
Enhancing learning through self-explanation

Amali Weerasinghe and Antonija Mitrovic

Intelligent Computer Tutoring Group
Department of Computer Science, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
{acw51, tanja}@cosc.canterbury.ac.nz

Abstract: Self-explanation is an effective teaching/learning strategy that has been used in several intelligent
tutoring systems in the domains of Mathematics and Physics to facilitate deep learning. Since all these
domains are well structured, the instructional material to self-explain can be clearly defined. We are
interested in investigating whether self-explanation can be used in an open-ended domain. For this purpose,
we enhanced KERMIT, an intelligent tutoring system that teaches conceptual database design. The resulting
system, KERMIT-SE, supports self-explanation by engaging students in tutorial dialogues when their
solutions are erroneous. We plan to conduct an evaluation in July 2002, to test the hypothesis that students
will learn better with KERMIT-SE than without self-explanation.

1. Introduction

Many Intelligent Tutoring Systems (ITS), which provide problem-solving environments, have shown significant
learning gains for students particularly in the domain of Mathematics [8] and Physics [9, 16] and Computer
Science [10,12]. However, some empirical studies indicate that students tend to keep guessing until they find an
action that obtains positive feedback from the ITS [1]. As a result, the student will have difficulties in
transferring knowledge to novel situations, even though they gain enough knowledge to obtain a passing grade on
tests. Researchers are therefore interested in finding methods that overcome the shallow learning problem. Self-
explanation is described as an “activity of explaining to oneself in an attempt to make sense of new information,
either presented in a text or in some other medium” [4], and has been shown to facilitate the acquisition of deep
knowledge [5]. Since explaining the instructional material to oneself facilitates the integration of new
information into existing knowledge, self-explanation can be viewed as a knowledge construction activity [4].
However, the results of Chi’s study [4] indicated that self-explanation is not merely a process of generating
inferences to fill gaps in knowledge, but a process of repairing one’s own mental model of the topic under study.
In this context, self-explanation facilitates the identification and removal of misconceptions. Therefore, self-
explanation also promotes reflection, which is a meta-cognitive skill many students lack [13].

KERMIT (Knowledge-based Entity Relationship Modelling Intelligent Tutor) [12, 15] is a problem-solving
environment that supports students learning database (DB) modelling. In this paper, we describe how we
enhanced KERMIT to support self-explanation. Section 2 describes related work. KERMIT is briefly introduced
in Section 3 and KERMIT-SE, its enhancement that facilitates self-explanation, is presented in the next section.
The conclusions and directions for future research are given in the final section.

2. Related Work

There are only a few systems that support self-explanation. SE-Coach facilitates self-explanation by prompting
students to explain example solutions [7]. It is implemented within ANDES [9,16] a tutoring system that teaches
Newtonian Physics. The first level of scaffolding in the SE-Coach’s interface is provided by a masking
mechanism that covers different parts of the example with grey boxes, each corresponding to a unit of
information. When the student moves the mouse over a box, it disappears, revealing the content underneath. The
second level of scaffolding produces specific prompts to self-explain. Whenever a student unmasks a piece of an
example, s/he is prompted to self-explain if a concept worthy of explanation is uncovered. The students are
expected to self-explain not only principles of the domain but also solution steps. However, the students are
prompted to self-explain only when the tutor decides it is beneficial. To determine when to intervene, SE-Coach
relies on a probabilistic student model, that monitors how well the student understands the domain by capturing
both implicit self-explanations and self-explanations generated through the interface [6]. The results of the
empirical evaluation of SE-Coach reveals that the structured scaffolding of self-explanation can be more
beneficial in the early learning stages. It also suggests that even simpler forms of prompting can successfully
trigger self-explanation when students become more proficient in the subject matter.

ANDES has been further enhanced by incorporating ATLAS [17], a module to conduct natural language
dialogues to facilitate deep learning. When ATLAS recognizes an opportunity to encourage deep learning, it
initiates a natural language dialogue with the student. The main objective of the dialogues is to facilitate

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35457567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


knowledge construction; hence, these dialogues are known as knowledge construction dialogues (KCDs). KCDs
provided by ATLAS are currently limited to teaching domain principles. A limited study (with ten participants)
revealed that the students interacting with ATLAS learnt significantly better than students who interacted with
ANDES [11]. However, larger studies are needed to obtain more reliable results.

Using the PACT Geometry Tutor, Aleven and Koedigner [1] investigated how self-explanation facilitates
deep learning. The students in the experimental group were expected to provide correct explanations for solution
steps by citing definitions and theorems used. A glossary of knowledge in the form of definitions and theorems
was provided in order to help students to explain the solution steps. The study revealed that explaining the
reasoning steps results in improved problem solving skills. The researchers also discovered that students who
explained solution steps attempted significantly fewer problems than their colleagues who provided only the
answers, although both groups spent the same amount of time with the tutor. However, there was evidence that
students who explained the solutions required fewer problems to reach the tutor’s mastery level criterion.

PACT Geometry Tutor has been further enhanced to facilitate self-explanation through natural dialogue [2].
Analysis of several corpora revealed that it was difficult for students to state geometry theorems in their own
words. The analysis further indicated that there are many ways to state a theorem correctly and even more ways
to state it incorrectly. Therefore, the system uses a “classify-and-react” approach to develop the tutor’s
interactions. i.e. in each dialogue cycle, the tutor classifies the student’s explanation and then responds based on
the classification. The system is currently being developed and an evaluation is yet to be conducted.

AUTOTUTOR [10] is used in an introductory course in computer literacy. The system improved the students’
learning by 0.5 standard deviation units when compared with a control group of students who read the same
chapters from a book. AUTOTUTOR requires students to provide lengthy explanations for theHow, Why and
What-if type of questions. This approach encourages students to articulate lengthier answers that exhibit deeper
reasoning instead of short answers, which may lead to shallow knowledge. A continuous multi-turn dialogue
between the tutor and the student takes place throughout the session.

These systems use different approaches to facilitate self-explanation, depending on the domain and the target
student group. Problem solving activities in these domains are well structured, and the types of self-explanations
expected from students can be clearly defined. For example, in Mathematics and Physics, students are expected
to explain the theorems that they have used. In computer literacy, the students are expected to explain the
definitions, meaning of terms and how a certain task is being carried out. However, it is challenging to
incorporate self-explanation in the domain of database design, as it is an open-ended task: there is an outcome
defined in abstract terms, but there is no procedure to use to find that outcome. It is not sufficient to ask the
students to explain the concepts of database modelling, as the database design skills can only be developed
through extensive practice.

3. KEEEERRRRMIT: A Knowledge-based ER Modelling Tutor

KERMIT (Knowledge-based Entity Relationship Modelling Intelligent Tutor) is an ITS aimed at the university-
level students learning conceptual database design. The architecture of the system is illustrated in Figure 1. For a

detailed discussion of the system, see [15]; here we present
some of its basic features. KERMIT is a problem-solving
environment in which students can practice database design
using the Entity Relationship (ER) data model. The system is
intended to complement traditional instruction, and assumes
that students are familiar with the ER model. The system
consists of an interface, a pedagogical module, which
determines the timing and content of pedagogical actions, and a
constraint-based modeller, which analyses student answers and
generates student models.

KERMIT contains a set of problems and the ideal solutions
to them, but has no problem solver. In order to check the
correctness of the student’s solution, KERMIT compares it to
the correct solution, using domain knowledge represented in the
form of more than 90 constraints. It uses Constraint-Based
Modelling [14] to model the domain and student’s knowledge.

The constraints cover both syntactic and semantic knowledge. The syntactic constraints are concerned with
syntactic details in a student's solution. An example of such a constraint is “An entity cannot be directly connected
to another entity”. Semantic constraints relate the student's solution to the system's ideal solution. For example,
there are constraints that check for equivalent, but not identical, ways of modelling parts of a database in the
student’s and ideal solution. One such constraint deals with multi-valued attributes of entities, which may
alternatively be modelled as weak entities. Students have several ways of selecting problems in KERMIT. They
may work their way through a series of problems, arranged according to their complexity. The other option is a

Constraint
Based

Modeller

Interface

Student

Pedagogical
Module

Solutions

MS
Visio

Models

Problems

Constraints
Student

Fig. 1. The architecture of KERMIT



system-selected problem, when the pedagogical module selects a problem for the student on the basis of his/her
student model. The interface is composed of three windows tiled horizontally. The top window displays the
current problem and provides controls for stepping between problems, submitting a solution and selecting
feedback level. The middle window is the main working area. In this window the student draws ER diagrams
using the toolbar on the left side of the window. Feedback is presented in the lowest window in the textual form,
as well as through an animated pedagogical agent.

4. Design and Implementation

All systems that facilitate self-explanation prompt students to explain most of the problem-solving steps, requiring
students to point out the definitions/theorems used. We believe this approach is not sufficient to acquire robust
knowledge. Therefore, our tutor prompts for self-explanation only when the student violates a constraint, which
indicates missing/erroneous knowledge, or a slip. The tutor is thus able to customise self-explanation based on the
student model so that the knowledge construction is facilitated for students who have misconceptions or gaps in
their knowledge without disrupting others [3].

Since a student can make several errors at each submission, the pedagogical module (PM) needs to decide on
which error to initiate the self-explanation process. The constraints in the knowledge base are ordered according to
the traditional ER modelling procedure, starting with modelling entities first, then relationships and finally the
attributes. This ordering alone is not sufficient to select an error to prompt for self-explanation, as most errors
violate more than one constraint. At the same time, semantic constraints are not specific enough to guide self-
explanation effectively. For instance, the constraint “A construct that should be a regular entity has been
represented by another type” is violated when a regular entity is represented either as a simple attribute or a weak
entity. Different approaches need to be taken in these two cases. Self-explanation in the first case needs to help the
student to clarify the definitions of entities and attributes so that the student understands when to use them. In the
latter case, the student should understand the differences between regular and weak entities, which will enable the
error to be corrected and the correct design decisions made in future. Also, the PM should enable the students to
build a more comprehensive mental model of the domain knowledge by giving them an opportunity to learn basic
concepts before complicated ones.

We have analysed different students’ errors and arranged them into a hierarchy. Nodes in this hierarchy are
ordered from basic domain principles to more complicated ones. Violated constraints for each type of error are
represented as leaves of the hierarchy. Self-explanation is facilitated through tutorial dialogue. We designed a
tutorial dialogue for each type of error. When the student submits a solution, the student modeller evaluates it
against the constraint base and identifies the violated constraints. The pedagogical module then searches for the
first tutorial dialogue that covers the same violated constraints. Since the dialogues are ordered according to the
complexity of the domain principles that the student needs to learn, PM selects the dialogue by traversing the
hierarchy in a top-to-bottom, left-to-right manner, selecting the first dialogue that involves some or all violated
constraints. The chosen dialogue is displayed in the feedback window.

For example, consider the following problem statement: “For each course a student has taken, we need to
know the final grade. Each course has a unique course code and a student has his/her student id.” Figure 1 shows
a student’s solution and the ideal solution. The student’s solution contains several errors: theHASrelationship is
not needed, theGRADEentity should be represented as an attribute, and also it is not possible to have en entity
without any attributes. The pedagogical module selects the dialogue corresponding to the simplest error (GRADE
represented as an entity instead of as an attribute) to start with. Figure 2 presents a sample dialogue, which may
occur between the student and the tutor. In the first level of a dialogue, the student is informed that the action s/he
has performed is incorrect and is asked to interpret their action in the context of ER modelling (tutor-1). A list of
possible answers is provided from which the correct one can be selected. If the student fails to provide the correct
answer or indicates that s/he needs more help (student-1), s/he will be asked more specific questions that provide a
further opportunity to understand the fundamental principle that is violated (tutor-2). However, if s/he fails to
identify the mistake and correct it, even after going through a series of detailed questions, as a last resort the tutor
will specify the correct action to be performed together with a brief description about the fundamental principle
that needs to be learnt (tutor-7, tutor-8). KERMIT-SE uses various types of interactions such as simple questions
(tutor-1), fill-in-a-blank (tutor-8), or true-false questions, to motivate the student to self-explain. Since all
dialogues initiate self-explanation by making the student aware of the incorrect action (tutor-1), students are given
an opportunity to reflect on their problem solving procedure, which is another important meta-cognitive skill.



If the student violates the same constraint in a subsequent attempt, a choice is given to initiate the tutor’s
behaviour. The student can decide (i) to go through the tutorial dialogue for that constraint again, (ii) to request a
single question which will enable an understanding of the fundamental principle violated or (iii) attempt to correct
the mistake. This way, the student is given greater control and increased motivation to use the system. It will also
provide an opportunity to identify students’ self-assessment skills [13].

The short-term student model in KERMIT consists of a list of satisfied and a list of violated constraints for the
student’s last submission, while the long-term model records the history of each constraint (how often a constraint
has been relevant, and how often it has been satisfied/violated) [15]. In KERMIT-SE, the long-term model
additionally records the type of error made and the level of prompting the student needed to correct his/her
mistake for every violated constraint.

5. Conclusions and Future Work

Self-explanation is a way of supporting deep learning. This research focuses on incorporating self-explanation into
a tutor that teaches the open-ended task of ER modelling. KERMIT-SE supports self-explanation by engaging
students in tutorial dialogues about errors they make. We analysed typical student errors, and designed a tutorial
dialogue for each type of error. These dialogues are arranged in a hierarchy, according to the complexity of the
domain concepts they include. Each error corresponds to one or more violated constraints. The pedagogical

Tutor-1 : You’ve modelledGradeas an entity. What does that mean in terms of properties of an entity
Student-1 : I don’t know
Tutor-2: Let’s try a simple thing. How do we model characteristics of an entity ?
Student-2 : Using Attributes
Tutor-3 : Great ! Now tell me why modellingGradeas an entity contradicts with the problem

description ?
Student-3 : I’m not sure
Tutor-4 : Don’t worry. I’m here to help you. Check carefully whether you can find any attributes for

Grade.
{After sometime} Pls. tell me whether you manage to find any attributes forGrade
Student-4 : No
Tutor-5: Fine :It doesn’t have any attributes. So now can you tell me why modellingGradeas an entity

contradicts with the problem description ?
Student -5 : Because it doesn’t have any attributes to describe its characteristics
Tutor-6 : Great! Now tell me the best way to modelGrade?
Student-6 : I need more help
Tutor-7: Ok. If Gradedoesn’t have attributes, it cannot be an entity. So it should either be a relationship

or an attribute. Now tell me the best way to modelGrade.
Student-7 : Attribute
Tutor-8 : Great ! Now use the correct word to fill in the blanks so that you’ll remember what you learnt.
…………….. are used to describe characteristics of an ………….. in a ER model
Student-8 : attributes, entity
Tutor-9 : Excellent, Go ahead and do the changes. Submit the solution when you’re done

Figure 2: A sample tutorial dialogue

STUDENT TAKES COURSE

HAS

GRADE

Student_ID
Course_Code

N 1

1

N

1

STUDENT
TAKES COURSE

Student_ID Course_Code

Grade

N

N

Figure 1: A student’s solution and the correct solution



module selects the simplest dialogue based on the student’s solution. The student model is also modified to
represent the student’s skills at explaining their problem-solving decisions.

An evaluation study is planned for July 2002. The study aims to discover whether guided self-explanation will
help students to learn with understanding in the domain of database modelling. It will involve second-year
university students enrolled in an introductory database course. We are interested in investigating whether the
experimental group (who will use KERMIT-SE) will learn significantly better compared to the control group (who
will use KERMIT). We are also interested in assessing whether there is a correlation between the level of
prompting required by the students to identify their mistake and their prior knowledge. Since the student model
records the details of types of errors associated with every violated constraint, the student model can be used to
identify the concepts that are difficult for each student. We are interested in assessing whether there is a correlation
between the level of prompting needed by each student and their perceived level of difficulty of the principle they
violated. The data recorded in the student model will be further analyzed to ascertain whether students gain the
ability to identify their mistakes through self-explanation, with very little prompting, when they become more
proficient in the subject matter. Since KERMIT-SE gives the learner more control to initiate the tutor’s behaviour,
the evaluation study will provide us with an opportunity to understand how well the students can use self-
assessment to acquire robust domain knowledge. Also, the empirical results will indicate whether the pedagogical
module needs to be enhanced to provide more assistance to the students who lack self-assessment skills in
initiating the tutor’s behaviour and selecting new problems. Since self-explanation has not been previously used in
a design environment to foster learning, this research will provide important information.

Acknowledgements
We thank Pramuditha Suraweera and Danita Hartley for their help in implementing KERMIT-SE. This research
was made possible by the NZODA postgraduate scholarship awarded to the first author.

References

1. Aleven, V., Koedinger, K. R. and Cross, K. Tutoring Answer Explanation Fosters Learning with Understanding. In:
Artificial Intelligence in Education, Lajoie, S.P. and Vivet, M.(eds.), Amsterdam : IOS Press (1999) 199-206.

2. Aleven, V., Popescu, O. and Koedinger, K. R. Towards Tutorial Dialogue to Support Self-Explanation: Adding Natural
Language Understanding to a Cognitive Tutor. Int. Journal on Artificial Intelligence in Education, 12 (2001) 246-255.

3. Bunt, A. and Conati, C. Modeling Exploratory Behaviour. In: Bauer, M., Gmytrasiewicz, P. J. and Vassileva, J. (eds.), Proc.
of 8th International Conference, User Modeling, Sonthofen, Germany (2001) 219-221

4. Chi, M. T. H. Self-explaining Expository Texts: The dual processes of generating inferences and repairing mental models.
Advances in Instructional Psychology, (2000) 161-238.

5. Chi, M. T. H., Bassok, M., Lewis, W., Reimann, P. and Glaser, R. Self-Explanations: How Students Study and Use
Examples in Learning to Solve Problems. Cognitive Science, 13 (1989) 145-182.

6. Conati, C. and VanLehn K., Providing Adaptive Support to the Understanding of Instructional Material. In Proc. IUI 2001
Sante Fe, New Mexico (2001).

7. Conati, C. and VanLehn, K. Toward Computer-Based Support of Meta-Cognitive Skills: a Computational Framework to
Coach Self-Explanation. Int. J. Artificial Intelligence in Education, 11 (2000) 389-415.

8. Corbett, A.T.M., Trask, H.J., Scarpinatto, K.C. and Handley, W.S. A formative evaluation of the PACT Algebra II Tutor :
support for simple hierarchical reasoning. Proc. ITS’98 374-383.

9. Gertner A. S. and VanLehn, K. ANDES: A Coached Problem-Solving Environment for Physics, In Gauthier G., Frasson, C.
and VanLehn, K. (eds.), Proc. ITS 2000, Montreal (2000) New York : Springer 133-142.

10. Grasser, A. C., Wiemer-Hastings, K. Wiemer-Hastings, P. and Kreuz, R., Tutoring Research Group 1999. AUTOTUTOR:
A Simulation of a Human Tutor. Journal of Cognitive Systems Research 1(1) (1999) 35-51.

11.Grasser, A.C., VanLehn, K., Rose, C.P., Jordan, P.W. and Harter, D. Intelligent Tutoring Systems with Conversational
Dialogue, AI Magazine, American Association for Artificial Intelligence, Winter 2001, 39 -51

12. Mitrovic, A., Mayo, M., Suraweera, P. and Martin, B. Constraint-based tutors: a success story. In Monostori, L., Vancza, J.
and Ali, M. (eds.), Proc. of IEA / AIE, Budapest, Hungary 2001, Springe-Verlag 931-940.

13. Mitrovic, A. Investigating Students' Self-assessment Skills. In Bauer, M., Gmytrasiewicz, P. J. and Vassileva, J. (eds.),
Proc. UM 2001, Berlin Heidelberg (2001) Springer-Verlag 247-250.

14. Ohlsson, S. Constraint-based Student Modelling. In: Greer, J.E., McCalla, G (eds) Proc. of Student Modelling: the Key to
Individualized Knowledge-based Instruction, Springer-Verlag Berlin (1994) 167-189.

15 Suraweera, P. and Mitrovic, A. KERMIT: a constraint-based tutor for database modelling. Proc. ITS’2002 (in press).
16. VanLehn, K. Conceptual and Meta-learning during Coached Problem Solving. In: Frasson, C., Gauthier, G. and Lesgold,

A. (eds.), Proc ITS 1996 Berlin (1996) 29-47.
17. VanLehn, K., Freedman, R., Jordan, P., Murray, C., Osan, R., Ringenberg, M., Rose, C.P., Schulze, K., Shelby, R.,

Treacy, D., Weinstein, A. and Wintersgill, M. Fading and Deepening: The Nest steps for ANDES and Other Model-Tracing
Tutors. In Proc. ITS 2000, Gauthier, G., Frasson, C. and VanLehn, K. (eds.), Montreal (2000) 474-483.


