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Abstract 

 

Batch extraction of proteins directly from raw, whole milk is described with a focus on 

design considerations for on-farm implementation. A demonstration of single-stage stirred 

tank extraction of bovine lactoferrin onto cation exchangers shows that processing can be 

achieved, with no pre-treatment of raw milk, within the timeframe required to milk an 

individual animal. The extraction rates of two cation exchange media, SP Sepharose Big 

Beads™ and SP Sepharose FF™ (GE Healthcare, Uppsala, Sweden), are compared, with the 

smaller FF media (average diameter 90 μm) having a faster adsorption rate than the larger 

BB media (155 μm). Maximum percentages of original protein extracted by SP Sepharose 

FF were 67%, 80%, 88% and 90% for extraction times of 5, 10, 20 and 30 minutes, 

respectively. The composite nonlinear kinetic model of Rowe et al [1] was found to fit the 

batch adsorption of LF from raw milk as a function of chromatography media volume to 

milk volume ratio, Φ. At extraction times of 30 minutes and longer, extraction % was almost 

independent of Φ over the range of values tested. 

 

On-farm extraction of proteins shows promise for both the production of minor, high-value 

proteins from conventional milk and for production of recombinant proteins from the milk 

of transgenic animals. The main advantage of the stirred tank process is that protein 

extraction is rapid and is achieved in a single step without the need for pre-treatment of 

milk. The process is not limited to ion exchange but could be implemented using other 

chromatographic techniques, such as affinity or reverse-phase chromatography. 

 2



Introduction 

 

Over the past two decades, the dairy industry globally has moved from being based solely 

on commodity food production to earning a significant income from specialty proteins. Two 

examples are lactoferrin and lactoperoxidase, which can be isolated from skim milk or 

cheese whey by cation exchange because of their high isoelectric points compared to the 

other major whey proteins, α-lactalbumin, β-lactoglobulin, bovine serum albumin and 

immunoglobulins, e.g. [2]. Another need for fractionation of milk proteins arises from the 

production of recombinant proteins from the milk of transgenic animals [3-15].  Typical 

concentrations, molecular weights and isoelectric points of whey proteins are given in Table 

1 [16]. 

 

Pre-treatment of milk prior to chromatographic capture of proteins is virtually universal [17-

39].  In a review of downstream processing of recombinant proteins from transgenic 

feedstock, Nikolov and Woodard [13] identified the removal of fat globules and casein 

micelles from milk by centrifugation, acid precipitation, and/or membrane filtration as being 

critical for reducing fouling in subsequent purification steps. 

 

Four recent examples of typical pre-treatments in laboratory studies that are intended to be 

relevant to industrial processes are described briefly here by way of example. Hahn et al [34] 

first centrifuged milk at 4,420 g for 30 minutes to remove fat, then acidified to precipitate 

casein and centrifuged at 17,700 g for 30 minutes, diluted with distilled water and finally 

filtered through 0.45 μm filter before applying whey to a cation exchange chromatography 

column. Doultani et al [39] adjusted the pH of mozzarella cheese whey with H2SO4 and 

passed it through Whatman No. 5 filter paper before applying it to their cation exchange 

column. Ye et al [38] used both anion and cation exchange chromatography to isolate α-

lactalbumin, β-lactoglobulin, lactoferrin (LF) and lactoperoxidase (LP) from rennet whey 

produced from skim milk that had first been defatted by centrifugation. After incubation for 

one hour with rennet, the caseins were separated by filtration and the whey thus produced 

was then centrifuged at 10,000 g for 25 minutes before applying it to the column. Lyndsay et 

al [12], purifying recombinant DNA-derived factor IX from the milk of transgenic pigs, used 

EDTA to dissolve casein micelles, followed by centrifugation to remove fat and 5-fold 

dilution in heparin loading buffer prior to loading onto a heparin-Sepharose FF column. 
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Proteins should be separated from a source material as fast and in as few steps as possible to 

avoid loss of activity and yield [40, 41]. Losses due to individual steps and complex 

separation sequences can be severe. For example, Nuyens and Vav Veen [42] reported that 

acid precipitation of casein resulted in 4 – 8 times more LF entrapped in the casein pellet 

than in the whey fraction and Denman et al [3] lost 50% of human tissue-type activator 

produced in transgenic goats milk in the acid precipitation step, and obtained just a 25% 

overall yield. 

 

The concept of capture of high-value proteins from raw whole milk on the farm directly 

after milking has been patented [43] and would better fit with the accepted principles of 

bioseparation process design i.e. fast processing with a minimum of steps. Such a process 

would need to be fast, simple and avoid the extensive pre-treatments described above. 

 

A typical bovine milk contains 13% solids, with 4% fat present as an emulsion of globules 

with diameters up to 10 μm and caseins present as a colloidal suspension of particles with 

diameters up to 0.1 μm  [44].  Fat globules cause problems for chromatographic separations, 

as they block packed columns as soon as the feed is introduced. Therefore, fat is usually 

removed prior to cation exchange capture of LF and LP from skim milk. The authors have 

shown, in related work [45], that there is no need to remove fat globules or casein micelles 

prior to extracting LF and LP from raw, whole milk using a packed bed of SP Sepharose Big 

Beads™ (GE Healthcare, Uppsala, Sweden), provided that the processing temperature is 

sufficiently high. More than 100 column volumes of raw, untreated milk at 35 oC could be 

passed through a 5 cm height packed bed at 300 cm/hr without exceeding the maximum 

backpressure of the media (0.3 MPa), and a dynamic media loading capacity of 

approximately 48.6 mg/mL was achieved. 

 

Milk is normally processed at 4 - 10 °C because of the need to minimise bacterial growth 

during long holding periods and multiple process steps in the factory. At these temperatures, 

milk fat hardens or solidifies, causing blockage of chromatography columns. Oleic acid 

makes up 30 to 40% of the total fatty acids in milk [44] and its melting point (14 oC) 

corresponds well with the temperature below which milk no longer passes through the bed 
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[45]. At higher temperatures, oleic acid presumably softens milk fat globules, allowing them 

to deform and pass through the inter-particle voids. 

 

If proteins can be extracted quickly by chromatography immediately after milking, 

microbial growth may not be a factor. Milk intended for further processing can easily be 

cooled after only a slight delay as it exits the chromatography column, while on-processing 

(and therefore bacterial count) of transgenic milk is not an issue once the target protein has 

been extracted. 

 

The purpose of this study was to explore design parameters for the batch extraction of 

proteins directly from un-treated, raw, whole milk by ion exchange chromatography. For 

reasons described below, a single-stage stirred tank batch system was chosen. LF was 

chosen as a model protein, as it could be extracted (along with LP) using cation exchange 

without interference from the major milk proteins. SP Sepharose Big Beads™ (BB) (GE 

Healthcare, Uppsala, Sweden) were chosen initially because it has US Food and Drug 

Administration approval for food use (CAS Reg. No. 676618-71-6, FDA notification FCN 

000 443) [46]. A series of experiments were carried out to assess the kinetics of LF 

adsorption on BB and SP Sepharose FF™ (FF) cation exchange media (GE Healthcare, 

Uppsala, Sweden) and to determine the effects of processing parameters on yield. 
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Design Considerations 

 

Our objective was to incorporate a chromatographic extraction unit into an existing 

automated milking system (AMS) [47] and extract proteins on-farm, directly from raw, 

untreated milk, immediately after each individual milking [43].  Our success with raw milk 

flow through a packed column of BB media at 35 oC (nominal temperature) indicated that a 

column 5 cm high by 36 cm diameter, could cope with extraction of virtually 100% of the 

LP and 95% of the LF from 33 cows [45]. Therefore we initially envisaged an appropriate 

number of such columns or one larger column to cope with the number of individual 

milkings per day per AMS. 

 

However, the problem of microbial growth would become an issue for a column repeatedly 

loaded with raw milk and maintained at 35 oC over the course of many hours. Such an 

arrangement would require column cleaning and sanitation between milkings. The adsorbed 

protein is unlikely to withstand prolonged storage at warm temperatures or repeated 

cleaning. Both aspects could be dealt with by eluting the protein between milkings but in 

this case the column should be sized appropriately for a single milking.  

 

We can explore the approximate design dimensions of such a packed-bed column with the 

above information plus our observation that an average milk volume from the AMS per 

milking is approximately 15 L. The total LF and LP in 15 L of milk is approximately 8 g 

and the dynamic media capacity is approximately 50 mg/mL, so about 150 mL of media is 

required per milking. If we set the total processing time arbitrarily to 3 minutes per milking 

to minimise the time the milk spends at 35 oC, and the linear flow rate to 300 cm/hr, then the 

diameter of the bed is fixed at 36 cm. 150 mL of media corresponds to a bed height of only 

1.5 mm, which is clearly not practical. Reducing the column diameter to increase bed height 

would result in either correspondingly faster linear flow rates (which would reduce dynamic 

capacity and cause faster column blockage [45]) or longer processing times (which would 

increase microbial growth and is constrained by the need to fit the process within the normal 

time taken to milk an individual cow). 

 

Figure 1 shows the effect column diameter has on the three design parameters, bed height, 

time required for processing at 300 cm/hr and the flow rate required to process in 3 minutes. 

Bed height does not reach a practical (though still very small) value (2 cm) until column 
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diameter is reduced to 10 cm but at this point the time required to process 15 L of milk 

approaches 40 minutes. Alternatively, at this diameter the flow rate would need to be almost 

4000 cm/hr to complete processing in 3 minutes. 

 

These design constraints suggest that a packed-bed column may not be the best approach to 

capture of proteins from individual cows. 

 

Another design consideration is that an AMS can identify each individual animal through, 

for example, use of radio frequency identification (RFID) tags, can control milking events, 

collect milking data for each animal, interface with on-line sensors and control ancillary 

equipment. This raises the possibility of linking an adsorption device to an AMS to optimise 

extraction from each animal. Data on final product yield and activity for individual animals, 

coupled with information gathered from the AMS, would give the farmer the ability to 

identify high-producing animals from the herd and to relate various farm management 

practices (milking frequency and time, feeding regimes, etc) to productivity of specific 

protein targets rather than gross measures of total milk volume or milk solids. 

 

Finally, the regulatory process for production of recombinant proteins intended for human 

therapeutic use from the milk of transgenic animals may be more readily satisfied if the 

protein could be traced back to each individual animal throughout the production process. 

For example, if an animal developed signs of ill-health or infection, batch traceability would 

allow product originating from that specific animal to be withdrawn for further testing or 

disposal. Likewise, problems with individual product lots picked up during the QA process 

could be traced back to the individual animal rather than the whole herd. 

 

The above considerations led us to investigate protein adsorption from individual animals 

using a single-stage stirred tank. Straining is the simplest method to recover the ion 

exchange media in a compact volume after adsorption. The need to retain flow through the 

bed as it builds up on the strainer mesh means that the milk should be maintained at or near 

the temperature at which it comes out of the cow. Adsorption kinetics, which should ideally 

be fast enough to fit within the time taken to milk each animal, would also be higher at this 

temperature than if the milk were cooled. 
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Materials and Methods 

 

Raw milk was obtained from the Greenfield dairy farm site (Dexcel Limited and Sensortec 

Limited, New Zealand), from cows milked using an automated milking system. Milk was 

held after collection at 35 to 37 oC with gentle stirring to prevent fat separating under the 

influence of gravity. 

 

Chemicals were obtained from BDH Chemicals (Poole, England) unless otherwise specified. 

Bovine lactoferrin standards were obtained from Sigma-Aldrich (St Louis, MO, USA) and 

Bethyl Laboratories (Montgomery, Texas, USA). Affinity purified goat polyclonal anti-

bovine lactoferrin antibody (1 mg/mL) was obtained from Bethyl Laboratories and used for 

both ELISA and surface plasmon resonance (SPR) analysis. 

 

SP Sepharose Big Beads™ and SP Sepharose FF™ (GE Healthcare, Uppsala, Sweden) were 

used to adsorb lactoferrin from untreated milk. Media was equilibrated before use in 10 mM 

phosphate buffer (10 mM mono and dibasic sodium phosphate) at pH 6.7. LF was eluted in 

the same buffer containing 1.0 M NaCl in a single step. 

 

To determine equilibrium isotherms, 0.2 g of equilibrated, swelled, drained media was 

quantitatively weighed into 10 mL centrifuge tubes. Lactoferrin from samples of known 

purity (Tatua Dairy Cooperative Limited, Morrinsville, New Zealand) was constituted to 

concentrations ranging from 0.05 to 20.0 mg/mL. 5 mL of each solution was added to the 

media and left for 24 hours on a rotating plate within an incubator at 37 ± 0.2 oC. The tubes 

were then centrifuged to remove the media from suspension and the supernatant was filtered 

using a 5 μm filter. The equilibrium lactoferrin (CLF
*) concentrations were determined using 

the Bincinchoninic acid (BCA) protein assay (Pierce, Rockfield, IL, USA), sensitive 

between 20 and 1200 μg/mL. The amount of protein bound to the media was calculated 

from the difference between the initial and final solution protein concentration and the 

equilibrium binding capacity for lactoferrin, QLF
*, were calculated by dividing the amount 

bound by the volume of the media. 

 

Extraction rates of lactoferrin from raw milk in stirred tanks were determined for both media 

as follows. Aliquots of 2.0, 2.5 and 4.8 mL of swelled, drained media were added to 200 mL 
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of milk in beakers, placed in a water bath at 36 ± 1 oC. The ratios of media volume to milk 

volume in these experiments were equivalent to 250 mL of media added to 25, 20 and 10.4 

L milk, respectively. Gentle stirring (150 rpm) was applied using a multi-head stirrer system 

(Boltac Industries, Hamilton, New Zealand). 1 mL samples were withdrawn from the 

milk/media slurry by syringe at timed intervals, passed through a 5 µm filter (Sartorious AG, 

Goettingen, Germany) and analysed for lactoferrin concentration. 

 

Lactoferrin concentrations during batch adsorption kinetics experiments were determined 

using the method of Indyk and Filonzi [48], using a surface plasmon resonance technique 

(SPR) on a Biacore 3000 instrument (Biacore, Uppsala, Sweden). Raw whole milk samples 

were centrifuged at 4800 g (Min-Spin, Ependorf, Hamburg, Germany) for 2 minutes to 

remove fat and filtered using a 5 μm filter before serial dilutions (to 2000x) were made in 

500 mM HBS-EP buffer (10 mM HEPES, pH 7.4 with 3 mM EDTA and 0.005% (v/v) 

surfactant P20). The running buffer was obtained from Biacore as 150 mM HBS and NaCl 

concentrations were enhanced to 500 mM for sample and standard preparations to reduce 

non-specific interactions. Lactoferrin concentrations were also measured using a bovine 

lactoferrin Elisa kit (Bethyl Laboratories) with some modifications as described by Turner et 

al. [49]. 

 

Slurry draining experiments were carried out in a 0.5 m Perspex tube (70 mm i.d.) with a 44 

μm stainless steel filter (mesh 325) (Mounts Wire Industries, Auckland, New Zealand) 

across one end, fabricated by placing the mesh (75 mm diameter) across the end of the tube, 

inserting the tube into a tightly fitting funnel and sealing with silicon sealant. A 12 mm PVC 

ball valve was attached to the outlet of the funnel. The tube was clamped in a vertical 

position with the mesh at the bottom and a three-bladed turbine impeller was inserted to a 

height of 5 cm above the mesh. Raw milk at 35 oC was poured in to a height of 35 cm and 

swelled, 45.8 mL of drained media was added (equivalent to 250 mL media per 15 L of 

milk). After about 30 seconds of mixing, the outlet valve was opened and the height of the 

milk/media slurry was recorded against time. 
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Results and Discussion 

 

The equilibrium adsorption isotherms for LF on BB and FF media are shown in Figure 2. 

The maximum static binding equilibrium capacity for LF (MW 77 kDa) BB media compares 

well with the manufacturer’s claims for dynamic capacity of bovine serum albumin (MW 67 

kDa) at 12 cm/hr loading rate [50]. Similarly, the maximum capacity of the FF media 

compares well with the manufacturer’s claims for human serum albumin (MW 67 kDa) of 

110 mg/mL. 

 

The maximum capacity of the media is very high for standard solutions at high 

concentration but QLF
* is strongly dependent on CLF

* below 1 mg/mL. Because the 

concentration of LF in milk (Table 1) is below 1 mg/mL, the media capacity in milk will be 

much lower than the maximum value shown in Figure 2. It may also be the case that other 

milk components will adversely affect the binding of LF but we did not investigate this.  

 

Figure 3 shows the LF concentration in milk versus time for a media volume to milk volume 

ratio, Φ, of 0.01 (equivalent to 150 mL media in 15 L milk) for BB media. Clearly, the 

adsorption is too slow to capture the majority of protein in the time required for individual 

milkings. 

 

Figure 4 shows the adsorption rates for a range of Φ values of FF media. The adsorption 

kinetics are much faster than for BB media (average diameter 155 μm), due to the smaller 

diameter of FF media particles (90 μm). The approach to equilibrium appears to be fast 

enough to absorb significant amounts of LF within a few minutes. At 45 minutes, the 

adsorption appears to be at or close to equilibrium. 

 

Rowe et al [1] presented a phenomenological kinetic (the composite nonlinear (CNL)) 

model for adsorption of proteins on suspended anion exchange media particles. The fit 

between the model and experimental measurements for bovine serum albumin adsorption 

was far superior to either the Langmuir [51] or the commonly used solid-film linear [52] 

kinetic models. Key equations from Rowe et al are reproduced below for the sake of clarity. 

The equation for the CNL model is: 
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In equation (1), q is the average solid-phase protein concentration per mL of media 

(mg/mL), qk is a kinetic capacity parameter for the solid phase (mg/mL), C is the average 

solution-phase protein concentration (mg/mL), Co is the starting solution-phase protein 

concentration (mg/mL), k is a rate constant (min-1), y(0) is the zero-time intercept when the 

term on the left hand side of equation (1) is plotted against time, t (min), and a is a time 

constant (min-1) which accounts for the approach to a steady-state adsorption regime. 

 

Following the original methodology [1], the parameters k and y(0) were determined for LF 

adsorption on FF media from the linear portion of a plot of the left hand side of equation (1) 

against t, using experimental values and adjusting qk to maximise the linear regression 

coefficient. At this stage, the time constant, a, was not determined. 

 

Again following the authors  [1], differentiation of equation (1) with respect to time gives 

the adsorption rate for t > 0, 
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and the initial adsorption rate is determined by twice differentiating equation (1) with 

respect to time, giving, at t = 0, 
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Equations (2) and (3) were solved using the differential equation solver function (“rkadapt”) 

in MathCad™ (Mathsoft, Cambridge, MA, USA) with the time constant, a, determined by 

adjusting an initial guess to minimise the sum of squares fit between the model and 

experimental data. 
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The curves in figure 4 show that the fit between the CNL model and experimental 

observations is very good, accounting for both the initial LF concentration and the media 

volume to milk volume ratio. Work is currently being undertaken to determine the effects of 

initial LF concentration and milk volume for a constant volume of FF media (250 mL) on 

the parameters k, a, y(0) and qk. If empirical functions for these parameters can be 

determined across the entire operating range for LF extraction from raw milk, this will allow 

a priori modelling of the extraction process. If the initial protein concentration is known, 

extraction times could be adjusted to obtain a specific protein capture % (set by economic 

considerations). Conversely, by measuring the protein yield for a known extraction time and 

milk volume, the initial LF concentration in the milk can be determined, indicating the 

productivity of a specific animal.  

 

Thus, the model could be used to control the extraction process in the industrial sense, to 

gather information for farm management, or as a method for gathering experimental data on 

various aspects of animal productivity in field trials. 

 

From the CNL model, we can predict the extraction % for a fixed volume of media and a 

range of milk volumes. Figure 5 shows the predicted extraction % of lactoferrin for 

reasonable volume yields of milk per individual animal (10 to 25 L), assuming a fixed media 

volume of 250 mL. For an extraction time of 10 minutes, extraction ranges from 60 to 80%, 

depending on the volume yield of milk. At 20 minutes extraction is between 75 and 88%. At 

higher extraction times, Φ makes only a relatively small difference to the extraction 

percentage obtained. 

 

At the end of adsorption, the loaded media must be recovered from the milk. When allowed 

to drain through a mesh in dead-end filtration mode, the retained media quickly builds up as 

a cake on the mesh and exerts a flow resistance so that the draining rate quickly falls nearly 

to zero. This drainage rate fall-off is especially severe if the milk/media slurry is allowed 

drain in an uncontrolled manner initially (e.g. by suddenly opening a valve), presumably 

because the media particles are driven into, and then plug, the mesh pores. However, if the 

media can be kept in suspension during drainage by stirring near the mesh surface, mesh 
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blockage does not occur and there is no media cake on the mesh to cause flow resistance 

until the very end of the process. 

 

Figure 6 shows the drain times for FF media at two stirrer rates. At the higher stirring rate, 

the milk/media slurry drains fast enough to fit within a reasonable timeframe for the process. 

The effect of the stirrer type and speed on the physical stability of the FF media is still to be 

determined but will clearly be important. If the FF media breaks up under stirring, a more 

rigid media may have to be used. 

 

On-farm processing of raw milk need not be restricted to ion exchange chromatography but 

could be applied to other chromatographic techniques, particularly affinity chromatography. 

For example, Protein A media could be used to recover immunoglobulins directly from 

standard or hyperimmune milk or from colostrum. Affinity chromatography might be used 

to extract recombinant proteins directly from the milk of transgenic animals quickly and at 

maximum yield and activity. 

 

The trade-offs between target extraction %’s, processing time, media volume per batch, final 

activity and yield of the target protein(s), and so on will be subject to economic 

considerations and will vary widely, depending on the objectives of particular extraction. 

For instance, on-farm extraction of LF and LP from milk, where the intention is to 

subsequently pass the milk on for further dairy processing, is a different prospect entirely 

from extraction of a recombinant protein from transgenic milk, where the exhausted milk is 

a waste product. 

 

However, the possibility that the milking shed can produce not only bulk milk but also, or 

even instead, chromatographic media loaded with specific target proteins ready for elution 

and further purification by a secondary processor, offers exciting possibilities for a range of 

applications.  
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Conclusions 

 

We have explored some design considerations for the on-farm, batch extraction of proteins 

directly from raw, untreated milk. Advantages of extracting proteins from individual animals 

include the minimisation of microbial growth and the potential for batch traceability 

between individual animals and final product lots. 

 

A demonstration of single-stage stirred tank extraction of bovine lactoferrin onto a cation 

exchanger shows that processing can be achieved within the timeframe required to milk an 

individual animal and can result in extraction of up to 80% of the original protein content of 

the milk in 10 minutes. No pre-treatment of the milk is required and the temperature of the 

milk as it is obtained from the cow is ideally suited to the extraction process.  

 

The composite nonlinear kinetic model of Rowe et al [1] can be used to fit the batch 

adsorption of LF from raw milk by cation exchange chromatography and offers the potential 

to control batch extraction time to meet specific target extraction levels for given initial 

protein concentrations. Conversely, the model will allow calculation of initial protein 

concentrations given extraction time, media volume to milk volume ratio and the final 

protein adsorption level achieved. 

 

The on-farm extraction of proteins shows promise for both the production of minor, high-

value proteins from conventional milk and for production of recombinant proteins from the 

milk of transgenic animals. The process is not limited to ion exchange but could be 

implemented using other chromatographic techniques, such as affinity or reverse-phase 

chromatography. 
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Symbols Used 

 

a time constant, min-1

C solution-phase protein concentration, mg mL-1

CLF* solution-phase protein concentration at equilibrium with 

solid-phase concentration, QLF*, mg mL-1 

Co initial solution-phase protein concentration, mg mL-1

k rate constant, min-1

q solid-phase protein concentration, mg mL-1 of media 

qk kinetic constant used in the CNL model, mg mL-1

QLF* solid-phase protein concentration at equilibrium with 

solution-phase concentration, CLF*, mg mL-1

y(0) zero-intercept for straight line fit of linear portion of equation (1) 

t time, min 

 

Greek  

 

Φ chromatography media volume to milk volume ratio 
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Tables 
 
 
Table 1. Typical concentrations of whey proteins and their isoelectric points [16]. 
 
Protein  Approx. Concentration Isoelectric point 
 in Whey (%)  
 
β-Lactoglobulin 0.30 5.35-5.49 
α-Lactalbumin 0.07 4.2-4.5 
Immunoglobulins 0.06 5.5-8.3 
Bovine serum albumin 0.03 5.13 
Protease-peptones 0.14 3.3-3.7 
Lactoferrin 0.003 7.8-8.0 
Lactoperoxidase 0.002 9.2-9.9 
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Figure Legends 
 
 
Figure 1. The effect of column diameter on design parameters. 
 
Figure 2. Equilibrium isotherms for lactoferrin on SP Sepharose Big Bead and SP Sepharose 

FF media, measured in a standard solution. The lines fitted through the points are 
from the Langmuir isotherm. 

 
Figure 3. Lactoferrin concentration in milk during batch extraction with BB media as a 

function of time, for three values of Φ. 
 
Figure 4. Lactoferrin concentration in milk during batch extraction with FF media as a 

function of time. Lines were calculated from the CNL model, using the following 
parameters: at Φ = 0.010, a = 0.29, qk = 62.7, y(0) = -0.21, k = 0.0731; at Φ = 0.013, 
a = 0.22, qk = 40.7, y(0) = -0.51, k = 0.1516; Φ = 0.024, a = 0.5, qk = 17.7, 
y(0) = -0.32, k = 0.3362.) 

 
Figure 5. Amount of lactoferrin extracted at various times as a function of Φ, expressed as 

milk volume corresponding to a fixed media volume of 250 mL. 
 
Figure 6. Milk/media slurry draining rate with stirring. 
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Figure 5 
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Figure 4 
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Figure 3 
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Figure 2 
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Figure 6 
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