5% at Cascades after 10 years, if the 

less stringent significance level of α = 0.10 is used with a one-tailed test (Figure 4). A power 

analysis using PASS shows that there is low power to detect changes in activity level between 

any two surveys, even if sacrifices are made in terms of statistical rigor. Before and after 

surveys only have adequate power to detect declines greater than 60% (Figure 5). By re-

surveying the same 92 sites at some point in the future, power to detect a decline in the 

proportion of sites with bats compared with the results of this study is adequate only if the 

magnitude of the decline is 50% or greater (Figure 6). Power was increased by re-sampling 

only the 32 sites where bats were present, or even a subset of 20 of the 32 sites where bats were 

present. If 20 sites with bats are resurveyed, the study would have adequate power to detect 

declines of ≥ 30% in the number of sites with bats (i.e. bats are no longer present at six or more 
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of the sites) (Figure 6). By including 10 sites where bats were not detected in the original 

survey (20 sites where bats were present and 10 sites where bats were absent) the option of 

being able to detect increases in the proportion of sites with bats is preserved. However, by 

designing a survey that includes the option to detect increases, there is only adequate power to 

detect declines of 50% or greater (Figure 7).  

 

Table 3: Percentage of 100 random samples with the mean number of bat passes per night 

within 10-50% of the mean for the entire dataset collected at Huia (n = 44) (after Hayes, 1997). 

 
  

Number of nights in 
subsample 

Percentage deviation from the mean 
 

    ≤ 10    ≤ 20     ≤ 30      ≤ 40    ≤ 50 

2 1 7 10 13 19 
3 3 12 20 25 34 
4 15 22 28 38 43 
5 8 22 30 32 46 
6 9 25 32 46 61 
7 11 18 27 45 56 
8 10 27 40 46 58 
9 16 27 41 47 54 
10 11 21 40 56 67 
11 17 35 50 61 76 
12 19 34 52 63 73 
13 15 27 37 56 65 
14 22 32 48 60 72 
15 13 28 43 62 74 
16 15 31 45 63 75 
17 20 41 57 69 84 
18 22 40 54 69 73 
19 20 37 59 73 78 
20 22 40 57 71 83 
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Table 4: Percentage of 100 random samples with the mean number of bat passes per night 

within 10-50% of the mean for the Cascades summer dataset (n = 30) (after Hayes, 1997). 
   

Number of nights in 
subsample 

Percentage deviation from the mean 
 

 

    ≤ 10    ≤ 20     ≤ 30      ≤ 40    ≤ 50 

2 8 10 18 32 48 
3 7 14 23 31 47 
4 9 22 33 44 58 
5 15 27 34 50 64 
6 22 37 47 58 70 
7 23 44 59 75 85 
8 15 43 58 71 84 
9 17 37 58 72 86 
10 21 45 65 76 88 
11 25 44 63 76 85 
12 21 51 71 78 91 

 

 

Table 5: Percentage of 100 random samples with the mean number of bat passes per night 

within 10-50% of the mean for the Cascades spring dataset (n = 25) (after Hayes, 1997). 
   

Number of nights in 
subsample 

Percentage deviation from the mean  

    ≤ 10    ≤ 20     ≤ 30      ≤ 40    ≤ 50 

2 10 17 35 46 59 
3 13 34 44 56 66 
4 21 47 59 74 78 
5 16 43 54 74 82 
6 23 44 59 75 85 
7 25 44 57 76 86 
8 28 51 73 87 92 
9 32 58 68 81 91 
10 22 58 80 92 98 
11 37 61 79 94 100 
12 35 63 79 94 97 
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Figure 2: Power to detect changes in bat activity at Huia during winter with annual surveys (n = 

11; α = 0.05, two-tailed test).  
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Figure 3: Power to detect changes in bat activity at Cascades with annual surveys during 

summer and only including monitoring data when overnight minimum temperatures are 

between 15-20°C (n = 11; α = 0.05, two-tailed test). 
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Figure 4: Power to detect a 5 % annual decline in bat activity during summer at Cascades using 

one- and two-tailed tests at significance levels of α = 0.05 and α = 0.10. 
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Figure 5: Power to detect declines in bat activity at Cascades monitoring for 20 nights using 

one- or two-tailed Mann-Whitney U-tests at significance levels of α = 0.05 and α = 0.10. 
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Figure 6: Power to detect annual declines in the proportion of sites with and without bats, 

comparing results from this study with a single future presence/absence survey using Fishers 

exact test. 
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Figure 7: Power to detect changes in the proportion of sites with and without bats, comparing 

results from this study with a single future survey using Fisher exact test.   
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Discussion 

The key factor that reduces the power of a sampling study to detect declines or increases in bat 

activity is the high degree of variability in the data. High variability between nights increases 

the number of nights necessary to obtain data that give an accurate and precise estimate of 

activity levels. Biased estimates of bat activity occurs if true bat activity is under or over 

estimated for a given sampling period (Hayes, 1997). Bias is more likely to occur if not enough 

nights are sampled. Because the precision of the estimates are also affected by variability, 

sampling will need to be more intensive for those sites that have greater nightly variation. 

However, despite statistical requirements, the number of nights that can be sampled in any one 

season or year is restricted by logistical, time and cost considerations.  

 

If a site is monitored for twenty nights annually, the power to detect a 10% annual decline does 

not reach 0.8 until the eighth year, by this time the population could be half it’s size as 

indicated by a decline in bat activity of about 54%(10% annual decline = 54% after eight 

years). However, if a decline of this magnitude occurred in bat activity, there would be 

adequate power to detect it with any single future survey of activity at the same site, without 

the expense of annual surveys. Therefore, the costs and benefits of annual monitoring versus 

less frequent monitoring should be explored. The costs involved will vary from site to site 

depending on factors such as who undertakes the monitoring (e.g., volunteers or paid 

researchers) and site access. 

 

Biological significance and statistical significance are not always synonymous. Studies on 

threatened species are, by their nature, characterized by small sample sizes and high sampling 

variation (Thomas, 1997). If sample sizes are small and variation is high, statistically 

significant population changes are not likely to be found (Johnson, 1995). Clearly, any 

population decline, regardless of its rate, if it persists unabated will be biologically significant 

(Reed and Blaustein, 1997). However, a common situation that exists in conservation 

management is that actions are not taken until there is proof that populations are in a state of 

decline, uncertainty in the current state of the population is often used as a rationale for not 

taking action (Taylor et al., 2000). This is the case with long-tailed bats as management of 
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long-tailed bat populations will not be initiated until population trends have been assessed 

(Molloy, 1995).  

 

Assessing population trends will be expensive and time consuming (e.g., O’Donnell, 1999) and 

the ability to detect even moderately large declines is poor. If declines are occurring, bat 

populations are unlikely to be able to recover quickly even if threats are reduced because like 

most bats, long-tailed bats have low reproductive capacity. Most females begin reproducing 

when they are two years old (O’Donnell, 2001a), giving birth to a single young once a year 

(Daniel and Williams, 1984) for at least nine years (O’Donnell, 2001a). The low reproductive 

output means that bat populations are particularly vulnerable to pressures that result in reduced 

adult survival and reproductive output (Findley, 1993). Particularly, as survival may not be 

similar in all age and sex classes. Females may be more vulnerable to predation because when 

pregnant or carrying young they are likely to be less manoeuvrable (Aldridge and Brigham, 

1988) and thus less able to avoid predators. Furthermore, reproductive females dominant 

colonies where as males are more likely to roost solitary (O’Donnell and Sedgeley, 1999). 

Compared to bats roosting solitarily, bat colonies may be more detectable by predators 

(Molloy, 1995). If a roost is destroyed (e.g., by logging or windthrow) while a colony is present 

then a significant proportion of females may be lost from the population at one time.   

 

Effective population size is primarily reflected in the number of reproductive females (Gilpin 

and Soule, 1986), and will be less than the total number of bats present (O’Donnell, 1999). A 

small population decline may indicate a larger, and biologically important, reduction in 

effective population size. This demonstrates the importance of taking a precautionary approach 

when assessing population trends. This would involve placing a greater emphasis on the value 

of historical and anecdotal evidence to influence management priorities.      

 

A monitoring programme using automatic bat detectors to detect changes in activity may have 

greater power than the results of this study indicate. This is because the relationship between 

the level of bat activity recorded and abundance is not known. For example, if a population is 

small, a population decline could be reflected in the recorded activity levels in one or more of 

the following scenarios: (1) activity declines or disappears from a subset of sites; (2) activity 
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declines at all sites; (3) activity levels don’t change. The third scenario is unlikely because if 

the population declines, activity will probably decline at one or more sites. It is more likely that 

bat activity will decline at only some sites, these are likely to be sites on the periphery of the 

bats collective foraging range. Declines are less likely to be detected near roosts or at sites that 

have high invertebrate activity. This is because long-tailed bats have similar movement patterns 

each night, returning to optimal foraging areas (Griffiths, 1996; O’Donnell, 2001b) and 

individual bats space themselves to minimize competition for food and allow lactating females 

to use resources close to maternity roosts (O’Donnell, 2001b). If these prediction are correct, 

intensive presence - absence surveys may have considerable utility. 

 

In this study, bat activity was more variable at Huia than at Cascades. This may be a result of 

habitat differences between the two sites. It also indicates that monitoring programmes using 

bat detectors may have more scope to detect trends at certain sites than others. As the number 

of bat passes per night increased so too did variability. Therefore, data that are obtained during 

seasons and temperature ranges in which bats are typically more active may not be the best 

sites for detecting trends or changes. Sites chosen for monitoring should be those where 

variability is low in relation to the number of bat passes (i.e., where CV% is low). The results 

suggest that at present it is unwise to rely on monitoring with bat detectors to make sensible 

management recommendations. Currently, the most reliable method to detect changes in long-

tailed bat populations is mark-recapture studies. Bat activity should be monitored concurrently 

with demographic studies to determine how population changes are reflected in the levels and 

patterns of bat activity.  
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Chapter 5: General Discussion 
 

Relevance of this study 

The aim of this study was to provide information on the ecology of long-tailed bats in the 

Waitakere Ranges which would assist in the development of a long-term monitoring 

programme. To achieve this aim, habitat use and nocturnal activity patterns were examined and 

a power analysis was conducted to determine if automatic bat detectors could be used to detect 

potentially significant changes in bat activity. A study of the Waitakere Ranges long-tailed bat 

population was significant because:  

1. The Waitakere Ranges is the northern most location at which long-tailed bats have been 

researched. 

2. The study was the first to be conducted on a long-tailed bat population that persisted in 

kauri Agathis australis dominated forest remnants. 

3. The long-tailed bat population in the Waitakere Ranges is the only known extant population 

in close proximity to a major urban area. 

4. There is a diverse range of habitat types potentially available to bats in the Waitakere 

Ranges. 

5. Factors that are attributed to long-tailed bat population declines (i.e., forest clearance, 

predation and urbanisation; O’Donnell, 2000) have all had a major impact on other species 

in the Waitakere Ranges. 

 

Importance of kauri 

As bats had the opportunity to use a wide range of habitats, it is significant that bat activity and 

roost sites were concentrated in and near areas of mature kauri forest.  Results from recent 

surveys with automatic bat detectors suggest that most records of long-tailed bats in Northland 

(S. McManus pers. comm.), and on the Coromandel Peninsula (S. Chapman pers. comm.), are 

also associated with remnants of kauri forest. Bats may preferentially roost in mature kauri for 

several reasons. Mature kauri trees possess physiological and morphological characteristics that 

could make them ideal for long-tailed bat roosts. For example, where it occurs it is usually the 

tallest tree in the landscape and there are often large numbers of cavities within the crowns of 

mature kauri. As the long-tailed bat is an edge-forager (O’Donnell, 1999), the open structure of 
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mature kauri forest may enable more within-forest foraging compared with many other forest 

types. 

 

An alternative hypothesis to explain apparent, preference for kauri trees is that in areas where 

predation pressure is or was intense, long-tailed bats may be largely restricted to kauri forest 

due to selective pressure from introduced predators. A combination of introduced mammalian 

predators and the availability of secure roosting sites are probably why long-tailed bats in the 

Waitakere Ranges were mainly roosting in mature kauri trees. Griffiths (1996) concluded that 

the same factors limited long-tailed bats in South Canterbury, although a vastly different habitat 

to the Waitakere Ranges. Bats were confined to roosting in small crevices in vertical limestone 

cliff faces because they were inaccessible to predators.  

 

The most likely causes for long-tailed bat population declines are predation and the loss of 

roosting trees following forest clearance (O’Donnell, 2000a). If bat roosts are now restricted to 

sites that are inaccessible to mammalian predators, then direct predation by mammalian 

predators may now be rare. Large-scale forest clearance has also ceased. However, the indirect 

effects of predation and forest clearance may be ongoing. For example, once a population has 

been reduced to a small size and its roosting area reduced, factors such as predation by the 

morepork Ninox novaeseelandiae may have a significant impact on population viability. 

Particularly, if juveniles and females are more vulnerable to predation than adult males. This 

may occur because colonial long-tailed bat roosts are dominated by reproductive females 

(O’Donnell, 2001). Given that there are probably greater levels of bat activity, noise and odour 

at colonial roosts than solitary roosts, they may be easily located by predators (Molloy, 1995), 

this would have greater impact if bats are cycling around a small pool of roosts. Pregnant 

females and newly volant young are probably also more vulnerable to predation because they 

are less maneuverable than male bats (Alridge and Brigham, 1988). 

  

In the Waitakere Ranges, it appeared that long-tailed bats had higher rates of roost reuse than in 

the Eglinton Valley, Geraldine or Hawkes Bay (Sedgeley and O’Donnell 1999a; Gillingham, 

1996; Griffiths, 1996). The reasons for this are unclear. Either suitable roosts are limited or 

they are of such high quality that it is not necessary to switch roosts as often. The later is 
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unlikely because while roost cavity characteristics were not measured, there is no reason to 

expect that roost cavities in kauri forest are of superior quality to cavities in podocarp 

(Gillingham, 1996) or Nothofagus dominanted forest (Sedgeley and O’Donnell, 1999b). 

However, it is extremely unlikely that roosts in the Waitakere Ranges would be more limited 

than in Geraldine, the most modified and fragmented habitat in which the long-tailed bat has 

been studied. Therefore, there may be another factor involved in the higher than expected roost 

reuse.  

 

Use of urban areas 

As in other studies, in the Waitakere Ranges long-tailed bats utilised linear landscape features 

such as streams and roads (e.g., O’Donnell, 1999). These features appeared to assist bats 

movement into semi-urban areas and very near to urban environments. Long-tailed bats also 

foraged around houses set in a forested landscape. These observations suggest that if roosting 

habitats are secure then long-tailed bats may be able to persist in close proximity to urban 

areas. 

 

Value of automatic bat detectors for monitoring population trends 

Bat detectors provide valuable information on bat distribution, activity patterns and habitat use 

(O’Donnell and Sedgeley, 1994). Several authors have implied that bat populations could be 

monitored with bat detectors (e.g., Hayes, 1997; Griffiths, 1999; O’Donnell, 1999). However, 

the results of this study indicate that more research is required before bat detectors could be 

used to detect trends in bat populations. It is possible that bat detectors may never be an 

effective tool for tracking population changes. However, their low cost makes exploring their 

potential for monitoring worthwhile. Particularly, as a network of national monitoring sites is 

required and intensive demographic studies are probably not feasible for using nationwide.  

 

Automatic bat detectors are used in two ways: 1) presence / absence surveys, or 2) recording 

bat activity at a site or a network of sites over time. It is not known if and how population 

changes will be reflected in data collected using automatic bat detectors. If a population 

declines, bat activity may only decline at a subset of sites around the periphery of the groups 

collective range or at the least preferred foraging grounds. To clarify the relationship between 
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population changes and changes in activity, bat detector studies (both presence / absence 

surveys and monitoring of activity) should be undertaken concurrently with trapping-banding 

studies at a network of sites. Such studies should be undertaken in areas where population 

changes might be expected and where factors implicated in the decline of long-tailed bat 

populations are intense. This research should be carefully designed and a BACT design used 

(Before-After-Control-Treatment; e.g., Norton, 1996). As trapping-banding studies are 

expensive, study sites should be selected carefully. Another method to determine how 

population changes are reflected in bat activity might be to monitor bat activity before and after 

the population is temporarily reduced by removing one or more bats caught at or near 

monitoring sites for all or part of the night (e.g., the first or second half of the night). 

 

The results of the power analysis performed in this study suggest that even if bat activity is 

found to be an index of population size, the high level of variability in pass rates will mean that 

monitoring programmes will only have sufficient power to detect declines in bat activity of 

greater than fifty percent. However, if bat activity declines sharply at some sites, bat detectors 

may be a very useful tool of indicating population declines. It is important to select monitoring 

sites with low coefficent of variability (i.e., sites where variability in pass rates is low, in 

proportion to the mean pass rate), rather than simply selecting sites with the most activity. 

  

Until the relationship between actual population changes and indices of bat activity is clarified I 

recommend that if the primary aim is to monitor population trends then intensive presence - 

absence surveys (c.f., broad scale distribution surveys) should be undertaken. This is because 

the results of the power analysis indicate that presence-absence surveys are potentially useful in 

monitoring population trends and it is probably more important to gather baseline data at a 

range of sites rather than focusing effort on a few sites. Three nights of recording without wind 

or rain (bats forage under these conditions but such conditions reduce the effectiveness of 

automatic detectors) are, in most cases, sufficient to confirm the presence of bats at a site. If 

bats are not recorded within this time they cannot be considered to be absent from the site. 

Rather, their presence is not confirmed.   
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This study showed that activity patterns differed between Huia and Cascades. At Huia, activity 

patterns did not differ between assumed periods of pregnancy and lactation as they did at 

Cascades. Possibly this could have been a result of habitat differences between the two areas. 

However, of 16 captures of 10 long-tailed bats at Huia, no males were captured (S. Chapman 

pers. comm.). While the sample size was small, the results are significant because in all other 

long-tailed bat trapping studies, more females than males were captured and the overall sex 

ratio of adults was 1.8 females:1 male (O’Donnell, 2001). A greater understanding of activity 

patterns and the influence reproduction has on activity patterns recorded with bat detectors may 

be of use in determining whether there are reproductive females present. The potential of 

comparing activity during reproductive stages as a monitoring technique warrants further 

investigation. 

 

Alternative monitoring methods 

If automatic bat detectors provide little or no information on population status or trends, then 

alternative techniques for identifying conservation needs must be developed. Mark-recapture 

demographic studies may be useful for monitoring larger populations but by the time changes 

in survival and fecundity are detected in small populations remedial action may be 

prohibitively expensive or no longer possible (Williams, 2000). Therefore it is vital that better 

monitoring techniques are developed and criteria are developed that are capable of predicting 

which populations are likely to be declining, given environmental changes in the area. 

 

Fluctuating asymmetry may provide an alternative means of determining whether a population 

is suffering genetic or environmental stress (Williams, 2000). When individuals are under 

stress, small directionally random changes from perfect symmetry may occur (Palmer and 

Strobeck, 1986). In some species fluctuating asymmetry has been shown to increase with 

increasing population stress (Sommer, 1996). Therefore, by investigating and comparing 

symmetry between different populations, or over time in a single population, it may be possible 

to assess population health and identify if population declines are occurring.  
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Future research  

The Waitakere Ranges long-tailed bat population 

The Waitakere Ranges long-tailed bat population should be targeted for further research and 

management. The factors thought to be involved in the decline of long-tailed bats all occur in 

the Waitakere Ranges at an equal or greater intensity than other areas except perhaps 

Geraldine. With increasing population growth in Auckland and ongoing development in the 

Waitakere Ranges pressures on the local long-tailed bats are likely to intensify (e.g., conversion 

of present foraging areas such as farmland and orchards to housing estates). This study 

provides baseline data which future research should build upon. Priority should be directed 

towards establishing a long-term demographic study and a population viability analysis. Of 

critical importance is determining if the Huia population is breeding. A presence - absence 

survey should be continued and survey effort should be focused on semi-urban areas. Other 

potential monitoring methods such as measuring fluctuating asymmetry (Williams, 2000) 

should be trialled in the Waitakere Ranges. 

 

Other long-tailed bat populations 

A primary focus of future long-tailed bat research must be to identify the main factors limiting 

their populations. The primary aim of developing effective monitoring techniques is to identify 

which populations are declining so that management can be initiated (O’Donnell, 2000a). 

However, the main threats to long-tailed bats have not been identified so restoration efforts are 

not likely to be successful (O’Donnell, 2000). Before managers can begin to treat population 

declines it is critical that their causes be diagnosed. There are two main methods that may be 

used to do this: 

a) Sites with a range of population trends are selected to undertake experiments (adaptive 

management) that manipulate apparent agents of decline and a population viability analysis 

is then performed to assess the populations response (O’Donnell, 1999). Adaptive 

management has been successfully used to determine the causes of population decline and 

to simultaneously recovery populations of threatened species (e.g., kokako Callaeas 

cinerea wilsoni; Innes et al., 1999).   



 95 

b) Characteristics of long-tailed bat populations (e.g., abundance and trends, sex ratio, 

occurrence of reproduction, roost size and use) are compared in a range of areas that have 

been subjected to different degrees of forest clearance and predator impacts. 

 

Isolating the factors that may cause long-tailed bat population declines may prove difficult. 

This is because it is necessary to identify the current and historical threats, the probability of 

exposure to these, and the likely population response (Harwood, 2000). However, it may be 

possible to isolate these factors if long-tailed bat populations are studied in areas where kauri 

forest is present because: 

1)  Vegetation type may potentially confound explanations of differences in roost size and 

roost fidelity. Therefore, it may not be possible to compare factors such as roost size and 

use between populations in different vegetation types. 

2)  Areas where mature unmodified kauri persists are well mapped and many stand 

characteristics are described in detail. 

3)  Kauri forest often persists in discrete patches surrounded by other vegetation. 

4)  Logging intensity has been well documented, especially in areas such as Omahuta, 

Herekino and Puketi where logging has occurred during the last 50 years (New Zealand 

Forest Service, 1983). Therefore it is possible to compare the impact of a range of logging 

regimes within the same general location (e.g., in unlogged, selectively logged or 

clearfelled forests) on long-tailed bat populations. 

5)  By identifying the presence or absence of species that are sensitive to different predator 

species and densities it may be possible to infer predator history and examine 

characteristics of long-tailed bat populations in relation to the presence and abundance of 

potential predators. 

 

Concluding Remarks 

The Waitakere bat population is perhaps one of the most accessible and its close proximity to 

New Zealand’s largest city means that it can potentially play a vital role in bat advocacy. Many 

of New Zealand indigenous species are now extinct in the Waitakere Ranges. Even species 

such as Bellbirds Anthornis melanura that have survived in other cities have disappeared from 

the Ranges. I strongly endorse Slaven’s (1989) sentiments that it is our duty to ensure that the 
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depauperate wildlife of the Waitakere Ranges declines no further. If we do not meet this 

challenge, the Waitakere long-tailed bat population could be yet another species that future 

generations will not have the pleasure of experiencing in their own environment. The enormous 

interest in this project and the many people volunteering their assistance demonstrates that the 

wider community is committed to conserving long-tailed bats. I urge the relevant management 

agencies to invest the necessary resources to ensure that the Waitakere Ranges long-tailed bats 

are able to flourish. 

 

References 

Aldridge, H.D.J.N., Brigham, R.M. 1988. Load carrying and maneuverability in an  
insectivorous bat: a test of the 5% ‘rule’ of radio-telemetry. Journal of  
Mammalogy  
 
Gillingham, N. 1996. The behaviour and ecology of long-tailed bats in the central North 
Island. Unpublished M.Sc. Thesis. Massey University, Palmerston North. 
 
Griffiths, R. 1996. Aspects of the ecology of a long-tailed bat, Chalinolobus tuberculatus, 
population in a highly fragmented habitat. Unpublished M.Sc. Thesis. Lincoln University, 
Canterbury. 
 
Harwood, J. 2000. Risk assessment and decision analysis in conservation. Biological 
Conservation 95(2): 219-226. 
 
Hayes, J.P. 1997. Temporal variation in activity of bats and the design of echolocation  
monitoring studies. Journal of Mammalogy 78(2): 514-524. 
 
Innes, J., Hay, R., Flux, I., Bradfield, P., Speed, H., Jansen, P. 1999. Successful recovery of 
North Island kokako Callaeas cinerea wilsoni populations, by adaptive management. 
Biological Conservation 87: 201-214. 
 
Molloy, J. 1995. Bat (pekapeka) recovery plan. Department of Conservation, Wellington. 
 
New Zealand Forest Service. 1983. Kauri forest management review. 90p.  
 
Norton, D.A. 1996. Monitoring biodiversity in New Zealand’s terrestrial ecosystems. In 
McFadgen, B and Simpson, P (Ed.). Papers from a seminar on biodiversity. Department of 
Conservation, Wellington.   
 
O’Donnell, C.F.J. 1999. The ecology, spatial organisation and conservation of long-tailed bats 
Chalinolobus tuberculatus. Unpublished PhD thesis. University of Otago, Dunedin. 
 



 97 

O’Donnell, C.F.J. 2000. Conservation status and causes of decline of the threatened New 
Zealand Long-tailed bat. Mammal Review 30(2): 89-106.  
 
O’Donnell, C.F.J. 2001. Advances in New Zealand mammalogy 1990-2000: long-tailed bat. 
Journal of the Royal Society of New Zealand 31(1): 43-57. 
 
O’Donnell, C.F.J. and Sedgeley, J.A. 1994. An automatic monitoring system for recording bat 
activity. Department of Conservation Technical Series No.5. Department of Conservation, 
Wellington. 

 
Palmer, A.R., Strobeck, C. 1986. Fluctuting asymmetry: measurement, analysis, patterns. 
Annual Review of Ecology and Systematics 17: 391-421. 
 
Sedgeley, J.A. and O’Donnell, C.F.J. 1999a. Roost selection by the long-tailed bat,  
Chalinolobus tuberculatus, in temperate New Zealand rainforest and its implications for the 
conservation of bats in managed forests. Biological Conservation 88: 261-276. 
 
Sedgeley, J.A. and O’Donnell, C.F.J. 1999b. Factors influencing the selection of roost cavities 
by a temperate rainforest bat (Vespertilionidae: Chalinolobus tuberculatus) in New Zealand. 
Journal of Zoology London 249: 437-446. 
 
Slaven, O.C. 1989. Wildlife report for the protected natural areas programme. Unpuiblished 
report. Auckland Regional Council. 
 
Sommer, C. 1996. Ecotoxicology and developmental stability as an in situ monitor of adaption. 
Ambio 25: 374-376. 
 
Williams, M. 2000. Monitoring with callipers: the potential value of fluctuating asymmetry 
measurement in conservation monitoring, management and research. Ecological Management 
8: 47-61 
 
 

 


	Title page
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1: Introduction
	Introduction to New Zealand bats
	Taxonomy
	Distribution and population declines
	Long-tailed bat ecology
	Current management of long-tailed bat populations
	Monitoring
	Study area
	Research objectives
	References

	Chapter 2: The distribution and roosts of long-tailed bats in the WaitakereRanges
	Introduction
	Methods
	Results
	Discussion

	Chapter 3: Nocturnal activity patterns of the long-tailed bat in the WaitakereRanges
	Introduction
	Study site and Methods
	Results
	Discussion
	References

	Chapter 4: Can bat detectors be used to detect changes in long-tailed batpopulations?
	Introduction
	Methods
	Results
	Discussion
	References

	Chapter 5: General Discussion
	Importance of kauri
	Use of urban areas
	Value of automatic bat detectors for monitoring population trends
	Alternative monitoring methods
	Future research
	References


