-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by UC Research Repository

A Comparative Analysis of Cognitive Tutoring and
Constraint-Based M odeling

Antonija Mitrovic', Kenneth R. Koeding@and Brent Martih

Yintelligent Computer Tutoring Group,
University of Canterbury, Christchurch, New Zealand
{tanja,brent}@cosc.canterbury.ac.nz

2Human-Computer Interaction Institute, Carnegie Mellon Usiter
koedinger@cmu.edu

Abstract: Numerous approaches to student modeling have been proposed si
the inception of the field more than three decades agohédietd is lacking
completely is comparative analyses of different studemtefintg approaches.
Such analyses are sorely needed, as they can identify dbke promising
approaches and provide guidelines for future research. InpHjer we
compare Cognitive Tutoring to Constraint-Based Modeling (CBVB present
our experiences in implementing a database design tutor usitlg bo
methodologies and highlight their strengths and weaknessesoMfeare their
characteristics and argue the differences are often rpparent than real. For
specific domains, one approach may be favoured over the otHengnthem
viable complementary methods for supporting learning.

1. Introduction

Student modeling is one of the crucial components of igésit Tutoring Systems
(ITS). Numerous modeling approaches have been devised lowgrears, such as
overlay modeling, enumerative bug modeling, generative agwbnstructive
modeling, and constraint-based modeling [4]. The ITS commacknowledges the
importance of evaluation. Early ITS projects focusedhendevelopment of student
modeling approaches, and rarely evaluated the methods propdihpugh the
percentage of papers that include evaluation results leesdrewing steadily, they
always relate to a single student modeling approach latimo. For the maturation of
the field, it is of critical importance to perform cparative analyses of various
approaches. Unfortunately, such comparative evaluatimsextremely difficult; it is
a major undertaking to develop any ITS, let alone twdlfersame domain.

In this paper we are interested in the differences betwlee student modeling
approaches used in cognitive tutors and constraint-based. tMttar report on an
initial case study in which we reimplemented a paramfexisting constraint-based
tutor as a cognitive tutor in order to compare and eshthe various features of these
two approaches. We briefly overview cognitive tutors antstraint-based tutors. In
section 4 we present the case study, followed by a cothmaemalysis of the two
approaches. We give the conclusions in the final sectio

https://core.ac.uk/display/35457571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Cognitive Tutors

Cognitive Tutors are the most successful ITSs todaydégnitive Tutors have been
developed for a number of domains including algebra, geormeth\LISP. They are
based on the ACT-R theory of cognition [2], which claithat there are two long-
term memory stores: declarative and procedural. Tharyttexplains human learning
as going through several phases. The first involves iteamfeclarative knowledge,
including factual knowledge (such as theorems in a matimhabmain), which is
represented aghunks Declarative knowledge is later turned into procedural
knowledge, which is goal-oriented and therefore moreiefficto use. Procedural
knowledge is represented in the form of production rulesthénlast phase, the
production rules are further optimised when the studerdrbes an expert.

The fundamental assumption of ACT-R is that cognitive slalle realised by
production rules. In order to support students to learn dfisgask, that is, to learn a
specific set of production rules that will enable studantserform the tasks correctly,
cognitive tutors teach the underlying production rules.

B Angle A is65.
What is angle C?
A C

Two correct production rules.

IF goal is to find an angle in an isosceles triangle ABC and=AB and angle A is known
THEN set the value of angle B to A.

IF goal is to find an angle in a triangle ABC and angles A andeBkaown,
THEN set the value of C to 180-A-B

Buggy production rule:
IF goal is to find an angle in an isosceles triangle ABC

and angle A and C are at the bottom of the triangle and agl&known
THEN set the value of angle C to A.

Fig. 1. Three production rules for computing the size of an angle

A generic student model is produced and used in a proceed icaltlel tracing
while a student-specific model is producedknpwledge tracingA cognitive tutor is
based on a cognitive model of the domain expertise, whictribes the domain
knowledge needed to perform tasks like good (and perhaps poodgnts. To
produce this cognitive model, it is desirable to anadhme humans solve problems in
a particular domain, in order to induce the underlying kadgé and represent it in
the form of production rules. Cognitive tutors generat@édiate feedback, i.e. they
react to each step the student makes while solving ldepno An error is detected
either when a student step does not match any ruledoes match one of thmiggy
rules, which represent typical mistakes. Model tracing thuskhahether or not the
student is performing correctly by comparing each studeegsdirectly with one or
more correct or incorrect steps that are dynamiagdigerated by the production
system.

To illustrate, let us consider a set of production rutesfihding the angles in
geometry problems like the one shown at the top of Fijufde first two production
rules can be used in sequence to first find angle B (be@mgles opposite equal
sides are equal) and then to find angle C (becausenhefdhe angles in a triangle is
180). Once the first rule fires and finds the value fagl@ B, it is possible for the next
rule to fire and find angle C (note that the angle lalaghes are arbitrary and these
rules apply to any triangle with any point labels.) Tast rule in Figure 1 is an
example of a buggy rule used to detect particular commorakesst In geometry,
students often over-generalize from common orientatioriigafes. In this case, the
student thinks that the angles at the bottom of isosa@egle are always equal.

3. Constraint-Based Tutors

Constraint-Based Modeling (CBM) is an approach propose®Higson [11], as a
way of overcoming the intractable nature of student modeling {18M arises from
Ohlsson’s theory of learning from performance errors [iBfich proposes that we
often make mistakes when performing a task, even whehawe been taught the
correct way to do it. According to this theory, we makéstakes because the
declarative knowledge we have learned has not been intechah our procedural
knowledge, and so the number of decisions we must make wkiforming the
procedure is sufficiently large that we make mistakes. Bactiming the task,
however, and catching ourselves (or being caught byrdomenaking mistakes, we
modify our procedure to incorporate the appropriate rulieviiahave violated. Over
time we internalise all of the declarative knowledgeualoe task, and so the number
of mistakes we make is reduced. Ohlsson describes thespro€dearning from
errors as consisting of two phasesror recognitionand error correction After
detection, an error can be corrected so that the soluised is applicable only in
situations in which it is appropriate. A student needsadaiive knowledge in order
to detect an error. If the student does not possessdsatdrative knowledge, an ITS
may play the role of a mentor, and inform the studerthefmistake. A carefully
designed sequence of feedback messages, which reflectctibie af a human
teacher, helps the student to overcome problems in higibededge.

The starting point for CBM is that correct solutions sireilar to each other in that
they satisfy all the general principles of the domain. ¢dérrect solution can be
arrived at by traversing a problem state that violatésndamental principle of the
domain. In CBM, we are not interested in what the stuldastdone, but in whatate
they are currently in. As long as the student never esaatstate that is known to be
wrong, they are free to perform whatever actions fiegse.

Constraints define equivalence classes of problem stAtesquivalence class
triggers the same instructional action, hence alkestat a class are pedagogically
equivalent. It is therefore possible to attach feedibagksages directly to constraints.
The domain model is therefore a collection of stageidgtions of the form:

“If <relevance condition> is true, then <satisfaction condition>
had better also be true, otherwise something has gone wrong.”
In other words, if the student solution falls into th&te defined by the relevance

condition, it must also be in the state defined by #tisfaction condition. A violated
constraint signals an error, which translates torimglete or incorrect knowledge.

Consider the same example of calculating angles of mgtéaused in Section 2.
Figure 2 illustrates the constraints that can be usedagndse student’s solutions.
The first two constraints jointly define that (onlfjettwo base angles in an isosceles
triangle have the same size. The third constraint is alguit/to the second rule in
Figure 1. Constraint 2 catches the same error asutlpgy rule from Figure 1.

C.i: A base angle of an isosceles triangle is knawh (
And the student has calculated the size of the other hgkeha
Cs1. The size of),is 0,

C.: A base angle of an isosceles triangle is knawh (
And the student has calculated that the size of anothkr @tat equal$);,
Cs2 6.is a base angle

Ciz: Two angles of a triangle are knowh &nd6,),
And the student has calculated the size of the third &ggle
Csz The size obsis (1806;-6,)

Fig. 2. Three constraints that check whether the size of ae @&gbrrect

First, all relevance patterns are matched againstptbblem state. Then, the
satisfaction components of constraints that matchegrtbtdem state in the first step
(i.e., the relevant constraints) are tested. If Bfsation pattern matches the state, the
constraint is satisfied. Otherwise, it is violatede ®hort-term student model consists
of all violated constraints.

We believe that CBM is also neutral with respect ®dbmain. Within the ICTG
group, we have developed SQL-Tutor, a tutor for teaching S®Qldeclarative
language [10], CAPIT, a system that teaches the rulegpurfctuation and
capitalization in English [8], KERMIT, a system for tdbase design [15], and
NORMIT [9], an ITS that teaches data normalizationiciwhis a procedural task. We
have experienced no problems expressing the knowledge endbemins in terms of
constraints. CBM is applicable both to procedural and detola domains. Currently,
we are considering other domains with different chargstics, to further test the
generality of CBM.

CBM, as proposed in [11], is a method for diagnosing studsnbstions. The
approach identifies errors, which is extremely importamt $tudents lacking
declarative knowledge, because they are unable to detect #remselves. As stated
earlier, one of the goals of our research is to evalhatv well CBM supports
learning. We showed how CBM can be extended to allovioftg-term modeling of
students’ knowledge, and alternatives for generation ofguggieal actions [7].

4. Case Study: Teaching Database Design

In this case study we re-implemented a part of KERMITigu¢he cognitive tutors
methodology. This allows us to compare the two appreactike start by briefly
introducing KERMIT, the context of the study, and thesspnt our experiences.

4.1. KERMIT: a Constraint-based Tutor for Database Design

KERMIT (Knowledge-based Entity Relationship Modeling Inggtht Tutor), an ITS
that teaches database design, was developed at the |GUfE @ne of the goals of
the system was to test the methodology for buildings if@t has been used at ICTG

over the years, as database design is a domain wharseighristics are very different
from those of the domains previously worked on. Databasen is an open-ended
task: although there is an outcome defined in abstractsiethere is no single
“correct” procedure to obtain that outcome. For a deailiscussion of the system,
see [15]. KERMIT is a problem-solving environment in @bhistudents practice
database design using the Entity Relationship (ER) data mOEBIMIT consists of
an interface, a pedagogical module, which determines thiagtiand content of
pedagogical actions, and a constraint-based modellerh\ahmlyses student answers
and generates student models. The interface displays thentcyroblem and
provides controls for stepping between problems, submittisgjugion and selecting
the level of feedback. It also contains the main waglkarea, in which the student
draws the ER diagram. Feedback is presented on re¢fl&#MIT contains a set of
problems and the ideal solutions to them, but has nogobblver. In order to check
the correctness of the student’s solution, KERMIT camp# to the correct solution
using domain knowledge represented in the form of mone @@aconstraints. The
constraints cover both syntactic and semantic knowledge.syntactic constraints
are concerned with syntactic details in a student’stisol. An example of such a
constraint is “A regular entity must have at least ong &#ribute.” Semantic
constraints relate the student’s solution to the systéateal solution. For example,
there are constraints that check for equivalent, butdentical, ways of modeling a
database in the student’s and ideal solution.

4.2. Re-implementing KERMIT asa Model-Tracing Tutor

To compare these two approaches, we implemented a sfittdeERMIT using model
tracing. We refer to this implementation as KERMIT-Mlable 1 summarizes the
differences between the two implementations. In tHevidhg discussion we will use
this ER modeling problem:Some students live in student halls. Each hall has a
unique name, and each student has a unique number.”

Let us start with the problem representations. KERKdquires the problem text to
be stored together with tags that identify phrases sporeling to the constructs in
the ideal solution. For example, the wosdudent would have a tag that identifies it
as corresponding to an entity type in the ideal solutidre ifleal solution and the
student’s solution are represented in the same way. Therdist of entities, where
each entity is described in terms of its name, typealst of attributes. Similarly,
there is a list of relationships, containing the nartheach relationship, its type, the
names of participating entities and possibly a ligtofbutes.

KERMIT-MT, on the other hand, requires the problem tert aadditional
structures. The teacher breaks the problem text indetaof clauses, where each
clause is a sentence or a part of a sentence havingalspaportance for ER
modeling. For example, a clause may describe an entigtjareship or an attribute,
or specify integrity rules on them. For the above problihe text is broken into three
clauses. The first clause consists of the first sestewhile the second sentence is
divided into two clauses. In addition, the teacher needspsxify the working
memory elements (WMES) necessary to solve the prolbg describing all relevant
words (nouns, verbs, or modifiers) appearing in the prolikexth For the above
problem, the teacher defines WMEs for the following reo{moun phrases$tudents,
halls, hall nameandstudent number~or each of them, the teacher further specifies

its type (e.g. a set of objects), and possible names studewlis be able to use in the
ER diagram. The following verbs also need WMESs to benddflive in andhas(two
different instantiations). Then, the teacher definedifiens, which are important for
determining the integrity rules; in this problem thererify one somég. However, the
text of the problem does not contain everything the studegeds in order to solve the
problem. Many of the elements come from the studentsldvknowledge. In
KERMIT-MT, such elements were specified explicitly in artle enhance the ability
to give advice. In the case of the above problem, ¢haehier specifies three such
elements: that many students may live in one hall;athhialls have students living in
them; and, finally, that a student may live in one halj.onl

Table 1. A comparison of two implementations

Feature KERMIT-MT KERMIT
Problem representation ~ Text + WMEs (words + world | Text + tags
knowledge)

Solution representation| Entities, attributes, relationshipsEntity and relationship lists
connections

Ideal solution Not stored Entity and relationship lists
Domain knowledge Production rules: Matching constraints:
Entities: 2 Entities: 5
Attributes: 4 Attributes: 9
Relationships: 14 Relationships: 9
Done: 5

KERMIT requires an ideal solution to be stored, whiler¢his no such requirement
in KERMIT-MT. However, it is easier to create a resgntation of the solution than
to specify all the WMEs needed in KERMIT-MT. On the etthand, the solution
representation has less information and thus lessaiw dn in creating meaningful
advice to students.

Finally, let us discuss the domain knowledge in thesesystems. KERMIT-MT
covers only a part of the domain covered by KERMIT, sbahle 1 we include only
that part of the domain (KERMIT currently contains 096 constraints, but covers
the complete ER domain). KERMIT-MT has 25 productiongukghich cover simple
and key attributes, regular entities and regular binaatioalships only. These were
written by Koedinger in about 20 hours and could be refinedaerfeules with more
time. There are 23 constraints in KERMIT that corresgondERMIT-MT's rules.
However, these constraints are much more general,egsdéiml with all kinds of
attributes (including composite and multivalued), relatigms and entities, so they
actually cover more of the domain than the rules in KERMT. Furthermore,
KERMIT-MT uses buggy rules in order to generate error-fipeféedback to
students, while KERMIT does not.

5. Discussion

Table 2 summarizes the main differences between MT ankll. Che learning
theories that underlie these approaches—ACT-R (CT), aedrning from
performance errors” (CBM)—are both based on the ditin between declarative
and procedural knowledge, and the view that learning cersfistvo main phases: in
the first, declarative knowledge is encoded; in the seqdrabe, this declarative
knowledge is turned into more efficient procedural knowledGee difference

between the theories is in the amount of effort thaissumed in each phase, and also
in the focus of instruction based on each theory. ACasgumes that the encoding of
declarative knowledge is a straightforward process, wlgperiences are stored in
an unchanged form, e.g. examples, successes and faifuegtempts. Therefore,
efforts are needed in the second phase, when dectakatiwledge is proceduralized.
In contrast, Ohlsson [11,12] claims that we make mistakese do not have
sufficient declarative knowledge to detect errors. Cguestly, cognitive tutors tend
to focus on generative knowledge (production rules), whitesttaint-based tutors
teach evaluative knowledge (constraints). However, mement cognitive tutors have
successfully addressed evaluative knowledge [6] and dectaratiowledge more
generally [1]. Other researchers also stress the tampa® of declarative knowledge.
For example, Chi et al [3] see the performance in pmobsmlving as largely
determined by the completeness of the declarative knowleddgkeer than the
efficiency of the procedural knowledge.

MT tutors represent domain knowledge as production rules Himwledge has
high cognitive fidelity, because it is an explicit modethe reasoning that the learner
must acquire. Such domain knowledge is not necessarily adgotvto an expert's
knowledge, since Cognitive Tutors may require students tafgpeermediate steps
that human experts usually skip. High cognitive fidelity isteong advantage of
Cognitive Tutors.

CBM tutors, on the other hand, represent domain krimelén a declarative form.
Constraints cannot directly be used to solve problemsir tmain function is to
distinguish between correct and incorrect solutions.itttésesting to note similarities
between constraints and the inference rules Chi andagoies discuss in [3]: they
find that students who engage in self-explanation learnrpettea consequence of
forming inference rules. Chi states that inferencesraee more operational than
general principles conveyed in traditional instructicegause the conditions are more
specific, and inference rules are more decomposed tleagetteral principles. The
same reasoning applies to constraints. It takes a muafbeonstraints to equal a
general principle of a domain. Each constraint focusgsstrone aspect of a general
principle, thus allowing very specific feedback to be gatesl.

Model tracing tutors have been criticised for being tgidriin that they force
students to follow a fixed set of desirable approaches tingoproblems [16]. For
example, the Lisp tutor requires that the top-down appraectused for writing
functions. One might speculate that this may be morefibei¢o novices and less so
for more knowledgable students, however, evaluatiortseofISP tutor have tended
to show fairly uniform learning improvements for studeatsall levels. In other
words, the evidence suggests the LISP tutor does worlkbatdllfor novice and more
knowledgable students. On the other hand, CBM neithersegpnor supports any
particular strategy, since it evaluates the curreng gtaproblem solving (as opposed
to the current action which is evaluated in Cognitivatofs). By ignoring the
procedures used to solve problems, CBM allows for instersties in problem-
solving strategies. The downside is that CBM systemiaily are not capable of
strategic planning advice.

Typical CBM-based systems generate instructional actwithout being able to
solve problems, by comparing the ideal solution (specifiecheyhuman teacher) to
the student’s solution. If there are alternative solgtidiney are recognized as such by

constraints that check for the necessary elementeg isdllation. However, CBM does
not prevent us from having a problem solver. We haweldped an extension to
CBM that allows problems to be solved (and student sol@tioors to be corrected)
directly from the constraint set, and implementediit $QL-Tutor [7]. However, it
requires that the constraint set be more completerwaiteerroneous solutions may
be generated, but has the benefit of being optionaloirrast, Cognitive Tutors
typically are able to solve problems and having some ationl of problem solving is
important for providing planning advice. However, for domainswfbich it will be
extremely hard, or even impossible to build problem sel{because there is no
obvious problem solving strategy), it is possible for CtgmiTutors, like CBM, to
store solutions (or approximations thereof) and wniles that work from them. In
both cases, an incremental development strategy is [®sdilereby one starts by
implementing the ITS using stored solutions and then adds epmolgolving
capabilities as needed (ideally driven by student usage data).

Table 2. Comparative analysis of CBM and MT

Property | Model Tracing Constraint-Based Modeling

Knowledge representation Production rules (procediral) Corist(diclarative)

Cognitive fidelity Tends to be higher Tends to be lower

What is evaluated Action Problem state

Problem solving strategy Implemented ones Flexible tcstmayegy

Solutions Tend to be computed, QuOne correct solution stored,
can be stored but can be computed

Feedback Tends to be immediate, bdtends to be delayed, but can
can be delayed be immediate

Problem-solving hints Yes Only on missing elements,

but not strategy

Problem solved ‘Done’ productions No violated constraints

Diagnosis if no match Solution is incorrect Solutiondgrect

Bugs represented Yes No

Implementation effort Tends to be harder, but carends to be easier, but can
be made easier with loss pfbe made harder to gain other
other advantages advantages

Cognitive Tutors typically offer immediate feedback (usuahly implicitly by
"flagging" an error when it occurs), while constrainsdwh tutors typically provide
feedback on demand. However, both approaches are caygiieviding the other
type of feedback, so this difference is somewhat supatfieurther, Cognitive Tutors
can offer strategic problem-solving hints in termsthed next step to perform in a
plan. These hints are typically provided on demand or thftestudent has made more
errors on a goal than a teacher-set error threshblely are generated by running the
production set. Constraint-based tutors are, in gensoalnecessarily able to solve
problems, but they can provide feedback on missingesi&srof the solution.

Another important issue is the completeness of the latlge base. It is widely
accepted that the quality of the knowledge base is therndigting factor for the
quality of instruction and diagnosis. In model tracingjrexomplete knowledge base
may mean that there are some correct or buggy rulesingiswhen a student
performs a step that matches neither a correct or budgythat step is assumed to be
incorrect. While the system cannot explain why (bectluse is not buggy rule), it

is able to point the particular step in the whole safutitat is in error. Cognitive
Tutor developers work hard to avoid it, but it possibb tincorrect rule is missing in
such a case that that student's step is actually cdegct part of a strategy not
implemented in the production rules). Thus, it is possibl€agnitive Tutors that a
correct solution is rejected. In CBM, the default diagigidn the case of no match is
that the student’s solution is correct. The default Bielia is “Innocent until proven
guilty”, versus “Guilty until proven innocent” in CognigvTutors. If a CBM is
missing constraints, it may fail to identify faults anstudent’s solution and thus a
student may come away thinking they know how to do somethira in fact they
do not. In both cases, it is important to do careful megying and iterative student
testing to prevent such situations.

Although the approach of modeling all possible solutismsks well for well-
defined domains such as mathematics, it may not beliatieeaolution when the
domain is ill defined. However, as discussed above, this pgadhdifference between
CBM and Cognitive Tutors is more apparent than real. fisk of composing a
collection of buggy rules is also a major undertakirtgdi®s have shown that bug
libraries do not transfer well to new population of studerf a bug library is
developed for a certain group of students, it may not cdwerbtigs that another
group of students may make [13]. Unlike cognitive tutors, C@dés not require
extensive studies of student bugs, which is an importa¢-wwé. The down side is
that CBM cannot provide feedback specific to theseqaati errors.

6. Conclusions

This paper presented a comparative analysis of two studestling approaches:
model tracing and constraint-based modeling. We discussechénacteristics and
the underlying learning theories of these two approaciespieesented a case study
where two tutors were developed for the same domain. [8¢eamalysed the two
approaches in terms of their main attributes. Creatiogstraint-based modeling
systems tends to require less time and effort, but ésealtr tends to be less
comprehensive in terms of specific advice-giving capadsli Creating model-tracing
tutors tends to require more time and effort, but tendeesalt in more specific
advice-giving capabilities. This is apparent from theecstudy where it was arguably
harder to develop a model-tracing tutor for database ddsamna constraint-based
system. On the other hand, the model-tracing tutor hgabidies to give planning
hints and advice expressed more in terms of what a studeds o think to generate
a part of the answer than in terms of the desired fesitofr that part of the answer.
We emphasize that the stated differences are tendenrddeare not hard and fast. It
is possible to write constraint-based systems that geneplutions (ref Brent) and
thus can be used to provide planning advice. Of course, dotiadtes®more time and
effort. Conversely, it is possible to more quickly agakily build a model-tracing
tutor by writing productions in a diagnostic mode that fanase on whether student
steps are correct or not and less on how to generage 8teps. But, again, such a
change does not come without cost. The resulting cogrtiibor will not be able to
provide planning advice.

We conclude that both approaches have their strengthsvaakhesses. Model
tracing is an excellent choice for domain where appatgproblem solving strategies
are well-defined, and where comprehensive feedback on ihetasirable. On the

other hand, CBM offers a workable alternative when sticitegies are not available
or appropriate, or there is too little time or resasr to build a model-tracing
knowledge base. CBM and model-tracing are viable, compitameapproaches to
building real-world tutors.

Acknowledgments

KERMIT was developed by Pramuditha Suraweera. The auttean& the Erskine fund of the
University of Canterbury for funding the visit of Ken Koedinge New Zealand. The work
presented here was supported by the University of Canterbwegrchsgrant U6430. This
research could not have been done without the support of past agt pnesnber of HCIl and
ICTG.

Refer ences

1. Aleven, V., Koedinger, K.: An Effective Metacognitiver&egy: Learning by Doing and
Explaining with a Computer-based Cognitive Tutor. Cogni8eence 26 (2002) 147-179

2. Anderson, J. R., Lebiere, C.: The Atomic Components of Thodgitwah, NJ: Erlbaum
(1998)

3. Chi, M. T. H,, Bassok, M., Lewis, W., Reimann, P., @faR.: Self-Explanations: How
Students Study and Use Examples in Learning to Solve ProbRaygasitive Science, 13
(1989) 145-182

4. Holt, P., Dubs, S., Jones, M., Greer, J.E.: The Sfa&unlent Modeling. In: Greer, J.E.,
McCalla, G.I. (eds.): Student Modeling: the Key to Individedi Knowledge-based
Instruction. NATO ASI Series, Vol. 125. Springer (1994) 3-35

5. Koedinger, K. R., Anderson, J. R., Hadley, W. H., M3KkA.: Intelligent Tutoring Goes
to School in the Big Cityint. J. Artificial Intelligence in Educatiqr8 (1997) 30-43

6. Mathan, S., Koedinger, K.: An Empirical Assessment of Cemgmsion Fostering
Features in an Intelligent Tutoring System. In: S. Ce®i Gouarderes, F. Paraguacu
(eds.)Proc. ITS 2002LNCS Vol. 2363 Springer-Verlag, (2002) 330-343

7. Martin, B, Mitrovic, A.: Tailoring Feedback by Corraui Student Answers. Proc.
ITS’2000, LNCS Vol. 1839, Springer-Verlag, (2000) 383-392

8. Mayo, M., Mitrovic, A.: Optimising ITS Behavior with Basian Networks and Decision
Theory.Int. J. Artificial Intelligence in Educatiori,2 (2001) 124-153

9. Mitrovic, A.: NORMIT, a Web-enabled Tutor for Databaserialization. Kinshuk, R.
Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson, Cee (eds.) Proc. ICCE 2002
(2002) 1276-1280

10. Mitrovic, A., Ohlsson, S.: Evaluation of a ConstraintsBd Tutor for a Database
Languagelnt. J. on Atrtificial Intelligence in Educatiob0 (3-4) (1999) 238-256

11. Ohlsson, S.: Constraint-based Student Modeling. In Student IMgdehe Key to
Individualized Knowledge-based Instruction. Springer (1994) 167-189

12. Ohlsson, S.: Learning from Performance Errors. Psychabgieview 103 (1996) 241-
262

13. Payne, S., Squibb, H.: Algebra Mal-rules and Cognitive Adsowof Errors.Cognitive
Sciencel4 (1990) 445-481

14. Self, J. A.: Bypassing the Intractable Problem of Stulfenteling. In: C. Frasson and G.
Gauthier (ed3, Intelligent Tutoring Systems: at the Crossroads ofigidlfintelligence
and EducationNorwood: Ablex (1990) 107-123

15. Suraweera, P., Mitrovic, A.: KERMIT: a Constraint-bagedor for Database Modeling.
In: S. Cerri, G. Gouarderes, F. Paraguacu (edsop. ITS 2002 LNCS Vol. 2363
Springer-Verlag, (2002) 377-387

16. VanLehn, K. et al.: Fading and Deepening: the Next Steps rideé and other Model-
Tracing Tutors. In: Proc. ITS'2000, LNCS Vol. 1839, Springerlag, (2000) 474-483

