
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

2-2016

Negative Factor: Improving Regular-Expression
Matching in Strings
Xiaochun YANG

Tao QIU

Bin WANG

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Yaoshu WANG

See next page for additional authors

DOI: https://doi.org/10.1145/2847525

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Theory and Algorithms

Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
YANG, Xiaochun; QIU, Tao; WANG, Bin; ZHENG, Baihua; WANG, Yaoshu; and LI, Chen. Negative Factor: Improving Regular-
Expression Matching in Strings. (2016). ACM Transactions on Database Systems. 40, (4), 1-46. Research Collection School Of
Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3157

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/2847525
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Xiaochun YANG, Tao QIU, Bin WANG, Baihua ZHENG, Yaoshu WANG, and Chen LI

This journal article is available at Institutional Knowledge at Singapore Management University: https://ink.library.smu.edu.sg/
sis_research/3157

https://ink.library.smu.edu.sg/sis_research/3157?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research/3157?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages

25

Negative Factor: Improving Regular-Expression Matching in Strings

XIAOCHUN YANG, TAO QIU, and BIN WANG, Northeastern University, China
BAIHUA ZHENG, Singapore Management University, Singapore
YAOSHU WANG, Northeastern University, China
CHEN LI, University of California, Irvine

The problem of finding matches of a regular expression (RE) on a string exists in many applications, such
as text editing, biosequence search, and shell commands. Existing techniques first identify candidates using
substrings in the RE, then verify each of them using an automaton. These techniques become inefficient
when there are many candidate occurrences that need to be verified. In this article, we propose a novel
technique that prunes false negatives by utilizing negative factors, which are substrings that cannot appear
in an answer. A main advantage of the technique is that it can be integrated with many existing algorithms
to improve their efficiency significantly. We present a detailed description of this technique. We develop an
efficient algorithm that utilizes negative factors to prune candidates, then improve it by using bit operations
to process negative factors in parallel. We show that negative factors, when used with necessary factors
(substrings that must appear in each answer), can achieve much better pruning power. We analyze the large
number of negative factors, and develop an algorithm for finding a small number of high-quality negative
factors. We conducted a thorough experimental study of this technique on real datasets, including DNA
sequences, proteins, and text documents, and show significant performance improvement of the state-of-the-
art tools by an order of magnitude.

CCS Concepts: � Theory of computation → Regular languages; � Information systems → Structured
text search;

Additional Key Words and Phrases: Regular expression, long sequence

ACM Reference Format:
Xiaochun Yang, Tao Qiu, Bin Wang, Baihua Zheng, Yaoshu Wang, and Chen Li. 2016. Negative factor:
Improving regular-expression matching in strings. ACM Trans. Database Syst. 40, 4, Article 25 (January
2016), 46 pages.
DOI: http://dx.doi.org/10.1145/2847525

1. INTRODUCTION

Regular expression, often referred to as Regexes or REs, are widely supported in pro-
gramming languages (e.g., Perl, PHP, R, Ruby) and RE support is part of the standard
library of many programming languages, including .NET, Java, and Python. In addi-
tion, REs are also widely used in our everyday applications, although we might not
know it. For example, RE can help validate email and/or password formats on the

The work by X. Yang and B. Wang was partially supported by the NSF of China for Outstanding Young
Scholars under grant no. 61322208, the National Basic Research Program of China (973 Program) under
grant no. 2012CB316201, the NSF of China for Key Program under grant no. 61572122, the NSF of China
under grant nos. 61272178, 61572122, and 61173031, and the work by C. Li was partially supported by the
Joint Research Fund for Overseas Natural Science of China under grant no. 61129002.
Authors’ addresses: X. Yang (corresponding author), T. Qiu, B. Wang, and Y. Wang, School of Com-
puter Science and Engineering, Northeastern University, China; emails: yangxc@mail.neu.edu.cn, qiutao@
stumail.neu.edu.cn, bwang@mail.neu.edu.cn, wangyaoshu@stumail.neu.edu.cn; B. Zheng, School of Informa-
tion Systems, Singapore Management University; email: bhzheng@smu.edu.sg; C. Li, School of Information
and Computer Sciences, University of California, Irvine; email: chenli@ics.uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2016 Copyright held by the owner/author(s).
ACM 0362-5915/2016/01-ART25 $15.00
DOI: http://dx.doi.org/10.1145/2847525

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Published in ACM TRANSACTIONS ON DATABASE SYSTEMS, 40 (4):10.1145/2847525 2015
http://dx.doi.org/10.1145/2847525

http://dx.doi.org/10.1145/2847525
http://dx.doi.org/10.1145/2847525

25:2 X. Yang et al.

server side. To lower overall risk of a security breach, many servers set complexity re-
quirements that passwords must meet when they are created or changed, for example,
passwords must contain characters from three of the four given categories and their
minimum length must be 10. Servers rely on REs to perform the validation.

In this article, we study the problem of efficiently finding matchings of an RE in a
long string. This is a fundamental problem that exists in many application domains.
In the domain of bioinformatics, users specify a string such as TAC(T|G)AGA to find
its matchings in proteins or genomes [Kolakowski et al. 1992; Staden 1991]. Modern
text editors—such as vi, emacs, and eclipse—provide the functionality of searching a
given pattern in a text document being edited. The shell command grep is widely used
to search plain-text files for lines matching an RE. For instance, the command “grep
^a.ple fruits.txt” finds lines in the file called fruits.txt that begin with the letter
a, followed by one character, followed by the letter sequence ple.

A simple method to perform RE searches on a string is to construct an automaton for
the RE. For each position in the string, we run the automaton to verify if a substring
starting from that position can be accepted by the automaton. Note that the verification
step can be computationally expensive. The main limitation of this approach is that
we have to repeat the expensive verification step many times. Various algorithms
have been developed to speed up the matching process by first identifying candidate
occurrences in the string, then verifying them one by one [Crochemore et al. 1994;
Watson 2003]. These algorithms identify candidate places based on certain substrings
derived from the RE that have to appear in matching answers, such as a prefix and/or a
suffix. For instance, each substring matching the RE xy(a|b)∗zw∗ should start with xy (a
prefix condition) and end with zw or z (suffix conditions). Such substrings, called positive
factors throughout this article, can be used to locate candidate occurrences. Each will
be further verified using one or multiple automata. Although these algorithms can
eliminate many starting positions in the string, their performance highly depends on
the pruning power of the positive factors. When the positive factors generate too many
candidate occurrences, especially when the input string is long, their efficiency can
still be low. Note that high performance for RE matching is important for time-critical
applications, for example, Web services with many concurrent users. In these cases, a
lower runtime can not only make the system more interactive to users, but also reduce
the hardware requirements when we need to support a certain query throughput.

Contributions: In this article, we study how to improve the efficiency of existing
algorithms for searching REs in strings. We propose a novel technique that provides
significant pruning power by utilizing the substrings derived from the RE that cannot
appear in an answer. Such substrings are called negative factors, formally introduced
in Section 3 and initially presented in Yang et al. [2013]. We also study how to use
negative factors to speed up the matching process of existing algorithms and we find
that negative factors can be easily integrated with all the positive factors to offer much
stronger pruning power.

This article extends the initial study, via (i) proposing a novel index structure, BIT-
INDEX, in Section 4.1, which adopts a bit vector to capture the occurrence of any single
character in a given text; (ii) designing two new bit vector–based algorithms on top
of BITINDEX, in Section 4.4, to support RE matching; (iii) identifying the occurrence of
redundant core negative factors and presenting a scheme to remove redundant core
negative factors to further improve the quality of selected negative factors in Sec-
tion 5.4; (iv) analyzing the impact of forward and reverse matching, and determining
matching direction in Section 6 to further improve the matching process; (v) perform-
ing a more comprehensive experimental study on real datasets, including DNA se-
quences, protein sequences, and text documents, and demonstrating the space and time

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:3

Table I. Symbol Definition

Symbol Definition
T a text
n the length of a given text T (i.e., n = |T |)
Q a query regular expression
m the length of a query regular expression Q (i.e., m = |Q|)

R(Q) the set of strings that can be accepted by the automaton of Q
lmin w.r.t. Q the length of a shortest string in R(Q)

T [a, b] the substring ranging from the ath character to bth character
P, S, M, N a prefix, a suffix, a necessary factor, and an N-factor with regard to a given Q

M(P, πp),M(S, πs), refer to the matching prefix, matching suffix, matching necessary factor, and
M(M, πm),M(N, πn) matching N-factor starting at positions πp, πs, πm, and πn, respectively, in a text T

ws average word size in memory

efficiency of the proposed technique in Section 7; and (vi) improving the organization
and presentation of the article by a major revision and careful proofreading.

2. PRELIMINARIES

In this section, we first define the problem of RE matching, then present positive factors
used in the literature to improve the performance of RE matching, including prefix,
suffix, and necessary factors. The formal definition of positive factors will be given
later, after we formulate the problem of RE matching. Table I lists the symbols used
frequently in this article.

2.1. Regular Expression Matching

Let � be a finite alphabet. A regular expression (RE) is a string over � ∪ {ε, |, ·, ∗, (,)},
which can be defined recursively as follows:

• The symbol ε is an RE. It denotes an empty string (i.e., the string of length zero).
• Each string w ∈ �∗ is an RE, which denotes the string set {w}.
• If e1 and e2 are REs that denote sets R1 and R2, respectively, then

• (e1) is an RE that represents the same set denoted by e1.
• (e1 · e2) is an RE that denotes a set of strings x that can be written as x = yz, where

e1 matches y and e2 matches z.
• (e1|e2) is an RE that denotes a set of strings x such that x matches e1 or e2.
• (e+

1) is an RE that denotes a set of strings x such that, for a positive integer k, x
can be written as x = x1 . . . xk and e1 matches each string xi (1 ≤ i ≤ k). We use
ε|e+ to express a Kleene closure e∗. In this article, we consider the general case e∗.

Given an RE Q, we use R(Q) to represent the set of strings that can be accepted by
the automaton of Q. We use |Q| to express the number of characters that Q contains.
We use lmin to represent the length of the shortest string(s) in R(Q). For example, for
the RE Q = (G|T)A∗GA∗T∗, we have |Q| = 6 since it has six characters: G, T, A, G, A, and
T. The set of strings R(Q) = {GG, TG, GAG, TAG, GGA, TGA, GGT, TGT, GAGT, . . .}. We have
lmin = 2, since its shortest strings GG and TG have the length 2.

For a text (sequence) T of the characters in �, we use |T | to denote its length, T [a] to
denote its ath character (starting from 0), and T [a, b] to denote the substring ranging
from its ath character to its bth character.

For simplicity, in our examples, we focus on the domain of genome sequences, where
� = {A, C, G, T}. We run experiments in Section 7 on other domains, such as proteins
and English text, where � has more characters.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:4 X. Yang et al.

Fig. 1. Our sample text T .

Fig. 2. Algorithm PFILTER: checking candidate occurrences of the RE Q = (G|T)A∗GA∗T∗ using prefixes.

Pattern Matching of an RE. Consider a text T of length n and an RE Q of length m.
We say Q matches a substring T [a, b] of T at position a if T [a, b] belongs to R(Q). The
substring T [a, b] is called an occurrence of Q in T . The problem of pattern matching
for an RE is to find all occurrences of Q in T . Figure 1 shows an example text, which
serves as our sample text T throughout this article. Suppose that Q = (G|T)A∗GA∗T∗.
Then Q matches T at position 3, and the substring T [3, 6] is an occurrence and the
only occurrence of Q in T .

2.2. Positive Factors

One naı̈ve approach for finding occurrences of an RE Q in a given text T is to build
an automaton for Q and run it from the beginning of T . The verification fails once a
new feed character could not be accepted by the automaton; otherwise, an occurrence
will be reported whenever a final state of the automaton is reached. This verification
process repeats at each position in the text, using the same automaton; it could be very
inefficient, especially when T is very long (e.g., a chromosome of a human being can
contain 3 billion characters).

Recent techniques have been developed for identifying sequences that contain at
least one matching of an RE among multiple sequences. They utilize certain features
of the RE Q to improve the performance of automaton-based methods. Their main
idea is to use positive factors, which are substrings of Q that can be used to identify
candidate occurrences of Q in T . In the following, we present three positive factors,
including prefix, suffix, and necessary factor, that have been explored in the literature.
We will explain their pruning power, and introduce the existing algorithms that have
been developed based on one or multiple positive factors.

Prefixes and Algorithm PFILTER: A prefix with regard to an RE Q is defined as a
prefix with length lmin of a string in R(Q). For example, for the RE Q = (G|T)A∗GA∗T∗,
the prefixes with regard to Q are GA, TA, GG, and TG. Watson [2003] uses prefixes of
strings in R(Q) to find maximal safe shift distances to avoid checking every position in
T . The main idea of this approach is to locate all matching substrings of prefixes on
T , each of which is called a matching prefix. We use M(P, πp) to express the matching
prefix of P starting at position πp in T . For example, the matching prefixes in Figure 2
are M(TA, 0) = T [0, 1], M(TA, 3) = T [3, 4], M(GA, 5) = T [5, 6], M(TA, 10) = T [10, 11],
M(TA, 15) = T [15, 16], and M(TA, 19) = T [19, 20]. It then only examines candidate
occurrences of the text T starting from these matching prefixes using the automaton
of Q. The automaton keeps examining each candidate occurrence until it fails, and
reports an occurrence whenever a final state is reached. We call this kind of approach
“algorithm PFILTER,” where “P” stands for “Prefix.”

Suffixes and Algorithm SFILTER: Instead of using prefixes, suffixes are another
type of positive factor that can also be employed to serve the same purpose as prefixes.
Similar to the definition of a prefix, a suffix with regard to an RE Q is defined as a

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:5

Fig. 3. Algorithm MFILTER: checking candidate occurrences of the RE Q = (G|T)A∗GA∗T∗ using necessary
factor G, shown in bold font.

suffix with length lmin of a string in R(Q). Take the RE Q = (G|T)A∗GA∗T∗ as an example.
The suffixes with regard to Q are TT, AT, AA, GA, GT, AG, GG, and TG. The matching suffixes
are M(AG, 4) = T [4, 5], M(GA, 5) = T [5, 6], M(GT, 8) = T [8, 9], M(TT, 9) = T [9, 10],
M(AA, 11) = T [11, 12], M(AT, 12) = T [12, 13], M(TT, 13) = T [13, 14], M(TT, 14) =
T [14, 15], and M(GT, 18) = T [18, 19]. NR-grep [Navarro 2001; Navarro and Raffinot
2001] uses a sliding window of size lmin on the text T and recognizes reversed matching
prefixes in the sliding window using a reversed automaton. We call the suffix-based
approach “algorithm SFILTER,” which is also similar to the algorithm PFILTER. It runs a
reversed automaton from the end position of each suffix to the beginning of the text.

Necessary Factors and Algorithm MFILTER: In addition to prefixes and suffixes,
there is another type of positive factor, called a necessary factor. A necessary factor with
regard to an RE Q is a substring that must appear in every matching substring in the
text T . For instance, G is a necessary factor with regard to the RE Q = (G|T)A∗GA∗T∗1.
Generally, an occurrence of Q in the text T must contain all the identified necessary
factors. Otherwise, the corresponding candidate can be pruned without verification.

Consequently, to verify only the candidates containing a given necessary factor, based
on the given necessary factor, we can divide Q into a left part and a right part with a cor-
responding automaton. Figure 3 shows an example of this approach, called algorithm
MFILTER. Since G is a necessary factor, the algorithm MFILTER builds an automaton Ar
for the right part of the RE Q, that is, GA∗T∗, and another automaton Al for the left part
of Q, that is, (G|T)A∗G. It then runs Ar on the suffixes of T starting at positions 5, 8, and
18, and runs Al on the prefixes starting at these positions.

Exploring Multiple Positive Factors: All three types of positive factors just intro-
duced have different pruning power and are independent of each other. Consequently,
it is possible to explore multiple positive factors together to further improve prun-
ing power. In the following, we first introduce algorithm PS, which combines prefixes
with last matching suffix; next, introduce algorithm PM, which integrates prefixes and
necessary factors; then, introduce algorithm PMS, which explores prefixes, necessary
factors, and last matching suffix together.

In Figure 2, the matching prefix M(TA, 19) = T [19, 20] could not be used to produce
an answer string in R(Q) since none of the suffixes identified earlier is behind it. In
other words, we could use the last matching suffix to do an early termination in each
verification step. Figure 4(a) shows the example of improving algorithm PFILTER by
exploring the last-matching suffix. As we can see, by using the last-matching suffix
M(GT, 18) = T [18, 19] in the text T , a verification can terminate early at position 19.
We call this approach the “algorithm PS.” It verifies only those substrings starting from
every matching prefix M(Pi, πp) to the last-matching suffix M(Sj, πs) if the starting
position πp is less than or equal to the starting position πs. We call Sj a valid matching
suffix and each Pi a valid matching prefix with regard to its valid matching suffix Sj .
For example, the substring T [18, 19] is a valid matching suffix and the substrings
T [0, 1], T [3, 4], T [5, 6], T [10, 11], and T [15, 16] are valid matching prefixes, whereas

1Gnu Grep 2.0 employs a different heuristic approach for finding necessary factors with regard to an RE Q.
The neighborhoods of these necessary factors are then verified using a lazy deterministic automaton.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:6 X. Yang et al.

Fig. 4. Checking candidate occurrences of the RE Q = (G|T)A∗GA∗T∗ using prefixes, last matching suffix, and
necessary factor G.

T [19, 20] is an invalid matching prefix. The algorithm PS requires O(m·n·n′
p) time to

do verifications for n′
p valid matching prefixes of T , assuming that m = |Q| and n = |T |,

and the verification for each valid matching prefix requires O(m·n) time.
Figures 4(b) and 4(c) show examples of introducing necessary factors into al-

gorithms PFILTER and PS, respectively. We call the corresponding algorithms PM
and PMS, respectively. In Figure 4(b), algorithm PM can prune the candidate T [19, 20]
since the substring does not contain a matching necessary factor. However, in Fig-
ure 4(c), algorithm PMS cannot prune any new candidate, compared with algorithm PS,
because the matching necessary factor M(G, 18) appears in the last matching suffix
M(GT, 18). Generally, if a necessary factor has a high probability of appearing in the
late part of T , it is very likely that each candidate occurrence contains this necessary
factor, hence cannot be pruned. In other words, the pruning power of a necessary factor
highly depends on the position in which it appears.

3. NEGATIVE FACTORS

All the positive factors introduced in the previous section utilize certain properties that
each matching substring shall satisfy. We have presented some examples to illustrate
their pruning power. Alternatively, for the first time, we would like to explore a to-
tally different concept, negative factor, that refers to something that all the matching
substrings should not have. In this section, we first formulate the concept of negative
factor. Next, we introduce a PNS pattern with high pruning power that can speed up
the matching process, together with algorithm PNS as a new RE matching algorithm
taking full advantage of PNS patterns. We demonstrate the power of combining neg-
ative factors and necessary factors via the algorithm PMNS. The details of how to
construct negative factors are presented in Section 5.

3.1. Basic Concept

Definition 3.1. Negative factor (N-factor): Given a regular expression Q and a string
w, a string w is called a negative factor with respect to Q, or simply a negative factor
when Q is clear in the context, if there is no string �∗w�∗ in R(Q).

As formally defined in Definition 3.1, an N-factor with regard to an RE Q must not
appear in an answer to Q in T . For example, consider the RE Q = (G|T)A∗GA∗T∗: strings

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:7

Fig. 5. A substring conforming to a PNS pattern if and only if πp ≤ πn < πs and πn + |N| ≤ πs + lmin.

Fig. 6. Using matching N-factors M(C, 2) and M(C, 17) to prune candidates of Q = (G|T)A∗GA∗T∗. Compared
with Figure 4(a), candidates T [0, 19] and T [15, 19] are pruned and the verifications starting from positions
3, 5, and 10 can be terminated early by using the matching N-factors M(C, 7) and M(TTA, 14), respectively.

C, AGG, and TTA are N-factors, since they cannot appear as a substring in any answer.
Therefore, an N-factor with regard to an RE Q can be a substring of neither a prefix
nor a suffix with regard to Q. Given a text with length n, the number of N-factors with
regard to an RE Q cannot be greater than

∑n
i=1 |�|i.

3.2. A PNS Pattern

Intuitively, we say that a substring of T has a PNS pattern if it starts with a prefix of
Q, has an N-factor in the middle, and ends with a suffix of Q. Formerly, let πp, πn, πs
be the matching (starting) positions of a prefix P, an N-factor N, and a suffix S in a
text T , respectively. The substring T [πp, πs + lmin − 1] conforms to a PNS pattern if the
matching N-factor M(N, πn) is a substring of T [πp, πs + lmin − 1]. Figure 5 shows that a
substring conforms to a PNS pattern if and only if πp ≤ πn < πs and πn +|N| ≤ πs + lmin.

The reason for formally introducing a PNS pattern is that a substring of T conforming
to a PNS pattern cannot be an occurrence of Q. Consequently, we can prune unnecessary
verifications using PNS patterns. As will be demonstrated later, PNS patterns can help
to either prune certain candidate occurrences from verification or help to terminate the
verification early. Figure 6 shows an example of the benefit introduced by PNS patterns.

For the example in Figure 4(a), we assume that a set of N-factors is identified as {C,
AGG, ATA, ATG, GGG, GTA, GTG, TAT, TGG, TTA, TTG}. Although the number of N-factors with
regard to Q could be very large, we can still generate a small number of high-quality N-
factors. Detailed selection criteria and selection techniques are presented in Section 5.
Among all five candidate substrings identified in the example, substrings T [0, 19]
and T [15, 19] can be pruned; the remaining three have their verifications terminated
earlier, as shown in Figure 6. Take substring T [0, 19] as an example. A matching N-
factor M(C, 2) (i.e., T [2]) is located right after the matching prefix M(TA, 0) = T [0, 1],
and all matching suffixes are located behind it. In other words, it is guaranteed that
any candidate occurrence starting from position 0 conforms to a PNS pattern, and will
not be a matching substring. Take substring T [3, 19] as another example. Starting
from position 3, the verification scans the substring T [3, 19] character by character.
When it reaches T [6], it meets a matching suffix M(GA, 5), and T [3, 6] is reported as a
matching substring of Q. Instead of continuing the verification until the last position
19, the verification can be terminated earlier at next position 7 because of matching N-
factor M(C, 7). Compared with candidate occurrences depicted in Figure 4(a), candidate
occurrences shown in Figure 6 tend to be much shorter. This demonstrates the main
advantage of PNS patterns, that is, effectively shortening the length of candidate
occurrences.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:8 X. Yang et al.

3.3. Algorithm PNS

After introducing the pruning power of PNS patterns, we are now ready to present
algorithm PNS, which only verifies candidate occurrences not conforming to a PNS
pattern. As explained previously, a substring T [πp, πs + lmin − 1] conforms to a PNS
pattern if and only if πp ≤ πn < πs and πn + |N| ≤ πs + lmin. In other words, a substring
might be a candidate occurrence with regard to an RE Q if and only if it does not
conform to a PNS pattern, that is, at least one of the two conditions listed earlier is
not satisfied. The basic idea of algorithm PNS is to verify all the candidate occurrences
that do not conform to a PNS pattern. To be more specific, PNS examines the matching
N-factors one by one, based on ascending order of their starting positions along T . For a
given matching N-factor M(N, πn), PNS needs to verify only the candidate occurrences
T [πp, πs + lmin − 1] with πp > πn or πs < πn + |N| − lmin; all the occurrences T [π ′

p, π
′
s +

lmin − 1] with π ′
p ≤ πn and π ′

s ≥ πn + |N| − lmin are pruned away, as they conform to a
PNS pattern.

Let list LPs and list LSs refer to the starting positions of matching prefixes and
matching suffixes, respectively. Let LNi (∀i ∈ [1, ν]) refer to the list of starting positions
of matching N-factor Ni for each given N-factor {N1, . . . , Nν}. Elements on each list are
sorted based on the ascending order.

The pseudo-code of algorithm PNS is listed in Algorithm 1. To enable the evaluation of
matching N-factors, we merge the lists {LN1 , . . . , LNν

} by maintaining the frontiers of the
lists as a min-heap HN. At each step, we pop the top from the heap, and conduct a binary
search for the largest element smax in LSs that satisfies the condition smax < πn+|N|−lmin
(lines 4–6). If such smax exists, algorithm PNS performs two actions (lines 7–11). The
first action is to update LSs by removing all the elements that are not greater than smax.
The second action is to verify all the candidate occurrences T [πp, smax + lmin − 1] with
πp ∈ LPs and πp ≤ smax. Note that the verification of T [πp, smax + lmin−1] can locate both
the occurrences ending at position smax + lmin − 1 and those occurrences ending before
position smax + lmin − 1. This explains why we remove all the elements ≤ smax from LSs

in our first action. After that, we perform another update on set LPs by removing all
the elements not greater than πn, as all the candidate occurrences starting from those
elements conform to a PNS pattern (line 12). We then remove the top element πn from
its list, and reinsert the next record position on the list (if any) to the heap HN. This
process continues until the heap HN is empty.

After examining all the elements in HN, algorithm PNS can terminate if LSs is empty.
However, if LSs is not empty, algorithm PNS finds the suffix with the largest position
s′

max in LSs and verifies the candidate occurrence T [πp, s′
max +lmin−1] for each remaining

element πp(≤ s′
max) in the matching prefix list LPs (lines 14–16).

We illustrate the detailed steps of the PNS algorithm using the example shown in
Figure 6. Table II lists the contents of heap HN, and the elements in lists LPs and LSs ,
together with the value of smax and the substrings that it verifies at each step. Note that,
among all N-factors to Q, only N-factors C and TTA can be matched in text T , hence the
algorithm builds up two lists LN1 and LN2 for these two N-factors, respectively. It inserts
the frontier records of LN1 and LN2 to a heap HN for each iteration. The underlined
element in the HN column refers to the head element. The only three substrings verified
are consistent with those highlighted in Figure 6.

The algorithm requires O(np + ns + mn log ln) time to generate candidates, where np
and ns are the number of matching prefixes and matching suffixes in T , respectively,
mn is the number of matching N-factors, and ln is the average number of occurrences
of each N-factor in T . The average length of each verification has been reduced to

n
mn×ln

, since the candidate occurrences verified by algorithm PNS are within the range
of [π p

n , πn + |N| − 2], where π
p
n refers to the starting position of the matching negative

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:9

Table II. Illustration of Algorithm PNS for Q = (G|T)A∗GA∗T∗

HN LPs LSs smax /s′
max VERIFY

1 {2,9} {0,3,5,10,15,19} {4,5,8,9,11,12,13,14,18} ∅ -
2 {7,9} {3,5,10,15,19} {4,5,8,9,11,12,13,14,18} 5 T [3, 6], T [5, 6]
3 {9,17} {10,15,19} {8,9,11,12,13,14,18} 9 -
4 {14,17} {10,15,19} {11,12,13,14,18} 14 T [10, 15]
5 {17} {15, 19} {18} ∅ -
6 ∅ {19} {18} 18 -

Fig. 7. Algorithm PMNS: checking candidate occurrences of the RE Q = (G|T)A∗GA∗T∗ using PNS patterns
and necessary factors, which are shown in bold font.

ALGORITHM 1: PNS
Input: A regular expression Q, a text T , a list LPs of starting positions of matching

prefixes {P1, . . . , Pι} in ascending order, a list LSs of starting positions of matching
suffixes {S1, . . . , Sμ} in ascending order, and the set of lists Nset = {LN1 , . . . , LNν

} of
starting positions of matching N-factors {N1, . . . , Nν} in ascending order;

1 Calculate lmin for a given Q;
2 Insert the frontier records of LN1 , . . . , LNν

to a heap HN;
3 while HN is not empty do
4 Let πn be the top element on HN associated with an N-factor N;
5 Pop πn from HN;
6 smax ← FINDMAX(LSs , πn + |N| − lmin));
7 if smax is found then
8 Remove all elements that are not greater than smax in LSs ;
9 for element πp(≤ smax) in the list LPs do

10 VERIFY(T [πp, smax + lmin − 1], Q);
11 Remove πp from LPs ;

12 Remove all elements that are not greater than πn from LPs ;
13 Push next record (if any) on each popped list to HN;

14 if LSs is not empty then
15 s′

max ← FINDMAX(LSs , |T | − lmin + 1);
16 VERIFY(T [πp, s′

max + lmin − 1], Q) for each πp (≤ s′
max) in LPs ;

factor popped out from heap HN right before πn. Therefore, the algorithm PNS only
requires O(n

mn×ln
nc) time to do verifications, where nc is the number of candidates.2

3.4. Improving Pruning Power by Combining PNS Patterns with Necessary Factors

PNS patterns actually explore prefixes, suffixes, and N-factors. However, there is an-
other type of factor, that is, the necessary factor, that also provides certain pruning
power. For example, G is a necessary factor with regard to Q = (G|T)A∗GA∗T∗. Figure 7
shows that T [10, 15] is pruned since it does not contain a necessary factor. In the fol-
lowing, we would like to further improve the pruning power by considering both PNS
patterns and necessary factors via algorithm PMNS.

2According to the analysis in Section 5.5 and experimental results in Section 7, nc is much smaller than mp.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:10 X. Yang et al.

ALGORITHM 2: PMNS
Input: . . .

Mset = {LM1 , . . . , LMκ
}: The necessary factor lists of starting positions of matching

necessary factors {M1, . . . , Mκ} in ascending order;
1 . . .
// Change lines 9 -- 11 in the algorithm PNS

2 for each LMi in Mset do
3 mi

max ← FINDMAX(LMi , smax + lmin − 1);
4 if mi

max is found then
5 Remove all elements that are not greater than πn in LMi ;

6 if all mi
max are found then

7 mmax = min(mi
max), 1 ≤ i ≤ κ;

8 for element πp(≤ mmax) in the list LPs do
9 VERIFY(T [πp, smax + lmin − 1], Q);

10 Remove πp from LPs ;

11 . . .

Algorithm PMNS shares a similar idea with algorithm PNS, and integrates necessary
factors with PNS patterns, based on a list of necessary factors M = {M1, . . . , Mκ}
derived from the RE Q. For each identified smax, algorithm PNS needs to verify all the
candidate occurrences T [πp, smax + lmin − 1] with πp ≤ smax. However, PMNS needs to
check whether the candidate occurrences contain all the given necessary factors. It
performs a check for each necessary factor Mi. With the help of list LMi storing the
starting positions of a given necessary factor Mi, algorithm PMNS locates the position
mi

max(< smax + lmin − 1) that refers to the largest starting position of a valid matching
necessary factor. Only when the mi

max positions corresponding to all the necessary
factors are found, the verification of T [πp, smax + lmin − 1] starts. Algorithm 2 shows the
pseudo-code for algorithm PMNS.

Compared with algorithm PNS, algorithm PMNS requires O(np + ns + mn log ln + nm)
time to generate the candidates, where nm is the total number of matching necessary
factors in T . Obviously, algorithm PMNS requires extra O(nm) time cost for achieving
better pruning power than PNS. It is worth mentioning that there might be cases
in which no necessary factor exists; hence, the approach based on necessary factors
cannot be applied. That is the reason why we present both algorithms PNS and PMNS.
Although algorithm PMNS is equivalent to algorithm PNS if there is no necessary
factor, we still treat them as two different algorithms to simplify our presentation.

4. BIT-PARALLEL ALGORITHMS

Algorithm PNS and algorithm PMNS, introduced in Section 3, assume that lists LPs ,
LSs , LNi , and LMj are available and take them as input. In this section, we discuss
the issue of how to form these lists. A simple approach is to scan the text T from
the beginning to the end to locate the starting positions corresponding to prefixes,
suffixes, negative factors, and necessary factors, respectively. Yang et al. [2013] utilizes
BWT [Lam et al. 2008] to index text, which is much better than this simple brute-force
approach. BWT is a self-index structure that transforms a text T with length n into
a new string T ′ with length n + 1. The new string T ′ has a good property that the
occurrences of a substring α in T can be located in constant time (i.e., O(|α|)) by using
the suffix array SA of T ′, where SA is an array of indexes such that SA[i] stores the
starting positions of the i-th lexicographically smallest suffix in T ′.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:11

Table III. Example Bit Vectors �A, �C, �G, �T with Regard to the Text Shown in Figure 1

Vector
0 5 10 15 20

�A 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1
�C 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
�G 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
�T 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0

Take the prefix list LPs as an example. The approach in Yang et al. [2013] builds up
a list for each prefix Pi in O(lmin) time using BWT, then merges all lists into LPs in
O(ll log h) time, where h is the number of prefixes to Q and ll is the average number of
occurrences of each prefix in text T . However, merging lists to generate LPs is inefficient,
especially when ll is long. Similarly, generating LSs is also inefficient.

Can we do better than this BWT-based approach? The answer is yes. In the following,
we first introduce a new index structure, BITINDEX, that uses bit-vector representations
to enable efficient calculation of all starting positions of any given matching substring
(e.g., a matching prefix, matching suffix, matching N-factor, or matching necessary
factor). Although BITINDEX is not free, as it incurs small construction cost and storage
overhead, it can significantly accelerate the process of forming LPs , LSs , LNi , and LMj .
We then propose two bit vector–based PNS algorithms, PNS-BITC and PNS-BITG, in
Section 4.2 and Section 4.3, and two bitvector–based PMNS algorithms, PMNS-BITC
and PMNS-BITG, in Section 4.4, respectively. As will be demonstrated in Section 7,
BITINDEX and the bit vector–based algorithms can effectively speed up the matching
process.

4.1. BITINDEX: Representing Occurrences of Factors Using Bit Vectors

We first introduce the basic structure of BITINDEX, that is, representing the occurrences
of each character using a bit vector. Given an alphabet �, for each character c ∈ �, we
use a bit vector �c with length |T | to represent all the occurrences of the character c in
the text T . We set �c[i] = 1(0 ≤ i < |T |) if c appears at the position i in T , and �c[i] = 0
otherwise.

Consider our running example shown in Section 2. Given the text shown in Figure 1,
the first row in Table III shows an example bit vector �A that records all the occurrences
of character A in the text T .

A bit vector corresponding to one character in � with regard to T takes |T | bits, and
bit vectors corresponding to an alphabet � take |�| × |T | bits. Assuming that ws is the
average word size in memory, the overall space overhead is O(|�|·
 |T |

ws
�).

After introducing the basic structure of BITINDEX, we are ready to explain how
BITINDEX can facilitate the formation of lists (e.g., Lps). In the following, we first present
how to calculate the starting positions with regard to a matching factor in a given text
T , then explain how to calculate the starting positions with regard to multiple factors
simultaneously.

Calculating Starting Positions of a Matching Factor Based on BITINDEX. Given
a factor α, we can easily calculate the starting and end positions of its matching factors
on T based on the bit vectors maintained by BITINDEX. Let bit vector �αs and bit vector
�αe represent the starting and end positions of a matching factor α on T , respectively.
Equation (1) and Equation (2) explain how to calculate �αs and �αe respectively.

�αs = &|α|−1
i=0 (�α[i]<<i). (1)

�αe = &|α|−1
i=0 (�α[i]>>(|α| − 1 − i)). (2)

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:12 X. Yang et al.

Table IV. An Example of �TTAs and �TTAe

Vector
0 5 10 15 20

�TTAs 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
�TTAe 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

For example, consider the N-factor TTA for the RE Q = (G|T)A∗GA∗T∗. Table IV shows
the starting positions of TTA on the text T , that is, �TTAs, can be calculated by bit
operations �T&(�T<<1)&(�A<<2). Similarly, the end positions of TTA on the text T , that
is, �TTAe, can be calculated by bit operations (�T>>2)&(�T>>1)&�A.

Both bit vector �αs and bit vector �αe have length of |T | and need the memory space
of O(
 |T |

ws
�) words. It takes O(|α|·
 |T |

ws
�) time to derive bit vectors �αs and �αe for a given

factor α.

Calculating Matching Positions of Multiple Factors. Recall that, as the input of
our algorithm PNS in Algorithm 1, LPs (or LSs) is the list of starting positions of all
matching prefixes (or matching suffixes). Earlier, we explained how to use BITINDEX

to find the starting positions of one matching prefix (or one matching suffix). We now
explain how to generate the list LPs (or LSs) that records the starting positions of all
matching prefixes (or all matching suffixes). Again, we use a bit vector �Ps (or �Ss) of
length |T | to represent the content of LPs (or LSs). The bit �Ps[j] is one if a matching
prefix (or a matching suffix) starts at position j in T .

Let P = {P1, P2, . . . , Pι} be a set of prefixes. We could first calculate �Pk for each prefix
Pk in P, then merge them into one bit vector �Ps by using BIT-OR operations:

�Ps = ||P|
k=1(&|Pk|−1

i=0 (�Pk[i]<<i)), Pk ∈ P. (3)

For example, consider the prefix set P = {GA, TA, GG, TG} with regard to the RE Q in our
running example. The bit vector �Ps for the identified prefixes captured by P can be cal-
culated as: �Ps = �GA | �TA | �GG | �TG = (�G& (�A<<1)) | (�T&(�A<<1)) | (�G& (�G<<1)) | (�T& (�G<<1)).

Note that, if prefixes share common substrings, this computation can be further
simplified by calculating vectors for those common substrings in preference. For ex-
ample, the bit vector �Ps with regard to Q can be simplified as �Ps = �GA | �TA | �GG | �TG =
((�G | �T) & (�A<<1)) | (�G | �T) & (�G<<1)) = (�G | �T) & ((�A<<1) | (�G<<1)).

Recall that both algorithms PNS and PMNS need to locate the suffix starting at the
largest position s′

max in LSs after all the starting positions of matching N-factors in LNi s
are examined (e.g., lines 15–16 in Algorithm 1). To get the candidate suffixes whose
starting positions are greater than the last occurrence of N-factor using bit-parallel
operations, we append an auxiliary bit to the end of bit vector �Ns and set �Ns[|T |] = 1 to
mark the end of T . Similarly, both vectors �Ps and �Ss are extended to |T | + 1 bits with
the last bit of both vectors set to 0, that is, �Ps[|T |] = 0 and �Ss[|T |] = 0. For example,
the first three rows in Table V show examples �Ps, �Ss, and �Ns, respectively.

4.2. The PNS-BITC Algorithm Under the Constraint |N | ≤ lmin

We first consider a simple case in which the length of each N-factor is no greater
than the length lmin. Under this constraint, it is obvious that the case shown in
Figure 5(b) cannot happen, that is, if positions πp, πn, and πs satisfy the condition
πp < πn < πs, there is certainly a PNS pattern. In other words, condition πs < πn guar-
antees a valid matching suffix since a matching suffix and a matching N-factor cannot
start at the same position. In the following, we present a bit vector-based algorithm

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:13

Table V. Generate Candidate Regions Using Bit Operations
Under the Constraint |N| ≤ lmin

Vector

0 5 10 15 20

�Ps 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
�Ss 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0
�Ns 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1

�A0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
�Ssm 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
�B0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1
�Pc 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Note: lmin = 2 and C is the satisfied N-factor in Figure 6.

ALGORITHM 3: PNS-BITC

Input: Bit vectors �Ps, �Ss, �Ns, lmin;
1 Calculate vectors �Ssm and �Pc using Equation (4);
2 t ← the position of last suffix using �Ssm;
3 Change �Ssm[t] from 1 to 0; πs ← t; πp ← 0;
4 repeat
5 t ← the position of last suffix using �Ssm;
6 repeat
7 πp ← the position of last prefix using �Pc;
8 Change �Pc[πp] from 1 to 0;
9 VERIFY(T [πp, πs + lmin − 1]);

10 until πp < t;
11 Change �Ssm[t] from 1 to 0; πs ← t;
12 until there is no 1 in �Ssm or �Pc;

PNS-BITC, which implements algorithm PNS based on vectors �Ns, �Ps, and �Ss. Different
from algorithm PNS, which takes lists LPs , LSs , and {LN1 , . . . , LNν

} as input, algorithm
PNS-BITC takes bit vectors �Ps, �Ss, and �Ns as input.

The pseudo-code of algorithm PNS-BITC is listed in Algorithm 3. It first calculates
two auxiliary vectors �Ssm and �Pc using Equation (4) (line 1). In �Ssm, a bit �Ssm[i] = 1 if
i is the starting position of a valid matching suffix; otherwise, �Ssm[i] = 0. In �Pc, a bit
�Pc[i] = 1 if i is the starting position of a valid matching prefix, and �Pc[i] = 0 otherwise.

Intermediate : �A0 = (�Ns| �Ss) − (�Ns<<1),
�Ssm = (∼ �A0) & �Ss,

Intermediate : �B0 = �Ns − �Ssm,
�Pc = �Ps & �B0.

(4)

For illustration purposes, we use an intermediate vector �A0 to show how to calculate
�Ssm. The bit �A0[i] is set to 0 if i is the starting position of a valid matching suffix.
For example, the bits �A0[5], �A0[14], and �A0[18] in Table V are all 0, and they mark
three valid matching suffixes. If there is no matching suffix between any two adjacent

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:14 X. Yang et al.

Fig. 8. Explanation of the intermediate vector �B0.

matching N-factors starting at position i and position j, algorithm PNS-BITC sets
�A0[i] = 0 and �A0[l] = 1 (i < l < j). Then, we calculate �Ssm using (∼ �A0)& �Ss.

Correspondingly, we use another intermediate vector �B0 to represent the starting
positions of all possible valid matching prefixes. Figure 8 shows an example of partial
bits in the vector �B0. The “1” bits correspond to the possible starting positions of valid
matching prefixes. For the example shown in Table V, the bits �B0[l] (3 ≤ l ≤ 5, 8 ≤
l ≤ 14) and �B0[18] are 1, since all are the starting positions of possible valid matching
prefixes.

Vector �Pc = �Ps & �B0 denotes the starting positions of valid matching prefixes. Then,
algorithm PNS-BITC gets each position pair πp and πs using bit operations (lines 2 and 7
in Algorithm 3), which can be done in constant time.3 It then verifies the corresponding
candidate occurrence T [πp, πs + lmin − 1] using �Pc and �Ssm (line 9). For example, let
lmin = 2. Table V shows the generated �Pc and �Ssm. The candidate occurrences are
T [3, 6], T [5, 6], and T [10, 15], which are consistent with the candidate occurrences
shown in Figure 6.

In general, the text string T can occupy the memory space of multiple words. The
algorithm proceeds in the same fashion by computing �Ssm and �Pc for all
 n

ws
� words,

where ws is the word size in memory (e.g., 4B). We need to pay special attention only
to the case of processing (�Ns<<1) and (�Ns − �Ssm). For the current word �Ni−1

s , when
processing (�Ns<<1), we need to maintain the first bit of its next word �Ni

s and put it
into the last bit of �Ni−1

s . Similarly, the operation �Ns− �Ssm of the (i−1)-st word is changed
to �Ni−1

s − �Si−1
sm

− (�Ni
s < �Si

sm
).

Let us analyze the space and time complexity of the algorithm. Let the word size be
ws. The algorithm requires O(5
 n

ws
�) to store the three input vectors and the two output

vectors �Ssm and �Pc. It takes O(
 n
ws

�) time to calculate �Ssm and �Pc and O(k1 + k2) time to
generate candidate occurrences, where k1 and k2 are number of valid matching prefixes
and valid matching suffixes, respectively. It requires the same verification time as the
algorithm PNS.

4.3. The PNS-BITG Algorithm without Constraints

In Figure 5(b), the position relationship πp ≤ πn < πs does not guarantee a PNS pattern.
It means that the comparison between the end positions of the N-factor N2 and the
suffix S2 is also needed, that is, both conditions πp ≤ πn < πs and πne ≤ πse need to
be satisfied to make sure that a PNS pattern appears, where πne and πse are the end
positions of the N-factor N2 and the suffix S2.

We can get an end position πse by shifting its corresponding starting position πs to
the right for lmin − 1 bits since we know that the length of each suffix is lmin, that
is, the vector for the end positions of the occurrences of suffixes �Se = �Ss>>(lmin − 1).
However, the length of N-factors could be different; thus, we have to use another vector
�Ne to store the end positions of the occurrences of N-factors. Equation (5) shows the bit

3http://graphics.stanford.edu/∼seander/bithacks.html.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

http://graphics.stanford.edu/

Negative Factor: Improving Regular-Expression Matching in Strings 25:15

Table VI. Generated Candidate Regions Using Bit Operations without any Constraint

Vector

0 5 10 15 20

�Ps 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
�Se 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0
�Ns 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1
�Ne 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1

�A1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1
�Sem 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
�B1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0
�B2 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1
�B3 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1
�B4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
�B5 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0
�Pc 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Note: lmin = 2, C and TTA are the satisfied N-factors in Figure 6.

operations to calculate candidate occurrences.

Intermediate : �A1 = (�Ne| �Se) − (�Ne<<1),
�Sem = (∼ �A1) & �Se & (∼ �Ne),

Intermediate : �B1 = (�Ne − �Sem) & (∼ �Ne),
Intermediate : �B2 = ∼((�Sem<<(lmin−1))− �Sem),
Intermediate : �B3 = (�Ne & �A1) | (�Ne & �Se),
Intermediate : �B4 = (�Ns − �B3) & (∼ �Ns),
Intermediate : �B5 = (�B1 & �B2) | �B4,

�Pc = �Ps & �B5.

(5)

We consider the same example that matches the RE Q = (G|T)A∗GA∗T∗ on the text in
Figure 1. Table VI shows the input vectors and intermediate results of the bit operations
in Equation (5).

Similar to the bit vector �A0 in Equation (4), in the intermediate bit vector �A1 in
Equation (5), �A1[i] = 0 if i is the end position of a valid matching suffix. Then, we
can get the vector �Sem, in which each bit 1 means an end position of a valid matching
suffix. Note that, in contrast to �Ssm in Equation (4), the vector �Sem needs to do an
AND operation between (∼ �A1)& �Se and (∼ �Ne). Before we explain why, let us consider
the case in which a matching suffix M(S, t − lmin + 1) has the same end position t
with a matching N-factor M(N1, πn1). According to the analysis in Section 3.3, this
matching suffix M(S, t − lmin +1) should not be used to generate candidate occurrences
(see Figure 5(a)). In addition, if there is no matching suffix between the matching N-
factor M(N1, πn1) and its right neighbor matching N-factor M(N2, πn2), then bit �A1[t]
is 0. Therefore, algorithm PNS-BITG may choose an invalid matching suffix setting
�Sem[t] = 1. In order to avoid choosing such an invalid matching suffix M(S, t − lmin + 1),
we do the bit AND operation between (∼ �A1)& �Se and (∼ �Ne).

For the purpose of calculating valid matching prefixes corresponding to each valid
matching suffix, we use five intermediate vectors �B1, . . . , �B5 to explain how the calcu-
lation works. Let M(S, πs) be the rightmost matching suffix between two neighboring

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:16 X. Yang et al.

Fig. 9. Explanation of vectors.

matching N-factors M(N1, πn1) and M(N2, πn2). �B1[i] = 1 if πne1 < i ≤ πse . An example
vector �B1 is shown in Figure 9(a). Vector �B2 sets all the bits to 1 except the bit �B2[πse],
where πse is the end position of a valid matching suffix. Figure 9(b) shows that �B2[i] = 0
when i = πse .

Given two matching N-factors M(N1, πn1) and M(N2, πn2), if there is no matching
suffix between them, we say that M(N1, πn1) is a useless matching N-factor. We use
�B3[πne1] = 0 to mark the useless matching N-factor M(N1, πn1) and keep �B3[πne2] = 1
at the same time. We use �Ne& �A1 to mark all the useless matching N-factors (see
Figure 9(c)). However, a useless matching N-factor needs to be maintained if there
is a matching suffix M(S, πs), which happens at the same position as this matching
N-factor. The reason is that a matching suffix T [πss , πse] could be valid if there exists
a prefix starting at position πps and πns < πps ≤ πss , where πns is the starting position
of M(N1, πn1) (see Figure 9(d)). We use �Ne& �Se to specify all the same end positions
of matching N-factors and valid matching suffixes. Furthermore, we set each bit in
�B4[πns + 1, πse] to 1. Then, we use vector �B5 to combine all cases of possible valid
matching prefixes. Finally, vector �Pc marks all valid matching prefixes.

Table VI shows the generated �Sem and �Pc, and the candidate occurrences are consis-
tent with those shown in Figure 6.

We call the corresponding algorithm PNS-BITG. After using Equation (5) to get the
two vectors �Sem and �Pc, the algorithm gets each position pair πs and πp from �Sem

and �Pc, respectively. It then generates candidates T [πp, πs] to do verification. The
algorithm PNS-BITG requires the same time complexity as the algorithm PNS-BITC,
but needs O(6
 n

ws
�) to store one more vector �Ne than the algorithm PNS-BITC.

4.4. The Bit-Parallel PMNS Algorithms

As we described in Section 3.4, the necessary factors can be used to enhance the pruning
power by integrating them into the PNS algorithm. We first introduce how to utilize
the necessary factors by bit-parallel operations under the constraint |N| ≤ lmin, with
the corresponding algorithm named PMNS-BITC.

Given the set of necessary factors M = {M1, . . . , Mκ}, we can get the bit vector �Msi

for the starting positions of necessary factor Mi ∈ M through BIT-INDEX. Since the valid
matching suffix with position smax, which is used to generate candidate regions, is the
same as the one in PNS-BITC, we can use the same bit operations in Equation (4) to
compute �Ssm.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:17

Table VII. Generated Candidate Regions with Necessary Factors Under
the Constraint |N| ≤ lmin (lmin = 2)

Vector

0 5 10 15 20

�Ps 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
�Ss 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0
�Ns 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
�Ms 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

�A0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
�Ssm 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
�Sem 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
�A2 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1
�Msm 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
�B6 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1
�Pc 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Consider a necessary factor Mi ∈ M. We utilize an intermediate vector �A2 to calculate
�Mi

sm
, which represents the starting positions mi

max of the valid matching necessary
factors in T . Bit �A2[j] is set to 0 if j is the starting position of a valid matching
necessary factor. As shown in Table VII, bits �A2[5], �A2[8], and �A2[18] are set to 0,
indicating the starting positions of three valid matching necessary factors. Note that
the calculation of �A2 has utilized vector �Sem rather than �Ssm. The reason is that a valid
matching necessary factor can be a substring of a valid matching suffix. �Ssm[5] and
�Msm[5] can be used to illustrate it. The position 5 is smax as well as mi

max, since the
matching suffix M(GA, 5) contains a matching necessary factor M(G, 5). Similar to the
bit vector �B0 in Equation (4), �Bi

6 can be computed using �Ns − �Mi
sm

, which represents
all the possible valid matching prefixes by considering Mi. Equation (6) shows the bit
operations to calculate �Bi

6.
�Sem = �Ssm >> (lmin − 1),

Intermediate : �A2 = (�Ns| �Sem| �Mi
s) − (�Sem<<1),

�Mi
sm

= (∼ �A2) & �Mi
s,

Intermediate : �Bi
6 = �Ns − �Mi

sm
.

(6)

As we know, an occurrence of RE must contain all the necessary factors in M. We
can use the operations &|M|

i=1
�Bi

6 to get an intermediate vector �B6, which represents
the starting positions of all possible valid matching prefixes after considering all the
necessary factors, as shown in Equation (7):

Intermediate : �B6 = &|M|
i=1

�Bi
6,�Pc = �Ps & �B6.

(7)

In fact, the difference between algorithm PMNS-BITC and algorithm PNS-BITC is
the possible valid matching prefixes. We can see from Figure 10 that �B6 has fewer valid
matching prefixes than �B0, which indicates that algorithm PMNS-BITC can achieve
better pruning power than PNS-BITC because of necessary factors considered.

Table VII shows the generated �Pc and �Ssm. The candidate occurrences are T [3, 6] and
T [5, 6], which are consistent with the candidate occurrences shown in Figure 7.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:18 X. Yang et al.

Fig. 10. Difference between vectors �B0 and �B6.

Algorithm PMNS-BITG is similar to the algorithm PNS-BITG, but it does not set
the constraint |N| ≤ lmin. In contrast to algorithm PNS-BITG, PMNS-BITG uses the bit
vector �B7 to represent the starting positions of possible valid matching prefixes. Finally,
we can obtain the following equation, in which �B2 and �B4 come from Equation (5), and
�B6 is calculated by Equation (7).

Intermediate : �B7 = (�B6 & �B2) | �B4,
�Pc = �Ps & �B7.

(8)

5. CHOOSING GOOD N-FACTORS

The number of N-factors with regard to an RE could be large, and different N-factors
could have different impacts on pruning non-answer substrings from candidates. For
example, given an RE Q = C∗AAA, both G and CGA are N-factors with regard to Q. It
is obvious that any occurrence of CGA in a text T also contains an occurrence of G in
T . Thus, the N-factor CGA does not provide more filtering power than G. In addition,
the number of chosen N-factors directly determines the number of bits set to 1 in the
bit vector for N-factors (recall that we need to use Equation (2) to calculate matching
positions of every N-factor). Consequently, a natural question is how to choose a small
number of high-quality N-factors to improve search performance. In this section, we
propose a concept called core N-factors to tackle this problem. Core N-factors consist of
a small number of negative factors, which is a compromise between the pruning power
and the number of core N-factors.

First, in Section 5.1, we explain how to define a small set of N-factors as core N-
factors, and derive an upper bound on the number of core N-factors with regard to an
RE Q. In Section 5.2, we describe the challenge of efficiently identifying the core N-
factors, and propose an efficient algorithm. In Section 5.3, we develop a technique to
speed up the generation of high-quality core N-factors by enabling early termination.
In Section 5.4, we show that the number of core N-factors has a direct impact on
the runtime for generating bit vector of N-factors, the smaller the better. We also
observe that two core N-factors between a prefix starting at πp and a suffix starting
at πs are redundant since each can prune the substring T [πp, πs + lmin − 1] from
candidates. Based on this observation, we prune those redundant core N-factors to
reduce the number of core N-factors and to further improve search performance. Finally,
in Section 5.5, we conduct an analysis of the pruning power of negative factors.

5.1. Core N-Factors

Definition 5.1 (Core N-factor). An N-factor with regard to an RE Q is called a core
N-factor if each of its proper subsequences is not an N-factor with regard to Q.4

For example, for the RE Q = C∗AAA, the set of core N-factors with regard to Q is {G, T,
AC, AAAA}. The substring GA is not a core N-factor since its subsequence G is an N-factor.

4We distinguish between substring and subsequence in this article. A substring of a string s has consecutive
characters of s, while the characters in a subsequence may not be consecutive in s.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:19

In order to compute an upper bound on the length of core N-factors with regard to an
RE Q, we use a factor automaton [Simánek 1998] to check whether a string is an N-
factor. A factor automaton is an automaton representing the set of all positive factors
with regard to Q. It can accept any substrings of Q. Given an RE Q, a factor automaton
can be constructed from a deterministic automaton of Q by adding epsilon transitions
from the initial state to all other states and making all states final [Simánek 1998].

For a given RE Q, we first construct a nondeterministic factor automaton Af . This
automaton Af can be further transformed to a unique minimal deterministic factor
automaton Afm, which accepts exactly the same set of strings [Hopcroft and Ullman
2000]. Using Afm, we can prove an upper bound on the number of core N-factors.

THEOREM 5.2. Let Q be an RE and Afm be its minimized deterministic factor automa-
ton. The length of a core N-factor w.r.t. Q cannot be greater than the number of states in
the longest acyclic path of Afm.

PROOF. Let α be an N-factor with regard to Q and nA be the number of states in the
longest acyclic path of Afm. We prove that α is not a core N-factor if |α| > nA. According
to the definition of factor automata [Simánek 1998], we know that only substrings of
an RE can be accepted by Afm, that is, any N-factor could not be accepted by Afm. Let
|α| = k. For the substring α[1, k − 1], there are two cases:

(i) α[1, k− 1] is an N-factor. Then, according to Definition 5.1, α is not a core N-factor;
(ii) α[1, k − 1] is not an N-factor. Then, α[1, k − 1] must be a substring that can be

accepted by Afm. Let α[1, k − 1] = α[1], . . . , α[k − 1]. Suppose that q0 is the initial
state in Afm. From each state qi−1, Afm accepts α[i] and arrives at the state qi
(1 ≤ i ≤ k − 1), where qk−1 is the final state. Since |α| > nA, the number of states
from q0 to qk−1 must be greater than nA. Therefore, there are at least two equivalent
states qj = qr (j ≤ r), which means that at least one state in Afm accepts characters
in α[1, k− 1] more than once. Consider Afm as a finite automaton. According to the
Pumping lemma for regular languages [Hopcroft and Ullman 2000], the substring
α[1, k − 1] can be represented in the form uviw, where |uv| ≤ nA, |v| ≥ 1, and i ≥ 1.
The automaton Afm first accepts u, arrives at a state qj , and reaches the state qr
after seeing v. Since qj and qr are the same state in Afm, the fact that Afm accepts
vi means that there exists a transition from qj to qr for i times. When Afm accepts
w, it will arrive at the final state qk−1.

Therefore, we could construct a subsequence vw of uviw such that vw can be accepted
by Afm. Since α = uviwα[k] could not be accepted by Afm, we know that vwα[k] cannot
be accepted by Afm either. According to Definition 5.1, α is not a core N-factor.

Based on the analysis of these two cases, we conclude that α is not a core N-factor if
|α| > nA.

LEMMA 5.3. The length of core N-factors with regard to an RE Q is upper bounded by
|Q|2.

PROOF. An upper bound on the number of states in the longest acyclic path of the
minimized deterministic factor automaton is the square of the number of characters
that Q contains, that is, |Q|2. Therefore, the length of any core N-factor should be no
greater than |Q|2.

5.2. Constructing Core N-Factors Online

A naı̈ve way to construct core N-factors is to enumerate strings with length ≤ |Q|2
and check if they are core N-factors one by one (see Algorithm 4). The check process
of a string s consists of two phases: (i) the function CHECKSUBSEQUENCE checks if a

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:20 X. Yang et al.

subsequence of s is an N-factor (line 4), and (ii) otherwise, check if s itself is an N-
factor, which can be determined by running the factor automaton Af (Q) (line 5).

ALGORITHM 4: NAÏVECORE

Input: Alphabet �, an RE Q, a factor automaton Af (Q);
Output: A set of core N-factors CN;

1 CN ← ∅;
2 for length l ← 1; l ≤ |Q|2; l + + do
3 for each string s ∈ �l do
4 if CHECKSUBSEQUENCE(CN, s) is false then
5 if s cannot be accepted by Af (Q) then
6 CN ← CN ∪ {s};

7 return CN;

It can be time consuming to enumerate all the strings with a length ≤ |Q|2 and check
each of them, especially since the core N-factors are query-dependent and we need to
repeat the enumeration process for each search query. Take the RE Q = C∗AAA as an
example. The naı̈ve approach needs to enumerate 340 strings within 16 iterations. In
order to reduce the computational cost of constructing core N-factors, we present a
more efficient method here.

Instead of enumerating all the strings (see line 3 in Algorithm 4), we can use two
properties of core N-factors to generate core N-factors with a length l using a smaller set
of strings with length l−1. In the following, we present those two important properties
and explain how to utilize them for performance improvement.

Property 1. If a string x is a core N-factor, then its prefix x[0, |x| − 2] and suffix
x[1, |x| − 1] can be accepted by the factor automaton Af (Q).

This property helps us improve the performance of computing N-factors by “joining”
a set of strings with length l−1 to generate strings with length l. The formal definition
of string-join is given here. For example, let S = {s1, s2}, s1 = ACG, and s2 = CGT, then
Ŝ = {ACGT}.

Definition 5.4 (String-join). Given two strings s1 and s2, the string-join of s1 and s2,
denoted by ŝ1s2, is computed as follows. If |s1| = |s2| = l − 1 and s1[1, l − 2] = s2[0, l − 3],
then ŝ1s2[0, l − 2] = s1 and ŝ1s2[l − 1] = s2[l − 2]; otherwise, ŝ1s2 = ∅.

Definition 5.5 (String set self-join). Let S = {s1, . . . , sv} be a set of strings of length
l − 1. The string set self-join of S, denoted by Ŝ, is a set of nonempty strings ŝisj (1 ≤
i, j ≤ v).

Compared with Algorithm 4, we can get the same set of core N-factors with length l
by self-joining the set of strings with length l − 1, each of which can be accepted by the
factor automaton Af (Q).

Let S′ be the set of strings that can be accepted by Af (Q), where each string in S′

has a length l − 1, and S = Ŝ′. We use SQ(�l) ⊆ �l and SQ(S) ⊆ S to represent strings
that can be accepted by Af (Q), and use SC(�l) ⊆ �l and SC(S) ⊆ S to represent the
core N-factors.

THEOREM 5.6. Sets SQ(�l) and SQ(S) are equivalent, and sets SC(�l) and SC(S) are
also equivalent5.

5Two sets are equivalent if they have the same elements.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:21

PROOF. We first prove that SQ(�l) ≡ SQ(S). Since �l ⊇ S, we know that SQ(�l) ⊇
SQ(S). Assume that there is a string x ∈ SQ(�l) and x �∈ SQ(S); then, at least one
substring in x[0, l − 2] and x[1, l − 1] does not belong to S′. Based on the assumption
that x ∈ SQ(�l), x must be accepted by Af (Q). Then, any substring of x can be accepted
by Af (Q), that is, x[0, l−2] ∈ S′ and x[1, l−1] ∈ S′, which contradicts to the assumption
that x �∈ SQ(S). That is, for any string x ∈ SQ(�l), we know that x ∈ SQ(S). Therefore,
for any string x ∈ SQ(�l) and x ∈ SQ(S), based on the fact that SQ(�l) ⊇ SQ(S), we
know that SQ(�l) and SQ(S) are equivalent.

We then prove that SC(�l) ≡ SC(S). Since �l ⊇ S, we know that SC(�l) ⊇ SC(S).
Assume that there is a string x ∈ SC(�l) and x �∈ SC(S); then, at least one substring
in x[0, l − 2] and x[1, l − 1] does not belong to S′, that is, x[0, l − 2] or x[1, l − 1] is
an N-factor. By the definition of core N-factors, x must not be a core N-factor, which
contradicts the assumption x ∈ SC(�l). That is, for any string x ∈ SC(�l), we know that
x ∈ SC(S). Therefore, for any string x ∈ SC(�l) and x ∈ SC(S), based on the fact that
SC(�l) ⊇ SC(S), we know that SC(�l) and SC(S) are equivalent.

Property 2. Given a core N-factor x with a length greater than 1, let s be a string
whose prefix s[0, |s| − 2] and suffix s[1, |s| − 1] can be accepted by Af (Q). If x is a
subsequence of s, then x[0] = s[0] and x[|x| − 1] = s[|s| − 1].

Let |x| = lx (1 < lx ≤ n). We construct string s as follows. Suppose that S′ is a set
of strings with length l − 1 that can be accepted by Af (Q). Let S = Ŝ′ and s ∈ S.
We know that there must exist two strings s1, s2 ∈ S′, such that s1 = s[0, l − 2] and
s2 = s[1, l − 1]. We first assume that x[0] �= s[0]. Since x is a subsequence of a string
s ∈ S, we know that x should be a subsequence of s[1, l − 1], that is, x is a subsequence
of s2. It contradicts the fact that any core N-factor is not a subsequence of a string in S.
Therefore, x[0] must be equivalent to s[0]. Similarly, we have that x[lx − 1] = s[l − 1].

Algorithm 5 is an enhanced version of the naı̈ve algorithm presented in Algorithm 4,
by considering the two important properties of core N-factors delineated earlier. Accord-
ing to Property 1, the algorithm QUICKCORE in Algorithm 5 initially generates strings
with length 1 and maintains those that can be accepted by the factor automaton Af (Q).
By doing a self-join of the retained strings with length l − 1, the algorithm generates
the strings with one more character (lines 3–16).

Furthermore, when there is a core N-factor x that does not satisfy s[0] = x[0] and
s[l − 1] = x[|x| − 1], we do not need to invoke the function CHECKSUBSEQUENCE based
on Property 2 (lines 7–9). In the earlier example, for Q = C∗AAA, among the 65 strings,
only 8 strings need to be further checked using the function CHECKSUBSEQUENCE.

5.3. Early Termination of Constructing Core N-Factors

We observe that the upper bound |Q|2 on the length of an N-factor in Algorithm 5 is
loose, which can result in many unnecessary iterations in the algorithm (see line 3).
As we can see in Table VIII, all core N-factors for the sample query C∗AAA (i.e., {T,
G, AC, AAAA}) have been generated before the fifth iteration. However, the absence of
incremental core N-factors generated at an iteration cannot guarantee that there will
not be any more core N-factors generated in the following iterations, that is, a new
core N-factor might still be generated even though nothing is produced in the previ-
ous iterations. For example, Algorithm 5 generates a new core N-factor in the fourth
iteration, although it generates nothing new in the third iteration (see the second
column in Table VIII) and it has to finish the total 16 iterations.

A natural question is whether we can early terminate such construction without
loosing any core N-factors. The answer is yes, as shown next.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:22 X. Yang et al.

Table VIII. Early Termination for Q = C∗AAA, Where the Underlined Strings are Core N-factors (k = 1)

Iteration Processing Strings Using Algorithm 5 Processing Strings Using Algorithm 6
1 A, C, T, G A, C, T, G
2 AA, CA, CC, AC AA, CA, AC
3 AAA, CAA, CCA, CCC AAA, CAA
4 AAAA, CAAA, CCAA, CCCA, CCCC AAAA, CAAA
5 CCAAA, CCCAA, CCCCA, CCCCC ∅
6 CCCAAA, CCCCAA, CCCCCA, CCCCCC
.

16 . . .

ALGORITHM 5: QUICKCORE

Input: Alphabet �, an RE Q, a factor automaton Af (Q);
Output: A set of core N-factors;

1 CN ← ∅; S ← �;
2 Create a hash table HT ;
3 for length l ← 1; l ≤ |Q|2; l + + do
4 for each string s ∈ S do
5 FOUND ← false;
6 if l > 2 then
7 New a string y, y[0] ← s[0] and y[1] ← s[l − 1];
8 if y is in HT then
9 FOUND ← CHECKSUBSEQUENCE(CN, s);

10 if FOUND is false then
11 if s cannot be accepted by Af (Q) then
12 CN ← CN ∪ {s}; S ← S − {s};
13 Insert y into HT , where y[0] ← s[0] and y[1] ← s[l − 1];

14 else
15 S ← S − {s};
16 S ← Ŝ;

17 return CN;

Observation 1. Let C be the set of characters in e∗, and k be the summation of
frequencies of characters of C in Q. For the i-th iteration in Algorithm 5, let s be any
string that matches the pattern e∗ with |s| > k, and we cannot find any string s′ in the
same iteration that can make ŝs′ an N-factor.

As we can see in the second column in Table VIII, Algorithm 5 keeps generating strings
and checks if some are N-factors. In the second iteration, the string CC is generated
whose length is greater than k = 1 and is used to generate strings CCA and CCC in
the third iteration, and to generate strings CCAA, CCCA and CCCC in later iterations. As
we know, CC is not an N-factor because C∗ exists in the RE Q. Using Algorithm 5, any
generated string based on CC in the later iterations cannot be an N-factor, since the
generated string must be accepted by the factor automaton Af (Q). Therefore, there is
no need to keep CC in the second iteration.

Based on this observation, we propose the algorithm EARLYCORE in Algorithm 6 to
terminate the construction of core N-factors earlier without any false dismissal. The
algorithm first counts the frequency of each character in each Kleene closure e∗ in Q
(lines 2–7), then uses it to check if a generated string needs to be reserved for self-join
in the next iteration (line 12).

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:23

ALGORITHM 6: EARLYCORE

Input: Alphabet �, an RE Q, a factor automaton Af (Q);
Output: A set of core N-factors;

1 CN ← ∅; S ← �; CS ← ∅; l ← 1;
2 for each expression e∗ in Q do
3 Let C ← the set of characters in e; Let f req(C) ← 0;
4 for each character c in e do
5 f req(C) ← f req(C) + number of c in Q;

6 Insert C into CS;

7 while S is not empty do
8 for each string s ∈ S do
9 if ∃C ∈ CS and s ∈ Cl then

10 if l = f req(C) + 1 then // bound of C
11 S ← S − {s};
12 . . . // see lines 5 -- 15 in Algorithm 5

13 S ← Ŝ; l ← l + 1;

14 return CN;

Algorithm EARLYCORE is expected to significantly reduce the number of iterations. For
example, Table VIII shows the numbers of iterations for Q = C∗AAA, under Algorithm 5
and Algorithm 6, respectively. Algorithm 6 needs only 4 iterations compared with the
16 iterations needed in Algorithm 5.

THEOREM 5.7. Algorithm EARLYCORE correctly finds all core N-factors.

PROOF. Given an RE Q, for each iteration in Algorithm 6, S is the current set
of strings with length l. Let Sl be a subset of S that can be accepted by the factor
automaton Af (Q). For ease of explanation, we consider the situation in which there are
two different symbols in the Kleene closure, which can be easily extended to the cases
in which more than two symbols exist in the Kleene closure. We demonstrate only the
convergence of S with the Kleene closure being (α|β)∗ for the reason that all the other
Kleene closures are included in this case.

We prove it by demonstrating the following proposition: there would be no new core
N-factors produced by a string s ∈ Sl if s matches (α|β)∗ and |s| > f req({α, β}) in the RE
Q. Let
 = f req({α, β}). We make an assumption that there is a core N-factor x produced
by a string s that matches (α|β)∗ and |s| =
 + 1. The N-factor x can be formalized as
X1 · · · X
+1Y , where Xi (1 ≤ i ≤
 + 1) is a symbol in α or β, and Y is a symbol other
than {α, β}. According to Definition 5.1, the subsequences of x must be accepted by
Af (Q), that is, X1 · · · X
 and X2 · · · X
+1Y can be accepted by Af (Q). We know that the
total number of Xi in Q is
, which means that at least one character Xi in X2 · · · X
+1Y
matches (α|β)∗. That is, the RE Q must contain (α|β)∗Y . Therefore, Af (Q) can accept
each string with the form X1 · · · XhY , where h could be a positive integer. This result
contradicts the assumption that x = X1 · · · X
+1Y is a core N-factor.

Based on this proposition, we can remove the strings matching the pattern (α|β)∗
from Sl without missing any core N-factor when l > f req({α, β}).

THEOREM 5.8. The set S in Algorithm 6 always converges to an empty set within |Q|+1
steps.

PROOF. It is easy to see that, if there is no Kleene closure in Q, the number of strings
in Sl would converge to 0 within |Q|+ 1 steps when l is big enough, since each string in

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:24 X. Yang et al.

Fig. 11. An example of redundant matching core N-factors, in which N1 is a discardable core N-factor.

R(Q) has a finite length |Q|. Next, we concentrate on the situation in which the Kleene
closure exists in Q.

Based on Theorem 5.7, we can remove the strings matching the pattern (α|β)∗ from
Sl without missing any core N-factor when l > f req({α, β}). Therefore, the size of S
would converge to 0 eventually. In addition, s matches the pattern e∗ with |s| > k, and
the length of any of its substring s′ that matches pattern e∗ must be no greater than k,
that is, |s′| ≤ |Q|. Therefore, the length of the string generated in the last iteration will
be no greater than |Q| + 1.

Therefore, the size of S would converge to 0 eventually.

5.4. Removing Discardable Core N-Factors for Efficiently Generating Bit Vector of N-factors

Recall that for a given set of N-factors, we need to generate vector �Ns (and vector
�Ne) for N-factors (see Section 4). The construction of vectors �Ns and �Ne has two main

steps: (i) calculating a single vector for each N-factor (see Equations (1) and (2)) and
(ii) performing BIT-OR operations among all generated bit vectors for a single N-factor.
Both steps introduce time overhead to answer the RE query.

We observed from the experiments (see Section 7) that there might be more than one
matching core N-factor between a pair of a matching prefix and matching suffix. We
call these matching core N-factors redundant matching core N-factors. A core N-factor
is discardable if its matching substrings in the text are always redundant with another
matching core N-factor, and discarding such discardable core N-factors will not affect
the filtering power of our approach.

Figure 11 shows such an example, in which M(P1, πp1) and M(P2, πp2) are matching
prefixes, M(S1, πs1) and M(S2, πs2) are matching suffixes, and M(N1, πn1), M(N2, πn2),
and M(N3, πn2) are matching core N-factors. N-factor N1 is discardable since, after
removing it, we can still determine that neither [πp1 , πs1] nor [πp2 , πs2] could answer the
RE Q.

In order to identify those discardable core N-factors, we need to check every consec-
utive matching core N-factor, which is impractical since all these operations need to be
done online, which introduces non-negligible time. An alternative way is to sacrifice the
filtering power slightly and remove the core N-factors that have a higher probability
to be discardable. Consequently, we are willing to sacrifice the filtering power to gain
efficiency by choosing a set of core N-factors, as follows.

Heuristic Rule for Removing Discardable Core N-Factors: Ideally, an undiscard-
able core N-factor N should have the following two features:

(i) Its prefix overlaps with the suffix of a prefix, so that its matching substring has
a high probability of pruning matching prefixes in T . We use f1 to represent the
average overlap ratio between the core N-factor N and every prefix Pi ∈ Pset (i ∈
[1, . . . , ι]). Let P̃i·N represent the overlapping substring of a prefix Pi and N.

f1(N, Pset) = 1
ι

·
ι∑

i=1

(
|P̃i·N|
|N|

)
. (9)

(ii) It does not overlap with other core N-factors, so that it has a low probability of being
a redundant core N-factor with another one. We use f2 to represent the average

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:25

overlap ratio between N and another core N-factor Ni ∈ Nset (i ∈ [1, . . . , ν]).

f2(N, Nset) = 1
ν − 1

·
ν−1∑
i=1

(
|Ñ·Ni| + |Ñi·N|

|N|

)
. (10)

Based on these two features, we hope that a chosen undiscardable core N-factor could
make f1 as high as possible and f2 as low as possible. Accordingly, we develop Rule 1
to determine whether a core N-factor shall be kept.

Rule 1. Let Pset = {P1, . . . , Pι} be a set of prefixes with regard to an RE Q and
Nset = {N1, . . . , Nν} be a set of core N-factors with regard to Q. A core N-factor Ni can
be chosen if f1(N, Pset) − f2(N, Nset) > 0.

5.5. Pruning Power of N-factors

In this section, we analyze the pruning power of N-factors via a theoretical analysis.
The results are experimentally evaluated on real datasets in Section 7.1.4.

Consider a substring T [a, d] conforming to a PNS pattern, in which the substring
T [a, b] is a matching prefix and the substring T [c, d] is a matching suffix (a ≤ b ≤ c ≤
d). Let p1(n) denote the probability that the length of T [b, c] is equal to n and p2(n)
denote the probability that there is at least one N-factor matching in T [b, c]. Then, the
probability of filtering any prefix matching in T using N-factors can be calculated as
follows:

pf =
|T |−2·lmin∑

n=0

p1(n) × p2(n). (11)

We first calculate p1(n). Let S = {S1, . . . , Sμ} be the set of suffixes with regard to the
RE Q. As defined in Watson [2003], each suffix in S has the same length lmin. Let
Bn(μ, lmin) denote the number of substrings in T [b, c] with a length n such that any
suffix in S is not a substring of T [b, c]. Then, we could get the following recurrence
function for n ≥ 0:

Bn(μ, lmin) =
{|�|n if n < lmin,

|�|·Bn−1(μ, lmin) − μ·Bn−lmin(μ, lmin) otherwise.

Then, we have

p1(n) = Bn(μ, lmin)
|�|n × μ

|�|lmin
. (12)

Similarly, let N = {N1, . . . , Nν} be the set of N-factors with regard to the RE Q and
each N-factor in N has a length l′. Then, we have

p2(n) = 1 − Bn(ν, l′)
|�|n . (13)

6. DETERMINING MATCHING DIRECTION

In previous sections, we introduced the N-factor concept to effectively reduce the num-
ber of candidates of an RE on the text T , and introduced bit-parallel algorithms to
accelerate the pruning process. Thereafter, the remaining candidates have to be veri-
fied based on an automaton of Q (denoted A(Q)), via a matching process named forward
matching. As we observe, the total number of valid matching prefixes in T decides the
number of times that the automaton A(Q) has to be invoked. In the case that the total
number of valid matching prefixes is large, the automaton A(Q) has to be executed
many times, and the matching process could be costly. This analysis inspires us to

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:26 X. Yang et al.

Fig. 12. An example of the impact of matching direction on performance.

query a reversed RE (denoted Q−1) on the reversed text (denoted T −1), which might
help to reduce the number of times that the automaton A(Q−1) has to be performed to
further improve the matching performance.

In Section 6.1, we first explain the impact of the matching direction (i.e., forward
vs. reverse) on matching performance. In Section 6.2, we then propose an approach to
determining a good matching direction by using BITINDEX.

6.1. Impact of Matching Direction

Figure 12 shows the impact of matching direction using an RE Q = A(A|T)∗C on text T .
By using forward matching, core N-factors are G, CA, CC, and CT, prefixes with regard
to Q are AA and AT, and suffixes with regard to Q are AC and TC. According to algorithm
PNS, T [11, 12] and T [12, 13] are valid matching prefixes, and T [1, 2], T [6, 7], and
T [16, 17] are valid matching suffixes. Therefore, T [11, 17] and T [12, 17] are the two
candidates for Q. We need to run automaton A(Q) starting from positions 11 and 12 to
verify these two candidates, respectively. We find that substring T [12, 17] actually will
be checked twice, which means there are certain duplicated calculations using A(Q)
in verification steps. Furthermore, through the analysis on the experimental results
reported in Section 7, we find that most candidates are the matching results of Q after
pruning by N-factors, which indicates that the cases shown in Figure 12(a) are very
common in verifying candidates.

Figure 12(b) shows that, by using reverse matching, our algorithm needs to invoke
automaton A(Q−1) only once, where reversed RE is Q−1 = C(A|T)∗A, core N-factors are
G, AC, CC, and TC, prefixes with regard to Q−1 are CA and CT, and suffixes with regard
to Q−1 are AA and TA. Note that there are still two candidates T −1[3, 8] and T −1[3, 9]
for the reversed RE Q−1, but only one candidate T −1[3, 9] needs to be verified, since
the automaton A(Q−1) will continue checking T −1[9, 9] when it arrives the final state
at T −1[8, 8]. Finally, we could reverse each result to Q−1 to get the final results to Q.

Now, we show the correctness and completeness of using reverse matching.

THEOREM 6.1. Given a text T and an RE Q, using the bit-parallel algorithms PNS-
BITC and PNS-BITG to match Q−1 on T −1 will not cause any false dismissals.

PROOF. For an RE Q, let R be the set of occurrences with regard to Q on T , and
R−1 be the set of occurrences with regard to Q−1 on T −1. First, we prove that, for
any occurrence r (r ∈ R), the reverse occurrence r−1 must exist in R−1. Assume that
there is an occurrence r1 (r1 ∈ R), and the reverse occurrence r−1

1 /∈ R−1. Since r1 is
an occurrence of Q on T , there must be a substring r−1

1 on T −1. Moreover, because r1
can be recognized by the automaton A(Q) with regard to Q, it is certain that substring
r−1

1 can also be accepted by the automaton A(Q−1) with regard to Q−1. Therefore, the
substring r−1

1 on T −1 is an occurrence of Q−1, which contradicts the assumption that
r−1

1 /∈ R−1.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:27

Fig. 13. An example of counting bits by lookup table.

Similarly, we can also prove that, for any occurrence r−1 (r−1 ∈ R−1), there must be
an occurrence r (r ∈ R) that is the reverse of r−1. Consequently, we can conclude that
there is a one-to-one correspondence between the occurrences in R and R−1, that is,
reverse matching will not cause any false dismissals.

6.2. Determining Matching Direction Using BITINDEX

As explained earlier, matching direction has a direct impact on the performance of the
matching process. Ideally, we want to quickly determine the matching direction that
actually generates a smaller number of candidates.

Let C f be the total number of valid matching prefixes for Q using forward matching
on T , and Cr be the number of valid matching prefixes for Q−1 using reverse matching
on T −1. Intuitively, if C f ≤ Cr, we use forward matching, otherwise, we use reverse
matching. In the following, we demonstrate how to efficiently derive C f and Cr by using
BITINDEX.

(i) Computing C f . Remember that using algorithm PNS-BITC or PNS-BITG, we can
calculate vector �Pc based on BITINDEX. Each bit 1 in �Pc represents a starting position
of a valid matching prefix with regard to Q. Therefore, C f can be easily calculated
by counting the bits 1s of �Pc.

Let �Pc occupy n bits and z bytes, that is, �Pc = c1c2 . . . cz, where z =
n
8�. Then,

C f = ∑z
1 C f (ci), where C f (ci) is the summation of 1 bits in a byte ci. Each byte

corresponds to an unsigned char, thus we can use a precomputed mapping table to
store the mapping pairs between every unsigned char and number of 1 bits in its
byte [Anderson 2005], as shown in Figure 13(b). The size of this mapping table is
small (i.e., only 28 = 256 bytes) and counting bits 1s of a word w can be done in
constant time [Anderson 2005].

Figure 13(a) shows the calculated vector �Pc with regard to RE Q = A(A|T)∗C on
text T using algorithm PNS-BITC. Several bytes will be used to represent the vector
�Pc, by counting the bits on the bytes (there are two 1 bits on �Pc at positions 11 and

12, respectively).
(ii) Computing Cr. In order to compute Cr for the reversed text T −1, we need to com-

pute vectors that represent the starting positions of matching prefixes, matching
suffixes, and matching N-factors for Q−1 in T −1, denoted as �Ps

′
, �Ss

′
, and �Ns

′
respec-

tively. Later, we show an efficient approach to calculate the vectors for Q−1 in T −1

using �Pe, �Se, and �Ne, respectively. Recall that vectors �Pe, �Se, and �Ne represent the
end positions of matching prefixes, matching suffixes, and matching N-factors for
the RE Q in text T , respectively.

For ease of presentation, we first show how to calculate �Ns
′
using �Ne. As we know,

�Ns
′
is a reversed vector of �Ne; instead of scanning the reversed text T −1 to get �Ns

′
,

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:28 X. Yang et al.

Fig. 14. An example of reversing bits by lookup table.

we can easily convert �Ne to �Ns
′
, as shown in Figure 14(a). Since each vector is stored

in z bytes, we first convert bits in each byte, then put the last byte cz in �Ne as the
first one c−1

1 in �Ns
′
, the second last byte cz−1 in �Ne as the second one c−1

2 in �Ns
′
, and

so on, until the first byte c1 in �Ne is converted as the last one c−1
z in �Ns

′
. Again, each

byte ci in �Ne corresponds to an unassigned char, and we can precompute another
mapping table to store the mapping pairs between each byte ci and its converted
byte c−1

z−i+1, as shown in Figure 14(b) [Anderson 2005]. Thereafter, converting a

byte ci in �Ne to its corresponding byte c−1
z−i+1 in �Ns

′
can be done in constant time by

looking up the mapping table.
Similarly, vector �Ps

′
is the reversed vector of �Se, and vector �Ss

′
is the reversed

vector of �Pe. Using the approach just delineated, we can derive vectors �Ps
′
and �Ss

′

based on vectors �Se and �Pe. Thereafter, we can use the same approach of calculating
C f to calculate Cr by using �Ps

′
, �Ss

′
, and �Ns

′
.

In order to accelerate the calculations of C f and Cr, we can further estimate
them by using a subsequence of T . Let λ be a sampling ratio. We randomly choose
a subsequence with length λ · |T | at positions from 0 (beginning of the text) to
(1 − λ) · |T |.

7. EXPERIMENTS

In this section, we present experimental results of the N-factor technique on multiple
real datasets.

Experiment Setup. We conducted the experiments on three public datasets, including
Human Genome, Protein sequences, and English texts.

—Human Genome: The genomic sequence (GRCh37) was assembled from a collection
of DNA sequences, which consisted of 24 chromosomes with a length varying from
48 million to 249 million.6

—Protein sequences: We adopted the database Pfam 26.0, which contained a large
amount of protein families and is composed of Pfam-A and Pfam-B.7 The symbol set
consisted of all the capital English letters, excluding “O” and “J.” We randomly picked
text with a length varying from 101 to 9,143 from Pfam-B.

—English texts: We used DBLP-Citation-network8, which included 1,632,442 blocks,
each of which corresponded to one paper. Each block contained several attributes of a
paper, for example, title, authors, abstract, and so on. We extracted the abstract from

6http://hgdownload.cse.ucsc.edu/goldenPath/hg18.
7http://www.ncbi.nlm.gov/pmc/articles/PMC3245129.
8https://aminer.org.citation.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

http://hgdownload.cse.ucsc.edu/goldenPath/hg18
http://www.ncbi.nlm.gov/pmc/articles/PMC3245129
https://aminer.org.citation

Negative Factor: Improving Regular-Expression Matching in Strings 25:29

every block. The symbol set consisted of 52 English letters, 10 digits, white space,
and punctuation characters.

We selected the following algorithms as the representative of state-of-the-art RE
matching algorithms in this set of experiments. The first three existing algorithms are
developed for matching REs on a set of short sequences. When a sequence contains
more than one occurrences of a query, only the first occurrence of the query is returned.
For the purpose of comparability, we modified their source code so that they can find
all the occurrences, as our algorithms do.

—Agrep is an efficient string matching tool that supports simple strings, extended
strings, and REs simultaneously. For REs, it utilizes the bit-parallel algorithm
BPThompson to match the occurrences [Wu and Manber 1992].

—Gnu Grep is a necessary-factor, filtering-based algorithm. It first matches all initial
matchings by necessary factors, then verifies them by running an automaton.9

—NR-grep uses reversed prefixes to identify initial matchings by the algorithm Regu-
larBNDM [Navarro 2001; Navarro and Raffinot 1999], then verifies them using an
automaton.

—RE2 is a Google-developed software library that supports matching for regular ex-
pressions. It also includes a regex generator. It was first developed in 2009 and has
frequent updates. We downloaded the version on June 28, 2015 and used it to do the
comparison.10

We implemented the following algorithms using core N-factors; the algorithms are
based on the structure BITINDEX except for the ones with superscript BWT.

—PNS is the algorithm that utilizes core N-factor to prune candidates.
—PNS-BITC is the bit-parallel PNS algorithm with the constraint that the length of

core N-factors is no greater than lmin.
—PNS-BITG is also the bit-parallel PNS algorithm. In contrast to PNS-BITC, it has no

constraint on the length of core N-factors.
—PMNS utilizes the core N-factors and necessary factors to further improve pruning

power.
—PMNS-BITC is the bit-parallel PMNS algorithm with a length constraint on core

N-factors.
—PMNS-BITG is similar to PMNS-BITC, but it has no constraint on the length of core

N-factors.
—PNS-BITCH is an extension of algorithm PNS-BITC by considering the optimization

technique of removing discardable core N-factors introduced in Section 5.4.
—PNS-BITCD is another extension of algorithm PNS-BITC that implements the opti-

mization technique of choosing a good matching direction introduced in Section 6.
—PNS-BITC+ considers both the optimization of removing discardable core N-factors

and the optimization of choosing a good matching direction.
—PNS-BITCBWT is an extension of algorithm PNS-BITC but uses the BWT format to

store the text T . In Section 4, the structure BITINDEX is introduced to facilitate the
identification of starting positions of matching factors, including matching prefixes,
matching suffixes, matching N-factors, and matching necessary factors. Alterna-
tively, the bit vectors for matching factors can be calculated using the method of stor-
ing the text T in a BWT format. Yang et al. [2013] propose forming an inverted list of
starting positions for a substring α in a constant time (O(|α|)) by simulating searches

9https://www.gnu.org/software/grep.
10https://github.com/google/re2/.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

https://www.gnu.org/software/grep

25:30 X. Yang et al.

Fig. 15. Statistical results on real-life query workloads.

using BWT, which also stores the suffix array to quickly locate the positions of sub-
strings, then computes the bit vector �α by setting the bit �α[p] as 1, where p is the start-
ing position of α in the inverted list. Similarly, they propose computing the bit vector
for ending positions of α by setting the bit �α[p + |α| − 1] as 1. PNS-BITCBWT utilizes
the bit vectors calculated from the BWT format. In the same way, we can get the algo-
rithms PNSBWT , PNS-BITGBWT , PMNSBWT , PMNS-BITCBWT , and PMNS-BITGBWT

by using the BWT format of T to compute bit vectors.

We extracted several subsequences of length ranging from 10 million to 100 million
from the Human Genome. For the other two datasets, the size of each dataset varied
from 10MB to 100MB.

Query workloads. In order to evaluate the algorithms, it is important to select a good
set of REs. Since there are no standard benchmarks or “random” REs [Navarro and
Raffinot 2004], we used synthetic query workloads generated by RE2. We also used two
real query workloads for DNA and protein applications to evaluate our techniques.

—Synthetic query workloads. We utilized RE2 to generate regular expressions. RE2
supports full and partial matching for regular expressions using a finite-state
machine.

This RE generator can create regular expressions according to four given parame-
ters: (i) atom set (i.e., alphabet); (ii) operator set; (iii) maximal number of characters
that appear in an RE, denoted as maxatoms; and (iv) maximal number of operators
that appear in an RE, denoted as maxopts.

For the three public datasets (i.e., Human Genome, Protein sequences, and English
texts), we used their alphabets to define an atom set, and use {·, |, ∗, (,)} to define
an operator set, which is consistent with our RE definition in Section 2. In the RE2
setting, the difference between maxatoms and maxopts is not greater than 1. Thus,
we only need to vary parameters maxopts to generate different query workloads for
different datasets. Each query workload contained 50 regular expressions.

—Real query workloads. We also used two real query workloads as follows.

(1) Motif patterns. A sequence motif is a nucleotide or amino-acid sequence pattern,
which is also exported as an RE. This query workload consisted of 1,161 patterns.
We analyzed the length of motif patterns (i.e., the number of characters in a pat-
tern). As shown in Figure 15(a), the length of motif patterns varies from 6 to 39,
and 92% of the patterns have lengths from 8 to 28.

(2) PROSITE patterns. We downloaded this query workload from the PROSITE
database, which consisted of a large collection of biologically meaningful signa-
tures that are described as patterns. Generally, PROSITE patterns have the form of

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:31

Fig. 16. Performance comparison of different algorithms on supporting RE matching (|T | = 5 × 107).

[RK]−x(m, n)−{DE}−A−Y, where [RK] represents (R|K) in our setting, x(m, n) indicates
any string of a length between m and n (e.g., x(1, 3) is equivalent to �(�|ε)(�|ε)),
{DE} stands for all amino acids except D and E, and A−Y represents A·Y in our setting.
Figure 15(b) shows the number of patterns with different parameter n in PROSITE
patterns, in which 52% of PROSITE patterns have values n < 6. The total number
of PROSITE patterns was 1,308.

For each query workload, we recorded the average runtime of each RE as the per-
formance metric. The runtime of matching an RE in our experiments means the whole
online processing time, which mainly includes the following parts: (i) generating an
automaton for each RE in the query workload, (ii) generating bit vectors for all derived
positive and negative factors from the RE, (iii) generating candidates, and (iv) verifying
candidates.

All the algorithms were implemented using GNU C++. The experiments were run on
a PC with an Intel 3.10GHz Quad Core CPU i5 and 8GB memory with a 500GB disk,
running a Ubuntu (Linux) 64b operating system. All index structures were in memory.
Constructing the basic structure of BITINDEX (i.e., representing the occurrences of each
character using a bit vector) was done offline.

7.1. Qualitative Tests with Synthetic Query Workloads

7.1.1. Comparison of RE Matching Algorithms. In the first set of experiments, we compared
the newly proposed algorithms with existing algorithms on supporting RE match-
ing. We selected the algorithm PNS-BITC+ as representative of the newly designed
algorithms.

We tested the online runtime using different query workloads by varying the param-
eter maxopts. Each dataset contained sequences with a length of 50 million. Figure 16
shows the runtime of Agrep, NR-grep, Gnu Grep, RE2, and PNS-BITC+ on the three
datasets. Algorithm PNS-BITC+ achieved the best performance. Figure 16(a) shows
that, when answering the queries (maxopts = 4) on DNAs, PNS-BITC+ took 153ms

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:32 X. Yang et al.

Fig. 17. Scalability of different RE matching algorithms.

only, compared to 247ms, 892ms, 469ms, and 4,186ms spent by Agrep, NR-grep, Gnu
Grep, and RE2, respectively. The superiority of PNS-BITC+ over existing algorithms
was even more evident on English texts. For instance, when maxopts = 6, PNS-BITC+

took 33ms only, which was 4.4, 106, 6.6, and 26.5 times faster than Agrep, NR-grep,
Gnu Grep, and RE2, respectively.

It is interesting to see that RE2 performed the worst on the DNA dataset, whereas
NR-grep performed the worst on the other datasets. The runtime decreased when we
increased the value of maxopts, since a larger maxopts can produce regexes with a
longer pattern, resulting in fewer matching occurrences in the text.

Meanwhile, we tested the performances of different algorithms while varying data
size. For each dataset, we ran the regexes in its corresponding 5 query workloads that
are reported in Figure 17. Figure 17 shows the average runtime for each query. When
increasing the size of datasets, the runtime of all five algorithms increased. PNS-BITC+

consistently outperformed the other algorithms on each dataset. For example, when
answering queries on the 100MB English dataset, PNS-BITC+ used 71ms, Agrep used
344ms, NR-grep used 3,370ms, Gnu Grep used 458ms, and RE2 used 1,169ms. The
result showed that, among the five RE matching algorithms, PNS-BITC+ was most
stable when the size of the alphabet or string length increased.

7.1.2. Improving Existing Algorithms Using N-Factors. The second set of experiments eval-
uates the benefit of N-factors. Instead of using our newly proposed algorithms, based
on N-factors, we modified three existing algorithms by integrating N-factors and re-
ported their performance in Figure 18. Each superscript N means that the algorithm
integrated N-factors. We used the same setting reported in Section 7.1.1. It can be
observed that the modified algorithms achieved a much better performance than the
original ones. For instance, the N-factor improved the performance of the algorithms
Agrep and Gnu Grep by about 3 times on English text. The improvement was most
evident for the algorithm NR-grep, as its runtime decreased from 1,092ms to 43ms for
the queries with maxopts = 10. For Protein sequences, Figure 18(b) shows that AgrepN

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:33

Fig. 18. Improving existing approaches by using N-factors.

reduced the time of Agrep from 170ms to 45ms, Gnu GrepN reduced the time of Gnu
Grep from 221ms to 40ms, and NR-grepN reduced the time of NR-grep from 1,321ms to
48ms for queries with maxopts = 9. These results showed the effective pruning power
of N-factors.

7.1.3. Scalability of Using N-Factors. The third set of experiments evaluates the scalabil-
ity of using N-factors under input texts with different lengths. We used the same setting
reported in Figure 17. Figure 19 shows that the runtime was increased slowly when
we increased the length of the sequence for different algorithms of using N-factors.
We can see that the bit-parallel algorithms performed much better than algorithm
PNS and PMNS, with algorithm PMNS-BITC+ performing the best among the six algo-
rithms. For instance, when the length of the DNA sequence was 100 million, algorithm
PMNS-BITC+ spent 213ms only, compared to 432ms, 446ms, 256ms, 304ms, and 289ms
spent by algorithms PNS, PMNS, PNS-BITC+, PNS-BITG+ and PMNS-BITG+, respec-
tively. We also get consistent results in English texts and Protein sequences.

Note that the runtime of algorithms PMNS, PMNS-BITC+, and PMNS-BITG+ was
close to that of PNS, PNS-BITC+, and PNS-BITG+, respectively. The reason is that not
all queries have necessary factors. For queries without necessary factors, algorithms

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:34 X. Yang et al.

Fig. 19. Scalability of approaches using N-factors.

PMNS, PMNS-BITC+, and PMNS-BITG+ performed similar to algorithms PNS,
PNS-BITC+, and PNS-BITG+.

7.1.4. Pruning Power of N-Factors. In Section 5.5, we analyzed the pruning power of
N-factors. Our fourth set of experiments calculates the probability value pf in Equa-
tion (11) to determine the pruning power of using N-factors for three datasets.

For DNA sequences, we used three RE workloads with query lengths 8, 12, and 15,
respectively, each of which contained 100 REs, and lmin = 5. Each RE in a workload
generated different numbers of suffixes and N-factors with different lengths. We ran
the REs in each workload on DNA sequences with 50 million characters and calculated
the average probability pf . Figure 20(a) shows the pruning power of using N-factors
on DNA sequences. The dotted lines represent the computed values pf , which ranged
from 70.071% to 73.781% in the three workloads.

Each box region in the figure represents the pruning power in the range between the
first quartile (the top 25% REs) and the third quartile (the top 75% of REs). The line in
the box is the median value of the pruning power. The plus sign and the circles indicate
the mean value of the pruning power and the outliers, respectively. For the workload of
|Q| = 8, the top 25% of REs in the workload could prune 98.331% of the false negatives
(i.e., substrings that do not need to be verified) and the top 75% of REs could prune
92.008% of the false negatives. The other two workloads also provided significantly
high pruning power.

For Protein sequences, the query lengths of three selected RE workloads were 15, 19,
and 23, respectively, and lmin was still 5. Compared to DNA sequences, using core N-
factors achieved a higher probability pf , which ranged from 72.812% to 86.875% in the
three workloads, as can be observed from Figure 20(b). The reason is that the chance
that an N-factor exists in the candidate region is increased, that is, a higher value of p2
in Equation (11), as the size of alphabets increased. Our experimental results confirm
this finding. For a workload of |Q| = 15 on Protein sequences, the top 25% of REs and

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:35

Fig. 20. The ability of pruning false negatives using N-factors.

75% of REs could prune 98.87% and 91.818% of the false negatives, respectively, which
were greater than the values for a workload of |Q| = 15 on DNA sequences.

We got similar results for English texts, as shown in Figure 20(c). The average
probability value pf for English texts ranged from 74.062% to 82.187% when varying
query lengths from 19 to 27, and lmin = 7.

Note that the value pf derived from Equation (11) for each workload on the three
datasets was lower than the experimental mean value. The reason is that our analysis
is based on the assumption that data is evenly distributed, which may not be true in
real datasets.

We then tested the number of verifications when using different N-factor–based al-
gorithms on the three datasets, each of which consisted of 100 million characters. As
we can see from Figure 21, algorithm PMNS, which considers PNS patterns and nec-
essary factors, and its corresponding bit-parallel algorithms PMNS-BITC and PMNS-
BITG, required fewer verifications. For example, in Figure 21(a), for the queries with
maxopts = 5, the number of verifications using PMNS-BITC was 1,465,254, compared
to the verification number 1,752,900 computed by PNS-BITC. However, in some cases,
the filtering advantage of PMNS-BITC was not evident. For example, in Figure 21(b),
the number of verifications of algorithm PMNS-BITC was 437,924 on the queries with
maxopts = 7, which was similar to the number for algorithms PNS-BITC and PNS-BITG,
and was even higher than that of PNS.

7.1.5. Construction of Core N-Factors. We propose three different methods to construct
core N-factors in Section 5, that is, algorithm NAÏVECORE, algorithm QUICKCORE, and
algorithm EARLYCORE. Our fifth set of experiments compares the construction time
of core N-factors using different algorithms, with the experimental results listed in
Table IX. We did not include the results of algorithm NAÏVECORE in the experiments
due to its very poor performance. The construction time of algorithm QUICKCORE was

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:36 X. Yang et al.

Fig. 21. Comparison of verification numbers.

Table IX. Time for Constructing Core N-factors (unit: ms)

DNA
maxopts=4 maxopts=5 maxopts=6 maxopts=7 maxopts=8

QUICKCORE 7.38 18.52 14.33 9.46 32.79
EARLYCORE 0.22 0.79 3.20 0.73 1.22

Protein
maxopts=6 maxopts=7 maxopts=8 maxopts=9 maxopts=10

QUICKCORE 8.96 15.77 22.49 6.34 17.18
EARLYCORE 0.34 2.10 3.06 1.30 0.83

English
maxopts=6 maxopts=7 maxopts=8 maxopts=9 maxopts=10

QUICKCORE 41.61 16.81 18.38 8.91 13.30
EARLYCORE 1.03 1.17 0.77 1.13 1.15

not stable, varying from 6.34ms to 41.61ms. The reason is that the number of sequences
to be processed could grow exponentially if there is a Kleene closure of size one. On
the other hand, algorithm EARLYCORE was much more efficient than QUICKCORE. It was
also stable since it avoids generating N-factors caused by Kleene closure. In the best

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:37

Fig. 22. Index size of BITINDEX and BWT on different datasets.

Fig. 23. The index construction time of BITINDEX and BWT on different datasets.

situation, it only took 0.22ms to construct the core N-factors; the worst construction
time was just 3.20ms.

7.1.6. BITINDEX vs BWT. In the sixth set of experiments, we demonstrated the advantage
of our newly proposed index structure BITINDEX by comparing its index size, construc-
tion time, and performance in forming bit vectors for matching factors with BWT.

Figure 22 shows the index size comparison of BITINDEX and BWT on three datasets.
Note that the sizes and construction time of BWT were the same on three datasets,
since the BWT format is an alphabet-insensitive structure. Consequently, we report
the result of BWT only once.

First, let us look at the index sizes of BITINDEX. We can see that it needed more space
to store the index as the alphabet size increased. For the DNA sequences, it had the
smallest index size, which was half of the original data size, for example, the index size
was 50MB when the data size was 100MB. This is because it only records a bit for each
character in every position of string sequence. It is not surprising to see that it occupied
larger index sizes for Protein sequences and English texts than for DNA sequences,
which were 3 and 8.5 times the original data size, respectively. For example, for the
100MB English text, its index size reached 850MB, since there were 52 characters, 10
digits, white space, and 5 punctuation characters in the alphabet of English texts.

Next, let us look at the index sizes of BWT. It took more space to store the index on
DNA and Protein sequences than BITINDEX. For example, the index size of BWT was
500MB for the sequence with length 100 million. However, BWT occupied less space
than BITINDEX on English text. The BWT format took 5 times the original data size
while BITINDEX needed 8.5 times the original data size.

We also studied the index construction time when increasing data size on three
datasets. Here, the construction time includes the file reading time and index writing
time. It can be seen from Figure 23 that BITINDEX needed more time to construct the
index as the alphabet size increased. Regardless of the dataset, BITINDEX consistently
took less time than BWT since BITINDEX needs only O(n) time to scan the text T with

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:38 X. Yang et al.

Fig. 24. Construction time for bit vectors of matching factors.

length n, while BWT takes O(n+ n log n) time if using a quicksort algorithm to sort the
transformed array. It cost 40,627ms to construct the BWT index for the sequence with
length 100 million, which was almost 13 times the construction time of BITINDEX on
DNA sequences.

As described in Section 4.1, in order to prune the candidates with core N-factors by
bit-parallel operations, we need to construct the bit vectors for the matching factors
in an online fashion, including matching prefixes, matching suffixes, and matching
core N-factors. Next, we compared the bit-vector construction time for all matching
factors based on BITINDEX and BWT. For the BITINDEX structure, the time complexity of
constructing bit vectors is O(|T |

ws
· (ι · lmin +μ · lmin + ν · l′)), where ws is the word size; ι, μ,

and ν represent the number of prefixes, suffixes, and core N-factors with regard to the
RE Q, respectively; and l′ denotes the average length of core N-factors. For the BWT, it
costs O(ι · (lmin + CP) + μ · (lmin + CS) + ν · (l′ + CN)) time to construct the bit vectors, in
which CP , CS, and CN, respectively, represent the average occurrence number of each
matching prefix, matching suffix, and matching core N-factor in text. Figure 24 shows
that BITINDEX took less time to construct the bit vectors than BWT. For example, for
queries with maxopts = 6 on DNA sequences, BITINDEX took only 20ms to construct
the bit vectors, while BWT took 69ms. We got similar results on Protein sequences
and English texts. The reason is that the process of constructing bit vectors on BWT
incurs a lot of random accesses in the memory, since the position list calculated by
BWT is unordered. On the contrary, BITINDEX performed well, as the access in memory
is sequential while constructing bit vectors on BITINDEX.

In the last part of this set of experiments, we compared the performance of different
algorithms using N-factors based on BITINDEX and BWT. For presentation clarity, we re-
port only the results of algorithm PMNS-BITC as the representative for the algorithms
that consider N-factor and necessary factor simultaneously. We can see from Figure 25
that all bit parallel-based algorithms on BITINDEX performed better than algorithms
on BWT, since they need less time to construct the bit vectors of matching factors.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:39

Fig. 25. Comparison of the performance of the algorithms based on BITINDEX and BWT.

However, we also observe that the runtime of algorithm PNS on BITINDEX could be
worse than that on BWT, such as the queries with maxopts = 8 and 10 on Protein se-
quences, where the runtime on BITINDEX was 191ms and 159ms, respectively, compared
to 180ms and 150ms on BWT. This is because algorithm PNS utilizes the positions of
matching factors and, for the BITINDEX structure, it also needs to use bit operations to
calculate the positions from bit vectors.

7.1.7. Effect of Removing Discardable Core N-Factors. To achieve a better matching per-
formance, we introduced a heuristic rule to remove the discardable core N-factors
in Section 5.4. As we described in Section 4, each algorithm actually consists of two
phases. The first phase is to compute bit vectors of the occurrence positions of factors;
the second phase is to match the initial candidates and verify them by an automaton.
In this set of experiments, we compared the runtime and pruning power before and
after removing discardable core N-factors by a heuristic rule to demonstrate the impact
of removing discardable core N-factors.

As mentioned in Section 5.4, the main objective in removing discardable core N-factor
is to improve performance (i.e., runtime). We therefore show the time of constructing bit

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:40 X. Yang et al.

Fig. 26. Effect of removing discardable core N-factors (|T | = 5 × 107).

vectors and the time for filtering and verifying. We adopted PNS-BITC as the running
algorithm, and superscript H means that the algorithm has utilized the heuristic rule
to remove discardable core N-factors. Each dataset contained sequences with length
50 million.

Figures 26(a), 26(c), and 26(e) show that, when we removed discardable core N-
factors, the total runtime of algorithm PNS-BITC was reduced. For the Protein and
English datasets, the benefits of removing discardable core N-factors were very obvi-
ous. For example, the total runtime for queries with maxopts = 6 was reduced from
109.41ms to 35.15ms on English texts. This is because, after removing discardable
core N-factors, we decreased the computing time for bit vectors from 100ms to 23ms,
although it needed to verify a few more candidates. For the DNA sequences, the reduc-
tion in runtime was not evident, although the runtime for queries with maxopts = 5
and 6 was decreased to 148ms and 167ms, respectively.

Next, we studied the influence on the pruning power of core N-factors after removing
discardable core N-factors. Theoretically, it will weaken the pruning power of core N-
factors, since the heuristic rule reduces the number of core N-factors to accelerate the
construction of their bit vectors.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:41

Fig. 27. Effect of choosing good matching direction.

As shown in Figures 26(b), 26(d), and 26(f), the candidate numbers for the queries
have increased slightly. Queries with maxopts = 6 in the Protein dataset increased the
most, with the candidate number increased from 224,132 to 303,867.

7.1.8. Effect of Choosing Good Matching Direction. In our last set of experiments, we eval-
uated the effect of choosing good matching direction. As described in Section 6, further
determining matching direction can improve the efficiency of verifications; we im-
plemented an algorithm PNS-BITCD, which employed the optimization technique of
choosing good matching direction based on algorithm PNS-BITC. Figure 27 shows the
results.

Figures 27(a), 27(c), and 27(e) show the comparison results of runtime between
PNS-BITC and PNS-BITCD on three different datasets when sampling ratio λ = 0.2.
We can see that the runtime decreased for some queries that utilize reverse match-
ing, including the queries with maxopts = 5 and 6 in DNA sequences, queries with
maxopts = 8 in Protein sequences, and queries with maxopts = 8 and 9 in English
texts. For instance, the runtime for queries with maxopts = 5 and 6 in DNA sequences
decreased to 142ms and 163ms from 153ms and 174ms, respectively. The reason is that
the algorithm generated fewer candidates when using reverse matching, as shown in

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:42 X. Yang et al.

Fig. 28. Impact of sampling ratio on performance.

Table X. Performance Comparison of Different Algorithms for Motif Patterns (unit: ms)

Algorithms Agrep NR-grep Gnu Grep RE2 PNS-BITC+

Runtime 488.44 161.81 460.01 428.78 72.72

Figures 27(b), 27(d), and 27(f). For the queries with maxopts = 5 and 6 in DNA se-
quences, the candidate number decreased to 745,489 and 814,223 from 887,022 and
913,716, respectively. We also observed that the improvements of reverse matching
were not evident on some queries. For example, the runtime of queries with maxopts = 7
and 8 on the DNA dataset only decreased to 130ms and 120ms from 132ms and 123ms,
respectively. This is because the improvement on the candidate number was less, as
shown in Figure 27(b).

We also report the results when varying the sampling ratio from 0.2 to 1, and em-
ployed the average runtime of five sets of queries as the performance metric. As we
increased the sampling ratio, the cost of determining matching direction increased. As
shown in Figure 28(a), when the sampling ratio λ = 0.2, the algorithm PNS-BITCD

took 141.5ms, compared to 146.7ms of PNS-BITC. While the sampling ratio λ = 0.8,
PNS-BITCD took more time than PNS-BITC. We got similar results on the Protein se-
quences and English texts, as shown in Figures 28(b) and 28(c). Consequently, we know
that choosing a good matching direction can result in a better performance when the
sampling ratio is small.

7.2. Real-Life Test with Real Query Workloads

We performed experiments to compare five RE matching algorithms—Agrep, NR-grep,
Gnu Grep, RE2, and PNS-BITC+—using two real query workloads, motif patterns, and
PROSITE patterns, respectively.

Table X shows the comparison results of using motif patterns on the DNA dataset.
PNS-BITC+ outperformed other algorithms. For instance, the runtime of PNS-BITC+

was only 72.72ms, compared to 488.44ms, 161.81ms, 460.01ms, and 428.78ms spent by
Agrep, NR-grep, Gnu Grep, and RE2, respectively.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:43

Table XI. Performance Comparison of Different Algorithms for PROSITE Patterns (unit: ms)

Algorithms Agrep NR-grep Gnu Grep RE2 PNS-BITC+

Runtime 484.78 216.18 732.99 357.16 137.83

Table XI shows the comparison results of using PROSITE patterns on protein
sequences. Among the five algorithms, PNS-BITC+ achieved the best performance.
Gnu Grep took the most time (732.99ms), which was about 5.3 times the runtime of
PNS-BITC+.

8. RELATED WORK

8.1. Classical Approaches to Regular Expression Matching

We first introduce the classical approaches to answering RE query in a text. Their basic
idea is first transforming an RE into an automaton, then running it from each position
in the text to verify if the substring is an occurrence of the regular expression. An
occurrence will be reported whenever a final state of the automaton is reached [Baeza-
Yates and Gonnet 1996; Mohri 1997].

Thompson proposed the definition of NFA, as well as a searching algorithm with
O(mn) time complexity based on the simulation of the NFA, called NFAThomp-
son [Thompson 1968]. NFAThompson stores the set of currently active states, and
for each newly read character, it looks over every currently active state to get new
activated ones. Afterwards, these new states are added to a new active state set. For
these new active states, NFAThompson follows all the ε-transitions until all the other
reachable states are obtained, and adds them into the new active state set. In this way,
whether an occurrence of RE is found can be determined by checking if the final state
is activated.

DFAClassical [Aho et al. 1985] supports a regular expression matching by simulating
the DFA, which can guarantee a linear search time of O(n). Considering the approach
based on the simulation of NFA, multiple states will be activated when the NFA accepts
a new text character, and it needs to maintain the set of active states. On the contrary,
for the simulation of DFA, only a definite state will be activated when the DFA accepts
a new character, costing less compared to NFA. However, more states exist during
the simulation of DFA than NFA, which makes DFAClassical cost more space than
NFAThompson.

DFAModules [Myers 1992] is a compromise between deterministic and nondeter-
ministic simulation, whose core idea is splitting the NFA into some modules, including
O(k) nodes, making them deterministic and maintaining an NFA consisting of O(m/k)
modules based on Thompson construction.

Based on Thompson’s NFA simulation, a competitive algorithm [Wu and Manber
1992] called BPThompson is proposed, which agilely uses the bit-parallel operations
to simulate the NFA. By packing the set of states into the bits of a computer word, the
i-th state is mapped to the i-th bit, then all state transitions except the ε-transitions
can be simulated using a precomputed table B. For the ε-transitions, another precom-
puted table Ed is used to simulate them. Another bit-parallel algorithm BPGlushkov
[Navarro and Raffinot 2001, 1999; Navarro 2001] uses the Glushkov NFA [Glushkov
1961; Berry and Sethi 1986; Brüggemann-Klein 1993; Chang and Paige 1997], which
costs less space than BPThompson for the automata states.

8.2. Filtering-Based Approaches to Regular Expression Matching

Because the classical RE matching algorithms need to check every character in text,
the performance of matching is largely limited. An alternative method is to employ
the filter-and-verify strategy, which first locates all the candidate regions in text by
multiple string matching algorithms [Blumer et al. 1987; Harel 1999; Uratani and

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

25:44 X. Yang et al.

Takeda 1993; Commentz-Walter 1979; Baeza-Yates and Gonnet 1992], then utilizes
the classical RE matching algorithms to verify the candidates. After using the filtering
strategies, the algorithm can avoid reading every text character. Next, we introduce
several popular filtering-based approaches.

Given a regular expression, the length of shortest occurrence is denoted as lmin.
Watson [2003] introduced the algorithm MultiStringRE, which first calculates the
prefixes Pref(RE) of length lmin for all strings matching the RE, then a Commentz-
Water-like algorithm is used to match the strings in Pref(RE). Since every occurrence
of RE must start with the occurrence of a string in Pref(RE), it is enough to check for
the occurrences of RE that start at the initial positions of Pref(RE) in the text.

Gnu Grep utilizes the algorithm based on necessary factors. A necessary factor di-
vides RE into a left and right part; two automatons are constructed for verification in
both directions. The selection of the best set of necessary factors consists of two stages.
The first stage is an algorithm detecting the correct candidate sets. The second is a
function that evaluates the cost of searching using a candidate set and the number
of potential matches it produces. Actually, prefixes is a particular case of necessary
factors, thus Gnu Grep could give better results than MultiStringRE since it may find
the best set of necessary factors.

RegularBNDM [Navarro 2001; Navarro and Raffinot 1999] is an extension of BNDM
[Navarro and Raffinot 2000] to handle regular expression queries. The idea is to modify
the DFA by reversing the arrows and making all states initial, so that the resulting
DFA can recognize every reversed prefix of RE. The algorithm slides a window of length
lmin along the text, and characters in the window are read backwards by the DFA. The
backward search inside the window would terminate in two cases: (1) there is no active
state in the DFA, then the window will be shifted and the backward search will be
restarted; (2) it reaches the starting position of the window, in which case the DFA has
recognized a prefix of RE, then it will start a forward verification using the normal
DFA starting from the beginning of the prefix.

In Yang et al. [2013], negative factor is first proposed to prune false negatives. It uti-
lizes BWT to index texts. This article proposes a time efficient index structure BITINDEX

to support faster RE matching and shorter index construction than BWT. BITINDEX

requires less space than BWT when the alphabet is small. We also show that redun-
dant core negative factors cannot improve pruning power, and require more runtime to
generate vectors for them, which slows down the whole matching process. We propose
an approach to identify the occurrence of redundant core negative factors and remove
them to further improve the quality of selected negative factors. In addition, we analyze
that different matching directions have different impacts on matching performance and
propose an approach to quickly determine a proper matching direction.

8.3. Heuristic-Strategies-Based Approaches to Regular Expression Matching

Agrep [Wu and Manber 1992] is proposed to support searching for simple strings,
extended strings, and REs simultaneously. The most obvious feature of Agrep is that
it is capable of approximate searching; also, it has more flexible results reporting
rather than just reporting lines. For the different queries, Agrep does not employ
a uniform algorithm, but rather a set of heuristic strategies. As a result, Agrep can
normally choose the best algorithm. For RE queries, it utilizes the bit-parallel algorithm
BPThompson to handle them.

In addition, Faro and Lecroq [2013] provide an excellent survey of algorithms for
exact online string matching algorithms, defined as: “Given a text t of length m and a
pattern p of length mover some alphabet � of size σ , the exact string matching problem
is to find all occurrences of the pattern p in the text t.” This definition is different from
ours of RE query (pattern). For example, the pattern p defined in this problem does

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

Negative Factor: Improving Regular-Expression Matching in Strings 25:45

not support the Kleene closure e∗. Some BNDM-based algorithms can support simple
regular expression queries without Kleene closure, like the PROSITE pattern shown
in Section 7.

9. CONCLUSION

In this article, we proposed a novel technique called N-factor and developed algorithms
to improve the performance of matching an RE to a sequence. We gave a full specifica-
tion of this technique, and conducted experiments to compare the performance between
our techniques and existing algorithms, such as Agrep, Gnu grep, NR-grep, and RE2.
The experimental results demonstrated the superiority of our algorithms. We also ex-
tended Agrep, Gnu grep, and NR-grep with the N-factor technique, and showed great
performance improvements.

As future work, note that negative factors will not be applicable where they provide
no additional filtering power. For example, when an RE contains the subexpression
“.*,” every prefix match could be a match of the RE, or the candidate occurrences after
filtering the automaton must touch nearly all of the text. A future study will develop
an estimation to balance the filtering benefit and overhead of using negative factors.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to
improve the quality of this article.

REFERENCES

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1985. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA.

Sean E. Anderson. 2005. Bit twiddling hacks. http://graphics.stanford.edu/∼seander/bithacks.html.
Ricardo A. Baeza-Yates and Gaston H. Gonnet. 1992. A new approach to text searching. Communications of

the ACM 35, 10, 74–82.
Ricardo A. Baeza-Yates and Gaston H. Gonnet. 1996. Fast text searching for regular expressions or automa-

ton searching on tries. Journal of the ACM 43, 6, 915–936.
Gérard Berry and Ravi Sethi. 1986. From regular expressions to deterministic automata. Theoretical Com-

puter Science 48, 3, 117–126.
Anselm Blumer, J. Blumer, David Haussler, Ross M. McConnell, and Andrzej Ehrenfeucht. 1987. Complete

inverted files for efficient text retrieval and analysis. Journal of the ACM 34, 3, 578–595.
Anne Brüggemann-Klein. 1993. Regular expressions into finite automata. Theoretical Computer Science 120,

2, 197–213.
Chia-Hsiang Chang and Robert Paige. 1997. From regular expressions to DFA’s using compressed NFA’s.

Theoretical Computer Science 178, 1–2, 1–36.
Beate Commentz-Walter. 1979. A string matching algorithm fast on the average. In Proceedings of the 6th

Colloquium on Automata, Languages and Programming, Hermann A. Maurer (Ed.), Lecture Notes in
Computer Science, Vol. 71. Springer-Verlag, Graz, Austria, 118–132.

M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter. 1994.
Speeding up two strings matching algorithms. Algorithmica 12, 4, 247–267.

Simone Faro and Thierry Lecroq. 2013. The exact online string matching problem: A review of the most
recent results. ACM Computing Surveys 45, 2 (2013), 94–111.

V.-M. Glushkov. 1961. The abstract theory of automata. Russian Mathematical Surveys 16, 5, 1–53.
DOI:http://dx.doi.org/10.1070/RM1961v016n05ABEH004112

David Harel. 1999. Factor Oracle of a Set of Words. Technical report. Université de Marne-la-Vallée.
John E. Hopcroft and Jeffrey D. Ullman. 2000. Introduction to Automata Theory, Languages and Computa-

tion, Second Edition (2nd ed.). Addison-Wesley, Reading, MA.
L. F. Kolakowski, J. Leunissen, and J. E. Smith. 1992. Prosearch: Fast searching of protein sequences with

regular expression patterns related to protein structure and function. BioTechniques 13, 6, 919–921.
T. W. Lam, W. K. Sung, S. L. Tam, C. K. Wong, and S. M. Yiu. 2008. Compressed indexing and local alignment

of DNA. Bioinformatics 24, 6, 791–797.

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

http://graphics.stanford.edu/protect $
elax sim $seander/bithacks.html
http://dx.doi.org/10.1070/RM1961v016n05ABEH004112

25:46 X. Yang et al.

Mehryar Mohri. 1997. String matching with automata. Nordic Journal of Computing 4, 2, 217–231.
Eugene W. Myers. 1992. A four Russians algorithm for regular expression pattern matching. Journal of the

ACM 39, 2, 430–448.
Gonzalo Navarro. 2001. NR-grep: A fast and flexible pattern matching tool. Software: Practice and Experience

31, 13, 1265–1312.
Gonzalo Navarro and Mathieu Raffinot. 1999. Fast regular expression search. In Proceedings of the Algorithm

Engineering, 3rd International Workshop on Algorithm Engineering (WAE’99), Jeffrey Scott Vitter and
Christos D. Zaroliagis (Eds.), Lecture Notes in Computer Science, Vol. 1668. Springer-Verlag, London,
198–212.

Gonzalo Navarro and Mathieu Raffinot. 2000. Fast and flexible string matching by combining bit-parallelism
and suffix automata. ACM Journal of Experimental Algorithmics 5, 4.

Gonzalo Navarro and Mathieu Raffinot. 2001. Compact DFA representation for fast regular expression
search. In Algorithm Engineering, 5th International Workshop, WAE 2001, Proceedings (Lecture Notes in
Computer Science), Gerth Stølting Brodal, Daniele Frigioni, and Alberto Marchetti-Spaccamela (Eds.),
Vol. 2141. Springer-Verlag, Aarhus, Denmark, 1–12.

Gonzalo Navarro and Mathieu Raffinot. 2004. New techniques for regular expression searching. Algorithmica
41, 2, 89–116.

Milan Simánek. 1998. The factor automaton. In Proceedings of the Prague Stringology Club Workshop,
Jan Holub and Milan Simánek (Eds.). Department of Computer Science and Engineering, Faculty of
Electrical Engineering, Czech Technical University, Prague, Czech Republic, 102–106.

R. Staden. 1991. Screening protein and nucleic acid sequences against libraries of patterns. DNA Sequence
1, 6, 367–374.

Ken Thompson. 1968. Regular expression search algorithm. Communications of the ACM 11, 6, 419–422.
DOI:http://dx.doi.org/10.1145/363347.363387

Noriyoshi Uratani and Masayuki Takeda. 1993. A fast string-searching algorithm for multiple patterns.
Information Processing and Management 29, 6, 775–792.

Bruce W. Watson. 2003. A new regular grammar pattern matching algorithm. Theoretical Computer Science
1–3, 299, 509–521.

Sun Wu and Udi Manber. 1992. Fast text searching allowing errors. Communications of the ACM 35, 10,
83–91.

Xiaochun Yang, Bin Wang, Tao Qiu, Yaoshu Wang, and Chen Li. 2013. Improving regular-expression matching
on strings using negative factors. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD, Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias (Eds.).
ACM, New York, NY, 361–372.

Received January 2015; revised August 2015; accepted September 2015

ACM Transactions on Database Systems, Vol. 40, No. 4, Article 25, Publication date: January 2016.

http://dx.doi.org/10.1145/363347.363387

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2-2016

	Negative Factor: Improving Regular-Expression Matching in Strings
	Xiaochun YANG
	Tao QIU
	Bin WANG
	Baihua ZHENG
	Yaoshu WANG
	See next page for additional authors
	Citation
	Author

	TODS4004-25

