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The covarion (COV)-like properties of sequences are poorly described and their impact on phylogenetic analyses poorly
understood. We demonstrate using simulations that, under an evolutionary model where the proportion of variable sites
changes in nonadjacent lineages, log likelihood values for rates across site (RAS) and COV models become similar,
making models difficult to distinguish. Further, although COV and RAS models provide a great improvement in
likelihood scores over a homogeneous model with these simulated data, reconstruction accuracy of tree building is low,
suggesting caution when it is suspected that proportions of variable sites differ in different evolutionary lineages. We
study the performance of a recently developed contingency test that detects the presence of COV-type evolution modified
for protein data. We report that if proportions of variable sites (pvar) change in a lineage-specific manner such that their
distributions in different lineages become sufficiently nonoverlapping, then the contingency test can incorrectly suggest
a homogeneous model. Also of concern is the possibility of different proportions of variable sites between the groups
being studied. In a study of chloroplast proteins, interpretation of the test is found to be susceptible to different
partitioning of taxon groups, making the test very subjective in its implementation. Extreme intergroup differences in the
extent of divergence and difference in proportions of variable sites could be contributing to this effect.

Introduction

Although sequence evolution is a temporally and spa-
tially heterogeneous process, sequence evolution is typi-
cally described by a homogenous, stationary, time
reversible model (Liò and Goldman 1998). Within this
framework, improved phylogenetic estimates have often
been obtained when site-specific properties of sequences
have been modeled assuming that some sites are invariable
(Adachi and Hasegawa 1995; Lockhart et al. 1996), non-
independent (von Haeseler and Schoniger 1998), and/or
evolving with a discrete number of rate classes according
to a gamma distribution (rates across site [RAS] models:
Uzzel and Corbin 1971; Rzhetsky and Nei 1994; Yang
1994; Waddell et al. 1997).

More recently, a number of covarion (COV) (Fitch and
Markowitz 1970) models have been implemented for
phylogenetic analyses (Galtier 2001; Huelsenbeck 2002;
Guindon et al. 2004; Wang et al. 2007), and these COV mod-
els have been found to provide further improvement over
RAS models in terms of the relative fit to sequence data. This
is presumably because these models capture a component of
temporal heterogeneity in the evolutionary process—that is,
unlike RAS models, they allow the substitution properties of
a site to change over a time in a lineage-specific fashion.
Under COV models, a site is free to switch back and forth
between variable and invariable states along a branch.

In the COV model of Tuffley and Steel (1998), a site in
a sequence may be either variable or invariable, and the
state may differ in different lineages. All sites that are vari-
able, evolve under the same substitution process (e.g.,
JC69, HKY85, etc.) and at the same rate. The COV model
of Huelsenbeck (2002) extends the Tuffley and Steel model
by allowing there to be a discrete number of rate classes for

the variable state. Under this model, a site can switch be-
tween the OFF state and one of the variable rate classes but
not between the different variable rate classes. A third COV
model is that of Galtier (2001). In this model, there is a dis-
crete number of rate classes for the variable state. A site can
switch between these rate classes. Under this model, there is
no OFF state. Most recently, Wang et al. (2007) have com-
bined these 2 latter models and produced a general model
(one in which there can be a switch between all variable
states and an OFF state).

All these COV models are stationary time reversible
models and have an expectation that the proportion of vari-
able sites is the same in all evolutionary lineages. However,
this assumption can be overly restrictive as proportions of
variable sites, pvar, have been inferred to vary in lineage-
specific ways (Lockhart et al. 1996, 2006; Lopez et al.
2002). This property of sequence evolution can lead to to-
pological biases that will mislead tree building (Lockhart
et al. 1996, 2006). With some proteins, changes in pvar

can be explained by lineage-specific differences in func-
tional and structural constraints, due to differential loss/gain
of functions ancillary to the core function of specific mol-
ecules (Susko et al. 2002; Inagaki et al. 2004; Guo and
Stiller 2005).

Improving substitution models for phylogenetic anal-
ysis requires accurate tests to quantify the extent and nature
of substitution model misspecification. A number of tests
have been proposed to characterize COV-like substitution
properties. However, as we illustrate using simulated and
real data, interpretation from these tests need to be made
cautiously, particularly when pvar is not constant across
the underlying phylogeny. Our findings highlight the need
for improved analytical methods for studying the COV-like
properties of sequences.

Materials and Methods
Maximum Likelihood Analyses

Within a maximum likelihood framework, log likeli-
hood scores can be used to evaluate the relative fit of COV,
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RAS, and homogeneous models to sequence data. The best
scores can then be used to identify the best substitution
model for tree building. To examine the accuracy of this
approach under conditions that might approximate the bi-
ological complexity expected with empirical data, we have
examined the scores obtained when sequences are simu-
lated under what we call a Tuffley and Steel (1998) þ in-
variable site þ switch (TS þ I þ S) model. In this model,
a proportion of sites is specified as invariable and a propor-
tion of sites is evolving under a TS model. At specified
positions in the tree, a proportion of the specified invariable
class switch to the TS class of sites, and some of the TS
class of sites may also switch to the invariable class. On
a 4-taxon tree that contains 2 switch positions (as in X
and Y in fig 1), this model produces data that are identical
to a phylogenetic mixture of 8 classes of TS model (each
class has the same topology but different branch length), as
described in table 1. This mixture representation is possible
because a site that becomes invariable in various regions of

the tree, but whose evolution is otherwise covered by the TS
model, still follows a TS model but with branch lengths set
to zero over the regions where the site is invariable.

However, in the special case of convergent increase in
variable sites in nonadjacent lineages, where at the 2 switch
positions 1) the only change in class is from invariable to TS
sites and 2) the sites that change class are the same, the phy-
logenetic mixture reduces from 8 to just 3 classes of TS
model. The mixture allowed us to specify the proportion
of sites belonging to the invariable class and to specify
the proportion of sites that switch from this class to the
TS class in the nonadjacent lineages. Sequences 10,000 nt
in length were simulated with Seq-Gen-Aminocov
(Rambaut and Grassly 1997) specifying a Tuffley and Steel
(1998) model wherein the variable states evolve according
to a Jukes and Cantor (1969) rate matrix. Table 1 shows the
calculation of relative partition sizes for mixtures that de-
scribe a 4-taxon tree (with relative branch lengths) wherein
1) the ancestral proportion of variable sites is 0.2; 2) the

Table 1

Partitions Frequency Tree Mixtures for Simulating Tree with Changing pvar Used in figure 1

I V(1 � qX � qY � qXY) ([TaxonA:0.4,TaxonB:0.4]:0.02,[TaxonC:0.4,TaxonD:0.4]:0.02)
II VqX ([TaxonA:0.4,TaxonB:0.1]:0.02,[TaxonC:0.4,TaxonD:0.4]:0.02)
III VqY ([TaxonA:0.4,TaxonB:0.4]:0.02,[TaxonC:0.1,TaxonD:0.4]:0.02)
IV VqXY ((TaxonA:0.4,TaxonB:0.1):0.02,(TaxonC:0.1,TaxonD:0.4):0.02)
V I(1 � pX � pY � pXY) ([TaxonA:0,TaxonB:0]:0,[TaxonC:0,TaxonD:0]:0)
VI IpX ([TaxonA:0,TaxonB:0.3]:0,[TaxonC:0,TaxonD:0]:0)
VII IpY ([TaxonA:0,TaxonB:0]:0,[TaxonC:0.3,TaxonD:0]:0)
VIII IpXY ([TaxonA:0,TaxonB:0.3]:0.0,[TaxonC:0.3,TaxonD:0]:0.0)

NOTE.—A rooted 4-taxon tree on which there is a change in the proportion of variable sites in 2 nonadjacent lineages (fig. 1) can be described in the general case by

a mixture of 8 trees (same topology different branch lengths). For the simple case of convergent increase in pvar in 2 nonadjacent lineages, only 3 trees need to be considered

(I, V, and VIII). The positions X and Y at which there is an increase in pvar (a switch of sites from the invariable to the TS class) are specified by the edge lengths. The

ancestral pvar and extent of change in pvar in the nonadjacent lineages are specified by the partition sizes. These can be calculated for expected changes of pvar as shown:

where V and I 5 proportion of variable and invariable sites, respectively, at the root; pX 5 proportion of invariable sites that become variable at X but remain invariable at

Y; pY 5 proportion of invariable sites that become variable at Y but remain invariable at X; pXY 5 proportion of invariable sites that become variable at both X and Y;

qX 5 proportion of variable sites that become invariable at X but remain invariable at Y; qY 5 proportion of variable sites that become invariable at Y but remain variable at

X; and qXY 5 proportion of variable sites that become invariable at both X and Y.

FIG. 1.—Pvar influences log likelihood. (a) Phylogenetic tree used for simulating alignments under a TS model. Relative branch lengths are
indicated. A dot marks the point where the proportion of variable sites is increased in the outer branches leading to taxa B and C; at that point, 0–30% of
the invariable sites are switched on. (b) Mean log likelihood for the simulated alignments according to the tree they were simulated on and 6 different
models as indicated in the inset at upper right. The highest standard deviation (not plotted) for log likelihood among any 100 replicates is 329.43 found
for the general model at pvar 5 0.2.
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terminal branches have a length 0.4; and 3) where at a dis-
tance of 0.1 (at points x and y) along the branches to taxa B
and C, the proportion of sites undergoing a Tuffley and
Steel process is increased. Pvar was increased in increments
of 2% up to 30% of the invariable class so that the overall
pvar in B and C ranged from 20% (no increase) to 50% (30%
increase). For sites in the Tuffley and Steel class, a switching
rate setting of 0.1 was used.

In our study for each of the increments, 100 replicates
were generated, and each simulated alignment was ana-
lyzed using Procov1.3 (Wang et al. 2007). The following
models were compared using the standard optimization files
without reestimation of the branch lengths: homogeneous,
Tuffley and Steel (1998), RAS (Yang 1994), Galtier (2001),
General (Wang et al. 2007), and Huelsenbeck (2002). For
each alignment and model, the log likelihood was extracted
using a Perl script. The mean for each parameter was cal-
culated and plotted using matlab, the standard deviations
for each set of 100 replicates were very narrow (,0.1%
of the mean in all cases) and hence were not plotted.

Treeswerereconstructedfor thesimulateddatasetsusing
Paup* (Swofford 2003; maximum likelihood: lset nst 5 1
basefreq 5 equal; lset tratio 5 0.5 pinv 5 0 rates 5 gamma
shape5estimate;hsearchstart5stepwiseswap5 tbrstatus5
no nbest5 1; parsimony: hsearch start5 stepwise swap5 tbr
status 5 no nbest 5 1; parsimony: hsearch start 5 stepwise
swap 5 tbr status 5 no nbest 5 1) and MrBayes (Ronquist
and Huelsenbeck 2003; lset nst 5 1 covarion 5 yes; mcmc
nruns51ngen5250000samplefreq5100 filename5 run1.
nex; sumt burnin 5 400).

Contingency Tests

Another approach to test whether a collection of sites
in a multiple sequence alignment exhibit COV-type evolu-
tionary properties is the contingency test developed by
Lockhart et al. (1998), which is based on the test statistic
W. This compares substitution differences between 2
groups of sequences

W5
N5

N
� ðN3 þ N5ÞðN4 þ N5Þ

N2
;

where N5 is the number of sites that have varied in both
groups, N3 and N4 are the numbers of those sites that have
varied in one group but not in the other, and N is the total
number of sites. Site patterns referred to as N1 and N2

(Lockhart et al. 1998) are not relevant here. N1 site patterns
have the same residue in both groups. N2 sites are polymor-
phic between but not within groups. W compares the frac-
tion of varied sites in each group and the extent to which
these sites overlap with sites that have varied in both groups.

N3 or N4 (syn. type 3 or type 4) sites should be less
frequent if sequences are evolving according to a RAS
model than if the sites are evolving in a manner that approx-
imates a COV model (Lockhart et al. 1998). If in real data
there are more N3 and N4 sites than expected to occur by
chance under a RAS model, this would constitute evidence
for deviation from the assumptions of a RAS model and
possibly evidence for a COV modus of sequence evolution
(Lockhart et al. 1998).

Ané et al. (2005) improved upon this test by providing
a more rigorous means for obtaining expectations for the
test statistic W under 3 different models of evolution 1) a ho-
mogeneous model, wherein different sequence positions are
equally variable; 2) a RAS model, wherein some sites are
evolving faster than other sites; and 3) a Tuffley and Steel
(1998) COV model. In doing this, they noted that W pre-
dicts that sites that are varied in one group are likely to be
varied in other groups under RAS and COV models but not
under a homogeneous model. A RAS model predicts
a strong degree of correlation and a COV model a weaker
degree of correlation. Under a homogenous model, the W
statistic is statistically zero. It is positive under a COV
model and even more positive under a RAS model. The
Ané et al. test uses simulation to interpret values of W in
terms of support for each of the 3 models.

It does this by first examining whether there is evi-
dence to reject a homogeneous model of sequence evolu-
tion in favor of a heterogeneous model. If so, it then
examines whether there is evidence to reject a RAS model
in favor of a more complex model of substitution. That is,
if the derived W differs significantly from the expected

FIG. 2.—Phylogenetic reconstruction accuracy for increased propor-
tions of variable sites. Data were simulated on the tree shown in figure 1
with incremental increases in pvar as indicated on the abcissa, and the
phylogeny was inferred with 3 different methods. (a) Maximum likelihood
inference (RAS). (b) Parsimony inference (PARS). (c) Bayesian inference
(COV). Reconstruction accuracy for all 3 methods drops markedly with an
increase of only ;12% of invariable sites switching to the Tuffley and Steel
site class at points x and y shown in figure 1. Only the maximum likelihood
inference method delivered unresolved (star) trees. BA, BC, and BD
designate the 3 possible topologies, respectively.
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distribution of the W under a RAS model, the nucleotide or
protein sequence is inferred to have evolved under a RAS þ
COV model. Ané et al. (2005) used this test to infer that
a large proportion of proteins encoded in chloroplast ge-
nomes evolve according to a RAS þ COV model.

We have implemented the method of Ané et al. (2005)
for analyzing protein sequences and used it to reexamine
chloroplast genome sequences also studied by Ané et al.
The sequences used are from Acorus calamus (NC_007407),
Adiantum capillus-veneris (NC_004766), Amborella trichopo-
da (NC_005086), Anthoceros formosae (NC_004543), Arabi-
dopsis thaliana (NC_000932), Atropa belladonna
(NC_004561), Calycanthus floridus (NC_004993), Chaetos-
phaeridium globosum (NC_004115), Chlamydomonas rein-
hardtii (NC_005353), Chlorella vulgaris (NC_001865),
Cyanidioschyzon merolae (NC_004799), Cyanophora para-
doxa (NC_001675),Epifagusvirginiana(NC_001568),Ginkgo
biloba (DQ069337–DQ069702), Guillardia theta
(NC_000926), Lotus corniculatus (NC_002694), Marchantia
polymorpha (NC_001319), Medicago truncatula
(NC_003119),Mesostigmaviride (NC_002186),Nephroselmis
olivacea (NC_000927),Nicotiana tabacum (NC_001879),Nu-

phar advena (DQ069337–DQ069702), Nymphaea alba
(NC_006050), Odontella sinensis (NC_001713), Oenothera
elata (NC_002693),Oryza sativa (NC_001320),Physcomitrel-
la patens (NC_005087),Pinus koraiensis (NC_004677),Pinus
thunbergii (NC_001631), Porphyra purpurea (NC_000925),
Psilotum nudum (NC_003386), Ranunculus macranthus
(DQ069337–DQ069702), Saccharum officinarum (NC_
006084), Spinacia oleracea (NC_002202), Triticum aestivum
(NC_002762),Typhalatifolia (DQ069337–DQ069702),Yucca
schidigera (DQ069337–DQ069702), and Zea mays
(NC_001666).

Sequences were aligned using ClustalW (Thompson
et al. 1994), and all gapped sites were removed. To obtain
a phylogenetic overview of the data set, sequences were
concatenated, LogDet distances were computed with
LDDist (Lake 1994; Lockhart et al. 1994; Thollesson
2004) from which phylogenetic networks were constructed
with Neighbor-Net as implemented in splitstree 4 (Huson
and Bryant 2006). A Java program was written to count
the different types of sites and is available upon request.
For each alignment, the user gets the numbers of type 1,
2, 3, 4, and 5 sites. Sites with gaps have been ignored.

FIG. 3.—Comparisons used in the present study. (a) Neighbor-Net (Bryant and Moulton 2004) of 45 concatenated alignments of chloroplast
proteins representing all taxa of the old data set. Marked with colored boxes are the groups used in the analyzed comparisons. Groups 1 (red, eudicots)
and 2 (green, angiosperms) were proposed in Ané et al. (2005). In addition to those, 2 more groups were chosen. Group 3 (blue) contains all
angiosperms and 2 gymnosperms, group 4 (turquoise) contains group 3 and all mosses and ferns. (b) Neighbor-Net of 58 concatenated alignments of
chloroplast proteins representing taxa in the second data set. Groups used in the comparisons are indicated.

Proportions of Variable Sites 1515



Results
Maximum Likelihood Analyses

We have investigated the extent to which time revers-
ible substitution models describe the evolution of sequences
that have evolved under a Tuffley and Steel (1998) model
where the proportion of variable sites, pvar does not remain
constant across all lineages. Figure 1 shows the relative fit
(log likelihood scores) of homogeneous, RAS, and 3 COV
models to these simulated data. When the sequences have
evolved under the comparatively simple Tuffley–Steel
model, more complicated COV models nevertheless gave
improved likelihood scores both when pvar was constant
across all lineages and when pvar was incrementally in-
creased to 0.3 in 2 nonadjacent lineages. Changes in pvar

. 0.16 resulted in differences of log likelihood for repli-
cates for a given heterogeneous model that exceeded the

differences among different heterogeneous models for
a given pvar. As further shown in figure 1, log likelihood
values for the different substitution models began to con-
verge as pvar increased in nonadjacent lineages. For these
data, tree building exhibited low reconstruction accuracy
(fig. 2). A change in merely 8–12% of the invariable sites
becoming variable in nonadjacent lineages caused sufficient
topological distortion (long branches leading to sequences B
and C) to mislead maximum likelihood (lset 5 1, assumed
discrete gamma, estimated alpha; fig. 2a), parsimony
(fig. 2b), and Bayesian (lset 5 1, assumed Huelsenbeck
COV model, estimated switching rates; fig. 2c) tree building.
Thus, although RAS and heterogeneous COV models pro-
vided an improved fit to the sequences, as pvar increased
in nonadjacent lineages it became more difficult to distin-
guish among the different heterogeneous models, and neither
RAS nor a COV model was sufficient to allow for reliable

FIG. 4.—Influence of groups compared upon relative proportions of inferred N3 and N4 sites in chloroplast-encoded proteins. Proportion of proteins
in different group comparisons is given on the y axis. Proportions of N3 and N4 sites per protein are indicated on the x axis. Groups compared are shown
in figure 3, comparisons (inset) are listed in table 1. (a) Ingroup–outgroup comparisons. (b) Comparisons of monophyletic groups.
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reconstruction of the true phylogeny with only moderate in-
creases in pvar. This underscores a significant and seldom ex-
amined effect of pvar in phylogenetic inference.

Contingency Tests

Characterization of the COV-like properties of se-
quence data can also be made using contingency tests.
The test of Ané et al. overcomes problems of interpreting
the W statistic with real data that were not solved by
Lockhart et al. (1998). In doing so, these authors also de-
scribed the impact that taxon sampling is expected to have
on the power of the test. They studied this for the case of 2
monophyletic groups in terms of the edge lengths within (t)
and between (T) compared clades. However, in implement-
ing the test, these authors compared a monophyletic group
and a paraphyletic group. Although, the test is still validly
applied in this case, we report that the expectations for per-
formance of the test differ from that described when 2
monophyletic groups are compared. In demonstrating this,
2 different data sets were analyzed. The first data set (#1)
comprised 29 land plants and algae (fig. 3a) and 42 chlo-
roplast proteins. In the second data set (#2), there were 26
land plants (fig. 3b) and 57 chloroplast proteins. The con-
tingency test of Ané et al. (2005) was adapted to investigate
protein instead of nucleotide sequences (source code avail-
able upon request). As in Ané et al. (2005), we identified
groups for comparison: (group 1) eudicotyledons, (group 2)
angiosperms, and (group 3) angiosperms and gymno-
sperms. We also considered (group 4) angiosperms, gym-
nosperms, moss, and ferns. In the implementation of the test
of Ané et al. (2005), each of the first 3 groups was compared
against the rest of the data set. In our implementation, 2
monophyletic groups were compared. The N3 and N4 sites
in the alignment were counted for each comparison using
a Java script and plotted as histograms (fig. 4).The propor-
tions of N3 and N4 sites among all sites are shown in table 2.

A striking feature of the aligned sequence data are the
different proportions of N3 and N4 sites among different
groups of sequences. In comparisons of a monophyletic
versus paraphyletic group, the number of N3 sites greatly

exceeds the number of N4 sites. All proteins had at least
20% N3 sites, and in 16% of the proteins .70% of all sites
were N3, whereas no protein had an N4 site (fig. 4a). In some
proteins, more than 80% of all sites were N3 or N4 sites. In
the comparison of 2 monophyletic groups, far fewer N3

and N4 sites were found and a considerable greater balance
between the numbers of N3 and N4 sites was observed
(fig. 4b). Most proteins had ,5% of either N3 or N4 sites,
the maximum number of N3 or N4 sites lies between 40%
and 50%. Ané et al. (2005) detected 21 proteins that were
inferred to reject the RAS model using nucleotide site pat-
terns. Using the same groups and amino acid site patterns
(instead of nucleotide site patterns), we found that 28/42
(67%) of the proteins tested (data set #1) would reject
the RAS model in all comparisons of the ingroup versus
outgroup type. By contrast, only one protein out of 57 in-
vestigated (data set #2), rbcL, rejected RAS in all compar-
isons of monophyletic groups (table 3). Thus, balanced
verses unbalanced sampling of sequences gave very differ-
ent results in terms of evidence for COV-like properties of
the sequences.

A further property of the test statistic W also suggests
caution in its application. This is that W can become neg-
ative (or close to 0) when distributions of variable sites in
the groups being compared become sufficiently different, as
might happen if the spatial pattern of substitution differs
from that expected under time reversible COV models.
Thus, unexpected but nevertheless COV-like patterns could
lead the W statistic to underestimate the heterogeneity of the
substitution process. The expected value w of W can be
written as:

w5 p12 � p1p2;

where pi is the probability that a site has varied in group 1 or
2 and where p12 is the probability that a site has varied in
group 1 and group 2. Under both the Tuffley–Steel model
and the RAS model w � 0. However, if the distribution of
variable sites has evolved in a more complex manner than
envisaged by Tuffley–Steel, then it can be shown that
w � 0. For example, consider a model where sites fall into
4 classes depending on whether they are variable or invari-
able in the 2 groups G1, G2, and let

vi 5 Proportion of variable sites in group Gi,
v12 5 Proportion of variable sites in groups G1 and G2,
pi 5 Probability that a site that is variable in Gi is varied in

Gi, and
p12 5 Probability that a site that is variable in G1 and G2 is

varied in G1 and G2.
Then pi � pivi and p12 � p12v12, and for a substitution

process that is group based (e.g., Jukes and Cantor; Kimura
2P and Kimura 3ST models), we also have p125p1p2 and
w � p1p2ðv12 � v1v2Þ. If the proportion of variable sites in-
creases in G2 whereby the variable sites in G1 are a subset
of the variable sites in G2, then the proportion of sites vari-
able in both G1 and G2 will equal the proportion of sites
variable in G1, thus v12 5 v1 and w � 0 because
w � p1p2ðv12 � v1v2Þ5p1p2v1ð1 � v2Þ � 0. However, if
there is little, or in the extreme case, no overlap in the sites
that are variable in G1 and G2, then w can take a negative
value.

Table 2
Comparisons of Group Aversus Group B and Proportions of
N3 and N4 Sites among All Sites

Comparison Group A Group B pN3 pN4 pN3/pN4

a 1 All others 0.498 0.005 99
b 2 All others 0.408 0.019 22
c 3 All others 0.345 0.028 12
d 4 All others 0.233 0.049 4.7
e 5 6 0.108 0.067 1.6
f 5 7 0.045 0.109 0.41
g 5 8 0.077 0.112 0.68
h 6 7 0.035 0.141 0.25
i 6 8 0.067 0.144 0.46
j 7 8 0.091 0.063 1.4

NOTE.—Group designations refer to those shown in figure 3a and b. The

columns pN3 and pN4 indicate the total number of N3 and N4 sites, respectively,

divided by the number of all sites compared. In comparisons a–d, 9,490 site patterns

in 42 alignments were investigated (data set #1), in comparisons e–j, 11,584 site

patterns in 57 alignments were investigated (data set #2).
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As a simple example, this could entail a hypothetical
protein 100 amino acids in length. In G1, the 30 N-terminal
sites of this protein become variable but the 70 C-terminal
sites remain constant, whereas in G2, the 30 C-terminal sites
of X become variable but the 70 N-terminal sites remain

constant. In this case, w � 0 even though the proportion
of variable sites in the 2 groups is similar or the
same (v1 5 v2) provided that v12,v2

1 (because if v1 5 v2,
then w � p1p2ðv12 � v1v2Þ5p1p2ðv12 � v2

1ÞÞ because
w � p1p2ðv12 � v1v2Þ5p1p2ð0 � ð0:3 � 0:3ÞÞ,0.

Table 3
Proteins Rejecting a RAS Model at P 5 0.95

Protein Comparison

a b c d e f g h i j
atpA * * * * * * * � � �
atpB * * * * * * * * � �
atpE * * * * � � � * � �
atpF * * * * � � � � � �
atpH � * * * � * � * � *
atpI * � � * � *
cemA � � � � � �
clpP � � � � � *
petA * * * * � * � * � �
petB * � * * � * � * � �
petD * * * * � � � � � �
petG * * * � � �
petL � � � � � �
petN � * * * � *
psaA * * * * * * � * * *
psaB * * * * * * * � * *
psaC � � * * � � * � * *
psaI � � � � � �
psaJ * � * * � � � � � �
psbA � * * * � � � � * �
psbB * * * * * * � * � �
psbC * * * * � � � * * *
psbD * * * * * � � � � �
psbE � � * � � � � � � �
psbF * � � � � � � � � �
psbH * * * * � � � � � �
psbI � � � � � �
psbJ * * * * � � � � � �
psbK * * * * � � � � � �
psbL * � * � � � � � � �
psbM � � � � � �
psbN * * � � � � � � � �
psbT � � � � * * * * � *
psbZ � � � � � �
rbcL * * * * * *
rpl14 � � � * � � � � � �
rpl16 * * * * � * � � � �
rpl2 * * * * * * � * � �
rpl20 * * * � * � � � � �
rpl32 � � � � � �
rpl33 � � � � � �
rpl36 � � � � � �
rpoB * * * * � � � * � �
rpoC1 * * * * � � � * � �
rpoC2 * * * * * � � * � �
rps11 * * * * � � � � � �
rps12 * � � � � � * � � �
rps14 * * * * * � � � � �
rps18 � � � � � � � � � �
rps19 * * * * � � � � � �
rps2 * * * * � � � � � �
rps3 * * * * � � � � � �
rps4 * * * * * � � � � �
rps7 * * * * � � � � � �
rps8 * * * * � � � � � �
ycf3 * * * * * � � � � �
ycf4 � � � � � *

NOTE.—Comparisons a–j refer to those in table 2. An asterisk indicates that RAS was rejected at P 5 0.05, a dot indicates that RAS was not rejected, and empty

elements indicate that the comparison was not performed (gene not present or paralogous [red lineage rbcL] in at least one genome compared).
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Discussion

For confidence in the reliability of tree building from
highly diverged sequences, it is essential to develop low
parameter substitution models that capture the heteroge-
neous complexity of sequence evolution. However, as
we have illustrated, current methods need to be applied cau-
tiously in characterizing the evolutionary properties of
highly diverged sequences, and our current understanding
of sequence evolution is limiting for model development. In
this respect, it is important to note that tests of heterotachy,
which we have not discussed (e.g., Lopez et al. 1999; Misof
et al. 2002; Susko et al. 2002; Baele et al. 2006), while be-
ing informative are nevertheless not sufficient for develop-
ing models of sequence evolution. The reason is that
different processes of change can lead to very similar pat-
terns of heterotachy. These tests cannot distinguish an evo-
lutionary model where there is a constant rate of evolution,
but different proportions of variable sites in different line-
ages (the model studied by Lockhart and Steel 2005), from
a model where there is the same proportion of variable sites
in different lineages and lineage-specific rates of substitu-
tion (the scenario studied by Felsenstein 1978). This dis-
tinction is important because as demonstrated here when
pvar changes, model fitting can favor a model that does
not improve phylogenetic accuracy. Contingency tests to
identify COV-like properties may seem promising, but their
implementation is problematic. Sampling of taxa can sig-
nificantly impact on the outcome of the test and deciding
upon an objective sampling criterion is not straightforward.
In the present study, the contingency test of Ané et al.
(2005) gave very different results depending on whether
comparisons were made between 2 monophyletic groups
or a monophyletic group and a paraphyletic group. Both
comparisons are valid, but which result is correct? Further,
it is unclear whether this difference is due to the much
greater divergence among the paraphyletic species (this
group containing algae, e.g., which have had much more
time to evolve than sites in the eudicots; hence, many N3

sites are expected even under a RAS model) or whether
it is because the substitution properties in the algal sequen-
ces differ significantly from those in the higher plants
(Lockhart et al. 2006; Rodriguez-Ezpelata et al. 2007).

A recent development in modeling substitution proper-
ties of sequences is to fit a mixture of substitution models to
each site in an alignment of sequences (e.g., Pagel and Meade
2004; Lartillot et al. 2007). This approach can also be ex-
tended to fit a mixture of trees with different branch lengths
to the sequences (e.g., Kolaczkowski and Thornton 2004;
Zhou et al. 2007). There are issues of identifiability with
complex mixture and COV models (Allman and Rhodes
2007), but potentially tests might be developed using such
models to better characterize temporal heterogeneity in the
evolution of sequences. Such developments will be impor-
tant because although RAS models have generally improved
phylogenetic inference, as we demonstrate here, they are un-
able to account for lineage-specific patterns of changing pvar.

They, and currently implemented COV models, are unable to
account for the form of heterotachy that most likely describes
the evolution of biological sequences, the further develop-
ment of mixture models is of interest in this respect.
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