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Summary 
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Summary 

Background: The synthesis of chemicals from fossil fuels is being evaluated increasingly 

critically, mainly due to its expected exhaustion and negative impact on the environment. An 

alternative offers ‘white biotechnology’, especially the fermentation of renewable resources with 

the help of yeasts. The oleophilic yeast species Pseudozyma (P.) tsukubaensis and Yarrowia (Y.) 

lipolytica are both natural organic acid producers. Their main products are metabolites of the 

tricarboxylic acid cycle, namely citrate, α-ketoglutarate and malate. In smaller amounts, other 

compounds like isocitrate (ICA) or itaconate (ITA, solely with P. tsukubaensis) are also secreted. 

The interest for the latter two has been rising steadily during the last decades. However, to this 

date, there is no established host organism for the ICA production. ITA, on the other hand, is 

being synthesised with Aspergillus terreus. Even with great scientific effort, the ITA productivity 

of this hyphal fungus appears to reach its limits. Therefore, a different host organism is needed. 

Results: In this study, a promising P. tsukubaensis strain has been constructed for the production 

of ITA and a Y. lipolytica strain for ICA. First, the genome of the ITA producer P. tsukubaensis 

has been sequenced. As a result, a gene cluster for the synthesis and export of ITA, homologous 

to that of Ustilago maydis, has been identified. By overexpressing four of the five cluster genes, 

respectively, none to low increases in ITA secretion were observed. The fifth gene is encoding 

the putative transcription factor Ria1p which probably controls the gene cluster. The 

overexpression of the gene PtRIA1 led to a significantly increased ITA production of up to 

31.4 g l-1 in micro-wells. By optimizing the growth conditions 113.6 g l-1 ITA could be produced 

within 7 d under controlled conditions in a bioreactor without the need of a trigger like 

phosphate limitation. 

For the production of ICA, two putative mitochondrial citric acid transporter proteins were 

identified in Y. lipolytica. One carrier protein is encoded by the novel gene YlYHM2, the other 

one by YlCTP1. The mode of function for the two deduced proteins appears to be very distinct 

from one another. The deletion of YlCTP1 led to a minor shift in the ICA:CA ratio but the total 

amount of acids decreased greatly. By deleting YlYHM2, the ICA:CA product ratio could be 

increased from 12 % to 95 % compared to the wild type strain. Within 5 d up to 131.9 g l-1 ICA with 

sunflower oil and 22.0 g l-1 with glucose as the sole carbon source could be achieved under 

controlled production conditions in a bioreactor. Further inhibition of the isocitrate lyase protein 

with ITA increased the ICA:CA ratio to 98 %. 

Conclusion: Within this work, the two yeast strains P. tsukubaensis (HR12) and Y. lipolytica 

(∆YHM2) have been created via metabolic engineering. With their help, it is possible to produce 

the value-added chemicals ITA or ICA on a high scale (> 100 g l-1) from renewable resources like 

glucose or even vegetable oils.  



Zusammenfassung 

II 

Zusammenfassung 

Hintergrund: Die Synthese von Chemikalien aus fossilen Rohstoffen wird wegen ihrer begrenzten 

Verfügbarkeit und ihren negativen Auswirkungen auf die Umwelt zunehmend kritisch bewertet. 

Eine Alternative bietet die „Weiße Biotechnologie“, insbesondere die Fermentation 

nachwachsender Rohstoffe mithilfe von Hefen. Die oleophilen Hefen Pseudozyma (P.) 

tsukubaensis und Yarrowia (Y.) lipolytica sind natürliche Säureproduzenten. Ihre 

Hauptprodukte sind Metabolite des Tricarbonsäurezyklus: Citrat (CA), α-Ketoglutarat und Malat. 

In kleineren Mengen werden auch andere Stoffe wie Isocitrat (ICA) oder Itaconat (ITA, nur von 

P. tsukubaensis) sekretiert. Das Interesse an den beiden Letztgenannten hat in den vergangenen 

Jahrzehnten stetig zugenommen. Bis heute gibt es allerdings keinen etablierten 

Wirtsorganismus für die ICA-Produktion. ITA hingegen wird mithilfe von Aspergillus terreus 

synthetisiert. Jedoch stößt die ITA-Produktivität dieses Hyphenpilzes auch mit großem 

wissenschaftlichem Aufwand an ihre Grenzen. Daher wird ein neuer Wirtsorganismus benötigt. 

Ergebnisse: In dieser Studie wurden ein vielversprechender P. tsukubaensis-Stamm für die 

Produktion von ITA und ein Y. lipolytica-Stamm für ICA konstruiert. Zunächst wurde das Genom 

von P. tsukubaensis sequenziert. Infolgedessen wurde ein Gencluster für die Synthese und den 

Export von ITA identifiziert, das homolog zu dem von Ustilago maydis ist. Die Überexpression 

von vier der fünf Clustergene erhöhte die ITA-Sekretion nicht deutlich. Das fünfte Gen kodiert 

den vermeintlichen Transkriptionsfaktor Ria1p, der vermutlich das Gencluster steuert. Die 

Überexpression des PtRIA1 Gens führte zu einer signifikant erhöhten ITA-Produktion von bis zu 

31,4 g l-1 in Mikrotiterplatten. Durch die Optimierung der Wachstumsbedingungen wurden im 

Bioreaktor innerhalb von 7 d 113,6 g l-1 ITA ohne die Notwendigkeit eines Triggers produziert. 

Für die ICA-Produktion wurden zwei mutmaßliche mitochondriale Citrat-Transportproteine in 

Y. lipolytica identifiziert, welche von den Genen YlCTP1 sowie YlYHM2 kodiert werden. Die 

Funktionsweise der beiden Proteine scheint sich stark voneinander zu unterscheiden. Die 

Deletion von YlCTP1 führte zu einer leichten Verschiebung des ICA:CA-Verhältnisses, aber die 

Gesamtmenge beider Säuren nahm stark ab. Durch die Deletion von YlYHM2 stieg die ICA:CA-

Produktrate von 12 % auf 95 % im Vergleich zum Wildtyp. Innerhalb von 5 d wurden bis zu 

131,9 g l-1 ICA mit Sonnenblumenöl, bzw. 22,0 g l-1 ICA mit Glukose als einzige Kohlenstoffquelle 

in einem Bioreaktor unter kontrollierten Produktionsbedingungen erreicht. Durch die 

zusätzliche Hemmung des Isocitratlyase-Proteins mit ITA stieg das ICA:CA-Verhältnis bis 98 %. 

Fazit: Mittels Metabolic Engineering wurden im Rahmen dieser Arbeit die beiden Hefestämme 

P. tsukubaensis HR12 und Y. lipolytica ∆YHM2 erzeugt. Mit ihrer Hilfe ist es möglich, die 

hochwertigen Chemikalien ITA oder ICA in hohen Mengen (> 100 g l-1) aus nachwachsenden 

Rohstoffen wie Glukose oder sogar Pflanzenölen herzustellen. 
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Introduction 

1 

1. Introduction 

1.1. The problem with the conventional synthesis of chemicals 

Industrial chemicals and their derivatives are ubiquitous in the industrialized parts of the world. 

These substances have been a big factor in the advancement of our modern society. Most 

common examples are fertilizers and plastics. Currently, crude oil, natural gas and coal represent 

their primary raw material. The demand in fossil fuels rises as the population grows by an 

additional two billion people until 20501. The International Energy Agency projects a 2.8-fold 

increase in demand for the sector’s 18 most energy intensive chemicals by that time (van der 

Hoeven et al., 2013; Levi and Cullen, 2018). The oil production remains at an extremely high level, 

with the USA reaching its historic peak production in 20182. Globally, the combined consumption 

of coal, gas and crude oil also grows continually (Ritchie and Roser, 2017; Smil, 2016). However, the 

conventional synthesis of chemicals from fossil-based resources comes with several drawbacks.  

First, fossil fuels are a finite resource (Dudley, 2019). An alternative source must be found before 

fossil fuels are depleted completely. Besides their foreseen limited abundance in the future, the 

use of fossil-based chemicals is accompanied by extensive environmental issues. For one, locally 

active pollutants such as sulphur dioxide, nitrogen oxide, black carbon, polycyclic aromatic 

hydrocarbons, mercury, and volatile chemicals that form ground level ozone (O3) are emitted into 

the environment. All are associated with adverse effects on the ecosphere (OECD, 2016; Perera, 

2018). In addition to that, fossil fuels represent a key source of carbon dioxide (CO2) in the 

atmosphere (IPCC, 2006). It is expected that the chemical sector alone is responsible for 

approximately 7 % of the total anthropogenic global greenhouse gas emissions, and 5.5 % when 

only counting CO2 emissions (van der Hoeven et al., 2013; Levi and Cullen, 2018). This makes them 

one of the main drivers of climate change. 

One possible alternative to this problem is offered by the production of value-added chemicals 

through biological means. This field of application is also called white biotechnology. The most 

succinct benefit of the biotechnological synthesis of chemicals is the fact that it offers the 

possibility to utilize biomass as educts which represent a sustainable resource and does not 

liberate fossilized carbon (El-Imam and Du, 2014). 

 

 
1 United Nations, DESA/Population Division, World Population Prospect, World: Total Population graph. 
Retrieved August 10th, 2019, from https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/900 
2 U.S. Energy Information Administration: US Field Production of Crude Oil. Retrieved August 10th, 2019, from 
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=mcrfpus1&f=a 
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1.2. White biotechnology 

Industrial or white biotechnology refers to the use of natural processes catalysed by enzymes or 

whole cells for industrial manufacturing. In that, it is distinct from red biotechnology where 

pharmaceuticals (e.g. insulin) are produced, green biotechnology that focuses on agricultural 

processes or blue biotechnology which exploits aquatic organisms. According to the OECD and 

the German Federal Ministry of Education and Research, white biotechnology has two main goals 

(Van Beuzekom and Arundel, 2006):  

1. Replacing finite fossil fuels with similar substances from renewable raw materials, i.e. 

biomass; 

2. the replacement of conventional, industrial production by biological-based systems.3 

By replacing fossil fuels with bio-based resources, multiple negative impacts can be 

circumvented. For one, biomass as a resource is inexhaustible, renewable and the necessary 

plants can grow almost everywhere around the globe. Especially, lignocellulosic and starch-rich 

wastes and by-products are promising candidates because they are omnipresent, extremely 

cheap, and their use does not compete with food production. The use of biomass for the biological 

production of chemicals can spur economic growth in most regions and diminish the dependency 

on oil producing countries. Furthermore, global CO2 emissions can be reduced by utilizing bio-

based resources. Due to the fact that the carbon cycle is almost balanced between photosynthetic 

CO2 fixation by plants and the CO2 emission from combustion, their usage can be virtually carbon 

emission neutral (Rabl et al., 2007). Figure 1 illustrates the basic approach followed in white 

biotechnological processes. 

 

Figure 1 Biotechnological production of value-added chemicals and biofuel from organic waste products 

with the help of genetically engineered microorganisms. Images used from www.flaticon.com 

 
3 BMBF, Weiße Biotechnologie, Chancen für eine biobasierte Wirtschaft. Retrieved August 10th, 
2019 from https://www.bmbf.de/upload_filestore/pub/Weisse_Biotechnologie.pdf 
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In a broader sense, biotechnology was conducted unwittingly for millennia already. Earliest 

examples are the alcoholic fermentation of grains and fruits with the help of yeasts and the 

production of acetic acid with the help of various microorganisms. This process of ‘ancient 

biotechnology’ can be dated back for at least 10000 years (Budak et al., 2014; Liu et al., 2018). 

From 1800 to the middle of the 20th century, the second phase or classical biotechnology prevailed. 

During that time period, ground-breaking discoveries were made in the general field of biology, 

which were essential for later scientific achievements. For example, the characterization of 

inheritance by Gregor Mendel and the first description of evolutionary processes by Charles 

Darwin. The era of the classical biotechnology came to an end with the discovery of the first 

antibiotic – penicillin – by Alexander Fleming in 1928 (Verma et al., 2011). 

Modern white biotechnology was gaining momentum in the second half of the 20th century. Its 

beginning can be attributed to the mass production of penicillin via deep-tank fermentation 

during the 1940s (Ligon, 2004; Verma et al., 2011). As early as 1988, the first rationally designed 

enzyme used in detergents to break down fat was introduced (Frazzetto, 2003). More recently, 

Escherichia (E.) coli cells were genetically modified to produce a precursor for biodegradable 

plastics (Liu et al., 2007). Currently, large scientific efforts are spent to make the biotechnological 

production of biofuels viable. Especially oleaginous yeasts receive significant attention due to 

their ability to efficiently accumulate extremely high amounts of lipids inside their cells. Those 

lipids can be easily converted into oleochemicals by trans-esterification (Sitepu et al., 2014).  

Also, another group of high value bio-based chemicals, namely organic acids, have come into the 

focus of the scientific community. Organic acids are low molecular-weight natural intermediates 

in the metabolic pathways of all living organisms, among which the tricarboxylic acid (TCA) cycle 

is the most crucial. Several different organic acids represent excellent value-added chemicals 

because they have multiple functional groups that possess the potential to be transformed into 

new families of useful molecules e.g. carboxyl, sulfonic, alcohol, and thiol groups. The U.S. 

Department of Energy compiled a list of the twelve most promising sugar-based building blocks. 

Six out of those twelve candidates are organic acids (see table 1), including Itaconic acid (Werpy 

et al., 2004). 

Table 1 U.S. Department of Energy’s top twelve value added chemicals from biomass (Werpy et al., 2004) 

 building blocks 

1. 1,4-diacids (succinic, fumaric and malic acid) 7. itaconic acid 

2. 2,5-furan dicarboxylic acid 8. levulinic acid 

3. 3-hydroxy propionic acid 9. 3-hydroxybutyrolactone 

4. aspartic acid 10. glycerol 

5. glucaric acid 11. sorbitol 

6. glutamic acid 12. xylitol/arabinitol 
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1.3. Itaconic acid 

Itaconic acid (ITA; also known as methylene succinic acid; CAS-nr.: 97-65-4) is an organic, 

monounsaturated C-5 dicarboxylic acid with the following molecular formula: C5H6O4. Its 

structure is illustrated in figure 2. ITA was first described in 1837 as a thermal decomposition 

product of citric acid (CA) by Baup. Three years later, in 1840 Crasso described ITA as a thermal 

decomposition product of aconitic acid and coined the term “itaconic acid” as an anagram (Luskin, 

1974). It crystallizes in rhombic double pyramids (Willke and Vorlop, 2001). At room temperature, 

it is a white, crystalline and hygroscopic powder with a molar mass of 130.1 g mol-1 and a density 

of 1.632 g ml-1. It’s melting and boiling points are 168 °C and 268 °C, respectively. ITA has three 

different protonation states (H2ITA, HITA- and ITA2-) with pKa1 = 3.84, pKa2 = 5.55 being its two 

dissociation constants at room temperature (De Robertis et al., 1990; Magalhães et al., 2017; Patty, 

1963). In a strong alkaline environment and at temperatures of ≥ 170 °C ITA can be converted into 

one of two isomers, citraconic or mesaconic acid (Sakai, 1976). 

 

Figure 2 Chemical structure of itaconic acid. 

Almost 100 years after its characterization, the first microbial synthesis of ITA was observed on 

acidic medium with the filamentous fungus Aspergillus (A.) itaconicus, which was isolated from 

dried salted plums (Kinoshita, 1932). In 1939 during screening processes, A. terreus was found to 

be a superior ITA producing microorganism by Calam. Only three years later, Charles Pfizer co-

patented an industrial ITA production process of submerged A. terreus cultures (Kane et al., 1945). 

Shortly after, the first large-scale fermentation processes were established (Nelson et al., 1952; 

Pfeifer et al., 1952). The first industrial production plant, for example, was built 1955 in Brooklyn, 

NY, USA also by Pfizer (Kuenz and Krull, 2018). During the 1960s, the biotechnological production 

of ITA with the help of A. terreus was largely established. These practices are still applied today 

but the industry is looking for ways to improve processes in order to increase yields and reduce 

costs (Klement and Büchs, 2013; Okabe et al., 2009). 

In the past, several alternative methods for ITA synthesis have been proposed (Berg and Hetzel, 

1978; Blatt, 1943; Carlsson et al., 1994; Chiusoli, 1962; Luskin, 1974; Pichler et al., 1967; Shekhawat et 

al., 2006; Tate, 1981). However, none of them has been successfully adapted due to their economic 

non-profitability. For ITA, the petrochemical synthesis approaches still do not compete with 

biotechnological production (Willke and Vorlop, 2001). 
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1.3.1. Applications for ITA 

ITA possesses an interesting chemical structure in that it is composed of two carboxylic acid 

functionalities and an α,β-unsaturated exo-double bond. These properties make ITA universally 

applicable and allow for the synthesis of polyesters, that are currently not achievable with 

standard building blocks derived from petrochemicals (Geilen et al., 2010; Medway and Sperry, 

2014; Robert and Friebel, 2016). The threefold functional structure makes a variety of reactions and 

applications possible. Viable reactions are the formation of salts with metals, esterification with 

alcohols, anhydride formation, addition reactions and polymerization. Thus, ITA can potentially 

replace the structurally similar building block chemicals methacrylic acid and acrylic acid (Kuenz 

and Krull, 2018; Magalhães et al., 2017). 

Its current use is focused on the application as an intermediate in the preparation of complex 

organic compounds, mostly as a monomer or co-monomer for the synthesis of various polymers. 

ITA itself or its derivatives are used to form elastomers, superabsorbent polymers, synthetic latex 

(e.g. styrene-butadiene-itaconic acid latex) and unsaturated polyester resins. These products can 

be employed as chemical fibres, coatings, corrosion inhibitors, dental materials, detergents, drug-

delivery systems, paints, lacquer, plasticizers, or (thermo-)plastics. In summary, ITA is applied 

among others in the construction, hygiene, medical and paper industry (Delidovich et al., 2016; 

Klement and Büchs, 2013; Kuenz and Krull, 2018; Kumar et al., 2017; Magalhães et al., 2017; Okabe 

et al., 2009; Robert and Friebel, 2016; Saha et al., 2017; Willke and Vorlop, 2001). 

Besides its potential use as an alternative for (meth-)acrylic acids, several other fields of 

application are investigated at the moment: ITA based polyesters have been used as precursors 

for bio-erodible vaccine-loaded hydrogel microspheres (Singh et al., 1991). The group around 

Barrett (2010) developed several bio-based polyesters derived from ITA. The resulting materials 

can be applied in drug delivery systems, tissue engineering and other biomedical applications 

(Barrett et al., 2010b, 2010a). It has also a high potential to serve as an alternative cross-linking 

group for radiation curing binders for coatings and printing inks (Dai et al., 2015). Some derivatives 

such as 2-methyl1,4-butanediol and 3-methyl tetrahydrofuran have potential as biofuels (Geilen 

et al., 2010). Another promising field is its use for the synthesis of shape memory polymers (Guo 

et al., 2011). 

Between 2009 and 2015, estimates for the annual production ranged from 41000 t to over 80000 t. 

The market was projected to grow to 197000-408000 t p.a. until 2020 with a market value of 315-

567 million USD. The production is limited on the Asian region with no larger facilities in the EU 

or the USA. The world market for ITA is currently estimated between 75-126 million USD with one-

kilogram costing between 1.8-2.0 USD depending on the supplier and quality. (Okabe et al., 2009; 

Transparency Market Research, 2015; WEASTRA, 2013). By effectively displacing methacrylic acid 

or acrylic acid with ITA as a starting substance for the production of polyacrylic acids, its value 
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could rise significantly because this particular market is worth over eleven billion USD (El-Imam 

and Du, 2014; Karaffa and Kubicek, 2019; Saha et al., 2019). 

1.3.2. Biosynthesis of ITA 

Despite its biotechnological production that has been ongoing for decades now, the underlying 

biosynthesis pathway of ITA has remained unclear for a long time. 

The first revelatory advancements were made by Bentley and Thiessen (1957b, 1957a). Via 1-14C-

marked glucose, they could prove that the sugar is metabolized through glycolysis and the 

subsequent TCA cycle. Furthermore, they could demonstrate that ITA is a direct product from cis-

aconitate. Because of this and the fact that cis-aconitate is a central metabolite in the TCA cycle 

(Krebs and Johnson, 1937), Bentley and Thiessen proposed that the synthesis of ITA, therefore, 

must be linked to the TCA cycle. At that time they hypothesized that cis-aconitate would be 

directly decarboxylated into ITA (Bentley and Thiessen, 1957c).  

Considering the transformation of cis-aconitate, Shimi and Nour El Dein (1962) proposed a 

stepwise condensation of three acetyl-CoA molecules into propane-1,2,3-tricarboxylic which is 

oxidized into cis-aconitate and is ultimately decarboxylated into ITA. In 1996, Bressler and Braun 

presented one alternative route, where cis-aconitate is decarboxylated into citraconic acid. This 

intermediate would then be isomerized into ITA. 

Other research groups discarded the idea of cis-aconitate being the precursor of ITA all together: 

Jakubowska et al. (1974) and Nowakowska-Waszczuk (1973) proposed the idea that citramalic acid 

would be synthesised from acetyl-CoA and pyruvic acid. Afterwards, dehydration of citramalic 

acid into ITA would occur. 

In 1995, the group around Bonnarme investigated the metabolites of A. terreus with C13 and C14-

marked substrates and the help of nuclear magnetic resonance spectroscopy. This way, they 

could confirm the biosynthesis pathway proposed earlier by Bentley and Thiessen (1957c) which 

is the generally accepted route today (see figure 3). The identification of the AtCAD1 gene and the 

characterization of its deduced protein Cad1p further substantiated this pathway (Bentley and 

Thiessen, 1957c; Dwiarti et al., 2002; Kanamasa et al., 2008). Since then, other key proteins in the 

ITA biosynthesis of A. terreus have been identified, mainly the mitochondrial cis-aconitate 

shuttling transporter MttAp and the cell wall located ITA exporter MfsAp which belongs to the 

Major Facilitator Superfamily (MFS). Interestingly, the responsible genes AtCAD1, AtMTTA and 

AtMFSA are structured in a gene cluster. This gene cluster is potentially regulated by a zinc finger 

transcription factor, whose gene is also located inside the cluster (Li et al., 2011).  

Recently, the group around Geiser (2016a, 2016b) investigated the synthesis route of ITA in the 

parasitic corn smut fungus Ustilago (U.) maydis. A similar gene cluster to that of A. terreus was 

found. However, instead of a gene encoding a cis-aconitate decarboxylase two genes with 
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divergent functions were inferred. This pathogenic fungus which forms galls on corn species, 

synthesises ITA from cis-aconitate via the unusual intermediate trans-aconitate. Figure 3 shows 

that first, cis-aconitate is shuttled to the cytosol with the help of Mtt1p where it is isomerized to 

trans-aconitate by aconitate-∆-isomerase 1 (Adi1p). This intermediate is then decarboxylated into 

ITA by the trans-aconitate decarboxylase (Tad1p). Ultimately, the resulting ITA is transported into 

the surrounding medium by the itaconate transporting protein (Itp1p). The gene cluster is 

controlled by the fifth member of the cluster namely regulator for itaconic acid (Ria1p).  

By using these pathways, both A. terreus and U. maydis can form 1 mol ITA from 1 mol glucose in 

theory. That would correspond to a theoretical ITA yield of 0.72 g g-1 glucose (Saha, 2017). 

 

Figure 3 Schematic overview of the itaconic acid (ITA) pathway in the known ITA producing 

microorganisms U. maydis and A. terreus (modified according to Geiser et al. (2016b) and Kuenz and Krull 

(2018)). 
Carbon sources e.g. glucose or xylose are taken up by the fungi and metabolized into pyruvate via glycolysis and the 
pentose phosphate pathway (PPP). The resulting intermediates pyruvate and acetyl-CoA fuel the tricarboxylate acid (TCA) 
cycle inside the mitochondria. In the course of the TCA cycle, citrate is synthesised which is then isomerized into 
isocitrate by an aconitase (Aco1p). During the isomerization reaction, the intermediate cis-aconitate is formed. The cis-
aconitate is transported into the cytosol by a mitochondrial tricarboxylate carrier (Mtt1p or MttAp) where it is isomerized 
into trans-aconitate by an aconitate-∆-isomerase (Adi1p). trans-Aconitate is then decarboxylated into ITA by trans-
aconitate decarboxylase (Tad1p). In the hyphal fungus A. terreus, cis-aconitate is directly decarboxylated into ITA by a cis-
aconitate decarboxylase (Cad1p). The finished acid ITA is secreted into the surrounding medium with the help of a carrier 
protein belonging to the major facilitator superfamily (Itp1p in U. maydis, MfsAp in A. terreus). In U. maydis, the genes 
coding for Adi1p, Itp1p, Mtt1p and Tad1p are organized in a cluster together with the RIA1 gene whose gene product 
regulates the transcription of the complete gene cluster (green arrows represent the transcriptional upregulation of the 
ITA cluster genes by Ria1p). 
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Despite A. terreus being a good ITA producing organisms with reported concentration of 130-

160 g l-1 (Hevekerl et al., 2014a; Karaffa et al., 2015; Krull et al., 2017), the production cost of ITA and 

polyitaconic acid has to be reduced in order to replace petrochemical-based polyacrylic acid 

(Durant, 2009). Even after substantial efforts to enhance the productivity of A. terreus wild type 

(WT) and even genetically engineered strains, this cost-effectiveness could not be reached yet (for 

an overview of recent advancements in the biotechnological production of ITA see Bafana and 

Pandey, 2018; El-Imam and Du, 2014; Karaffa and Kubicek, 2019; Klement and Büchs, 2013; Kuenz 

and Krull, 2018; Teleky and Vodnar, 2019; Zhao et al., 2018). 

The issue of high production costs is further compounded by several other factors. One is that 

several A. terreus strains have been reported to produce mycotoxins like citrinin and citreoviridin 

and can also cause opportunistic infections in plants, animals and humans (Edite Bezerra da 

Rocha et al., 2014). This led several countries e.g. Germany, Holland, UK and the USA to classify 

A. terreus as a biosafety level 2 organism which comes along with bureaucratic hurdles and 

technical safety measures (Hoog, 1996). 

As a potential alternative, the closely related fungus and exceptionally good CA producer A. niger 

is receiving increasing attention (Hossain et al., 2016; Show et al., 2015; Steiger et al., 2016). 

However, the general use of filamentous fungi comes with multiple disadvantages: the handling 

of spores is laborious, the filaments of the fungi are sensitive to hydro-mechanical stress and 

impurities in the medium like manganese ions. In addition to that, Aspergillus spp. easily form 

cell pellets in submerged cultivations due to their hyphal growth. This leads to elevated viscosity 

and interruption of oxygen supply especially in the centre of the pellets which can ultimately 

decrease ITA yields (Bafana and Pandey, 2018; Karaffa et al., 2015; Klement et al., 2012; Kuenz and 

Krull, 2018; Kuenz et al., 2012). 

To combat these issues, researchers are focusing on finding alternative single-cell ITA production 

hosts. Currently known ITA producing organisms are U. zeae (Haskins et al., 1955), Candida sp. 

(Tabuchi et al., 1981), Pseudozyma (P.) antarctica (Levinson et al., 2006), P. tsukubaensis (Bodinus, 

2011), Rhodotorula sp. (Kawamura et al., 1981), Helicobasidium sp. (Sayama et al., 1994), and even 

mammalian cells (Strelko et al., 2011).  

Compared to filamentous fungi, yeasts like Pseudozyma spp. are more advantageous in several 

aspects: they can be easily genetically engineered. The single cells are presumably metabolically 

more active than mycelia in submerged cultures and have, thus, higher fermentation rates. 

Moreover, they have short duplication times, large substrate specificity with elevated resistance 

to high substrate concentrations and tolerance to metal ions and they can be easily cultivated in 

large bioreactors (Adrio, 2017; Bellou et al., 2014; Cavallo et al., 2017). 
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1.4. Isocitric acid 

Isocitric acid (ICA; also known as 1-hydroxypropane-1,2,3-tricarboxylic acid; CAS-nr.: 6061-97-8) 

with the molecular formula C6H8O4 belongs to the class of tricarboxylic acids due to its three 

carboxyl functional groups. It is also a hydroxycarboxylic acid since it has a hydroxyl group at the 

C2-position (see figure 4). At room temperature, ICA is a crystalline solid with a molecular weight 

of 191.12 g mol-1 and a melting point of 162-165 °C 4. 

 

Figure 4 Chemical structure of D-threo-isoctric acid (2R,3S-isocitric acid). 

ICA is a key metabolite of the TCA cycle. It has four isomers: D-erythro-, L-erythro-, D-threo- and 

L-threo-isocitric acid. However, in living organisms, only D-threo-ICA is formed from cis-

aconitate with the help of an aconitase (see figure 3 above) (Martius and Knoop, 1937). 

Earliest used natural sources for ICA are plants, primarily belonging to the Crassulaceae family 

(Pucher et al., 1948; Soderstrom, 1962; Vickery, 1969). One well-known representative is 

Hylotelephium spectabile (formerly Sedum spectabile). This plant accumulates high 

concentrations of organic acids e.g. ICA in its leaves (Tolbert and Zill, 1954). H. spectabile served 

as an ICA source for the D-threo-isocitric acid potassium salt sold by Sigma-Aldrich5. Also, several 

fruits, for example, strawberries, raspberries, blackberries and blackcurrant have been shown to 

contain a significant amount of ICA (Fan-Chiang and Wrolstad, 2010; Stój and Targoñski, 2006). 

1.4.1. Production & Application of ICA 

The potential applications of ICA have been limited for a long time. This is mostly due to the 

difficulties in obtaining adequate amounts of this compound. Chemical synthesis yields a 

racemic mixture containing all its four stereoisomers of which only D-threo-ICA is biologically 

active. The other three isomers are non-natural inhibitors of some enzyme systems and thus are 

unwanted. By chemical methods, these isomers cannot be separated adequately (Finogenova et 

al., 2005; Laptev et al., 2016). 

The isolation of D-threo-ICA from plant leaves or fruits and its separation from the other organic 

acids proved to be a complicated and expensive technological process. This is because of the low 

 
4 PubChem, Isocitric acid (compound). Retrieved September 1st, 2019, from  
https://pubchem.ncbi.nlm.nih.gov/compound/1198 
5 Sigma-Aldrich, products, threo-Ds(+)Isocitric acid potassium salt. Retrieved September 1st, 2019, from 
https://www.sigmaaldrich.com/catalog/product/sigma/i1627?lang=de&region=DE 
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concentrations of ICA in the plant material and the large quantities of raw material needed. Dried 

leaves from the Crassulaceae family contain solely up to 15 % ICA (w/w) and fruit juices have ICA 

concentrations well below 1 g l-1 (Soderstrom, 1962; Stój and Targoñski, 2006). 

In the 1960s, Russian and Japanese researchers demonstrated for the first time, that several yeast 

species, Candida (C.) brumptii, C. guilliermondii and Yarrowia lipolytica (formerly C. lipolytica), 

are able to secrete a mixture of CA and ICA into the medium (Abe and Tabuchi, 1968; Finogenova 

et al., 2005). Despite these early results, it took until 2008 for a first biotechnological process to 

obtain large quantities of the biologically active D-threo-ICA from yeast fermentation broth 

(Heretsch et al., 2008). ICA has been the only intermediate of the TCA cycle that has not been 

prepared in multigram amounts until then. Since that time, several works have been published 

that focus on the development of feasible methods to retrieve ICA from yeast culture broth. 

However, with the lack of a viable production host organisms, these studies focus on the 

separation and isolation of ICA from culture media that contain a mixture of ICA and at least one 

other organic like CA (Aurich et al., 2017; Bullin et al., 2019). 

With ICA being available in multigram scale, the interest for it in the fields of pharmacology, 

medicine and the chemical, food or cosmetics industries grew steadily (Aurich et al., 2012; 

Heretsch et al., 2008; Kamzolova et al., 2008). ICA can be used to buffer Ca2+ activity at physiological 

concentrations and serve as an anticoagulant (Rånby et al., 1999). ICA is already being used as a 

chiral building block for the synthesis of pharmaceuticals: Moore et al. (2017) obtained ICA from 

the fermentation broth of Y. lipolytica and described its usage as a key intermediate (furofuranol) 

in the synthesis of Darunavir, an antiretroviral medication. Furofuranol can be utilized to produce 

other HIV-protease inhibitors as well e.g. brecanavir, GS-9005, and SPI-256 (Aurich et al., 2017; 

Khmelnitsky et al., 2011). 

Due to its unique ability to unblock the succinate dehydrogenase (Kondrashova et al., 2013), ICA 

potentially promotes the utilization of oxygen inside the cell. This antihypoxic activity can 

contribute to an enhanced physical performance, which makes it a viable candidate as a dietary 

supplement for performance sports (Kamzolova et al., 2018; Rivera‐Angulo and Peña‐Ortega, 2014).  

Recent studies carried out by Morgunov et al. (2018, 2019) suggest that ICA can serve as an 

antioxidant agent and protect against cell damages caused by reactive oxygen species and some 

heavy metal salts. Furthermore, in the food industry ICA can also be used as a marker to detect 

food adulteration mainly in fruit juices due to the general use of its isomer CA as an adulterant 

(Saavedra et al., 2000). 
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1.5. Oleaginous yeasts 

Species are considered oleaginous yeasts if they are able to produce and accumulate more than 

20 % of their dry cell weight (DCW) in the form of lipids e.g. triacylglycerols (TAG) and steryl esters 

(SE) (Ratledge, 2004). First reports of yeast that can accumulate high levels of intracellular lipids 

were made as early as 1899 by Lindner when he described Metschnikowia pulcherrima (formerly 

Torula pulcherrima, Woodbine, 1959). Other examples include Cryptococcus albidus, Cryptococcus 

curvatus, Lipomyces starkeyi, Rhodosporidium toruloides, Rhodotorula glutinis, and 

Trichosporon pullulans. Some of those species can accumulate more than 65 % of their biomass 

as lipids (Adrio, 2017; Beopoulos et al., 2009). 

The unconventional yeast Y. lipolytica is one of the most well-studied members of oleaginous 

yeasts (Adrio, 2017; Barth and Gaillardin, 1996). Naturally, its lipid content can reach 40 % of its 

DCW (Nicaud, 2012). However, there are reports of engineered so-called “obese” strains that 

accumulate up to 75-90 % lipids (Blazeck et al., 2014; Dulermo and Nicaud, 2011). 

Recently, it was discovered that P. tsukubaensis is also able to accumulate at least 32 % (DCW) 

intracellular lipids. Furthermore, its fatty acid composition is highly similar to that of palm oil 

(Kunthiphun et al., 2018). 

What makes oleaginous yeasts especially interesting to the biotechnological industry, is not only 

the ability to synthesise exceedingly high amounts of fatty acids and oil but their reaction to very 

high carbon (C) source concentrations in the medium: If oleaginous yeasts are cultivated with an 

excess in C and a limited amount of an essential nutrient e.g. nitrogen (N) or phosphate (P), they 

experience a C-overflow which is diverted by overproducing CA. The N exhaustion leads to an 

inhibition of isocitrate dehydrogenase in the TCA cycle due to the accumulation of adenosine 

monophosphate. Thus, CA accumulates inside the mitochondria and is then transported into the 

cytosol where it can be used for the synthesis of fatty acids or it is secreted into the surrounding 

medium (Adrio, 2017; Barth and Gaillardin, 1996; Ratledge, 2004; Tehlivets et al., 2007). This CA 

overflow, by uncoupling of the electron transport and TCA cycle from ATP synthesis, is a feature 

of oleaginous yeasts that makes them a perfect platform for the overproduction of organic acid 

and fatty acid-derived oleochemicals. 

1.5.1. Pseudozyma tsukubaensis 

Pseudozyma spp. are generally thought to be the asexual yeasts derived from smut fungi that are 

no longer pathogenic to plants. It is still unclear whether these species kept the pathogenicity 

against plants but do not activate it or if they completely lost this ability and only live as yeasts 
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(Kitamoto, 2019; Kruse et al., 2017). However, the German Central Committee on Biological Safety 

ruled that P. tsukubaensis does not pose a risk for plants or humans6. 

The definite phylogenetic classification of the genus is still being debated by researchers. The 

genus Pseudozyma was first described in 1985 by Bandoni. Later, Boekhout (1995) proposed seven 

species to be members of the genus Pseudozyma. These seven microorganisms have previously 

been assigned erroneously to other genera like Candida, Cryptococcus, Sporobolomyces, 

Stephanoascus, Sterigmatomyces, Trichosporon and Vanrija. One of the seven members is 

P. tsukubaensis. This yeast was first isolated by Onishi from a plant leaf at the Japanese mountain 

‘Tsukuba’ in 1972. He had previously classified it as an ascomycetous yeast belonging to the 

Candida genus. 

P. tsukubaensis are mostly present as single cells. The cells are ellipsoidal in shape with an 

average size of 5-15 x 3-4 µm and usually contain two to four lipid bodies (see figure 5). During 

mitosis, cell buds can occur polar, sessile or on short denticles. Depending on the environmental 

conditions, P. tsukubaensis also forms hyphae which measure ca. 10-80 µm in length and 1-3 µm 

in width. Sporulation can be induced. In that case cylindrical to fusiform blastoconidia are formed 

on sterigmata (Boekhout, 2011). 

 

Figure 5 P. tsukubaensis budding single cell and hyphal aggregate with visualized lipid bodies 
(brightfield and a fluorescence overlay, 1000 x magnification. Lipid bodies stained with the fluorescent dye Nile-red). 

In 2000, based on the nuclear large-subunit-rDNA sequences, Begerow et al. suggested the genus 

Pseudozyma to be a cohesive genus within the Ustilaginomycetes. More specifically, he proposed 

that the species of Pseudozyma represent anamorphs of the smut causing pathogens belonging 

to the Ustilaginales and that P. tsukubaensis is probably synonymous with U. spermophora. 

Later, Wang et al. (2015) advised taxonomic revisions in the subphylum Ustilaginomycotina after 

conducting phylogenetic analyses based on seven genes. As a result, the authors suggested 

disbanding the genus Pseudozyma because it is a polyphyletic anamorphic genus with species 

occurring in various clusters together. The investigated Pseudozyma species were located in 

various clades together with the teleomorphic species of Ustilago, Sporisorium and 

 
6 Statement by the German Central Committee on Biological Safety (ZKBS) on the risk assessment of 
Pseudozyma tsukubaensis as a donor or recipient organism in genetic engineering work (Az.: 6790-05-03-
47, December 2009) 
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Moesziomyces. Most of these Pseudozyma species were transferred to other genera. However, 

P. tsukubaensis along with P. alboarmeniaca, P. thailandica, P. hubeiensis and P. pruni could not 

be classified unequivocally because of the taxonomic confusion between the teleomorphic 

genera. Therefore, these species should be taxonomically revised together with their closely 

related teleomorphic species. Until the affected species are assigned to their proper genus, the 

authors suggest to temporarily keep the genus name Pseudozyma. 

Based on the available data, P. tsukubaensis’ taxonomic classification can solely be resolved to 

the level of its family, the Ustilaginaceae. The phylogenetic relationship between the members of 

the temporary genus Pseudozyma is illustrated in figure 6. 

 

Figure 6 Phylogenetic relationship between Pseudozyma species based on internal transcribed spacer 

sequences of rRNA genes in the chromosome (adapted from Kitamoto, 2019) 

 

1.5.1.1. Biotechnological usage of P. tsukubaensis 

Yeasts belonging to the temporary genus Pseudozyma can utilize natural oils and fats by 

secreting triglyceride-degrading lipases (Kitamoto, 2019). Furthermore, P. tsukubaensis is able to 

assimilate a variety of C sources, amongst others, sugars (e.g. glucose, lactose, cellobiose, starch, 

xylose, arabinose), sugar alcohols (e.g. glycerol, erythritol), organic acids (e.g. CA, glucuronic-, 

lactic-, succinic acid), ethanol and myo-inositol (Boekhout, 2011). Its broad substrate specificity, 

the single-celled growth and the secretion of different products have drawn attention to 

P. tsukubaensis and related Pseudozyma spp. 

One generic form of application is the use as a biocontrol agent. This potential is constantly 

increasing, as pesticides in the form of agrochemicals are progressively abandoned. Several 

Pseudozyma yeasts are reportedly effective against powdery mildew causing fungi e.g. Blumeria 
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graminis, the necrotizing fungus Botrytis cinerea and even against phytopathogenic bacteria and 

viruses (Bélanger and Labbé, 2002; Buxdorf et al., 2013; Lee et al., 2017; Yoshida et al., 2015). The 

antifungal properties of P. flocculosa can partially be traced back to the unusual cellobiose lipid 

flocculosin and the structural similar ustilagic acid (Cheng et al., 2003; Hewald et al., 2005; 

Kulakovskaya et al., 2005). The two glycolipids are also investigated for their potential use against 

human pathogens (Mimee et al., 2005; Rodrigues et al., 2006). Additionally, P. tsukubaensis is 

known to excrete the fungicidal killer toxin mycocin (Golubev et al., 2006). 

For several decades now, the usage of Pseudozyma species for the biotechnological production of 

several different proteins, especially enzymes, have been investigated. P. tsukubaensis secretes a 

distinct glucoamylase that displays its highest activity at a low pH (De Mot et al., 1985). This yeast 

species has also been described to express other promising proteins such as a glycogen degrading 

α-glucosidase and a rennet protease (Fungaro et al., 1994; Kinsella et al., 1991). 

P. antarctica came into the focus in the late 1980s for its ability to secrete lipases when large-scale 

screenings were conducted by Novo Nordisk. More specifically, the identified enzymes lipase A & 

lipase B exhibit a low thermal profile. However, it was demonstrated that the two enzymes are 

stable at temperatures up to 96 °C and that they exhibit a high degree of substrate specificity. 

Nowadays, these lipases are already mass-produced for various industries like paper/pulp and 

textile manufacturing (Kitamoto, 2019; Nielsen et al., 1999). P. antarctica, P. aphidis and P. rugulosa 

have been shown to express esterases that are able to break down biodegradable plastics such as 

polybutylene succinate (Kitamoto et al., 2011; Shinozaki et al., 2013). 

Another class of substances that are commonly secreted by Pseudozyma species are 

mannosylerythritol lipids (MELs) which are so-called biosurfactants. These substances have an 

excellent interfacial activity, are biodegradable, biocompatible and can be produced in an 

environmentally friendly way through fermentation. Moreover, MELs are self-assembling, can be 

used as gene delivery carriers, they possess a high affinity to immunoglobulins, exhibit anti-

tumour, anti-bacterial, and anti-oxidative activities, and can even repair damaged human skin 

and hair (Im et al., 2003; Kitamoto et al., 1993, 2002, 2009; Morita et al., 2010a; Saika et al., 2018a; 

Takahashi et al., 2012; Yamamoto et al., 2012; Zhao et al., 2001). 

MELs consist of mannose and erythritol as hydrophilic moieties, fatty acids and acetyl groups as 

hydrophobic moieties. These molecules are categorized into the four types MEL-A, -B, -C and -D 

based on the degree of the acetylation (Saika et al., 2018a). The various classes of MELs are not 

produced by every Pseudozyma species equally. P. antarctica, P. aphidis, P. parantarctica and 

P. rugulosa synthesise a mixture of MEL‐A, ‐B, ‐C and -D with concentrations reaching up to 

165 g l-1 (Kitamoto, 2019; Saika et al., 2018a). P. crassa secretes diastereomer types of MEL-A, -B, 

and-C (Morita et al., 2015). The four following yeasts produce predominantly MEL-C: 
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P. graminicola, P. hubeiensis, P. shanxiensis and P. siamensis (Fukuoka et al., 2007; Konishi et al., 

2008; Morita et al., 2008a, 2008b; Saika et al., 2018a). 

P. tsukubaensis holds a special position. It produces exclusively a special diastereomer type of 

MEL-B (Fukuoka et al., 2008). Morita et al. (2010b) isolated the MEL-B overproducing 

P. tsukubaensis strain 1E5 from Perilla frutescens leaves. This strain can produce up to 73 g l-1 

MEL-B with a yield of 43.5 % (g g-1 olive oil). The ability to overproduce the MEL-B diastereomer 

has already been commercialized for a cosmetic ceramide-like moisturizing agent under the 

brand name SurfMellow® by the Japanese Toyobo company7 (Morita et al., 2015). Like other MEL 

producing Ustilaginaceae, P. tsukubaensis also possesses a gene cluster for the synthesis of MELs 

that consists of five genes. One gene, encoding an erythritol/mannose transferase (PtMET1), 

differs substantially from homologous counterparts in related species. The deduced protein of 

PtMET1 is the reason, why this yeast produces MEL-B (Saika et al., 2016). By deleting one of the 

cluster genes PtMAT1 or PtMAC2 the yeast produces MEL-D or a novel monoacetylated MEL 

instead of MEL-B (Saika et al., 2018b, 2018c). Therefore, P. tsukubaensis holds the potential to 

synthesise tailor-made biosurfactants that can later be used in various industries including 

cosmetics, pharmaceuticals, agriculture, food, and environmental fields (Saika et al., 2018a). 

P. tsukubaensis can also be applied for the microbial production of erythritol. The sugar alcohol is 

an important additive in the food industry as a noncaloric and non-cariogenic sweetening agent 

(Moon et al., 2010). The isolated P. tsukubaensis strain KN75 produces up to 245 g l-1 erythritol with 

a productivity of 2.86 g l-1 h-1 and a yield of 61 % (w/w) from glucose. The erythritol production on 

plant scale (50000 l) has already been achieved (Jeya et al., 2009). 

Recently, also the synthesis of the non-digestible prebiotic galactooligosaccharides (73 g l-1, yield 

18 % (w/w)) from cassava wastewater and lactose was demonstrated (Cavalcante Fai et al., 2015). 

Another promising application for P. tsukubaensis involves the production of organic acids such 

as ITA from simple sugars. First studies with mutagenized and genetically modified 

P. tsukubaensis strains proved its applicability. The UV-mutagenesis strain M15 (DSM 21214) 

produced already 2.3-times more ITA than the wild type H488 (CBS 422.96). By additionally 

overexpressing the cis-aconitate decarboxylase gene AtCAD1 from A. terreus, it was possible to 

produce up to 60.6 g l-1 ITA in a 3.6 l-bioreactor. Later, yields of more than 75 g l-1 ITA were achieved 

with glucose as C source (Aurich et al., 2009; Bodinus, 2011; Specht et al., 2014). Only one other 

Pseudozyma species, namely P. antarctica, has been demonstrated to, similarly, secrete 

substantial concentrations of ITA. However, the resulting ITA yield has been much lower with an 

end concentration of only 30 g l-1 (Levinson et al., 2006). 

 
7 TOYOBO, SurfMellow® (Pseudozyma tsukubaensis). Retrieved September 15th, 2019, from  
https://www.toyobo-global.com/seihin/cosme/surfmellow.htm 
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1.5.2. Yarrowia lipolytica 

The ascomycetous yeast Y. lipolytica is an oleaginous species that has first been isolated in the 

year 1928 by Harrison as Mycotorula lipolytica and in the same year by Nannizzi as Monilia 

cornealis. In 1972, Yarrow reclassified the yeast to the novel genus Saccharomycopsis. Its current 

generic name was proposed by Walt and Arx (1980) in honour of Yarrow’s work. Until then, it was 

assigned to the genera of Azymoprocandida, Candida, Endomycopsis, Torula and Torulopsis 

(Barth and Gaillardin, 1996, 1997; Kurtzman et al., 2011; Nicaud, 2012). 

Y. lipolytica’s taxonomic name already implies its lipolytic capabilities but it exerts pronounced 

proteolytic activities as well (Groenewald et al., 2014). Hence, the yeast is able to assimilate 

unusual hydrophobic substrates containing n-alkanes, 1-alkenes, fats, fatty acids, oils and 

paraffin. Its substrate range for C also includes simple alcohols, acetate, glycerol and simple 

sugars (mono- and disaccharides). Naturally, it can be isolated from a variety of ecosystems for 

example marine waters, mycorrhizae, oil-polluted environments, sewages and soils. Additionally, 

the oleaginous yeast is often found on different food products that are rich in fats and proteins 

like cheese, kefir, shoyu, yoghurts, sausages and even shrimp salad (Barth and Gaillardin, 1996, 

1997; Gardini et al., 2001; Groenewald et al., 2014; Guerzoni et al., 1993; Madzak, 2018; Spencer et al., 

2002; Vasdinyei and Deák, 2003). 

Y. lipolytica is an obligate aerobic yeast and is considered apathogenic. Hence, it has been 

classified as Generally Regarded As Safe (GRAS) by the US American Food and Drug 

Administration (Groenewald et al., 2014). Much like its diverse colony morphologies ranging from 

heavily convoluted and matt to smooth and glistening, it exhibits different growth forms 

depending on its genetic background and environmental conditions. Generally, isolates are 

present as single haploid yeasts cells but, it can also form pseudo-hyphae and true mycelium with 

septate hyphae. Single cells are spheroidal, ellipsoidal with typical dimensions of 3-5 x 3-15 µm or 

elongated when forming (pseudo-)hyphae (Barth and Gaillardin, 1996, 1997; Bellou et al., 2014; 

Kurtzman et al., 2011; Nicaud, 2012). 

 

Figure 7 Single Y. lipolytica cells with one to three lipid bodies. 
(phase contrast microscopy, 400 x magnification) 

Furthermore, this yeast belongs to heterothallic fungi with the two mating types MATA and 

MATB. Haploid cells can reproduce sexually by conjugating with cells from the complementary 
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mating type to form a diploid zygote. Both haploid and diploid cells are vegetatively stable. Under 

certain circumstances the diploid zygote can form one or multiple asci with one to four spores 

(Barth and Gaillardin, 1997; Barth and Weber, 1985). Currently numerous Y. lipolytica strains are 

used for research without consensus on the reference strain. However, the applied working 

strains can mostly be traced back to the three main inbred lines H222 (German), W29 (French) and 

CBS6124-2 (US America) (Barth and Gaillardin, 1996; Nicaud, 2012). 

1.5.2.1. Applications of Y. lipolytica 

Because of its unique abilities and peculiar phenotypes compared to the conventional yeast 

Saccharomyces (S.) cerevisiae, Y. lipolytica has been used since the 1960s as a model organism to 

study various biological mechanisms. These are, inter alia, dimorphic growth and the formation 

of hyphae, production of single-cell proteins & oils; the utilization of hydrophobic substrates; lipid 

homeostasis; lipid body & peroxisome biogenesis; intron & alternative splicing; and the formation 

of the mitochondrial complex (Harzevili, 2014; Nicaud, 2012). 

Besides being a model organism, the oleaginous yeast can be applied for environmental purposes. 

Difficult to treat agro-industrial waste products e.g. olive mill waste are treated and upgraded with 

it (Azbar et al., 2004; Darvishi, 2012). Its ability to degrade hydrocarbons enable it to bioremediate 

oil-polluted environments. Moreover, it can aid environmental detoxification attempts by the 

bioaccumulation of heavy metals e.g. Cd, Cr, Cu & Ni or by the biotransformation of trinitrotoluene 

(Bankar et al., 2009a, 2009b; Harzevili, 2014; Smets et al., 2007). 

The British Petroleum company pioneered its industrial use in the 1950s for the production of 

high-quality single-cell proteins from low-cost substrates like ethanol, methanol and petroleum 

fractions for livestock feed (Groenewald et al., 2014). Further advancements, mostly by the 

industrial heavy weights DuPont, Pfizer, Codexis and Microbia, led to many successes in the 

production of lipases and lipids, including fish oil substitutes. Various other extracellular 

enzymes are secreted at a high level by Y. lipolytica ranging from alkaline or acid proteases, 

phosphatases, RNase to inulinase (Harzevili, 2014; Markham and Alper, 2018). Upon the increase 

in available molecular biology tools, a plethora of value-added chemicals could also be produced 

with the help of this yeast. According to Markham and Alper (2018), the substances that are 

possible to synthesise can be assigned to four groups: 

 oleochemicals: e.g. arachidonic acid (Damude et al., 2015); eicosapentaenoic acid (Damude 

et al., 2007); fatty alkenes and alcohols (Xu et al., 2016) 

 fine chemicals and pharmaceuticals: L-dopa (Ali et al., 2007); dicarboxylic acids and 

lactones (Barth, 2013; Gatter et al., 2014); erythrulose (Carly et al., 2018); L-hydroxybutyric 

acid (Kyong and Shin, 2000); mevalonate derivatives (Cao et al., 2017; Zhang et al., 2017) 

and triacetic acid lactone (Markham et al., 2018) 
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 nutraceuticals and feed stock: carotenoids (Kildegaard et al., 2017; Larroude et al., 2018; 

Matthäus et al., 2014); sugar alcohols e.g. erythritol, mannitol, arabitol (Tomaszewska et al., 

2012); single cell protein (Groenewald et al., 2014) and terpenes (van Dyk et al., 1998; Ferrara 

et al., 2014) 

 organic acids with TCA cycle intermediates being the most prominent targets: e.g. CA & 

ICA (Förster et al., 2007a; Holz et al., 2009), α-ketoglutaric acid (Otto et al., 2012), pyruvic 

acid (Morgunov et al., 2004), succinic acid (Kamzolova et al., 2012) but also non-native 

organic acids like ITA (Blazeck et al., 2015). 

Since Y. lipolytica is such an effective acid secreting organism, the interest for the production of 

CA with its help started already 40 years ago (Stottmeister et al., 1982). Nowadays, CA 

concentrations of 160-175 g l-1 are easily achieved (Kamzolova et al., 2011; Rywińska and 

Rymowicz, 2010). Because it produces CA in a similar magnitude as the most common CA-

production host A. niger, its potentially is already explored on an industrial scale (Sauer et al., 

2008). 

Naturally, the CA secretion is accompanied by ICA. The proportion of ICA varies between 8-50 % 

depending on the strain, C source and culture conditions (Barth and Gaillardin, 1996; Mauersberger 

et al., 2003; Stottmeister et al., 1982). Not only do contaminations of ICA negatively affect the 

crystallization of CA during the purification processes but it also displays inferior buffer capacity 

and chelating abilities compared to CA. Thus, ICA was considered an unwanted by-product in the 

microbial synthesis of CA (Barth and Gaillardin, 1997; Mattey, 1992; Stottmeister et al., 1982). 

Akiyama et al. (1973) was one of the first groups to try to circumvent this negative aspect by 

selecting mutant strains that exhibit a more beneficial CA:ICA ratio compared to the wild type 

strains. Via random mutagenesis, several other strains have been obtained that secrete CA with 

only insignificant amounts of ICA. The most notable strains N15, AWG7 and NG40/UV7 reach final 

CA concentrations up to 150 g l-1 with CA:ICA ratios between 25:1-30:1 on sunflower oil or glycerol 

(Kamzolova et al., 2008; Morgunov et al., 2013; Rywińska and Rymowicz, 2010). 

Förster et al. (2007a, 2007b) carried out targeted genetic modification to rationally construct CA 

over-producing Y. lipolytica strains. By doing so, the multicopy overexpression of the YlICL1 gene 

coding for an isocitrate lyase resulted in a strain that was able to secrete up to 140 g l-1 CA with 

only 4-6 % ICA on sugars and hydrophobic substrates. 

However, after it was possible to obtain larger quantities of it, the interest for ICA grew rapidly 

circa ten years ago (Heretsch et al., 2008). Thus, initial attempts were made to increase the 

proportion of ICA in the secretion profile. Holz et al. (2009) carried out early metabolic engineering 

experiments by overexpressing the aconitase encoding gene YlACO1. The constructed 

Y. lipolytica strain produced up to 71 % ICA on sunflower oil compared to 35-49 % with the wild 
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type. Later, the group around Kamzolova et al. (2015, 2016, 2018) undertook great efforts to 

maximize the ICA yield by selecting for overproducing Y. lipolytica strains. As a result, the 

selected mutant strain UV/NG (mutagenized by UV-irradiation and N-methyl-N′-nitro-N-

nitrosoguanidine) was able to secrete 88.7 g l-1 ICA with an ICA:CA ratio of 6:1 on rapeseed oil with 

the addition of ITA as an inhibitory agent. 

1.5.2.1. Mitochondrial citrate transporters in yeast 

Until recently, the strategies to modify the ratio between CA and ICA had focused on the 

engineering of the main TCA cycle enzymes e.g. aconitase, isocitrate lyase, citrate synthase or 

malate synthase. Another possibility to influence the ICA:CA ratio could be achieved by 

modulating the transport of these organic acids at the interface between the mitochondrion and 

the cytosol. Mitochondrial solute carriers are members of the mitochondrial carrier family (MCF). 

These carrier proteins are located in the inner membranes of mitochondria and are responsible 

for transport of various metabolites including ions, nucleotides, amino acids, organic acids and 

other native compounds between the mitochondrial and cytosolic matrices, which are essential 

for numerous biological processes. Antiport (obligatory counter-exchange of one solute for 

another) is the preferential mode of transportation for these carrier proteins (Palmieri, 2004, 2013; 

Palmieri and Pierri, 2010; Palmieri et al., 2000). The MCF contains 50 identified members in 

humans and 35 in S. cerevisiae.  

For the transport of tricarboxylates like CA, ICA and malic acid (MA) into the cytosol, CTP has been 

described as the main mitochondrial carrier protein in mammals. In S. cerevisiae, several 

transporters are believed to be able to transport CA at least to a certain degree (Iacobazzi et al., 

1997; Palmieri, 2013). Although ScCtp1p showed a high transporting activity for CA and to a lesser 

degree ICA, its deletion led to no phenotype on various C sources. This indicates that ScCTP1 is 

not an essential gene under the tested conditions (Kaplan et al., 1995, 1996). 

First Mayor et al. (1997) suggested that YM9408.03 (ScYHM2) codes for a mitochondrial transport 

protein that displays substrate specificity for CA, α-ketoglutaric acid (αKG, synonymic: 

2-oxoglutaric acid) and succinic acid. Shortly thereafter Cho et al. (1998) named the gene encoding 

the same protein ScYHM2 and identified it in S. cerevisiae as a member of the MCF. The group 

also postulated that the protein is involved in the maintenance of mitochondrial genome stability. 

Later, it was demonstrated by Castegna et al. (2010) that ScYhm2p and not ScCtp1p is, in fact, the 

main carrier protein in yeasts for CA transport in exchange for αKG. However, a clear biochemical 

characterization of Yhm2p is still needed (Palmieri and Monné, 2016). Recently, Scarcia et al. (2017) 

reported that ScYhm2p plays an important role in nitrogen fixation and lysine biosynthesis by 

exporting αKG and 2-oxodiapate, respectively, into the cytosol. Moreover, the group around 

Scarcia questioned ScYhm2p’s role in mtDNA stability that was postulated by Cho et al. (1998).
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1.6. Scope 

The non-conventional yeast species P. tsukubaensis and Y. lipolytica are naturally able to 

synthesize the industrially valuable organic acids ITA and ICA from the common precursor cis-

aconitate, respectively. The overall goal of this thesis is to utilize this natural asset and create acid 

overproducing production strains by the means of metabolic engineering. 

The biotechnological production of ITA with the hyphal fungus A. terreus is an established but 

still not economically viable process for it to compete with synthetically produced alternatives. 

P. tsukubaensis as a single-celled microorganism comes with characteristics that make it 

possible to overcome the drawbacks of the fermentation with fungi from the genus Aspergillus 

e.g. shear stress and sensitivities towards impurities in the medium. 

Here, the first objective is to understand the underlying ITA biosynthesis pathway in the not well 

understood yeast P. tsukubaensis. This insight is to be attained with the help of recently gained 

information on the ITA biosynthesis in A. terreus and U. maydis and with molecular biological 

tools like whole genome sequencing and quantitative real-time PCR. Subsequently, by utilizing 

this knowledge, production strains are to be generated by modifying specific genetic targets in 

the H488 wild type strain or Bodinus’ mutagenized ITA overproducing strain M15. 

In addition to that, a full synthetic defined minimal medium should be established for the 

cultivation of P. tsukubaensis to ensure consistent growth and high fermentation rates. The 

establishment of such a medium without complex components also allows for the investigation 

of environmental triggers for the natural ITA synthesis e.g. nutrient depletion. 

In the last stage, the metabolically engineered production strain should be transferred to a 

fermenter where its ITA synthesis behaviour is further investigated. By modifying particular 

cultivation parameters, further increases in ITA productivity ought to be achieved. 

As a second goal, a host organism for the microbial production of ICA from cis-aconitate must be 

developed from Y. lipolytica because to this date there are no high-yielding production strains 

described in the literature. Therefore, the well-characterized oleophilic model organism must be 

metabolically engineered to secrete high concentrations of ICA with less to no amounts of the by-

product CA. In order to achieve this, potential mitochondrial citrate transporters are targeted. 

Appropriate genes coding for citrate carriers must be identified and respective deletion strains 

generated afterwards. The resulting strains should be characterized in their ICA/CA production 

behaviour. Potentially, further genetic modifications should be carried out to distinctly enhance 

the ICA secretion. After such a strain has been created, its cultivation is scaled up to large-volume 

bioreactor to gain more insight into its production behaviour. 
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2. Materials and Methods 

2.1. Equipment 

Autoclaves 

Hot-air sterilizer SFE 500 Memmert GmbH 

MicroJet Microwave autoclave SERVA Electrophoresis GmbH 

Steam sterilizer HiClave HV-85 L HMC Europe GmbH 

Steam sterilizer Varioklav 500 E H+P Labortechnik AG 

Table-top autoclave 2540 EL Systec GmbH 

Table-top autoclave DE-45 Systec GmbH 

Balances 

KERN 770-13 Kern & Sohn GmbH 

Talent TE1502S Sartorius AG 

Talent TE214S Sartorius AG 

Centrifuges 

Biofuge Fresco Heraeus Instruments GmbH 

Sigma 1-15K Sigma Laborzentrifugen GmbH 

Sigma 3K30 Sigma Laborzentrifugen GmbH 

Sigma 3-18K Sigma Laborzentrifugen GmbH 

Fermentation equipment 

Two-vessel fermentation system Multifors (2 X 1 l) Infors AG 

pH sensors Mettler-Toledo GmbH 

pO2 sensors Mettler-Toledo GmbH 

Gel electrophoresis equipment 

Electrophoresis power supply EPS 200 PEQLAB Biotechnologie GmbH 

Electrophoresis power supply PowerPac 300 Bio-Rad Laboratories GmbH 

Gel electrophoresis chambers PEQLAB Biotechnologie GmbH 

IC equipment 

Ion chromatograph IC-2100 Thermo Fisher Scientific Inc. 

Autosampler AS50 Thermo Fisher Scientific Inc. 

Column IonPac AS27 (2 X 250 mm) Thermo Fisher Scientific Inc. 

Guard column IonPac AG27 (2 X 50 mm) Thermo Fisher Scientific Inc. 

Suppressor ASRS 300 Thermo Fisher Scientific Inc. 

Incubators and shakers 

Cooled incubator BK 800 Heraeus Instruments GmbH 

Incubator BE500 Memmert GmbH 

Incubator shaker Multitron Infors AG 

Incubator shaker Novotron AK82 Infors AG 

Microscope and filters 

AxioCam 702 mono microscope camera Carl Zeiss Microimaging GmbH 

Axio Observer 7 inverted fluorescence micr. Carl Zeiss Microimaging GmbH 

Digital camera U-TV1X Olympus Europa Holding GmbH 

Filter U-M41007A (ex 545/30 nm, em 610/75 nm) Olympus Europa Holding GmbH 

Fluorescence microscope Provis AX70 Olympus Europa Holding GmbH 
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PCR cyclers 

CFX96 cycler Bio-Rad Laboratories GmbH 

Mastercycler ep gradient S Eppendorf AG 

Primus 25 MWG Biotech AG 

Primus 96 Plus MWG Biotech AG 

T1-Thermocycler Biometra GmbH 

UV-Vis spectrophotometers 

Cary 60 UV-Vis Agilent Technologies Inc. 

Double beam spectrophotometer Helios Alpha Thermo Fisher Scientific Inc. 

Infinite 200 microplate reader Tecan Trading AG 

Nano Drop ND 1000 Thermo Fisher Scientific Inc. 

Single beam spectrophotometer Ultrospec 2000 Pharmacia Biotech AG 

Synergy 2 microplate reader BioTek Instruments Inc. 

Synergy HTX microplate reader BioTek Instruments Inc. 

Other equipment 

Block thermostat BT 100 Kleinfeld Labortechnik GmbH 

Cell disruptor FastPrep FP120A-230 Thermo Fisher Scientific Inc. 

DNA Speed Vac DNA 110 Savant Instruments Pvt Ltd. 

Drying cabinet S1 6200 Heraeus Instruments GmbH 

Electroporator MicroPulser Bio-Rad Laboratories GmbH 

Magnetic stirrer IKAMAG RH  IKA-Werke GmbH & Co. KG 

Microwave R-937 Sharp Electronics GmbH 

pH meter HI 83141 Hanna Instruments GmbH 

Pipettes Eppendorf AG 

Rotary Evaporator Laborota 4000 Heidolph Instruments GmbH 

Safety cabinet HeraSafe HS12 Heraeus Instruments GmbH 

Thermomixer comfort 1.5 ml Eppendorf AG 

Ultrapure water system Milli-Q Reference Merck KGaA 

UV transilluminator with dark hood DH-30/32 Biostep GmbH 

Vibration mill MM200 Retsch GmbH 

Vortexer Minishaker MS2 IKA Works Inc. 

Vortexer REAX 2000 Heidolph Instruments GmbH 

Water bath with circulation thermostat MP-5 JULABO Labortechnik GmbH 

Water bath GFL-1008 Ges. f. Labortechnik GmbH 

2.2. Chemicals, biochemicals and nucleic acids 

Relevant chemicals 

All used chemicals have been obtained commercially. 

1 kb DNA ladder Thermo Fisher Scientific Inc. 

λ-DNA Thermo Fisher Scientific Inc. 

Agar AppliChem GmbH 

Agarose Biozym Scientific GmbH 

Ampicillin Carl Roth GmbH & Co. KG 

ATP Thermo Fisher Scientific Inc. 

Bradford reagent Bio-Rad Laboratories GmbH 

Bovine serum albumin Carl Roth GmbH & Co. KG 

Carboxin Sigma-Aldrich Co. LLC. 

cis-Aconitic acid ≥ 98 % Sigma-Aldrich Co. LLC. 

Citric acid monohydrate AppliChem GmbH 
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Diisopropyl ether Merck KGaA 

D,L-Na-Isocitrate Sigma-Aldrich Co. LLC. 

dNTPs Thermo Fisher Scientific Inc. 

Ethidium bromide Carl Roth GmbH & Co. KG 

FOA Thermo Fisher Scientific Inc. 

Glass beads (diameter: 0.75-1 mm) Carl Roth GmbH & Co. KG 

D-Glucose Carl Roth GmbH & Co. KG 

Herring sperm DNA Roche Dtl. Holding GmbH 

n-Hexadecane (≥ 99 %) Merck KGaA 

HPLC grade water Carl Roth GmbH & Co. KG 

Hydrogen peroxide Carl Roth GmbH & Co. KG 

Hygromycin B Carl Roth GmbH & Co. KG 

Itaconic acid ≥ 99 % Sigma-Aldrich Co. LLC. 

Iron sulphate Fe(II)SO4 x 7 H2O Merck KGaA 

α-Ketoglutaric acid sodium salt ≥ 98 % Sigma-Aldrich Co. LLC. 

PEG4.000 Merck KGaA 

Phytosphingosine hydrochloride Sigma-Aldrich Co. LLC. 

Magnesium sulphate Grüssing GmbH 

D-Malate Carl Roth GmbH & Co. KG 

Nile red (Nile blue oxazone) Sigma-Aldrich Co. LLC. 

ONPG Carl Roth GmbH & Co. KG 

Oxaloacetate Sigma-Aldrich Co. LLC. 

D-Sorbitol Carl Roth GmbH & Co. KG 

Sucrose Carl Roth GmbH & Co. KG 

Sunflower seed oil 100 %, cold-pressed Ölmühle Fandler 

Thiamine pyrophosphate Sigma-Aldrich Co. LLC. 

TMCS Macherey-Nagel GmbH & Co. KG 

Tween 80 Carl Roth GmbH & Co. KG 

Uracil Sigma-Aldrich Co. LLC. 

Enzymes 

DNA ligase T4 Thermo Fisher Scientific Inc. 

DNase I – RNase free EURX Sp. z o.o. 

DreamTaq DNA polymerase Thermo Fisher Scientific Inc. 

FastAP thermosensitive alkaline phosphatase Thermo Fisher Scientific Inc. 

Glucanex® Sigma-Aldrich Co. LLC. 

Phusion DNA polymerase Thermo Fisher Scientific Inc. 

Restriction enzymes Thermo Fisher Scientific Inc. 

RNase A Thermo Fisher Scientific Inc. 

Kit systems 

Glucose and Sucrose colorimetric Assay Kit Sigma-Aldrich Co. LLC. 

Glucose UV test R-Biopharm AG 

Invitek Invisorb Spin DNA Extraction Kit Stratec Molecular GmbH 

Invitek Invisorb Spin Plasmid Mini Two Stratec Molecular GmbH 

Invitek MSB Spin PCRapace Stratec Molecular GmbH 

Maxima SYBR Green/ROX qPCR Master Mix Thermo Fisher Scientific Inc. 

NucleoSpin RNA Clean-up XS  Macherey-Nagel GmbH & Co. KG 

RevertAid First Strand cDNA Synthesis Kit Thermo Fisher Scientific Inc. 
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Test strips 

Glucose test strip BIOPHAN G Kallies Feinchemie AG 

pH test strip pH-Fix 2.0-9.0 Macherey-Nagel GmbH & Co. KG 

pH test strip pH 0-6.0 Acilt Merck KGaA 

2.2.1. Oligonucleotides (PCR primers) 

The oligonucleotides listed below in table 2 & table 3 were used as primers for polymerase chain 

reactions (PCR) and purchased from Eurofins MWG GmbH. 

Table 2 Primers used in this study for genetic modifications of Y. lipolytica. 
Non-complementary sequences are written in small letters and introduced restriction sites (RS) are underlined. * Primer 
pTef_SpeI_fw3 was also used for the overexpression of YHM2. 

Primers used for Yarrowia lipolytica 

Name Sequence (5’  3’) RS 

Primers for the overexpression of YlACO1 

pTef_SpeI_fw3 * CTACGCTTGTTCAGACTTTG - 

pTef_ol_ACO1_rv gaaactcgagaagccagcatTTTGAATGATTCTTATACTC - 

ACO1_ol_pTef_fw gagtataagaatcattcaaaATGCTGGCTTCTCGAGTTTC - 

ACO1_rv_SphI atatagcatgcTTATTTCTTGGAGGCAGCCATC SphI 

AscI_CI_rv_out AGAGACCTCCCACAAAG - 

Primers for the deletion of YlCTP1 

pCTP1_fw TTTCCTTGATGGCGTACTCC - 

pCTP1_rv_BglII atataagatctTGTCAATGTGTCTGTGTCTG BglII 

tCTP1_fw_BglII atataagatctACGTTTATACATAATGACTA BglII 

tCTP1_rv_KpnI atataggtaccGCTGGAAACACCGGTTCTGG KpnI 

pCTP1-DK-Ampl_fw TTGGCCACTCCATCCCAGTC - 

Primers for the deletion of YlYHM2 

pYHM2_fw AGTGGTGCCGATACGATTAC - 

pYHM2_rv_BamHI ggatccGTCGGAGGAGAGGGAAATGG BamHI 

tYHM2_fw_BamHI ggatccTCCGTGATTCCCCTTAGAC BamHI 

tYHM2_rw_BglII agatctGGCTCTGGTGTTTGTTTC BglII 

Primers for the overexpression of YlYHM2 

pTef_YHM2_ol_fw ttctgagtataagaatcattcaaaATGGGTGCTGCTAACCTC - 

pTef_YHM2_ol_rv gaggttagcagcacccatTTTGAATGATTCTTATACTCAGAA - 

YHM2_rv_MluI atataacgcgtTAGTGCTTACCAACAGGTCG MluI 

IntB_out_rv TCCTTGGCTAGACGAATG - 

 

Table 3 Primers used in this study for the genetic modifications of P. tsukubaensis. 
Non-complementary sequences are written in small letters and introduced restriction sites (RS) are underlined. * Primer 
pActin_KpnI_fw was also used for the overexpression of ADI1, AtCAD1, ITP1, MTT1, RIA1 & TAD1. 

Primers used for Pseudozyma tsukubaensis 

Name Sequence (5’  3’) RS 

Primers for the overexpression of LacZ 

pActin_KpnI_fw * atataggtaccGGCCCGTTCAACACAATGCG KpnI 

pActin_oLacZ_rv acgaccatcgtgccggccatGTTGAAAGTAAGTGGTGGGG - 

LacZ_oActin_fw ccccaccacttactttcaacATGGCCGGCACGATGGTCGT - 

LacZ_PstI_rv atatactgcagTTAACCGGTTTTTGACACCAG PstI 

pGAPDH_KpnI_fw atataggtaccATCCTTCGGACGGCGACATC KpnI 

pGAPDH_oLacZ_rv acgaccatcgtgccggccatTGTGAATAATTTTTGGGATG - 
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Primers for the overexpression of LacZ 

LacZ_oGAPDH_fw catcccaaaaattattcacaATGGCCGGCACGATGGTCGT - 

pHSP70_KpnI_fw atataggtaccACGCAGCAACCGAGTGTCAG KpnI 

pHSP70_oLacZ_rv acgaccatcgtgccggccatGATGAATGATGTGAACCTTT - 

LacZ_oHSP70_fw aaaggttcacatcattcatcATGGCCGGCACGATGGTCGT - 

pTef_KpnI_fw atataggtaccGTCCGTTGCCGCAGTCGCTC KpnI 

pTef_oLacZ_rv acgaccatcgtgccggccatTTTGGATGATGTTTTTGATG - 

LacZ_oTef_fw catcaaaaacatcatccaaaATGGCCGGCACGATGGTCGT - 

Primers for the overexpression of PtACO1 

pActin_BsrGI_fw atatatgtacaGGCCCGTTCAACACAATGCG BsrGI 

pActin_oACO1_rv-long gagtgcgcgaaggggaagcatGTTGAAAGTAAGTGGTGGGGG - 

ACO1_oActin_fw-long cccccaccacttactttcaacATGCTTCCCCTTCGCGCACTC - 

ACO1_Ex_rv gcgaaagaggtcggttgaggCGGGATCGAACGACCTTGAG - 

ACO1_Ex_fw ctcaaggtcgttcgatcccgCCTCAACCGACCTCTTTCGC - 

ACO1_NsiI_rv atataatgcatTTAGGCGGACTTGGCGGCAG NsiI 

Primers for the overexpression of PtACO2 

pActin_Pfl23II_fw atatacgtacgGGCCCGTTCAACACAATGCG Pfl23II 

pActin_oACO2_rv agcgagcgaggcaatcatGTTGAAAGTAAGTGGTG - 

ACO2_oActin_fw caccacttactttcaacATGATTGCCTCGCTCGCT - 

ACO2_NsiI_rv atataatgcatTCAAATCTGACTAGGCTCAA NsiI 

Primers for the overexpression of PtADI1 

pActin_oADI1_rv cccgcaagaggattcgacatGTTGAAAGTAAGTGGTGGGG - 

ADI1_oActin_fw ccccaccacttactttcaacATGTCGAATCCTCTTGCGGG - 

ADI1_NsiI_rv atataatgcatTCATAGGGCTGTGGAATGCG NsiI 

Primers for the overexpression of AtCAD1 

pActin_oCAD1_rv tccgcagattgcttggtcatGTTGAAAGTAAGTGGTGGGG - 

CAD1_oActin_fw ccccaccacttactttcaacATGACCAAGCAATCTGCGGA - 

CAD1_NsiI_rv atataatgcatTTATACCAGTGGCGATTTCA NsiI 

Primers for the overexpression of PtITP1 

pActin_oITP1_rv acaggtgtctgtggaagcatGTTGAAAGTAAGTGGTGGGG - 

ITP1_oActin_fw ccccaccacttactttcaacATGCTTCCACAGACACCTGT - 

ITP1_NsiI_rv atataatgcatTCAAGAGTGCTTGCGAGCTG NsiI 

Primers for the overexpression of PtMTT1 

pActin_oMTT1_rv ttgcgttgaacggacggcatGTTGAAAGTAAGTGGTGGGG - 

MTT1_oActin_fw ccccaccacttactttcaacATGCCGTCCGTTCAACGCAA - 

MTT1_SdaI_rv atatacctgcaggTCAAAACTCGGGACCGGCGA SdaI 

Primers for the overexpression of PtRIA1 

pActin_oRIA1_rv ttgctgttcgagaggctcatGTTGAAAGTAAGTGGTGGGG - 

RIA1_oActin_fw ccccaccacttactttcaacATGAGCCTCTCGAACAGCAA - 

RIA1_NsiI_rv atataatgcatTCATCGGTGCCGTCTCCTGG NsiI 

Primers for the overexpression of PtTAD1 

pActin_oTAD1_rv gcgttgagagaaggtgccatGTTGAAAGTAAGTGGTGGGG - 

TAD1_oActin_fw ccccaccacttactttcaacATGGCACCTTCTCTCAACGC - 

TAD1_NsiI_tv atataatgcatTCACGTGGAAGGAGGTAGCA NsiI 

Primers for real-time PCR 

ADI1_I GCGGACACTGCCTTGCTATC - 

ADI_II TGGAACCTGGTCCGATGAGAG - 

EF1_I CTCCTCGACGCCATTGACG - 

EF1_II ACGGGCACAGTTCCGATACC - 

ITP1_I AAGGCCTCTCGCCGGTCATC - 
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Primers for real-time PCR 

ITP1_II CTGCGGCTTGAACCATACGC - 

MTT1_I AGGGCATAGCAGCTCTGTGG - 

MTT1_II GGACCGGCGAGAAGCCAAAC - 

RIA1_I TGGCTGCTGAGAGGAAGGAC - 

RIA1_II GCAGCTTAGCCAGCCCAAAC - 

TAD1_I CATCTCAAACCGTGGCTCATCG - 

TAD1_II ATCCAACAGCGCAGCAGTTC - 

UBC6_I CCGATTCGGCAAGCAAGACAG - 

UBC6_II GACTTCTCAAGCCCTGCGATG - 

 

2.2.2. Plasmids 

Starting vectors used for the construction of plasmids are shown in table 4. The resulting plasmids 

are described in table 5. Their mode of construction is elaborated in the results section. To 

conserve them for the future, the plasmids were transformed into E. coli Dh10b. The illustrated 

maps for all used plasmids can be found in the respective results section. 

Table 4 Overview of the starting plasmids. 
ampR – ampicillin resistance gene of E. coli, ORI – origin of replication, MCS – multiple cloning site, pXXX/XXXt – 
promoter/terminator region of the respective gene, TcR’ – partial tetracycline resistance gene of E. coli, URA3 – URA3 gene 
of Y. lipolytica with promoter and terminator region, eco47IR – gene for the restriction enzyme Eco47IR, hygR – 
hygromycin B resistance gene, sGFP – synthetic GFP gene of Aequorea victoria, TKL1’ – partial TKL1 gene of Y. lipolytica, 
cbxR – carboxin resistance gene. 

Plasmid Genetic markers Description Reference 

pIntC-ACS1 ampR, ORI, pTEF1, ACS1, 
ICL1t, TcR´, URA3, INTC 

Single-copy overexpression plasmid for the ACS1 
gene in Y. lipolytica. Integrates into non-coding 
region on chromosome C. 

Gatter et al. 
(2016) 

pIntB-CrtI ampR, ORI, pTEF1, CrtI, 
ICL1t, TcR´, URA3, INTF 

Single-copy overexpression plasmid for the 
codon optimized CrtI gene in Y. lipolytica. 
Integrates into non-coding region on 
chromosome B. 

Matthäus et al. 
(2014) 

pJET1.2 ampR, ORI, eco47IR Base plasmid used for the construction of the 
deletion plasmid for YHM2 in Y. lipolytica. 

Thermo Fisher 
Scientific Inc. 

pPTT ampR, hygR, sGFP  Used as base plasmid for the overexpression of 
itaconic acid cluster genes and the AtCAD1 gene 
in P. tsukubaensis. 

Bodinus (2011) 

pPTT.Cbx ampR, cbxR, sGFP Used as base plasmid for additional 
overexpression of the aconitase genes PtACO1, 
PtACO2 and the AtCAD1 gene in P. tsukubaensis. 

Limmer (2008) 

pUCBM21 ampR, ORI, MCS, E. coli LacZ Base plasmid used for the construction of 
deletion plasmids. 

Roche Dtl. 
Holding GmbH 

pUC-Lys2-DK2 ampR, ORI, pLYS2, LYS2t, 
TKL1‘, TcR‘, URA3 

The plasmid served as source for the URA Blaster 
(TcR´-URA3-TcR´ cassette). 

S. Leubner, 
C. Otto 
(unpublished) 

pUmPYC.Cbx ampR, cbxR, UmPYC1 Plasmid for the expression of the U. maydis PYC1 
gene. Used for the overexpression of PtACO1 & 
PtACO2 in P. tsukubaensis. 

Bodinus (2011) 
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Table 5 Overview of the constructed plasmids. 
ampR – ampicillin resistance gene of E. coli, ORI – origin of replication, MCS – multiple cloning site, pXXX/XXXt – 
promoter/terminator region of the respective gene, TcR’ – partial tetracycline resistance gene of E. coli, URA3 – URA3 gene 
of Y. lipolytica with promoter and terminator region, eco47IR’ – gene fragments of the restriction enzyme Eco47IR, hygR – 
hygromycin B resistance gene, cbxR – carboxin resistance gene, sPtACO1 – native ACO1 gene of P. tsukubaensis without 
the naturally occurring intron. 

Plasmid Genetic markers Description Reference 

Plasmids used for Y. lipolytica 

pIntC-ACO1 ampR, ORI, pTEF1, YlACO1, 

ICL1t, TcR´, URA3, INTC 

Single-copy overexpression plasmid for the 

YlACO1 gene in Y. lipolytica. Integrates into non-

coding region on chromosome C. 

This work 

pIntB-YHM2 ampR, ORI, pTEF1, YHM2, 

ICL1t, TcR´, URA3, INTF 

Single-copy overexpression plasmid for the 

YlYHM2 gene in Y. lipolytica. Integrates into non-

coding region on chromosome B. 

This work 

pJET-DK-YHM2 ampR, ORI, eco47IR‘, 

pYHM2, YHM2t, TcR´, URA3, 

Deletion plasmid for the YlYHM2 gene of 

Y. lipolytica. 

Gatter, 2015 

pUC-DK-CTP1 ampR, ORI, pCTP1, CTP1t, 

TcR‘, URA3 

Deletion plasmid for the YlCTP1 gene of 

Y. lipolytica. 

This work 

Plasmids used for P. tsukubaensis 

pPTT.Cbx-

pActin-ACO1-

Ex 

ampR, cbxR, pActin, 

sPtACO1 

Plasmid for the additional overexpression of the 

PtACO1 gene (without intron) under the control of 

the native Actin promoter in P. tsukubaensis. 

This work 

pPTT.Cbx-

pActin-ACO2 

ampR, cbxR, pActin, PtACO2 Plasmid for the additional overexpression of the 

PtACO2 gene under the control of the native 

Actin promoter in P. tsukubaensis. 

This work 

pPTT.Cbx-

pActin-AtCAD1 

ampR, cbxR, pActin, AtCAD1 Plasmid for the additional overexpression of the 

AtCAD1 gene under the control of the native Actin 

promoter in P. tsukubaensis. 

This work 

pPTT-pActin-

ADI1 

ampR, hygR, pActin, ADI1 Overexpression plasmid for the native PtADI1 

gene under the control of the native Actin 

promoter in P. tsukubaensis. 

This work 

pPTT-pActin-

AtCAD1 

ampR, hygR, pActin, AtCAD1 Overexpression plasmid for the AtCAD1 gene 

under the control of the native Actin promoter in 

P. tsukubaensis. 

This work 

pPTT-pActin-

ITP1 

ampR, hygR, pActin, ITP1 Overexpression plasmid for the native PtITP1 

gene under the control of the native Actin 

promoter in P. tsukubaensis. 

This work 

pPTT-pActin-

LacZ 

ampR, hygR, pActin, LacZ Overexpression plasmid for the LacZ reporter 

gene under the control of the native Actin 

promoter in P. tsukubaensis. 

This work 

pPTT-pActin-

MTT1 

ampR, hygR, pActin, MTT1 Overexpression plasmid for the native PtMTT1 

gene under the control of the native Actin 

promoter in P. tsukubaensis. 

 

 

This work 
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Plasmids used for P. tsukubaensis 

pPTT-pActin-

RIA1 

ampR, hygR, pActin, RIA1 Overexpression plasmid for the native PtRIA1 

gene under the control of the native Actin 

promoter in P. tsukubaensis. 

This work 

pPTT-pActin-

TAD1 

ampR, hygR, pActin, TAD1 Overexpression plasmid for the native PtTAD1 

gene under the control of the native Actin 

promoter in P. tsukubaensis. 

This work 

pPTT-pGAPDH-

LacZ 

ampR, hygR, pGAPDH, LacZ Overexpression plasmid for the LacZ reporter 

gene under the control of the native 

Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) promoter in P. tsukubaensis. 

This work 

pPTT-pHSP70-

LacZ 

ampR, hygR, pHSP70, LacZ Overexpression plasmid for the LacZ reporter 

gene under the control of the native heat shock 

protein, HSP70, promoter in P. tsukubaensis. 

This work 

pPTT-pTef-

LacZ 

ampR, hygR, pTef, LacZ Overexpression plasmid for the LacZ reporter 

gene under the control of the native translation 

elongation factor 1 (Tef) promoter in 

P. tsukubaensis. 

This work 

2.3. Microorganisms 

All the microorganisms used and constructed in this study are part of the strain collection of the 

Institute of microbiology of the TU Dresden. The strains were cryopreserved in 25 % (v/v) glycerol 

at -80 °C. For a summary of the strains see table 6. 

Table 6 Overview of the used and constructed microorganisms in this study. 

E. coli strain Genotype Reference 

DH10b F- mcrA ∆(mrr-hsdRMS-mcrBC) Φ80dlacZ∆M15 ∆lacX74 endA1 recA1 

deoR ∆(ara,leu)7697 araD139 galU galK nupG rpsL λ- SmR 

Invitrogen, 

Karlsruhe 

P. tsukubaensis 

strain 
Description Reference 

CBS422.96 (H488) Wild type. H488 is the denomination for the wild type given at the 

strain collection of the Helmholtz Centre for Environmental Research 

UFZ Leipzig. 

Kawamura et al. 

(1983) 

H488 M15 

(= CBS21214) 

Mutant strain of strain 488 obtained by random UV-radiation 

mutagenesis.  

Bodinus (2011) 

H488 M15-CAD5 Strain H488-M15 transformed with the plasmid pAtCAD1, a plasmid 

containing the A. terreus CAD1 gene controlled by the U. maydis HSP70 

promoter. 

Bodinus (2011) 

H488 HA Strain H488 transformed with the plasmid pPTT-pActin-ADI1. This work 

H488 HC Strain H488 transformed with the plasmid pPTT-pActin-AtCAD1. This work 

H488 HI Strain H488 transformed with the plasmid pPTT-pActin-ITP1. This work 

H488 HM Strain H488 transformed with the plasmid pPTT-pActin-MTT1. This work 

H488 HM14 Clone 14 of the transformants of strain H488 transformed with the 

plasmid pPTT-pActin-MTT1. 

This work 
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H488 HoMoC Strain H488 HM14 transformed with the plasmid pPTT-pActin-AtCAD1. This work 

H488 HR Strain H488 transformed with the plasmid pPTT-pActin-RIA1. This work 

H488 HR12 Clone twelve of the transformants of strain H488 transformed with the 

plasmid pPTT-pActin-RIA1. 

This work 

H488 HR12 A1 Strain H488 HR12 transformed with the plasmid pPTT.Cbx-pActin-

ACO1-Ex. 

This work 

H488 HR12 A2 Strain H488 HR12 transformed with the plasmid pPTT.Cbx-pActin-

ACO2. 

This work 

H488 HT Strain H488 transformed with the plasmid pPTT-pActin-TAD1. This work 

H488 MA Strain H488 -M15 transformed with the plasmid pPTT-pActin-ADI1. This work 

H488 MC Strain H488-M15 transformed with the plasmid pPTT-pActin-AtCAD1. This work 

H488 MI Strain H488-M15 transformed with the plasmid pPTT-pActin-ITP1. This work 

H488 MM Strain H488-M15 transformed with the plasmid pPTT-pActin-MTT1. This work 

H488 MM11 Clone eleven of the transformants of strain H488-M15 transformed with 

the plasmid pPTT-pActin-MTT1. 

This work 

H488 MoMoC Strain H488 MM11 transformed with the plasmid pPTT-pActin-AtCAD1. This work 

H488 MR Strain H488-M15 transformed with the plasmid pPTT-pActin-RIA1. This work 

H488 MR2 Clone two of the transformants of strain H488 transformed with the 

plasmid pPTT-pActin-RIA1. 

This work 

H488 MT Strain H488-M15 transformed with the plasmid pPTT-pActin-TAD1. This work 

Y. lipolytica strain Genotype Reference 

H222 MATA wild type Barth and 

Gaillardin (1996) 

H222-SW2-1 MATA ura3-302 SUC2 ku70∆-1572 Kretzschmar et al. 

(2013) 

H222∆CTP1 MATA ura3-302 SUC2 ku70∆-1572 ∆ctp1::URA3 This work 

H222∆YHM2 MATA ura3-302 SUC2 ku70∆-1572 ∆yhm2::URA3 This work 

H222∆YHM2 ura- MATA ura3-302 SUC2 ku70∆-1572 ∆yhm2 This work 

H222∆YHM2∆CTP1 MATA ura3-302 SUC2 ku70∆-1572 ∆yhm2 ∆ctp1::URA3 This work 

H222∆YHM2oACO1 MATA ura3-302 SUC2 ku70∆-1572 ∆yhm2 IntC-pTef-ACO1-URA3 This work 

H222oACO1 MATA ura3-302 SUC2 ku70∆-1572 IntC-pTef-ACO1-URA3 This work 

H222oYHM2 MATA ura3-302 SUC2 ku70∆-1572 IntB-pTef-YHM2-URA3 This work 

2.4. Cultivation 

For the preparation of solid agar plates, 2 % (w/v) agar was added to the liquid medium. All media 

were autoclaved for 20 min at 121 °C, if not stated otherwise. 

2.4.1. Media and cultivation of E. coli 

E. coli was cultivated in lysogeny broth (LB) medium according to Sambrook et al. (1989). Plasmid 

carrying, ampicillin resistant E. coli transformants were cultivated in 100 µg ml-1 ampicillin (stock 

solution: 10 mg ml-1) containing LBamp medium. Cells were grown overnight at 37 °C either on solid 

LBamp agar plates or in 3 ml liquid LBamp cultures in a shaking incubator at 220 rpm for plasmid 

preparation. 
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LB medium 

Tryptone 10 g l-1 

Yeast extract 5 g l-1 

NaCl 5 g l-1 

2.4.2. Media for yeasts 

The yeasts Y. lipolytica and P. tsukubaensis were cultivated in YPD (Yeast extract Peptone 

Dextrose) medium according to Barth and Gaillardin (1996). Before the transformation of 

Y. lipolytica pre-cultivation was performed in YPD pH 4.0. For the selection of plasmid containing 

P. tsukubaensis strains Hygromycin B with a concentration of 100 µg ml-1 or carboxin with a 

concentration of 50 µg ml-1 was added. 

YPD medium YPD medium pH 4.0 

Yeast extract 10 g l-1 10 g l-1 

Peptone from casein 20 g l-1 10 g l-1 

Dextrose 20 g l-1 10 g l-1 

pH 5.5-6.0 50 mM citric acid/sodium citrate, pH 4.0 

Minimal medium with glucose, MG medium, (modified according to Bodinus, 2011; Kawamura et 

al., 1981, 1982; Mauersberger et al., 2001) was used for growth tests and characterisation of organic 

acid production behaviour for both P. tsukubaensis and Y. lipolytica. 

MG medium Y. lipolytica P. tsukubaensis – MG P. tsukubaensis – MG-IA 

Carbon source 

 20 g l-1 D-glucose 50 g l-1 D-glucose X g l-1 D-glucose 

Iron 

 6 mg l-1 FeCl3 x 6 H2O " " 
(stock solution in EtOH) 

Mineral salts 

 3 g l-1 (NH4)2SO4 3 g l-1 (NH4)2SO4 X g l-1 NaNO3  NH4Cl 

 1 g l-1 KH2PO4 1 g l-1 KH2PO4 X g l-1 KH2PO4 

 0.16 g l-1 K2HPO4 x 3 H2O 0.16 g l-1 K2HPO4 x 3 H2O X g l-1 K2HPO4 x 3 H2O 

 0.7 g l-1 MgSO4 x 7 H2O " " 

 0.5 g l-1 NaCl " " 

 0.4 g l-1 Ca(NO3)2 x 4 H2O " 0.4 g l-1 CaCl2 x 2 H2O 

 - - 0.5 g l-1 K2SO4 

Trace elements 

 0.5 µg l-1 H3BO3 " " 

 0.04 µg l-1 CuSO4 x 5 H2O " " 

 0.1 µg l-1 KI " " 

 0.4 µg l-1 MnSO4 x 4 H2O " " 

 0.2 µg l-1 Na2MoO4 x 2 H2O " " 

 0.4 µg l-1 ZnSO4 x 7 H2O " " 
Vitamin 

 0.3 mg l-1 thiamine hydrochloride - 0.4 mg l-1 thiamine hydrochloride 

pH stabilization 

 - 3.3 g l-1 CaCO3 (insoluble) " 
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For certain experiments the carbon, nitrogen and/or phosphorus sources were modified (for 

MG-IA medium X represents the varying concentration). The specific media compositions for 

these cases are described in the respective results section. 

For Y. lipolytica the MG medium was also used as a selective medium for uracil prototrophic 

transformants. For the cultivation of uracil auxotrophic Y. lipolytica strains, 20 mg l-1 uracil was 

added to the MG medium (MGUra). Uracil auxotrophy was regained by 5-fluoroorotic acid (FOA) 

selection. 

2.4.3. Cultivation of yeasts 

The yeast cells were streaked from a -80 °C cryo-conserve (emers) onto agar plates containing 

complete medium YPD or medium for selection (YPD-Hyg, YPD-Cbx for P. tsukubaensis; MG for 

Y. lipolytica) and grown for 2-3 d. Growth temperature for P. tsukubaensis was 30 °C and 28 °C for 

Y. lipolytica. 

Screening of constructed yeast strains for organic acid production was carried out in a culture 

volume of 3 ml in 12-well plates (Sarstedt). The well plates were sealed with semipermeable 

adhesive membranes. The yeast cells were either grown in MG (Y. lipolytica) or MG-IA 

(P. tsukubaensis) medium with approximately 5 g l-1 CaCO3 as buffering agent.  

For larger volume cultivations, the yeast cells were pre-cultivated overnight in 10 ml YPD medium. 

The cells were harvested by centrifugation (3.500 rpm, 5 min) and washed with dH2O. 

Subsequently, 50 ml of minimal medium in 500 ml-baffled flasks were inoculated with the cells 

needed for a starting OD600 = 1.0 and cultivated for several days at 28 °C/30 °C and 220 rpm. The pH 

was either adjusted daily with the titration of 10 M NaOH and 3 M HCl or kept constant at pH 5.5-6.0 

with the initial addition of 3.3 g l-1 CaCO3 (specified in the respective results section). 

Large volume fed-batch cultivation was carried out in a 600 ml-bioreactor. Either 50 ml MG 

medium (Y. lipolytica) or 50 ml YPD medium (P. tsukubaensis) were inoculated with cells from 

agar plates and incubated in a 500 ml-baffled shaking flask at 28 °C/30 °C and 220 rpm for at least 

24 h until a cell density of OD600 = 25-35 was reached. The amount of cells mass needed to obtain 

a starting OD600 = 1.0 in the fermenter was harvested by centrifugation at 3.500 rpm for 5 min and 

resuspended in 3 ml sterile H2O. Start of fermentation was the point of inoculation. Cells were 

cultivated under the following conditions if not stated otherwise: 
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Table 7 Growth conditions for large volume cultivations of P. tsukubaensis and Y. lipolytica in a 600 ml-

bioreactor (Multifors, INFORS HT). 

 P. tsukubaensis Y. lipolytica 

Medium MG-IA (see results section) MG + 15 % (w/v) glucose or 10 % (v/v) sunflower oil 

Temperature 30 °C 28 °C 

O2 saturation 55 % 

Aeration airflow: 1 l min-1 normal air & stirring: ≥ 400 rpm 

pH pH 4.0 or 5.5 (adjusted by continuous titration of 

1 M HCl and 2.5-5.0 M NaOH) 

pH 5.5 (adjusted by continuous titration of 3 M 

H2SO4 and 10 M NaOH) 

2.4.4. Sampling 

Sampling of cultures was carried out every 24 h by directly removing 200-1.000 µl of culture broth 

in case of culture experiments in well-plates and shaking flasks. Bioreactor cultures were 

sampled every 24 h by removing 20 ml of culture broth through two three-way valves (to maintain 

sterility). The first 5 ml of broth were discarded (to avoid potentially accumulated dead cells in the 

sampling tube). The remaining 15 ml of culture broth were collected into a previously weighted 

15 ml-falcon tube. 

2.4.4.1. Determination of cell density (OD600) and dry cell weight (DCW) 

Optical density at a wavelength of λ = 600 nm was measured to track cell growth. The cells were 

pelleted by centrifugation for 5 min at 3.500 rpm, RT. The pellet was washed with 1 x mineral salt 

solution. If the cells were grown with CaCO3 as a solid buffer, the pellet was washed with 1 M HCl 

instead of the salt solution to completely dissolve the remaining calcium carbonate. After the 

washing step, the cells were resuspended and diluted with 1 x mineral salt solution (for the 

composition see mineral salts section for the Y. lipolytica-MG medium). Measuring was carried 

out in 1.5 ml disposable cuvettes (layer thickness: 10 mm) with a single beam photometer 

(Ultrospec 2000, Pharmacia Biotech). 

Dry-cell weight (DCW) was only determined for cell cultures grown in the bioreactor. 10 ml of the 

culture broth was pelleted (10 min at 3.500 rpm, RT) in the previously weighed 15 ml-falcon tube. 

The pellet was washed with 10 ml dH2O and pelleted again (10 min at 3.500 rpm, RT). The 

supernatant was removed. The pellet was then dried for 12 h at 100 °C and weighed to ultimately 

determine the DCW. 

In the case of cultivation with hydrophobic substrates, the residual amounts of oil had to be 

removed. Therefore, the cell pellets were first resuspended in 10 % Tween 80 shaken vigorously 

for 5 min and centrifuged (5 min at 3.500 rpm, RT). This was followed by another washing step 

with 10 % Tween 80 and the washing step described above. 
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2.4.4.2. Microscopy 

The cells were centrifuged and resuspended in 100 µl fixation solution (4.5 % (v/v) formaldehyde 

in PBS, PBS according to Sambrook et al. (1989)). Visualization was done via light and phase-

contrast microscopy at 400 X magnification.  

Fluorescence microscopy was done by staining the cells with 10 µl nile red solution (1 g l-1 nile red 

in acetone). The cells were later visualized at 1.000 X magnification with a U-M41007A filter (525‐

560 nm). Additional cell images were obtained with the Axio Observer 7 inverted fluorescence 

microscope using the Pln Apo 100 X/1.4 oil objective (excitation: 511 nm). Data was obtained and 

analysed using the Zen 2.3 Pro software (Carl Zeiss). 

PBS 

NaCl 8.0 g l-1 

KCl 0.2 g l-1 

Na2HPO4 x 2 H2O 1.78 g l-1 

KH2PO4 0.27 g l-1 

2.5. Genetic engineering methods 

2.5.1. Polymerase chain reaction (PCR) 

The proteins Phusion and DreamTaq served as polymerases for the performed polymerase chain 

reactions.  

The Phusion polymerase possesses a proof-reading function and thus drastically reduces the risk 

of incorporating a wrong nucleotide into the polynucleotide chain. It is therefore used for 

preparative PCR purposes. When the Phusion polymerase was used for overlap PCR, a second DNA 

template in an equimolar amount was added to the PCR mixture. The PCR products were either 

directly purified with the help of a PCR purification kit or separated with agarose gel 

electrophoresis and subsequently extracted from the gel. 

DreamTaq is not equipped with a proof-reading capability. For that reason, DreamTaq was only 

used for analytical applications e.g. screening of E. coli transformants (colony PCR) and analysis 

of genomic yeast DNA. For colony PCR, a single E. coli colony was picked with a sterile toothpick, 

transferred to 10 µl of the PCR mixture and afterwards streaked on solid LBamp medium. When 

analysing the genomic yeast DNA, 10 ng of the DNA was added to a 10 µl PCR mixture. After 

amplification, 1 µl of each reaction was checked with agarose gel electrophoresis for the presence 

of a DNA product with the desired size. 

For typical PCR mixtures see table 8 and for the respective temperature programs see table 9. 
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Table 8 Composition of PCR mixtures for analytical and preparative reactions. 

Component Volume - DreamTaq Volume - Phusion 

Buffer 1 µl 10 X green DreamTaq 10 µl 5 X Phusion Buffer 

MgCl2 (50 mM) 0.25 µl 0.5 µl 

Forward primer (10 µM) 0.25 µl 0.5 µl 

Reverse primer (10 µM) 0.25 µl 0.5µl 

dNTPs (10 mM each) 0.3 µl 1 µl 

Polymerase 0.1 µl DreamTaq (2.5 U µl-1) 0.5 µl Phusion (2.5 U µl-1) 

Template 1 10 ng 50 ng 

[Template 2] - equimolar to template 1 

RNase A (10 g l-1) 0.1 µl - 

HPLC water ad 10 µl ad 50 µl 

 

Table 9 Typical temperature program for the analytical and preparative PCR. 
Tm – annealing temperature of the primer with the lower annealing temperature. 

Reaction 
DreamTaq Phusion 

Temperature Time Cycles Temperature Time Cycles 

Initial denaturation 95 °C 5 min 1 98 °C 30 s 1 

Denaturation 95 °C 30 sec 30 98 °C 10 s 25 

Annealing Tm – 3 °C 30 sec Tm 30 s 

Extension 72 °C 1 min per 1 kb 72 °C 30 s per 1 kb 

Final extension 72 °C 5 min 1 72 °C 10 min 1 

2.5.1.1. Quantitative Real-time PCR (qPCR) 

The P. tsukubaensis strains H488 (wild type) and HR12 were cultivated in itaconic acid production 

medium (MG-IA) until an OD600 = 2-3 was reached. The total RNA of these cultures was isolated by 

Sina Science Services GmbH (Berlin, DE). Remaining DNA was eliminated with the help of DNase I 

for 15 min at 37 °C (for the composition of the reaction mixture see table 10). The RNA was 

afterward purified using the NucleoSpin RNA Clean-up XS kit. Synthesis of cDNA was done using 

the RevertAid First Strand cDNA Synthesis Kit according to the manufacturer’s protocol. For the 

qPCR the Maxima SYBR Green mastermix was utilized. The composition of the qPCR reaction and 

the temperature program are summarized in table 11 & table 12. 

Table 10 Composition for DNA elimination with DNase I 

Component DNase I 

RNA 30 – 40 µl 

10 X DNase I buffer 5 µl 

Ribolock Ribonuclease Inhibitor 1 µl 

DNase I 0.5 µl 

dH2O RNase free ad 50 µl 
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Table 11 Composition of the reaction mixture used for qPCR. 

Component DNase I 

SYBR Green Mastermix 5 µl 

Primermix (2.5 pmol µl-1 each) 1.2 µl 

cDNA (or RNA, H2O as control) 1 µl 

dH2O 2.8 µl 

 
Table 12 Temperature program used for qPCR 

Reaction 
qPCR 

Temperature Time Cycles 

Initial denaturation 95 °C 8 min 1 

Denaturation 95 °C 15 sec 40 

Annealing 58 °C 30 sec 

Extension 72 °C 10 sec 

Final extension 72 °C 2 min 1 

Melting point analysis 60 °C to 95 °C Increment 0.5 °C every 4 sec 

2.5.2. Agarose gel electrophoresis 

With the help of agarose gel electrophoresis DNA fragments have been separated based on their 

molecular weight. To prepare a 0.8 % agarose gel, 8 g l-1 agarose was solved in 1 X TAE buffer with 

0.2 mg l-1 ethidium bromide. The DNA samples were mixed with 1/5 volume of loading dye. The 

DNA-ladder (1 kb-ladder) and the DNA samples were separated in 1 X TAE buffer at 10 V cm2 -1. The 

ethidium bromide forms a complex with the nucleic acid. This complex was visualized with a UV-

transilluminator at a wavelength of 312 nm. 

50 X TAE-buffer (autoclaved) 

Tris 242 g l-1 

Glacial acetic acid 57.1 ml l-1 

EDTA 0.5 M (pH 8.0) 100 ml l-1 

dH2O  ad 1 l 

Ethidium bromide stock solution   10 mg ml-1 

6 X loading dye 

Glycerol 30 % (v/v) 

Bromophenol blue 0.05 % (w/v) 

2.5.2.1. Isolation of DNA from agarose gels 

Separated DNA fragments were excised from the gel with a sterile scalpel under an UV-

transilluminator. The DNA was extracted from the gel block using the Invisorb spin DNA 

Extraction Kit according to the manufacturer’s protocol. The DNA was eluted with 20 µl HPLC-H2O. 
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2.5.3. Restriction digestion of DNA fragments 

Vector DNA and DNA fragments were cut enzymatically with the aid of restriction enzymes. The 

DNA samples (≤ 2 µg) were mixed with the restriction enzyme and the corresponding buffer 

(according to the manufacturer’s protocol). In the case of double digestion with two enzymes, both 

buffers were applied. The concentrations of the enzymes and buffers were then halved. If a 

simultaneous restriction was not possible, the DNA was digested one after another and purified 

in between. The restriction reactions were incubated for 3 h or overnight at 37 °C. 

2.5.4. Purification of DNA fragments 

DNA fragments (> 100 bp) resulting from restriction digestion, PCR or from agarose gels 

(occasional additional purification) were purified from the reaction mixture components or other 

impurities. This was done with the help of the MSB Spin PCRapace kit. All steps of the 

manufacturer’s protocol, but the elution, were followed. The elution was carried out with 55 °C 

HPLC-H2O. 

2.5.5. Determination of DNA concentration 

DNA concentrations of purified fragments were determined spectrophotometrically (Nano Drop 

ND 1000). For each sample the absorption (wavelength λ = 260 nm) of 1 µl DNA was measured 

against 1 µl of HPLC water (eluent) with the help of a UV-Vis spectrophotometer. 

2.5.6. Dephosphorylation of vectors 

In some cases, the vectors were digested with a single enzyme or with two enzymes creating 

compatible sticky ends. In order to prevent recircularization of linearized vectors when ligation 

with an insert took place, the phosphate group at the 5’-end of the vector had to be removed. This 

was achieved by adding one unit of FastAP thermosensitive alkaline phosphatase and the 

corresponding phosphatase buffer to the linearized vector. The reaction was incubated for 30 min 

at 37 °C. The reaction was stopped for 15 min at 65 °C. 

2.5.7. Ligation of DNA fragments 

Ligation of DNA fragments was done with the help of the enzyme T4 DNA ligase. For a typical 

ligation, the insert was added in a molar ratio of 5:1 to the vector. The necessary DNA mass of the 

insert was calculated with the following equation: 

insert DNA mass �ng� =
5 x vector mass �ng� x insert length �bp�

vector length �bp�
 

The ligation reaction (for composition see table 13) was incubated at 22 °C for 3-4 h. As a negative 

control, HPLC-H2O was used instead of the insert. 
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Table 13 Composition of the ligation reaction with the T4 DNA ligase. 

Component Ligation 

Vector DNA (dephosphorylated) 75 ng 

Insert DNA 5:1 molar ratio 

T4 DNA ligase 1 U 

ATP 5 mM 

HPLC-H2O ad 20 µl 

2.5.8. Transformation of E. coli 

Electrocompetent E. coli DH10b cells were prepared according to Dower et al. (1988). 

Before transformation into E. coli, dialysis of the plasmid was carried out. This was done by 

applying 5 µl of the ligated plasmid solution onto a nitrocellulose membrane (pore diameter: 

0.025 µm, Millipore). Desalination happened against ultrapure water for 15 min. In the meantime, 

the E. coli cells were slowly unfrozen on ice. The plasmid solution was mixed with the cells and 

added into a pre-chilled electroporation cuvette (0.2 cm). After incubating on ice for 5 min, the 

cells were electroporated with an electrical pulse of 2.5 kV. Immediately after, the E. coli cells were 

mixed with 1 ml preheated SOC medium (37 °C) and incubated for one hour. 200 µl of this cell 

suspension was plated onto LBamp and incubated overnight at 37 °C. 

SOC medium (sterile filtered) 

Peptone from casein 20 g l-1 

Yeast extract 5 g l-1 

NaCl 10 mM 

MgCl2 10 mM 

KCl 2.5 mM 

Glucose 20 mM 

2.5.9. Isolation of plasmid DNA from E. coli 

Plasmid DNA from E. coli was isolated with the aid of the Invisorb Spin Plasmid Mini Two kit 

according to the manufacturer’s protocol. Elution of the plasmid DNA was done with 50 µl 55 °C 

HPLC-H2O. 

2.5.10. Integrative transformation of Y. lipolytica 

Integration of heterologous DNA into the genomic DNA of Y. lipolytica was carried out according 

to a modified version of the lithium acetate method described by Barth and Gaillardin (1996). 

The uracil auxotrophic recipient Y. lipolytica strain was pre-cultivated overnight in YPD pH 4.0 at 

28 °C and 220 rpm. The cells were harvested by centrifugation (3.500 rpm, 5 min, 28 °C) when the 

culture reached a cell density of 9 x 107 cells ml-1 – 1.2 x 108 cells ml-1. After removing the 

supernatant, the cell pellet was washed two times with TE buffer (pH 8.0). This cell pellet was then 

resuspended in 0.1 M LiAc buffer (pH 6.0), adjusted to a cell count of 5 x 107 cells ml-1 and incubated 
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for 1 h with slight shaking (100 rpm, 28 °C). The competent Y. lipolytica cells were then centrifuged 

and resuspended in 1:10 volume of LiAc buffer and stored at 4 °C. 

Y. lipolytica yeast cells were transformed with linearized DNA molecules. For the overexpression 

of a gene 1 µg if the whole linearized plasmid was transformed. For the deletion of a gene, 250 ng 

of only the respective deletion cassette (consisting of the promoter region (approximately 1 kb), 

the URA Blaster (TcR’, YlURA3, TcR’) and the terminator region (approximately 1 kb)) was 

transformed. Initially, 5 µl of the DNA was denatured at 95 °C for 5 min. 

Deletion of the ORFs was confirmed by PCR, using the forward primer of the respective promoter 

sequence and the reverse primer of the terminator. 

Homologous integration of the overexpression plasmid was confirmed by PCR using the primers 

AscI_CI_rv_out & ACO1_rv_SphI; IntB_out_rv & YHM2_rv_MluI. 

The actual transformation was carried out by gently mixing 100 µl of competent Y. lipolytica cells 

with 5 µl of the DNA (dH2O was used as negative control) and 5 µl carrier DNA (denatured). After 

incubating the cells for 15 min at 28 °C, 700 µl of PEG4000 (40 % (w/v) polyethylene glycol 4000 in 

0.1 M LiAc buffer, pH 6.0, sterile filtered) was added. Another 60 min incubation at 100 rpm and 

28 °C followed. The cells were treated with a 39 °C heat shock for 10 min. Afterwards, two times 

600µl LiAc buffer were added and the cells were harvested by centrifugation (5 min, 3.500 rpm, 

RT). 750 µl of the supernatant was discarded. With the remaining supernatant, the yeast cells were 

gently streaked onto selective plates with glucose and incubated for several days at 28 °C. 

TE buffer pH 8.0 

Tris/HCl pH 8.0 10 mM 

EDTA pH 8.0 1 mM 

LiAc buffer 

Lithium acetate 0.1 M 

Acetic acid volume needed to adjust to a final pH 6.0 

Carrier DNA 

Herring sperm DNA 10 g l-1 (fragmented with ultrasound, size approximately 500 bp) 

Tris pH 8.0 50 mM 

EDTA pH 8.0 5 mM 

2.5.10.1. Marker rescue (5-FOA selection) 

The uracil auxotrophy for strain H222∆YHM2 was regained according to Boeke et al. (1987) by 

plating the cells of an overnight culture (104-106 cells) on solid minimal medium containing 2 % 

(w/v) glucose, 20 mg l-1 uracil and 1 g l-1 FOA (SL: 100 g l-1 in DMSO). The cells were incubated at 

28 °C for multiple days. 

2.5.11. Transformation of P. tsukubaensis 

Transformation of whole circular plasmid DNA was carried out according to Gillissen et al. (1992) 

& Schulz et al. (1990) modified by Bodinus (2011). 
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For the transformation of P. tsukubaensis only freshly prepared protoplasts were used. To obtain 

protoplasts, P. tsukubaensis cells were grown overnight in 3 ml YM medium at 30 °C and 220 rpm. 

On the next day, 1 ml of the culture was transferred to 50 ml YEPSlight medium and grown for at 

least 3 h at 30 °C and 220 rpm until an OD600 = 0.5 was reached. The cells were harvested by 

centrifugation (5 min at 3.500 g, RT). The cell pellet was washed with 20 ml SCS, pelleted again and 

resuspended in 2 ml Glucanex (6 % (w/v) in SCS, sterile filtered). For the enzymatic lysis of the cell 

wall, the cells were incubated in a 50 ml-falcon tube at RT and soft shaking for 30-45 min until 

approximately 50 % of the cells were present in the form of protoplasts. Harvesting the protoplasts 

was done by centrifugation (10 min, 2.500 rpm, 4 °C). The pellet was consecutively washed in 20 ml 

SCS-, 10 ml SCS- and 20 STC-buffer (ice-cold SCS & STC). After the last washing step, the cells were 

resuspended in 0.5 ml STC (ice-cold) and ultimately aliquoted into 1.5 ml-reaction tubes with a 

final volume of 80 µl per tube. 

The protoplasts were gently mixed with up to 15 µg circular plasmid DNA (max volume: 10 µl) and 

incubated on ice for 10 min. As a control 10 µl of dH2O was used instead of DNA. The cells were 

overlaid with 500 µl PEG4000 (40 % (w/v) polyethylene glycol 4000 in STC, sterile filtered) and 

incubated on ice for 15 min. In the meantime, the selective agar plates were prepared: Reg-

medium was liquefied and cooled down to approximately 50 °C and mixed with the doubled 

concentration of Hygromycin B (200 µg ml-1) or Carboxin (100 µg ml-1). 10 ml of Reg-Hyg/ Reg-Cbx 

was used as a base-agar and overlaid with the same amount of Reg-medium (no marker) as a top-

agar. The protoplasts were gently plated and incubated at 30 °C for 3-15 d. Colonies obtained after 

transformation were streaked onto selective plates for purification. Single colonies were then 

screened phenotypically for itaconic acid production. Genomic DNA was isolated from suitable 

candidates. The genomic DNA was used as template for PCR to check for integration of the 

respective overexpression plasmid. 

YEPSlight SCS buffer 

Yeast extract 10 g l-1  Sorbitol 1 M 

Peptone from casein 4 g l-1  Sodium citrate 20 mM pH 5.8 

Sucrose 4g l-1 

Reg medium STC buffer 

Peptone 20 g l-1  Sorbitol 1 M 

Sucrose 20 g l-1  Tris/HCl 10 mM pH 7.5 

Sorbitol 1 M  CaCl2 0.1 M 

Agar 20 g l-1 
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2.5.12. Isolation of genomic yeast DNA 

For the isolation of genomic DNA, the yeast cells were grown overnight in 10 ml YPD full medium 

at 28 °C and 220 rpm. A volume of 2 ml of the cells was harvested by centrifugation (5 min, 

13.000 rpm, 4 °C). The cell pellet was resuspended in 500 µl lysis buffer. 400 µl of glass beads (0.75-

1 mm) were added and cell lysis was performed with the help of a vibration mill (FastPrep FP120A-

230) for two times 30 s at 5.5 m s-1. The supernatant was collected, mixed with 275 µl 7 M 

ammonium acetate pH 7.0 and incubated at 65 °C for 5 min. Another incubation on ice for 5 min 

followed. Then the samples were mixed with 500 µl chloroform and centrifuged. The upper phase 

was collected, precipitated with 1 ml isopropanol and centrifuged (15 min, 13.000 rpm, RT). The 

DNA pellet was washed two times with 200 µl ice-cold 70 % (v/v) ethanol, dried and eluted in 50 µl 

HPLC-H2O at 37 °C overnight. RNA was eliminated by adding 0.2 g l-1 RNase A. 

Lysis buffer 

Tris pH 8.0 100 mM 

EDTA 50 mM 

SDS 1 % (w/v) in H2O 

2.5.13. DNA sequencing 

De novo sequencing of genomic DNA and RNA of P. tsukubaensis strains, the assembly of the 

reads into contigs and the preliminary annotation was carried out by IIT Biotech GmbH in 

Bielefeld. 

Sequencing of plasmid DNA for the verification of the validity of the respective sequence was 

done by Eurofins Genomics GmbH. For the sequencing service, 15 µl of plasmid DNA with a 

concentration of 50-100 ng µl-1 was mixed with 2 µl 10 pmol µl-1 primer. 

2.6. Biochemical methods 

2.6.1. Determination of promoter activity – β-galactosidase assay 

In order to quantify the activity of the different promoters in P. tsukubaensis, their sequence was 

fused to the E. coli reporter gene LacZ. The respective constructs were transformed into strain 

H488 and M15. Cultivation of the resulting transformants was carried out in 2.5 ml YPD or MG-IA 

(minimal medium with glucose for itaconic acid production with 2 g l-1 N source and 0.1 g l-1 P 

source) in 12-well plates sealed with a semipermeable membrane. Duration of cultivation at 30 °C 

and 220 rpm was 2 d for YPD and 4 d for MG-IT. 

After cultivation, the β-galactosidase activity of each transformant was determined according to 

Smale (2010). Thus, the cells were harvested by centrifugation (5 min, 3.500 rpm, RT), washed with 

PBS and after another centrifugation step (1 min, 8.000 rpm, RT) resuspended in 1 ml PBS. The 

washing step was repeated once again, and the cell pellet was resuspended in 2 ml 0.25 M Tris/HCl 

pH 8.0. For cell lysis, the suspension was frozen in an ethanol/dry ice bath and thawed at 37 °C. 

This was repeated three times. Cell debris was sedimented by centrifugation (5 min, 13.000 rpm, 
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4 °C). The supernatant or raw protein extract was kept on ice and used for the β-galactosidase 

activity assay. For the quantification of β-galactosidase activity, a reaction mixture with the 

following composition was mixed in a disposable 1.5 ml cuvette (layer thickness: 10 mm) and 

incubated at 37 °C until the reaction changed its colour to faint yellow: 

β-galactosidase reaction mixture Mg2+ buffer 

raw protein extract 30 µl β-mercaptoethanol 4.9 M 

Mg2+ buffer 3 µl MgCl2 0.1 M 

ONPG (4 mg ml-1) 66 µl 

0.1 M KPP buffer pH 7.5 201 µl 

The incubation period was recorded and the amount of o-nitrophenyl-β-D-galactopyranoside 

(ONPG) converted into galactose and o-nitrophenol (ε = 4500 M-1 cm-1) was then measured 

spectrophotometrically at a wavelength of λ = 420 nm. 

PBS 

NaCl 137 mM 

KCl 2.7 mM 

Na2HPO4 10 mM 

KH2PO4 1.8 mM 

2.6.2. Aconitase (YlACO1p) enzyme assay 

For the determination of aconitase activity in the yeast Y. lipolytica, cells were precultured 

overnight in 50 ml YPD medium at 28 °C and 220 rpm. On the following day, the cells were 

harvested (5 min, 3.500 rpm, RT) and washed with a 1 x mineral salt solution. A 500 ml-shaking 

flask with 50 ml minimal medium with glucose was then inoculated with an initial OD600 = 2.0. 

The yeast culture was grown for 16 h at 28 °C and 220 rpm. After the 16 h incubation, the cells were 

harvested by centrifugation (5 min, 5.000 rpm, 4 °C). Subsequently, the cell pellet was washed with 

aconitase lysis buffer and centrifuged again. The cell pellet was then resuspended in 1 ml 

aconitase lysis buffer. 500 µl glass beads (0.75-1 mm) were added and mechanical cell lysis was 

carried out two times for 30 s at 5.5 m s-1 with the aid of a vibration mill. Cell debris was separated 

by centrifugation (5 min, 13.000 rpm, 4 °C). The supernatant or raw protein extract was kept on ice 

and used for the aconitase activity assay. 

The spectrophotometric assay, according to Anfinsen (1955), was carried out using cell-free 

supernatant fractions for the determination of aconitase enzyme activity. During the assay, the 

change in absorbance at a wavelength of λ = 240 nm was measured for 4 min. This change in 

absorbance is due to the conversion of isocitrate into cis-aconitate (ε = 4.88 mM-1 cm-1) catalysed 

by aconitase. Measurements were performed with a total volume of 1 ml in 1.5 ml disposable 

cuvettes (layer thickness: 10 mm). For the reaction mixture 50 mM KPP pH 7.4, 10 mM 

D,L-isocitrate and the raw protein extract was used. If needed, the raw protein extract was diluted 

using KPP. 



Materials & Methods 

42 

Aconitase lysis buffer 

Tris/HCl pH 7.0 100 mM 

MgCl2 5 mM 

In order to calculate the final enzyme activity, the Beer-Lambert law was applied as follows: 

enzyme activity �U/mg� =
ΔOD

ε x protein �mg/ml�x Δt 
 x dilution factor 

where, ∆OD is the change in absorbance at a specific wavelength over time ∆t (for the 

β-galactosidase assay only the final absorbance was considered) 

ε is the wavelength-dependent molar absorptivity coefficient [mM-1 cm-1]. 

2.6.3. Determination of total protein amount 

Total protein amounts of the protein raw extracts for the β-galactosidase and aconitase assays 

were determined spectrophotometrically according to Bradford (1976). For one reaction, 160 µl of 

the raw protein extract were mixed with 40 µl of Bradford reagent (Bio-Rad). Measurements were 

carried out in 96-well plates at a wavelength of λ = 595 nm. Ultrapure water served as a negative 

control. The standard curve was obtained with different concentrations of bovine serum albumin 

(BSA). 

2.6.4. Determination of glucose and sucrose concentrations 

Glucose concentration in the culture medium was determined by performing an enzyme assay 

with the help the enzyme assay kit Glucose UV test. It was executed according to the 

manufacturer’s protocol. 

Sucrose concentrations in the culture medium were determined with the aid of the glucose and 

sucrose assay kit. The manufacturer’s protocol for the colorimetric assay was followed. 

2.6.5. Quantification of organic acids 

One millilitre of culture broth was collected and centrifuged (18000 rpm, 4 °C, 15 min). The cell-free 

supernatant was collected and diluted with Milli-Q H2O (1:100-1:1000). Those samples were 

analysed with the ion chromatograph IC-2100 equipped with the autosampler AS50, the 

suppressor ASRS 300, the column IonPac AS27 (2 x 250 mm) and the pre-column IonPac AG27 

(2 x 50 mm). The chromatograms were analysed with the software Chromeleon 6.81 

(ThermoFisher Scientific). If the cells were cultivated with sunflower seed oil, the samples were 

degreased previously by adding 500 µl n-hexane to the sample, vigorous mixing for 5 min and 

centrifugation (13.000 rpm, 5 min, 4 °C). The aqueous phase was collected, 500 µl n-hexane was 

added, mixed again and centrifuged. The aqueous phase was collected and diluted with Milli-Q 

H2O for ion chromatography. 

For parameters used for chromatography see table 14. 
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Table 14 Parameters used for separation and quantification of relevant organic acids and anions with the 

ion chromatography system Dionex IC-2100 

anion-exchange column IonPac AS27 (2 x 50 mm) + guard column AS27 (2 x 50 mm) 

flow rate 0.38 ml min-1 

injection volume 10 µl 

eluent KOH 

gradient 0 – 3 min  

3 – 5 min  

5 – 34 min  

34 – 43 min 

43.1 – 45 min 

5 mM isocratic 

16 mM linear 

45 mM linear 

45 mM isocratic 

5 mM isocratic 

retention times malate 

itaconate 

α-ketoglutarate 

citrate 

16.3 min 

17.3 min 

19.4 min 

32.1 min 

nitrate 

sulphate 

phosphate 

isocitrate 

10.9 min 

15.3 min 

25.9 min 

34.0 min 
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3. Results 

3.1. Itaconic acid production with the yeast Pseudozyma tsukubaensis 

3.1.1. Minimal medium for growth and ITA production 

The initial ITA production medium according to Kawamura et al. (1981, 1982) consisted of 100 g l-1 

glucose, 1.5 g l-1 NaNO3, 0.5 g l-1 KH2PO4, 0.1 g l-1 MgSO4 and 0.2 % corn steep liquor (CSL). During his 

work, Bodinus (2011) altered the composition of this medium but CSL remained an integral part of 

it. The viscous CSL is a by-product arising from corn wet milling that is rich in vitamins, amino 

acids, minerals and trace elements. For an optimized and highly standardized production process 

of fermentation products, such a complex ingredient is undesired, since it has a variable 

composition due to differences in the processing of the corn starch and due to the variability in 

the chemical makeup of the corn itself. Hence, the use of CSL can lead to increased variability in 

growth behaviour or organic acid production.  

At the beginning of this study, it was important to find a substitute for CSL in the minimal 

medium. Supplementation of the medium with different vitamins was tested. The micronutrients 

were selected because they are generally known to be necessary for the growth of 

microorganisms. Table 15 shows the supplements which enabled growth of P. tsukubaensis H488 

wild type cells in liquid cultures with minimal medium + glucose (MG). As a reference, yeast 

extract-peptone-dextrose (YPD) medium was used. YPD medium also has complex components 

which provide every essential nutrient. Thus, the yeast cells grew rapidly when cultivated in YPD. 

Table 15 Growth behaviour of P. tsukubaensis wild type strain H488 in liquid minimal medium with 5 % 

(w/v) glucose (MG) and different vitamins. 
The yeast cells were either pre-cultivated with YPD or MG medium (3 g l-1 (NH4)2SO4, 1 g l-1 KH2PO4, for composition see 
section 2.4.2). The main cultures were inoculated with a starting OD600 = 1. The yeast cells were incubated for 2 d while 
shaking (220 rpm) at 30 °C. In two cases, the minimal medium was supplemented on the first day of growth either with 
YPD or the vitamin solution. The vitamin solution consists of the listed vitamins at the respective concentration. * (✔) - 
marks slow initial growth. 

Medium pre-culture Supplementation at 1st d Growth 

MG MG - - 

MG YPD - (✔)* 

YPD YPD - ✔ 

MG + YPD MG + 10 % (v/v) YPD ✔ 

MG + Vit MG vitamin solution ✔ 

MG + 0.2 mg l-1 4-aminobenzoic acid MG - - 

MG + 0.2 mg l-1 biotin MG - - 

MG + 0.4 mg l-1 calcium pantothenate MG - - 

MG + 0.2 mg l-1 folic acid MG - - 

MG + 2.0 mg l-1 inositol MG - ✔ 

MG + 0.4 mg l-1 niacin MG - - 

MG + 0.4 mg l-1 pyridoxin hydrochloride MG - - 

MG + 0.2 mg l-1 riboflavin MG - - 

MG + 0.4 mg l-1 thiamine hydrochloride MG - ✔ 
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As expected, the yeast cells did not grow when both pre- and main cultivation were carried out in 

plain MG medium. However, when the MG medium was directly inoculated with P. tsukubaensis 

cells from YPD (without transferring any YPD medium) a slow growth was observable. This was 

an indicator that the cells potentially store or at least bind the necessary nutrients needed for cell 

growth. Even these small amounts seemed to be enough to maintain a low level of cell 

proliferation for the observed 48 h of cultivation. 

In the case, where the pre- and main cultures were set-up in non-supplemented MG medium, the 

yeast cells remained dormant. Despite no cell multiplication being detectable after 24 h 

incubation, growth could be induced by adding liquid YPD or the composite vitamin solution. This 

showed that the vitamin solution was enough to substitute for CSL. During the next step, only one 

out of the nine supplements was added to the MG medium. That way, it was demonstrated that 

inositol and thiamine, each individually, enabled growth of P. tsukubaensis in minimal medium. 

This was a surprising result because the two molecules are structurally very distinct from another 

and don’t share a common metabolic pathway. In later experiments, thiamine hydrochloride was 

chosen to substitute for CSL. 

3.1.1.1. Relationship of organic acid production to phosphate and nitrogen concentrations 

For A. terreus it is believed that a limitation of an essential element other than the C source is 

needed to induce ITA production. Commonly, P limitation is used to trigger ITA synthesis in this 

filamentous fungus. (Klement and Büchs, 2013; Welter, 2000). For U. maydis and P. antarctica it 

was demonstrated that a limitation in N is beneficial for the ITA production (Klement et al., 2012; 

Levinson et al., 2006). 

As mentioned above, a basic composition for a minimal medium for the growth of P. tsukubaensis 

H488 had been found, but it was now crucial to develop it further regarding its N and P content, to 

ensure high ITA production with P. tsukubaensis. Therefore, the role of the ratio between the 

available N and P source in the minimal medium was investigated. To elaborate, which N:P ratio 

leads to a substantial organic acid production, a preliminary test was performed with strain H488 

in which four different N:P ratios were tested [in g l-1]: 10:0.4, 3:1,  2.5:0.1, 0.75:0.25 

Since the P. tsukubaensis wild type produces very low levels of ITA, the production of MA was 

used as the acid production benchmark during preliminary tests. 
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Figure 8 Malic acid (MA) production behaviour of P. tsukubaensis H488 wild type strain in minimal medium 

with glucose when cultivated with different nitrogen (N) and phosphate (P) concentrations. 
The yeast cells have been grown for up to 6 d in modified minimal medium (MG) with 5 % (w/v) glucose, and different 
concentrations of (NH4)2SO4, and KH2PO4 in 500 ml-baffled flasks at 30 °C and 220 rpm. The medium was kept at a neutral 
pH with the addition of 3.3 g l-1 CaCO3. 

Figure 8 shows that a high N:P ratio (2.5:0.1) was advantageous for the production of MA. With this 

medium, a rapid increase in MA concentration was detected. After 48 h, 2.2 g l-1 MA were 

measured in the culture’s supernatant. Afterwards, the concentration did not increase further. 

With the same N:P ratio but with higher initial concentrations (10:0.4) almost no organic acid was 

synthesised.  

A high N:P ratio but with low initial concentrations (0.75:0.25) also led to the secretion of organic 

acid but the synthesis rate was considerably slower. After 4 d of cultivation, 2.0 g l-1 MA have been 

detected in the medium. Although the yeast grew much more rapidly with 3 g l-1 N and 1 g l-1 P, the 

synthesis rate for MA was even slower when larger amounts of substrates were present initially. 

In this case, after 5 d of cultivation, only 1.4 g l-1 MA were detected in the medium. 

Based on this data, further cultivations were carried out with initial maximum N concentrations 

of 5 g l-1 and 0.1 or 2.0 g l-1 P. Also, the N source, previously (NH4)2SO4, was exchanged for NaNO3, 

because the sulphate anions were interfering during the analytics of ITA quantification. This 

medium was named MG-IA (for composition see 2.4.2). 

With the aid of the adjusted medium composition, not solely MA but also the production of ITA 

was induced in strain H488. The production behaviour for both organic acids appeared to be 

correlated. Highest concentrations for MA (6.8 g l-1 at 5th d) and ITA (1.8 g l-1 at 4th d) were reached 

with 5 g l-1 N source and 0.1 g l-1 P source. With the same amount of P but less N (N:P = 2:0.1) slightly 

lower organic acid levels were achieved (see figure 9).  

By substantially limiting the initial N amounts, the acid production rate was drastically lowered. 

The organic acid synthesis was brought to baseline levels with 2.0 g l-1 P source and limited N 

supply. This drastic reduction is not solely due to the decrease in cell mass. When both 

compounds were limited, comparable low cell densities have been observed but the secretion of 
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MA (1.0 g l-1 at 4th d) and ITA (0.8 g l-1 at 4th d) into the medium were higher. Providing initially 

2.0 g l-1 of N & P sources, led to the highest cell density. This fact did not reflect on the resulting 

concentrations of the secreted organic acids. Less ITA was secreted than with an N:P ratio of 5:0.1 

or 2:0.1 besides the higher cell density. 

Figure 9 Organic acid production behaviour of P. tsukubaensis H488 wild type strain in minimal medium 

with glucose when cultivated with different nitrogen (N) and phosphate (P) concentrations. 
The yeast cells have been grown for up to 5 d in modified minimal medium (MG-IA) with 5 % (w/v) glucose, and different 
concentrations of NaNO3, and KH2PO4 in 500 ml-baffled flasks at 30 °C and 220 rpm. The medium was kept at a neutral pH 
with 3.3 g l-1 CaCO3. Shown are the mean values for three separate cultivations. 

Bodinus (2011) established the high ITA producing P. tsukubaensis strain M15-CAD. The strain was 

derived from the wild type H488 by UV-mutagenesis and additional overexpression of the 

A. terreus AtCAD1 gene. This strain was also tested in MG-IA medium with N:P ratios that deemed 

optimal for strain H488. Figure 10 shows that the proportions of ITA to MA are reversed with this 

strain compared to the wild type. It secretes mainly ITA. For all three tested media, high 

concentrations of ITA and relatively low concentrations of MA were secreted. The final 

concentrations for MA were relatively similar, ranging from 1.2 to 1.7 g l-1, for all three media 

compositions. The highest ITA yield of 16.2 g l-1 ITA at the end of the cultivation period, was 

achieved with 2 g l-1 N and 0.1 g l-1 P. With the same amount of P and higher concentrations of N 

source much less ITA was produced (8.9 g l-1 at 5th d). By increasing N and P concentrations to 

5 g l-1 and 1 g l-1, respectively, the yeast cells grew to a high cell density. Contrary to strain H488, 

strain M15-CAD maintained a high productivity of ITA (13.6 g l-1 at 5th d) even during increased cell 

growth. 
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Figure 10 Organic acid production behaviour of the ITA overproducing strain P. tsukubaensis M15-CAD 

(Bodinus, 2011) in minimal medium with glucose when cultivated with different nitrogen (N) and phosphate 

(P) concentrations. 
The yeast cells have been grown for up to 5 d in modified minimal medium (MG-IA) with 5 % (w/v) glucose, and different 
concentrations of NaNO3, and KH2PO4 in 500 ml-baffled flasks at 30 °C and 220 rpm. The medium was kept at a neutral pH 
with 3.3 g l-1 CaCO3. Shown are the mean values for three separate cultivations. 

These findings suggest that not the sheer N:P ratio but also the amount of available nitrogen and 

phosphate at the beginning of cultivation played a role in the induction of organic acid synthesis. 

A high N:P ratio with low initial P concentrations appeared to be most beneficial for the initiation 

of organic acid synthesis in P. tsukubaensis while high initial P concentrations accelerated cell 

growth without necessarily enhancing the synthesis of organic acids. This observation was taken 

into account for subsequent cultivation experiments. For the preparation of the ITA production 

minimal medium (MG-IA) during subsequent experiments, N:P ratios of 4:1 to 20:1 were applied 

(the specific N and P concentrations are listed for each respective cultivation). 

3.1.2. Identification of genes involved in ITA production 

At the beginning of this work, there was no available information about the genetic makeup of 

P. tsukubaensis. In order to gain more insight, the whole genome of the wild type strain H488 had 

to be sequenced. In the beginning, a shotgun and a mate-pair library were constructed. The 

libraries were then paired end sequenced. The resulting non-contiguous reads of genomic 

sequences were first assembled into contigs and finally into 38 scaffolds. De novo sequencing of 

genomic DNA and RNA of P. tsukubaensis, the assembly of the reads into contigs, and the 

preliminary annotation was carried out by IIT Biotech GmbH in Bielefeld. 

In total, the entire genome was 20.28 Mb large and exhibited a guanine-cytosine (GC) content of 

53.6 %. In the genomic sequence, 7017 proposed genes were identified. Although, the number of 

proteins these open reading frames (ORF) encode is still unclear. 

U. maydis 521 is a closely related ITA producing fungus. Compared to U. maydis, the genome of 

P. tsukubaensis is slightly larger in size and contains more ORFs (see table 16). 
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Table 16 Comparison of genome size, GC-content, number of chromosomes, genes and proteins between 

P. tsukubaensis and other yeast species (as reported on NCBI genome). 

Species Chromosomes Size [Mb] GC [%] Genes Proteins 

Pseudozyma tsukubaensis H488 ? (38 scaffolds) 20.28 53.6 7017 ? 

Ustilago maydis 521 23 19.64 54.0 6910 6783 

Ustilago hordei Uh4857-4 23 20.7 51.2 7230 7111 

Sporisorium reilianum SRZ2 23 18.50 59.5 6811 6682 

Yarrowia lipolytica CLIB122 6 20.22 49.0 7144 6472 

Saccharomyces cerevisiae S288C 16 11.88 38.3 6445 6002 

 

By mapping the scaffolds to the reference genome of U. maydis with the comparative genome 

assembly tool r2cat (Husemann and Stoye, 2010), their close relationship was confirmed. 

Furthermore, the created synteny plot showed that the chromosomal makeup appears to be 

largely similar to that of U. maydis. All of the 23 chromosomes could be matched to one or more 

scaffolds. It is possible that chromosome 5 and 20 represent a single chromosome in 

P. tsukubaensis H488 since scaffolds number 4 and 9 are both partially mapped to those 

chromosomes. A partial reciprocal translocation is also a plausible explanation for the co-

mapping of scaffold number 4 and 9 to chromosomes 5 and 20. Scaffolds 31,32,34,35 and 37 could 

not be mapped against the reference genome. These scaffolds are all less than 10 kb in size and 

possibly represent distinct genetic information deviating from U. maydis 521. 
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Figure 11 Synteny plot created by r2cat. The scaffolds of P. tsukubaensis H488 are mapped onto the 

reference sequence of U. maydis 521. 
The table shows the scaffolds or parts of scaffolds (marked with ‘) that constitute for the corresponding chromosome in 
U. maydis. 
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After establishing the global genomic similarity between P. tsukubaensis and U. maydis, genes 

potentially involved in the production of ITA were investigated. In other fungi e.g. A. terreus and 

U. maydis, the genes needed for the production of secondary metabolites like ITA are organized 

in clusters (Geiser et al., 2016a; Keller, 2015; Li et al., 2011). To identify suitable candidates, the 

genome of P. tsukubaensis was searched for related genes. With the help of the NCBI BLASTP 

algorithm, the putative translational products of the P. tsukubaensis H488 genome were searched 

for amino acid sequences of ITA biosynthesis proteins of the known producers U. maydis and 

A. terreus. By doing so, it was possible to identify five genes in direct proximity to each other on 

scaffold 19. Table 17 and figure 12 show that all five genes share high sequence identities to the 

ITA cluster genes of U. maydis. The genes potentially code for all proteins needed for ITA 

production. In detail: Mtt1p represents a mitochondrial tricarboxylate transporter which channels 

cis-aconitate out of the mitochondrion. The aconitate-∆-isomerase (Adi1p) converts cis-aconitate 

into trans-aconitate which is metabolized into ITA by the trans-aconitate decarboxylase (Tad1p). 

ITA is then exported into the surroundings by the itaconate transport protein (Itp1p). All those 

cluster genes are described to be regulated by the regulator protein for itaconic acid (Ria1p) whose 

gene also lies inside the ITA cluster of U. maydis and P. tsukubaensis. The similar gene 

ATEG_09969 can also be found in the ITA gene cluster of A. terreus. 
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Figure 12 Comparison of the putative ITA cluster in P. tsukubaensis H488 to the itaconic acid clusters of 

U. maydis 521 and A. terreus NIH2624. 
Genes responsible for ITA production have been identified on protein level by NCBI protein BLAST. P. tsukubaensis 
possesses five homologous genes out of seven U. maydis-ITA cluster genes. Both U. maydis and P. tsukubaensis have 
genes that code for a trans-aconitate decarboxylase (tad1), a Major Facilitator Superfamily extracellular itaconate transport 
protein (itp1), an aconitate-∆-isomerase (adi1), a mitochondrial tricarboxylate transporter (mtt1) and a regulator for itaconic 
acid (ria1). U. maydis additionally contains a Cytochrome P450 monooxygenase (cyp3) and a gene that codes for an 
unknown protein (rdo1). The structure of the ITA cluster in A. terreus is simpler: Genes present in the cluster encode a 
Cytochrome P450 monooxygenase (P450), a Major Facilitator Superfamily transporter (mfsA), a cis-aconitate decarboxylase 
(cadA, synonymic cad1), a mitochondrial tricarboxylate transporter (mttA) and a transcriptional regulator for ITA 
(regulator). Numbers in the lines indicate amino acid identity in percentage obtained by NCBI BLASTP. 

Deviating from the U. maydis ITA cluster, there appeared to be an additional gene, PSEUDOG_6269, 

in P. tsukubaensis. This ORF is only 297 base pair long and is located between PtITP1 and PtADI1. 

The putative function of the deduced 99 aa long gene product is still unknown. Additionally, no 

homologous genes could be found for cyp3 or rdo1 in the genome of P. tsukubaensis H488. The 

translational products of cyp3 (codes for a cytochrome P450 monooxygenase) and rdo1 (unknown 

gene product) are thought to convert ITA into 2-hydroxyparaconate and then metabolize it further 

into the acid itatartarate (Geiser et al., 2016a, 2016b). 

In A. terreus NIH2624, the ITA cluster has a similar composition. It consists of a cytochrome P450 

monooxygenase (P450), two carrier proteins: one for the export of cis-aconitate out of the 

mitochondrion (MttAp) and another for the export of ITA (MfsAp), a regulator protein for ITA 

production and a cis-aconitate decarboxylase (CadAp, synonymic Cad1p), which alone converts 

cis-aconitate directly into ITA. The carrier proteins Itp1p and Mtt1p, and the regulator Ria1p from 

P. tsukubaensis share some sequence identity with the homologous proteins MfsAp, MttAp and 

Regulator, respectively. Although the protein Cad1p catalyses for the direct decarboxylation of 

cis-aconitate instead of trans-aconitate, parts of the protein were 41 % identical to the Tad1p 

protein in P. tsukubaensis which is responsible for the decarboxylation of trans-aconitate. 

Additionally, the fungus A. terreus carries a gene whose translational product resembled the 

sequence of PtAdi1p. This protein, encoded by ATEG_07328, is potentially a PrpF protein and 

maybe catalyses the conversion of trans-aconitate into cis-aconitate. 



Results 

53 

It stands to reason, that for all the mentioned ITA producing microorganisms the main precursor 

is cis-aconitate. In the tricarboxylic acid cycle, cis-aconitate is formed by the dehydration of CA. 

This step is catalysed by the enzyme aconitase that also catalyses the isomerization of CA by 

rotating cis-aconitate and rehydrating it in the ‘isocitrate mode’. In order to increase the 

intramitochondrial cis-aconitate concentration and thus increase ITA production, the 

overexpression of the native aconitase from P. tsukubaensis was pursued. To that intent, first the 

protein sequences of P. tsukubaensis were used as subjects in a BLASTP search for putative 

aconitase enzymes using the sequence of the aconitase of U. maydis as a query. Table 18 shows 

the similarities between the translational products of the identified putative aconitase genes 

PSEUDOG_3035 and PSEUDOG_2814, and their homologous counterparts in U. maydis and other 

microorganisms. 

Table 18 List of P. tsukubaensis genes with high similarity to aconitase encoding genes from U. maydis 521 

and other microorganisms. 
The protein sequences encoded by aconitase genes from U. maydis were BLASTed against the translational products of 
the whole P. tsukubaensis genome. The identified targets were additionally analysed against the whole NCBI non-
redundant database. Shown are the homologous gene products with aa identity, query coverage (values in brackets) and 
the Expected value. Also given are the respective lengths of the deduced protein sequences (number of aa) and the 
predicted molecular weight (MW). Molecular weights were estimated with the ProtParam tool 
(https://web.expasy.org/protparam/). Put. – putative. 

P. tsukubaensis 

gene 

deduced 

protein 
homologous gene 

deduced 

protein 

identity 

E-value 

PtACO1 
PSEUDOG_3035 

796 aa 
85.7 kDa 

U. maydis putative ACO1  
UMAG_02899 gene ID: 23563532 

796 aa 95 % [100 %] 

86.1 kDa 0.0 

Moesziomyces antarcticus aconitase  
PAN0_010c4087 gene ID: 26304836 

796 aa 97 % [100 %] 

85.9 kDa 0.0 

PtACO2 
PSEUDOG_2814 

1050 aa 
112.1 kDa 

U. maydis putative aconitase  
UMAG_11923 gene ID: 23567732 

1048 aa 93 % [99 %] 

112.3 kDa 0.0 

Kalmanozyma brasiliensis aconitase 
PSEUBRA_SCAF5g02353 gene ID: 27421334 

1035 aa 93 % [99 %] 

111.0 kDa 0.0 

 

3.1.3. Identification of suitable promoters for overexpression studies 

In order to ensure a constitutive and high expression rate for the genes potentially involved in ITA 

production in P. tsukubaensis, a suitable promoter sequence had to be identified. A promoter 

sequence is considered strong if it shows a high affinity for the RNA polymerase. A high affinity 

is given when the consensus sequence of the promoter matches the consensus sequence 

recognized by the RNA polymerase. Genes that are expressed constitutively and at high levels, 

like housekeeping genes, are such appropriate targets to search for such strong promoters. In 

general, the upstream regions of housekeeping genes contain promoters that enable a consistent 

and high transcriptional rate. Typical proteins that perform housekeeping functions are Actin1, 

Elongation factor 1-alpha (TEF1p), Glyceraldehyde-3-phosphate-dehydrogenase (GAPDHp) and 

the HSP70 chaperone.  
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By conducting a protein BLAST search against the proteins of P. tsukubaensis, four candidate 

genes were identified which are homologous to the above-mentioned housekeeping genes. Table 

19 shows the investigated genes from P. tsukubaensis H488 which are homologous to 

housekeeping genes from other organisms.  

The translational product from PSEUDOG_6713 is highly similar to the Actin1 protein from 

U. maydis 521. The deduced proteins from PSEUDOG_4929 and PSEUDOG_930 share high 

sequence similarities with the HSP70 chaperone and the TEF1 protein (both from Kalmanozyma 

brasiliensis), respectively. PtGAPDHp (encoded by PSEUDOG_2568) was matched to GAPDH 

(PANT_12c00136) from Moesziomyces antarcticus with a sequence similarity of 99 %. We 

additionally identified the putative gene in P. tsukubaensis that codes for a protein similar to the 

ubiquitin-conjugating enzyme UBC6-E2 from Melanopsichium pennsylvanicum (PtUBC6 was not 

considered for promoter activity studies but was used together with PtTEF1 as reference genes for 

qPCR described in section 3.1.6).  

Table 19 List of P. tsukubaensis genes with high similarity to housekeeping genes from U. maydis 521 and 

other microorganisms. 
The protein sequences resulting from housekeeping genes from U. maydis were analysed with BLASTP against the 
translational products of the whole P. tsukubaensis genome. The identified targets were additionally compared to the 
whole NCBI non-redundant database. Shown are the homologous gene products with aa acid identity, [query coverage] 
and the Expected value. Also given are the respective lengths of the deduced protein sequences (number of aa) and the 
predicted molecular weight (MW). Molecular weights were estimated with the ProtParam tool 
(https://web.expasy.org/protparam/). Put. - putative 

P. tsukubaensis 

gene 

deduced 

protein 
homologous gene 

deduced 

protein 

identity 

E-value 

PtActin1 
PSEUDOG_6713 

375 aa 
41.8 kDa 

U. maydis put. Actin1  
UMAG_11232 gene ID: 23567141 

375 aa 
41.8 kDa 

100 % [100 %], 

0.0 

Sporisorium reilianum probable Actin  
sr11345 ID: FQ311444.1 

375 aa 
41.8 kDa 

99 % [100 %], 

0.0 

PtGAPDH 
PSEUDOG_2568 

342 aa 
36.4 kDa 

U. maydis UmGAPDH  
UMAG_ 02491 gene ID: 23563225 

342 aa 
36.3 kDa 

97 % [100 %], 

0.0 

Moesziomyces antarcticus GAPDH 
PANT_12c00136 gene ID: DF196778.1 

337 aa 
35.9 kDa 

98 % [98 %], 

0.0 

PtHSP70 
PSEUDOG_4929 

645 aa 
70.3 kDa 

U. maydis HSP70 ATPase  
UMAG_03791 gene ID: 23564150 

645 aa 
70.3 kDa 

99 % [100 %], 

0.0 

Kalmanozyma brasiliensis HSP70/HSC70  
PSEUBRA_SCAF19g03268 gene ID: 27418201 

646 aa 
70.4 kDa 

99 % [100 %], 

0.0 

PtTEF1 
PSEUDOG_930 

457 aa 
49.8 kDa 

U. maydis put. Elongation factor 1-α 
UMAG_ 00924 gene ID: 23562087 

459 aa 
50.0 kDa 

96 % [99 %], 

0.0 

Kalmanozyma brasiliensis Elongation factor 1-α 
PSEUBRA_SCAF1g00572 gene ID: 27418763 

457 aa 
49.6 kDa 

98 % [100 %], 

0.0 

PtUBC6 
PSEUDOG_4405 

293 aa 
31.3 kDa 

U. maydis put. E2 ubiquitin-conjugating enzyme 
UMAG_ 11635 gene ID: 23567494 

274 aa 
29.9 kDa 

76 % [100 %], 

1 x e-142 

Melanopsichium pennsylvanicum 
probable UBC6-E2 
BN887_05967 gene ID: HG529627.1 

281 aa 
30.5 kDa 

80 % [100 %], 

4 x e--154 
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3.1.4. Development of overexpression plasmids 

For the construction of plasmids for the purpose of promoter activity studies, the reporter gene 

LacZ from E. coli was fused with one of the upstream regions of the four previously identified 

housekeeping genes Actin1, GAPDH, HSP70 and TEF1. This was achieved by amplifying 

approximately 1000 bb long sequences of the respective upstream region while extending the 

5’-end with a KpnI-restriction enzyme recognition site and the 3’-end with the first 20 bp of the 

LacZ ORF. The LacZ gene was amplified while complementing the 5’-end with the respective 

3’-sequence (20 bp) of the promoter and the other end with a PstI-restriction enzyme recognition 

site. The two fragments were purified and fused together by overlap extension PCR. The resulting 

fragments were purified, then subjected to restriction by PstI and KpnI and finally ligated each 

into the linearized pPTT plasmid, thus creating the pPTT-pActin-LacZ, pPTT-pGAPDH-LacZ, pPTT-

pHSP70-LacZ and pPTT-pTef-LacZ plasmids. 

3.1.4.1. Determination of a strong, native promoter in P. tsukubaensis 

For the promoter testing, the LacZ reporter gene was under the control of the respective putative 

promoter containing upstream region. The constructed reporter plasmids were individually 

transformed into the P. tsukubaensis wild type strain H488 and the ITA producing UV-

mutagenesis strain M15. As a reference, the plasmid pPTT-pUmHSP70-LacZ was also 

transformed. In this plasmid the LacZ gene was placed under the control of the HSP70 promoter 

from U. maydis. All of the resulting transformants were grown in YPD and MG-IA media and 

tested for β-galactosidase activity. 

From figure 13 it is evident that β-galactosidase activity was observed for all tested promoters and 

both media. The variability in enzyme activities between the transformants even with the same 

specific promoter were, however, quite large for every condition. Some transformants showed a 

low enzyme activity while other transformants with the same vector displayed a significantly 

higher β-galactosidase activity. With the HSP70 promoter from U. maydis an already high 

induction could be achieved in strain H488 which was even greater than with the native HSP70 

promoter in YPD medium. When cultivated in minimal medium the activities for both were 

relatively equal. 
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Figure 13 β-Galactosidase activities [U mg-1

protein] in various generated P. tsukubaensis H448 (wild type) and 

M15 (UV-mutant) LacZ-overexpression transformants, in which the reporter gene was placed under the 

control of the HSP70 promoter from U. maydis or the native promoters pActin, pGAPDH, pHSP70, pTEF. 
The yeast cells were grown either in YPD full medium or minimal medium with glucose for ITA production (MG-IA, 2 g l-1 
NaNO3, 0.1 g l-1 KH2PO4). The cultivation was carried out in a volume of 2.5 ml in 12-well plates for 2 d (YPD) or 4 d (MG-IA) 
at 30 °C and 220 rpm. As buffering agent, a spatulas tip of CaCO3 per well was added. 

The detected β-galactosidase activity with the TEF promoter of yeasts grown in minimal medium 

was also very low. In general, the promoter activity of TEF proved to be one of the modest.  

When the LacZ gene was under the control of the GAPDH promoter region, the results for the 

enzyme activities were diverse. In minimal medium, a quite high induction was achieved but the 

β-galactosidase activity was medium to low in YPD medium compared to the other promoter 

sequences. 

On average, the highest activity was reached when the LacZ transcription was initiated by pActin. 

This is true for all conditions, except for strain M15 when cultivated in MG-IA medium. However, 

a decrease in enzyme activity in strain M15 was an overall phenomenon in the minimal medium, 

for every tested promoter. Such a decline in β-galactosidase activity is striking. Although, the 

transformants with the wild type background also showed differences between the two media, 

the effect was not that pronounced. 

In conclusion, β-galactosidase was highest when LacZ was under the control of the Actin 

promoter. Therefore, this upstream region was chosen as the promoter for all subsequent 

overexpression studies. 
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3.1.4.2. ITA overproduction plasmids 

Plasmids for the overexpression of genes potentially needed for or aiding ITA production were 

constructed by amplifying approximately 1000 bp of the upstream region of the Actin1 gene 

(PSEUDOG_6713). At the 5’-end, a recognition site for a restriction enzyme (KpnI, BsrGI or Pfl23II) 

was introduced and at the 3’-end the first 20-22 bp of the respective gene. The native ITA cluster 

genes from P. tsukubaensis and the AtCAD1 gene from A. terreus were amplified while extending 

the 5’-end with the last 20-22 bp of the promoter sequence and at the 3’-end with a restriction 

enzyme recognition site. The two fragments were purified and fused together by overlap 

extension-PCR. The resulting fragments were purified, then subjected to restriction and finally 

ligated each into the linearized pPTT plasmid, thus creating the pPTT-pActin-ADI1, pPTT-pActin-

ITP1, pPTT-pActin-MTT1, pPTT-pActin-RIA1, pPTT-pActin-TAD1 and pPTT-pActin-AtCAD1 

plasmids. 

In order to create plasmids for the additional overexpression of the PtACO1, PtACO2 and AtCAD1 

genes into P. tsukubaensis with the background of an already existing overexpression, the 

construction was executed similarly to the above described method. Deviating from that, the 

resulting pActin-gene fusion products were ligated into the pPTT.Cbx-plasmid. According to this, 

the following plasmids were created: pPTT.Cbx-pActin-ACO1-Ex, pPTT.Cbx-pActin-ACO2, 

pPTT.Cbx-pActin-AtCAD1 (Note: The ORF of the native PtACO1 gene contains an intron. The gene 

was amplified without this intron by amplifying solely the exons first, fusing these PCR-products 

together during an overlap-PCR and then fusing the pActin promoter to it in the course of a second 

overlap-PCR). 

The correctness of the plasmids was confirmed by colony-PCR using the oligonucleotide 

pXXXX_KpnI_fw (XXXX represents the respective promoter) as the forward primer and the 

reverse primer for the respective gene. Additional confirmation was carried out by control 

digestion and/or plasmid sequencing. 

An overview of the size of the inserts and the linearized vector backbones after restriction with 

the appropriate enzymes can be found in table 20. The utilized vector backbones and a schematic 

of the created overexpression plasmids are illustrated in figure 14. 

Table 20 List of all promoter-gene fusion and vector backbones used for the overexpression of the relevant 

genes. 

Gene Promoter-gene fragment (size) Vector fragment (size) 

PtADI1 
PSEUDOG_6268 

(KpnI)-pActin-PtADI1-(NsiI) 
(2686 bp) 

(KpnI)-pPTT-(NsiI) 
(6801 bp) 

PtITP1 
PSEUDOG_6270 

(KpnI)-pActin-PtITP1-(NsiI) 
(2955 bp) 

(KpnI)-pPTT-(NsiI) 
(6801 bp) 

PtMTT1 
PSEUDOG_6267 

(KpnI)-pActin-PtADI1-(SdaI) 
(2217 bp) 

(KpnI)-pPTT-(NsiI) 
(6801 bp) 

PtRIA1 
PSEUDOG_6266 

(KpnI)-pActin-PtRIA1-(NsiI) 
(2366 bp) 
 

(KpnI)-pPTT-(NsiI) 
(6801 bp) 
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Gene Promoter-gene fragment (size) Vector fragment (size) 

PtTAD1 
PSEUDOG_6271 

(KpnI)-pActin-PtTAD1-(NsiI) 
(2558 bp) 

(KpnI)-pPTT-(NsiI) 
(6801 bp) 

AtCAD1 
ATEG_09971 

(KpnI)-pActin-AtCAD1-(NsiI) 
(2629 bp) 

(KpnI)-pPTT-(NsiI) 
(6801 bp) 
(KpnI)-pPTT.Cbx-(NsiI) 
(5916 bp) 

PtACO1’ (without exon) 
PSEUDOG_3035 

(BsrGI)-pActin-PtACO1’-(NsiI) 
(3495 bp) 

(Pfl23II)-pPTT.Cbx-(NsiI) 
(5905 bp) 

PtACO2 
PSEUDOG_2814 

(Pfl23II)-pActin-PtACO2-(NsiI) 
(4257 bp) 

(Pfl23II)-pPTT.Cbx-(NsiI) 
(5905 bp) 

LacZ 
EG10527 

(KpnI)-pActin-LacZ-(PstI) 
(4174 bp) 

(KpnI)-pPTT-(NsiI) 
(6801 bp) 

(KpnI)-pGAPDH-LacZ-(PstI) 
(4091 bp) 

(KpnI)-pPTT-(NsiI) 
(6801 bp) 

(KpnI)-pHSP70-LacZ-(PstI) 
(4118 bp) 

(KpnI)-pPTT-(NsiI) 
(6801 bp) 

(KpnI)-pTef-LacZ-(PstI) 
(4094 bp) 

(KpnI)-pPTT-(NsiI) 
(6801 bp) 

 

 

  
Figure 14 General maps of the original vectors and the resulting overexpression derivatives used in this 

study. 
The plasmids pPTT and pPTT.Cbx are transformation vectors for cloning purposes. The heterologous genes were originally 
placed under the control of the HSP70 promoter and terminator from U. maydis (dark blue boxes). They both contain the 
ampicillin resistance gene (ampR) for the selection in E. coli and either a hygromycin B resistance cassette (hygR) or a 
carboxin-resistance cassette (cbxR) for the selection of P. tsukubaensis transformants. The resulting overexpression 
plasmids contain the respective gene (XXXX) under the control of one of the four identified promoter sequences (pYYY). 
Small black arrows on top of the vectors show the primer sites used for colony PCR (for specific primers see table 3). 
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3.1.5. Screening of overexpression transformants 

Previously identified genes which are potentially involved in the ITA pathway in P. tsukubaensis, 

were overexpressed under the control of the native Actin promoter. Those were: PtADI1, PtITP1, 

PtMTT1, PtRIA1, PtTAD1 and AtCAD1. The overexpression in the yeast was accomplished by 

introducing the whole circular plasmid via PEG-mediated protoplast transformation according to 

Bodinus (2011); Gillissen et al. (1992); Schulz et al. (1990). The transformants were then selected on 

hygromycin B containing medium. Subsequently, screening for organic acid production in 3 ml 

liquid MG-IA cultures was carried out.  

First, the effect of additional copies of the PtMTT1 gene was examined. This gene encodes a 

putative mitochondrial tricarboxylate carrier protein. It is believed that the gene product Mtt1p 

transports cis-aconitate out of the mitochondrion into the cytosol, where its conversion takes 

place. By introducing the pActin-MTT1 overexpression plasmid into the wild type strain H488, a 

minor increase in ITA production was observed for the majority of transformants. On average 

0.2 g l-1 ITA were secreted compared to 0.1 g l-1 with the wild type. Interestingly, also the amount of 

MA increased from 2.61 g l-1 to 3.43 g l-1. 

The overexpression of PtMTT1 in the M15 strain had a more nuanced effect. The parental strain 

M15 secreted 2.2 g l-1 ITA and 5.0 g l-1 MA into the medium. That accounts for an ITA:MA ratio of 

30 %. Compared to that, some transformants stopped ITA synthesis altogether (see figure 15). Most 

transformants produced considerably less amounts of organic acids than the parental strain M15. 

Four transformants – MM5, MM7, MM8, and MM11 – showed an increase in the proportion of ITA 

from 30 % to 42 %, 38 %, 38 % and 43 %, respectively. This was interpreted as a sign that an 

increased cis-aconitate transport could facilitate the synthesis of ITA. Although, only few of the 

M15-transformants tested positive for enhanced ITA production, the MA secretion increased on 

average to 6.3 g l-1 compared to the parent strain (0.1 g l-1 ITA). 

 

Figure 15 Screening of P. tsukubaensis overexpression transformants for the mitochondrial tricarboxylate 

transporter Mtt1p. 
P. tsukubaensis H488 (WT) and M15 (UV-mutagenized strain for enhanced ITA production established by Bodinus, (2011)) 
strains were transformed with the pPTT-pActin-MTT1 plasmid. The resulting transformants and the reference strains (n 
= 6 for H488 & M15, n = 2 for M15-CAD) were incubated for 10 d in 3 ml well cultures with minimal medium for itaconic acid 
production (MG-IA) with 15 % (w/v) glucose, 1 g l-1 NaNO3, 0.1 g l-1 KH2PO4. As buffering agent, a spatulas tip of CaCO3 per well 
was applied. The cultivation was carried out at 30 °C and 220 rpm. 
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In general, the overexpression of PtMTT1 had a positive effect for the synthesis of ITA but also MA. 

This was true for almost all tested clones with the wild type background. With M15 as the parental 

strain, the responses varied greatly. The reasons for that observation are still unclear. 

In the cytosol, cis-aconitate is then isomerised by the protein aconitate-∆-isomerase into 

trans-aconitate. The intermediate trans-aconitate is then decarboxylated into ITA. This reaction 

is catalysed by the enzyme trans-aconitate decarboxylase. The two enzymes are encoded by the 

genes PtADI1 and PtTAD1, respectively. By overexpressing the two genes separately in the wild 

type, only three transformants for PtADI1 and four transformants for PtTAD1 showed any ITA 

secretion (see figure 16 & figure 17). During reference cultivation, the wild type strain did not 

produce any ITA. 

The random UV-mutagenized strain M15 produced 8.9 g l-1 MA and 2.4 g l-1 ITA during reference 

cultivations. The majority of generated transformants with the M15 background did not produce 

detectable concentrations of ITA. Collectively five of all transformants secreted diminishable ITA 

amounts, well below 0.2 g l-1. Consequently, neither the overexpression of PtADI1, nor PtTAD1 had 

a significantly positive effect on the ITA production behaviour. 

 

Figure 16 Screening of P. tsukubaensis overexpression transformants for the aconitate-∆-isomerase 

Adi1p. 
P. tsukubaensis H488 (WT) and M15 (UV-mutagenized strain for enhanced ITA production, Bodinus, (2011)) strains were 
transformed with the pPTT-pActin-ADI1 plasmid. The resulting transformants and the reference strains (n = 4 for H488 & 
M15, n = 2 for M15-CAD) were incubated for 10 d in 3 ml-well cultures with minimal medium for itaconic acid production 
(MG-IA) with 15 % (w/v) glucose, 1 g l-1 NaNO3, 0.1 g l-1 KH2PO4. As buffering agent, a spatulas tip of CaCO3 per well was 
applied. The cultivation was carried out at 30 °C and 220 rpm. 
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Figure 17 Screening of P. tsukubaensis overexpression transformants for the trans-aconitate 

decarboxylase Tad1p. 
P. tsukubaensis H488 (WT) and M15 (UV-mutagenized strain for enhanced ITA production, Bodinus, (2011)) strains were 
transformed with the pPTT-pActin-TAD1 plasmid. The resulting transformants and the reference strains (n = 4 for H488 & 
M15, n = 2 for M15-CAD) were incubated for 10 d in 3 ml-well cultures with minimal medium for itaconic acid production 
(MG-IA) with 15 % (w/v) glucose, 1 g l-1 NaNO3, 0.1 g l-1 KH2PO4. As buffering agent, a spatulas tip of CaCO3 per well was 
applied. The cultivation was carried out at 30 °C and 220 rpm. 

The so generated ITA is then exported out of the cell into the surrounding medium with the help 

of the itaconic acid transporter, whose protein is encoded by PtITP1. Overexpression of PtITP1 had 

little to no effect on the P. tsukubaensis wild type strain H488. Six transformants exhibited a 

marginal ITA increase in the ITA:MA ratio from 3 % (wild type) to 8-13 % (see figure 18). The PtITP1-

overexpression led to a decrease in ITA production for most of the M15 transformants. However, 

the transformants MI8, MI9 and MI11 showed a substantial increase in the amount of ITA. With a 

shift in the ITA:MA ratio from 30 % (M15 strain) to 59 %, 59 % and 52 %, respectively, the main 

product became ITA. These results indicate that the overexpression of PtITP1 alone does not lead 

to enhanced ITA synthesis. When other factors are also in effect, e.g. unknown changes in the 

genome of strain M15, additional Itp1p activity could help bypass a potential bottleneck and thus 

ultimately elevate ITA secretion. 

 

Figure 18 Screening of P. tsukubaensis overexpression transformants for the itaconate transport protein 

Itp1p. 
P. tsukubaensis H488 (WT) and M15 (UV-mutagenized strain for enhanced ITA production, Bodinus, (2011)) strains were 
transformed with the pPTT-pActin-ITP1 plasmid. The resulting transformants and the reference strains (n = 6 for H488 & 
M15, n = 2 for M15-CAD) were incubated for 10 d in 3 ml-well cultures with minimal medium for itaconic acid production 
(MG-IA) with 15 % (w/v) glucose, 1 g l-1 NaNO3, 0.1 g l-1 KH2PO4. As buffering agent, a spatulas tip of CaCO3 per well was 
applied. The cultivation was carried out at 30 °C and 220 rpm. 
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The four above mentioned genes and PtRIA1 are organized in a cluster. The whole cluster is 

believed to be regulated by Ria1p. ITA production was strongly affected by overexpressing this 

potential transcription factor. Figure 19 shows that for 13 out of 21 tested transformants drastic 

increases in the amount of ITA were observed, when compared to the parental wild type strain. 

Similar results were achieved with PtRIA1-overexpression in the M15 strain. During the reference 

cultivation, the parental strain secreted 21 % ITA (ITA:MA). This ITA:MA ratio increased for the 13 

transformants up to 98 %. Overall highest productivities achieved clones ‘HR12’ and ‘MR2’ with 

31.4 g l-1; 33.4 g l-1 ITA and only 0.7 g l-1, 1.1 g l-1 MA (ITA:MA ratio: 98 %, 97 %), respectively. 

 

Figure 19 Screening of P. tsukubaensis overexpression transformants for the regulator protein of itaconic 

acid biosynthesis Ria1p. 
P. tsukubaensis H488 (WT) and M15 (UV-mutagenized strain for enhanced ITA production, Bodinus, (2011)) strains were 
transformed with the pPTT-pActin-RIA1 plasmid. The resulting transformants and the reference strains (n = 6 for H488 & 
M15, n = 2 for M15-CAD) were incubated for 10 d in 3 ml-well cultures with minimal medium for itaconic acid production 
(MG-IA, with 15 % (w/v) glucose, 1 g l-1 NaNO3, 0.1 g l-1 KH2PO4). As buffering agent, a spatulas tip of CaCO3 per well was 
applied. The cultivation was carried out at 30 °C and 220 rpm. 

Regarding the screening process of the constructed overexpression transformants, it is obvious 

that the protein Ria1p plays an integral part in the metabolic pathway of ITA in P. tsukubaensis. 

Not only was the product ratio shifted drastically in favour of ITA, the total amount of secreted 

acids was also considerably increased. 

The three-best performing transformants for each initial strain were then cultivated in larger 

culture volumes to confirm their acid production capabilities. After 4 d of cultivation, two 

transformants, HR12 and MR2, showed similar elevated production rates as in the previous 

screening. MR2 secreted 12.8 g l-1 ITA with a product ratio of 75 % (ITA:MA). During the same period, 

19.3 g l-1 ITA and 0.6 g l-1 MA were synthesised by transformant HR12 (see figure 19 and figure 20). 

This corresponds to a product ratio of 97 %. This ITA:MA ratio is completely in accordance with 

the results obtained during the small volume screening. It is not only remarkable, that HR12 

produced the highest concentration of ITA with only diminishable amounts of MA. It also did so 

with a significantly lower cell density than all other RIA1-overexpression transformants. The 

reason for the decrease in biomass could be a result of the heightened organic acid secretion itself 

as cell growth is potentially slowed down as a consequence of the steady accumulation of the 

weak organic acid in the medium. 
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Figure 20 Screening of the three highest ITA producing P. tsukubaensis H488 overexpression 

transformants for the regulator protein of itaconic acid biosynthesis Ria1p. 
The previously identified ITA producing transformants HR8, HR10 and HR12 were incubated for 4 d in 50 ml well cultures 
with minimal medium for itaconic acid production (MG-IA, with 15 % (w/v) glucose, 2 g l-1 NaNO3, 0.1 g l-1 KH2PO4). The 
cultivation was carried out in 500 ml baffled flasks at 30 °C and 220 rpm. The medium was kept at a neutral pH with 3.3 g l-1 
CaCO3. Shown are the mean values and error bars for standard deviation (n = 3). 

  
Figure 21 Screening of the three highest ITA producing P. tsukubaensis M15 overexpression transformants 

for the regulator protein of itaconic acid biosynthesis Ria1p. 
The previously identified ITA producing transformants MR1, MR2 and MR8 were incubated for 4 d in 50 ml-well cultures 
with minimal medium for itaconic acid production (MG-IA, with 15 % (w/v) glucose, 2 g l-1 NaNO3, 0.1 g l-1 KH2PO4). The 
medium was kept at a neutral pH with 3.3 g l-1 CaCO3. The cultivation was carried out in 500 ml-baffled flasks at 30 °C and 
220 rpm. 
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With ITA:MA ratios ranging from 44 % to 56 %, the remaining four transformants (HR8, HR10, MR1 

& MR8) still produced proportionately more than it would have been expected for their parental 

strains. This is especially true for transformants HR8 and HR10. The two transformants secreted 

2.6 g l-1 and 4.4 g l-1 ITA, respectively. Figure 9 shows that their initial strain, H488, produced 

mainly 2.4 g l-1 MA with only 1.4 g l-1 ITA (ITA:MA: 37 %) under the same conditions. It is still 

unclear, why those four transformants performed considerably different than in 3 ml-cultures. 

One simple explanation would be differences of the physical aspects between the two cultivation 

methods. Especially aeration is greatly reduced in wells compared to baffled shaking flasks. 

However, differences in the regulation of the ITA cluster could also play a role.  

Based on this data, transformant HR12 represents an improved ITA synthesising yeast strain. 

Because of its stable and exceedingly high productivity rate, HR12 was chosen as a suitable 

candidate for subsequent analyses. 

In the fungus A. terreus, cis-aconitate is directly converted into ITA. The isomerization step of 

cis-aconitate into trans-aconitate is omitted. The direct decarboxylation step of cis-aconitate is 

catalysed by the gene product of AtCAD1. This reaction appears to be more resourceful in the ITA 

metabolism, since it is a single step reaction by only one enzyme. This is why, AtCAD1 

overexpressing P. tsukubaensis strains have been constructed. Figure 22 shows the ITA 

production behaviour of the screened transformants.  

With the P. tsukubaensis M15 background no significant increase in ITA production was achieved 

(see figure 22). The parental strain secreted 2.9 g l-1 ITA with a ratio of 40 %. Only transformants 

MC11 (46 %) and MC12 (48 %) secreted proportionately more ITA but the overall acid production 

was greatly reduced. The AtCAD1-overexpression in the wild type strain, however, led to 

noticeable rises in the ITA:MA ratios. For 14 out of the 18 tested transformants, the ITA:MA ratio 

surpassed the values obtained with the parental strain H488 (7 %). Transformants HC16 and HC17 

even synthesised ITA as their main product (HC16: 2.2 g l-1 ITA, 1.1 g l-1 MA; HC17: 2.6 g l-1 ITA, 1.2 g l-1 

MA). According to this data, it appeared that it depended on the genetic make-up of the 

P. tsukubaensis strain whether the introduction of this heterologous gene is beneficial or not. It is 

possible that in strain M15 the activity of PtADI1 and PtTAD1 is already elevated and therefore the 

AtCad1p protein would compete with PtAdi1p and PtTad1p for the precursors of ITA e.g. 

cis-aconitate. This was certainly not the case in the wild type, since it naturally produces marginal 

amounts of ITA. 
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Figure 22 Screening of P. tsukubaensis overexpression transformants for the trans-aconitate 

decarboxylase from A. terreus, Cad1p. 
P. tsukubaensis H488 (WT) and M15 (UV-mutagenesis strain for enhanced ITA production, Bodinus, (2011)) strains were 
transformed with the pPTT-pActin-AtCAD1 plasmid. The resulting transformants and the reference strains (n = 6 for H488 
& M15) were incubated for 10 d in 3 ml well cultures with minimal medium for itaconic acid production (MG-IA, with 15 % 
(w/v) glucose, 1 g l-1 NaNO3, 0.1 g l-1 KH2PO4). As buffering agent, a spatula’s tip of CaCO3 per well was applied. The cultivation 
was carried out at 30 °C and 220 rpm. 

3.1.5.1. Screening of co-overexpression transformants 

Results from the above-mentioned screening for PtMTT1-overexpression transformants gave rise 

to the question whether the export of cis-aconitate represents a bottleneck during the synthesis 

of ITA. To further investigate that hypothesis, the clones HM14 and MM11 were selected because 

these two transformants showed the largest increase in ITA production. An additional 

overexpression plasmid for AtCAD1 was then introduced into HM14 and MM11. This way, it was 

ensured that not only the transport or the conversion of cis-aconitate was enhanced. Thus, 

another complete metabolic pathway for the synthesis of ITA was recreated in the yeast 

P. tsukubaensis.  

Although, the productivity rates were low for the resulting transformants HoMoC and MoMoC, a 

more apparent effect of the two overexpressions was discernible. Figure 23 illustrates that by co-

overexpressing PtMTT1 and AtCAD1, essentially all of the transformants showed an increase in 

the detected ITA compared to the strains with only the overexpressed mitochondrial carrier (see 

figure 23). The parental strains, HM14 and MM11 displayed an ITA:MA ratio of 28 % and 54 %, 

respectively. Transformants with the H488 background produced 30-66 % ITA (ITA:MA) and even 

53-75 % with the M15 background. This also represented a proportionately higher ITA production 

than the transformants with only the overexpressed AtCAD1 gene. It is therefore evident that an 

elevated mitochondrial tricarboxylate transporter activity is needed for enhanced ITA synthesis. 

Identifying the export of cis-aconitate into cytosol as a bottleneck, is an important finding.  
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Figure 23 Screening of P. tsukubaensis overexpression transformants (HoMoC and MoMoC) for the 

trans-aconitate decarboxylase from A. terreus, Cad1p. 
P. tsukubaensis PtMTT1-overexpression strains HM14 (background: H488 (WT)) and MM1 (background: M15, Bodinus, (2011)) 
strains were transformed with the pPTT.Cbx-pActin-AtCAD1 plasmid. The resulting transformants and the reference 
strains (n = 2 for H488, M15, HM14 & MM11) were incubated for 10 d in 3 ml well cultures with minimal medium for itaconic 
acid production (MG-IA, with 15 % (w/v) glucose, 1 g l-1 NaNO3, 0.1 g l-1 KH2PO4). As buffering agent, a spatula’s tip of CaCO3 
per well was applied. The cultivation was carried out at 30 °C and 220 rpm. 

Another topic of interest was, if the enhanced capabilities of strain P. tsukubaensis HR12 for its 

ITA production could be increased any further. The main precursor of ITA is cis-aconitate. This 

main intermediate of the TCA is formed by the dehydration of CA or ICA. The reaction is catalysed 

by an aconitase or more specifically an aconitate hydratase. Previously, the two genes 

PSEUDOG_3035 and PSEUDOG_2814 were identified in P. tsukubaensis H488 to putatively code 

for aconitase enzymes. The genes were thus named PtACO1 and PtACO2, respectively. 

Accordingly, overexpression plasmids for the two genes under the control of the strong Actin 

promoter were constructed and introduced into the ITA overproducing strain HR12. 

 

Figure 24 Screening of P. tsukubaensis overexpression transformants (oA1 and oA2) for the native 

aconitase enzymes, PtAco1p and PtAco2p. 
P. tsukubaensis PtRIA1-overexpression strain HR12 (background: H488 (WT)) was transformed with either the pPTT.Cbx-
pActin-PtACO1-Ex (does not contain the naturally occurring intron) or with the pPTT.Cbx-pActin-PtACO2 plasmid. The 
resulting transformants, oA1, oA2 and the reference strains were incubated for 10 d in 3 ml-well cultures with minimal 
medium for itaconic acid production (MG-IA, with 15 % (w/v) glucose, 1 g l-1 NaNO3, 0.1 g l-1 KH2PO4). The cultivation was 
carried out at 30 °C and 220 rpm. As buffering agent, a spatula’s tip of CaCO3 per well was applied. Shown are the averages 
and error bars for standard deviation (n = 4). 

Figure 24 shows that the resulting transformants did not show an increase in ITA production 

compared to strain HR12. Transformants oA1-5 and oA2-8 exhibited a minor rise in the ITA:MA 

ratio. However, this was accompanied by a decline in the final ITA concentration. The reference 
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strain HR12 produced 22.3 g l-1 ITA (ITA:MA: 96 %) after 10 d of cultivation, while oA1-5 and oA2-8 

secreted 18.3 g l-1 ITA (ITA:MA: 98 %) and 15.8 g l-1 ITA (ITA:MA: 99 %), respectively. 

Consequently, it can be assumed that the conversion of CA to cis-aconitate by an aconitase does 

not represent a rate-limiting step in the synthesis of ITA in this overproducing strain HR12. 

Furthermore, the elevated levels of MA are potentially due to the elevated aconitase activity and 

the resulting increased ICA concentrations inside the mitochondrion. The Aco1p/Aco2p enzyme 

may compete with the Mtt1p transporter for cis-aconitate. After cis-aconitate is converted to ICA, 

it is further metabolized into MA in the course of the TCA cycle. Ultimately, this is unfavourable 

to produce ITA because it lowers the productivity and final yield. 

3.1.6. Characterization of strain HR12 

During the screening process of different overexpression transformants, P. tsukubaensis strain 

HR12 proved to be the most reliable and active ITA producer. Since the integration most probably 

took place because of heterologous recombination events between the genomic DNA and the 

vector DNA, the locus of integration for the overexpression plasmid cannot be determined 

beforehand. To gain more insight, into how the introduction of the whole pPTT-pActin-RIA1 

plasmid led to the changes in the phenotype, the genomic DNA of strain HR12 was sequenced. 

In doing so, the sequencing showed that the regulator gene for ITA, PtRIA1 under the control of 

the strong constitutive pActin promoter was integrated two times in tandem orientation with 

parts of the vector backbone (see figure 25). The first copy consists of 82.2 % of the overexpression 

plasmid (1627-9167 bp) and the second 85.1 % (1-7804 bp). Integration of the two vector fragments 

occurred on strain H488’s scaffold 9 in the ORF of PSEUDOG_4086 while deleting an 

approximately 34 kb long sequence. Thus, the ORF of PSEUDOG_4086 was disrupted and nine 

other ORFs, PSEUDOG_4087-PSEUDOG_4095, were deleted. 

 

Figure 25 Comparison between the genomic locus where the integration of the plasmid pPTT-pActin-RIA1 

in strain HR12 took place and the corresponding region in P. tsukubaensis H488. 
Large parts of the plasmid integrated two times in tandem orientation between gene PSEUDOG_4086 and PSEUDOG_4096. 
PSEUDOG_4086 got partially disrupted (tattered box). The genes PSEUDOG_4087-4095 were completely deleted. The 
dashed lines represent the region of the integration. Grey arrows mark ORFs. Dark blue boxes represent the HSP70 
promoter and terminator sequences from U. maydis that were used for the construction of the plasmid. The native Actin 
promoter is marked by a light blue box and the PtRIA1 gene by a red arrow. 
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The translational products of the affected genes were subsequently analysed using BLASTP and 

the NCBI non redundant database. The identified homologous proteins of U. maydis 521 and other 

organisms are summarized in table 21. Four targets are still uncharacterized or hypothetical 

proteins with no known functions (encoded by PSEUDOG_4088, 4090, 4094 and 4095). However, 

six proteins could be classified as a potential acetyl-CoA-synthetase, alcohol dehydrogenase, 

aldo/keto reductase, 2-deoxy-D-gluconate 3-dehydrogenase, adenylate kinase, and a potassium 

channel, respectively. 

Considering the current knowledge, the identified genes play no direct role in the biosynthesis of 

ITA. It is unclear, whether their deletion had an (immediate) effect on certain metabolic pathways 

or underlying regulatory mechanisms that could have resulted in the rerouting of intermediates 

towards ITA. 

Table 21 List of P. tsukubaensis genes deleted by the overexpression of PtRIA1 and their homologs in 

U. maydis 521 and other microorganisms. 
The deduced protein sequences resulting from genes PSEUDOG_4086-4095 were analysed by BLASTP against the whole 
nonredundant NCBI database. Shown are the homologous gene products with aa identity, query coverage (values in 
brackets) and the Expected value. Also given are the respective lengths of the deduced protein sequences (number of aa) 
and the predicted molecular weight (MW). Molecular weights were estimated with the ProtParam tool 
(https://web.expasy.org/protparam/). Put. - putative 

P. tsukubaensis 

gene 

deduced 

protein 
homologous gene 

deduced 

protein 

identity 

E-value 

PSEUDOG_4086 
767 aa 
85.0 kDa 

U. maydis hypothetical protein  
UMAG_02235 gene ID: 23563034 

602 aa 
66.9 kDa 

85 % [78 %] 

0.0 

Moesziomyces antarcticus 
putative acetyl-CoA synthetase 
PAN0_008d3441 gene ID: 26304376 

602 aa 
66.5 kDa 

86 % [78 %] 

0.0 

PSEUDOG_4087 
510 aa 
54.7 kDa 

U. maydis put. alcohol dehydrogenase  
UMAG_10077 gene ID: 23566151 

510 aa 
54.8 kDa 

90 % [99 %] 

0.0 

Pseudozyma hubeiensis SY62 
alcohol dehydrogenase 
PHSY_002011 gene ID: 24107306 

743 aa 
81.1 kDa 

91 % [99 %] 

0.0 

PSEUDOG_4088 
513 aa 
54.3 kDa 

U. maydis hypothetical protein  
UMAG_12316 gene ID: 23568061 

503 aa 
53.2 kDa 

78 % [84 %] 

0.0 

Moesziomyces antarcticus 
conserved hypothetical protein  
PAN0_008c3437 gene ID: 26304231 

497 aa 
52.9 kDa 

74 % [98 %] 

0.0 

PSEUDOG_4089 
283 aa 
31.7 kDa 

U. maydis hypothetical protein  
UMAG_02151 gene ID: 23562965 

286 aa 
32.0 kDa 

81 % [99 %] 

2 x e-173 

Moesziomyces antarcticus 
aldo/keto reductase 
PAN0_008c3436 gene ID: 26304230 

284 aa 
31.5 kDa 

87 % [98 %] 

0.0 

PSEUDOG_4090 
428 aa 
44.9 kDa 

U. maydis hypothetical protein  
UMAG_02238 gene ID: 23563037 

399 aa 
42.3 kDa 

48 % [84 %] 

5 x e-97 

Sporisorium reilianum SRZ2 
conserved hypothetical protein  
sr13433 ID: FQ311470.1 

408 aa 
41.8 kDa 

50 % [89 %] 

4 x e-117 

PSEUDOG_4091 
280 aa 
29.2 kDa 

U. maydis put. 2-deoxy-D-gluconate 3-dehydrogenase 
UMAG_05923 gene ID: 23565673 

278 aa 
29.1 kDa 

89 % [99 %] 

0.0 
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Moesziomyces antarcticus 
NAD(P)-binding protein 
PAN0_008d3433 gene ID: 26304374 

280 aa 
29.3 kDa 

89 % [99 %] 

0.0 

PSEUDOG_4092 
247 aa 
27.6 kDa 

U. maydis putative adenylate kinase  
UMAG_05924 gene ID: 23565674 

288 aa 
31.8 kDa 

75 % [98 %] 

8 x e-131 

Moesziomyces antarcticus 
adenylate kinase  
PAN0_008d3432 gene ID: 26304373 

288 aa 
31.9 kDa 

82 % [99 %] 

3 x e-152 

PSEUDOG_4093 
975 aa 
107.0 kDa 

U. maydis hypothetical protein  
UMAG_05925 gene ID: 23565675 

928 aa 
101.3 kDa 

65 % [94 %] 

0.0 

Moesziomyces antarcticus 
voltage-gated potassium channel  
PAN0_008c3431 gene ID: 26304227 

1302 aa 
143.2 kDa 

65 % [93 %] 

0.0. 

PSEUDOG_4094 
411 aa 
46.3 kDa 

U. maydis hypothetical protein  
UMAG_05926 gene ID: 23565676 

332 aa 
38.2 kDa 

35 % [56 %] 

4 x e-26 

Ustilago bromivora 
uncharacterized protein  
UBRO_20380 ID: LT558125.1 

947 aa 
103.4 kDa 

30 % [57 %] 

9 x e-27 

PSEUDOG_4095 
313 aa 
35.2 kDa 

U. maydis hypothetical protein  
UMAG_05928 gene ID: 23565678 

381 aa 
42.4 kDa 

31 % [74 %] 

2 x e-18 

Sporisorium reilianum SRZ2 
conserved hypothetical Ustilaginaceae-specific prot.  
sr16552 ID: FQ311470.1 

335 aa 
37.5 kDa 

31 % [75 %] 

4 x e-27 

 

3.1.6.1. Regulation of the ITA cluster in strain HR12 

Given that an increased ITA production was observed in P. tsukubaensis HR12, it was expected 

that at least some of the genes of the ITA-cluster would be upregulated. After the extent of the 

integration event on the DNA level was compiled, it was then important to understand how this 

affected the regulation of the gene cluster because alone, the introduction of additional copies of 

the regulator gene RIA1 under the control of the constitutive and strong Actin promoter did not 

necessarily imply an increased transcription of all genes involved in the synthesis of ITA. To gain 

this knowledge, quantitative real-time PCR (qPCR) was conducted. The results of the qPCR 

provided the evidence that, in fact, all of the five ITA cluster genes are highly upregulated in strain 

HR12 compared to the wild type H488 (see figure 26). 

The overexpressed PtRIA1 gene itself displayed a 473-fold increase in the transcription rate in 

strain HR12 compared to H488. This was followed by a 4766-fold higher transcription rate of gene 

PtMTT1 than in the wild type. The expression of the genes encoding the two metabolic enzymes 

Adi1p and Tad1p both experienced an approximate 2700-fold upregulation. Compared to the other 

cluster genes, the expression of PtITP1 was elevated 65-fold. That upregulation appears to be much 

lower, but it should be noted that the transcription rate for PtITP1 was already relatively elevated 

in strain H488 (PtITP1 showed a 4 to 69-fold higher transcription rate than the other cluster genes 

in strain H488 – data not shown). 
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Figure 26 Result of quantitative real-time PCR for the relative transcription rate of the itaconic acid cluster 

genes in P. tsukubaensis HR12 compared to the wild type, H488. 
The cells were grown in minimal medium with 15 % (w/v) glucose for itaconic acid production (MG-IA) until an OD600 of 2 
to 3 was reached. The elongation factor-1 (PtEF1) and the ubiquitin-conjugating enzyme (PtUBC6) were used as reference 
genes. Expression levels in HR12 were normalized for H488 expression levels. n = 2, error bars show standard deviation 

3.1.6.2. Relationship between nitrogen, phosphate and the production of ITA 

P. tsukubaensis strains H488 and M15 produced considerable amounts of MA and ITA only under 

certain substrate-limited conditions. As was shown in section 3.1.1.1, it was important to supply 

an excess in C source but also limit the N and/or P sources. Both strains displayed a clear pattern, 

in which the synthesis of ITA was significantly induced when the initial amount of P was very 

limited and the ratio of N to P was high. 

The overproducing P. tsukubaensis strain HR12 exhibited an upregulation in the transcription rate 

of the genes responsible for ITA production. Still, it was not clear, whether there was a remaining 

control mechanism regulated by the available N and P concentrations in the medium. Therefore, 

the wild type strain H488 and the production strain HR12 were cultivated in 3 ml well cultures 

with minimal medium and combinations of different N and P concentrations (the applied 

concentrations are summarized in table 22). As expected, both strains multiplied according to the 

available substrate levels. Because P was chosen as the limiting nutrient, lowest cell densities 

(OD600 = 10-13) were reached with 0.01 g l-1 P (see figure 27 A). An initial concentration of at least 

0.15 g l-1 P was enough to reach maximum cell densities of approximately OD600 = 35. 

Table 22 Concentrations of phosphate and nitrogen source used for 3 ml well cultures of P. tsukubaensis 

H488 and HR12. 

MG-IA medium with 15 % (w/v) glucose 

Phosphate [g l-1] 0 .0 1 ;  0 .0 5 ;  0 . 1 ;  0 . 1 5 ;  0 .2 5 ;  0 . 5  

Nitrogen [g l-1] 2 ;  3 ;  4 ;  5  
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The production rate of organic acids for strain H488 was heavily influenced by the available P 

concentration. Synthesis of MA was immediately induced when P was limited and dropped off if 

a surplus (> 0.15 g l-1 P) was present. The regulation of ITA synthesis in the wild type was more 

nuanced. For very low P concentrations, the ITA amount was merely above the detection limit. 

With increasing levels of P, the concentrations of ITA also rose until an optimum of 1 g l-1 ITA was 

reached (P = 0.15 g l-1). After that, ITA production declined heavily with further increasing P 

concentrations. 

P. tsukubaensis strain HR12 showed an induction of MA-synthesis at very low P levels as well. 

With 0.01 g l-1 available P source, an average of 1.0 g l-1 MA was secreted into the medium. This 

value decreased under 0.5 g l-1 ITA if higher amounts of P were supplied. 

Interestingly, the ITA production was not influenced by P and N concentrations in this strain. 

Figure 27 B shows that the production of ITA followed the pattern of growth for this strain (note 

the differing scale of the Z-axis for ITA concentration compared to strain H488). Low densities of 

cells secreted only 5 g l-1 ITA on average. High cell densities amounted for up to 25.7 g l-1 ITA in the 

medium.  
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Figure 27 Phosphate and nitrogen dependency for the production of ITA in P. tsukubaensis strains H488 

(WT) and HR12. 
The yeast cells were pre-cultivated in 50 ml liquid cultures with MG-IA medium (15 % (w/v) glucose, 1 g l-1 NH4Cl, 0.1 g l-1 
KH2PO4) for 2 d at 30 °C and 220 rpm. The main cultures were grown in 3 ml wells. Cells of the pre-cultivation were 
harvested by centrifugation (5 min, 3500 rpm) and washed with sterile water. The wells were inoculated with the cell mass 
needed for a starting OD600 = 1. The medium for the main cultures consisted of minimal medium for ITA production (MG-
IA) with 15 % (w/v) glucose and combinations of different N and P concentrations (NH4Cl: 2, 3, 4, 5 g l-1; KH2PO4: 0.01, 0.05, 0.1, 
0.15 0.25, 0.5 g l-1). As the buffering agent, a spatulas tip of CaCO3 per well was used. The cells were incubated for 3 d at 30 °C 
and 220 rpm. A – cell density (OD600 at λ = 600 nm) for each N P concentration. B - Concentration of ITA [g l-1] that was 
measured in the supernatant (note the differing scales of the Z-axis for ITA concentration for the two strains). C – 
Concentration of detected MA [g l-1]. Values represent the average for three separate cultivations. 
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3.1.6.3. Alternative substrates for strain HR12 

Despite the tremendous upregulation of the complete ITA cluster and the consequential enhanced 

ITA production, the genomic rearrangement was assessed critically. A significant segment of the 

genomic DNA, consisting of numerous ORFs, was disrupted. This fact can lead to serious changes 

in the yeast’s phenotype. Such changes can have wide ranging and complex consequences that 

are difficult to predict.  

Acetate is a natural substrate of P. tsukubaensis. In order to metabolize acetic acid, the yeast must 

first activate it by coenzyme A ligation. This ATP-dependent reaction is catalysed by acetyl-CoA 

synthetase. Similarly, for the utilization of ethanol and other alcohols, it is essential to oxidize 

these compounds to their corresponding aldehyde. For this NADH generating reaction, alcohol 

dehydrogenases are essential. 

Hence, the deletions of the genes responsible for the putative acetyl-CoA synthetase 

(PSEUDOG_4086) and alcohol dehydrogenase (PSEUDOG_4087) in the HR12 strain were deemed 

critical. These two enzymes could play central roles in the metabolism of different substrates. The 

lack of these two genes but of the other eight too, could therefore drastically alter the range in 

possible substrates. This could ultimately have an impact on the applicability of this ITA 

overproducing strain, since the utilization of alternative substrates to simple sugars (e.g. glucose) 

are an important factor in the selection of new host organisms. This is because the 

biotechnological use of mono- and disaccharides competes with the food industry. The selected 

C sources can often be found as by-products of industrial processes and are from an industrial 

perspective low-priced. Thus, they represent promising educts for an economically and 

ecologically viable process. 

The P. tsukubaensis strain HR12 was hence cultivated on medium containing only acetate or 

ethanol as the sole C source, to test for changes in the substrate range of this strain. From figure 

28 it is apparent, that no impairment in the utilization of any C source was observed. The yeast 

strain HR12, just like the wild type H488, is able to grow on all substrates tested. Thus, the 

degradation pathways for ethanol and acetate appeared to be functional in the engineered strain. 

glucose acetate 1 % ethanol 2 % ethanol 

H488 HR12 H488 HR12 H488 HR12 H488 HR12 

Figure 28 Growth behaviour of P. tsukubaensis HR12 and wild type strain H488 on different carbon sources. 
Drops of liquid overnight culture with a cell count of 10 or 100 were dripped onto agar plates with minimal medium and 
either 2 % (w/v) glucose, 30 mM sodium acetate, 1 % (v/v) ethanol or 2 % (v/v) ethanol as the sole carbon source. The plates 
were incubated for 2 d at 30 °C. 
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By searching the protein library of P. tsukubaensis H488, three proteins were found which could 

compensate for the loss of function of PSEUDOG_4086 and PSEUDOG_4087: the gene product of 

PSEUDO_3222 potentially represents another acetyl-CoA synthetase and, PSEUDOG_1552 and 

PSEUDOG_1699 putatively encode proteins that function as alcohol dehydrogenases. Hence, the 

activity of these proteins appeared to be sufficient to convert acetate and ethanol and thus supply 

the metabolic pathways to the utilization of these C sources. 

It was nonetheless still unclear whether P. tsukubaensis HR12 was still able to grow and produce 

ITA on C sources other than glucose. The yeast HR12 was therefore grown in liquid minimal 

medium with D-sucrose, glycerol or D-xylose as the only C source. 

Figure 29 illustrates that all of the tested substrates were being used by the yeast HR12 for growth 

and for the production of ITA. The highest cell densities were reached with glycerol (OD600 = 45.6) 

and glucose as a C source (OD600 = 44.8). Despite resulting in the lowest cell density, 

P. tsukubaensis HR12 produced the highest amounts of ITA with sucrose as C source. After 5 d of 

cultivation, an end-point concentration of 27.9 g l-1 ITA was measured. Glucose was equally fast 

converted into ITA but reached a lower end-concentration of 24.1 g l-1. Potentially because more 

of the C was used for cell growth or storage in form of lipid bodies or mannosylerythritol lipids 

(common storage compounds of the genus Pseudozyma) than for organic acid production. For 

xylose and glycerol, the growth and productivity rates were slower compared to glucose. However, 

at the end of the cultivation, similar concentrations of ITA were reached (24.5 g l-1) with glycerol 

as with glucose, indicating a slower utilization or an initial metabolic adjustment to glycerol. 

Growth on xylose was a bit delayed like in the case of glycerol. For xylose, the ITA production was 

also the overall lowest with 16.9 g l-1 after 5 d. The results however are non-significant due to the 

large standard deviations. 

The detected MA concentrations were low for every tested C source. With glucose and sucrose 

0.8-0.9 g l-1 MA were produced. Interestingly, for xylose and glycerol, even lower concentrations of 

just 0.2 g l-1 MA were detected in the supernatant. The reason for the reduced by-product 

formation may be a generally slower organic acid synthesis. Glycolysis is generally activated by 

glucose. Xylose and glycerol must be metabolized over several steps before their intermediates 

(fructose-1,6-bisphosphate and/or glyceralderhyde-3-phosphate) can enter the last reaction steps 

of the glycolysis. During these preceding steps, no glucose is formed directly, which potentially 

leads to an overall lower glycolysis rate. 
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Figure 29 Growth and organic acid (MA and ITA) production behaviour of P. tsukubaensis strain HR12 on 

different carbon sources. 
The yeast was pre-cultivated for 2 d in 50 ml YPD full medium at 30 °C and 220 rpm. The main cultures of 50 ml minimal 
medium for itaconic acid production (NaNO3: 4 g l-1, KH2PO4: 1 g l-1) were inoculated with the cell mass needed for a starting 
OD600 = 1. As C sources, 10 % (w/v) of either D-sucrose, D-xylose, glycerol or glucose (reference) were used. To maintain a 
neutral pH, 3.3 g l-1 CaCO3 was applied. The yeast cells were incubated for 5 d at 30 °C and 220 rpm. Shown are the mean 
values for two separate cultivations. 

3.1.6.4. Production behaviour of P. tsukubaensis strains in a 600 ml-bioreactor 

The ability of P. tsukubaensis for organic acid production has been determined in small to 

medium volume cultures of 3 and 50 ml. This approach was sufficient to gain first insights into 

the potential quantities that could be realized with the respective yeast strain. The main 

disadvantage for basic laboratory scale cultivations was the variability in culture conditions 

because it was not possible to keep certain factors like pH, oxygen saturation or the temperature 

at a constant level throughout the complete cultivation duration. Therefore, the two most 

promising P. tsukubaensis strains, M15-CAD and HR12, were chosen and their culture volume 

scaled up to 600 ml in a bioreactor. In doing so, it was possible to maintain crucial cultivation 

factors at a constant level, such as oxygen saturation, temperature, and pH for the whole duration 

of fermentation. Besides simply increasing the culture volume, we were also able to investigate 

the responses to certain changes in the medium composition or culture conditions more closely. 

In 2011, Bodinus established this high achieving ITA producing strain M15-CAD. Here, the 

cultivation of the yeast strain M15-CAD was carried out in an initial volume of 600 ml in total at a 

constant temperature of 30 °C. The pH of the medium was maintained at 5.5 or 7.0 and the oxygen 

saturation at 55 % or 90 %. First, the minimal medium compositions which led to considerable ITA 

synthesis in the shaking flasks were applied. More specifically, minimal medium with glucose 

was tested with the three following N:P ratios: 2:0.1; 5:0.1; 4:1.  
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In tendency, the yeast P. tsukubaensis M15-CAD followed a similar pattern to the shaking flask 

cultures. Highest activity in ITA synthesis was achieved while limiting both the N and P source 

(N:P = 2:0.1). After 6 d of cultivation, 32.1 g l-1 ITA and 0.8 g l-1 MA were detected in the culture broth 

(see figure 30 A). This constituted for a productivity rate of 5.4 g l-1d-1 for ITA. The results 

represented a substantial rise in productivity compared to the shaking flasks where only 3.2 g l-1 

of ITA were secreted per day. In the course of the fermentation process, 25 % of the glucose was 

converted into ITA and 11 % into dry cell weight (DCW). 

When higher amounts of N source (N:P = 5:0.1) were supplied, the ITA synthesis rate dropped 

immensely to 1.9 g l-1d-1. The end-concentration amounted to 11.6 g l-1 ITA and 0.5 g l-1 MA after a 

period of 6 d. With the identical medium composition, a very similar productivity rate of 1.8 g l-1d-1 

ITA was observed compared to the shaking flask culture. From figure 30 B it is evident that the 

biomass almost tripled in comparison to the previous fermentation. Instead of acid production, a 

large proportion of the consumed glucose (18 %) was allocated for cell growth. 

The N:P ratio of 4:1 deemed also favourable for cell growth in the bioreactor (see figure 30 C). During 

the first 4 d of cultivation up to 31.3 g l-1 biomass was generated. Afterwards, the glucose was 

consumed completely and the DCW declined towards the end of fermentation. The resulting ITA 

concentrations remained relatively low (14.0 g l-1, 1.4 g l-1 MA). 

From here, it can be concluded that in order for strain M15-CAD to reliably secrete high amounts 

of ITA, the P concentration had to be very low and the overall cell growth had to be limited. It 

seems therefore plausible, that for this yeast strain a very restricted N and P supply is beneficial. 

Furthermore, the effects of a more alkaline pH and an elevated oxygen saturation were tested with 

the ITA production medium MG-IA 2:0.1. By increasing the oxygen saturation to 90 % no further 

improvements in the ITA production behaviour were accomplished. With an ITA end-

concentration of 22.8 g l-1 and 1.4 g l-1 MA after 6 d (see figure 30 E), the productivity rate 

moderately declined to 3.8 g l-1d-1 ITA compared to the fermentation with 55 % oxygen in the 

medium. 

Figure 30 D shows that a neutral pH 7 resulted in a significant decrease in total acid synthesis. 

Merely 0.8 g l-1 ITA per day were secreted into the surrounding medium. Additionally, the main 

product changed from ITA to MA. After 6 d 8.3 g l-1 MA, whereas 4.6 g l-1 ITA were detected. As a 

result, the ITA specific yield was diminished. On average, solely 0.03 g ITA were synthesised for 

every 1 g glucose that was consumed. 

  



Results 

77 

Figure 30 Bioreactor cultivation of P. tsukubaensis M15-CAD in minimal medium with glucose for itaconic 

acid production (MG-IA). 
The yeast cells were cultivated in minimal medium with 15 % (w/v) glucose with different ratios of N to P sources. 
Incubation was carried out for 6 d at 30 °C. A - MG-IA with a N:P ratio of 2:0.1; pH 5.5 and pO2 = 55 %. B - MG-IA with a N:P 
ratio of 5:0.1; pH 5.5 and pO2 = 55 %. C - MG-IA with a N:P ratio of 4:1; pH 5.5 and pO2 = 55 %. D - MG-IA with a N:P ratio of 2:0.1; 
pH 7.0 and pO2 = 55 %. E - MG-IA with a N:P ratio of 2:0.1; pH 5.5 and pO2 = 90 %. The table beneath depicts the main 
characteristics for every single fermentation. Shown are the end-concentrations of ITA, the resulting productivity rates 
and the specific yields for ITA and DCW (g g-1 consumed glucose [%]). 

  

  

 
MG-IA N:P-ratio pH pO2 [%] ITAmax [g l-1] Productivity [g l-1 d-1] Yield ITA [%] Yield DCW [%] 

MG-IA 2:0.1 5.5 55 32.1 5.4 25 11 

MG-IA 5:0.1 5.5 55 11.6 1.9 7 21 

MG-IA 4:1.0 5.5 55 14.0 2.3 7 11 

MG-IA 2:0.1 7.0 55 4.6 0.8 3 14 

MG-IA 2:0.1 5.5 90 22.8 3.8 9 5 
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During the next step, the strain P. tsukubaensis HR12 was investigated for its ITA secretion 

capabilities in the bioreactor. First, the MG-IA medium compositions were applied which deemed 

most promising according to the previous fermentations with the help of strain M15-CAD. 

Therefore, batch cultivations were carried out with 2 g l-1 N and 0.1 g l-1 P source or with 4 g l-1 N 

and 1 g l-1 P, respectively. Figure 31 A illustrates that strain HR12 maintained its high productivity 

also in large culture volumes. After 5 d of cultivation, approximately half of the C source was 

consumed. In the course of this time, 58.3 g l-1 ITA were rapidly generated. The biomass increased 

until the 3rd day where a maximum of 32.7 g l-1 DCW was built up. Afterwards, the DCW subsided 

remarkably. The glucose consumption was not affected by this. This is an indicator that cells were 

still vital. An explanation for the reduction in DCW is, that simply an increasing portion of cells 

accumulated in the headspace of the bioreactor and formed a biofilm there due to the heavy 

aeration. 

The yeast behaved very similarly when higher concentrations of N and P (4:1) were applied. The 

main difference was, that the cell mass did not decrease after the 3rd day but maintained stable 

around 35 g l-1 DCW (see figure 31 B). This heightened amount of cell mass ensured a more 

constant acid production. The ITA concentration rose linearly with a productivity rate of 

12.9 g l-1d-1 until an end-concentration of 64.3 g l-1 was obtained. 

The utilization of the C source was also investigated. Hence, the fermentation with the MG-IA 4:1 

medium was recreated (see figure 31 C). The sole difference to the previous cultivation was that 

the initial glucose concentration was reduced to 7.5 % (w/v). The glucose concentration was then 

monitored at least daily. If needed, the C source was resupplied to approximately 7.5 %. By doing 

so, the growth of strain HR12 could be prolonged. The biomass increased consistently until the 5th 

day. Afterwards, it decreased slightly. In the beginning, the amount of ITA in the medium followed 

a linear increase. The productivity slowed down after the 4th day. At the 5th day mark, ITA 

concentrations of 62.7 g l-1 were detected. This result is very much akin to the results of the 

previous fermentation. Conversely, the C source was converted more efficiently during the same 

time period. On average 35 % of the glucose was metabolized into ITA. Because of the slowed down 

productivity, the yield dropped marginally to 33 %. Therefore, the more stable and predictable 

growth behaviour led to the adoption of the fed-batch fermentation process. All of the following 

fermentations were carried out with a starting concentration of 7.5 % (w/v) glucose and re-

supplying the C source daily. 

Further increasing the initial N source to 8 g l-1 led to very promising results. With more available 

resources for cell multiplication, the growth of the yeast cells was accelerated drastically. Up to 

50 g l-1 DCW was generated. The ITA production reflected this rise in cell mass. Over 113 g l-1 ITA 

were secreted into the medium during the 7 d of fermentation, which corresponds to a 



Results 

79 

productivity rate of 16.2 g l-1d-1 (see figure 31 D). According to this data, it stands to reason that for 

this strain two factors are crucial for the heightened production of ITA. First, the transcription rate 

of the ITA gene cluster is coupled to the growth rate due to the actin promoter. Faster growth 

means higher transcription. Second, the sheer number of active cells: The conversion rate of 

glucose to ITA rose with an increased biomass. 

Figure 31 Bioreactor cultivation of P. tsukubaensis HR12 in minimal medium with glucose for itaconic acid 

production (MG-IA). 
The yeast cells were cultivated in minimal medium with 15 % or 7.5 % (w/v) glucose with different ratios of N to P sources. 
Incubation was carried out for 5-8 d at 30 °C, pH 5.5 and 55 % oxygen saturation. A – Batch cultivation in MG-IA medium 
with a N:P ratio of 2:0.1; 15 % (w/v) initial glucose. B – Batch cultivation in MG-IA medium with a N:P ratio of 4:1; 15 % (w/v) 
initial glucose. C – Fed-batch cultivation in MG-IA medium with a N:P ratio of 4:1; 7.5 % (w/v) initial glucose and fed daily. 
D – Fed-batch cultivation in MG-IA medium with a N:P ratio of 8:1; 7.5 % (w/v) initial glucose and fed daily. Data points 
represent the mean value of two independent fermentations (except for A) with error bars for standard deviation. The table 
beneath depicts the main characteristics for every single fermentation. Shown are the end-concentrations of ITA, the 
resulting productivity rates and the specific yields for ITA and DCW (g g-1 consumed glucose [%]). 

  

  
MG-IA N:P-ratio Duration [d] Glucose supply ITAmax [g l-1] Productivity [g l-1 d-1] Yield ITA [%] Yield DCW [%] 

MG-IA 2:0.1 5 Batch 58.3 11.7 43 7 

MG-IA 4:1 5 Batch 64.3 12.9 31 14 

MG-IA 4:1 8 Fed-batch 73.4 9.2 33 13 

MG-IA 8:1 7 Fed-batch 113.6 16.2 42 16 
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It should be noted that in respect of other organic acids, MA and very low levels of αKG (near the 

limit of detection) were the exclusive side-products for every fermentation at the neutral pH. 

Accumulatively, these two acids represented approximately 2 % of the total acid content. By 

observing the morphology of the yeast cells microscopically, other side-products such as storage 

substances in the form of lipids could not be ruled out. In oleophilic yeasts these lipids are 

commonly stored as triglycerides inside so-called lipid droplets or lipid bodies. From figure 32 it 

is evident, that at the beginning of fermentation young P. tsukubaensis cells exhibited a minimum 

of two small lipid droplets located symmetrically near the two poles of the cell. In the course of 

the fermentation, large amounts of hydrophobic products were accumulated inside the cells. 

Thus, the lipid droplets grew in size until they virtually filled out the complete cell. The 

accumulation of storage fats led to the unwanted effect that the yeast cells floated towards the 

end of cultivation. This is because the lipid bodies accounted for a considerable part of the cell 

and the density of the lipids is less than that of water. The floating led to the undesired 

phenomenon that large parts of the cells adhered to the headspace of the bioreactor and were no 

longer in contact with the liquid medium beneath. 

 

Figure 32 Lipid accumulation of P. tsukubaensis HR12 during fermentation in minimal medium with 

glucose (MG-IA 8:1) and neutral pH vs. acidic pH. 
Overlay images of brightfield and fluorescence photographs at 1000 x magnification. The hydrophobic substance 
containing cell organelles (lipid bodies) appear red due to the staining with the fluorescent dye Nile-red. A – Lipid bodies 
containing yeast cells at the 1st, 3rd and 5th day of cultivations at pH of 5.5. The lipid bodies’ size increases throughout the 
fermentation. B - Yeast cells at the 1st, 3rd and 5th day of cultivations at pH of 4.0. Lipid accumulation is largely restricted in 
the acidic environment 

For acids, the solubility increases with rising pH values. Earlier, the fermentation of 

P. tsukubaensis M15-CAD proved that elevating the pH from 5.5 to 7.0 is counterproductive for 

synthesis of ITA (see figure 30). It was unclear, whether a more acidic pH has a substantial impact 

on the ITA production behaviour. Therefore, the cultivation with the previously recorded highest 

ITA productivity rate was carried out again. The yeast cells were incubated in MG-IA 8:1 minimal 

medium with an initial glucose concentration of 7.5 % (w/v) at a pH 5.5 for 24 h. Deviating from the 

earlier fermentation, the pH was decreased to 4.0 after 24 h. This approach ensured the generation 
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of enough biomass before the change to an acidic milieu. In doing so, an immediate arrest in cell 

growth after lowering the pH was observed (see figure 33 A). At the point of induction, DCW of 

approximately 20 g l-1 had been formed. This level was maintained throughout the whole 

fermentation. Despite the reduced cell mass, the ITA acid production was not hampered 

substantially. Until the 4th day, continuously high concentrations of ITA were secreted. 

Afterwards, the production slowed down marginally. The final concentration came to 71.8 g l-1 ITA. 

Since the uninterrupted generation of biomass was not necessary under this condition, another 

fermentation was carried out with 4 g l-1 N available in the medium. Nevertheless, a certain 

quantity of cells was needed to ensure a high production rate. Thus, the pH was reduced only 48 h 

after inoculation. This way, biomass of nearly 30 g l-1 DCW was present when the pH change took 

place (see figure 33 B). Although, the biomass dropped to approximately 20 g l-1 DCW soon after 

reducing the pH, the remaining cells were vital enough to sustain a linearly increasing ITA 

synthesis for the whole duration of fermentation. With a productivity rate of 11.6 g l-1d-1, a total of 

81.5 g l-1 ITA was formed after the 7 d of cultivation. 

Conspicuously, the P. tsukubaensis cells did not float during fermentation at lower pH values. 

They remained inside the fermentation broth and could be easily sedimented by centrifugation. 

By examining the cells microscopically, it was apparent that an accumulation of lipids had not 

taken place. Figure 32 shows that the size of lipid droplets inside the cells did not extend in the 

course of cultivation but remained small. This is potentially why the highest ITA specific yield 

was achieved. Cell growth and the production of storage substances were both limited while the 

ITA cluster genes were overexpressed. Thus, most of the available C source was allocated to the 

synthesis of ITA. 

Another advantageous aspect of this fermentation process were the remarkably low levels of 

other side-products as well. At the end of cultivations with a pH of 4.0, the combined 

concentrations of MA and αKG amounted for just 0.4 % of the total organic acids detected in the 

supernatant (data not shown). 

During subsequent cultivation experiments, two other factors were investigated in combination 

with the decreased pH. Increased oxygen saturation is described to be beneficial for enhanced ITA 

production (Molnár et al., 2018). Even though no improvement was detected for strain M15-CAD, 

fermentations of strain HR12 were carried out with an increased oxygen saturation of 70 %. By 

doing so, the yeast strain behaved very similar to fermentation B. Figure 33 C shows that the 

productivity rate and the final ITA concentration were very much comparable to fermentation B. 

However, the elevated ITA synthesis rate was accompanied by a heightened glucose 

consumption. Both, the ITA and the DCW specific yield were low, with 28 % and 7 %, respectively. 

The additional increase of the culture temperature to 32 °C in combination with pH 4 had an even 
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more negative effect. The productivity rate suffered vastly. On average, 9.6 g l-1 ITA were formed 

per day. The glucose consumption was also intensified. Merely 26 % of the C source was directed 

into the synthesis of ITA and 8 % into biomass. A possible explanation for that occurrence is an 

accelerated aerobic respiration rate for both cases of increased aeration and temperature. This 

occurrence could stem from an increased activity in the glycolysis pathway and subsequently the 

tricarboxylic acid cycle. As a result, large proportions of the C source would solely be converted 

into CO2. Additional off-gas analysis would be needed to confirm this hypothesis. 

Further decreasing the pH to 3.5 had a detrimental effect on the yeast’s performance. For this 

particular fermentation, the pH was lowered in two increments: first after 24 h from 5.5 to 4.0 and 

after an additional 24 h further to 3.5. This condition led to the lowest observed productivity rate. 

Daily, on average 7.0 g l-1 ITA were secreted. Especially, after the 4th day the ITA synthesis did slow 

down considerably to 3.5 g l-1d-1. By observing the glucose consumption data more closely, it 

appears that the metabolic rate was heavily restricted. In the course of the last 3 d of cultivation, 

only 16.7 g l-1 of glucose were metabolized. 

The chemical compound calcium carbonate (CaCO3) is a naturally occurring buffer agent. It reacts 

with acids by forming the corresponding acid calcium salt and releasing carbonic acid which 

rapidly disintegrates into H2O and CO2. At neutral pH values, this crystalline substance is 

insoluble. If dissociated acids are present in the medium only the CaCO3 amount needed to regain 

a neutral pH will dissolve. At high concentrations the Ca+ and ITA2- ions should precipitate as 

calcium itaconate. Easily removable calcium itaconate crystals would represent an interesting 

way to harvest the product with minimum effort in an industrial fermentation process. Figure 33 

F illustrates the effect of using this buffering agent during fermentation of P. tsukubaensis strain 

HR12. For the cultivation, no active pH control was used. Instead, 5 g CaCO3 was supplied daily, 

after the ITA reached considerable amounts in the medium. The first application happened 72 h 

after inoculation. In doing so, the pH remained constant at approximately pH 5.0. By ensuring a 

relatively neutral pH, high quantities of ITA were secreted. After 7 d, 69.4 g l-1 ITA were measured 

directly in the supernatant. In addition to that, calcium itaconate occurred in the form of an 

insoluble salt. Accounting for that product, in total 89.7 g l-1 ITA were synthesised with a 

productivity rate of 12.8 g l-1d-1. The difference in the two concentrations amounts to a total mass 

of 10.5 g or 0.08 mol ITA. Since 1 mol of CaCO3 is able to neutralize 1 mol ITA, approximately 40 % 

of the total buffer (0.2 mol) was depleted in the formation of calcium itaconate. In contrast to the 

high ITA production rate, also large quantities of DCW were generated, especially towards the end 

of the fermentation process. This fact was reflected in the relatively low ITA specific yield. 33 % of 

the consumed glucose was spent for the formation of ITA and 15 % for biomass.  
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Figure 33 Effect of lowered pH on the ITA productivity of P. tsukubaensis HR12 in a bioreactor with minimal 

medium with glucose (MG-IA). 
Fed-batch cultivations of the yeast cells in minimal medium with 7.5 % (w/v) glucose with different ratios of N to P sources. 
The cultures were incubated for 7 d and fed daily to maintain approximately 7.5 % glucose. Initial pH was set to 5.5. Black 
arrows mark the time point when the pH was lowered to 4.0 A - MG-IA with a N:P ratio of 8:1, pH was lowered to 4.0 at 1st 
day, pO2 = 55 %, 30 °C. B - MG-IA with a N:P ratio of 4:1; * pH was lowered to 4.0 at the 2nd day, pO2 = 55 %, 30 °C. C - MG-IA 
with a N:P ratio of 5:1, pH was lowered to 4.0 at 1st day, pO2 = 70 %, 30 °C. D - MG-IA with a N:P ratio of 4:1, pH was lowered to 
4.0 at 1st day, pO2 = 55 %, 32 °C. E - MG-IA with a N:P ratio of 4:1; pH was lowered to 4.0 at 1st day and then to 3.5 at 2nd day 
(second black arrow), pO2 = 55 %, 30 °C. F - MG-IA with a N:P ratio of 5:1; no active pH control. The medium was supplied 
four times with 5 g CaCO3 each time (grey arrows), pO2 = 55 %, 30 °C. Data points represent the mean value of two 
independent fermentations (except for C, D & F) with error bars for standard deviation. The table beneath depicts the main 
characteristics for every single fermentation. Shown are the end-concentrations of ITA, the resulting productivity rates 
and the specific yields for ITA and DCW (g g-1 consumed glucose [%]). 

  

  

  
MG-IA N:P-ratio pH Temp [°C] pO2 [%] ITAmax [g l-1] Productivity [g l-1 d-1] Yield ITA [%] Yield DCW [%] 

MG-IA 8:1 4.0 30 55 71.8 10.3 38 12 
MG-IA 4:1 4.0* 30 55 81.5 11.6 44 15 
MG-IA 5:1 4.0 30 70 79.9 11.4 28 7 
MG-IA 4:1 4.0 32 55 66.9 9.6 26 8 

MG-IA 4:1 3.5 30 55 48.9 7.0 31 12 
MG-IA 5:1 CaCO3 30 55 89.7 12.8 33 15 
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In industrial settings, numerous fermentation processes are carried out over a long period of time. 

For certain cases continuous fermentation methods are applied, where culture broth is removed 

at a constant rate and substrate is supplied at an equivalent rate. In other cases, semi-continuous 

fermentation methods are followed. By doing so, a large part of the culture volume is removed and 

replaced with fresh medium. Before such a biotechnological process can be established, it must 

be proven that the whole cell catalyst provides a stable conversion rate for the substrate 

throughout the whole fermentation period. Therefore, a semi-continuous fermentation in 

minimal medium with glucose was performed for 14 d with P. tsukubaensis HR12. The results are 

summarized in figure 34. For the process, a low pH of 4.0 was chosen since it ensured a moderate 

growth rate and thus an enough cell vitality until the medium was refreshed. In addition, the 

floating of the cells and the forming of a biofilm inside the bioreactor was prevented with this 

approach also. The culture conditions at the beginning were analogous to the previous 

fermentation with the medium MG-IA 8:1 at pH 4.0 (see figure 33 A). However, the productivity rate 

was slightly accelerated compared to the analogous cultivation. At the seven-day mark, 84.4 g l-1 

ITA were detected in the supernatant which corresponds to an average production rate of 12.1 g l-1 

ITA per day. At that time, one half of the culture broth was removed and replenished with the same 

volume of fresh MG-IA 6:1 medium. The following ITA synthesis was not negatively affected by 

this and remained consistently high. After another 7 d of cultivation, a final ITA concentration of 

112.1 g l-1 was measured. By accounting for the significant quantities of ITA that were removed at 

7 d, the theoretical end-concentration amounted to 160 g l-1 ITA. The ITA specific yield was also in 

accordance with earlier experiments. In total, 35 % of the consumed glucose was utilized for the 

synthesis of ITA.  

During experiments in shaking flasks, it was already established that other C sources than glucose 

could be metabolized. Figure 34 B illustrates, that an upscaling of the cultivation with sucrose as 

the sole C source was also successful. In the course of fermentation at pH 4.0, on average 7 % of 

sucrose was converted into dry biomass. With respect to glucose, this value is comparatively low. 

The trials in baffled shaking flasks also led to decreased cell densities when grown with the non-

reducing sugar. However, in the bioreactor less ITA was formed in relations to glucose. Merely 

63.5 g l-1 ITA were secreted compared to 71.8 g l-1 or 81.5 g l-1 ITA with glucose under similar 

conditions (see figure 33). This was not the case in shaking flasks. From figure 34 B it is noticeable 

that the productivity rate is very high until the 3rd d but levels out thereafter. This decline led to 

the overall inferior ITA production. The reasons for that occurrence are still unclear.  
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Figure 34 Semi-continuous cultivation of P. tsukubaensis HR12 in minimal medium with glucose (MG-IA) 

and fed-batch cultivation with minimal medium with sucrose (MS-IA). 
The yeast cells were cultivated in minimal medium with 7.5 % (w/v) glucose or sucrose with a N:P ratio of either 6:1 or 5:1, 
respectively. The yeast cells were fed daily. Incubation was at 30 °C and 55 % oxygen saturation. The pH was initially 
adjusted to 5.5 and was lowered to 4.0 after 24 h incubation. A - MG-IA with a N:P ratio of 6:1. After 7 d of incubation ½ of 
the culture broth was removed and replenished with fresh medium (marked with double-headed arrow). B – Fermentation 
with sucrose as C-source and a N:P ratio of 5:1. Data points represent the mean value of two independent fermentations 
(except A) with error bars for standard deviation. The table depicts the main characteristics for every particular 
fermentation. Shown are the end-concentrations of ITA, the resulting productivity rates and the specific yields for ITA and 
DCW (g g-1 consumed glucose [%]). Values in brackets represent the respective data after adjusting for the losses that 
resulted by removing ½ of the culture. 

Concluding from all cultivations, it appears, that P. tsukubaensis strain HR12 represents a very 

versatile ITA acid producing organism. The yeast can synthesise and secrete remarkably high 

concentrations of this organic acid. Elevated acid production is sustained reliably under various 

conditions, for different substrates and even for a prolonged time. In addition, the formation of 

ITA is accompanied by only small amounts of MA and αKG as potentially interfering side-

products. According to the accumulated fermentation data, it appears natural that high cell 

densities account for a severely enhanced ITA production with P. tsukubaensis strain HR12. After 

just 7 d, a maximum of 113.6 g l-1 ITA could be generated by dry biomass of approximately 50 g l-1. 

Decreasing the pH during cultivation can be considered stressful to the yeast cells. Additional 

parameter changes during cultivations in an acidic environment e.g. temperature increases 

should be carried out carefully. Since these factors could serve as extra stressors. At pH levels 

below 4.0 a normal cell vitality can no longer be guaranteed. Although lower final concentrations 

of ITA were achieved at pH 4.0 compared to neutral conditions, it could still represent a beneficial 

factor considering certain aspects. These included marginal concentrations of the side-products 

MA and αKG but also potentially lipids. In addition, the lack of hydrophobic storage fats leads to 

more effortless handling because the cells do not float. 

 

  
Mx-IA N:P-ratio Duration Notes  ITAmax [g l-1] Productivity [g l-1 d-1] Yield ITA [%] Yield DCW [%] 

MG-IA 6:1 14 semi-continuous 112.1 (160.4) 8.0 (11.5) 23 (35) 7 (10) 

MS-IA 5:1 7 sucrose 63.5 9.0 24 7 
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3.2. Isocitric acid production with the yeast Yarrowia lipolytica 

3.2.1. Identification of mitochondrial citrate transporters 

In mammalian mitochondria, CA is transported by the protein CIC (synonymic: CTP, 

tricarboxylate carrier). The protein is encoded by SLC25A1 in humans (Palmieri 2013). For yeasts, 

such as S. cerevisiae two proteins are known to transport tricarboxylates, Ctp1p and Yhm2p 

(Castegna et al., 2010; Kaplan et al., 1996). To this date, tricarboxylate carriers in the yeast 

Y. lipolytica have not been characterized. In order to investigate the function of possible CA 

carriers, the respective candidate genes had to be identified first. 

Therefore, the protein sequences of the known CA carriers from S. cerevisiae and C. albicans were 

compared to the protein library of Y. lipolytica CLIB122 (E150) using the BLASTP algorithm. It has 

been found that the Y. lipolytica gene products of YALI0F26323g shared high sequence similarity 

with the two gene products ScCTP1 and CaCTP1 (see table 23). Gene YALI0B10736g had previously 

been identified by Gatter (2015) as the homolog of ScYHM2 and named YlYHM2 or YHM2, 

accordingly. 

Table 23 Y. lipolytic CLIB122 (E150) genes with high similarity to mitochondrial carrier genes from 

S. cerevisiae S288C and C. albicans SC5314. 
The deduced protein sequences of the genes CTP1 and YHM2 were analysed by BLASTP against the translational products 
of the whole Y. lipolytica genome. Shown are the homologous gene products with amino acid identity, query coverage 
(values in brackets) and the Expected value. Also given are the respective lengths of the deduced protein sequences 
(number of aa) and the predicted molecular weight (MW). Molecular weights were estimated with the ProtParam tool 
(https://web.expasy.org/protparam/). 

Y. lipolytica gene 
deduced 

protein 
homologous gene 

deduced 

protein 

identity 

E-value 

YlCTP1 
YALI0F26323g 
gene ID: 2908112 

292 aa 
31.7 kDa 

S. cerevisiae S288C 
ScCTP1 gene ID: 852594  

299 aa 
32.2 kDa 

67 % [99 %] 

5 x e-144 

C. albicans SC5314 
CaCTP1 gene ID: 3635141 

294 aa 
31.4 kDa 

70 % [99 %] 

8 x e-154 

YlYHM2 
YALI0B10736g 
gene ID. 2907495 

311 aa 
33.8 kDa 

S. cerevisiae S288C 
ScYHM2 gene ID: 855282 

314 aa 
34.2 kDa 

77 % [96 %] 

3 x e-169 

C. albicans SC5314 
CaYHM2 gene ID: 3647137 

301 aa 
32.9 kDa 

80 % [95 %] 

4 x e-163 

 

The Y. lipolytica gene YALI0F26323g is located on chromosome F. The 935 bp long ORF consists 

of two exons which are separated by a short intron (at position 24-81 bp). The gene encoding the 

putative Yhm2p homolog is located on chromosome B. This gene (YALI0B10736g) has a 

considerably larger ORF (1561 bp) and harbours two introns. Intron 1 stretches from position 93-

421 bp and intron 2 from position 459-747 bp. 

The deduced protein sequences of YALI0F26323g and YALI0B10736g are 292 aa and 311 aa in 

length, respectively. Both proteins could be classified as mitochondrial carrier proteins by 

examining their aa sequences with the protein homology search algorithm HMMER (Finn et al., 
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2015). In doing so, the conserved protein domain for the mitochondrial carrier family (MCF) was 

detected (identifiers: Pfam - PF00153; PROSITE - PS50920). This domain is found three times in 

tandem orientation in the protein sequence of the members of the MCF. The tandemly repeated 

homologous domains are each about 100 aa long and contain the signature motif 

PX[D/E]XX[K/R]X[K/R]-X20-30-[D/E]GXXXX[W/Y/F][K/R]G (Nury et al., 2006; Palmieri, 1994; Saraste 

and Walker, 1982). This was also the case for the investigated proteins YALI0F26323p and 

YALI0B10736p. The three MCF domain repeats were discovered for YALI0B10736p at the following 

positions: 14-103 aa (E-value: 5.2 x e-07), 105-203 aa (E-value: 2.4 x e-06) and 208-303 aa (E-value: 

5.2 x e-13) and for YALI0F26323p at positions: 7-100 aa (E-value: 1.01 x e-14), 102-197 aa (E-value: 

2.15 x e-16) and 204-292 aa (E-value: 5.10 x e-25). 

According to the deduced protein sequence, YALI0F26323p could be identified as a mitochondrial 

carrier protein, which belongs to the mitochondrial carrier family or more specifically to the 

family 2.A.29 according to the transporter classification database (TCDB). Because of the 

identification as a mitochondrial carrier and the great sequence identity to the homologous 

counterpart in S. cerevisiae and C. albicans, YALI0F26323g was named YlCTP1, hereafter. 

3.2.2. Genetic engineering of Y. lipolytica 

In this study, one key aspect was the enhanced production of ICA with the help of a genetically 

engineered Y. lipolytica strain. Because the functions of the two identified genes were still 

unknown in this yeast, respective deletion strains had to be constructed. A positive effect of 

enhanced YlACO1 activity on the ICA production was already published by Holz et al. (2009). 

Therefore, also overexpression strains had to be constructed. The following section focuses on 

the design and realization of the deletion and overexpression strains. 

3.2.2.1. Deletion of YlCTP1 and YlYHM2 

In contrast to P. tsukubaensis, more advanced genetic tools were available for the genetic 

modification of Y. lipolytica. Decades worth of previous work on the genetic mechanisms for the 

yeast Y. lipolytica made it possible to directly target and delete single specific genes. Homologous 

recombination has been proven to be a reliable and productive method for the purpose of gene 

disruption. In doing so, the ORF of the gene is exchanged for a marker by homologous 

recombination events at the promoter and terminator regions. Usually, the target sequences in 

Y. lipolytica are approximately 1000 bp long directly upstream and downstream of the targeted 

ORF. 

Here, the genes YlCTP1 and YlYHM2 were disrupted using the URA blaster system. This system 

consisted of the complete native YlURA3 gene, including promoter and terminator sequences. 

The YlURA3 gene served as the selection marker for uracil prototrophic transformants. In 

addition, YlURA3 was flanked by two homologous TcR’ sites that share the same orientation. 



Results 

88 

These TcR’ sites are necessary for the recovery of the uracil auxotrophy by excising the marker 

gene and one of the TcR’ sites (loop-out). Leaving only one TcR’ site behind in the genome (scar). 

Ultimately, the deletion cassette was made up of the promoter sequence of the gene to be deleted, 

the URA blaster, and the terminator sequence (see figure 35). 

 

Figure 35 Schematic overview of the molecular mechanism for the disruption of a target gene in 

Y. lipolytica. 
A deletion cassette in the form of a linear DNA fragment is provided to competent Y. lipolytica cells. Homologous 
recombination events take place between the deletion cassette and the genome, because of the sequence homology at the 
promoter and terminator regions. The deletion cassette consists of the upstream region of the to be deleted gene (pXXXX), 
the URA blaster and the downstream region of the gene (XXXXt). The pXXXX & XXXXt regions are approximately 1000 bp 
long. This leads to the exchange of the ORF (XXXX) for the URA blaster. The uracil auxotrophy can be regained by FOA 
selection. The URA3 gene and one of the TcR’ sites are excised from the genome, due to cyclic recombination events 
between the two TcR’ sites. This leaves only one TcR’ site behind as a scar. Black arrows represent the primer sites used 
for PCR to confirm the deletion of the respective ORF (modified according to Gatter, 2015). 

3.2.2.1.1. Construction of deletion plasmids 

The deletion cassettes that were applied during the transformation of the yeast were designed 

and amplified with the help of E. coli plasmids. 

The plasmid for the deletion of YlYHM2, pJET-DK-YHM2, was designed by Gatter (2015). 

The plasmid for the deletion of YlCTP1 (see figure 36) was constructed by amplifying 

approximately 1000 bp long sequences from the 5’-upstream and the 3’-downstream regions of the 

YlCTP1 ORF. The 1194 bp long promoter fragment was amplified using the primers pCTP1_fw and 

pCTP1_rv_BglII. The 3’-end of the promoter fragment was complemented with a BglII restriction 

enzyme recognition site. The resulting purified fragment was then digested with HindIII (at a 

naturally occurring recognition site) and BglII. For the terminator region, the primers 

tCTP1_fw_BglII and tCTP1_rv_KpnI were used. Both ends of this fragment were complemented 

with a recognition sequence for either the BglII or KpnI restriction enzyme. These two recognition 

sites were subsequently utilized to cut the 1081 bp long PCR-product. Both fragments were ligated 

into a HindIII & KpnI-linearized pUCBM21 plasmid. The derived pUC-IP-CTP1 plasmid was then 

linearized using BglII. Afterwards, the pUC-DK-CTP1 plasmid was completed by ligating the URA 
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blaster (BglII & BamHI-digested) into it. Prior to the transformation, the deletion cassette was 

amplified with the help of PCR using the primers pCTP1-DK-Ampl_fw and tCTP1_rv_KpnI. 

Solely the deletion cassette was provided as a linear DNA fragment to the uracil auxotrophic yeast 

Y. lipolytica H222 SW2-1 (∆YHM2) ura- during transformation. 

 

Figure 36 Map of the YlCTP1 deletion plasmid. 
The plasmid contains the ampicillin resistance gene (ampR) for the selection of E. coli clones and an origin of replication 
(ORI). The URA blaster marker system for the selection of uracil prototrophic Y: lipolytica transformants is present. The 
URA blaster is made-up of the YlURA3 gene flanked by two TcR’ fragments. The complete URA blaster is flanked by the 
upstream and downstream regions of YlCTP1 (pCTP1; CTP1t). Small black arrows mark the primer binding sites for pCTP1-
DK-Ampl_fw and tCTP1_rv_KpnI that were used to amplify the deletion cassette before the transformation of the yeast. 

Table 24 List of all cut components that were used for the construction of the deletion plasmid 

pUC-DK-CTP1. 

component fragment (size) 

CTP1 promoter fragment (HindIII)-pCTP1-(BglII) 
(1161 bp) 

CTP1 terminator fragment (BglII)-CTP1t-(KpnI) 
(1069 bp) 

vector fragment (HindIII)-pUCBM21-(KpnI) 
(2670 bp) 

marker system (BglII)-URA blaster-(BamHI) 
(2868 bp) 

3.2.2.2. Overexpression of YlACO1 and YlYHM2 

For the purpose of overexpression, the chosen genes were upregulated with the strong and 

constitutive promoter of the translation elongation factor 1-α (YlTEF1) gene (pTef). The pTef-target 

gene construct represented the key part of the overexpression plasmids. The transcription 

termination of the genes YlACO1 and YlYHM2 was additionally controlled by the terminator 

sequence of the Y. lipolytica isocitrate lyase gene (Icl1t). Furthermore, both overexpression 

plasmids contained the complete URA blaster. Another integral component were the target 

sequences needed for directed integration into the genome. This directed integration was 

guaranteed by the used plasmids. These included sequences that are homologous to non-coding 

sequences either from the yeast’s chromosome B (IntB) or chromosome C (IntC). Therefore, 

homologous recombination events took place during the transformation process between the 

genomic DNA and the linearized vector. Consequently, the whole overexpression plasmid 

integrated into the target sequence on chromosome B or C (so-called loop-in, see figure 37). 
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Figure 37 Schematic overview of the mechanism for the overexpression of YlACO1 and YlYHM2 in the yeast 

Y. lipolytica. 
Integration into the genome of Y. lipolytica was made possible by the homologous regions IntB or IntC (represented by 
IntX), which are homologous to non-coding sequences on chromosome B or C (IntX). Because of homologous 
recombination events the complete linear plasmid is integrated into the chromosome. The overexpression plasmid 
contains the URA blaster (URA3 gene flanked by two TcR’ sites) for the selection of uracil prototrophic transformants. The 
target gene is upregulated by the strong, constitutive TEF1 promoter (pTef) and its transcription termination is controlled 
by the terminator sequence of the YlICL1 gene (ICL1t). Prior to transformation, linearization of the plasmid is done (AscI or 
NotI). Linearization increases integration efficiency and ensures integration at a specific known site. Black arrows mark 
the primer binding sites used for PCR to confirm the integration of the upregulated gene (modified according to Gatter, 
2015). 

3.2.2.2.1. Construction of overexpression plasmids 

First step of plasmid construction was the generation of the pTef-ORF fusion product. For that 

reason, overlap extension PCRs were carried out to merge the 3’-terminal region of the TEF1-

promoter to the respective ORF. The 3’-terminal region of pTef was amplified with a 3’-overhang 

which was complementary to the first 20 bp of the YlYHM2 or YlACO1-ORF, respectively (primers 

for the 3‘-Tef fragments: pTef_SpeI_fw3, pTef_ol_ACO1_rv / pTef_ol_YHM2_rv). The ORFs 

themselves were amplified by extending the 3’-end with a restriction enzyme recognition site for 

either SphI (YlACO1) or MluI (YlYHM2). The 5’-end was extended with a 20 bp overhang which was 

complementary to the pTef’-fragment. The following primer combinations were used for the PCR 

of the ORFs: ACO1_ol_pTef_fw & ACO1_rv_SphI, pTef_YHM2_ol_fw & YHM2_rv_MluI.  

During a second amplification reaction, only the outer primers were used. In this way, the pTef’-

fragment was fused to the respective ORF. Both overlap-PCR products were digested using BcuI 

and SphI (for YlACO1) or MluI (for YlYHM2). Overexpression plasmid pIntB-YHM2 was completed 

by inserting the pTef’-YHM2 fragment into a similarly cut pIntB-CrtI vector. Plasmid pIntC-ACS1 

was digested with BcuI and SphI and ligated with the cut YlACO1 overlap-PCR product. Thus, the 
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overexpression plasmid pIntC-ACO1 was created (for a general overview of the overexpression 

plasmids see figure 38). Prior to transformation into Y. lipolytica, linearization of the 

overexpression vectors was achieved by using the following enzymes. AscI (pIntC-ACO1) and NotI 

(pIntB-YHM2). 

 

Figure 38 General map of the overexpression plasmids used for the overexpression of YlACO1 and YlYHM2. 
The resulting plasmids pIntB-YHM2 and pIntC-ACO1 both contained the ampicillin resistance gene (ampR) for the selection 
of E. coli clones and an origin of replication (ORI). The URA blaster marker system for the selection of uracil prototrophic 
Y: lipolytica transformants was present. The URA blaster was made up of the YlURA3 gene flanked by two TcR’ fragments. 
The overexpression plasmids contained the respective gene (XXXX) under the control of the strong and constitutive TEF1 
promoter (pTef). Transcription termination was regulated by the terminator sequence of the YlICL1 gene (‘ICL1t). 
Integration of the whole plasmid into the yeast’s genome was made possible by the integration platform IntB (YlYHM2) or 
IntC (YlACO1). 

 

Table 25 List of all cut pTef’-gene fusion fragments and cut vector backbone fragments for the 

overexpression of YlACO1 and YlYHM2. 

Gene Promoter-gene fragment (size) Vector fragment (size) 

YlACO1 
YALI0D09361g 

(BcuI)-pTef’-YlACO1-(SphI) 
(2906 bp) 

(SphI)-pINTC-(BcuI) 
(8083 bp) 

YlYHM2 
YALI0B10736g 

(BcuI)-pTef’-YlYHM2-(MluI) 
(1768 bp) 

(MluI)-pINTB-(BcuI) 
(7550 bp) 

 

3.2.3. Growth behaviour of the constructed Y. lipolytica strains 

In total, six differing Y. lipolytica strains were generated with the above-described methods. Two 

strains had one of the potential CA carriers deleted: H222 SW2-1 ∆YHM2, H222 SW2-1 ∆CTP1 and 

one had them both deleted: H222 SW2-1 ∆YHM2∆CTP1. One strain was overexpressing the 

tricarboxylate carrier: oYHM2. The single copy integration of the deregulated YlACO1 gene (coding 

for aconitase) was also investigated with the wild type and ∆YHM2 background: oACO1 and 

∆YHM2oACO1. Aconitase was chosen as an additional target because this is a key enzyme in the 

TCA cycle and responsible for the isomerisation of CA into ICA. 

Growth behaviour on minimal medium with various C sources was investigated for all the 

genetically modified Y. lipolytica strains and the wild type H222. Glucose was chosen as the 

reference C source. This fermentable simple sugar is generally metabolized in the course of 
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glycolysis and subsequently the tricarboxylate cycle. Thus, a prevalent impairment in the TCA 

would have been made visible on glucose.  

This was not the case for any of the strains. As figure 39 shows, all the investigated strains grew 

in a near identical manner.CA is described to be the main substrate for the carrier proteins Yhm2p 

and Ctp1p. The metabolization of CA mainly takes place inside the mitochondria in the course of 

the TCA cycle. In theory, an effect should be discernible if CA cannot be shuttled into the cellular 

compartment of its degradation. Therefore, the growth on this tricarboxylate and its precursor 

(oxaloacetate) as well its successor (αKG) molecules in the TCA were tested. None of the genetic 

modifications, not even the combined deletion of the CA carriers led to any visible growth deficits. 

Cultivation on the non-fermentable monocarboxylate, acetate also did not lead to any changes in 

the phenotype. 

Overall, no major growth defects were detected for any C source. According to these results, the 

main metabolic pathways were not considerably impacted by any of the genetic modifications. 

However, compensation mechanisms cannot be ruled out yet. This stands to reason especially for 

strain ∆YHM2∆CTP1 when cultivated on the CA containing medium. Other pathways were maybe 

amplified to channel metabolites into the mitochondria. Alternatively, other transport proteins 

were potentially upregulated. These potentially functionally redundant transporters could then 

transport the tricarboxylates into the mitochondria. 

Additionally, the effect of hydrogen peroxide was examined. In the yeast S. cerevisiae, it was 

reported that Yhm2p exerts an antioxidative role by shuttling metabolites that are needed for the 

generation of NADP(H) in the cytosol (Castegna et al., 2010). Thus, the antioxidative capabilities of 

the engineered strains were investigated on minimal medium with glucose in the presence of 

1.25 mM H2O2. Under this circumstance, the deletion of YlYHM2 had a similar consequence than 

it had on S. cerevisiae. Strain ∆YHM2 was evidently impaired in its growth. Therefore, Yhm2p is 

most probably an important factor in the NAD(H)/NADP(H) homeostasis in Y. lipolytica as well. 

Deletion of YlCTP1, on the other hand, did not cause the same phenotype. This indicates, that Ctp1p 

is not involved in the formation of NADP(H) in Y. lipolytica. The overexpression of YlACO1 (oACO1) 

led to similar deleterious effects in the presence of the oxidant. Meaning, that the enhanced 

aconitase activity negatively affected the formation of NADP(H) in the presence of the oxidant. 

Interestingly, the combination of the YlYHM2-deletion and the YlACO1-overexpression alleviated 

this phenotype for strain ∆YHM2oACO1 in the presence of hydrogen peroxide. Possibly, the 

YlACO1 overexpression leads to an increased CA conversion into ICA inside the mitochondria, 

which is then exported into the cytosol, where it is metabolized into αKG while simultaneously 

synthesizing NADP(H).  
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Strain Glucose Glucose + H2O2 Citrate Oxaloacetate α-Ketoglutarate Acetate 
 

H222 
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∆YHM2 
 

 

∆YHM2oACO1 
 

 

∆CTP1 
 

 

∆CTP1∆YHM2 
 

 

oYHM2 
 

 

Figure 39 Growth behaviour of the constructed Y. lipolytica strains on minimal medium with various 

carbon sources. 
The genetically altered strains and the wild type strain (H222) were cultivated either with 1 % (w/v) citrate, oxaloacetate, 
α-ketoglutarate, acetate, glucose or glucose + 1.25 mM H2O2 supplemented minimal medium. oACO1/oYHM2 – single-copy 
overexpression of ACO1/YHM2 under control of the TEF1 promoter integrated into a non-coding region on chromosome C 
or B, respectively; ∆YHM2/∆CTP1 – disrupted for the respective carrier protein (with the help of the URA blaster system); 
∆YHM2/∆CTP1 – both genes that encode tricarboxylate carriers were deleted; ∆YHM2oACO1 – single-copy overexpression 
of ACO1 under control of TEF1 promoter into the strain ∆YHM2. Ten-fold serial dilutions of 102 cells (pre-cultivated 
overnight in liquid YPD full medium at 28 °C and 220 rpm) were dripped onto solid minimal medium and cultivated for 
48 h at 28 °C. 

3.2.4. Aconitase activity of the constructed Y. lipolytica strains 

The enzyme aconitase plays an integral part in the TCA. It converts CA into ICA via cis-aconitate 

as an intermediate. In 2009, Holz et al. introduced multiple copies of the native YlACO1 gene under 

the control of the native promoter into the oleaginous yeast Y. lipolytica. The following enhanced 

aconitase activity caused an increase in the isomerisation rate of CA into ICA. Therefore, the 

ICA:CA ratio shifted into the favour of ICA on fermentable, non-fermentable and hydrophobic 

substrates. 

In this study, YlACO1 was overexpressed in single copy under the control of the strong 

constitutive TEF1 promoter, because multicopy overexpression transformants targeting the rDNA 

often exhibit a delayed growth phenotype (personal observation). Since, another strategy was 

followed in this work to overexpress YlACO1 compared to Holz et al. (2009), it was detrimental to 

ensure, in fact, enhanced aconitase activity. Thus, the enzymatic activity of aconitase was 

determined not just for the overexpression strains (oACO1 & ∆YHM2oACO1) but for all constructed 

strains. This approach also had another advantage: it allowed further insight on the protein level 

into the consequences the genetic modifications had on one main step of the TCA. More 

specifically, this way it was possible to test, whether the deletions of the transporter(s) influenced 

the isomerisation step of CA inside the mitochondrion catalysed by aconitase. The yeast cells 

needed for the enzyme assay were all cultivated for 16 h in minimal medium under conditions for 

unrestricted growth (no N exhaustion) and with 5 %(w/v) glucose as C-source. 

The results, represented in figure 40, show that the YlACO1 overexpression was successful. Both 

strains exhibited a drastic increase in aconitase activity. The integration of the YlACO1 gene 
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under the control of the TEF1 promoter led to a 3.2-fold increase in the YlYHM2-deleted strain 

∆YHM2oACO1 compared to H222. For strain oACO1, the effect was even stronger (3.7-fold). 

Overexpression of YlYHM2 had no significant effect on the aconitase activity in comparison to 

the wild type strain. Conversely, all strains with disrupted tricarboxylate carriers had in common, 

that the observed aconitase activity was heavily reduced. Strain ∆YHM2 was affected the most. It 

showed only 36 % of the wild type’s ICA conversion rate. For strains ∆CTP1 and ∆YHM2∆CTP1, the 

reduction was less severe, but the activity levels were still significantly lower than in the wild 

type. The changes in the conversion rate of ICA were 0.4-fold lower after the deletion of YlCTP1 

and 0.3-fold lower with both deleted citrate transporters. This outcome gave ground to infer, that 

the lack in CA export out of the mitochondrion led to compensatory mechanisms in the 

metabolism of the yeast. At least parts of the TCA were downregulated in response to the deletion 

of YlCTP1 and/or YlYHM2. The downregulation could help prevent the cell from toxic impacts by 

too high intramitochondrial CA levels. 

 

Figure 40 Enzyme assay for the activity of aconitase (Aco1p) in genetically modified Y. lipolytica strains. 
The conversion of isocitrate to cis-aconitate was measured photometrically for 4 min at a wavelength of λ = 240 nm. The 
reaction was catalysed by the aconitase containing raw protein extract. The yeast cells were pre-cultivated overnight in 
YPD medium. The main cultures were incubated for 16 h in minimal medium with 50 g l-1 glucose. H222 – wild type, oACO1 
– single copy overexpression of YlACO1, ∆YHM2 – disruption of the gene coding for the citrate transporter YlYHM2, 
∆YHM2oACO1 – single copy overexpression of YlACO1 in combination with the deletion of YlYHM2, ∆YHM2∆CTP1 – 
disruption of both genes which code for a mitochondrial citrate transporter YlCTP1 & YlYHM2, ∆CTP1 – deletion of YlCTP1, 
oYHM2 – single copy overexpression of YlYHM2. Shown are the means of four independent measurements with error bars 
for standard deviations. Asterisks (*) – statistically significant differences detected with one-tailed t-test relative to the 
measured activity for the control strain Y. lipolytica H222, p < 0.05. 
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3.2.5. Screening of constructed strains for isocitric acid production 

The two targets, Ctp1p and Yhm2p, were the only two proteins known to exports significant 

amounts of CA out of the mitochondria. The working hypothesis therefore was, that the deletion 

of one or both transport proteins would lead to an observable change in the production pattern of 

CA and ICA. To test the effect of the genetic alterations on the CA/ICA acid metabolism, the 

constructed Y. lipolytica strains were cultivated under conditions for acid secretion. This was 

achieved by growing the cells for 5 d in minimal medium with a limited N supply but an excess in 

C source (Holz et al., 2009; Kruse et al., 2004; Mauersberger et al., 2003). 

Figure 41 illustrates the resulting acid producing capabilities of the individual strains. Solely 

upregulating the YlACO1 gene already brought a significant rise in the proportion of ICA with it. 

The ICA:CA ratio rose from 12.5 % (wild type) to 18.4 % with glucose and from 49.3 % to 59.0 % with 

sunflower seed oil. Also, the total concentration of CA and ICA greatly increased. Strain oACO1 

produced 9 % more CA and ICA with the hydrophobic substrate than strain H222. With the simple 

sugar, the increase was almost three-fold (263 %) for both acids combined. The overexpression of 

the citrate transporter Yhm2p had no effect on product pattern. Surprisingly, the export rate of CA 

was not augmented. On the contrary, much less CA and ICA were secreted with this genetic 

modification.  

The disruption of the CA transporter Ctp1p had no impact on the ICA:CA product ratio when grown 

with the hydrophobic substrate. However, the total acid concentration decreased. This decrease 

was also observable when cultivated with glucose. Only marginal concentrations of CA and ICA 

were secreted into the surrounding medium. The ICA concentration however was increased 

compared to CA (ICA:CA = 18.0 %). 

The deletion of YlYHM2 had the strongest effect: with glucose, the total amount of secreted ICA 

was increased by almost 340 % to 1582 mg l-1 compared to the wild type. Simultaneously, CA 

secretion was diminished to levels of less than 17 %. In the supernatant, 83 % of the organic acids 

constituted for ICA. After strain oACO1, this constituted for the second highest ICA production but 

the overall highest elevation in the ICA:CA ratio. Even greater results were attained with sunflower 

oil as C source. In this case, strain ∆YHM2 produced the highest total (24.5 g l-1 ICA) and relative 

amount (88.3 %) of ICA.  

The attempt of further increase the productivity of this exceptional strain, by additionally 

overexpressing YlACO1, was not successful. The acid production suffered immensely when 

glucose was fed. Merely base levels of CA and ICA were detected in the supernatant. When 

cultivated with hydrophobic substrate, again more CA was secreted. However, the ICA:CA ratio 

shifted back drastically in favour of CA for both C sources: 26.9 % with glucose and 59.4 % with 

sunflower oil. 
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Strain Characteristics 
Sunflower seed oil Glucose 

ICA [g l-1] CA [g l-1] ICA [%] ICA [g l-1] CA [g l-1] ICA [%] 

H222 WT 16.4 ± 1.2 16.8 ± 0.7 49.3 ± 1.4 0.5 ± 0.1 3.3 ± 0.6 12.5 ± 1.8 
H222-SW2-1(pIntC-TEF-ACO1) oACO1 21.4 ± 2.7 14.9 ± 1.5 59.0 ± 1.3* 1.8 ± 0.5 8.1 ± 2.2 18.4 ± 0.6* 

H222-SW2-1(∆YHM2::URA3) ∆YHM2 24.5 ± 1.3 3.3 ± 0.5 88.3 ± 1.4* 1.6 ± 0.9 0.5 ± 0.5 83.2 ± 12.8* 
H222-SW2-1-∆YHM2(pIntC-TEF-ACO1) ∆YHM2oACO1 18.4 ± 3.0 12.8 ± 3.2 59.4 ± 2.3* 0.1 ± 0.1 0.4 ± 0.1 26.9 ± 4.4* 

H222-SW2-1-∆YHM2(∆CTP1::URA3) ∆YHM2∆CTP1 7.8 ± 2.3 8.8 ± 2.2 46.9 ± 3.0 0.1 ± 0.0 1.4 ± 0.4 9.7 ± 2.3* 
H222-SW2-1(∆CTP1::URA3) ∆CTP1 12.3 ± 1.6 12.4 ± 2.1 49.8 ± 1.3 0.1 ± 0.0 0.4 ± 0.0 18.0 ± 1.7* 

H222-SW2-1(pIntB-TEF-YHM2) oYHM2 7.4 ± 2.5 8.3 ± 2.6 47.0 ± 0.8 0.1 ± 0.0 0.6 ± 0.1 15.6 ± 3.2 

Figure 41 Screening of constructed Y. lipolytica strains for the production of ICA. 
Top: proportions of ICA to CA for the different yeast strains with glucose or sunflower seed oil as carbon source. Bottom: 
absolute concentrations of secreted ICA and CA, respectively. Shown are the averages for glucose (filled collumns; n ≥ 5) 
and sunflower seed oil (checkered columns; n ≥ 3). Cells were grown for 5 d at 28 °C, 220 rpm in minimal ICA production 
medium with 50 g l-1 glucose as C source in 3 ml-well cultures or with 10 % (v/v) sunflowerseed oil in 50 ml-baffled flask 
cultures. Asterisks (*) – statistically significant differences detected with one-tailed t-test relative to the control strain 
Y. lipolytica H222, p < 0.05. 
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The Y. lipolytica strain with the combined deletion of YlYHM2 and YlCTP1 performed very poorly 

when hydrophobic substrates were available as C source. The product pattern did not change 

compared to the wild type, but overall much less acid was secreted. The acid production with the 

simple sugar as substrate however led to an interesting phenomenon. Strain ∆YHM2∆CTP1 

formed considerably more CA than the strain in which only the YlCTP1 gene was disrupted. Since 

the ICA secretion remained low with this strain, the resulting ICA:CA (9.7 %) was even lower than 

that of the wild type.  

Since little information about the two transport proteins in yeasts is available, the function of 

Ctp1p and Yhm2p in Y. lipolytica was still unclear up until this point. Considering this screening 

process, it appeared that both expected tricarboxylate carriers, in fact, are responsible for the 

transport of CA and/or ICA out of the mitochondrion. Deleting one of the coding genes, 

detrimentally impacted the amount of secreted acids. This observation was notably pronounced 

when the yeast cells were fed with glucose. When YlYHM2 was deleted and Ctp1p represented the 

remaining citrate carrier, mainly ICA was secreted. This indicates that Ctp1p displays a higher 

affinity for ICA. However, after deleting solely YlCTP1, the secretion of CA and ICA collapsed, 

giving rise to the assumption that Ctp1p represents the main carrier for CA and ICA. 

From the standpoint of overproducing ICA, solely strain ∆YHM2 represented a viable candidate 

for the microbial synthesis of ICA. This yeast strain was able to generate exceedingly high 

concentrations of ICA in small to medium culture volumes with two different C sources. In 

addition to that, the concentration of the isomer, CA was nominal. 

3.2.6. Isocitrate production under production conditions 

During the screening, it appeared evident that Y. lipolytica strain ∆YHM2 was the most promising 

ICA producer. It, therefore, seemed necessary to further elucidate its capabilities of secreting high 

concentrations of ICA with only marginal CA amounts.  

Thus, large volume fed-batch cultivations of strain ∆YHM2 were carried out in a bioreactor under 

well-defined conditions. The fermentations were conducted in a total volume of 600 ml minimal 

medium with either 15 % (w/v) glucose or 10 % (v/v) sunflower seed oil as the initial C source. In 

doing so, the cultivations had in common that during the first 24 h rapid cell multiplication was 

observable. During this time period approximately 20 g l-1 dry biomass was generated. In the same 

time, almost no ICA nor CA was produced. With the beginning of the 2nd day, after the available 

nitrogen was depleted and the cell growth slowed down, the synthesis of ICA and CA set in. 

Figure 42 illustrates that by fermenting with glucose, a steady, linearly increasing ICA synthesis 

was achieved. Over the course of 5 d, 22.0 g l-1 ICA and merely 1.5 g l-1 CA were formed. This 

amounts to an endpoint ICA:CA ratio of 94 %. By supplying sunflower seed oil as the C source, the 

productivity rate for ICA was significantly heightened. Per day 26.4 g l-1 ICA were secreted into the 
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medium. At the end of fermentation, a final concentration of 131.9 g l-1 ICA was measured. The 

heightened ICA production came along with also elevated amounts of by-products. More 

resources were allocated for the formation of biomass (final concentration: 27.2 g l-1 DCW) and the 

synthesis of CA (final concentration: 16.5 g l-1 CA). Because of the still elevated CA production, the 

ICA:CA ratio was lower with sunflower seed oil. 

 
 No itaconate 25 mM itaconate 

C-source glucose sunflower oil glucose sunflower oil 
ICA content [g l-1] 22.0 131.9 21.3 108.2* 
CA content [g l-1] 1.5 16.5 0.9 30.5* 

ICA:CA ratio (end) 94 % 89 % 96 %* 78 %* 
pooled ICA:CA ratio (2.-5. d) 95 % 89 % 97 %* 76 %* 

ICA productivity [g l-1 d-1] 4.4 26.4 4.3 21.6 
DCW [g l-1] 22.6 27.2 29.1* 27.2 

Figure 42 Large-scale cultivation in 600 ml-bioreactor with the ICA producing strain Y. lipolytica ∆YHM2. 
The cells were incubated for 5 d at pH 5.5, 28 °C and an oxygen saturation of 55 %. Minimal medium with either 15 % (w/v) 
glucose (A) or 10 % (v/v) sunflower oil (B) as initial C source was used as substrate. Every 24 h, the amounts of produced 
isocitrate (ICA) and citrate (CA) were determined as well as the dry cell weight (DCW). Grey lines – cultivation under 
identical conditions and the initial supplementation of 25 mM itaconic acid (ITA) to the medium. Values are the average 
of two fermentations with error bars shown for standard deviation. Asterisks (*) – significant influence detected by two-
way analysis of variance (ANOVA) with post hoc Holm-Sidak test, P < 0.05. 

3.2.6.1. Effect of itaconate on the isocitric acid production 

Itaconic acid is also an organic acid. It is known to be a natural inhibitor of the isocitrate lyase 

(Icl1p), a key enzyme needed in the glyoxylate shunt. Icl1p catalyses an important step in the 

metabolism of ICA. The enzyme is responsible for the cleavage of ICA into glyoxylate and succinic 

acid. This metabolic pathway is active in the peroxisomes. The group around Kamzolova (2015, 

2016, 2018) demonstrated that the addition of this inhibitory agent to the culture medium of ICA 

producing Y. lipolytica strains, shifted the product ratio in the favour of ICA. It appeared, therefore, 

logical to investigate the effect of ITA on the ICA production performance of strain ∆YHM2. For 

this purpose, the two above-described fed-batch cultivations were conducted again with the 

initial supplementation of 25 mM ITA in the medium. 

Figure 42 shows (grey lines), that the addition of ITA led to a significant increase in the build-up 

of biomass when cultivated with glucose. At the end of fermentation 29.1 g l-1 DCW were generated 
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compared to 22.6 g l-1 (without ITA). However, the elevated biomass had no significant negative 

impact on the synthesis of ICA. In total 3 % less ICA were secreted in the presence of the inhibitor, 

but the concentration of CA was reduced by 40 % to a final concentration of only 0.9 g l-1 CA. Thus, 

an enhanced ICA:CA ratio of at least 96 % was registered.  

Inhibiting Icl1p in Y. lipolytica strain ∆YHM2 while feeding the hydrophobic substrate, led to a 

very distinct consequence. Instead of further increasing the ICA production, the opposite was 

observed. The final ICA concentration was reduced to 108.2 g l-1 while the CA concentration almost 

doubled (final concentration: 30.5 g l-1 CA). As a result, the ICA:CA ratio shifted back exceedingly 

in favour of CA (ICA:CA: 78 %). 

Overall, strain ∆YHM2 demonstrated exceptional ICA producing capabilities. Up to 131.9 g l-1 ICA 

with a high ICA:CA ratio could be synthesised. With a simple, fermentable sugar as C source, 

almost exclusively ICA was secreted. Further optimizing the ICA production by the 

supplementation of ITA and thus the consequential blocking of the glyoxylate shunt was partly 

beneficial to produce ICA with Y. lipolytica ∆YHM2. The usefulness of this inhibitor seemed to 

depend on the underlying metabolic pathway. A significant improvement was achieved when the 

glycolysis fuelled the tricarboxylate cycle. As a result, a near CA-free supernatant was achieved. 

The ICA production was adversely affected when metabolites for the TCA originated mainly from 

β-oxidation of fatty acids. The additional overexpression of YlACO1 did not prove to be an 

advantageous strategy at all to improve ∆YHM2 strain’s ICA forming capacity. 
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4. Discussion 

The bio-production of certain organic acids has gained momentum only in the past decade. ITA 

is one of these versatile platform chemicals that can replace petroleum-based chemicals like 

acrylic acid (De Guzman, 2009; El-Imam and Du, 2014). At the present time, ITA is still produced 

with the fungus A. terreus. However, due to several drawbacks, like sensitivities towards 

impurities in the medium and difficult oxygen supply due to its hyphal growth, alternatives to 

A. terreus have been investigated (Klement et al., 2012; Zambanini et al., 2017). In contrast, ICA is 

an organic acid still produced in fine chemical quantities. With an ever more developing 

applicability of ICA for pharmaceuticals and nutritional supplements, the demand for it also rises 

(Aurich et al., 2012; Kamzolova et al., 2018; Moore et al., 2017; Rivera‐Angulo and Peña‐Ortega, 2014). 

To this day, no adequate ICA production strains nor fermentation processes have been 

established. 

The scope of this study consisted of the phenotypic and genotypic optimization of two not related 

yeasts, namely P. tsukubaensis and Y. lipolytica for the microbial production of ITA and ICA from 

their common precursor cis-aconitate, respectively. Concerning P. tsukubaensis, the focus lied on 

the identification of genes involved in the ITA biosynthesis. Subsequently, a production strain 

was established through the means of genetic engineering. Then, the ITA production capabilities 

of the resulting strain were improved by adjusting the fermentation conditions such as the 

composition of the cultivation medium. 

Furthermore, genes encoding CA carrier proteins were identified in the yeast Y. lipolytica. The 

impact of the respective CA transporter on the ICA:CA homeostasis was assessed. After selecting 

an advantageous ICA overproducing strain, its capacity to secrete ICA under production 

conditions was examined. 

4.1. Identification of minimal medium for P. tsukubaensis 

In the beginning, the minimal medium composition according to Kawamura et al. (1981, 1982) was 

used. Because of its complex and varying composition, the containing CSL had to be substituted 

with an ingredient that offers consistent quality. Two supplements, namely inositol and thiamine 

hydrochloride, enabled the growth of P. tsukubaensis wild type H488 in the minimal medium with 

glucose as C source. These two substances were critical factors for the optimal growth of strain 

H488 consistent with the long known fact that thiamine and inositol induce the growth of certain 

yeast strains (Lochhead and Landerkin, 1942; Williams et al., 1940). 

Inositol is needed for the cultivation of S. cerevisiae and its related species. Thiamine on the other 

hand, is only required for some S. cerevisiae strains (Spencer et al., 1997). Although, many yeasts 

show a deficiency for biotin, several Candida species are dependent on thiamine instead. In fungi 

thiamine deficiencies occur commonly, for example in Hormodendron pedrosoi, Phialophora 
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verrucosa & Sporotrichum schenckii (Burkholder and Moyer, 1943). It is remarkable, that the two 

structurally very distinct compounds, thiamine and inositol, which do not share a common 

metabolic pathway, both enable growth in P. tsukubaensis on their own. The underlying 

mechanisms for that phenomenon are still unclear. However, a similar occurrence has been 

described for the fungus Trichophyton faviforme (Burkholder and Moyer, 1943). 

4.2. Nitrogen and phosphate dependency on growth and acid production 

It is a well-known phenomenon for certain microorganisms to secrete organic acids under 

stressful cultivation conditions. Secondary substrate limitation is a stressor and is a general 

requirement for the unusually high production and accumulation of organic acids by the 

microorganisms under study. Commonly, N starvation is applied for the microbial production of 

organic acids. N limitation is used e.g. for the secretion of fumaric acid by Rhizopus arrhizus, MA 

production by A. flavus or CA secretion by Candida /Yarrowia strains (Barth, 2013; Battat et al., 1991; 

Goldberg et al., 2006; Kenealy et al., 1986; Mattey, 1992). 

For the more closely related yeast species U. maydis and P. antarctica, it was described that N 

limitation represents a crucial factor for the enhanced formation of ITA. P. antarctica showed an 

optimal ITA production behaviour with 2 g l-1 (NH4)2SO4 where a maximum of 16.7 g l-1 ITA was 

produced under controlled conditions. Further decreasing the N concentration (1 g l-1) lowered the 

productivity rate but enhanced the yield to some degree (Levinson et al., 2006). U. maydis started 

producing ITA right after the available ammonium in the medium was depleted. With over 20 g l-1 

ITA, the corn smut caused the yeast to produce the highest amounts of the organic acid when the 

initial NH4Cl-concentration was limited to 0.8-1.6 g l-1. Further increasing the available N source 

led to a drop-off in product concentrations (Klement et al., 2012). However, the results of Maassen 

et al. (2014) painted a slightly different picture. Under pH- and oxygen-controlled conditions, 

U. maydis secreted the most ITA with 4 g l-1 NH4Cl.  

In other cases, it is reported that P starvation triggers the organic acid production. A link between 

the synthesis of ITA and a P limitation for example was postulated for A. terreus in 1975 by 

Elnaghy and Megalla. Similar results were published by Rychtera and Wase (1981). KH2PO4 

concentrations in the medium as low as 0.1 g l-1 have been reported to be most beneficial for ITA 

production with this fungus (Kuenz, 2008). This phenomenon is described, in that the P limitation 

is forcing the fungus into the stationary growth phase, which is followed by the induction of ITA 

production. The reason behind this is that low P levels lead to a decoupling of the glycolysis and 

the respiration. As a result, the microorganism increases the metabolic flux of glucose through 

the glycolysis to cis-aconitate and into ITA (Haldenwang and Behrens, 1983; Klement and Büchs, 

2013; Welter, 2000). 
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In this study, it was shown that a secondary substrate limitation is also favourable for the ITA 

production with P. tsukubaensis. Correspondingly, high initial concentrations of N and P (10:0.4) 

did not entail a significant secretion of organic acids. Like the results of Maassen et al. (2014), N 

concentration equal to or below 5 g l-1 did prove to be most beneficial. However, akin to 

experiments with A. terreus low P levels had a more decisive impact on the formation of ITA in P. 

tsukubaensis. 

Additionally, the microwell-cultivation (see figure 27) showed that the induction of ITA synthesis 

is intricately controlled in this yeast. For very low P concentrations, the competing MA was 

produced. The optimal concentration of P to produce both organic acids was at 0.15 g l-1 KH2PO4. 

Organic acid production dropped off sharply for P concentrations above that value. Interestingly, 

at KH2PO4 concentrations between 0.05-0.1 g l-1 the secretion of MA was lowered by an amount 

that corresponds to the produced concentration of ITA. 

From this data, it can be concluded that the induced ITA pathway was consuming precursors from 

the TCA cycle and thus slowing down MA production. The TCA cycle activity was potentially 

highest at 0.15 g l-1 KH2PO4 by what the metabolic flux was sufficiently supplying both ITA and MA 

biosynthesis. However, the detailed underlying control mechanisms for the induction of the acid 

synthesis, especially, the selective triggering of MA or ITA, are still unknown. 

The above-described decoupling of the glycolysis and respiration appears also plausible for 

P. tsukubaensis. The low P levels decrease the adenosine triphosphate (ATP) concentration in the 

cell. Because of little available P, the oxidative phosphorylation is diminished. To replenish ATP, 

the substrate-level phosphorylation steps during glycolysis and TCA are enhanced. An increased 

activity of the TCA also explains increased MA concentration since this organic acid is one of the 

main intermediates of this pathway. At a certain P level in the cell, the ITA cluster genes are 

potentially upregulated. This would explain, why solely MA is secreted at very low P 

concentrations and ITA production is induced with increasing P levels (Haldenwang and Behrens, 

1983; Klement and Büchs, 2013). 

For the P. tsukubaensis wild type strain H488, Bodinus (2011) also described that ITA secretion set 

in after N and P were exhausted in the medium. Contrary to the present study, Bodinus detected 

the highest ITA concentration of 3.5 g l-1 with only 0.05 g l-1 KH2PO4. However, in the medium used 

by Bodinus, CSL represented an additional P source. Thus, the exact P concentration in the 

medium was unclear. According to the data of Kalscheur et al. (2008), CSL contains approximately 

2 % phosphorus. Therefore, the final P concentration in Bodinus’ medium should be well above 

0.05 g l-1 and closer to 0.15 g l-1. This would substantiate the P optimum identified in the present 

study. 



Discussion 

103 

The assumption of P limitation as the main trigger for ITA production in A. terreus, however, has 

been refuted by now. Neither a limitation in N nor P is needed for the induction of ITA synthesis 

by this fungus (Hevekerl et al., 2014b, 2014a; Krull et al., 2017; Kuenz and Krull, 2018). 

Despite the gained insight into the potential triggering of ITA production by secondary substrate 

limitation in P. tsukubaensis, the overexpression of the PtRIA1 gene rendered the complete 

regulatory mechanism redundant. This was an extremely advantageous finding for this study. 

The ITA synthesis proved to be completely uncoupled from the available P and N concentrations. 

Furthermore, production of ITA did not follow any growth phases. The organic acid was 

continuously secreted in high amounts from the beginning of cell growth through stationary 

phase until the death phase. Cultivations in the bioreactor but also 12-well plate indicated that 

high biomass resulted in high ITA concentrations. The ITA productivity only reduced when the 

number of vital cells declined due to cell death. Therefore, the single limiting factor appeared to 

be solely the cell mass. 

4.3. Promoter strength in P. tsukubaensis 

One important objective of this study was to identify a strong transcriptional regulatory 

component in P. tsukubaensis to ensure a strong and steady gene transcription and thus ITA 

production. With the help of this information, a suitable promoter sequence for the overexpression 

of target genes ought to be identified. For this purpose, the E. coli β-galactosidase protein served 

as the reporter protein. Five different promoter sequences were examined regarding their 

transcriptional activity profiles. For one, the HSP70 promoter from U. maydis was considered as 

a benchmark sequence. This promoter was already successfully applied in P. tsukubaensis itself 

and also in the closely related yeast species P. flocculosa and P. antarctica (Avis et al., 2005, 2008; 

Bodinus, 2011; Neveu et al., 2007a). Additionally, four novel native promoter sequences were 

discovered, namely those of PtActin1, PtGAPDH, PtHSP70 and the PtTEF1 genes. These genes were 

selected because they are well-known housekeeping genes which are described as being highly 

and constitutively expressed (Gatignol et al., 1990; Holland and Holland, 1979; Kitamoto et al., 1998; 

Kojic and Holloman, 2000; Matheucci Jr et al., 1995; McDade and Cox, 2001; Müller et al., 1998; Slater 

and Craig, 1987). The α-glucosidase promoter was first taken into consideration, too. However, the 

P. tsukubaensis α-glucosidase promoter yielded suboptimal results in P. flocculosa compared to 

the U. maydis HSP70-promoter (Avis et al., 2008). 

A considerable β-galactosidase expression level was achieved with every tested promoter 

sequence. Striking was the variability among different transformants which contain the same 

overexpression construct. This variation was similar regardless of the promoter. Variations of this 

type have been observed in several other promoter studies in the genus of Pseudozyma (Avis et 

al., 2008; Neveu et al., 2007b, 2007a). It is believed that the variability stems from variation in the 
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copy number and regional effects as a consequence of the genetic location of the insertion loci 

(Avis et al., 2008; Cheng et al., 2001). The sequencing data of P. tsukubaensis strain HR12 

underscores this hypothesis. A very strong transcriptional activation of PtRIA1 was obtained by a 

two-time integration of the construct in tandem orientation into the genome. On the other hand, 

the sequencing also showed that parts of the vector were not incorporated into the genome. It is, 

therefore, possible that in some transformants the promoter sequence was truncated during the 

integration into the genome. A potentially shortened promoter sequence could lead to the reduced 

expression levels that were observed in some transformants due to the loss of key transcription 

factor binding sites. 

On a comparative basis, very similar expression profiles were obtained with the various 

promoters and the different growth media. This is also true for the U. maydis HSP70 promoter that 

served as reference. Previously, it was postulated that Pseudozyma species, like other 

microorganisms, display a high specificity in regard to transcriptional regulatory elements (Godio 

et al., 2004; Mooibroek et al., 1990; Neveu et al., 2007a; Schillberg et al., 2000). Different heterologous 

promoter sequences from distant yeast relatives and ascomycetes failed completely to yield 

protein production in P. flocculosa. Even heterologous promoters from more closely related 

species e.g. GAPDH- & HSP70-promoters from U. maydis and P. tsukubaensis α-glucosidase-

promoter showed less activity than comparable native sequences in P. flocculosa. The same 

phenomenon was described for the P. flocculosa GAPDH-promoter in P. antarctica (Avis et al., 

2008; Cheng et al., 2001; Neveu et al., 2007b, 2007a).  

Here, the TEF-promoter sequence generally led to low protein expression, but its transcriptional 

activity proved to be comparatively high in isolated cases. This was also true for pHSP70 and 

pUmHSP70. Both HSP70 promoters drove similar if not higher β-galactosidase expression rates 

than the other constitutive housekeeping-promoter sequences. For transformants with the pTEF 

construct, the reason behind this could be differences in the copy number and truncation of the 

promoter sequence, as already mentioned. One possible explanation for this occurrence with 

HSP70 promoter sequences are differences in the degree of stress exhibited by the yeast cells. It 

is known that the HSP70 promoter’s function is dependent on the induction by stressors. The 

group around Avis (2008) showed an up to 6-fold increase in UmHSP70 promoter activity in 

P. flocculosa in the presence of elevated hygromycin concentrations. In this study, the highest 

β-galactosidase activities on average, however, were obtained under the control of the native 

promoters pActin and pGAPDH. The homologous sequences tested favourably in the native host 

P. flocculosa as well (Neveu et al., 2007b, 2007a). Although, all test conditions considered, pActin 

showed the highest activities. This is the reason why we recommend use of pActin in future 

studies with P. tsukubaensis. 
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4.4. Genes involved in the biosynthesis of ITA in P. tsukubaensis 

In the present study, we were able to demonstrate that the genome of the basidiomycetous yeast 

P. tsukubaensis is highly similar to that of the closely related smut fungus U. maydis and other 

Ustilaginaceae. We could not only plot the majority of the P. tsukubaensis genome against that of 

U. maydis, but their genome size and GC content resemble each other too (see table 16). Analogous 

to our findings, the DNA sequence of P. antarctica T-34 displays a remarkable degree of synteny 

to the genome of U. maydis (Morita et al., 2014). The nuclear draft genome of P. antarctica is 18.0-

18.1 Mb large and therefore significantly smaller than that of P. tsukubaensis. Its DNA holds a GC 

content of 60.9 % and contains 6543-6845 automatically predicted protein-coding genes (Morita 

et al., 2013; Saika et al., 2014). For P. tsukubaensis a lower GC content of 52.6 % but more putative 

ORFs (7017) were predicted. With 20.5 Mb is the genome of P. tsukubaensis also larger than that of 

other related yeasts like P. aphidis (17.92 Mb, GC content: 61.2 %; Lorenz et al., 2014) and 

P. hubeiensis (18.44 Mb, GC content: 56.5 %, 7523 putative ORFs; Konishi et al., 2013). An 

electrophoretic karyotype indicated that the genome of P. flocculosa has only a size of 15 Mb and 

is therefore even smaller (Cheng et al., 2001). The P. tsukubaensis NBRC 1940 species sequenced 

by Geiser et al. (2016c) displayed an even larger genome of 23.8 Mb. The size differences in the 

genomes exist despite their close phylogenetic relationships and the similar habitats, in that they 

are phyllosphere yeasts located on the surface of leaves (Boro et al., 2017; Kitamoto et al., 2011; 

Morita et al., 2010b; Wang et al., 2006). One possible explanation could be, that the yeasts adapt to 

their specific host plant and this is reflected in their genome size. Another possibility is, that the 

disparities between genome sizes are due to differences in the number of transposable elements. 

Activities of transposable elements are very fast and can amplify the transposable copy number 

up to 20-100 copies (~0.1-1 Mbp) in a single generation (Mohanta and Bae, 2015). 

Several different ITA producing organism are known. Most of them are fungi, including the first 

known ITA producer A. itaconicus (Kinoshita, 1932) and the most widely studied species in this 

context, A. terreus (Calam et al., 1939). Several other fungi have been described in more or less 

detail considering their ITA generating capabilities e.g. U. maydis (Haskins et al., 1955), 

Candida sp. (Tabuchi et al., 1981), Rhodotorula sp. (Kawamura et al., 1981), P. antarctica (Levinson 

et al., 2006) and several other members from the Ustilaginaceae family (Geiser et al., 2014). 

Recently, ITA production was also detected in mammalian immune cells (Strelko et al., 2011; 

Sugimoto et al., 2012). 

Although, numerous ITA secreting organisms have been described, the underlying metabolic 

pathways have only been elucidated for A. terreus (Kanamasa et al., 2008; Li et al., 2011), U. maydis 

(Geiser et al., 2016a, 2016b) and mammalian macrophage cells (Michelucci et al., 2013). 
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The common mechanism for the mentioned producers is structured the following way (see figure 

45): Glucose is taken up as the C source for the synthesis of ITA. In the course of glycolysis, the 

sugar is then broken down into two molecules pyruvic acid. The pyruvic acid either enters the 

mitochondrion and is supplied to the TCA cycle in the form of acetyl-CoA or it is converted in the 

cytosol into MA which is transported into the mitochondrion. The anaplerotic intermediate MA 

enters the TCA cycle where it is re-oxidized into oxaloacetic acid. Subsequently, the oxaloacetic 

acid and the acetyl-CoA undergo a condensation reaction catalysed by the mitochondrial citrate 

synthase. The resulting CA is enzymatically dehydrated by the aconitase enzyme into cis-

aconitic acid, which represents the main precursor of ITA. In A. terreus, cis-aconitate is then 

shuttled into the cytosol potentially via an antiport mechanism possibly with an exchange for 

MA. Responsible for the transport is the protein MttAp (Jaklitsch et al., 1991; Steiger et al., 2013). 

Until recently, it was unresolved whether MttAp is definitely the carrier of cis-aconitate. By the 

means of metabolic engineering, Steiger et al. (2016) confirmed that the protein controls the export 

of cis-aconitate but not ITA. cis-Aconitate is directly decarboxylated in the cytosol into ITA by the 

enzyme cis-aconitate decarboxylase (Bonnarme et al., 1995; Cordes et al., 2015; Klement and Büchs, 

2013). In mammalian macrophage cells, the cis-aconitic acid is also directly metabolized into ITA. 

The decarboxylation reaction is catalysed by Irg1p, a homologous protein to Cad1p. In contrast to 

A. terreus, Irg1p is not a cytosolic protein but it is localized inside the mitochondrion where the 

conversion of cis-aconitate to ITA takes place. The ITA is transported out of the mitochondrion 

into the cytosol or immediately into the phagosome by still unknown mechanisms (Cordes et al., 

2015; Michelucci et al., 2013; Strelko et al., 2011). 

In 2016, the group of Bölker found that in the smut fungus U. maydis the synthesis of ITA deviates 

from that of A. terreus and mammalian macrophages (Geiser et al., 2016b). The basidiomycete 

fungus does not harbour the enzyme which is capable of directly decarboxylating cis-aconitate 

into ITA (Cad1p/Irg1p). More specifically, cis-aconitate is transported from the mitochondrion into 

the cytosol with the help of Mtt1p which is localized in the mitochondrial membrane (Przybilla, 

2014). In the cytosol it must first undergo an isomerization reaction into trans-aconitic acid via 

the enzyme Adi1p. Only this intermediate can be subsequently decarboxylated into ITA by the 

trans-aconitate decarboxylase Tad1p. The completed organic acid is exported into the 

surrounding medium with the help of the ITA transport protein Itp1p which is located inside the 

fungal cytoplasmic membrane (Geiser et al., 2016b; Przybilla, 2014). In this study it was possible to 

show that P. tsukubaensis possesses the same genes necessary to generate ITA as does U. maydis 

and that these genes are organized in a very similar cluster. This is also substantiated by the draft 

genome of P. tsukubaensis and other Ustilaginaceae published by Geiser et al. (2016c).Due to the 

fact that P. tsukubaensis harbours the respective homologous genes, the same metabolic pathway 

for the biosynthesis of ITA is very plausible. 
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In most Ustilaginaceae, instead of exporting the ITA, it can be further metabolized into 

2-hydroxyparaconate by the P450 monooxygenase Cyp3p. 2-Hydroxyparaconate can then be 

converted into itatartarate (Geiser et al., 2016a). A homologous gene to UmCYP3 has been 

identified in A. terreus next to its ITA cluster (Karaffa and Kubicek, 2019). However, this is most 

likely not the case for P. tsukubaensis because it lacks the gene necessary for this particular P450 

monooxygenase (present data and Geiser et al., 2016c). 

4.4.1. The role of Mtt1p and the effect of AtCAD1 overexpression 

The export of cis-aconitate into the cytosol is believed to be a rate limiting step (Jore et al., 2009). 

The mitochondrial tricarboxylate carrier Mtt1p is described as the responsible cis-aconitate 

transporter during ITA synthesis. Deletion studies carried out by Geiser et al. (2016b) showed that 

a lack in UmMTT1 activity did not block ITA synthesis. Implicating, that other mitochondrial 

transporters are able to substitute the activity through functional redundancy or that other 

precursors are shuttled into the cytosol and are metabolized there into ITA. 

Here, the overexpression of PtMTT1 in P. tsukubaensis led to increases in ITA production. A minor 

increase not only in ITA but total acid secretion was observed for the predominant part of the 

transformants with the H488 background. In the M15 strain only a few PtMTT1-transformants 

showed a heightened ITA production, although the effect was much more pronounced compared 

to the H488 transformants. Similar results have been achieved for other microorganisms. In both 

U. maydis and U. vetiveriae, the enhanced transport of the precursor, cis-aconitate, by 

overexpressing the UmMTT1 gene alone led to 1.5-2.0 fold increase in ITA production (Geiser et al., 

2016b; Zambanini et al., 2017). 

Furthermore, the naturally ITA-nonproducing fungus A. niger can be genetically altered to 

generate ITA by introducing the AtCAD1 gene. It was proven by several groups, that the efficiency 

of the ITA synthesis of these recombinant A. niger strains could be further increased by co-

overexpressing the heterologous gene AtMTTA. Gene AtMTTA encodes the cis-aconitate 

shuttling mitochondrial protein from A. terreus responsible for the transport of this 

tricarboxylate. In 2013, Li et al. (2013) co-overexpressed AtCAD1 with AtMTTA in A. niger. As a 

consequence of the co-overexpression, the ITA synthesis was heightened 9-fold compared to the 

parental strain with only the introduced AtCAD1 gene. Further improvements in this system were 

achieved by van der Straat et al. (2014), in that the group overexpressed the codon-optimized 

genes for cis-aconitate decarboxylase (AtCAD*) and the mitochondrial tricarboxylate transporter 

(AtMTTA*) in an oxaloacetate hydrolase and glucose oxidase deficient A. niger strain. The 

additional heterologous overexpression of AtMTTA* resulted in an over twenty-fold increased 

secretion of ITA. 
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As illustrated in the results section, a similar approach in P. tsukubaensis led to analogous results. 

The overexpression of the AtCAD1 gene itself in P. tsukubaensis had a minor positive effect on the 

wild type. The M15 strain was unaffected by this genetic alteration. However, when AtCAD1 was 

co-overexpressed with the PtMTT1 gene, the ITA production rose substantially. The majority of 

the resulting transformants produced ITA as the main product. This corroborates the results 

achieved with A. niger. 

These findings suggest that a high cis-aconitate transport activity is crucial for an enhanced ITA 

production. According to that, the sole overexpression of AtCAD1 in the M15 strain was not 

successful because the heterologous AtCad1p protein was competing with the natural PtAdi1p & 

PtTad1p proteins (which are potentially upregulated in strain M15) for the limited amount of 

cis-aconitate in the cytosol. The co-overexpression of AtCAD1 and PtMTT1 circumvented this 

bottleneck in strain M15 and allowed for a significant increase in ITA productivity. 

A preliminary explanation for the phenomenon of cis-aconitate transport being a bottleneck 

could be due to a competing relationship between the export into the cytosol via Mtt1p and the 

mitochondrial aconitase enzyme in the TCA cycle. Potentially, the aconitase enzyme possesses a 

higher affinity for cis-aconitate than Mtt1p and, therefore, it is rather metabolized further into ICA 

than being exported. 

It appears natural to assume that the overexpression of the gene encoding the mitochondrial 

tricarboxylate carrier alone is not sufficient to reliably enhance the ITA synthesis. An increased 

activity of the proteins responsible for the conversion of cis-aconitate into ITA e.g. Adi1p & Tad1p 

or Cad1p is needed. Nevertheless, the gene for the tricarboxylate carrier is a promising candidate 

for further genetic engineering approaches when it comes to increased ITA productivity. 

However, recent research indicates that native transporters are not always the prime choice. An 

UmMTT1 deleted U. maydis strain was reconstituted with either an upregulated copy of the native 

UmMTT1 or the AtMTTA gene. The results showed that the transport protein from A. terreus is 

more efficient than the native Mtt1p shuttle protein since the transformant secreted 1.3-fold more 

ITA (Hosseinpour Tehrani et al., 2019). 

4.4.2. Function of Adi1p, Tad1p & Itp1p 

In the family of the Ustilaginaceae the two enzymes aconitase-∆-isomerase (Adi1p) and trans-

aconitate decarboxylase (Tad1p) represent the two key enzymes in the formation process of ITA. 

Geiser et al. (2016b) demonstrated in U. maydis, that a deletion of one of the two genes encoding 

the metabolic proteins lead to a complete loss in ITA synthesis. Apparently, no other proteins can 

compensate the lack of activity of these proteins. By BLASTing, no candidate genes could be found 

in the genome of P. tsukubaensis that are suitable to undertake the functions of PtADI1 or PtTAD1 

in their absence. 
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During our transformation studies in P. tsukubaensis, neither the overexpression of PtADI1 nor 

PtTAD1 had a visible effect on the production of ITA. For one, this illustrates that none of the 

reactions catalysed by the two proteins represent a rate limiting step. The missing phenotypes 

are also perfectly reasonable since both proteins are dependent on the activity of at least two other 

proteins: Naturally, for Adi1p the substrate in the cytosol appears to be lacking because the 

transporter of cis-aconitate into the cytosol represents a significant bottleneck. Even if this rate 

limiting step - the export of cis-aconitate - is bypassed, the overexpression of Adi1p alone is 

insufficient for an adequate ITA synthesis. Furthermore, it can be detrimental to the cell itself to 

enhance the transport of cis-aconitate and its isomerisation. This is because a low activity of 

Tad1p is potentially not enough to metabolize the increased concentrations of the resulting trans-

aconitate. The so generated trans-aconitate then can inhibit the aconitase enzyme, thus leading 

to a halt of the TCA cycle and ultimately to cell death. Without the overexpression of PtMTT1 and 

PtADI1, there is no available trans-aconitate in the cytosol, the overexpressed Tad1p is lacking its 

substrate and the enzyme is ‘running idle’.  

The ITA exporter Itp1p, which belongs to the MFS, is located inside the plasma membrane 

(Przybilla, 2014). The transporter is thought to be the sole transport protein for ITA. Deletion in 

U. maydis however showed that the ITA secretion is not completely blocked by this deletion 

(Geiser et al., 2016b). There could be two explanations for this. For one, another di- or tricarboxylate 

transporter substitutes for the lack of protein activity through functional redundancy. A broad 

substrate specificity was demonstrated for many transporters of the MFS (Taylor, 2017; Yan, 2013). 

Another explanation is that ITA is excreted as a result of passive diffusion. It has already been 

observed, that yeasts secrete undissociated organic acids by diffusion (Duro and Serrano, 1981; 

Salmon, 1987). However, according to the two pKa values of ITA, it is almost completely dissociated 

at the intracellular pH 6.5-7.0. Mattey (1992) postulated that citrate2− is excreted by passive 

diffusion along a gradient of dissociated CA. Under these circumstances, a similar mechanism 

can be imaginable for diffusion process of ITA as well. 

Here, the overexpression of the PtITP1 gene had almost no effect in the P. tsukubaensis H488 wild 

type strain. Taking the qPCR results into account, this finding is not striking since the expression 

data indicated that the PtITP1 transcription is already elevated in the wild type strain. Three 

transformants with the M15 background displayed a substantial increase in ITA secretion after 

the overexpression of PtITP1. This seems to be an indicator that the random genomic changes in 

strain M15 lead to an increased ITA biosynthesis rate without the optimal molecular means to 

export the generated ITA into the yeast’s surroundings. 

In other organisms, the overexpression of the ITA transport protein led to conflicting conclusions. 

When overexpressed on its own, no effect has been observed for U. maydis (Geiser et al., 2016b). Li 
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et al. (2013) reported a beneficial outcome for the overexpression of the homologous gene AtMFSA 

in A. niger when AtCAD1 was also overexpressed. This was not the case in the study of van der 

Straat et al. (2014), even with codon optimized gene sequences. Interestingly, when AtMFSA* was 

overexpressed in combination with AtCAD* and AtMTTA*, the group around van der Straat et al. 

(2014) could detect an increase from ca. 5.4 g l-1 to 7.1 g l-1 ITA. However, the overexpression of the 

unmodified AtMFSA gene in A. niger in combination with AtCAD1 and AtMTTA did not improve 

the ITA secretion further (Li et al., 2013). Following this, the literature appears conflicted on the 

efficacy of the overexpression of the ITA exporter. Even if the overexpression of PtITP1 and its 

homologs leads to an improvement, it is solely beneficial when the intracellular concentrations 

of its substrate – ITA – is already high. 

4.4.3. Ria1p - the regulator for itaconic acid 

Evidently, the most influential genetic target turned out to be the UmRIA1 homolog PtRIA1. No 

other genetic modification provided comparable results in this study. 

The gene responsible for the regulator protein is located at one end of the ITA cluster next to the 

PtMTT1 sequence. Its deduced 393 aa long sequence displays a helix-loop-helix domain at 

position 86-156 aa. This conserved region is a characteristic DNA-binding motif for one of the 

largest families of dimerizing transcription factors (Murre et al., 1994). 

In U. maydis, it was clearly shown that the ITA cluster is controlled by the Ria1 protein. Upon 

deletion of UmRIA1 the expression of all genes necessary for ITA synthesis was heavily reduced. 

Whereas, the overexpression of UmRIA1 induced the transcription of the ITA biosynthesis genes. 

This upregulation was accompanied by only a moderate increase in the ITA concentration. The 

secreted ITA concentration was effectively doubled compared to the wild type strain (Geiser et al., 

2016b). 

A potential regulator element, ATEG_09969, was identified in the genome of A. terreus as well. It 

is also located in direct proximity to the genes encoding the ITA biosynthesis proteins (Li et al., 

2011). Contrary to U. maydis and P. tsukubaensis, the deduced protein of ATEG_09969 does not 

belong to the helix-turn-helix transcription factors but the large family of fungal zinc cluster 

transcription factors (Karaffa and Kubicek, 2019). Its function in A. terreus has not been object of 

active research yet. It is therefore still unclear, whether this regulator protein controls the 

expression of AtCAD1, AtMTTA and AtMFSA and if so, in what extent.  

In this study, we could demonstrate that all identified ITA cluster genes are regulated by the gene 

product of PtRIA1. The overexpression led to an outstanding upregulation of the complete ITA 

cluster. Under culture conditions for organic acid production only very low expression levels were 

observed for the ITA cluster genes in the P. tsukubaensis wild type strain H488. Whereas, the 

transcription rates of the same genes were enhanced 67 to 4766-fold in strain HR12. Contrary to 
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U. maydis, the overexpression of the regulator PtRIA1 in strain HR12 also led to a distinct 

phenotype where exceedingly high concentrations of ITA are secreted. Under optimized 

conditions in shaking flasks, the secreted concentration of ITA rose over tenfold from 1.8 g l-1 in 

the wild type to 19.3 g l-1 in strain HR12 (see figure 9 and figure 20). 

Similar to the overexpression of the other cluster genes, a large variability in the phenotypes of 

the resulting PtRIA1-transformants was observable. During the screening process in the well 

plate-cultivation, most of the PtRIA1-transformants in both the H488 and M15 background 

produced less to none ITA compared to strain HR12. It is plausible that this is due to differences in 

the genetic make-up caused by the heterologous integration of the vector. More specifically, it 

appears likely that only one copy or just a truncated version of the construct got inserted into the 

genome of the affected P. tsukubaensis transformants. Spatial effects of the insert on the 

chromosome or potentially deleted regions can also be a factor in the performance of those 

transformants. Interestingly, on average the impact of the PtRIA1 gene overexpression was 

similar in both strains. Meaning that the underlying genetic changes in mutant strain M15 do not 

further enhance ITA synthesis when combined with an upregulated PtRIA1 gene. 

Recently, the group around Geiser (2018) investigated the role of the regulator protein in several 

members of the Ustilaginaceae. They found that the RIA1 gene sequences are very dissimilar 

between the investigated species U. maydis, U. vetiveriae, U. xerochloae, U. cynodontis, 

Sporisorium iseilematis-ciliati, P. hubeiensis and P. tsukubaensis. Since all tested species harbour 

the complete genetic means to produce ITA, the overexpression of the respective native RIA1 

sequence induced ITA production. The most universally applicable regulator was the PtRIA1 

sequence. This regulator induced ITA synthesis in 80 % of the cases when expressed 

heterologously in related species. More importantly, P. tsukubaensis was the only species that did 

not produce 2-hydroxyparaconate or itatartarate at all because the necessary genes (CYP3, RDO1) 

are lacking. Furthermore, Geiser et al. demonstrated that the promoter sequences of the genes 

regulated by the Ria1p protein share a common conserved putative Ria1p binding domain with a 

short consensus sequence (CN[T/C]NNNN[G/A]TCACG[C/T]). Although, the promoter sequences of 

the RIA1 genes themselves do not contain this consensus sequence. This allows the conclusion 

that the RIA1 gene is not controlled by its own protein and cannot enhance its own transcription. 

The activator for the RIA1 gene and ultimately the ITA cluster could, therefore, be another yet 

unknown factor. 

Geiser et al. (2018) also quantified the secreted ITA concentration of the constructed 

transformants. The overexpression of the PtRIA1 gene in P. tsukubaensis NBRC1940 under the 

control of the strong, constitutive Petef promoter resulted in relatively low ITA production levels 

compared to the other species of the Ustilaginaceae family. The authors, however, tested only one 
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transformant for each species and did not control for differences in copy number or for the 

random ectopic integration locus of the inserted regulator.  

Here, we could illustrate that the overexpression of PtRIA1 gene can have heavily varying 

consequences in the resulting productivity which is potentially influenced by the copy number 

and the type of integration. Solely 13 out of 21 P. tsukubaensis H488 transformants tested positive 

for ITA secretion. The produced ITA concentration of those 13 transformants ranged from 1.2-

31.4 g l-1 in 3 ml-well plate cultivations. It is possible that the transformants that did not produce 

any ITA did not incorporate the complete upregulated PtRIA1 gene into their genome but only 

parts of the vector backbone that mediates the resistance for hygromycin B. Strain HR12 evidently 

integrated the complete pActin-PtRIA1 construct two times in tandem orientation while also 

deleting a considerable part of the genome. Other transformants that produced less ITA 

potentially harbour only one copy of the construct. 

Considering the observed variations in ITA production, the region of integration into the genome 

should also be taken into consideration. The chromatin environment can significantly influence 

transcriptional activity of newly integrated DNA due to its heterogeneity (Jordan et al., 2001). 

Other possible factors are genomic rearrangements that occurred while integration of the vector. 

These structural rearrangements could have positively influenced the ITA biosynthesis in strain 

HR12 as well. It is also possible that the deletion of the 34 kb long sequence enabled a higher 

transcription rate or inhibited competing metabolic pathways through still unknown 

mechanisms. Possibly, also a feedback inhibition mechanism for the ITA biosynthesis could have 

been circumvented by the deletion. Product inhibition by ITA is a known phenomenon in 

A. terreus and U. maydis, especially at concentrations of 20 g l-1 and above (Kanamasa et al., 2008; 

Klement et al., 2012; Yahiro et al., 1995). Such an effect, however, was not observed in the 

production strain HR12. The yeast produced ITA at a consistent rate. 

Approaches to further optimize the system of the upregulated ITA cluster by additionally 

overexpressing the native PtACO1 or PtACO2 gene did not yield additional improvements. This 

indicates that the intramitochondrial dehydration of CA into cis-aconitate does not represent a 

rate limiting step. On the contrary, too high Aco1p or Aco2p enzyme activities could lead to a 

competitive condition between the mitochondrial tricarboxylate carrier Mtt1p and the aconitase 

enzyme that also catalyses the re-hydration of cis-aconitate into ICA. Interestingly, co-

overexpression of AtCAD1 and a gene coding for an aconitase in both A. niger and Y. lipolytica 

enhanced the synthesis of ITA. The productivities of the constructed strains are still very low with 

a maximum of 1.4 g l-1 and 4.6 g l-1 ITA, respectively (Blazeck et al., 2015; Blumhoff et al., 2013). In 

their study, Blumhoff et al. (2013) also pointed out the importance of the right organelle targeting 
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of the heterologous genes. Aconitase expressed in the mitochondria was more efficient than in 

the cytosol. 

In conclusion, the known ITA producing organisms generate the wanted organic acid over the 

course of similar reaction pathways. Nonetheless, there are underlying distinctions between the 

respective biosynthesis routes, as detailed above. The reasons for the differences in the ITA 

pathways are most likely adaptations to environmental cues or because of special functions the 

organic acid serves. A. terreus is a soil-borne fungus or can be found on decaying plant material 

(Thom and Church, 1918). It potentially secretes ITA directly into its surroundings to potentially 

gain a competitive advantage against other microorganisms. For one thing, this is because of a 

direct interaction of the organic acid with the surrounding environment: the pH decrease leads to 

solubilization of soil minerals or it propels acid-catalysed reactions similar to the hydrolysis of 

holocellulose caused by oxalic acid. Ultimately, a release of nutrient ions is achieved (Green and 

Highley, 1997; Plassard and Fransson, 2009; Tanaka et al., 1994). On the other hand, the lowering of 

the surrounding pH by secreting weak organic acids leads to an advantage in a very competitive 

environment against other microorganisms. The acid inhibits growth of pH sensitive organisms 

because the undissociated molecules easily diffuse through the plasma membrane into the 

cytosol where they dissociate and disturb intracellular processes (Dutton and Evans, 1996; Jones, 

1998; Lambert and Stratford, 1999). 

Mammalian macrophages utilize ITA for defence mechanisms against intruding 

microorganisms. The synthesised ITA is believed to be directly transported from the 

mitochondria into the phagosomes, where ITA is needed to block essential metabolic pathways 

of invading pathogens (Michelucci et al., 2013). This way for example, the key enzyme of the 

glyoxylate shunt, isocitrate lyase, is inhibited. The glyoxylate shunt is essential for several 

bacteria like Salmonella enterica, Mycobacterium avium or Mycobacterium tuberculosis when 

grown on certain C sources (Bentrup et al., 1999; Fang et al., 2005). ITA also blocks supporting 

metabolic routes like the 2-methylcitrate cycle in Mycobacterium tuberculosis (Cordes et al., 2015; 

Russell et al., 2010).  

ITA production in Ustilaginaceae via trans-aconitate most probably serves purposes akin to that 

of A. terreus. However, the main difference is that it also represents a way to detoxify trans-

aconitate. Plants like maize and other grasses are known to produce high concentrations of trans-

aconitate with up to 2.5 % of their DCW as antifeedant (Brauer and Teel, 1981; Burau and Stout, 

1965). This intermediate acts by inhibiting essential metabolic pathways. The TCA cycle can be 

blocked due to trans-aconitate by inhibiting the enzymes aconitase and fumarase (Geiser et al., 

2016b; Glusker, 1971; Saffran and Prado, 1949). The reaction mechanism catalysed by the trans-

aconitate decarboxylase can aid the catabolism of this toxic intermediate and hence prevent a 



Discussion 

114 

harmful accumulation. Therefore, the generation of ITA via this extra synthesis step appears to 

be an adaptation to the common habitat of the Ustilaginaceae, which are mainly plant leaves 

(Boro et al., 2017; Kitamoto et al., 2011; Morita et al., 2010b; Wang et al., 2006). This is further 

substantiated by the fact that the deletion of ADI1 led to a substantial growth defect of U. maydis 

cells when grown on trans-aconitate containing medium (Przybilla, 2014). 

4.5. Large volume ITA production with P. tsukubaensis 

The first large volume fermentation experiments were carried out with the P. tsukubaensis strain 

M15-CAD. This yeast strain was established as a promising ITA overproducing candidate by 

Bodinus (2011). During experiments in shaking flasks, our study showed that strain M15-CAD can 

secrete high concentrations of ITA in synthetic minimal medium without the need of complex 

supplements like CSL. The highest product concentrations of 16.2 g l-1 ITA were detected with 

2 g l-1 NaNO3 and 0.1 g l-1 KH2PO4 after 5 d of cultivations. Under similar conditions, when cultivated 

in minimal medium modified according to Kawamura et al. (1981, 1982), the same strain produced 

approximately 35 g l-1 ITA after 5 d of cultivation (Bodinus, 2011). The differences in productivity 

can be founded on the fact that 0.2 % (v/v) CSL and substantially more glucose (150 g l-1 instead of 

50 g l-1) were used by Bodinus. 

These shaking flask experiments were the basis for large volume bioreactor cultivations under 

controlled conditions. Here, a maximum ITA secretion of 40.9 g l-1 after 8 d with 2 g l-1 N source 

and 0.1 g l-1 P source was demonstrated. During this period, the initial 150 g l-1 glucose were not 

consumed completely. Further increasing the N (and P) source had a negative impact on the 

productivity. This result further illustrates the intricate natural regulatory mechanism for the 

induction of ITA biosynthesis in P. tsukubaensis. Both, the available N and P sources must be 

limited, and their concentrations must have a specific ratio in order to naturally upregulate ITA 

production. Bodinus (2011) cultivated strain M15-CAD in a 3.6 l-bioreactor. There, the glucose 

(150 g l-1) was completely consumed after 10 d. During this time 60.6 g l-1 ITA were secreted which 

corresponds to a productivity rate of 6.1 g l-1 d1 ITA. This productivity rate is still slightly higher 

than what was achieved earlier (5.1 g l-1 d-1 ITA). Here, the medium was not supplemented with CSL 

and in addition a lower oxygen saturation was applied than Bodinus did. A positive impact of the 

increased O2 saturation, however, is unlikely. We could demonstrate that by increasing the pO2 to 

90 % the ITA secretion was affected negatively. This was also true for the elevated pH of 7.0 

throughout the fermentation. 

According to this data, fermentations were carried out with the ITA overproducing 

P. tsukubaensis HR12 strain. The first fermentation was done exactly under the conditions that 

were deemed best for strain M15-CAD (N: 2 g l-1; P: 0.1 g l-1; pH: 5.5; pO2: 55 %; 30 °C; see figure 30 and 

figure 31). Strain HR12 demonstrated a 2.3-fold increase in ITA productivity compared to M15-CAD. 
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As was discussed in section 4.2, ITA production with strain HR12 is completely decoupled from 

any triggers by the available N and P source. Fermentations with increased concentrations of 

these nutrients reflected that fact. High N & P concentrations led to increases in biomass which 

entailed enhanced ITA secretion. The highest ITA production of 113.6 g l-1 after just 7 d was 

accomplished during a fed-batch cultivation with a N:P ratio of 8:1. This corresponded to an ITA 

productivity of 16.2 g l-1 d-1. Until recently, the highest achieved ITA concentration in the literature 

was 90 g l-1 ITA with a specific isolated A. terreus strain (Kuenz et al., 2012). Shortly thereafter, the 

ITA producing capability of another screened A. terreus strain (DSM 23081) was optimized to 

secrete up to 146 g l-1 after 13 d only under very specific and highly controlled conditions (Hevekerl 

et al., 2014a). By further adjusting the process conditions for the ITA fermentation with A. terreus 

strain DSM 23081, the overall ITA productivity of 24 g l-1 d-1 could not be improved but the maximal 

end-concentration was increased to 160 g l-1 ITA. Efforts to upscale this fermentation process with 

A. terreus to a 15 l-bioreactor were successful. However, the productivity suffered greatly. It took 

9.7 d to reach a maximal ITA concentration of 150 g l-1 (Krull et al., 2017). In addition to that, the 

process conditions were tightly confined. The P concentration had to be strictly limited because 

A. terreus cells form increasingly large and tight cell aggregates at higher P levels. Cells inside 

large pellets suffer oxygen deficiency which lowers ITA biosynthesis. However, restricting P 

drastically limits the cell biomass which also leads to limited ITA production. Also the substrate 

and the medium for the fermentation often need pre-treatment since trace metal impurities are 

known to negatively affect organic acid synthesis (Show et al., 2015). Manganese concentrations 

above 3 µg l-1 for example reduce ITA synthesis with A. terreus (Karaffa et al., 2015). 

In this study several attempts were carried out to improve the already high ITA concentration of 

113.6 g l-1 ITA with P. tsukubaensis strain HR12. From the standpoint of fermentation process 

handling, slightly decreasing the pH to 4.0 had the positive effect of a reduced accumulation of 

intracellular storage lipids. This way, the yeast cells stayed inside the culture broth for the whole 

duration and no biofilm was formed inside the bioreactor. In addition, it made it possible to 

completely and easily separate the cells from the fermentation broth via centrifugation. In doing 

so, a relatively high productivity of 10.3 g l-1 d-1 ITA was maintained. During the fermentation only 

negligible amounts of the side-products MA and αKG have been produced. The concentrations of 

those two side-products in the supernatant were considerably lower than for fermentations at pH 

5.5. Instead of accumulatively 2 % at the neutral pH, MA and αKG represented together less than 

0.5 %. That is to say over 99.5 % of the total organic acid in the supernatant constituted for ITA. It 

was also striking that these high ITA concentrations were secreted by a relatively low biomass. 

At the timepoint of decreasing the pH, around 20-25 g l-1 DCW were formed. Afterwards, the cells 

did not grow further but remained in a stationary phase. With the neutral pH 5.5, the cells 

continued to grow and generated a biomass of 40-50 g l-1 DCW. In an attempt to prolong the 
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exponential growth phase in the acidic environment, the pH was decreased only after the 2nd day. 

This had the positive effect of leading to a higher initial active biomass. This was reflected in an 

increased productivity of 11.6 g l-1 d-1 ITA.  

However, further lowering the pH value to 3.5, had a detrimental impact on the yeast cells. Cell 

growth was slowed down. According to the decreased glucose consumption, the metabolic rate 

also suffered. Comparable effects have been reported for the oleaginous yeast Rhodotorula (R.) 

glutinis. During fed-batch fermentation, maximum lipid production of 66 % (w/w biomass) was 

achieved at pH 4.0. Decreasing the pH to 3.0 drastically lowered the biomass and the lipid content 

to merely 12 % (w/w biomass) (Johnson et al., 1992). Dias et al. (2016) described similar effects for 

the lipid and carotenoid accumulation properties of Rhodosporidium toruloides (formerly 

R. glutinis). They found maxima in biomass and carotenoid productivities at pH between 4.0-4.5. 

Further lowering the pH also had a negative effect for this oleaginous yeast. Furthermore, they 

found that the pH did not affect cell size, internal complexity and membrane polarisation when 

cells were in the exponential growth phase. However, when stationary growth phase was reached, 

cell size, internal complexity and cells with polarised membrane increased for lower pH values. 

Microscopic images taken during this project, however, show that cell size of P. tsukubaensis 

decreased over time at pH 4.0 (see figure 32). 

Guiding the metabolic flux towards lipid biosynthesis or away from it through changes in the pH 

can represent an uncomplicated, straightforward way for process optimization compared to 

laborious genetic engineering efforts. 

For the fermentative production of ITA with A. terreus, various strategies are described in the 

literature regarding the applied pH. A broad range in the initial pH, ranging from 2.0 to 5.9 has been 

used in different studies (Kuenz and Krull, 2018). A pH below 6 is needed for A. terreus to produce 

any ITA naturally. Although pH values of 3.0 and below postpone germination, thus, also the ITA 

production (Hevekerl et al., 2014a; Larsen and Eimhjellen, 1955; Mario and Schweiger, 1963). Overall 

highest concentration of 160 g l-1 ITA produced with A. terreus has been achieved by keeping the 

pH constant at 3.4 during production phase (Krull et al., 2017). To this day, no higher 

concentrations have been described.  

For the ITA production with Ustilaginaceae, there is few information on the optimal pH. U. maydis 

is generally grown at neutral to somewhat acidic conditions. More specifically, Maassen et al. 

(2014) did produce relatively high ITA concentrations of 44.5 g l-1 with U. maydis under a 

controlled pH of 6.0. The closely related U. vetiveriae had to be cultivated at a pH of 6.5 in order to 

secrete elevated concentrations of ITA (24 g l-1). A pH of 5.5 resulted in a heavily reduced ITA 

production, whereas further decreasing the pH to 4.0 completely diminished ITA production 
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(Zambanini et al., 2017). While the U. maydis wild type secretes ITA only at a pH between 5 and 7, 

U. cynodontis strains also produce ITA at pH values below 3 (Geiser et al., 2018).  

For some CA producing microorganisms like A. niger, it is known that CA production increases 

with rising concentrations of dissolved oxygen (Kubicek et al., 1980). The formation of ITA is 

strongly dependent on a sufficient oxygen supply. Especially A. terreus reacts very sensitive to 

oxygen limitation. Even short periods of O2-deficiancy can lead to reduced or halted ITA synthesis 

(Kuenz and Krull, 2018; Kuenz et al., 2012; Larsen and Eimhjellen, 1955). In an attempt to increase 

oxidative glucose metabolism and thus increase ITA synthesis, fermentations were carried out 

with either elevated oxygen saturation or increased temperature. In this study, we found a small 

improvement in ITA secretion, when the dissolved oxygen concentration was elevated to 70 %. 

However, this effect was concomitant with an increased glucose consumption, which ultimately 

lowered the ITA specific yield to 28 % (w/w). This is potentially due to a heightened respiratory 

activity of the P. tsukubaensis cells.  

The effect of the temperature on ITA production has not been studied intensively yet. For CA 

production with A. niger, a temperature optimum of 28-30 °C is assumed (Kareem et al., 2010; 

Karthikeyan and Sivakumar, 2010). The group around Auta (2014), however, demonstrated that CA 

secretion can be enhanced by increasing the temperature up to 55 °C. For P. tsukubaensis HR12, 

the temperature increase from 30 °C to 32 °C lead to a somewhat lowered ITA production. The 

glucose consumption rate declined rapidly towards the end of cultivation. In addition to the acidic 

environment (pH 4.0), the temperature increase to 32 °C potentially represented an additional 

stress factor and was therefore disadvantageous for the fermentative production of ITA. 

4.6. Isocitrate overproduction with Y. lipolytica 

For the second part of this thesis, the microbial production of another value-added chemical 

stemming from cis-aconitic acid was pursued. Thus, the organic acid ICA got into the focus. 

In this study, we were able to identify two main mitochondrial transporters for CA and ICA in 

Y. lipolytica: namely the proteins encoded by YALI0B10736g (YlYHM2) and YALI0F26322g 

(YlCTP1). It was also possible to establish that both proteins are involved in the transport of CA 

(and ICA) between the mitochondria and the cytosol. 

Deletion of YlYHM2 led to several significant changes in the phenotype of Y. lipolytica. Growth 

was impaired on minimal medium with H2O2 compared to the wild type. This is an indicator for a 

decreased antioxidant function. A reason for this observation could be an imbalance in reducing 

equivalents (e.g. NADPH). 

In S. cerevisiae, ScYhm2p is described to play a crucial physiological role in the redox state of 

cytosolic NADPH by shuttling NADPH reducing equivalents from the mitochondrial matrix to the 

cytosol. More specifically, CA is transported through the inner mitochondrial membrane by 
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Yhm2p into the cytosol. There, CA is converted via aconitase into ICA which is metabolized into 

αKG and CO2 while also generating NADPH. αKG can then be imported into the mitochondrion 

also by Yhm2p due to its function as an antiporter. Inside the mitochondrion, the backwards 

reaction can take place and NADP+ is formed (Castegna et al., 2010). This finding is further 

substantiated by the observation in C. parapsilosis, where the expression of YHM2 is induced by 

3-hydroxybenzoate and 4-hydroxybenzoate. Both compounds are metabolized in the NAD(P)H 

consuming gentisate and 3-oxoadipate pathways, respectively. Thus, Yhm2p potentially 

contributes to the replenishment of NAD(P)H in these two pathways (Zeman et al., 2016). We, 

therefore, expect for Yhm2p to have a shuttling role for reducing equivalents (NAD(P)H) as well in 

Y. lipolytica, similar to that of S. cerevisiae (see figure 43). 

 

Figure 43 Hypothesized transport of citric acid across the mitochondrial membrane via the citrate carrier 

Yhm2p in Y. lipolytica. 
Modified according to Castegna et al. (2010). Citrate is reversibly isomerized into isocitrate by the mitochondrial or 
cytosolic aconitase (Aco1p). Isocitrate is then converted to α-ketoglutarate and CO2 by the isocitrate dehydrogenase (Idp1p, 
or in the cytosol potentially the gene product of YALI1F06197g) while also generating NADPH. By the antiport of citrate for 
α-ketoglutarate, Yhm2p may act as a NADPH redox shuttle between the mitochondria and cytosol. Citrate and isocitrate 
are also transported via citrate transporting protein, Ctp1p and potentially other members of the mitochondrial carrier 
family (their transport mechanisms are still subject of current research). 

After deleting YlCTP1, there was no change in growth observed for all tested C sources. The 

addition of H2O2 had also no negative effect on the growth behaviour. This observation is in 

accordance with the results of Kaplan et al. (1996), indicating that YlCTP1 is a non-essential gene 

in Y. lipolytica, too. 

However, single copy overexpression of YlACO1 itself also showed a slightly delayed growth 

compared to the wild type on medium containing H2O2. An elevated amount of active aconitase 

may sequester a large amount of CA, ICA and cis-aconitate in the cell. Inhibiting those metabolites 

would then negatively affect the TCA cycle and its subsequent reactions e.g. the NADPH 

generating dehydrogenation of ICA into αKG and CO2 in the cytosol. Interestingly, the 

overexpression of YlACO1 mitigated the growth phenotype of ∆YHM2. One possible explanation 

is, that the CA export is heavily inhibited due to the deleted carrier gene and the natural aconitase 
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activity is not enough for the excess CA in the mitochondrion which leads to CA accumulation. 

YlACO1 overexpression alleviates that by converting more CA into ICA. The generated ICA can 

then be exported into the cytosol, where it is dehydrogenated into αKG while simultaneously 

generating NADPH. Nevertheless, elevated aconitase activity also leads to the retransformation 

of ICA into CA in the cytosol, which ultimately results in a reduced ICA:CA ratio. The acid 

production behaviour of strain ∆YHM2oACO1 substantiates that presumption. 

Focusing on acid production, overexpression of aconitase in Y. lipolytica significantly reduced CA 

while elevating the level of ICA. This is a similar result to that of Holz et al. (2009), where multiple 

copies of YlACO1 without the control of a constitutive promoter were introduced into Y. lipolytica. 

By doing so, the group accomplished a significant increase in the ICA:CA ratio from 35-49 % to 66-

71 % when cultivated with sunflower oil but only a minor shift from 10-12 % to 13-17 % with glucose, 

glycerol or sucrose. 

The knock-out of the transporter Yhm2p potentially rendered the Y. lipolytica cells unable to 

export high amounts of CA from the mitochondrion into the cytosol, from where it is subsequently 

secreted into the surrounding medium. Therefore, ICA was the main secreted acid. Compared to 

the Y. lipolytica wild type, this corresponds to a drastic change in the ICA:CA ratio from 12 % to 95-

97 % under optimized fermentation conditions. This is a strong indicator for the role of Yhm2p as 

a selective mitochondrial exporter mainly for CA in this oleophilic yeast. 

Compared to the highest described ICA:CA ratio of 17 % when cultivated on glucose achieved by 

Holz et al. (2009), the present ICA:CA ratio of 95 % constitutes for a drastic shift in favour of ICA by 

a single gene disruption. Similar ratios of ICA and CA were only achieved with a wild type 

C. catenulata (formerly C. ravautii) strain and its NG-mutant strain OM-102. Both yeast strains 

were able to synthesize ICA with only 1-2 % residual CA on glucose (Oogaki et al., 1984). Further 

strain optimization of Y. lipolytica strain ∆YHM2 with glucose as C source could be realized by 

increasing glycolytic and TCA cycle activities since our data on aconitase activity suggests a 

downregulating effect on at least the TCA cycle level. 

Contrary to the growth phenotype, it appears that Ctp1p is also an important transport protein 

needed for the TCA cycle in Y. lipolytica. By disrupting the YlCTP1 gene, CA and ICA production 

was detrimentally affected when grown with glucose but not so much with sunflower oil. In face 

of the decreased aconitase activity, it is very plausible that the TCA cycle is downregulated due to 

an accumulation of both CA and ICA in the mitochondrion. In the white koji fungus A. luchuensis 

mut. kawachii, the Ctp1p homolog, CtpA, exhibited also substrate specificity for cis-aconitate and 

MA to some degree (Kadooka et al., 2018). If Ctp1p in Y. lipolytica functions similarly, the 

diminished transport of cis-aconitate and MA could play a role in the reduced TCA cycle activity. 
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CA and ICA production was heavily reduced in strain ∆YHM2∆CTP1, in which both mitochondrial 

carriers are lacking. Surprisingly, this strain showed no reduced growth. Colonies were the same 

size as the wild type H222 on glucose (with and without H2O2), acetate, CA, oxalate and αKG. For 

A. kawachii, the deletion of CtpA and YhmA (homologous to YlYHM2) proved to be lethal (Kadooka 

et al., 2018). One possible explanation are compensatory mechanisms, where genes e.g. for other 

mitochondrial transport proteins, are upregulated to ensure the transport of metabolites and avoid 

build-up of potentially toxic intermediates. This would also explain the higher amounts of 

secreted acids when grown with glucose compared to strain ∆CTP1. A suitable candidate for such 

a role is the gene YALI0D02629g, which might code for a 2-oxodicarboxylate carrier homologous 

to ScOdc1p and ScOdc2p. The dicarboxylate carriers ScOdc1p and ScOdc2p are responsible for the 

transport of 2-oxoadipate and αKG but also small quantities of CA (Palmieri et al., 2001). 

There remains the question of where the remaining CA for strain ∆YHM2 on glucose originates 

from. One explanation is the functional redundancy of other transporters e.g. the 

2-oxodicarboxylate carrier, as mentioned above. The residual CA could also be present due to 

cytosolic aconitase activity (see figure 44). Isoenzymes of the translational product of YlACO1 are 

reported to be present in the cytosol of yeasts, where they catalyse for the glyoxylate shunt, 

despite being prior referred to as an exclusive mitochondrial protein active in the TCA cycle 

(Regev-Rudzki et al., 2005). The ScACO1 gene harbours a naturally occurring mitochondrial target 

sequence but a fraction of the deduced enzyme exerts catalytic activity in the cytosol. (Ben-

Menachem et al., 2011, 2018). That way, the abundant ICA can be converted back to CA in the 

cytosol, because of the natural reaction mechanism for the isomerization of CA to ICA, which is 

described as a completely reversible reaction catalysed by aconitase (Martius and Leonhardt, 

1943). This hypothesis is supported by the acid production behaviour of the YlYHM2 lacking strain, 

where YlACO1 is additionally overexpressed. Cytosolic active aconitase in the transformant most 

probably catalysed for the back reaction, thus elevating CA levels again. 

Figure 44 illustrates that other metabolic pathways cannot be ruled out as sources for cytosolic 

CA, yet. Although the glyoxylate shunt is a typical target for carbon catabolite repression (Duntze 

et al., 1969; Ordiz et al., 1996), it is known that key enzymes of it still exert a marginal level of 

activity. This is based on the observation that the gene of one of its main enzymes, the 

peroxisomal citrate synthase Cit2p expresses a low activity even on glucose (Kispal et al., 1989; 

Liao et al., 1991; Rickey and Lewin, 1986). YALI0E02684g potentially encodes the peroxisomal 

citrate synthase, which could convert cytosolic acetyl-CoA into CA even in the presence of high 

glucose concentrations. 
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Figure 44 Main pathways involved in the synthesis of citric- and isocitric acid in the oleophilic yeast 

Y. lipolytica. 
Fermentable sugars like glucose are broken down during glycolysis. The resulting acetyl-CoA and oxaloacetate fuel the 
synthesis of citric acid during the tricarboxylic acid (TCA) cycle inside the mitochondrion. Aconitase (Aco1p, or possibly 
also Aco2p) catalyses the reversible isomerization of citrate into isocitrate. Hydrophobic substrates e.g. vegetable oils are 
broken down into fatty acids. During the course of β-oxidation the activated fatty acids (acyl-CoA) are oxidized in multiple 
steps into acetyl CoA (and propionyl-CoA in the case of odd chain lengths). This acetyl-CoA can then directly supply the 
TCA cycle via the metabolites of the glyoxylate shunt. In the glyoxylate shunt, citrate is isomerized into isocitrate by the 
cytosolic Aco1p. This isocitrate is subsequently cleaved by the isocitrate lyase (Icl1p) into glyoxylate and succinate. The 
activity of Icl1p can be inhibited by itaconic acid (ITA). Both glyoxylate and succinate are supplied to the TCA cycle. Ctp1p 
and Yhm2p are citrate and isocitrate shuttling proteins in the inner membrane of the mitochondrion. Their hypothesized 
transport mechanism is illustrated in a simplified form. αKG – α-ketoglutarate 

As an oleophilic yeast, Y. lipolytica strives on hydrophobic substrates like vegetable oils. It has 

been shown multiple times, that Y. lipolytica produces substantial amounts of CA and even ICA 

on different oils (Förster et al., 2007b; Holz et al., 2009; Kamzolova et al., 2008, 2015, 2016; Venter et 

al., 2004). The ICA overproducing strain ∆YHM2 showed a substantial increase in absolute 

amounts of produced ICA compared to the cultivation with glucose. Proportionately also more CA 

was synthesized with sunflower seed oil (in total 131.9 g l-1 ICA and 16.5 g l-1 CA). This result is not 

surprising, because additional CA generating pathways are active during triacylglycerol/fatty acid 

degradation. The fatty acids are cleaved from triacylglycerols by lipases and are subsequently 

broken down into acetyl-CoA during heightened β-oxidation activity in the peroxisomes. This 

acetyl-CoA is then converted into CA by a peroxisomal citrate synthase (potentially 

YALI0E02684p) in the course of an activated glyoxylate shunt (Eckardt, 2005; Fickers et al., 2003). 

The ICA production performance of strain ∆YHM2 is also exceptional with hydrophobic 

substrates. With a productivity rate of 26.4 g l-1 d-1 ICA and an ICA:CA ratio of 89 % does the strain 

outperform existing ICA overproducing Y. lipolytica strains on rapeseed oil e.g. strain 704 UV4 

A/NG50 - 23.3 g l-1 d-1 ICA; 81 % ICA or strain VKM Y 2373 - 19.1 g l-1 d-1 ICA; 76 % ICA (Kamzolova et 

al., 2013, 2015).  



Discussion 

122 

The reason for decreased ICA/CA production when YlYHM2 is overexpressed is still unclear. A 

possible explanation is that the transport of CA out of the mitochondrion is increased. Hence, a 

key metabolite of the TCA cycle is less abundant which slows the total acid production down. 

In order to further enhance ICA production in strain ∆YHM2, ITA was introduced to the medium. 

ITA is a natural inhibitor of the isocitrate lyase (Icl1p), a key enzyme in the glyoxylate shunt that 

catalyses the cleavage of ICA into succinate and glyoxylate (Atomi et al., 1990; McFadden and 

Purohit, 1977). The addition of ITA further enhanced ICA:CA ratio on glucose significantly from 

94 % to 96-97 %. This result is another indicator for a minor activity of proteins in the glyoxylate 

shunt, despite being inhibited by glucose repression.  

The group around Kamzolova (2015, 2016) cultivated a Y. lipolytica wild type and an UV/NG mutant 

strain on canola oil with the addition of ITA. In doing so, the ICA:CA ratio was increased from 2.2:1 

(69 %) to 4.5:1 (81 %) with the wild type strain VKM Y 2373 and from 1:1.04 (49 %) to 6:1 (85 %) with 

the UV/NG strain under optimized conditions while producing 82.7 g l-1 and 88.7 g l-1 ICA, 

respectively. Interestingly, during this project when cultivating strain ∆YHM2 on sunflower oil 

with ITA, the ICA:CA ratio of 89 % shifted back in the favour of CA to 78 %. At first glance, this 

observation seems counterintuitive, but it underscores the importance of the CA carrying 

capabilities of Yhm2p. The import of CA into the mitochondrion is believed to be also facilitated 

by Yhm2p. During β-oxidation and the glyoxylate cycle an increased amount of CA is produced. 

The YHM2 deletion reduces the transport rate of CA into the mitochondrion. Adding to that, the 

amounts of anaplerotic metabolites, MA and succinate, are heavily reduced due to inhibition of 

Icl1p. Consequently, ICA cannot fuel its own synthesis via Aco1p in the mitochondrion because its 

cleavage products from the glyoxylate shunt are diminished. Ultimately, leading to an 

accumulation of CA in the cytosol. Therefore, it would be advisable not to inhibit Icl1p but dampen 

the citrate synthase activity to further enhance the ICA ratio of strain ∆YHM2 on vegetable oils. 
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5. Conclusion & Prospect 

This thesis advocates for the application of oleaginous yeasts in the biotechnological production 

of organic acids from renewable resources, especially for the production of ITA with 

P. tsukubaensis and ICA with Y. lipolytica. The two yeast species are naturally secreting the 

respective acids. CA but also ITA are already synthesised on a large scale with the help of 

microorganisms. Biotechnological processes for the biosynthesis of CA and ITA, however, are still 

dominated by filamentous fungi from the genus Aspergillus. P. tsukubaensis and Y. lipolytica 

both exhibit several advantages over Aspergillus species like fast single cell growth with no need 

for spores to germinate and fewer sensitivities against contaminations in the medium e.g. heavy 

metals. These properties make them optimal candidate organisms for the development of 

alternative, more lucrative biotechnological processes.  

The present study focuses on the targeted overproduction of the valuable platform chemicals ITA 

and ICA with the help of oleaginous yeasts. Here, we were able to identify the genes involved in 

the biosynthesis of ITA with P. tsukubaensis. This information was of great value for subsequent 

genetic optimization efforts. As it turned out, the investigated yeast possesses the same genes 

necessary to produce ITA as does the corn smut fungus U. maydis MB215. In addition, several 

promoter sequences that ensure a strong and constitutive expression have been discovered. That 

way, overexpression studies could be carried out for every gene directly involved in the synthesis 

of ITA. The generated transformants were screened for their ability to secrete ITA and MA. This 

screening process was aided by the previous development of a modified culture medium. The 

medium composition according to Bodinus and Kawamura was adjusted in that it is a completely 

synthetic medium with no complex components like corn steep liquor. The synthetic medium 

also made it possible to gain insights into the natural regulation of ITA biosynthesis. 

P. tsukubaensis wild type secretes mainly MA. This MA synthesis is triggered by the depletion of 

P in the medium. ITA synthesis, on the other hand, is not induced by the complete depletion of P 

but by high concentrations of N and very low concentrations of the P source (approximately 

0.15 g l-1 KH2PO4).  

Despite several overexpression experiments for the various ITA cluster genes leading to nuanced 

differences in most cases, the efforts to metabolically engineer P. tsukubaensis were successful. 

On their own, the overexpression of the two genes encoding the enzymes cis-aconitate-∆-

isomerase (PtADI1) and trans-aconitate decarboxylase (PtTAD1) did not enhance ITA production. 

With an enhanced activity of either PtITP1 or PtMTT1, the genes encoding important transport 

proteins in the biosynthesis of ITA, low improvements were possible in the wild type. The effect 

was significantly greater when other factors were in play as well, like the random genetic changes 

in strain M15. 
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The overall highest impact had the overexpression of the regulator gene PtRIA1. The prevailing 

majority of the generated transformants in both the wild type and the mutant strain secreted high 

amounts of ITA. With this genetic modification, several ITA overproducing transformants have 

been created. The screening process demonstrated a greatly varying effectiveness of this 

overexpression between the generated transformants ranging from 1.2 to 31.4 g l-1 for wild type 

transformants and 0.6-33.4 g l-1 for M15 transformants, respectively. That way, the here 

characterized ITA production strain HR12 was created. Gene sequence analysis showed that a 

double integration of the promoter-gene construct in tandem orientation and possibly the 

simultaneous deletion of a 34 kb long region were instrumental for the improvement in ITA 

synthesis. Following experiments demonstrated that strain HR12 is able to utilize several different 

C sources like glucose, ethanol, acetate, xylose, sucrose, and glycerol. Furthermore, it was revealed 

that no external trigger was needed for the enhanced biosynthesis of ITA e.g. depletion of a 

nutrient like N or P because the complete ITA cluster was upregulated by the overexpression of 

PtRIA1. That way, up to 113.6 g l-1 ITA was produced within 7 d under controlled conditions. What 

is more striking is the high specific yield of 42 % (g ITA per g glucose) and the low concentrations 

of competing by-products like MA or αKG (combined 2.2 g l-1).  

As a second objective, the increased secretion of ICA with the oleaginous yeast Y. lipolytica was 

followed since few viable production processes are known besides the resource-intensive 

chemical synthesis. In the course of our investigations, the new genes YlCTP1 & YlYHM2 were 

identified, which encode putative mitochondrial CA transporting proteins. Deleting each gene 

individually led to a drastic reduction in aconitase activity in both cases. However, the mode of 

action of the two transporters appeared to be very distinct from one another. When grown on 

glucose, the knock-out of YlCTP1 resulted in a general decrease in total acid secretion. In the case 

of cultivation with hydrophobic C substrates, strain ∆CTP1 secreted only fewer amounts of organic 

acids with no discernible changes in the ICA:CA ratio.  

By only deleting one target gene, YlYHM2, a specific phenotype was achieved, in which the ICA:CA 

ratio is drastically altered to produce almost exclusively ICA. This is true for both simple sugars 

and hydrophobic substrates. Strain ∆YHM2 secreted ICA as the main product and in high 

concentrations of up to 131.9 g l-1 with an ICA:CA ratio of 89 % (16.5 g l-1 CA). This ratio was raised 

to 96 % with glucose as C source but the productivity suffered by doing so. To this date, there has 

been no strain constructed, rationally or by random mutagenesis, with similar ICA producing 

capabilities. Additional YlACO1 overexpression negatively affected the ICA production. By 

inhibiting the enzyme Icl1p with the supplementation of ITA, the ICA yield was further increased 

significantly with glucose but not with sunflower oil as carbon substrate. 
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P. tsukubaensis HR12 and Y. lipolytica ∆YHM2 both represent exceptional microbial producers for 

the respective organic acid, although further improvements are needed in order to compete with 

established processes and with petrochemical-derived products. From a biotechnological 

standpoint the main objectives are to heighten product to substrate yield, spacetime yield and the 

final product concentration. The following sections should illustrate imaginable but also viable 

strategies to achieve these goals. 

--- 

Primarily, the possibilities must be exhausted to optimize the direct biosynthesis of the organic 

acids. In the case of ITA synthesis with the help of P. tsukubaensis, heterologous gene or promoter 

sequences should be taken into consideration. Here, we demonstrated the possibility of a parallel 

ITA biosynthesis pathway in that AtCAD1 and PtMTT1 were overexpressed in combination. Codon 

optimization of the AtCAD1 gene to better suit its host organism is one approach to enhance the 

productivity. In addition, transport proteins must be investigated. This can either be done by 

protein engineering of the native PtMtt1p and PtItp1p transporters or by identifying suitable 

heterologous genes from suitable organisms. 

A targeted enhancement of cis-aconitate shuttling activity into the cytosol and ITA export into 

the extracellular space can potentially lead to substantial changes in productivity. Promising 

targets are the A. terreus genes encoding the transporters MfsA and MttA. The overexpression of 

the two genes heightened ITA production in a transgenic A. niger strain (Li et al., 2013). 

The effect of alternative RIA1 sequences from the array of ITA secreting Ustilaginaceae must be 

considered as well. As was shown by Geiser et al. (2018), the introduction of RIA1 sequences from 

different species had varying consequences on the resulting ITA production. The strongest 

induction of ITA synthesis was mostly achieved with the help of the P. tsukubaensis RIA1 gene. 

Beyond that there is the possibility to develop a strong synthetic ITA regulating protein by 

studying how exactly the Ria1 protein functions and how it controls the ITA cluster. 

In Y. lipolytica, the ICA is a direct product of the TCA cycle. There is no subsequent biosynthesis 

pathway that must be enhanced. As was shown in our study, transport proteins, especially 

mitochondrial ones, play a crucial role in the production of ICA as well. A greater focus on these 

carrier proteins for example by identifying suitable ICA exporters can heavily heighten product 

formation. 

Both ITA and ICA share cis-aconitate as a common precursor. Therefore, attempts were carried 

out to enhance aconitase activity to gain more intramitochondrial cis-aconitate and ultimately 

more of the desired product. A similar approach by Holz et al. (2009) led to an increased ICA 

production with Y. lipolytica. However, additional overexpression of genes encoding native 

aconitase enzymes had either no effect in the case of P. tsukubaensis HR12 or even reversed the 
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positive effect of the YlYHM2 deletion in Y. lipolytica. This means that the dehydration of CA into 

cis-aconitate is not a bottleneck reaction. Therefore, other genetic targets must be investigated 

during future projects. 

Possible candidates are genes that influence metabolic processes upstream of the cis-aconitate 

formation and thus increase the supply of precursors. In that sense, it is generally important to 

maintain a high continuous glycolytic activity. However, high CA concentrations in the cytosol 

can lead to the inhibition of the ATP-dependent phosphofructokinase which ultimately slows 

down glucose catabolism and subsequently the TCA cycle (Meixner-Monori et al., 1984; Mlakar 

and Legiša, 2006). Therefore, the modification of the native gene responsible for the 

phosphofructokinase to eliminate that feedback inhibition could lead to an increased organic acid 

production. 

Another expedient solution would be the introduction of an altered phosphofructokinase gene. It 

was shown by Tevž et al. (2010) that the introduction of the pfkA gene encoding the modified 

A. niger phosphofructokinase resulted in an increased ITA secretion with A. terreus. In a separate 

work, it was demonstrated that the abolishment of pyruvate kinase Pyk1p activity reduces the 

glycolytic flux (Yu et al., 2018). Therefore, overexpressing the respective homologous gene in 

Y. lipolytica or P. tsukubaensis could lead to an increased flow through glycolysis and ultimately 

higher TCA cycle activity. 

A different approach was followed by Hossain et al. (2016) where the overexpression of the 

putative native cytosolic citrate synthase CitB in an AtCAD1, AtMTTA and AtMFSA expressing 

A. niger strain diminished side product formation and optimized the production pathway towards 

ITA. Thus, leading to increased ITA concentrations of up to 26.2 g l-1. 

Furthermore, a recent study showed that the glucose uptake in Kluyveromyces marxianus is 

slowed down due to low hexokinase activity (Sakihama et al., 2019). Enhancing hexokinase 

activity in yeasts with an activated glycolytic and TCA cycle activity, thus, could lead to elevated 

glucose uptake that would fuel the enhanced organic acid production.  

Additionally, ICA and indirectly CA are broken down by the NADH and NADPH dependent 

isocitrate dehydrogenases (IDHs) during the TCA cycle. The IDH enzyme are activated by high 

intracellular AMP levels. However, under conditions of N starvation and glucose excess, 

ammonium is produced from AMP by the adenosine monophosphate deaminase enzyme 

(Beopoulos et al., 2011). Increasing adenosine monophosphate deaminase activity prevents AMP 

accumulation and the induction of the IDHs. The practicality of this approach was recently 

substantiated in Y. lipolytica for the overproduction of CA (Yuzbasheva et al., 2019). 

The reduction of other competing organic acids is also an essential goal for future studies. In doing 

so, the flux towards ITA/ICA synthesis would be elevated. An additional advantage would be a less 
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demanding product recovery. To our advantage, P. tsukubaensis ITA overproducing strain HR12 

already produces extremely low concentrations of competing organic acids like MA or αKG. 

Luckily, this yeast represents an extremely favourable host organism, because it naturally does 

not harbour the genes necessary to further metabolize ITA into 2-hydroxyparaconate and 

itatartarate. However, Y. lipolytica ICA producing strain ∆YHM2 still secretes some amounts of 

the isoform CA. As was discussed in chapter 4.6, it could be beneficial to diminish Cit2p activity. 

This would hinder the cell to synthesise CA in the peroxisomes from acetyl-CoA and oxaloacetate. 

Contrary to the relatively low levels of organic acid by-products, the accumulation of storage 

lipids, still represents a considerable destination for the supplied C source. It is known, that both 

yeast species form large quantities of intracellular lipids, mostly as triacylglycerols and steryl 

esters. In addition to that, P. tsukubaensis also produces intra- and extracellular glycolipids 

mostly in the form of MEL-B as a storage compound and as a natural biosurfactant (Arutchelvi et 

al., 2008). Due to their hydrophobic nature, these lipids are cause for increased efforts during 

sample and culture handling but also during product recovery processes. The reduction of lipid 

production would have a positive impact on product formation and process handling. Here, the 

attempts to optimize process conditions by decreasing the pH to 4.0 already had the consequence 

that significantly less lipids were stored inside P. tsukubaensis cells. It is, hence, important to gain 

insight into the underlying control mechanism and apply this knowledge to effectively bypass 

lipid formation at conditions with a neutral pH. A potential possibility to reduce lipid synthesis is 

the inhibition/knock-out of the ATP-citrate lyase. In the cytosol, this enzyme is responsible for 

the cleavage of CA into acetyl-CoA and oxaloacetate. The resulting acetyl-CoA is then channelled 

to the lipid biosynthesis (Dourou et al., 2017). Therefore, the knock-out of ATP-citrate lyase would 

serve two purposes: first by limiting the breakdown of CA as a main precursor for both ITA and 

ICA and secondly by reducing the formation of storage lipids. 

Besides the inhibition of lipids synthesis, another possibility is to enhance lipid degradation. Fatty 

acids that are stored as lipids inside lipid bodies can potentially be remobilized by upregulating 

triacylglycerol lipase activity e.g. Tgl3p and Tgl4p in Y. lipolytica (Ledesma-Amaro et al., 2016).  

These rational genetic modification approaches are extremely valuable, but their implementation 

is still tied to considerable laborious work. For future metabolic engineering strategies, more 

suitable genetic tools and techniques are a key aspect. This is especially the case for 

P. tsukubaensis, where only very limited methods are available at the moment because this 

species has not been a subject for the intense development of genetic tools. With easily 

configurable and adaptable genetic methods this is, however, starting to change. Recently, the 

group around Kunitake et al. (2019) described the successful utilization of a RNP-mediated 

CRISPR/Cas9 system in the closely related basidiomycete P. antarctica. The gene targeting was 
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efficient at two target loci in the genome (PaPaE and PaADE2). These CRISPR/Cas systems are 

very promising but other techniques like the golden gate assembly are too. Golden gate systems 

allow multiple DNA fragments to be cloned and directionally be assembled into a single DNA 

molecule without leaving behind “scars”. An according golden gate system, which is suitable for 

the overexpression of target genes and which also facilitates CRISPR/Cas mediated gene knock-

out, was recently proven efficient for Y. lipolytica wild type isolates (Egermeier et al., 2019).  

The optimization of the fermentation process is one of the most important strategies besides 

genetic means, to further improve organic acid production with the two yeasts. The available 

literature is focused on changes in fermentation conditions including pH and aeration (Yalcin et 

al., 2012, 2010) and the development of different fermentation strategies like (fed-)batch or 

continuous fermentations (Liu et al., 2015; Rywińska and Rymowicz, 2011). In the present study, we 

could demonstrate that the production of ITA with the overproducing strain HR12 can be 

modulated by changes in pH and aeration, where a slightly acidic pH (4.0-5.5) and a sufficient 

aeration (pO2: ≥ 55 %) was beneficial for the production. As far as the fermentation scale is 

concerned, most research work is still carried out on a laboratory scale. It is thus important to 

investigate the practicability of upscaling these fermentation methods. 

At the same time, downstream processes must be developed intensively. Generally, downstream 

processing involves ultrafiltration and electrodialysis for in-situ product recovery of the 

respective organic acid. Recently, Aurich et al. (2017) developed a novel method to isolate ICA from 

the fermentation broth by selective adsorption on activated carbon. Thereby, electrodialysis and 

the removal of water by (vacuum) distillation were no longer necessary.  

Since ITA is already produced on an industrial scale, there already exists substantial knowledge 

on the associated product recovery and purification processes. Industrial degree of purity is 

achieved by biomass separation (filtration or centrifugation) and subsequent crystallization via 

multiple evaporation and cooling steps. The current state of the art in recovery and purification 

for ITA production via bioprocesses was recently reviewed by Magalhães et al. (2017). The 

development of an efficient process for separating and purifying ITA is challenging due to the 

high affinity of this hydrophilic solute for aqueous solutions and the complex composition of the 

fermentation broth. According to the authors, the multitude of applicable ITA recovery processes 

from the fermentation broth are boiling down to either the use of chemical demanding, reaction-

based separations (precipitation, extraction, and adsorption), or the use of energy demanding, 

physical separation methods (crystallization or membrane separation). For the development of 

future technologies, there is an increasing emphasis on recovery processes that are directly 

coupled to the fermentation. This means that no accumulation of ITA occurs, which could dampen 

the bioconversion by feedback inhibition. Promising technologies are membrane bioreactors, 
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adsorption, and reactive extractions, since these separation methods do not interfere with the 

microorganisms.  

Lastly, medium compositions must be studied in more detail. Since Aspergillus species are known 

to be sensitive towards heavy metal contaminants, serious effort is directed towards the 

establishment of more tolerant fungi strains. Here it represents a great advantage, that the yeasts 

belonging to the Yarrowia and Pseudozyma genus naturally display a moderate to high tolerance 

for heavy metals in the medium (Bankar et al., 2018; Vadkertiová and Sláviková, 2006). Hence, the 

development of alternative media should have an emphasize on other aspects. 

One point of interest is the applied C source. Usually, simple sugars are employed as C source in 

fermentation studies, because of the great efficiency to convert those sugars into value-added bio-

chemicals. Their use, on the other hand, competes with the food industry. In order to alleviate this 

fact and to generate more lucrative applications, alternative substrates have to be investigated. 

Low cost agro-industrial waste products are promising substrates. For the production of CA with 

Y. lipolytica, C sources such as olive-mill wastewater, raw glycerol from the waste of biodiesel 

industry and inulin have been proven applicable (Papanikolaou et al., 2008; Rakicka et al., 2016; 

Rymowicz et al., 2006). Other C sources such as fruit pulps or wood hydrolysates are also feasible.  

An overview of all possible points of interest to further optimise the unconventional oleaginous 

yeasts P. tsukubaensis and Y. lipolytica for the production of ITA and ICA is shown in figure 45. 

In conclusion, two very promising yeast strains have been constructed within the framework of 

this thesis: P. tsukubaensis HR12 and Y. lipolytica ∆YHM2 for the microbial production of ITA and 

ICA, respectively. In first attempts to improve the efficiency of the fermentation processes, high 

end concentrations of up to 113.6 g l-1 ITA and 131.9 g l-1 ICA have been secreted. Our results shall 

constitute a foundation for future projects and industrial applications to facilitate the potential of 

these two exceptional yeasts.
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