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Exact Capacity Distributions for MIMO Systems
With Small Numbers of Antennas

Peter J. Smith, Member, IEEE, Lee M. Garth, Member, IEEE, and Sergey Loyka, Member, IEEE

Abstract—It is well known that multiple input multiple output
(MIMO) systems offer the promise of achieving very high spec-
trum efficiencies (many tens of bit/s/Hz) in a mobile environment.
The gains in MIMO capacity are sensitive to the presence of spa-
tial correlation introduced by the radio environment. In this letter
we consider the capacity outage performance of MIMO systems
in correlated environments. For systems with large numbers of an-
tennas Gaussian approximations are very accurate. Hence, we con-
centrate on systems with small numbers of antennas and derive
exact densities and distribution functions for the capacity, which
are simple and rapid to compute.

Index Terms—Information rates, MIMO systems, wireless
channel models.

I. INTRODUCTION

SINCE the pioneering work of Foschini and Gans [1] and
Telatar [2], multiple input multiple output (MIMO) systems

have received considerable attention in recent years as they have
the potential to provide quantum leaps in capacity. The capacity
of MIMO systems has been intensively studied. For uncorrelated
Rayleigh fading there are many exact results available: the
mean capacity [2], capacity variance [3], the characteristic
function [4]. In addition there are many useful asymptotic
results [5] including a Gaussian approximation [3]. For the
non-Rayleigh case, simulations are usually required. For the
correlated Rayleigh case, many results are currently emerging
[6]–[9].

Our contribution is for small numbers of antennas where
Gaussian approximations to the capacity become less useful.
We have not found any exact results for capacity distributions in
the literature. Hence, in Section III we derive the exact density
and distribution function for MIMO capacity in a correlated
Rayleigh channel. Firstly, in Section II we describe the system
model and some link capacity results. After the derivations we
give results and conclusions in Section IV.

II. SYSTEM MODEL AND LINK CAPACITY

In this letter, we assume a single-user MIMO system with no
channel state information (CSI) at the transmitter, perfect CSI at
the receiver, and employing equal power transmission over a flat
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Rayleigh fading channel. For such a system with transmit
and receive antennas the received signal is

(1)

where is the received signal vector, is the complex
transmitted signal vector and is an complex

channel gain matrix. The AWGN vectorconsists of inde-
pendent noise components of modulus variance normalized to
1. The capacity of such a system is now very well known [1],
[2] and is given by

(2)

where is the identity matrix, is the av-
erage signal-to-noise ratio (SNR) per receive antenna,

, , and the matrix
is given by

for
for

(3)

where denotes the conjugate transpose.
For correlated Rayleigh channels a separable correlation

model is often assumed [7], [10], whereis written as

(4)

and represent the correlations induced at the receiver
and transmitter, respectively. The matrixis an com-
plex channel gain matrix containing i.i.d. complex Gaussian en-
tries with unit magnitude variance. Various measurements have
been presented in the literature which support the accuracy of
this form of the correlation matrix, for example, [6]. Hence, cor-
relation may be present at either or both ends of the MIMO
link. Here we consider channels with correlation at one end
only, and we denote these channels as “semi-correlated” fol-
lowing [9]. Note that recent measurements conducted in down-
town Helsinki show that the semi-correlated channel model is
valid for certain urban environments [8]. In addition, we assume
that the correlation is present at the end of the link with more an-
tennas. This is true for SIMO or MISO systems and includes the
most interesting special case .

With these correlation assumptions we define ,
for , and , for which

gives

(5)

In (5) we have factorized the hermitian matrix into ,
where is a diagonal matrix containing the nonnegative eigen-
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values of . Since is unitary, the matrix has the
same statistics as. Hence, we have

(6)

where we have absorbed the constant into
. If we define , to be the

eigenvalues of , we can rewrite (6) as

(7)

III. D ERIVATIONS

To derive the density of , we need the following results. The
joint density of elements of is given by [11]

(8)

where is defined by the determinant

...
...

...
...

, and . Here, the ’s
areorderedeigenvalues. The Jacobianof the transformation
from elements of to eigenvalues can be written [12]

(9)

Therefore, the joint distribution of the ordered eigenvalues
has the form

(10)

Note that the denominator is independent of .
Finally, for the unordered eigenvalues with for

, the joint distribution is

(11)

A. SIMO or MISO Systems

For , corresponding either to a single input multiple
output (SIMO) system or a multiple input single output (MISO)
system, the capacity (6) reduces to

(12)

where the ’s are independent unit exponentially distributed.
If we set , for unequal ’s we have [13]

Therefore, for the density and distribution of are

(13)

(14)

Note that the assumption that the’s are unequal is valid for
practical wireless channels. Nevertheless, the distribution for
the case of subsets of equal’s can easily be derived.

B. Dual Input or Dual Output Systems

Here we have , corresponding to either or
. We assume since the single antenna case was

given above. The density (11) has the specific form

...
...

...
...

...

(15)

Note that (15) reduces to the well-known result [2] for un-
correlated fading when the’s are all equal. However, demon-
strating this requires successive application of Cauchy’s mean
value theorem and multiple differentiation of the numerator and
denominator in (15). This is beyond the scope of this letter.

The determinant in (15) can be rewritten as

where

for
for

and is the determinant of the matrix without the last two
columns and the-th and -th rows. For , we have
. Thus, the density can be reduced to the form

(16)

where the ’s are consolidated weights. Applying the required
transformations, the density and distribution of

for are given by

(17)
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(18)

Note that (17) and (18) are in closed form except for the
integral

(19)

The integral in (19) is proportional to the distribution function
of a Generalized Inverse Gaussian (GIG) random variable [14].
There appears to be no established algorithms for computing
this distribution function so we resort to numerical integration.

C. Larger Systems

For the case of (with ), we again begin with the
joint eigenvalue density (11). Transforming from
to , ,

, and integrating out and , the distribution
of is

(20)

with

where is the determinant of the matrix in (15) without the
last three columns and the-th, th and th rows, and

for , , and is 1, otherwise.
For larger systems, results such as (14), (18) and (20) are

of limited use, since capacity outage probabilities require an
dimensional numerical integral and Monte Carlo sim-

ulation may be preferable. In addition, a central limit theorem
for random determinants may be used to give a Gaussian ap-
proximation to the capacity [3], which is surprisingly accurate
even for moderate numbers of antennas.

Fig. 1. Capacity distributions form = 1 and2 from analysis and simulation.

IV. SIMULATION RESULTS AND CONCLUSIONS

To verify our analysis, we have calculated the capacity dis-
tribution for a -spaced four-antenna transmitter with spatial
correlation defined for the mobile in [10]. For the one-an-
tenna and two-antennae receiver cases, Fig. 1 shows the capacity
distributions, calculated from (14) and (18) with , along
with corresponding Monte Carlo simulation results. Our theo-
retical distributions line up exactly with the simulation results.
Hence, we have derived the exact density and distribution func-
tion for MIMO capacity in a correlated flat Rayleigh fading
channel where .
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