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ABSTRACT 
 

Entamoeba histolytica is the causative agent of amebic dysentery and is prevalent in 

developing countries. It has a biphasic lifecycle: active, virulent trophozoites and 

dormant, environmentally-stable cysts. Only cysts are capable of establishing new 

infections, and are spread by fecal deposition. Many unknown factors influence stage 

conversion, and synchronous encystation of E. histolytica is not currently possible in 

vitro. E. histolytica infections are treated with nitroimidazole drugs, such as 

metronidazole (Flagyl™). However, several clinical isolates have shown metronidazole 

resistance. Enhancing the amebicidal mechanisms of metronidazole through drug 

combination therapy may allow for more effective treatment. Metronidazole may cause 

amebic death through double-stranded DNA breakage. Inhibiting homologous 

recombination in E. histolytica would prevent recovery from damage induced by 

metronidazole and may potentiate the action of this drug. Rad51 and Dmc1 are 

homologous DNA recombinases involved in double-stranded DNA repair that are 

expressed in E. histolytica. However, the physiological roles of these two proteins are 

unknown. Both Rad51 and Dmc1 are upregulated during encystation of Entamoeba 

invadens, an in vitro model organism. Additionally, Rad51 activity is decreased by small 

molecule inhibitors. To gain insight into the physiological roles of Rad51 and Dmc1 in E. 

histolytica, and to determine drug target potential, we developed two knockdown cell 

lines using the RNAi-mediated Trigger approach. We transfected healthy trophozoites 

with gene-specific Trigger plasmid constructs and verified knockdown status using RT-

PCR and Western blots. Neither Rad51 nor Dmc1 was consistently knocked down in 
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Trigger transfected cell lines. Because these knockdowns were potentially lethal to the 

cells, we also exposed healthy E. histolytica trophozoites to metronidazole combined 

with small molecule Rad51 inhibitors B02 and DIDS to determine if we could lower the 

IC50 of metronidazole. Interestingly, B02 was not cytotoxic and did not consistently alter 

the IC50 of metronidazole. DIDS was only cytotoxic at high concentrations, but lower 

concentrations seemed effective in decreasing the IC50 of metronidazole, suggesting that 

DIDS may be additive or synergistic. Overall, these data may suggest that combination 

therapy using B02 and metronidazole would not yield more effective treatment than 

standard metronidazole regimens. These data may also suggest that a combination of 

DIDS and metronidazole would yield a more effective amebiasis treatment. 
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Introduction 

Limited drugs are available for many pathogenic protozoan and fungal infections, and the 

recent emergence of resistant strains highlights the urgent need for new therapies. 

Developing new treatments using combinations of approved drugs, can expedite clinical 

testing, which, in turn, reduces research costs and allows for faster practitioner access to 

new tools. Combination therapies may further reduce pharmaceutical costs by lowering 

the effective dosage of each drug and possibly shortening drug regimens. Combinations 

may also expand the therapeutic windows of drugs in which the treatments are harmful to 

pathogens but minimally toxic to the host. Finally, combination therapies may result in 

higher efficacy of current drugs, which prolongs their lifespans by minimizing the 

emergence of resistant organisms.  

 

Using two or more drugs simultaneously does not guarantee that efficacy will exceed that 

of using single agents. Pairwise drug interactions can be classified as either antagonistic, 

additive, or synergistic. Antagonism occurs when the two drugs inhibit therapeutic effects 

of each other. Additivism occurs when the two drugs cause the combined predicted effect 

for both individual drugs. Synergism occurs when the combination of drugs exceeds the 

predicted effect of the combination [1]. Additionally, an inert agent, without an 

individual effect, can potentiate the action of a second drug [2]. These pairwise 

relationships can be determined mathematically through isobolograms, which reveal the 

relationship between half maximal inhibitory concentrations (IC50) of each drug (Figure 

1.1). In designing combination therapies, synergism is an important goal as it has the 
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highest potential to lower off-target effects by decreasing doses (synergistic potency) and 

to improve clinical outcome by increasing desired effect (synergistic efficacy) [3]. Here, 

we discuss recent reports of drug combinations that exhibited synergy in the treatment of 

infectious diseases caused by eukaryotic pathogens.  These successful combinations are 

summarized in Table 1.1. 
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Figure 1.1. Isobologram of antagonistic, additive, and synergistic effects of 
combinations of drugs A and B. Isoboles connect the points of IC50 of each drug. 
Antagonistic relationships require increased dosage of drugs for the same individual 
effects, additive effects require the same dosage of drugs for the same individual 
effects, and synergistic interactions require decreased dosage of drugs for the same 
individual effects. Image created in BioRender (adapted from Li, 2016). If the drugs 
are synergistic, the IC50 of agent A in the presence of B should be lower than agent A 
alone [27]. 
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Extracellular Pathogens 
 Combination 1 Combination 2 Combination 3 Combination 4 Combination 5 

Amoebozoa  
Acanthamoeba 
castellanii 

simvastatin, 
voriconazole+ 

- - - - 

Blastocystis sp.  atorvastatin, 
metronidazole* 

- - - - 

Entamoeba histolytica simvastatin, 
lonafarnib* 

lonafarnib, 
metronidazole* 

- - - 

Naegleria fowleri auranofin, 
amphotericin B* 

- - - - 

Fungi   
Aspergillus fumigatus posaconazole, 

clofazamine+ 
caspofungin, 
clofazamine+ 

- - - 

Aspergillus niger Mucuna stans and 
Leonotis 
nepetifolia 
extracts* 

- - - - 

Candida albicans fluconazole, 
clofazamine+ 

caspofungin, 
clofazamine+ 

Leonotis 
nepetifolia, 
Bidens pilosa 
extracts* 

- - 

Cryptococcus 
neoformans 

fluconazole, 
amphotericin B+ 

amphotericin B, 
Laminaecae 
family extracts* 

Mucuna stans, 
Leonotis 
nepetifolia 
extracts+ 

- - 

Fonsecaea  
monophora 

terbinafine, 
amphotericin B* 

- - - - 
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 Combination 1 Combination 2 Combination 3 Combination 4 Combination 5 
Helminths   

Echinococcus 
granulosus 

albendazole, 5-
fluorouracil+ 

albendazole, 
Zataria 
microflora 
extracts+ 

albendazole, 
metformin+ 

albendazole, 
Sophora 
moorcroftiana 
alkaloids+ 

- 

Intracellular Pathogens 
Apicomplexans   

Babesia sp. diminizene 
aceturate, 
clofazamine+ 

atovaquone, 
eflornithine* 

diminizene 
aceturate, 
synthetic 
chalcones+ 

atovaquone, 
hydroxyurea* 

- 

Plasmodium falciparum B02, artemisinin* prochlorperazine, 
chloroquine+ 

- - - 

Plasmodium vivax chlorpheniramine, 
mefloquine+ 

- - - - 

Toxoplasma gondii clindamycin, 
azithromycin+ 

ketofin, 
pyrimethamine* 

simvastatin, 
pyrimethamine+ 

atorvastatin, 
CS7* 

- 

Trypanosomes   
Leishmania  
amazonensis 

tamoxifen, 
amphotericin B+ 

- - - - 
 
 

Leishmania 
donovani 

lovastatin, 
chromium 
chloride+ 

- - - - 
 
 
 

Leishmania  
infantum 

propolis, 
amphotericin B* 

nelfinavir, 
amphotericin B* 

lopinavir, 
amphotericin B* 

sorafinib, 
auranofin, 
lopinivir* 

- 
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Table 1.1. Successful drug combination strategies to combat eukaryotic pathogen infections. Combinations marked with 
(+) are additive, and combinations marked with (*) are synergistic.		

 Combination 1 Combination 2 Combination 3 Combination 4 Combination 5 
Trypanosomes (con’t)      
Leishmania major paramomycin, 4-

aminoquinoline+ 
Moringa oleifera 
extracts, 
amphotericin B* 

propolis, 
amphotericin B* 

 - 

Leishmania  
martiniquensis 

allicin, 
amphotericin B* 

- - - - 

Leishmania mexicana paramomycin, 4-
aminoquinoline+ 

- - - - 

Trypanosoma brucei temozolamide, 
elflornithine+ 

temozolamide, 
malarsoprol+ 

- - - 

Typanosoma congolense Anogeissus 
leiocarpus, Khaya 
senegalensis 
extracts, potash* 

- - - - 

Trypanosoma cruzi clofazamine, 
benznidazole* 

Chlamydomonas 
reinhardtii 
extracts, 
nifurtimax+ 

clomipramine, 
benznidazole* 

amiodarone, 
benznidazole+ 

Lippia alba 
terpenes 
(limonene, 
citral)* 
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Conventional Antimicrobial and Antifungal Agents – Better Together 

Combining conventional drugs that target eukaryotic pathogens has resulted in improved 

inhibition of pathogen growth. Furthermore, some antimicrobials that target prokaryotes 

have secondary antiparasitic targets and potentiate the action of standard antiprotozoal 

drugs. For example, neuro-invasive Toxoplasma gondii was successfully countered with 

the combination of clindamycin and azithromycin, both of which inhibit protein synthesis 

in bacteria. Although the antiparasitic mechanism is unclear, clindamycin effectively 

crosses the blood brain barrier and accumulates in tissues with high parasitic loads [4].  

 

Diminizene aceturate is a DNA-binding drug commonly used to treat canine babesiosis 

[5], but it has not been widely used in humans due to its narrow therapeutic window. 

However, a combination therapy using diminizene aceturate and clofazimine, an anti-

mycobacterial drug, showed that adding clofazamine to lower doses of diminizene 

aceturate produced the same in vivo outcomes as higher doses of diminizene aceturate in 

a mouse model of infection [6]. Both drugs bind AT-rich regions of DNA, which are 

common in Babesia sp., and such constrained DNA cannot be replicated, causing cell 

cycle arrest. Because clofazamine can lower the effective dose of diminizene aceturate, it 

may provide a larger therapeutic window for treating human babesiosis.  

 

Clofazimine also inhibits trypanosomal proline transporters and enhances retention of 

benznidazole, commonly used to treat Trypanosoma cruzi infections [7]. Paramomycin is 

the conventional treatment for cutaneous leishmaniasis. 4-aminoquinoline chloroquine is 
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often used in combination with doxycycline to treat Q fever, which is caused by 

intracellular infections with the bacterium, Coxiella burnetii [8]. Together, paramomycin 

and 4-aminoquinoline synergized in the treatment against Leishmania major and 

Leishmania mexicana; [9]. Both intracellular Leishmania amastigotes and C. burnetii 

bacteria induce acidification of macrophages, which decreases therapeutic activity of 

conventional drugs. Therefore, alkalization of macrophages induced by 4-aminoquinoline 

chloroquine enhanced the cytotoxic mechanisms of doxycycline and paramomycin. 

Interestingly, clofazamine can also potentiate many antifungal drugs, including 

fluconazole, posaconazole, and caspofungin, to inhibit Candida sp. and Aspergillus 

fumigatus. Clofazamine elicits cell membrane stress and activates the Pkc1 signaling 

pathway, which is also activated in fluconazole and caspofungin response in C. albicans 

[10]. Similarly, posaconazole and caspofungin both synergized with clofazimine and 

decreased hyphal growth of A. fumigatus [10]. 

 

Combining multiple antifungals with different drug targets has proven effective. 

Amphotericin B is used as a conventional treatment for several fungal infections. This 

drug interferes with ion transport and membrane polarization, leading to high host 

toxicity. Additionally, amphotericin B interferes with membrane permeability by binding 

to ergosterol, a pathogen specific lipid that regulates outer membrane integrity. 

Fluconazole, a broad-spectrum antifungal, inhibits ergosterol synthesis, synergizing with 

amphotericin B by allowing for an increased saturation rate in Cryptococcus neoformans 

[11]. Terbinafine, the conventional drug treatment for chromoblastomycosis, causes 
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accumulation of an ergosterol intermediate that increases membrane permeability. 

Amphotericin B and terbinafine synergized through rapid membrane alterations that led 

to enhanced lysis of melanized Fonsecaea monophora fungal cells [12].  

 

Statins – Harnessing Pleiotropic Effects 

Statins, such as simvastatin, atorvastatin, and lovastatin, are a class of drugs that inhibit 

HMGR (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase) activity and are routinely 

used to treat hypercholesterolemia. HMGR catalyzes the biosynthesis of many sterols 

through the conversion of HMG-CoA into 1-mevalonate, a sterol precursor [13, 14]. 1-

Mevalonate also functions as a biochemical precursor of isoprenoid groups, which serve 

as post-translational prenylations on many proteins.	Statins are versatile because they 

have large therapeutic windows. Many parasites scavenge sterols from the host in 

addition to synthesizing sterols themselves. Therefore, combining multiple compounds 

that limit sterol synthesis in either pathogen or host is predicted to be synergistic.  

 

Using simvastatin with the antifungal drug, voriconazole, represents a highly effective 

strategy that targeted two different biochemical steps in Acanthamoeba ergosterol 

synthesis [15]. Simvastatin blocked amebic HMG-CoA, while the antifungal drug, 

voriconazole, blocked 14α-demethylase, an enzyme responsible for assembling 

ergosterols [16]. In a mouse model of T. gondii infection, strong synergism was observed 

between atorvastatin, an HMG-CoA inhibitor of host cell sterol synthesis, and C7S, a 

bisphosphonate that also functions as an inhibitor of parasitic isoprenoid synthesis [17].  
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Statins have been shown to be particularly useful against intracellular parasites because 

the drugs can alter host cell membranes and modulate host immunity. Atorvastatin 

enhances host cellular membrane integrity during Blastocystis infection, preventing 

protozoan invasion and leaving parasites vulnerable to metronidazole [18]. Similarly, 

simvastatin decreased T. gondii tachyzoite adhesion and invasion, allowing a 

conventional anti-toxoplasmosis drug, pyrimethamine, to kill exposed parasites in the 

bloodstream [19]. Statins may enhance the oxidative stress, part of the immune response 

in the host. For example, combining lovastatin with the anti-leishmanial, chromium 

chloride, produced two varieties of reactive oxygen species in parasitic cells, which 

induced apoptosis in Leishmania donovani amastigotes [20].  

 

Statins can pleiotropically inhibit protein prenylation of several highly conserved 

eukaryotic proteins, including the Ras superfamily of G-proteins. Farnesyltransferase is 

an essential enzyme that catalyzes the post-translational attachment of farnesyl groups on 

proteins. Combination therapy with simvastatin and lonafarnib, an antineoplastic that 

inhibits farnesyltransferase [21], was synergistic against Entamoeba histolytica [22]. This 

finding was unanticipated because genome data suggest that E. histolytica lacks HMGR. 

Thus, the therapeutic efficacy of simvastatin was predicted to be due to pleiotropic effects 

in the isoprenoid biosynthesis pathway. Combination therapy with the standard anti-

protozoal, metronidazole, and lonafarnib was also synergistic against E. histolytica [22]. 

This outcome may have been due to lonafarnib-induced membrane destabilization, 
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caused by impaired protein prenylation, which, in turn, intensified oxidative damage 

caused by metronidazole. 

Antineoplastics – DNA Damage and Membrane Transport Disruption 

Many antineoplastic drugs inhibit unrestrained tumor cell proliferation by targeting DNA 

or DNA repair. Such drugs may potentiate conventional antimicrobials that function by 

damaging DNA. The antiparasitic drug, atovaquone, which induces double-stranded 

DNA breaks [23], synergized with either hydroxyurea or eflornithine, two antineoplastic 

agents, to block multiplication and differentiation of Babesia parasites [24]. 

Trypanosoma brucei growth was inhibited by combining the antineoplastic agent, 

temozolamide, with either eflornithine or malarsoprol. Temozolimde, developed for 

glioblastoma, is a DNA damaging agent that crosses the blood brain barrier. Thus, it is 

particularly advantageous for cases with brain migration of trypanosomes [25]. 

Temozolimide was shown to trigger trypanosomal cell cycle arrest through DNA 

damage, limiting proliferation and increasing parasitic susceptibility to standard 

treatments. Similarly, B02, an inhibitor of DNA repair [26], synergistically enhanced the 

DNA damaging activity of artemisinin and chloroquine in Plasmodium falciparum [27]. 

Echinococcus cell division was limited by the DNA damaging antiparasitic drug, 

albendazole [28], and the anti-neoplastic, 5-fluoruracil, a nucleoside analog that is 

incorporated into DNA and produces toxic metabolites [29]. Tamoxifen, commonly used 

to inhibit human estrogen receptors, increases membrane depolarization in Leishmania 

amazonensis, and may also depolarize mitochondrial membranes, leading to synergy with 

amphotericin B [30].  
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Natural Compounds – Expanding the Toolbox of Traditional Medicine 

Combination methodology is commonplace within traditional medicine because raw 

plant material contains bioactive compounds with unknown mechanisms. Chalcones are 

flavonoids that are plant-derived phenolic compounds. Synthetic chalcones inhibit 

glucose metabolism of Babesia and reduce the toxicity of diminizene aceturate through 

an unknown mechanism [31]. Amphotericin B synergizes with many phenolic plant 

extracts to inhibit the growth of several pathogens. Two models have been proposed for 

phenolic extract synergy with amphotericin B: enhanced lipophilic transport that 

increases drug permeation, and inhibition of outer membrane ergosterol exchange with 

intercellular membranes. Phenolic extracts from the Laminaecae family, including basil 

(Ocimum basilicum), oregano (Origanum vulgare), and thyme (Thymus vulgaris), 

synergized with amphotericin B to inhibit the growth of C. neoformans through increased 

lipophilic transport of drug [32, 33]. Similarly, Moringa oleifera, a medicinal plant, also 

produced phenols that increased lipophilic transport of amphotericin B into L. major 

parasites [34]. The garlic-derived compound, allicin, inhibited outer membrane ergosterol 

exchange with vacuole membranes and increased the rate of amphotericin B interference 

with membrane ergosterol in Leishmania martiniquensis [35]. Phenolic compounds may 

also bind intracellular proteins and increase oxidative stress in L. martiniquensis, 

exacerbating negative effects of amphotericin B [35]. Albendazole activates macrophages 

and impairs motility of Echinococcus cells, and both of these activities can be improved 

with Zataria multiflora phenolic extracts. Z. multiflora extracts increased membrane 

permeability and altered parasite motility [36]. 
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Other non-phenolic derived compounds can enhance standard antimicrobial treatments. 

Tunisian propolis, one such compound, is a natural resinous product of trees that is 

harvested by bees for hive construction. It was shown to enhance the activity of 

amphotericin B by increasing macrophage activity and inhibiting intracellular invasion of 

Leishmania infantum and L. major [37]. In this case, amphotericin B readily saturated 

parasitic membranes because amastigotes were not sequestered in host cells [37]. 

Similarly, microalgae extracts from Chlamydomonas reinhardtii inhibited T. cruzi 

intracellular invasion, potentiating the action of nifurtimax, a conventional treatment only 

active against bloodstream trypomastigotes [38]. Several natural compounds produce 

synergy through immune system stimulation and protection from drug-induced host 

toxicity. Benznidazole generates oxidative stress that damages both T. cruzi and host 

cells; however, supplementation with Lippia sp.-derived terpenes inhibited host 

inflammation and may have induced additional parasite-specific oxidative stress [39]. 

Trypanosoma congolense, the major agent of cattle trypanosomosis that also serves as a 

model organism for human T. brucei infection, exhibited impaired motility in a mouse 

model of infection caused by a combination of extracts from Anogeissus leiocarpus and 

Khaya senegalensis along with potash salts, resulting in decreased parasitemia [40]. 

Albendazole treatment of Echinococcus infections can also be enhanced by a 

combination treatment with Sophora moorcroftiana alkaloids, which increase host 

complement activation [41]. 
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Many fungal pathogens can be treated with combinations of natural compounds. 

Aspergillus niger, C. neoformans, and C. albicans growth was inhibited by several 

pairwise combinations of Tanzanian plant extracts. Ethanolic extracts from Leonotis 

neperifolia and Bidens pilosa synergized strongly against C. albicans, Mucuna stans and 

L. nepetifolia extracts displayed synergy against A. niger, and these two extract 

combinations had additive effects against C. neoformans [42]. However, three-way 

combinations of these same plant extracts were antagonistic in treating C. albicans, 

meaning therapeutic windows remain relevant to development of natural therapies. 

 

Surprisingly Successful Combinations – Repurposed Drugs 

Drug screening has revealed unexpected agents with antiparasitic activity. Furthermore, 

clinicians have observed improved outcomes from patients with protozoan infections 

already taking chemotherapeutics for unrelated conditions. Many repurposed drugs 

inhibit parasite replication. Patients infected with L. infantum taking nelfinavir, an 

antiretroviral for treatment of concurrent HIV, had better outcomes than HIV-negative 

patients taking only amphotericin B [43]. L. infantum infections were also cleared more 

quickly when treated with a combination of lopinavir and miltefosine [44]. Upon further 

investigation, it was shown that antiretrovirals prevented intracellular multiplication of 

amastigotes [43] and altered lipid membrane composition [44], leading to a reduced 

parasitic load and synergy with conventional anti-parasitics. Likewise, ketotifen, a 

tricyclic antihistamine, prevents host cell invasion by T. gondii through stabilization of 

outer cell membrane. This drug also inhibits intracellular parasite multiplication, which 
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increases the percentage of bloodstream parasites that are vulnerable to pyrimethamine 

[45]. Interestingly, ketotifen may also reduce host cell inflammation, rendering infections 

less harmful [45]. Finally, metformin, a hydrophilic anti-hyperglycemic that also prevents 

parasitic proliferation, improved conventional albendazole treatment of echinococcosis 

through reducing the parasite load [46].  

 

Several repurposed drugs may increase delivery of conventional drugs to target tissues. 

Auranofin, an anti-arthritic drug, synergizes with conventional amphotericin B for nuero-

invasive Naegleria fowleri infections [47]. Auranofin impairs the N. fowleri oxidative 

stress response through inhibiting both selenoprotein synthesis and thioreductase activity. 

It also may improve drug delivery of amphotericin B across the blood brain barrier [47]. 

Conventional treatment of T. cruzi with benznidazole was enhanced with amiodarone, a 

cardiac antiarrhythmic drug often prescribed for symptomatic treatment of invasive 

cardiac cases of Chagas disease. Both drugs were shown to have distinct targets in T. 

cruzi and to reach therapeutic concentrations in myocardial tissue. Benznidazole caused 

oxidative stress and amiodarone inhibited parasitic ergosterol biosynthesis, and the 

combination decreased parasitic cell counts in vitro more effectively than single drug 

treatment [48].  

 

Many repurposed drugs also exhibit binding to parasite-specific proteins. Clomipramine, 

a tricyclic antidepressant, binds trypanothione reductases and mitochondrial membranes 

in many trypanosomes, including L. amazonensis [49], T. brucei [50], and T. cruzi [51]. 



 17 

Trypanothione reductase is a critical protein in the antioxidant response of T. cruzi, so 

oxidative stress inflicted by benznidazole may be intensified by an inhibited antioxidant 

response mediated by clomipramine [51]. The antipsychotic drug, prochlorperazine [52], 

and the antihistamine, chlorpheniramine [53], both potentiate chloroquine and 

mefloquine by binding parasite-specific efflux pumps and ABC transporters in 

Plasmodium vivax [52] or P. falciparum [53], forcing retention of these conventional 

antimalarial drugs.  

 

Future Perspectives – Nearly Endless Combinations 

Synergistic mechanisms show similarity across drug categories, although classes and 

mechanisms are diverse, and successful combination therapies have been reported for 

most infections with eukaryotic pathogens. Several drugs are enhanced by agents that 

limit parasitic replication and differentiation, while other agents disrupt membrane 

integrity and permeability, increasing diffusion of conventional drugs and triggering 

death pathways. Other treatments block invasion of intracellular parasites, forcing 

parasites to remain in tissues with higher concentrations of conventional drugs. Similarly, 

some agents increase concentration of conventional drugs in specific tissues with high 

parasite burden. Finally, both parasitic and host immunity are modulated by synergy-

producing agents. Protective pathogen antioxidant enzymes can be inhibited by novel 

combinations, which enhances oxidative damage to pathogens caused by conventional 

drugs. Several combination therapies broaden the therapeutic window of conventional 

drugs by either upregulation of host immune response or reduction of drug-induced 
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inflammation. Capitalizing upon the wide variety of mechanisms can yield promising 

three-way combinations. For example, L. infantum infections have been successfully 

treated with a combination of sorafinib, a kinase inhibitor used to treat kidney cancer, 

lopinavir, an antiretroviral, and auranofin, an inflammation reducing anti-arthritic [54]. 

Pairwise combinations of these three drugs were additive, but the combination of all three 

produced synergy. As researchers gain a greater understanding of the modes of action of 

different drugs against eukaryotic pathogens, novel cocktails made up of three or more 

agents can be designed and tested, resulting in cost-effective treatments for this 

devastating group of pathogens. 
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Abstract 

Entamoeba histolytica, the causative agent of amebic dysentery, is most often treated 

clinically with nitroimidazole drugs, such as metronidazole (Flagyl™). Recently, several 

clinical E. histolytica isolates have demonstrated partial metronidazole resistance. Oral 

metronidazole is mostly absorbed in the small intestine; thus, achieving a colonic 

therapeutic concentration requires an extremely high dosage. Enhancing the amebicidal 

mechanisms of metronidazole, through drug combination therapy, may allow for 

effective colonic treatment at lower drug concentrations, which would slow the 

emergence of resistant strains. If the therapeutic dosage could be lowered, unpleasant side 

effects could also be reduced. Metronidazole may cause amebic death through many 

pathways, including double strand DNA breakage. These breaks are repaired by native 

homologous recombinases, such as Rad51. Inhibiting homologous recombination in E. 

histolytica would prevent recovery from damage induced by metronidazole and may 

potentiate the action of this drug. To determine if we could lower the effective dosage of 

metronidazole, we exposed healthy E. histolytica trophozoites to metronidazole 

combined with small molecule Rad51 inhibitors, either B02 or DIDS. Interestingly, B02 

was not cytotoxic and did not consistently alter the IC50 of metronidazole. DIDS was only 

cytotoxic at high concentrations, but lower concentrations seemed effective in decreasing 

the IC50 of metronidazole, suggesting that DIDS may be additive or synergistic. Overall, 

these data may suggest that combination therapy using B02 and metronidazole would not 

yield more effective treatment than standard metronidazole regimens. These data may 
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also suggest that a combination of DIDS and metronidazole could yield a more effective 

amebiasis treatment. 

Introduction 

Entamoeba histolytica, the causative agent of amebiasis, infects 50 million people each 

year and causes 55,000 deaths annually [1]. Severity of E. histolytica infections ranges 

from asymptomatic large bowel colonization to extra-intestinal invasion of the brain and 

liver [2]. Invasive cases cause more adverse patient outcomes. The organism has a 

biphasic lifecycle: active, virulent trophozoites and environmentally stable cysts. Only 

cysts can be transmitted, and new infections are mainly acquired through cyst 

consumption from contaminated water sources [3]. Because of this, amebiasis is more 

common in countries with substandard water sanitation, which is usually associated with 

lower socioeconomic status. This has led to underfunded drug research and is one reason 

for the paucity of antiamebic drugs.  

 

To prevent recurrence of invasive amebic colitis, all disseminated amebae within the 

tissues must be destroyed. Amebacidal agents fall into two categories: systemic 

amebacides and luminal amebacides [4]. Systemic amebacides are absorbed in the blood 

and are active in many tissues, while luminal agents are only active in the intestinal 

lumen. Luminal agents, including paramomycin, diloxanide furoate, nitazoxanide, and 

idoquinol, have broad-spectrum antimicrobial activity and are less effective at 

eliminating disseminated infections [4, 5]. Established systemic agents are currently 

limited to 5-nitroimidazoles, specifically metronidazole and tinidazole [2]. Metronidazole 
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is the drug of choice for amebiasis because it has high efficacy and is low-cost [4]. 

Additionally, because metronidazole diffuses into cells and is activated by reduction, it 

has low host toxicity because reduction only occurs in low oxygen environments [14]. 

However, metronidazole has lower tissue efficacy for the colon compared with the small 

intestine and extra-intestinal sites. Metronidazole may not reach therapeutic 

concentrations in the colon even at extremely high doses [6]. Therefore, clinicians often 

prescribe a luminal drug regimen with higher colonic efficacy to increase the clearance of 

lingering tissue-embedded cysts and cellular debris following metronidazole treatment 

[7]. However, luminal agents are not effective as monotherapies against invasive amebic 

colitis [4]. Additionally, increasing the dosage of broad-spectrum antibiotics may destroy 

the protective intestinal microflora [8]. Therefore, a concurrent combination therapy that 

enhances metronidazole efficacy at lower colonic concentrations would promote 

clearance of amebae without reliance on lengthy drug regimens. Such a combination 

therapy could also eliminate the need for luminal antimicrobials in amebic colitis 

treatment and reduce spread of resistance in the microflora. 

 

Since E. histolytica is eukaryotic, it is difficult to identify effective drug targets that avoid 

negative host effects. Development strategies have yielded only one alternative 

amebicide suitable for treatment of invasive infections, auranofin, a gold-based anti-

arthritic drug [9]. However, early clinical trials show that the necessary amebacidal 

dosage of auranofin may cause too many side effects to be preferentially prescribed for 

amebiasis [10]. Because few alternative drugs are available, it is critical to extend the 
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lifespan and improve efficacy of metronidazole. This sense of urgency has increased due 

to several recent clinical isolates of E. histolytica displaying partial resistance to 

metronidazole [11]. Counteracting resistant infections with increased concentrations may 

work temporarily, but could ultimately lead to greater drug resistance. Additionally, 

normal side effects of metronidazole treatment include nausea, headache, metallic taste, 

dry mouth, and rashes. These are exaggerated in pediatric patients, who are also 

susceptible to rare but severe neurological events [12, 13]. High standard dosage will 

likely worsen these side effects for all patients.  

 

Nitroimidazoles may kill amebae by inflicting double-stranded DNA breakage [14, 15, 

16]. Inhibiting DNA repair mechanisms, native to E. histolytica, should increase the 

efficiency of metronidazole by preventing recovery, but few studies have evaluated this 

assumption. Two different types of DNA repair mechanisms are thought to exist in E. 

histolytica, non-homologous end-joining (NHEJ) and homologous recombination (HR). 

Little is known about NHEJ in this pathogen, but HR has been partially characterized. 

For example, E. histolytica possesses Rad51 (EhRad51), a well-conserved eukaryotic 

recombinase that participates in HR. It is expressed and has recombinase activity in vitro 

[17, 18, 19]. In another eukaryotic parasite, Plasmodium falciparum, several small 

molecule inhibitors can synergize with DNA damaging drugs including artemisinin and 

chloroquine [20]. These inhibitors are B02 (3-(Phenylmethyl)-2-[(1E)-2-(3-

pyridinyl)ethenyl]-4(3H)-quinazolinone) and DIDS (4,4′-diisothiocyanatostilbene-2,2′-

disulfonate), and they decrease the in vivo activity of PfRad51. B02 and DIDS also 
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inhibit EhRad51 activity in vitro [21]. Additionally, metronidazole-resistant strains of the 

bacteria, Helicobacter pylori, overexpress RecA, the prokaryotic homolog of Rad51 [22]. 

This implies that homologous recombinases contribute to the metronidazole susceptibility 

of cells. It would seem that further investigations are needed to determine if these 

inhibitors also enhance the DNA damaging effects of metronidazole in E. histolytica. 

Pairwise drug interactions can be classified as either antagonistic, additive, or synergistic. 

Antagonism occurs when two drugs prevent the therapeutic effects of each other. 

Additivism occurs when the two drugs cause the combined predicted effect for both 

individual drugs. Synergism occurs when the combination of drugs exceeds the predicted 

effect of the combination [23]. Certain combinations include an inert agent that has no 

individual effect, but can potentiate the action of a second drug [24]. These pairwise 

relationships can be determined mathematically through isobolograms that compare the 

half maximal inhibitory concentration (IC50), which is calculated through four-parameter 

logistic (4PL) curve fitting (Figure 2.1). If the drugs are synergistic, there should be a 

leftwards shift in the IC50 curve (4PL), and the IC50 of agent A should be greater than the 

IC50 of agent A in the presence of B [20]. 
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Figure 2.1. Isobologram of antagonistic, additive, and synergistic effects of 
combinations of drugs A and B. Isoboles connect the points of IC50 of each drug. 
Antagonistic relationships require increased dosage of drugs for the same individual 
effects, additive effects require the same dosage of drugs for the same individual effects, 
and synergistic interactions require decreased dosage of drugs for the same individual 
effects. Image created in BioRender (based on Li et.al. 2016). 
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Combination therapy with conventional metronidazole and a Rad51 inhibitor may be 

synergistic. Few studies have addressed potentiating metronidazole with DNA repair 

inhibitors. Oxidative radicals generated by metronidazole may cause lethal DNA damage, 

but most cytotoxicity is thought to arise from global cellular damage caused at a faster 

rate [16]. Combination with either Rad51 inhibitor may allow metronidazole to kill cells 

directly through double strand breakage because lethal DNA damage will accumulate at a 

rate that surpasses cellular repair capabilities (Figure 2). DNA damage may also block 

cell replication machinery. Positive pairwise interactions of metronidazole with B02 or 

DIDS could result in a lower IC50 for metronidazole and reduce selective pressure for 

resistant strains of E. histolytica, but this has yet to be established.  

 

Additionally, B02 and DIDS may have different binding sites, so combining both 

chemicals with metronidazole simultaneously may allow for the same pharmacological 

effect while reducing host toxicity of high dosages of a single inhibitor [25]. B02 binds 

directly to human Rad51 and DIDS prevents Rad51-mediated D-loop formation and 

competes with ssDNA binding [21]. Since both chemicals inhibit EhRad51 and disable 

HR, it is hypothesized that E. histolytica DNA would be more highly sensitized to double 

strand breakage caused by metronidazole in a three-way combination therapy. However, 

it remains unclear if the inhibitory effects of DIDS and B02 can be compounded and if 

the binding sites are distinct. 
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Rad51 inhibitors potentiate other DNA damaging drugs by inhibiting HR. For example, 

artemisinin, an antimalarial compound that causes double stranded DNA breakage, was 

potentiated by B02 in P. falciparum [20]. Therefore, we examined the pairwise drug 

interactions of B02 and metronidazole, as well as DIDS and metronidazole. We report 

that the IC50 of metronidazole against E. histolytica in our system is 11.9 ± 3.98 µM. This 

is similar other reported IC50 values of the same strain, recently 13.2 µM [26]. 

Additionally, the IC50 of metronidazole did not show a consistent decrease in the 

presence of increasing concentrations of B02. These results suggest that B02 does not 

potentiate metronidazole in the same manner as other DNA damaging agents like 

artemisinin. Finally, lower concentrations of DIDS lowered the IC50 of metronidazole, 

which may indicate a positive pairwise interaction at appropriate concentrations. 

However, the IC50 of metronidazole increased when treated with higher concentrations of 

DIDS, which may indicate an antagonistic relationship through an unknown mechanism.  
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Materials and Methods 

Culturing cells in 96 well plates 

E. histolytica (strain HM-1:1MSS) trophozoites were cultured axenically in TYI-S33 

medium at 37 °C. Cells were passaged into fresh media every 72–96 hours and were 

grown in 15 mL glass screw cap culture tubes [27]. To harvest cells, these tubes were 

incubated on ice for 8 minutes to detach cells, and the contents were transferred to 15 mL 

conical tubes and centrifuged for 5 minutes at 23°C and 500xg. Viable cells were counted 

through Trypan Blue (VWR, Radnor, PA, USA) exclusion using an automatic cell 

counter (Luna LB-L10001, Logos Biosystems, Annandale, VA, USA). 2.85 x 104 

parasites were inoculated in 280 µL of complete media into each well of a sterile 96-well 

plate, then plates were covered with SealPlate films (Sigma Aldrich, St. Louis MO, USA) 

and incubated for 24 hours at 37°C [28]. Each well was examined for ≥ 80% confluency 

prior to drug exposure. 

 

Determining the IC50 of metronidazole 

A two-fold serial dilution of metronidazole (Sigma Aldrich, St. Louis, MO) was created 

using a 77 mM stock solution dissolved in dimethyl sulfoxide (DMSO; MP Biomedicals, 

Solon, OH, USA). Metronidazole was diluted 1.5-fold in DMSO to 51 mM. This stock 

solution was diluted 10-fold in serum free media (SFM). In a sterile 96-well plate, 30 µL 

of SFM containing 10% (v/v) DMSO was dispensed in horizontal rows of 11 wells. 

Thirty uL of metronidazole, diluted in SFM, was added to the first well, mixed via 

pipetting, and 30 uL was transferred to the next well. This was repeated sequentially for 
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all remaining wells in the row, resulting with 60 µL in the final well. Thirty µL was 

removed and discarded from this well [29]. 

 

The growth media over cells grown in 96 well plates was aspirated with a multichannel 

pipette and replaced with 260 µL of SFM. Twenty µL of each serial drug dilution was 

transferred to individual wells in triplicate, bringing the total well volume to 280 µL. 

Plates were covered with fresh SealPlate films and incubated 4 hours at 37°C. After 

incubation, the drug treatment media was aspirated and replaced with SFM containing 20 

µg/mL fluorescein diacetate (FDA; Sigma Aldrich). Plates were covered with SealPlate 

films and incubated for 30 minutes at 37°C. FDA-SFM was removed and replaced with 

100 µL of 1X PBS [28]. Fluorescence output was quantified at 490 nm excitation and 526 

nm emission with a plate reader (Synergy H1 Hybrid Reader, BioTek, Winooski, VT). 

Results were fit to four parameter logistic curves to estimate IC50 values (Gen5, version 

5.09, BioTek, USA).  

 

Assessing IC50 values of metronidazole in combination with B02 

A two-fold serial dilution of metronidazole was created as described previously. B02 

(Millipore Sigma, Burlington, MA, USA) was diluted 24-fold to 420 µM with DMSO 

from a 10 mM stock solution dissolved in DMSO. The 420 µM stock was diluted 5-fold 

in SFM (84 µM).  
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Cells were grown in 96-well plates, then the growth media was aspirated with a 

multichannel pipette and replaced with 250 µL of SFM. Twenty µL of each serial 

metronidazole dilution was transferred to individual wells in triplicate, bringing the total 

well volume to 270 µL. Ten µL of diluted 84 µM B02 SFM was added to each well, for a 

final concentration of 3 µM B02 delivered in 2 µL DMSO. Plates were covered with 

fresh SealPlate films and incubated 4 hours at 37°C. After incubation, the drug treatment 

media was aspirated and replaced with SFM containing 20 µg/mL FDA. FDA viability 

assay was performed as described previously. Results were fit to four parameter logistic 

curves to estimate IC50 values (Gen5).The 10 mM B02 stock was also diluted 12-fold 

and 6-fold to 840 µM and 1680 µM, respectively. These dilutions yielded final treatment 

concentrations of 6 µM and 12 µM. 

 

Analyzing cell lysate fluorescence when treated with B02  

E. histolytica trophozoites were grown in 15 mL tubes for 72 hours and harvested as 

described above. Viable cells were counted and diluted in 1 mL serum free media to a 

concentration of 1.7 x 106 parasites/mL. The cell suspension was poured into a syringe 

fitted with a filter holder containing two 8-µm polycarbonate filters (Poretics, Livermore, 

CA) stacked on top of one another. The cells were forced through the filters with the 

plunger, creating a homogenous lysate [30]. The lysate was diluted with serum free 

media to contain the equivalent of 3.7 x 105 cells/mL. Two hundred and seventy uL of 

lysate was dispensed into each well, providing 1.0 x 105 lysed cells per well. Two 

hundred and seventy uL of serum free media was also dispensed to the same number of 
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wells as a negative control. 10 mM B02 was diluted 12-fold, 18-fold, and 24-fold in 

DMSO to 840 uM, 630 uM, and 420 uM, respectively. These drug stocks were diluted 5-

fold in serum free media, and 10 uL of each drug solution was added to six wells, three 

containing lysate and three negative controls. The final concentrations of B02 in wells 

were 6 uM, 4.5 uM, and 3 uM, delivered in 2 uL DMSO to 280 uL total well volume. 

Plates were covered with SealPlate films and incubated 4 hours at 37°C, then films were 

removed and fluorescent output was detected with a plate reader at 490 nm excitation and 

526 nm emission wavelengths.  

 

Assessing IC50 values of metronidazole in combination with DIDS 

A two-fold serial dilution of metronidazole was created as described previously. DIDS 

(Millipore Sigma) was diluted 7-fold to 2860 µM with DMSO from a 20 mM stock 

solution dissolved in DMSO. The 2860 µM stock was diluted 5-fold in SFM (572 µM).  

Cells were grown in 96-well plates, then the growth media was aspirated with a 

multichannel pipette and replaced with 250 µL of SFM. Twenty µL of each serial 

metronidazole dilution was transferred to individual wells in triplicate, bringing the total 

well volume to 270 µL. Ten µL of diluted 572 µM DIDS SFM was added to each well, 

for a final concentration of 20 µM DIDS delivered in 2 µL DMSO. Plates were covered 

with fresh SealPlate films and incubated 4 hours at 37°C. After incubation, the drug 

treatment media was aspirated and replaced with SFM containing 20 µg/mL FDA. FDA 

viability assay was performed as described previously. Results were fit to four parameter 

logistic curves to estimate IC50 values (Gen5). 
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Results 

 

 

 

 

 

	
Figure 2.2. Proposed mechanism of drug synergy between metronidazole and B02 
in E. histolytica. After metronidazole diffuses into the cell, it is reduced into harmful 
radicals. These radicals cause oxidative damage to proteins and other cellular 
components, leading to cell death. In addition, the radicals inflict double strand DNA 
breakage. Normally, the breakages are repaired through homologous recombination 
(HR) mediated by Rad51 and other recombinases, leading to cell recovery. B02 inhibits 
Rad51, so the double stranded breaks linger and cause more cell death than 
metronidazole alone. Image created with ChemDraw (v. 19.1, PerkinElmer, Waltham, 
MA, USA) and BioRender (Toronto, ON, Canada).  
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Figure 2.2 depicts the possible synergistic effects of metronidazole and B02. Under 

anaerobic conditions, metronidazole is reduced into radicals after diffusing into cells, and 

the radicals inflict double stranded DNA breaks. E. histolytica repairs double stranded 

breaks through homologous recombination, including the recombinase, Rad51. B02 

inhibits action of Rad51, allowing DNA damage to accumulate. The damage may be 

repaired through error prone mechanisms, increasing mutation rate and activating cell 

death. Normally, double strand DNA damage will not directly kill cells treated with 

metronidazole [16], but adding B02 inhibition may increase the likelihood of death 

through these means. Metronidazole-induced redox damage to non-DNA cellular 

components will not be inhibited by B02. 
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Figure 2.3. Assessing FDA as a tool for tracking viability in E. histolytica cells. A. 
Parasite viability estimation comparing two staining methods: fluorescein diacetate (FDA) 
and Trypan blue. Healthy cells were treated for 1 hour with 10% DMSO by volume, then 
quantified with one of two methods. B. Relationship between living parasites and FDA 
signal output (relative fluorescent units). Four different quantities of cells were seeded in 
plates, grown for 24 hours, and exposed to FDA for 30 min. Fluorescent output shows a 
logarithmic pattern of signal production. The data represent the mean +/- standard deviation 
of n ≥ 3 biological replicates. 
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Fluorescein diacetate (FDA) is a membrane permeable vital stain that is converted into 

fluorescein by viable cells. Therefore, higher numbers of viable cells yield higher 

fluorescent outputs [31]. To determine if FDA was a viable alternative method of 

tracking cell viability, we treated cells with 10 % (v/v) DMSO and measured viability 

using both our standard protocol of Trypan blue exclusion [32] and experimental FDA 

staining protocols. Figure 2.3 shows that FDA cell viability staining is a valid alternative 

approach to quantifying the number of living ameba after exposure to damaging agents. 

In particular, after one-hour exposure to 10% (v/v) DMSO, 15-20% of the cells died. The 

differences between cell counts using either Trypan blue or FDA were negligible and fell 

within the range of error. Importantly, the RFU output increased logarithmically 

correlated to the number of living cells. As the number of viable cell increased, more 

FDA was cleaved into fluorescent byproducts (Figure 3). At a certain point, the number 

of cells likely exceeded the availability of FDA molecules, or the cells became 

overcrowded in the well. Within the linear range of this curve, RFU output was an 

appropriate quantification tool of cell viability. 
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D). 

Trial 
50% 
RFU 
output 

IC50 
(µM) 

 
R2 

 1 4823 9.772  0.794 

2 19788 12.918  0.722 

3 494447 8.263  0.868 

Mean 
±SD - 11.9 ± 

3.98 
 - 

 

Figure 2.4. Determination of 
metronidazole IC50. A-C. Drug 
response curves for metronidazole. 
E. histolytica trophozoites grown in 
96 well plates were exposed to two-
fold serial dilutions of 
metronidazole ranging from 0.36-
374 µM for 4 hours. Remaining 
cells were incubated with FDA to 
quantify viability. Fluorescence was 
recorded in relative fluorescent 
units (RFU). Results were plotted as 
four parameter logistic (4PL) curves 
to estimate IC50 values (Gen5, 
version 5.09, BioTek, USA). D. 
4PL estimation values of IC50 for 
individual trials. Triplicate 
experiments revealed the IC50 of 
metronidazole is 11.9 ± 3.98 µM. 
These data represent the mean +/- 

A).                                                   

B).                                                              

C).   
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To determine the IC50 of metronidazole against E. histolytica cells grown in 96 well 

plates, we treated cells with a range of drug concentrations from 0.37 µM to 370 µM and 

quantified survival with FDA staining. Figure 2.4 displays three representative survival 

curves from a range of metronidazole concentrations against E. histolytica. The four-

parameter logistic curve model produced expected sigmoidal curves typical of drug 

response patterns. Each trial produced two clusters, an upper group as well as a lower 

group. The upper group emerged from more dilute drug exposure, where less of the agent 

was present to inflict cell damage. The higher concentrations caused extensive cell death, 

which led to the formation of the lower group. The linear portion between these two 

groups revealed that the IC50 of metronidazole was 11.9 ± 3.98 µM, comparable to the 

literature reference range of 9.5 - 30 µM [26]. Additionally, the R2 values for all curves 

were greater than 0.7, which indicates that the separate data points fit well to the 

sigmoidal function.  
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Figure 2.5. Distinguishing the mode of interaction of both DIDS and B02 
combined with the IC50 of metronidazole. Viability of cells treated with various 
concentrations of DIDS and B02. A. Cells were incubated for 4 hours with 2-80 µM 
DIDS+ 12µM met. B. Cells were incubated for 4 hours with 1-20 µM B02+ 12µM 
met. Remaining cells were incubated with FDA to quantify viability. Fluorescence 
was recorded in relative fluorescent units (RFU). 100% viability was set with cells 
incubated in DMSO. These data represent the mean +/- standard deviation of n ≥ 3 
technical replicates. 
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To determine if DIDS or B02 were cytotoxic agents, we treated the cells with various 

concentrations of each drug separately and in combination with metronidazole. DIDS 

without metronidazole exhibited cytoxicity at 80 uM, but did not affect cell viability at 

lower concentrations (Figure 2.5). However, DIDS lowered the IC50 of metronidazole at 

these same concentrations, indicating a potential positive interaction. In contrast, B02 did 

not appear to be cytotoxic as a single agent. When cells were treated with B02 without 

metronidazole, the apparent viability was consistently above 100% set with DMSO and 

did not vary greatly between concentrations (Figure 2.5). This may indicate B02 

potentiates metronidazole rather than producing synergy. Additionally, when B02 

concentrations were higher, the fluorescent output was elevated in both control cells and 

cells treated with metronidazole, indicating either potential antagonism with 

metronidazole at higher B02 concentrations or excessive fluorescence unrelated to 

viability.   
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Table 2.1. Change in metronidazole IC50 with different concentrations of Rad51 
inhibitors. A set concentration of either B02 or DIDS was added to each well in addition 
to the serial dilution of metronidazole ranging from 0.37-374 µM. Cells were incubated 
with both drugs for 4 hours, then media was replaced with FDA diluted in media to 
quantify viability. IC50 of metronidazole was calculated through 4PL sigmoidal curve 
estimations (Gen5). These data represent the mean +/- standard deviation of n ≥ 3 
technical replicates. 
 
Drug Treatment  Trial IC50 of Metronidazole R2 
DMSO Control 11.9 ± 3.98 µM - 
3 µM B02 1 159.1 µM 0.721 
 2 33.0 µM 0.932 
 3 33.3 µM 0.866 

Mean ±SD 75.11 ± 72.7 µM - 
6 µM B02 1 2.6 µM 0.749 
 2 8.5 µM 0.803 
 3 156.4 µM 0.869 

Mean ±SD 5.55 ± 4.18 µM - 
12 µM B02  21.3 µM 0.909 
  41.1 µM 0.953 
  48.2 µM 0.931 

Mean ±SD 73.27 ± 130.22 µM - 
10 uM DIDS 1 7.15 µM 0.554 
 2 0.53 µM 0.746 
 3 2.6 µM 0.931 

Mean ±SD 3.42 ± 3.39 µM - 
20 uM DIDS 1 81.1 µM 0.966 
 2 19.8 µM 0.865 
 3 41.7 µM 0.901 

Mean ±SD 19.98 ± 26.16 µM - 
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To determine if B02 or DIDS has an additive or synergistic relationship with 

metronidazole, we treated the cells again with a serial dilution of metronidazole in the 

presence of constant concentrations of B02 at 3 µM, 6 µM, or 12 µM or DIDS at 10 µM 

or 20 µM, and quantified viability with FDA (Table 2.1). The four-parameter logistic 

curve model did not produce accurate sigmoidal curves for B02, and the calculated 

metronidazole IC50 values had wide margins of error, as demonstrated by instances of R2 

< 0.7 and high standard deviation values. Additionally, several of the B02 replicates 

showed higher fluorescent output when exposed to the combination of metronidazole and 

B02 than the DMSO controls, which again suggests that some fluorescence may have 

been unrelated to cell viability. DIDS lowered the IC50 of metronidazole at 10 µM, 

suggesting a positive pairwise relationship. However, higher concentrations of DIDS did 

not consistently lower the IC50, indicating these concentrations lie outside the therapeutic 

range. The 4PL curves were better approximations at higher drug concentrations for both 

B02 and DIDS as indicated by R2 > 0.9. Full data sets are shown in Supplemental Table 

2.1.  

 



 46 

 

 

 

 

 

 

 

 

 

 

	

 
Figure 2.6. Relative fluorescent output of cells treated with either 3 µM B02 or 
DMSO control. Cells were exposed to either 3 µM B02 or 1.5% v/v DMSO control 
for 4 hours. After treatments, both populations were rinsed and incubated with FDA 
for 30 minutes and quantified with a plate reader. Fluorescent output of cells exposed 
to B02 was more intense. These data represent the mean of 3 technical replicates.  
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To determine if the higher fluorescent output, from the cells treated with a combination 

of B02 and metronidazole, was representative of higher cell viability, we treated cells 

with either 3 µM B02 or 1.5% (v/v) DMSO (control) for 4 hours (Figure 2.6). When 

exposed to B02 alone, the cells produced a higher FDA-fluorescent signal than DMSO 

alone. Sterile FDA dissolved in DMSO does not show higher fluorescent output than 

plain DMSO (Ham 2020, data not shown). This might indicate that prolonged exposure 

to B02 produces a fluorescent signal unrelated to FDA viability staining.  
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Figure 2.7. Relative fluorescent output of cell lysate treated with various 
concentrations of B02. Cells were mechanically lysed with polycarbonate filters, 
and homogenized lysate was divided into a 96-well plate. Lysate aliquots were 
treated with a range of B02 concentrations for 4 hours with serum free media 
controls. After incubation, fluorescence was quantified with a plate reader. No 
difference was seen between fluorescent output of lysate and serum free media. The 
data represent the mean +/- standard deviation of 3 technical replicates. 
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Because cells treated with B02 produced a higher fluorescent signal than the DMSO 

treated counterparts, we lysed cells and treated the lysate with several concentrations of 

B02 to determine if B02 was interacting with cellular components to create a fluorescent 

byproduct (Figure 2.7). Because the cells were mechanically lysed, the lysates remained 

enzymatically active. There was no marked increase in fluorescent output of lysates 

compared to sterile media controls. This indicates that intracellular enzymes, in the 

context of a lysate, are not responsible for altering the structure of B02 and increasing 

fluorescent output at FDA detection wavelengths.  
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Supplemental Table 2.1. Change in metronidazole IC50 in the presence of different 
concentrations of Rad51 inhibitors. A set concentration of B02 or DIDS was added to 
each well in addition to the serial dilution of metronidazole ranging from 0.37-374 µM. 
Cells were incubated with both drugs for 4 hours, then media was replaced with FDA 
diluted in media to quantify viability. These data represent the mean +/- standard 
deviation of n ≥ 3 technical replicates. 
Drug Treatment  Trial IC50 of Metronidazole R2 
3 µM B02 1 159.1 µM 0.721 
 2 33.0 µM 0.932 
 3 33.3 µM 0.866 

Mean ±SD 75.11 ± 72.7 µM - 
6 µM B02 1 2.6 µM 0.749 
 2 8.5 µM 0.803 
 3 156.4 µM 0.869 

Mean ±SD 5.55 ± 4.18 µM - 
12 µM B02 1 21.3 µM 0.909 
 2 41.1 µM 0.953 
 3 48.2 µM 0.931 
 4 392.7 µM 0.783 
 5 12.3 µM 0.750 
 6 0.60 µM 0.868 
 7 21.4 µM 0.822 
 8 48.9 µM 0.881 

Mean ±SD 73.27 ± 130.22 µM - 
10 uM DIDS 1 7.15 µM 0.554 
 2 0.53 µM 0.746 
 3 2.6 µM 0.931 

Mean ±SD 3.42 ± 3.39 µM - 
20 uM DIDS 1 81.1 µM 0.966 
 2 19.8 µM 0.865 
 3 7.4 µM 0.789 
 4 12.3 µM 0.918 
 5 0.23 µM 0.285 
 6 0.35 µM 0.409 
 7 10.0 µM 0.63 
 8 6.8 µM 0.939 
 9 41.7 µM 0.901 

Mean ±SD 19.98 ± 26.16 µM - 
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Discussion 

In this study we have shown that the IC50 of metronidazole in our system is 11.9 µM. 

This value is comparable to other drug studies evaluating the IC50 of metronidazole 

against this strain of E. histolytica [26, 33]. We have also established that fluorescein 

diacetate staining of E. histolytica is a valid viability approximation comparable to 

Trypan blue. To our surprise, we found that B02 does not synergize with metronidazole 

to reduce its IC50, since there is no consistent decrease or a leftward shift in the sigmoidal 

curve as would be expected [23]. To our knowledge this is the first study to test pairwise 

drug interactions between B02 and metronidazole in E. histolytica. Additionally, we 

found that DIDS possibly synergized with metronidazole at lower concentrations, with 

potential antagonism at higher concentrations. 

 

One explanation for a putative lack of interaction between B02 and metronidazole is that 

metronidazole does not cause double strand breakage in E. histolytica and its other 

cytotoxic effects are responsible for all antiamebic action. Double strand breakage in the 

presence of metronidazole has not been demonstrated in E. histolytica, only in 

metronidazole-susceptible bacteria [16]. A second explanation is that B02 does not 

inhibit EhRad51 in vivo.  

 

Because the cellular fluorescent signal increased dramatically after prolonged exposure to 

B02, even at low concentrations, this might indicate that cellular uptake of B02 leads to 

an alteration in its chemical structure resulting in a fluorescent byproduct. If B02 
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byproducts are contributing to the fluorescent output, this might obscure the viability 

signal from FDA, which confounds the assay. When we treated trophozoite lysate with 

B02 to evaluate potential enzymatic alteration, the fluorescent output did not increase, 

indicating that the higher signal was not produced by intercellular changes to B02. The 

lysate was created with mechanical stress to prevent denaturation of enzymes. This might 

indicate that B02 structure is changed as it crosses the cell membrane. To further 

understand the cellular interaction with B02, we could treat live trophozoites with B02 

for 4 hours, harvest and mechanically lyse cells, fractionate the lysate, isolate the 

responsible fluorescent compound, and characterize it through analytical techniques [Dr. 

Daniel Whitehead, Dept. of Chemistry, Clemson University, personal communication]. 

To overcome this fluorescent interference, we could modify the colorimetric tetrazolium 

viability assay previously adapted for E. histolytica [34]. This assay measures viability 

through absorbance at wavelengths unrelated to the excitation and emission range of 

FDA and potential B02 byproducts.  

 

Because DIDS has been previously established as an inhibitor of EhRad51 in vitro [17], 

an additive or synergistic interaction with metronidazole would indicate that Rad51 is 

directly involved in metronidazole response. Our data showed that higher concentrations 

of DIDS antagonized metronidazole and may have caused metronidazole to be less 

effective. However, lower concentrations of DIDS may have increased the effectiveness 

of metronidazole, indicating a positive pairwise interaction. Because DIDS functions as a 

voltage dependent anion channel (VDAC) blocker in mammalian cells, it may have a 
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broad range of cytotoxic effects in addition to Rad51 inhibition [35, 36]. However, E. 

histolytica lacks genes for VDACs, relying instead on lineage-specific trans-membrane    

β barrel transporters that are structurally distinct from other eukaryotes [37, 38]. 

Therefore, it is likely that DIDS has higher specificity to Rad51 in E. histolytica than in 

other eukaryotic cell lines. The mechanism of negative interaction between high 

concentrations metronidazole and DIDS remains unclear. 

 

DIDS was cytotoxic at high concentrations, while B02 did not appear to cause amebic 

death as a single agent. Because DIDS can potentially be used as a single agent, we could 

further examine its pairwise interactions with metronidazole using a checkerboard assay 

[29]. This would allow us to differentiate between an additive or synergistic relationship 

and would reveal the ideal concentrations of a combination therapy. 

 

Cells treated with DIDS did not produce excessive fluorescent signal at the same 

wavelength as FDA treated cells, so the IC50 values were accurately detected with the 

viability assay. A three-way combination of B02, DIDS, and metronidazole may induce 

similar pharmacological effects while reducing host toxicity of high dosages of a single 

agent. Combining all three chemicals at their established IC50 concentrations may reveal 

greater reduction of viable cells. Additionally, we could use a checkerboard method 

developed to detect interactions between three agents to determine if a three-way 

combination is advantageous [29].  
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We used a high throughput 96-well-based assay. Advantages of such high throughput 

viability screening include increased sample size and higher efficiency and accuracy. 

However, cells are not visualized after drug treatments, so the relative health of the cells 

could not be evaluated. This is one shortcoming of our study that could be overcome with 

microscopy in the future. 

 

Our study design assumes that the drugs are amebacidal and kill cells rather than prevent 

cell division. However, some effects of metronidazole and the combination treatments 

may require longer exposure duration than four hours to be detectable, so synergy may be 

concealed under current experimental conditions. Additionally, the mechanism of B02 

may be static, as it can prevent cells with DNA damage from replicating [20]. Treating 

actively growing amebae with metronidazole, B02, or the combination for 48 hours may 

allow detection of static drug effects. It may also provide individual IC50 values for each 

agent separately, allowing direct comparison of the combination with the fractional IC50 

(FIC). If these values can be uncovered, we could define the class of pairwise drug 

interaction for the combination therapy. If the relationship between B02 and 

metronidazole is either additive or synergistic, then combination therapy can be 

implemented with a lower IC50 dosage of metronidazole, regardless of whether B02 is 

static or cidal. If B02 proves to be static, it may still contribute to an effective 

combination therapy.  
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Abstract 

Entamoeba histolytica is the causative agent of amebic dysentery and is prevalent in 

developing countries. It has a biphasic lifecycle: active, virulent trophozoites and 

dormant, environmentally-stable cysts. Only cysts are capable of establishing new 

infections, and are spread by fecal deposition. Many unknown factors influence stage 

conversion, and synchronous encystation of E. histolytica is not currently possible in 

vitro. Rad51 and Dmc1, homologous DNA recombinases involved in double stranded 

DNA repair and meiotic recombination, are expressed in E. histolytica. The physiological 

roles of these two proteins are unknown, although their recombinase activity has been 

authenticated in vitro. Both Rad51 and Dmc1 are upregulated during encystation of 

Entamoeba invadens, an in vitro model of encystation. To gain insight into the 

physiological roles of Rad51 and Dmc1 in E. histolytica, we developed two knockdown 

cell lines using the RNAi-mediated Trigger approach. We transfected healthy 

trophozoites with gene-specific Trigger plasmid constructs and verified knockdown 

status using RT-PCR and western blots. Neither Rad51 nor Dmc1 was consistently 

knocked down in Trigger transfected cell lines, suggesting that expression of these genes 

cannot be reduced through Trigger RNAi methodology. Additionally, cell lines harboring 

the Trigger plasmid with Dmc1 did not survive selection, which may indicate that Dmc1 

knockdown is lethal in E. histolytica trophozoites. Lack of Trigger specific knockdowns 

add to a growing body of evidence that the Trigger RNAi approach can only knockdown 

a subset of E. histolytica genes. 
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Introduction 

Entamoeba histolytica infects 10% of the world population and causes up to 55,000 

deaths annually [1]. E. histolytica is the waterborne etiological agent of many diseases, 

including acute amebic dysentery, chronic localized intestinal amebiasis, chronic non-

dysenteric colitis, and amebic liver abscesses [2]. However, upwards of 95% of cases 

result in asymptomatic intestinal infections, which leads to unmitigated spread in 

communities with poor water sanitation. Additionally, asymptomatic patients remain 

carriers for several months [3, 4].  

 

E. histolytica has a biphasic life cycle and alternates between active, virulent trophozoites 

and dormant, infectious cysts. Environmentally hardy cysts cause new infections when 

they are ingested by a human host. Upon reaching the small intestine, the cysts convert to 

motile trophozoites and rapidly proliferate within the small intestine and colon [5]. In rare 

cases, trophozoites escape intestinal tissues and disseminate to other sites in the body 

including the liver, lungs, and brain. Trophozoites are capable of inflicting damage to 

host cells as well as inciting an inflammatory immune response. When the infection is 

established, a portion of the colonic trophozoite population encysts and these cysts are 

deposited in fecal material. Any trophozoites that exit the body through feces die within 

24 hours. Because humans and non-human primates are the sole reservoirs for E. 

histolytica, prevention of cyst formation and deposition would quickly limit transmission 

and establishment of new infections.  
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Both encystation and excystation are poorly understood in E. histolytica. Cellular 

mechanisms and environmental signals causing stage conversion remain unknown. 

Additionally, physiological differences between trohpozoites and cysts are only partially 

characterized, because E. histolytica does not readily encyst in vitro. Cysts must be 

collected from clinical samples for characterization. Mature infectious cysts are 

tetranucleated and are surrounded by a thick chitin wall [6]. Immature cysts have been 

induced in vitro, so early features of stage conversion can be partially studied [7]. 

However, later stages of cyst maturation cannot be studied without clinical isolates. 

Instead, Entamoeba invadens, a related species that infects reptiles, serves as an 

encystation model because it encysts in axenic conditions in vitro [8]. Transcriptomic 

analysis of encysting E. invadens revealed distinct expression profiles between both 

stages, indicating higher expression of homologous recombinases and meiotic genes in 

encysting cells [9]. Additionally, homologous recombination is increased during both 

encystation and excystation in E. invadens [10]. Little is known about the role of 

homologous recombinases or meiotic proteins in Entamoeba virulence or encystation. 

 

According to transcriptomic data, widespread expression of DNA replication machinery 

increases at the same time point as upregulation of homologous recombinases and 

meiotic genes in E. invadens, which might indicate genomic recombination between 

nuclei or daughter cells [8, 11]. Both E. invadens and E. histolytica trophozoites are 

uninucleate and mature cysts are tetranucleate. DNA polymerase levels are increased 

during early stage conversion in E. invadens, indicating that genome copying occurs 
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during encystation, but before cysts are mature [12]. However, genome replication is 

difficult to assess in Entamoeba species because ploidy is unknown [11]. If uninucleated 

trophozoites have many genome copies, replication may not be necessary to redistribute 

the copies to tetranucleated cysts. Furthermore, trophozoite division is uneven and leads 

to anucleate, uninucleate, and binucleate daughter cells, complicating the relationship 

between genomic replication and stage conversion [13]. If DNA replication occurs during 

stage conversion, this provides a potential role for meiotic recombinases, since these 

facilitate genetic recombination between sister chromatids during meiotic ploidy 

increases.  

 

Meiotic DNA binding proteins may contribute to redistribution of genetic material during 

encystation; however, the possibility of a sexual lifecycle in E. histolytica cannot be ruled 

out. Whole genome analysis of several clinically isolated strains indicate previous 

genomic recombination events related to a sexual lifecycle [14]. Furthermore, the 

persistence of meiotic gene groups in current members of the Amoebozoa family may 

indicate that Entamoeba precursors were ancestrally sexual [10, 15, 16, 17, 18]. Because 

trophozoites replicate asexually by binary fission, laboratory strains can remain viable 

while masking any potential sexual phase. Other single cell parasites harbor cryptic 

sexual lifecycles and display unisexual mating, including Giardia lamblia, Leishmania 

major, and Toxoplasma gondii [19], indicating possible sexual pathways in E. histolytica 

and other amebic species. Alternatively, meiotic genes may have been repurposed for 

genetic redistribution during encystation. This may provide cysts with an evolutionary 
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advantage through increased genetic diversity and fitness of excysting descendants 

without the energy cost of meiosis [20]. Because meiotic recombinase activity in E. 

histolytica may increase genetic diversification, emergent drug resistance genes may be 

spread more rapidly [21, 22]. Sexual and parasexual lifecycles have been recently 

uncovered in multidrug resistant fungal pathogens, and these genetic recombination 

events have increased dispersion of resistance genes among strains [23]. Inhibiting 

meiotic homologous recombination may limit emergence of multidrug resistant 

populations of E. histolytica. 

 

We chose to characterize the physiological roles of two representative homologous 

recombinases to determine their significance in E. histolytica. Both Rad51, a mediator of 

double strand DNA breakage repair, and Dmc1, a meiotic recombinase, are orthologs of 

prokaryotic RecA [24]. Eukaryotic Dmc1 likely arose from an early gene duplication 

event, and Rad51 and Dmc1 retained high sequence homology [25]. We have previously 

shown that E. histolytica expresses authentic Rad51 and Dmc1 recombinases capable of 

facilitating DNA recombination in vitro [16]. Additionally, E. invadens homologs of 

these two genes are upregulated during encystation [8]. Rad51 participates in double 

strand breakage repair in DNA damaging conditions, and may facilitate strand exchange 

between sister chromatids in meiosis. Dmc1 exclusively performs meiotic homologous 

recombination across sister chromatids [15]. We attempted to create two knockdown cell 

lines to reduce expression of either Rad51 or Dmc1 in E. histolytica, using an RNAi 

based method known as the Trigger approach [26]. This method capitalizes upon 
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synthesizing antisense siRNAs for a specific gene transcript. We analyzed cell lines with 

RT-PCR and Western blots to reveal any expression differences at both the 

transcriptional and translational levels. However, our data demonstrated that we were not 

able to specifically knockdown expression of Rad51 in E. histolytica, which suggests that 

its role is essential. Although we successfully constructed a knockdown plasmid 

containing Dmc1, the cell line did not survive the selection process, indicating that a 

Dmc1 knockdown may be lethal. 
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Materials and Methods 

Culturing cells  

E. histolytica (strain HM-1:1MSS) trophozoites were cultured axenically in TYI-S33 

medium at 37 °C. Cells were passaged into fresh media every 72–96 h and were grown in 

15 mL glass screw cap culture tubes [27]. To harvest cells, these tubes were incubated on 

ice for 8 minutes to detach cells, and the contents were transferred to 15 mL conical tubes 

and centrifuged for 5 minutes at 23°C and 500xg. Viable cells were counted through 

Trypan Blue (VWR, Radnor, PA, USA) exclusion using an automatic cell counter (Luna 

LB-L10001, Logos Biosystems, Annandale, VA, USA).  

Constructing EhRad51 knockdown plasmids 

E. histolytica genes Rad51 (EHI_031220) and Dmc1 (EHI_050430) were amplified via 

PCR from genomic DNA extracted from wild type E. histolytica trophozoites (Wizard 

Genomic DNA Purification Kit, Promega). Forward primers for each gene were designed 

with an XmaI/SmaI restriction enzyme cut site, and reverse primers were designed with 

an XhoI cut site. Following PCR amplification, each product was subcloned into an 

intermediate backbone, pCR3.1 (QIAprep Spin Miniprep Kit, Qiagen, Germantown, MD, 

USA). OneShot E. coli were transformed with these intermediate plasmids, grown in 

batches, and a high quantity of plasmid DNA was extracted from the cells (QIAprep Spin 

Maxiprep Kit, Qiagen). The genes from these plasmids were subcloned into the Trigger 

backbone (gift from Dr. Upinder Singh, Stanford University School of Medicine, Palo 

Alto, CA) using restriction enzyme digestion and ligation (Fast-Link DNA Ligation Kit, 
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Epicentre, Madison, WI). Successful cloning and correct frame were confirmed by 

restriction digestions and sequencing. 

 

Transfection 

E. histolytica trophozoites were transfected with 140 µg of EhTriggerRad51 plasmid 

DNA using electroporation [28]. Cells were grown to >90% confluence in 50 mL 

plugged untreated cell culture flasks. Confluent flask contents were transferred to 50 mL 

conical tubes and centrifuged for 5 minutes at 4°C and 500xg. All cell pellets were 

combined and resuspended in 10 mL ice cold 1 X PBS, centrifuged for 5 minutes at 4°C 

and 500xg, counted with an automatic cell counter (Luna LB-L10001, Logos Biosystems, 

Annandale, VA, USA), and diluted to 3.0 x 106 cells/mL in electroporation solution. 100 

µL DNA and 800 µL cells in solution were added to a cold cuvette and electroporated at 

25 mF and 1.2 kV. Immediately, cells were transferred to a 50 mL flask containing 50 

mL pre-warmed TYI-S33 medium at 37°C.  

 

Mutant cell lines transfected with EhTriggerRad51 constructs were incubated at 37°C in 

TYI-S33 medium in 50 mL culture flasks. After mutant cells were >80% confluent, drug 

selection for cells harboring the plasmid was added at a final concentration of 3 µg/mL 

G418. The concentration was increased to 6 µg/ml G418 once the cells could tolerate half 

selection. EhTrigger cell lines were transferred into 13 mL glass tubes and maintained at 

6 µg/ml G418.  

 



 68 

Western blotting 

Western blots were performed to find translational evidence of Rad51 knockdown in both 

wild type and mutant cell lines. Cell lysates were prepared using cells incubated on ice 

for 8 minutes to dislodge viable amebae from the glass. Cells were counted with an 

automatic cell counter (Luna, Logos Biosystems) and 3.0 x 105 cells were centrifuged for 

5 minutes at 23°C and 500xg. Cells were resuspended in NuPAGE LDS sample buffer 

(Life Technologies, Carlsbad, CA, USA) and heated for 5 minutes at 100°C. The lysates 

were loaded onto a precast NuPAGE 12% Bis-Tris Gel (Life Technologies), which was 

electrophoresed at 200 V for 45 minutes. Separated proteins were transferred using a 

blotter to polyvinylidene difluoride membranes (PVDF; Life Technologies) at 12 V for 

1.5 hrs in Towbin transfer buffer.  

 

The membranes were blocked with 5% w/v Blotting Grade powdered milk blocker (Bio-

Rad Laboratories, Hercules, CA) and 0.5% w/v bovine gelatin (Sigma-Aldrich, St. Louis, 

MO, USA) in TBST (50 mM Tris, 150 mM NaCl, 0.5% (v/v) Tween 20) for 35 minutes 

at 37°C. Once the membranes were blocked, they were exposed either to Rad51 rabbit 

monoclonal antibody (diluted 1:1000 in TBST) (gift from Dr. Michael Sehorn, Clemson 

University, Department of Genetics and Biochemistry, Clemson, SC, USA) or actin 

mouse monoclonal antibody (diluted 1:2000 in TBST) (Abcam, Cambridge, MA) and 

incubated at 4°C overnight.  

 



 69 

The membranes were washed in TBST for 45 minutes with 6 buffer changes, and 

incubated with the appropriate peroxidase-conjugated secondary antibody for 1 hour at 

22°C. (both goat anti-rabbit and goat anti-mouse were diluted 1:5000 in TBST) (Fisher 

Scientific). After conjugation with antibodies, the membranes were washed for 45 

minutes in TST (50 mM Tris, 328 mM NaCl, 0.05% v/v Tween20) with 6 buffer changes. 

The blots were developed using a commercially available Enhanced ChemiLuminescence 

Western Blotting detection system (ThermoScientific) according to the manufacturer's 

instructions. To quantify load, either gels were stained with Bio-Safe G250 Coomassie 

Stain (Bio-Rad Laboratories) or membranes were stained with Ponceau Red (Sigma-

Aldrich) [29]. 

 

Reverse transcriptase polymerase chain reaction (RT-PCR) 

Total RNA was isolated from both wild type and mutant cell lines by TRIzol (Invitrogen, 

Carlsbad, CA) to find transcriptional evidence of knockdown. 2 µg of total RNA was 

reverse transcribed into cDNA (SuperScript III First Strand Synthesis Kit, Invitrogen). 2 

µg of resulting cDNA was used as template for Rad51 or Dmc1 specific primer sets with 

ssRNA primers as controls (Table S1). PCR amplification of Rad51 was performed over 

35 cycles. DNA was denatured at 95°C, annealed at 58°C, and extended at 72°C (GoTaq 

DNA Polymerase, Promega, Madison, WI), and each step lasted 30 seconds. The final 

extension occurred for 10 minutes at 72°C. Resulting products were visualized using 1% 

agarose gel electrophoresis and ethidium bromide staining [30].  
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Results 

 

 

 

 

 

	
Figure 3.1. Trigger induced RNAi mechanism in E. histolytica. Normal 
endogenous genes are transcribed and exported as mRNA from the nucleus. The 
Trigger plasmid genes are also transcribed, and some are produced as small RNAs 
(sRNAs). The Trigger sequence will only initiate the RNAi pathway if it is also 
expressed from genomic DNA. Target gene mRNA forms dsRNA complexes with 
sRNA from Trigger plasmid. These complexes may be digested by E. histolytica 
noncanonical Dicer (PDB ID: 5F3Q). Once processed by RNAi proteins, the dsRNA 
complexes are not translated. This causes a knockdown of expressed target gene 
protein. (Created in BioRender, Toronto, ON, Canada). 
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Figure 3.1 depicts the proposed Trigger plasmid pathway that results in RNAi mediated 

knockdown in E. histolytica [26, 31]. The Trigger sequence must be expressed from 

endogenous DNA for activation of RNAi, so sequences are chosen in a strain dependent 

manner. Many Trigger sequences exist and are expressed; these genes produce small 

antisense RNAs with unknown functions. These native siRNAs cause activation of 

transcription of target gene siRNAs originating from the Trigger plasmid.  
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A                                                                                       

B                                                                       

C  

Figure 3.2. Trigger plasmids 
containing ampicillin and 
neomycin resistance genes and 
Trigger knockdown cassette. 
Cassette contains a CS promoter 
from EHI_024230, 132 bp 
fragment from Trigger gene from 
EHI_048600, target gene for 
knockdown flanked by XmaI and 
XhoI restriction cites, and the 
3’UTR region of CS gene. A). 
EhTriggerLuc is the control 
plasmid containing full 1.7 kb 
sequence for firefly luciferase. B). 
EhTriggerRad51 is designed to 
knockdown Rad51, 1.1 kb EHI_ 
031220. C). EhTriggerDmc1 is 
designed to knockdown Dmc1, 
1.0 kb EHI_050430. (Created 
with SnapGene version 5.1, GSL 
Biotech, San Diego CA, USA). 
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To create genetic knockdown cell lines, we designed and constructed gene specific 

plasmids using the Trigger vector. Figure 3.2 shows three plasmid maps of the plasmids 

used to subclone genes for knockdown cells. The knockdown gene cassette is composed 

of a target genetic sequence located downstream of a 132 bp ‘Trigger’ sequence from 

EHI_048600. This is flanked by an upstream promoter and a 3’UTR from the E. 

histolytica cysteine synthetase gene (CS), EHI_024230. The vector also includes genes to 

confer resistance to the selectable markers, ampicillin, for subcloning in E. coli, and 

neomycin (G418), for selection in E. histolytica. Target genes for these three plasmids are 

firefly luciferase (negative control), Rad51 (EHI_031220), and Dmc1 (EHI_050430). 

Each plasmid is designed to specifically knockdown only one gene. The Trigger system 

has been used to successfully knock down several genes, including Rhomboid protease 1 

and a Myb transcription factor [31]. These plasmids were constructed and transfected into 

wild type E. histolytica, and G418 selection was used to maintain stable transformants. 

None of the cells transfected with Dmc1 knockdown plasmids survived the selection 

process. 
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Figure 3.3. Reverse Transcriptase PCR of ehRad51-KD. E. histolytica cells were 
electroporated with TriggerRad51 plasmid DNA and grown under G418 selection. 
Two clones of the cell line survived the selection protocol, Rad51A (3A) and Rad51B 
(3B). RNA was extracted from 18-hour ehRad51 culture flasks using TRIzol and 
phase separation. cDNA was produced using SuperScript III kit (Invitrogen). PCR 
primers amplified 200 bp fragments of either the control gene (ssrRNA) or Rad51 
(Table S1). Fig. 3.3A: The internal control showed an equal load of PCR product for 
wild type, Rad51A, and Luc. Rad51 PCR product was slightly increased in Rad51A 
cell line, but was present in all three samples. No contamination was seen in -ss 
reactions or the water control. Fig. 3.3B: The internal control showed an equal load of 
PCR product, but may have supersaturated the detection system. There was more 
Rad51 PCR product in wild type cDNA than either the Rad51B or Luc cell lines 
maintaining Trigger. 
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To determine if either transfected cell line, ehRad51A or ehRad51B, had experienced 

RNAi-mediated knock down of Rad51, we performed reverse transcriptase PCR with 

Rad51-specific primers on each cell line. A stable cell line transfected with Trigger 

plasmids containing a non-endogenous luciferase (Luc) gene served as control for 

nonspecific genetic effects due to the vector. Figure 3.3 shows that neither ehRad51A nor 

ehRad51B produced less mRNA for Rad51, indicating no phenotypic change at the 

transcriptional level. ehRad51A produced slightly more Rad51 mRNA than either wild 

type or the luciferase control, indicating this mutant cell line could be an overexpressing 

Rad51 (Figure 3.3A). However, ehRad51B and luciferase produced approximately the 

same amount of Rad51 mRNA, and wild type cells produced more than either cell line 

bearing variants of Trigger plasmid (Figure 3.3B). This could indicate that the plasmid 

causes non-specific down regulation of Rad51 expression.  
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Figure 3.4. Representative western blots of Rad51 protein in ehRad51A, ehRad51B, 
and luciferase control cell lines. Cells were grown in 13 mL tubes for 24 hours. After 
counting the cells, equal numbers of cells were centrifuged, lysed, and boiled. Samples 
were electrophoresed via SDS PAGE and transferred to PDFV membranes and incubated 
with Rad51 Rb or actin Mo antibodies overnight. The membranes were treated with 
appropriate HRP antibodies, stained, and developed on film. In both trials, a dense cluster 
of bands was present near the expected size of EhRad51 (~41 kDa) in all three cell lines. 
In Trial 1, control and Rad51 cell lines had similar intensity of Rad51 Ab binding, while 
Rad51B was slightly decreased. The actin control showed similar quantities of protein. 
However, in Trial 2, Rad51B intensity was greater than both control and Rad51A. 
Ponceau red staining of the PDFV membrane showed similar quantities of protein in all 
wells. Trial 2 also detected a unique band near 37 kDa present in the Luc control but 
absent in both KD cell lines. This may be Dmc1 due to sequence homology; it is 
estimated to be 37 kDa. However, this band could not be replicated in subsequent blots.  
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We performed Western blots on three the transfected cell lines, luciferase control, 

ehRad51A, and ehRad51B, to detect decreased translation of Rad51. Figure 3.4 shows 

clustered bands in both cell lines and luciferase control near 41 kDa, the expected 

molecular weight of Rad51. This clustering may indicate that the human Rad51 antibody 

lacks high specificity against the E. histolytica Rad51 homolog. The blots also revealed 

that expression of Rad51 was inconsistent across the transfected cell lines. While the 

Trial 1 blot showed decreased Rad51 binding in ehRad51B, the Trial 2 blot showed that 

the level of Rad51 protein expression was increased in this cell line when compared to 

the others. These differences could not be quantified due to the uncertainty of antibody 

specificity. Actin levels were consistent across the cell lines, indicating even lysate loads. 

Ponceau red staining also was consistent across all the cell lines in Trial 2, indicating 

even lysate loads. In addition, the Trial 2 blot detected a unique band near 37 kDa in the 

luciferase control, even while it was absent in both knockdown cell lines. This may 

indicate specific Trigger mediated knockdown. Interestingly, the molecular weight of this 

band matched Dmc1, the paralog of Rad51, which has partial genetic sequence 

homology. This could indicate off-target effects of RNAi Trigger suppression via 

siRNAs. However, this band could not be replicated in subsequent blots.  
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Figure 3.5. Reverse transcriptase PCR of ehRad51B-KD. RNA was extracted from 
18-hour ehRad51B culture flasks using TRIzol and phase separation. cDNA was 
produced using SuperScript III kit (Invitrogen). PCR primers amplified 200 bp 
fragments of either the control gene (ssrRNA) or Dmc1 (Table S1). 15 uL were loaded 
into each well along with loading dye. The internal control showed equal cDNA load in 
each well. Dmc1 is expressed more highly in wild type cells than in either cell line 
carrying a Trigger construct (Rad51B or Luc). Expression of Dmc1 was low. No 
contamination was seen in the –ss lanes or the water control. The light bands in all lanes 
are likely primer dimers. 
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To investigate the potential off-target partial silencing of Dmc1 in TriggerRad51 cell 

lines, we performed reverse transcriptase PCR with Dmc1-specific primers on ehRad51B. 

Figure 3.5 shows neither ehRad51B nor luciferase control produced detectable levels of 

Dmc1 mRNA, while wild type cells had low levels of transcription. However, all three 

cell lines possessed high levels of ssrRNA transcripts, indicating ample concentrations of 

cDNA. Because both cell lines containing Trigger vector produced less Dmc1 mRNA 

than the wild type, this could indicate that plasmid maintenance causes down regulation 

of Dmc1 expression.  
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Supplementary Table 3.1. Primer sequences for plasmid construction and RT-PCR 
analysis. 
EhRad51FwdXmaI 5’ ATACCCGGGATGAGTGCCAAGCAAATAC 3’ 
EhRad51RevXhoI 5’ CCCTCGAGTTAATCATCTTTAACATCTTCAATCCC 3’ 
EhDmc1FwdXmaI 5’ ATACCCGGGATGACTGAGGTGAAAAG 3’ 
EhDmc1RevXhoI 5’ CCCTCGAGCTTTAGCATCAATAATTCC 3’ 
EhRad51 RT Fwd 5’ GCACAGAAGGAAGAGCTATTTA 3’ 
EhRad51 RT Rev 5’ AATTCTCCTCTTCCACTGTAATC 3’ 
EhDmc1 RT Fwd 5’ GTCTCTGTTCAGGGTTGATTT 3’ 
EhDmc1 RT Rev 5’ CTCCTCCTGGATCACTCATTA 3’ 
ssrRNA RT Fwd 5’ ACGGGAAACTACCAAGACCGAACA 3’ 
ssrRNA RT Rev 5’ AGACGCATGCACCACTACCCAATA 3’ 
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Discussion 

In this study, we have shown that Rad51 and Dmc1 cannot be specifically knocked down 

utilizing Trigger RNAi methods in E. histolytica. RT-PCR results showed that both 

Rad51 and Dmc1 transcription were not consistently reduced across multiple clonal cell 

lines. Additionally, Dmc1 knockdown may be lethal for trophozoites. Western blot 

analyses demonstrated inconsistent translational knockdown and potential non-specificity 

of human Rad51 antibody binding.  

 

RT-PCR analysis showed that Rad51 transcription in clonal knockdown cell lines was not 

consistent. Additionally, maintenance of any Trigger plasmid may decrease Rad51 

expression. Both luciferase and Rad51A cell lines showed a decreased level of Rad51 

transcripts compared to that in wild type cells. However, Rad51 expression was slightly 

increased in one of the clonal cell lines, Rad51B, when compared to the wild type and 

luciferase control cell lines. This is the opposite of what is expected for the Trigger 

system. We have observed upregulation previously in other attempted knockdowns 

utilizing the Trigger system [32]. One possibility is that stress imparted by the 

maintenance of the Trigger plasmid may cause an upregulation of Rad51 expression. 

Rad51 is upregulated in E. histoltyica exposed to DNA damaging agents [33]. Another 

possibility is that the promoter in the Trigger plasmid is behaving in such a way that there 

is anomalous expression of Rad51 transcripts from the plasmid, rather than siRNA 

species. Although the Rad51A and Rad51B clones were expected to exhibit similar 

knockdown phenotypes, these clones were not phenotypically equivalent. However, in 
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previous studies, only some clonal cell lines underwent specific gene silencing, indicating 

an underlying regulatory mechanism [34]. In order to confirm that Trigger knockdown is 

not possible for Rad51 and Dmc1, we could use a second E. histolytica cell line with a 

modified genome containing the luciferase gene to verify that TriggerLuc is effectively 

knocking down the target gene. 

 

Western blot analysis confirmed that Rad51 expression differed in the clonal Rad51 

knockdown cell lines, as well as within replicates of the same cell line. One blot showed 

a higher expression of Rad51in the Rad51B cell line, compared to that in both the 

luciferase control and Rad51A cell lines.  Furthermore, a biological replicate showed 

decreased expression in the Rad51B cell line when compared to luciferase control. This 

inconsistency might indicate that unknown factors influence expression of Rad51. 

Additionally, western blots showed that human Rad51 antibody may not have high 

specificity for the native E. histolytica Rad51 because there were multiple bands around 

the relevant molecular weight, making the data difficult to interpret. This was unexpected 

because previous studies have shown this antibody has high specificity to recombinant E. 

histolytica Rad51 [16]. Thus, it is possible that there are lot-to-lot variations in 

commercial anti-Rad51 antibody. Additionally, western blot analysis showed potential 

off-target RNAi silencing of Dmc1 or potential cross reactivity of human Rad51 

monoclonal antibodies with E. histolytica Dmc1. The close evolutionary relationship 

between Rad51 and Dmc1 and genetic sequence homology may allow for imprecise 
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antibody and Trigger-generated siRNA binding. However, we could not replicate these 

results, which could indicate that unknown factors also influence expression of Dmc1.  

 

To further investigate the effects of harboring an EhTriggerRad51 plasmid on Dmc1 

expression, we performed another RT-PCR. No consistent knockdown effect was 

detected in the Rad51B clone, verifying that Trigger knockdowns are gene specific, even 

among highly similar genes. These data also showed that Dmc1 expression was low in 

wild type, Rad51B, and luciferase cell lines. Wild type cells had slightly higher Dmc1 

expression than either transfected cell line, but expression levels were much lower than 

ssrRNA controls. This indicates that Dmc1 is not highly expressed in healthy 

trophozoites. Our data align with transcriptomic evidence from E. invadens that meiotic 

genes, including Dmc1, are only upregulated during stage conversion [8]. Additionally, 

the transcriptome of E. histolytica trophozoites shows low expression of Dmc1 [35]. 

Because Dmc1 is minimally expressed in trophozoites, a minor reduction in expression 

could be lethal if the function is essential. This may explain why cells transfected with 

EhTriggerDmc1 plasmids died under full G418 selection in three separate trials.  

 

The choice of control genes may have impacted our ability to detect changes in Rad51 

and Dmc1 expression through RT-PCR. Transcriptomic data from E. histolytica 

trophozoites shows that ssrRNA genes are expressed tenfold higher than Rad51 and 

twentyfold higher than Dmc1 [35]. These large transcriptional differences may have 

complicated resolution and the adjustment of cDNA loads. If we reduced the load to 



 84 

avoid gel oversaturation, we could not detect Rad51 or Dmc1 cDNA. In future 

experiments, we suggest utilizing control genes with similar expression levels to target 

genes. Similarly, we used actin antibodies as a load control in Western blots. Actin is 

highly expressed in E. histolytica, and bands were visible after very short exposure 

periods. It was challenging to correct for load differences after ample exposure for Rad51 

detection due to actin oversaturation and minimal expression of Rad51 in unstressed 

trophozoites.  

 

To our surprise, Rad51 could not be knocked down with Trigger RNAi methods, unlike 

many other native E. histolytica genes. However, robust gene silencing is not equally 

effective for all E. histolytica genes. Many genes are not inhibited by Trigger and only 

some clonal cell lines undergo specific gene silencing [34]. Epigenetic modifications may 

regulate differences in Trigger efficacy, but little work has been done regarding this 

possibility [36]. These findings, along with our data, suggest the possibility of underlying 

regulatory mechanisms governing Trigger-mediated RNAi response in E. histolytica. 

Additionally, RNAi can present unique challenges in polyploid organisms because of 

variable gene copy numbers. Because RNAi targets mRNA transcripts, no effect may be 

seen if the organism can produce transcripts from alternate gene copies. E. histolytica has 

variable ploidy in the trophozoite stage, so this mechanism may allow clones to evade 

robust knockdown through RNAi [13].  
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In other protozoan parasites, RNAi methodology is only partially effective at generating 

knockdown cell lines. The first parasitic organism studied through robust RNAi 

techniques was Trypanosoma brucei, but only 30% of genes could be effectively knocked 

down via this pathway [37, 38]. In several Leshmania species, RNAi is the preferred tool 

for reducing expression of high copy number genes where homologous recombination 

knockouts are not feasible, but success remains highly variable [39]. RNAi methods are 

inefficient at silencing genes in Giardia lamblia, perhaps due to tetraploid genetics [40, 

41, 42]. Due to the challenges of ensuring efficient gene knockdown in polyploid 

organisms via RNAi, it may not be possible to knock down Rad51 or Dmc1 in E. 

histolytica.  

 

Because Trigger-mediated knockdown was ineffective for Rad51 and Dmc1, we could 

not characterize their physiological roles in E. histolytica. Here, we propose two alternate 

approaches: knockdown and overexpression. An older dsRNA knockdown system for E. 

histolytica utilizes a modified Bacillus subtilis plasmid backbone. This system has 

successfully knocked down several native genes, but because it relies on RNAi 

machinery, the same limitations we encountered with Trigger may arise [43]. 

Alternatively, overexpressing Rad51 and Dmc1 may enhance quantifiable physiological 

traits, such as phagocytosis, DNA repair, and stress response. Our lab has successfully 

produced several tetracycline inducible overexpression cell lines using the 

pGIR209/pGIR308 system [44]. Overexpression may be the preferable method to 

characterize Dmc1, since its basal expression in trophozoites is low.  
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This study cannot address encystation phenotypes of Rad51 or Dmc1 knockdowns 

because synchronous encystation currently cannot be executed in vitro for E. histolytica. 

Fortunately, an RNAi Trigger plasmid has been developed to generate knockdown E. 

invadens cell lines, which currently serves as an in vitro model of encystation [46]. To 

characterize the role of Rad51 and Dmc1 during different time points of stage conversion, 

knockdown E. invadens cell lines could be produced and evaluated with RT-PCR and 

Western blots. Rad51 and Dmc1 expression could be quantified with Western blot at 

staggered time points during the encystation protocol. Finally, encystation efficiency 

could be quantified with flow cytometry to assess any limitations in encystation due to 

knockdown [47]. Encystation of E. invadens was prevented by the Rad51 inhibitor DIDS 

(4,4′-diisothiocyanatostilbene-2,2′-disulfonate) without decreasing trophozoite viability, 

which may indicate that homologous recombination is essential to cyst formation [15]. 

However, DIDS also inhibits excystation of Giardia muris by blocking vacuoles and 

lysosomal acidification, so it may impact stage conversion through other pathways [48]. 

Changes in E. invadens encystation related to Rad51 or Dmc1 knockdown will clarify the 

role of meiotic proteins that are overexpressed during stage conversion, and the role of 

the proteins will likely bear similarity in E. histolytica. 
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