
Large-Scale Deployment of Three Intelligent Web-based Database Tutors

Antonija Mitrovic and the ICTG team
Computer Science Department, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
http://www.cosc.canterbury.ac.nz/~tanja/ictg.html

Abstract. We present our experiences with
DatabasePlace, a Web portal aimed at
university-level students enrolled in database
courses. The portal was established by Addison-
Wesley in January 2003. Besides presenting
information about the textbooks, the portal also
provides additional domain information, online
quizzes and three Intelligent Tutoring Systems
developed by the Intelligent Computer Tutoring
Group (ICTG). We briefly present the three
systems, and then discuss our experiences. We
also compare the DatabasePlace students to our
local students using the three ITSs.

Keywords. Intelligent Tutoring Systems,
evaluation, student modelling

1. Introduction

Intelligent Tutoring Systems (ITS) are
knowledge-based systems that provide
individualized instruction, by being able to adapt
to the knowledge, learning abilities and needs of
each individual student. ITSs offer many
advantages over the traditional classroom
scenario: they are always available, non-
judgemental and provide tailored feedback
[1,11]. The current state-of-the-art ITSs achieve
improvements of one standard deviation
compared to traditional classroom teaching, but
are not yet as effective as one-on-one human
tutoring [1,2,7,8].

In this paper, we discuss our experiences in
providing three Web-enabled ITSs that teach
various database skills to university students. We
have developed the three systems within ICTG,
and have been using them with our local students
at the University of Canterbury starting in 1998.
In 2002 we signed a contract with Addison-
Wesley to provide the three ITSs and online
quizzes on DatabasePlace, their Web portal
(www.databaseplace.com). DatabasePlace was
open in January 2003, serving two ITSs: SQL-
Tutor, which teaches the SQL database query

language, and NORMIT, the data normalization
tutor. ER-Tutor, an ITS that teaches database
design using the Entity-Relationship data model,
was added to the portal in January 2004.

Databases are ubiquitous in today’s
information systems. Our tutors are Web-
enabled, and thus are classroom and platform
independent. All three tutors are problem-solving
environments, where the system presents
problems to solve and offers adaptive problem-
solving support and feedback.

In Section 2 we present a brief overview of the
architecture and functionality of our tutors. The
following three sections discuss SQL-Tutor, ER-
Tutor and NORMIT. Section 5 presents some
experiences with DatabasePlace, followed by
conclusions in the last section.

2. Constraint-based tutors

Although ITSs have been proven to be
effective in many domains, the number of ITSs
used in real courses is still extremely small [7].
The typical architecture of our constraint-based
tutors is given in Fig. 1. The tutors are developed
in AllegroServe, an extensible Web server
provided with Allegro Common Lisp. All student
models are kept on the server. At the beginning
of interaction, a student is required to enter
his/her name, which is necessary in order to
establish a session. The session manager requires
the student modeller to retrieve the model for the
student, if there is one, or to create a model for a
new student. Each student action is sent to the
session manager, to be linked to the appropriate
session and stored in the student’s log. The
action is then sent to the pedagogical module
(PM). If the submitted action is a solution to the
current step, the PM sends it to the student
modeller, which diagnoses the solution, updates
the student model and sends the result of the
diagnosis back to the PM, which generates
feedback.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35457478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SQL-Tutor and NORMIT are Web-enabled
tutors with a centralized architecture, with all
tutoring functions performed on the server side.
In these two domains, solutions produced by
students are textual, and the amount of
information to be sent to the server is small, so
that the centralized architecture is appropriate. In
ER-Tutor, students draw diagrams, and some
tutoring functions related to drawing are
performed on the client side. The tutoring
functions are therefore distributed between the
server and the Java applet, as described later.

Domain knowledge consists of a set of
constraints. Constraint-Based Modeling (CBM)
[8,10] is a student modeling approach that is not
interested in the exact sequence of states in the
problem space the student has traversed, but in
what state he/she is in currently. As long as the
student never reaches a state that is known to be
wrong, they are free to perform whatever actions
they please. The domain model is a collection of
state descriptions of the form: If <relevance
condition> is true, then <satisfaction condition>
had better also be true, otherwise something has
gone wrong. A simple example of a constraint is
as follows: If you are driving in New Zealand,
you better be on the left side of the road.

The knowledge base consists of constraints
used for testing the student’s solution for syntax
errors and comparing it against the system’s
ideal solution to find semantic errors. The
knowledge base enables the ITS to identify
correct student solutions, no matter whether they
are identical to the system’s ideal solutions or

whether the student used an alternative way of
solving the same problem. Constraints are
problem-independent and modular, and therefore
easy to evaluate. They are written in Lisp, and
can contain built-in functions as well as domain-
specific ones. For examples of constraints, please
see [5,7,8,9,12]. If the satisfaction condition of a
relevant constraint is met by the student solution,
the solution is correct. In the opposite case, the
student will be given feedback on errors.

One of the advantages of CBM over other
student modeling approaches [6] is its
independence from the problem-solving strategy
employed by the student. CBM models students’
evaluative, rather than generative knowledge
and, therefore, does not attempt to induce the
student’s problem-solving strategy. CBM does
not require an executable domain model, and is
applicable in situations in which such a model
would be difficult to construct (such as database
design or SQL query generation). Furthermore,
CBM eliminates the need for bug libraries, i.e.
collections of typical errors made by students.
On the contrary, CBM focuses on correct
knowledge only. If a student performs an
incorrect action, that action will violate some
constraints. A violated constraint means that
student’s knowledge is incomplete/incorrect, and
the system can respond by generating an
appropriate feedback message.

The student modeller evaluates the student’s
solution against the knowledge base and updates
the student model. The short-term student model
consists of a list of violated and a list of satisfied
constraints for the current attempt. The long-term
model records the history of usage for each
constraint. This information is used to select
problems of appropriate complexity for the
student, and to generate feedback.

All constraint-based tutors contain predefined
database problems. ER-Tutor and SQL-Tutor
also contain a pre-specified ideal solution for
each problem, as there are no problem solvers for
these two tutors. NORMIT, on the other hand,
contains a problem solver, and is capable of
solving both pre-specified problems and the
problems entered by students.

The pedagogical module is the driving engine
of the whole system. Its main tasks are to
generate appropriate feedback messages for the
student and to select new practice problems. PM
individualizes these actions to each student based
on their student model. Unlike ITSs based on
model tracing [1,4], constraint-based tutors do
not follow each student’s solution step-by-step: a

Web server
(AllegroServe)

Session
manager

Student
modeler

Problem
solver

Pedagogical
module

student
models

Problems

Web
browser

Internet

Fig. 1. The architecture of our tutors

student’s solution is only evaluated once it is
submitted, although the student may submit a
partial solution to get ideas on how to progress.

3. SQL-Tutor

Students experience many problems when
learning SQL. Some errors come from the
burden of having to memorize database schemas;
others come from misconceptions in the student's
understanding of SQL and the relational data
model. Furthermore, students find that it is not
easy to learn SQL by working with a RDBMS,
because error messages are very often hard to
understand, and are limited to the syntax only.

The Web-enabled version of SQL-Tutor has
been used in courses at the University of
Canterbury since 1999. For a detailed discussion
of the system, see [5,7,8]. The system contains
several databases and a set of problems and their
ideal solutions. The interface was designed to be
robust, flexible, and easy to use. It reduces the
memory load by displaying the database schema,
the text of a problem, the basic structure of the
query, and explanations of the elements of SQL.

The interface removes some of the cognitive load
required for checking the low-level syntax, and
enables the student to focus on query definition.

SQL-Tutor checks the student’s solution by
comparing it to the correct solution using domain
knowledge represented in the form of about 700
constraints. The student may select problems in
several ways: they may work their way through a
series of problems for each database (ordered by
their complexity), ask the system to select a
problem on the basis of their student model,
select a problem from a list, or select the type of
problem they wish to work on, where the system
then selects an individual problem of that type on
the basis of their student model.

4. ER-Tutor

Database design is a process of generating a
database schema using a specific data model.
The quality of conceptual schemas is of critical
importance for database systems. Most database
courses teach conceptual database design using
the Entity-Relationship (ER) model, a high-level

Fig. 2. The interface of ER-Tutor

data model [3]. Although the traditional method
of learning ER modeling in a classroom
environment may be sufficient as an introduction
to database design, students cannot gain
expertise by attending lectures only: like in other
design tasks, extensive practise is necessary. ER-
Tutor assists students in this task. The system is
designed to complement classroom teaching, and
therefore assumes that students are already
familiar with the fundamentals of database
theory. In ER-Tutor [9,12], students construct
ER schemas that satisfy a given set of
requirements. The system assists students during
problem solving and guides them towards the
correct solution by providing tailored feedback.

The system is designed for individual work.
The student is given a textual description of the
requirements of the database, and uses the ER
modelling notation to construct an ER schema, as
shown in Fig. 2. The interface consists of three
main components. The top part contains the
controls for the student to ask for a new problem,
look at the history of the current session, explore
their student model, ask for help or log out. The
main component is the Java applet, which
displays the text of the problem. It also provides
an ER modeling workspace where students
create ER diagrams. The feedback from the
system is provided in the pane on the right. The
ER diagram is constructed using the workspace
integrated into the interface. Whenever a new
object is created, the system asks for it to be
named by highlighting a phrase from the
problem text. This interface has two benefits: the
student is forced to think about the requirements
in terms of the original problem text, and it is
also easier for the tutor to understand the
semantics of the constructs in the student’s
diagram. Once the student has completed the
problem or requires guidance from the system,
the solution is evaluated. Depending on the
results of the evaluation, the system may either
congratulate the student or offer hints on their
errors. The domain knowledge of ER-Tutor is
represented as a set of 135 constraints, which is
used for testing the student’s solution (for syntax
errors) and comparing it to the ideal solution.

5. NORMIT

Database normalization is the process of
refining a relational database schema in order to
ensure that all tables are of high quality [3].
Normalization is usually taught in introductory
database courses in a series of lectures, and later

practised on paper by looking at specific
databases and applying the definitions. Database
normalization is a procedural task: the student
goes through a number of steps to analyze the
quality of a database. We described the tasks
NORMIT supports in detail elsewhere [9].
NORMIT requires the student to determine
candidate keys, the closure of a set of attributes,
prime attributes, simplify functional
dependencies, determine normal forms, and, if
necessary, decompose the table. The sequence is
fixed: the student will only see a Web page
corresponding to the current task. The student
may submit a solution or request a new problem
at any time. He/she may also review the history
of the session, or examine their student model.

NORMIT currently contains over 80
problem-independent constraints that describe
the basic principles of the domain. Some
constraints check the syntax of the solution,
while others check the semantics by comparing
the student’s solution to the ideal solution,
generated by the problem solver. In order to
identify constraints, we studied material in
textbooks, such as [3], and also used our own
experience in teaching database normalization.

6. DatabasePlace

The number of DatabasePlace users has been
increasing steadily, as illustrated in Fig. 3.
Students get access to the portal by buying a
database book published by Addison-Wesley, or
by obtaining access directly from the Web. The
contract with the publisher does not allow for
collecting general information about the users or
their background knowledge prior to using the
ITSs, but we do have access to session logs.
Although we do not know where the users come
from, it is evident from the figure that most of
the students come from the northern hemisphere;
there are fewer new users during July-August
period. ER-Tutor was available on the portal a
year later than the other two tutors, but it is
equally popular. NORMIT seems to attract the
least number of users, which is not surprising,
taking into account the highly theoretical nature
of its instructional area.

We performed numerous evaluation studies
on these three ITSs with local students at the
University of Canterbury, the results of which
show that they increase students’ knowledge
significantly [7,8,9,12]. The ITSs are especially
effective for less able students, although we have
proofs that there are also beneficial for more

advanced students. Subjective information shows
that students appreciate working with the tutors,
as they are available at any time and from any
place, and especially praise the feedback
provided. Since we have no knowledge of
backgrounds of students using the same systems
on DatabasePlace, it is interesting to see whether
the same effects are achieved on the portal.

We performed various analyses of student
data collected on the portal. DatabasePlace
students prefer different problems than
Canterbury students. For example, Canterbury
students most often select problems from two
databases offered in SQL-Tutor (MOVIE and
COMPANY), while DatabasePlace students
prefer other databases. These superficial
differences can be explained easily: Canterbury
students use SQL-Tutor in the labs, as a
complement to lectures. In the course taught by
the author, many examples used in lectures come
from these two databases. DatabasePlace
students, on the other hand, use SQL-Tutor (most
likely) completely independently from the
courses they are enrolled in, and select databases
based on their own preferences.

A more interesting analysis looks at the
completion rates. On average, 3-15% of
Canterbury students log on to the ITSs without
even making any attempts at solving problems.
The percentage of students behaving the same
way in DatabasePlace is higher, and ranges from
30% to 45%. The percentage of students who
complete no problems for Canterbury students
ranges from 3% to 12% (depending on the
system), while for DatabasePlace students this
range is much wider (12-40%). We believe this
illustrates the effect of having no human teacher
in the loop: Canterbury students are told in
lectures that the tutoring systems are useful for
practice, and that they may help students learn

better, while no such reinforcement is there for
DatabasePlace students.

The most important analysis is whether the
two groups of students learn equally well. Figure
4 shows the learning curves for students using
NORMIT. We compared two groups of students:
the Canterbury group included all students
participating in a study performed in 2004, while
the DatabasePlace group consists of all students
using NORMIT on DatabasePlace. To produce
the learning curve, we calculate the probability
of violating a constraint on its nth occasion of
being relevant. This probability is then averaged
over all constraints and over all students. Fig. 4
shows the raw data points and also the fitted
power curves. It can be seen that both power
curves represent very good approximations of
the data sets, with the R2 fits of 0.86 and 0.93 for
the Canterbury and DatabasePlace groups
respectively. A good fit to the power curve is
widely accepted in the ITS area as a measure of
the psychological appropriateness of the used
knowledge representation formalism; in our
case, these graphs show that students indeed do
acquire knowledge in the area as represented in
the system (i.e. the students learn constraints).
The initial probability of errors is slightly higher
for Canterbury students (0.19) than for Database
Place students (0.17), but the difference is not
significant. The learning rates (i.e. the exponents
of the power curves) are comparable, meaning
that both groups learn equally well. The slightly
higher R2 for the DatabasePlace group is the
statistical effect of a much larger size of the
group; there were less than 50 Canterbury
students, compared to almost two thousand
students using NORMIT on DatabasePlace.

0

1000

2000

3000

4000

5000

6000

F
e

b
-0

3

M
a

y-
0

3

A
u

g
-0

3

D
e

c-
0

3

M
ar

-0
4

Ju
n-

04

S
e

p
-0

4

Ja
n-

05

A
p

r-
0

5

Ju
l-0

5

N
o

v-
05

SQL-Tutor ER-Tutor NORMIT
Fig. 3. The number of DatabasePlace users

Canterbury

y = 0.1863x-0.154

R2 = 0.8589

DatabasePlace

y = 0.1739x-0.1716

R2 = 0.9316

0

0.05

0.1

0.15

0.2

1 3 5 7 9 11 13 15
Occasion

P
ro

b
ab

ili
ty

DatabasePlace Canterbury
Power (Canterbury) Power (DatabasePlace)

Fig. 4. Learning curves

7. Conclusions

We presented three of our constraint-based
tutors for the database area, which are used with
local students at the University of Canterbury,
and also at a Web portal with worldwide
students. The DatabasePlace Web portal has
been active for more than three years now, and
the three ITSs available on it have been used by
several thousand students. At Canterbury, we
have conducted multiple evaluation studies since
1998, but with much smaller populations of
students. The analyses we performed on student
logs collected both locally and from
DatabasePlace show that both groups of students
learn equally effectively using these systems,
although there are differences in attrition rates
and problem completion rates. We believe that it
is beneficial to have the teacher involved in the
process, as is the case with Canterbury students,
which increases student participation and
motivation. It is encouraging, though, to see that
students’ learning is not affected by not having
the teacher actively involved, as students learn
equally well on the DatabasePlace portal.

Our experience shows that ITSs have
reached the maturity level at which they provide
a successful and widely accessible platform for
learning. We believe that ITSs will become much
more frequent in classrooms and also much more
widely used in e-learning courses. The biggest
barrier at the moment is the difficulty of
developing new ITSs, as they require not only
domain expertise, but also expertise in software
development, psychology and education. Our
current work is focused on developing ASPIRE,
a Web-enabled authoring system for constraint-
based tutors. ASPIRE will support teachers in
developing ITSs for their students, without
requiring programming expertise. Our authoring
system will provide all required functionality,
and support the author in the process of
specifying the domain model, which is the most
difficult and time-consuming task in ITS
development. Domain models will be induced
using machine-learning techniques, from the
domain information and examples of solved
problems supplied by teachers.

8. References

[1] Anderson JR, Corbett AT, Koedinger KR,

Pelletier R. Cognitive Tutors: Lessons

Learned. The Journal of the Learning
Sciences 1995; 4(2): 167-207.

[2] Bloom B.S. The 2-sigma problem: The
search for methods of group instruction as
effective as one-to-one tutoring. Educational
Researcher 1984; 13: 4-16.

[3] Elmasri R, Navathe S.B. Fundamentals of
Database Systems. Addison Wesley, 2004.

[4] Koedinger, K. R., Anderson, J. R., Hadley,
W. H. & Mark, M. A. Intelligent tutoring
goes to school in the big city. Artificial
Intelligence in Education 1997; 8(1): 30-43.

[5] Mitrovic A. Experiences in Implementing
Constraint-Based Modelling in SQL-Tutor.
In: Goettl BP, Halff HM, Redfield CL,
Shute VJ, editors. Proceedings of the 4th
International Conference on Intelligent
Tutoring Systems, 1998, p. 414-423.

[6] Mitrovic A, Koedinger K, Martin B. A
Comparative Analysis of Cognitive Tutoring
and Constraint-Based Modelling. In:
Brusilovsky P, Corbett A, de Rosis F,
editors. Proceedings of the 9th International
Conference on User Modeling, Springer-
Verlag, LNAI 2702, 2003, p. 313-322.

[7] Mitrovic A, Martin B, Mayo M. Using
Evaluation to Shape ITS Design: Results and
Experiences with SQL-Tutor. User Modeling
and User-Adapted Interaction 2002; 12(2-3):
243-279.

[8] Mitrovic A, Ohlsson S. Evaluation of a
Constraint-Based Tutor for a Database
Language. Artificial Intelligence in
Education 1999; 10(3-4): 238-256.

[9] Mitrovic A, Suraweera P., Martin B,
Weerasinghe A. DB-suite: Experiences with
Three Intelligent, Web-based Database
Tutors. Interactive Learning Research 2004;
15(4): 409-432.

[10] Ohlsson S. Constraint-based Student
Modelling. In Proc. of Student Modelling:
the Key to Individualized Knowledge-based
Instruction, Springer-Verlag, Berlin, pp.
167-189, 1994.

[11] Self JA. Theoretical foundations for
intelligent tutoring systems. Artificial
Intelligence in Education 1990; 1(4): 3-14.

[12] Suraweera P, Mitrovic A. An Intelligent
Tutoring System for Entity-Relationship
Modelling. Artificial Intelligence in
Education 2004; 14(3-4): 375-417.

