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Abstract: Numerous approaches to student modeling have been proposed since 
the inception of the field more than three decades ago. hat the field is lacking 
completely is comparative analyses of different student modeling approaches. 
Such analyses are sorely needed, as they can identify the most promising 
approaches and provide guidelines for future research. In this paper we 
compare Cognitive Tutoring to Constraint-Based Modeling (CBM). We present 
our experiences in implementing a database design tutor using both 
methodologies and highlight their strengths and weaknesses. We compare their 
characteristics and argue the differences are often more apparent than real. For 
specific domains, one approach may be favoured over the other, making them 
viable complementary methods for supporting learning.   

  
 

1. Introduction 

Student modeling is one of the crucial components of Intelligent Tutoring Systems 
(ITS). Numerous modeling approaches have been devised over the years, such as 
overlay modeling, enumerative bug modeling, generative and reconstructive 
modeling, and constraint-based modeling [4]. The ITS community acknowledges the 
importance of evaluation. Early ITS projects focused on the development of student 
modeling approaches, and rarely evaluated the methods properly. Although the 
percentage of papers that include evaluation results has been growing steadily, they 
always relate to a single student modeling approach in isolation. For the maturation of 
the field, it is of critical importance to perform comparative analyses of various 
approaches. Unfortunately, such comparative evaluations are extremely difficult; it is 
a major undertaking to develop any ITS, let alone two for the same domain. 

In this paper we are interested in the differences between the student modeling 
approaches used in cognitive tutors and constraint-based tutors. We report on an 
initial case study in which we reimplemented a part of an existing constraint-based 
tutor as a cognitive tutor in order to compare and contrast the various features of these 
two approaches. We briefly overview cognitive tutors and constraint-based tutors. In 
section 4 we present the case study, followed by a comparative analysis of the two 
approaches. We give the conclusions in the final section. 
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2. Cognitive Tutors 

Cognitive Tutors are the most successful ITSs today [5]. Cognitive Tutors have been 
developed for a number of domains including algebra, geometry and LISP. They are 
based on the ACT-R theory of cognition [2], which claims that there are two long-
term memory stores: declarative and procedural. The theory explains human learning 
as going through several phases. The first involves learning declarative knowledge, 
including factual knowledge (such as theorems in a mathematical domain), which is 
represented as chunks. Declarative knowledge is later turned into procedural 
knowledge, which is goal-oriented and therefore more efficient to use. Procedural 
knowledge is represented in the form of production rules. In the last phase, the 
production rules are further optimised when the student becomes an expert. 

The fundamental assumption of ACT-R is that cognitive skills are realised by 
production rules. In order to support students to learn a specific task, that is, to learn a 
specific set of production rules that will enable students to perform the tasks correctly, 
cognitive tutors teach the underlying production rules. 

A generic student model is produced and used in a process called model tracing, 
while a student-specific model is produced by knowledge tracing. A cognitive tutor is 
based on a cognitive model of the domain expertise, which describes the domain 
knowledge needed to perform tasks like good (and perhaps poor) students. To 
produce this cognitive model, it is desirable to analyse how humans solve problems in 
a particular domain, in order to induce the underlying knowledge and represent it in 
the form of production rules. Cognitive tutors generate immediate feedback, i.e. they 
react to each step the student makes while solving a problem. An error is detected 
either when a student step does not match any rule, or it does match one of the buggy 
rules, which represent typical mistakes. Model tracing thus checks whether or not the 
student is performing correctly by comparing each student’s step directly with one or 
more correct or incorrect steps that are dynamically generated by the production 
system. 

 

A

B 

C 

Angle A is 65. 
What is angle C? 

 
Two correct production rules: 
IF goal is to find an angle in an isosceles triangle ABC and AC = AB and angle A is known 
THEN set the value of angle B to A. 

IF goal is to find an angle in a triangle ABC and angles A and B are known, 
THEN set the value of C to 180-A-B 

Buggy production rule:  
IF goal is to find an angle in an isosceles triangle ABC 
     and angle A and C are at the bottom of the triangle and angle A is known 
THEN set the value of angle C to A.  

Fig. 1. Three production rules for computing the size of an angle  



To illustrate, let us consider a set of production rules for finding the angles in 
geometry problems like the one shown at the top of Figure 1. The first two production 
rules can be used in sequence to first find angle B (because angles opposite equal 
sides are equal) and then to find angle C (because the sum of the angles in a triangle is 
180). Once the first rule fires and finds the value for angle B, it is possible for the next 
rule to fire and find angle C (note that the angle label names are arbitrary and these 
rules apply to any triangle with any point labels.)  The last rule in Figure 1 is an 
example of a buggy rule used to detect particular common mistakes. In geometry, 
students often over-generalize from common orientations of figures. In this case, the 
student thinks that the angles at the bottom of isosceles triangle are always equal.  

3. Constraint-Based Tutors 

Constraint-Based Modeling (CBM) is an approach proposed by Ohlsson [11], as a 
way of overcoming the intractable nature of student modeling [14]. CBM arises from 
Ohlsson’s theory of learning from performance errors [12], which proposes that we 
often make mistakes when performing a task, even when we have been taught the 
correct way to do it. According to this theory, we make mistakes because the 
declarative knowledge we have learned has not been internalized in our procedural 
knowledge, and so the number of decisions we must make while performing the 
procedure is sufficiently large that we make mistakes. By practicing the task, 
however, and catching ourselves (or being caught by a mentor) making mistakes, we 
modify our procedure to incorporate the appropriate rule that we have violated. Over 
time we internalise all of the declarative knowledge about the task, and so the number 
of mistakes we make is reduced. Ohlsson describes the process of learning from 
errors as consisting of two phases: error recognition and error correction. After 
detection, an error can be corrected so that the solution used is applicable only in 
situations in which it is appropriate. A student needs declarative knowledge in order 
to detect an error. If the student does not possess such declarative knowledge, an ITS 
may play the role of a mentor, and inform the student of the mistake. A carefully 
designed sequence of feedback messages, which reflects the action of a human 
teacher, helps the student to overcome problems in his/her knowledge. 

The starting point for CBM is that correct solutions are similar to each other in that 
they satisfy all the general principles of the domain. No correct solution can be 
arrived at by traversing a problem state that violates a fundamental principle of the 
domain. In CBM, we are not interested in what the student has done, but in what state 
they are currently in. As long as the student never reaches a state that is known to be 
wrong, they are free to perform whatever actions they please.  

Constraints define equivalence classes of problem states. An equivalence class 
triggers the same instructional action, hence all states in a class are pedagogically 
equivalent. It is therefore possible to attach feedback messages directly to constraints. 
The domain model is therefore a collection of state descriptions of the form: 

“If <relevance condition> is true, then <satisfaction condition> 
had better also be true, otherwise something has gone wrong.” 

In other words, if the student solution falls into the state defined by the relevance 
condition, it must also be in the state defined by the satisfaction condition. A violated 
constraint signals an error, which translates to incomplete or incorrect knowledge. 



Consider the same example of calculating angles of a triangle, used in Section 2. 
Figure 2 illustrates the constraints that can be used to diagnose student’s solutions. 
The first two constraints jointly define that (only) the two base angles in an isosceles 
triangle have the same size. The third constraint is equivalent to the second rule in 
Figure 1. Constraint 2 catches the same error as the buggy rule from Figure 1. 

First, all relevance patterns are matched against the problem state. Then, the 
satisfaction components of constraints that matched the problem state in the first step 
(i.e., the relevant constraints) are tested. If a satisfaction pattern matches the state, the 
constraint is satisfied. Otherwise, it is violated. The short-term student model consists 
of all violated constraints. 

We believe that CBM is also neutral with respect to the domain. Within the ICTG 
group, we have developed SQL-Tutor, a tutor for teaching SQL, a declarative 
language [10], CAPIT, a system that teaches the rules of punctuation and 
capitalization in English [8], KERMIT, a system for database design [15], and 
NORMIT [9], an ITS that teaches data normalization, which is a procedural task. We 
have experienced no problems expressing the knowledge in these domains in terms of 
constraints. CBM is applicable both to procedural and declarative domains. Currently, 
we are considering other domains with different characteristics, to further test the 
generality of CBM. 

CBM, as proposed in [11], is a method for diagnosing students’ solutions. The 
approach identifies errors, which is extremely important for students lacking 
declarative knowledge, because they are unable to detect errors themselves. As stated 
earlier, one of the goals of our research is to evaluate how well CBM supports 
learning. We showed how CBM can be extended to allow for long-term modeling of 
students’ knowledge, and alternatives for generation of pedagogical actions [7]. 

4. Case Study: Teaching Database Design 

In this case study we re-implemented a part of KERMIT using the cognitive tutors 
methodology. This allows us to compare the two approaches. We start by briefly 
introducing KERMIT, the context of the study, and then present our experiences.  

4.1. KERMIT: a Constraint-based Tutor for Database Design 

KERMIT (Knowledge-based Entity Relationship Modeling Intelligent Tutor), an ITS 
that teaches database design, was developed at the ICTG group. One of the goals of 
the system was to test the methodology for building ITSs that has been used at ICTG 

Cr1: A base angle of an isosceles triangle is known (θ1), 
And the student has calculated the size of the other base angle θ2 

Cs1: The size of θ2 is θ1 

Cr2: A base angle of an isosceles triangle is known (θ1), 
And the student has calculated that the size of another angle θ2 that equals θ1, 

Cs2: θ2 is a base angle 

Cr3: Two angles of a triangle are known (θ1 and θ2), 
And the student has calculated the size of the third angle θ3 

Cs3: The size of θ3 is (180-θ1-θ2) 

Fig. 2. Three constraints that check whether the size of an angle is correct 



over the years, as database design is a domain whose characteristics are very different 
from those of the domains previously worked on. Database design is an open-ended 
task: although there is an outcome defined in abstract terms, there is no single 
“correct” procedure to obtain that outcome. For a detailed discussion of the system, 
see [15]. KERMIT is a problem-solving environment in which students practice 
database design using the Entity Relationship (ER) data model. KERMIT consists of 
an interface, a pedagogical module, which determines the timing and content of 
pedagogical actions, and a constraint-based modeller, which analyses student answers 
and generates student models. The interface displays the current problem and 
provides controls for stepping between problems, submitting a solution and selecting 
the level of feedback. It also contains the main working area, in which the student 
draws the ER diagram. Feedback is presented on request. KERMIT contains a set of 
problems and the ideal solutions to them, but has no problem solver. In order to check 
the correctness of the student’s solution, KERMIT compares it to the correct solution 
using domain knowledge represented in the form of more than 90 constraints. The 
constraints cover both syntactic and semantic knowledge. The syntactic constraints 
are concerned with syntactic details in a student’s solution. An example of such a 
constraint is “A regular entity must have at least one key attribute.” Semantic 
constraints relate the student’s solution to the system’s ideal solution. For example, 
there are constraints that check for equivalent, but not identical, ways of modeling a 
database in the student’s and ideal solution.  

4.2. Re-implementing KERMIT as a Model-Tracing Tutor 

To compare these two approaches, we implemented a subset of KERMIT using model 
tracing. We refer to this implementation as KERMIT-MT. Table 1 summarizes the 
differences between the two implementations. In the following discussion we will use 
this ER modeling problem: “Some students live in student halls. Each hall has a 
unique name, and each student has a unique number.” 

Let us start with the problem representations. KERMIT requires the problem text to 
be stored together with tags that identify phrases corresponding to the constructs in 
the ideal solution. For example, the word “student” would have a tag that identifies it 
as corresponding to an entity type in the ideal solution. The ideal solution and the 
student’s solution are represented in the same way. There is a list of entities, where 
each entity is described in terms of its name, type and a list of attributes. Similarly, 
there is a list of relationships, containing the name of each relationship, its type, the 
names of participating entities and possibly a list of attributes.  

KERMIT-MT, on the other hand, requires the problem text and additional 
structures. The teacher breaks the problem text into a set of clauses, where each 
clause is a sentence or a part of a sentence having special importance for ER 
modeling. For example, a clause may describe an entity, relationship or an attribute, 
or specify integrity rules on them. For the above problem, the text is broken into three 
clauses. The first clause consists of the first sentence, while the second sentence is 
divided into two clauses. In addition, the teacher needs to specify the working 
memory elements (WMEs) necessary to solve the problem, by describing all relevant 
words (nouns, verbs, or modifiers) appearing in the problem text. For the above 
problem, the teacher defines WMEs for the following nouns (noun phrases): students, 
halls, hall name, and student number. For each of them, the teacher further specifies 



its type (e.g. a set of objects), and possible names students would be able to use in the 
ER diagram. The following verbs also need WMEs to be defined: live in and has (two 
different instantiations). Then, the teacher defines modifiers, which are important for 
determining the integrity rules; in this problem there is only one (some). However, the 
text of the problem does not contain everything the student needs in order to solve the 
problem. Many of the elements come from the student’s world knowledge. In 
KERMIT-MT, such elements were specified explicitly in order to enhance the ability 
to give advice. In the case of the above problem, the teacher specifies three such 
elements: that many students may live in one hall; that all halls have students living in 
them; and, finally, that a student may live in one hall only.  

Table 1. A comparison of two implementations 
Feature KERMIT-MT KERMIT 
Problem representation Text + WMEs (words + world 

knowledge) 
Text + tags 

Solution representation Entities, attributes, relationships, 
connections 

Entity and relationship lists 

Ideal solution Not stored Entity and relationship lists 
Domain knowledge Production rules: 

Entities: 2 
Attributes: 4 
Relationships: 14 
Done: 5 

Matching constraints: 
Entities: 5 
Attributes: 9 
Relationships: 9 

KERMIT requires an ideal solution to be stored, while there is no such requirement 
in KERMIT-MT. However, it is easier to create a representation of the solution than 
to specify all the WMEs needed in KERMIT-MT. On the other hand, the solution 
representation has less information and thus less to draw on in creating meaningful 
advice to students. 

Finally, let us discuss the domain knowledge in these two systems. KERMIT-MT 
covers only a part of the domain covered by KERMIT, so in Table 1 we include only 
that part of the domain (KERMIT currently contains over 90 constraints, but covers 
the complete ER domain). KERMIT-MT has 25 production rules, which cover simple 
and key attributes, regular entities and regular binary relationships only.  These were 
written by Koedinger in about 20 hours and could be refined to fewer rules with more 
time. There are 23 constraints in KERMIT that correspond to KERMIT-MT’s rules. 
However, these constraints are much more general, as they deal with all kinds of 
attributes (including composite and multivalued), relationships and entities, so they 
actually cover more of the domain than the rules in KERMIT-MT. Furthermore, 
KERMIT-MT uses buggy rules in order to generate error-specific feedback to 
students, while KERMIT does not. 

5. Discussion 

Table 2 summarizes the main differences between MT and CBM. The learning 
theories that underlie these approaches—ACT-R (CT), and “learning from 
performance errors” (CBM)—are both based on the distinction between declarative 
and procedural knowledge, and the view that learning consists of two main phases: in 
the first, declarative knowledge is encoded; in the second phase, this declarative 
knowledge is turned into more efficient procedural knowledge. The difference 



between the theories is in the amount of effort that is assumed in each phase, and also 
in the focus of instruction based on each theory. ACT-R assumes that the encoding of 
declarative knowledge is a straightforward process, where experiences are stored in 
an unchanged form, e.g. examples, successes and failures of attempts. Therefore, 
efforts are needed in the second phase, when declarative knowledge is proceduralized. 
In contrast, Ohlsson [11,12] claims that we make mistakes if we do not have 
sufficient declarative knowledge to detect errors. Consequently, cognitive tutors tend 
to focus on generative knowledge (production rules), while constraint-based tutors 
teach evaluative knowledge (constraints). However, more recent cognitive tutors have 
successfully addressed evaluative knowledge [6] and declarative knowledge more 
generally [1]. Other researchers also stress the importance of declarative knowledge. 
For example, Chi et al [3] see the performance in problem solving as largely 
determined by the completeness of the declarative knowledge, rather than the 
efficiency of the procedural knowledge. 

MT tutors represent domain knowledge as production rules. This knowledge has 
high cognitive fidelity, because it is an explicit model of the reasoning that the learner 
must acquire. Such domain knowledge is not necessarily equivalent to an expert’s 
knowledge, since Cognitive Tutors may require students to specify intermediate steps 
that human experts usually skip. High cognitive fidelity is a strong advantage of 
Cognitive Tutors. 

 CBM tutors, on the other hand, represent domain knowledge in a declarative form. 
Constraints cannot directly be used to solve problems; their main function is to 
distinguish between correct and incorrect solutions. It is interesting to note similarities 
between constraints and the inference rules Chi and colleagues discuss in [3]: they 
find that students who engage in self-explanation learn better, as a consequence of 
forming inference rules. Chi states that inference rules are more operational than 
general principles conveyed in traditional instruction, because the conditions are more 
specific, and inference rules are more decomposed than the general principles. The 
same reasoning applies to constraints. It takes a number of constraints to equal a 
general principle of a domain. Each constraint focuses on just one aspect of a general 
principle, thus allowing very specific feedback to be generated.  

Model tracing tutors have been criticised for being too rigid, in that they force 
students to follow a fixed set of desirable approaches to solving problems [16]. For 
example, the Lisp tutor requires that the top-down approach be used for writing 
functions. One might speculate that this may be more beneficial to novices and less so 
for more knowledgable students, however, evaluations of the LISP tutor have tended 
to show fairly uniform learning improvements for students at all levels. In other 
words, the evidence suggests the LISP tutor does work well both for novice and more 
knowledgable students. On the other hand, CBM neither imposes nor supports any 
particular strategy, since it evaluates the current state in problem solving (as opposed 
to the current action which is evaluated in Cognitive Tutors). By ignoring the 
procedures used to solve problems, CBM allows for inconsistencies in problem-
solving strategies. The downside is that CBM systems typically are not capable of 
strategic planning advice. 

Typical CBM-based systems generate instructional actions without being able to 
solve problems, by comparing the ideal solution (specified by the human teacher) to 
the student’s solution. If there are alternative solutions, they are recognized as such by 



constraints that check for the necessary elements in the solution. However, CBM does 
not prevent us from having a problem solver. We have developed an extension to 
CBM that allows problems to be solved (and student solution errors to be corrected) 
directly from the constraint set, and implemented it for SQL-Tutor [7]. However, it 
requires that the constraint set be more complete, otherwise erroneous solutions may 
be generated, but has the benefit of being optional. In contrast, Cognitive Tutors 
typically are able to solve problems and having some simulation of problem solving is 
important for providing planning advice. However, for domains for which it will be 
extremely hard, or even impossible to build problem solvers (because there is no 
obvious problem solving strategy), it is possible for Cognitive Tutors, like CBM, to 
store solutions (or approximations thereof) and write rules that work from them. In 
both cases, an incremental development strategy is possible whereby one starts by 
implementing the ITS using stored solutions and then adds problem solving 
capabilities as needed (ideally driven by student usage data). 

Table 2. Comparative analysis of CBM and MT 
Property Model Tracing Constraint-Based Modeling 
Knowledge representation Production rules (procedural) Constraints (declarative) 
Cognitive fidelity Tends to be higher  Tends to be lower 
What is evaluated Action Problem state 
Problem solving strategy Implemented ones Flexible to any strategy 
Solutions Tend to be computed, but 

can be stored  
One correct solution stored, 
but can be computed 

Feedback Tends to be immediate, but 
can be delayed 

Tends to be delayed, but can 
be immediate 

Problem-solving hints Yes Only on missing elements, 
but not strategy 

Problem solved ‘Done’ productions No violated constraints 
Diagnosis if no match Solution is incorrect Solution is correct 
Bugs represented Yes No 
Implementation effort Tends to be harder, but can 

be made easier with loss of 
other advantages 

Tends to be easier, but can 
be made harder to gain other 
advantages 

Cognitive Tutors typically offer immediate feedback (usually only implicitly by 
"flagging" an error when it occurs), while constraint-based tutors typically provide 
feedback on demand. However, both approaches are capable of providing the other 
type of feedback, so this difference is somewhat superficial. Further, Cognitive Tutors 
can offer strategic problem-solving hints in terms of the next step to perform in a 
plan. These hints are typically provided on demand or after the student has made more 
errors on a goal than a teacher-set error threshold. They are generated by running the 
production set. Constraint-based tutors are, in general, not necessarily able to solve 
problems, but they can provide feedback on missing elements of the solution.  

Another important issue is the completeness of the knowledge base. It is widely 
accepted that the quality of the knowledge base is the determining factor for the 
quality of instruction and diagnosis. In model tracing, an incomplete knowledge base 
may mean that there are some correct or buggy rules missing. When a student 
performs a step that matches neither a correct or buggy rule, that step is assumed to be 
incorrect.  While the system cannot explain why (because there is not buggy rule), it 



is able to point the particular step in the whole solution that is in error. Cognitive 
Tutor developers work hard to avoid it, but it possible that a correct rule is missing in 
such a case that that student's step is actually correct (e.g., part of a strategy not 
implemented in the production rules). Thus, it is possible in Cognitive Tutors that a 
correct solution is rejected. In CBM, the default diagnosis in the case of no match is 
that the student’s solution is correct. The default behaviour is “Innocent until proven 
guilty”, versus “Guilty until proven innocent” in Cognitive Tutors. If a CBM is 
missing constraints, it may fail to identify faults in a student’s solution and thus a 
student may come away thinking they know how to do something when in fact they 
do not. In both cases, it is important to do careful engineering and iterative student 
testing to prevent such situations. 

Although the approach of modeling all possible solutions works well for well-
defined domains such as mathematics, it may not be a realistic solution when the 
domain is ill defined. However, as discussed above, this purported difference between 
CBM and Cognitive Tutors is more apparent than real. The task of composing a 
collection of buggy rules is also a major undertaking. Studies have shown that bug 
libraries do not transfer well to new population of students; if a bug library is 
developed for a certain group of students, it may not cover the bugs that another 
group of students may make [13]. Unlike cognitive tutors, CBM does not require 
extensive studies of student bugs, which is an important trade-off. The down side is 
that CBM cannot provide feedback specific to these particular errors.  

6. Conclusions 

This paper presented a comparative analysis of two student modeling approaches: 
model tracing and constraint-based modeling. We discussed the characteristics and 
the underlying learning theories of these two approaches, and presented a case study 
where two tutors were developed for the same domain. We also analysed the two 
approaches in terms of their main attributes. Creating constraint-based modeling 
systems tends to require less time and effort, but the result tends to be less 
comprehensive in terms of specific advice-giving capabilities. Creating model-tracing 
tutors tends to require more time and effort, but tends to result in more specific 
advice-giving capabilities.  This is apparent from the case study where it was arguably 
harder to develop a model-tracing tutor for database design than a constraint-based 
system. On the other hand, the model-tracing tutor has capabilities to give planning 
hints and advice expressed more in terms of what a student needs to think to generate 
a part of the answer than in terms of the desired features of that part of the answer. 
We emphasize that the stated differences are tendencies and are not hard and fast.  It 
is possible to write constraint-based systems that generate solutions (ref Brent) and 
thus can be used to provide planning advice. Of course, doing so takes more time and 
effort. Conversely, it is possible to more quickly and easily build a model-tracing 
tutor by writing productions in a diagnostic mode that focus more on whether student 
steps are correct or not and less on how to generate those steps.  But, again, such a 
change does not come without cost.  The resulting cognitive tutor will not be able to 
provide planning advice. 

We conclude that both approaches have their strengths and weaknesses. Model 
tracing is an excellent choice for domain where appropriate problem solving strategies 
are well-defined, and where comprehensive feedback on them is desirable. On the 



other hand, CBM offers a workable alternative when such strategies are not available 
or appropriate, or there is too little time or resources to build a model-tracing 
knowledge base. CBM and model-tracing are viable, complementary approaches to 
building real-world tutors. 
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