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Abstract 

Identification of different cell types is an indispensable task of biomedical research and 

clinical application. During the last decades, much attention was given to molecular 

characterization, and many cell types can now be identified using established markers 

that bind to cell-specific antigens. The required staining process is a lengthy and costly 

treatment, which can cause alterations of cellular properties, contaminate the sample 

and therefore limit its subsequent use. For example, for photoreceptor 

transplantations, highly pure samples of photoreceptor cells are required, which can 

currently only be obtained using molecular labelling, rendering the resulting sample 

incompatible for clinical application. A promising alternative to molecular markers is the 

label-free identification of cells using mechanical or morphological features. Real-time 

deformability cytometry (RT-DC) is a microfluidic technique, which allows capturing both 

types of information simultaneously for single cells at high-throughput. In this thesis, I 

present machine learning methods which allow identifying different cell types, based on 

bright-field images from RT-DC. In particular, I introduce algorithms that are fast 

enough to be applied in real-time during the measurement (at >1000 cells/s), which can 

be used for image-based cell sorting. The performance of the algorithms is shown for 

the identification of rod precursor cells in retina-samples, indicating that image-based 

sorting based on those algorithms would allow enriching photoreceptors to a final 

concentration, applicable for transplantation purposes.  
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Kurzfassung 

Die Identifizierung verschiedener Zellarten ist ein unabdingbarer Bestandteil in der 

biomedizinischen Forschung und klinischen Anwendung. Während der vergangenen 

Jahrzehnte bestand ein verstärktes Interesse an der molekularen Charakterisierung und 

viele Zellarten können nun mit bewährten Markern identifiziert werden. Der 

notwendige Färbeprozess ist eine langwierige und kostspielige Behandlung, welche 

Änderungen zellulärer Eigenschaften hervorrufen, die Probe kontaminieren und daher 

den Nutzen der Probe einschränken kann. Zum Beispiel werden für 

Photorezeptortransplantationen reine Proben von Photorezeptoren benötigt, welche 

gegenwärtig nur mithilfe molekularer Labels hergestellt werden können, was allerdings 

die Probe für den klinischen Anwendungsbereich unbrauchbar macht. Eine 

vielversprechende Alternative zu molekularen Markern ist die label-freie Identifizierung 

von Zellen durch mechanische oder morphologische Eigenschaften. Real-time 

deformability cytometry (RT-DC) ist eine Technik, basierend auf Mikrofluidik, welche 

beiderlei Information gleichzeitig auf Einzellzellbasis mit hohem Durchsatz messen 

kann. In dieser Arbeit führe ich Machine Learning Methoden ein, welche es erlauben, 

basierend auf Hellfeldbildern von RT-DC, unterschiedliche Zelltypen zu unterscheiden. 

Insbesondere werde ich Algorithmen aufzeigen, welche während des Experiments in 

Echtzeit (>1000 Zellen/s) und somit auch für bildbasierte Zellsortierung verwendet 

werden könnten. Die Genauigkeit dieser Algorithmen wird für die Erkennung von 

Vorläuferzellen von Stäbchen-Photorezeptoren in Retina-Proben gezeigt. Die 

bildbasierte Sortierung mit diesen Algorithmen zeigt die konkrete Möglichkeit auf, 

Proben von Photorezeptoren herzustellen, deren Reinheit für Transplantationszwecke 

geeignet ist. 
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1. Introduction 

Cells are the smallest building blocks of live. Different cells have different functions 

implicating different structure, protein content, surface molecules and stiffness. The 

ability to measure such properties allows distinguishing different cell types and changes 

occurring, for example during maturation, differentiation, infection or drug treatment. 

Identification of subpopulations and description of their unique properties is an 

essential first step in biomedical research. For refined analysis, drug testing, or 

transplantation, often purified samples of certain cell types are required, evocating the 

need for cell sorting 1,2. Popular sorting methods facilitate molecular labelling, in which 

subpopulations are identified based on specific antigens being expressed by the cells. 

These antigens are then used to bind either magnetic or fluorescent labels to it and to 

sort the corresponding cells using magnetic or fluorescence activated cell sorting 

(MACS, FACS), respectively 3–5. Such labelling can be costly with respect to time and 

reagents and it cannot be ignored that cells might alter due to the label or the labelling 

process, rendering the sorted sample incompatible for certain applications such as 

transplantation. Hence, there is an increasing interest in alternative sorting techniques 

that employ intrinsic properties of cells. Existing techniques such as elutriation 6, 

filtration-based approaches 7,8 and deterministic lateral displacement (DLD) 9,10 allow to 

enrich cells with respect to their density, size, and deformability. Those techniques are 

bulk-sorting devices (such as MACS), which work passively and therefore reach 

preeminent throughput. The disadvantages are that the sorting logic is hard-wired into 

the system and that the specificity of molecular labeling is not met. In contrast to bulk 

sorters, flow cytometers such as fluorescence activated cell sorters (FACS) assess each 

cell individually and a sorting decision can be made dependent on an arbitrary 

combination of the available features. FACS can actually also be used in a label-free 

manner by employing forward and side scatter on unstained samples, allowing to get 

an indirect measure of cell size and granularity 1,11.  

Real-time deformability cytometry allows obtaining such measures more directly by 

analyzing bright-field images of single cells. RT-DC is a microfluidic technique, in which 

cells flow through a narrow channel where they are aligned, deformed, and captured by 
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a high-speed camera 12. Acquired images are analyzed in real-time at rates of 1000 

cells/s, but the data is also stored on hard-disk, allowing to derive any mechanical or 

texture property in an offline analysis (a more detailed introduction to mechanical and 

texture features is provided separately in section 1.1).  

Recently, real-time deformability and fluorescence cytometry (RT-FDC) was introduced, 

which extends the existing RT-DC technique by the capability to measure a fluorescence 

signal simultaneously to the known RT-DC parameters 13. This allows to link the 

fluorescence signal from established markers with label-free quantities such as cell size 

and deformation which are derived from bright-field images. RT-DC and RT-FDC stand 

out from other label-free measurement techniques (see section 1.3) due to the real-

time analysis capability. Real-time analysis plays a key role for prospective sorting, since 

sorting can only be triggered after certain cell-parameters are computed. Due to the 

flow cytometry-like approach of RT-FDC, it is possible to implement a sorting unit 

subsequent to the measurement region, as published recently 14. This device is called 

sorting real-time fluorescence and deformability cytometry (soRT-FDC). Typically, in 

RT-FDC only a very limited number of features such as cell size, deformation and 

transparency are computed in real-time. In this thesis I want to explore the potential of 

further label-free features, obtained from bright-field images from RT-DC, RT-FDC or 

soRT-FDC in the context of cell classification and prospective sorting. The aspect of cell 

sorting highlights the need for classification in real-time. Further methods for label-free 

cell characterization are addressed separately in section 1.3. 

Cell transplantation is a major motivation for label-free sorting because transplantation 

material should not be contaminated with labeling compounds in a clinical setting. 

Therefore, this thesis will use the example of photoreceptor transplantation, for which 

highly pure samples of photoreceptors are required. A more detailed introduction to 

photoreceptor transplantation is provided separately in section 1.2. Sources for the 

required cells could be other retinae (from a primary source) or organoids originating 

from induced or pluripotent embryonic stem cells. In either case, such a source will 

contain a mixture of different cells. Some sources of retina cells are already well 

established and fluorescent labels for certain subpopulations are known. Such known 
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labels can serve as a ground truth to benchmark the performance of new (label-free) 

classification methods. In this thesis I will aim at reaching the specificity of a molecular 

marker for rod precursor cells called Nrl-GFP, using bright-field images of the cells only.  

After the introduction, all results are presented in five sections of chapter 3. Section 3.1 

will highlight some specific features, computed from RT-DC measurements and a meta-

analysis using data from several thousands of experiments is performed to assess 

correlations and distribution properties. In section 3.2, these features are used together 

with machine learning to characterize retina samples at different maturation stages. 

Statistical analysis of differences between maturation stages is performed using linear 

mixed models. In section 3.3 supervised machine learning methods are presented, 

which allow identifying photoreceptor cells based on bright-field images. Several 

methods including random forests and deep neural nets (DNNs) are screened for an 

algorithm which provides sufficient accuracy and a computational speed suitable for 

sorting. In section 3.4.1, a software called AIDeveloper (AID) is introduced, which allows 

to train DNNs and to convert the resulting models into a format that can be used by the 

software, which runs the soRT-FDC setup (the Sorting Software is courtesy of Martin 

Nötzel, see section 3.4.2). In section 3.5, I go beyond the scope of this thesis and use all 

developed methods and tools to actually perform image-based sorting of rod 

photoreceptors. Furthermore, in a second experiment, I sort neutrophils from human 

blood, showing that the methods can be applied for multiple experimental settings.  

The experimental setup evolved continuously during the work on this project and the 

transitions are reflected by individual sections in chapter 3. Sections 3.1 and 3.2 

leverage data from the basic RT-DC setup 12. RT-FDC 13, which allows a simultaneous 

measurement of fluorescence intensity parallel to the known RT-DC parameters is 

introduced in chapter 3.3. Finally, in section 3.5, soRT-FDC 14 is utilized, which is a 

combined setup, integrating a sorting capability into the RT-FDC setup. 
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1.1. Texture and mechanical properties: label-free markers 

All cells contain cytoplasm, ribosomes and DNA and eukaryotic cells also have 

membrane enclosed organelles to fulfill particular functions. All of these contents have 

a different structure, with different absorption, diffraction and refraction behavior 

leading to a specific appearance. As a result, some cell types can be distinguished by 

eye based on bright-field images, captured with the help of a microscope. For example, 

the amount of granules which have a very low transmission rate are usually distinct in 

neutrophils, monocytes and eosinophils which leads to a recognizable brightness 

difference of the cells as shown in Figure 1.1 15. Furthermore, texture properties such as 

Haralick features, scale-invariant feature transform, local binary patterns or threshold 

adjacency statistics can be used to predict pathological conditions such as skin-cancer 

and malaria or even protein expressions 16–19. 

 

Figure 1.1 Bright-field images of white blood cells captured using RT-DC 

Eosinophils (left) have the highest number of granules, causing a dark appearance in a bright-field image, 

captured using RT-DC at 40x magnification. Monocytes (middle) appear bright since they have an even 

lower number of granules than neutrophils (right). Scale bar: 10 µm. Measurement was performed using 

blood of a healthy donor in a microfluidic chip for RT-DC with 20 µm channel width and a flowrate of 

0.04 µl/s. 

 

The cell integrity and shape are maintained by the cytoskeleton, a dynamic meshwork 

of actin, microtubules and intermediate filaments that is not at equilibrium. The amount 

and architecture of the meshwork components influences the ability of the cell to 

migrate and deform upon mechanical stress. Mechanical properties of cells can be used 

to detect pathological alterations of monocytes after inflammation, of red blood cells 

during plasmodium-infection, or of neutrophils during psoriasis 20–23.  The ability of 

cancerous cells to migrate is linked to elasticity and allows recognition of metastatic 
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cells 24,25. Furthermore, stem cells, mature cells, as well as cells differentiating along 

certain lineages show differences in their mechanical properties 26,27. 

Textures as well as mechanical features are measurable without the need of any 

labelling, which causes a high interest in methods that leverage these physical 

properties for quantification of cells. 

 

1.2. The retina, diseases and cure by photoreceptor 

transplantation 

Visual perception is arguably one of the most important senses of humans. The eye is 

the organ which allows us to capture light from our environment, which is then 

processed by the brain. The optical system of the eye consisting of cornea, lens, and 

vitreous body guides the light onto the retina, a tissue that layers the back of the eye as 

shown in Figure 1.2 A. In the retina, electromagnetic waves (light) are converted into 

electrochemical signals by photoreceptors. These signals are then transmitted and post-

processed by bipolar, amacrine and ganglion cells and exit the retina through the optic 

nerve (see Figure 1.2 B). These different cell types are embedded into the retina which 

shows a stratified structure.   

Color vision on the one hand and scotopic vision on the other hand is achieved by two 

different types of photoreceptor cells: cones and rods. Cone photoreceptors require 

high light levels to operate and are densely distributed at the macula and provide high 

spatial acuity. The human eye usually contains approximately 6 million cones. Black and 

white contrast and visual perception at low-light conditions is provided by rod 

photoreceptors, which are more abundant (approximately 120 million in a human eye) 

28. Rods are widely distributed over the whole extend of the retina, but are absent in the 

macula.  
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Figure 1.2 Eye, retina and photoreceptor transplantation 

(A) Anatomy of the eye and a syringe indicating the aimed subretinal space for photoreceptor 

transplantation. Light is guided through the eye by cornea, lens and vitreous body and projected onto the 

retina. Image is adapted from 29.  

(B) The retina shows different layers and contains two types of light sensitive cells called rods and cones. 

Light would enter from the bottom. Image is adapted from 30.   

(C) The transplantation success (measured as number of GFP+ cells counted in the host retina) is increased 

by transplanting purified photoreceptor cells. Purification was achieved utilizing fluorescence activated cell 

sorting (FACS) to sort for the GFP tagged rod precursor cells of the Nrl-GFP mouse line. Image is adapted 

from 29.  

(D) Another method to purify rod photoreceptors is magnetic activated cell sorting (MACS), utilizing the 

CD73 antigen, which is expressed on the surface of rod photoreceptors. Image is adapted from 31. 

 

Diseases such as age-related macula disease (AMD) or retinitis pigmentosa (RP) result in 

an impairment of cone and rod photoreceptor function, respectively. A promising 

therapeutic approach to recover vision is the transplantation of photoreceptor 

precursor cells into the subretinal space (between retina and retinal pigment 

epithelium, see Figure 1.2) of the host retina 32. Using a mouse model, it was shown that 

after transplantation, the precursor cells differentiated to mature rod photoreceptors 

and resulted in improved vision 29,33,34. The best transplantation success was observed 

when using retina cells from mice at postnatal day four (P04) 2,32,35. In the corresponding 

studies, a transgenic mouse line was used, which expresses green fluorescent protein 

(GFP) in rod precursors via a neural retina leucine (Nrl) zipper gene promoter 2,29,31–36. 

The GFP tag allows locating transplanted rods in the host retina after transplantation. 

Furthermore, fluorescence-activated cell sorting (FACS) can be used for sorting rods to 

produce highly pure samples for transplantation. It has been shown that transplanting 

FACS-enriched rod photoreceptors results in higher transplantation success as 

compared to transplanting whole unsorted retina (see Figure 1.2 C). A second 
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purification method utilizes the CD73 antigen, which is expressed by rods. Magnetic 

beads, which are linked to a CD73 antibody, are mixed into the dissociated retina 

sample, where they bind to the CD73 antigens on rods. This allows separating rods 

using magnetic-activated cell sorting (MACS). This purification method also results in an 

improved integration of rod photoreceptors as shown in Figure 1.2 D 31.  

Both sorting methods require to add labelling molecules which could contaminate the 

sample, cause alterations of the cells, and are therefore not applicable in a clinical 

setting for example to collect cells photoreceptor transplantation. The MACS-based 

approach requires binding an antibody to a CD73 antigen, which could cause reactions 

and alterations of the cell. Furthermore, the CD73 antigen is not a functional marker for 

rods, but is present on other cells as well, for example B and T lymphocytes. For FACS, a 

fluorescent label is necessary, which could also be facilitated using the CD73 antigen, 

giving rise to the same problems mentioned for MACS. Alternatively, cells can be 

genetically modified to express a GFP tag, but the genetic modification could lead to 

side effects. For clinical research and cell therapy, aimed for the application on human 

tissue, the transplantation of mouse cells is inappropriate since xenotransplantations 

often fail due to immune barriers. Additionally, the transplantation of genetically 

modified cells into humans is ethically problematic. An allotransplantation could be 

realized using induced or embryonic pluripotent stem cells (PSC) of human origin that 

are directed to differentiate towards retinal fate in vitro 37–42. This approach would also 

not yield a uniform distribution of highly concentrated photoreceptors of the same 

maturation stage because the cell differentiation pathway and cell cycle cannot be 

synchronized for all cells simultaneously. Hence, material from such organoids would 

need to be enriched for photoreceptors before transplantation and the required 

labelling process would result in the same implications, as mentioned above. Therefore, 

a label-free cell identification and sorting technology would also be required for retina 

cells originating from embryonic or induced PSCs. 

In this thesis the Nrl-mouse line whose rod photoreceptors express a GFP tag will be 

used as a model system to characterize retina cells and to develop methods for label-

free cell identification for prospective sorting. 
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1.3. Technologies for label-free assessment of cells 

While flow cytometry is commonly used in combination with fluorescent labels, it also 

allows to use the scatter signal to capture information linked to the refractive index and 

cell size without need of fluorescent labels 43, but the information content is very 

limited. Imaging flow cytometers allow to obtain bright and dark-field images of the 

cells, but a mechanical readout and sorting capabilities are lacking 44,45. Further label-

free measurement methods are Raman scattering, to detect chemical substances 46,47 

and quantitative phase imaging, to measure distributions of the refractive index within 

the cell 48–51. Mechanical properties have emerged as a promising feature for label-free 

discrimination of cells and to detect malignant changes for example during cancer or 

malaria 15,52. Available techniques include Brillouin scattering 53,54, micropipette 

aspiration 55, optical tweezer 56, optical stretcher 57 and atomic force microscopy 58. 

These methods reach a throughput of approximately 1 cell/minute, rendering sorting 

for transplantation material unfeasible since several tens to hundred thousand cells are 

required.  

A significant increase in throughput has been achieved by techniques leveraging 

microfluidics. Micro-constriction arrays utilize tight constrictions, smaller than the 

nucleus of cells and measure the entry time for approximately 3 cells/second 20,59. Even 

higher throughputs were achieved by a similar method called suspended microchannel 

resonator. There, the microfluidic chip with constrictions is placed onto an oscillating 

cantilever to speed up the measurement of the entry and passage time employing 

changes of the resonance frequency. While the buoyant mass of cells can be deducted, 

a bright-field image of the cells is not captured 60. Hydropipetting achieves contact free 

deformation of cells by a rapidly accelerating them using perpendicular flows, which is 

captured using a high speed camera 61. Similarly, deformability cytometry (DC) uses 

extensional flow to decelerate cells, to cause deformation 62. Hydropipetting and DC 

achieve a throughput similar to commercial flow cytometers (Hydropipetting 

approximately 65,000 cells/second and DC approximately 2000 cells/second), but data is 

stored on camera during the experiment and analyzed afterwards, rendering cell 

sorting impossible.  



9 

 

Intelligent image-activated cell sorting (iIACS) is also a microfluidic technique, in which 

cells flow through a channel and bright-field as well as 2D fluorescence images 

(reconstructed from one dimensional profiles) are captured 63. Analysis is performed in 

real-time of up to 100 cells/s and optionally, a sorting unit is triggered to separate 

individual cells. Since the computational time for image reconstruction and analysis is 

32 ms and the speed of cells is 1 m/s, cells travel a distance of 3.2 cm from imaging to 

sorting region. The number of sorted cells, reported in the original publication range 

from several hundred to 5000 cells. To find back those cells for post-analysis, a 

centrifugation-based device for cell-counting needed to be developed. The throughput 

of iIACS is certainly sufficient to collect cells for prospective single cell omics analyses or 

cultivation, but for transplantation purposes such as photoreceptor transplantation, 

approximately 10 to 50 times more cells are required. 

Since RT-DC allows a throughput of more than 1000 cells/s and latency is approximately 

1 ms, it is a promising tool to perform label-free assessment and sorting of cells at 

quantities, suitable for transplantation. Furthermore, such an image-based sorting 

device allows to separate mechanically or morphologically distinguishable cells for 

example for prospective single cell omics analyses 64,65, cell culture, or creation of 

particular drugs 64,66,67. 
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2. Materials and Methods 

The previous chapter already mentioned techniques for measuring label-free properties 

of cells, including RT-DC and RT-FDC. In this chapter, RT-DC and RT-FDC are introduced 

in detail, as well as an additional sorting module. Data analysis techniques are 

introduced, which allow extracting more information from individual cells or full 

measurements. Furthermore, statistical analysis techniques for the comparison of 

datasets and machine learning methods for cell classification are presented. 

 

2.1. Experimental setup 

2.1.1. Chip design for RT-DC and RT-FDC 

The microfluidic design of Real-time deformability cytometry (RT-DC) and Real-time 

deformability and fluorescence cytometry (RT-FDC) chips is shown in Figure 2.1. Two 

inlets (I1 and I2 in Figure 2.1) allow inserting tubing carrying sheath fluid (dark blue in 

Figure 2.1) and the suspended cells (cyan in Figure 2.1). Filter units close after both 

inlets (‘P1’ and ‘P2’ in Figure 2.1) help to block large particles to avoid clogging of the chip. 

The chip design for the cell suspension is tightened to 100 µm, a region called ‘reservoir’ 

(‘ROI2’ in Figure 2.1). This region can be used to capture slowly moving cells that are 

subjected to very low stress. Next, the cell suspension flow is focused by a sheath flow 

towards a constriction channel. At the backmost part of this 300 µm (RT-DC and RT-FDC) 

or 880 µm (soRT-FDC) long channel, cells are captured in the deformed state (‘ROI1’ in 

Figure 2.1). In order to avoid contact of cells to the channel wall and to still have 

sufficient hydrodynamic forces, the channel width has to be chosen depending on the 

size of the cells (common channel widths are 5, 10, 15, 20, 30, and 40 µm). In an 

ordinary RT-DC chip, the fluid simply exits the chip at a single outlet. Figure 2.1 shows 

two outlets, which are required for cell sorting to direct target cells into a dedicated 

collection tube. Section 2.1.2 introduces details of the microfluidic design of sorting 

chips. 
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Figure 2.1 RT-(F)DC chip design and soRT-FDC setup components 

Sketch shows the chip design and components of the soRT-FDC setup. The microfluidic chip is supplied 

with sheath flow (dark blue) and cell suspension (cyan) by two coupled syringe pumps. The tubing for the 

cell suspension is inserted at inlet 2 (I2). The cell suspension flow is then filtered by pillars (P2), pre-

focused in a narrow region of 100 µm width (ROI2) and hydrodynamically focused by the sheath flow 

(dark blue) towards a constriction channel. Usually, cells are captured at the end of the channel (ROI1) 

and in the 100 µm wide reservoir (ROI2). Illumination is achieved by a high-power LED and images are 

captured using a high-speed camera. Those parts are the basis for the RT-DC setup, (which is employed 

in section 3.1 and 3.2). In RT-FDC (used in section 3.3), there are additionally three lasers available, 

allowing to excite fluorescence, which is then detected by photodiode detectors. To add a sorting 

function to the setup, interdigital transducers (IDTs) are integrated into the chip design, allowing 

translocating cells using standing surface acoustic waves (SSAW). By default, cells travel towards outlet 1 

(Out1) and in case of a sorting event, cells are pushed into the channel leading to outlet 2 (Out2). The 

corresponding setup is called soRT-FDC (used in section 3.5). 

 

2.1.2. Chip design for soRT-FDC 

Figure 2.1 displays the schematic design of a sorting chip, where the constriction 

channel is followed by a 200 µm long channel of 50 µm width. On both sides, interdigital 

transducers (IDT, see Figure 2.1) are neighboring this part of the chip. Upon actuation, 

the IDTs create standing surface acoustic waves (SSAW) on the substrate of the chip, 

which enable to shift the trajectory of cells towards outlet 2 (“Out2” in Figure 2.1). A 

slight offset (5 µm) of the dividing wall between Out1 and Out2 ensures that cells travel 

towards outlet 1 when SSAW are not applied. 

Typically, RT-(F)DC experiments last several minutes to maximum half an hour. 

Occasional clogging of the channel due to large particles is simply solved by either 

increasing the flowrate to force the objects through the channel or by replacing the 

chip, which only takes minutes. Especially samples, which required a dissociation 

process to obtain single cells (adherent cells and tissues), often still contain 

agglomerates of cells, which can simply be disregarded from the measurement by size 
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gating. Hence, for RT-(F)DC, there is no immediate need to change the chip design to 

further decrease the chance of clogging or having agglomerates of cells in the channel. 

For sorting experiments, both events are actually highly problematic. Clogging or partial 

clogging of the channel disturbs the flow profile, likely causing cells to accidentally go to 

the target outlet. Similarly, parts of an agglomerate could potentially spill into the target 

outlet, contaminating the respective sample. Changing a sorting chip requires 

considerably more time since a slow inflow of the sample is required to avoid spilling 

into the target channel. Furthermore, an optimization of phase and frequency for 

actuation of the IDTs (see section 2.1.5) is required to achieve translocation of cells into 

the target channel. Hence, the chip design was reviewed to implement structures, which 

reduce the chance of clogging or agglomerates in the channel. First, several columns of 

pillar units with decreasing inner distance were placed in sheath as well as sample inlet 

(see red rectangles in Figure 2.2). In the final column of pillars, the inner distance 

between pillars is 15 µm in the sample flow and 10 µm in the sheath flow. Furthermore, 

assemblies of serpentines were placed into the sample flow (courtesy of Ahmad Ahsan 

Nawaz), which help to tear apart agglomerates and also increase the spacing between 

cells (see orange rectangles in Figure 2.2). Each serpentine has a width of 30 µm. The 

measurement channel has a width of 20 µm and a length of 880 µm, which is followed 

by a 50 µm wide and 200 µm long section, where SSAW are applied. In the same region 

there are pockets for IDTs at both sides of the channel. 
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Figure 2.2 Design of the sorting chip 

Figure shows the 2D-CAD design of the entire sorting chip and a zoomed in version of specific parts. The 

red rectangles indicate unique filter assemblies, which consist of a cascade of pillars with decreasing 

inner distance. The orange rectangles indicate a unit of several serpentines, which helps to tear apart 

clusters of cells and to increase the spacing between cells. The layout was designed using KLayout 0.25.3. 

 

 

2.1.3. Chip fabrication 

The two-dimensional design is first brought onto a photomask, which is then used to 

copy the structure to a silicon waver by photolithography 12. Chips are produced using a 

combination of polydimethylsiloxane (PDMS, SYLGARD®, Dow Corning, USA) and curing 

agent (10:1 w/w), which is distributed on the master to create a 0.5 cm thick layer. Layer 

and master are separated again after curing the PDMS for 60 min at 65 °C, which allows 

using the master several times. Holes for connecting tubes at inlets and outlets (I1, I2, 

Out1, and Out2 in Figure 2.1) are cut using a biopsy puncher (Biopsy Punch with Plunger, 

size 1.5 mm, pfm medical AG, Germany).  

In the final step of chip production, the structures in the PDMS layer need to be sealed. 

Chips that are not intended for sorting are sealed using a glass slide (thickness 2, Hecht, 
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Germany) that is bound covalently to the PDMS by means of plasma activation (50 W, 30 

sec, Plasma Cleaner Atto, Diener electronic, Germany). Instead of glass, sorting chips are 

sealed using a 128° Y-cut lithium niobate (LiNbO3) substrate. Lithium niobate is 

piezoelectric, which allows generating surface acoustic waves by electrical excitation 

using interdigitated transducers (IDT, see Figure 2.1). The IDTs are composed of 

chromium and gold layers (Cr/Au, 10 nm/70 nm, respectively), which are brought onto 

the substrate by an evaporation process. The design of the IDTs (30 pairs of electrodes 

with an aperture of 200 µm and an inter-finger distance of 70 µm) results in an 

excitation frequency of 55.23 MHz and an acoustic power of the SSAW of -2.8dbm 14. In 

addition, alignment markers are deposited onto the substrate during the evaporation 

process. These markers allow to precisely align structures on PDMS and substrate 

during chip assembly. The punching of holes for the two inlets (sheath and cells) and 

outlets (Out1 and Out2) as well as the bonding of PDMS and substrate by plasma 

activation is identical for sorting and non-sorting chips. 

 

2.1.4. RT-DC, RT-FDC and soRT-FDC Setup 

A stage with magnetic clamps is used to fix the microfluidic chip on an inverted 

microscope (Axio Observer Z1, Zeiss, Germany), equipped with a 40x objective (NA = 

0.75, Neofluar, Zeiss, Germany) or alternatively a 20x objective (NA = 0.8, Plan-

Apochromat, Zeiss, Germany). A high-speed camera (EoSens CL MC1362, Mikrotron, 

Germany) with a 1280x1024 pixels CMOS sensor captures bright-field images with a 

final resolution of 0.34 µm/pixel (40x magnification) or 0.68 µm/pixel (20x 

magnification), which are sent to a standard PC using a full camera-link frame grabber 

card (PCIe-1433, National Instruments, USA). To avoid image blurring the camera 

triggers an LED (CBT-120, Luminus Devices, USA) which sends 2 µs long light pulses for 

illumination of every captured frame.  

Precise flowrates for sheath and cell suspension fluid are controlled by two linked 

syringe pump modules (NemeSyS, Cetoni, Germany). PEEK tubing (Postnova Analytics, 

Germany) is used to connect the syringes with the microfluidic chip. Only for sorting 

experiments a third syringe pump is used which withdraws fluid from the default outlet. 
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This allows adjusting the flow profile to optimize the trajectory of cells, such that they 

traverse into the default outlet (Out1 in Figure 2.1), close to the dividing wall (see Figure 

2.2). 

To control the setup components and perform data acquisition, ShapeIn (Zellmechanik 

Dresden, Germany) is used (for RT-DC and RT-FDC experiments), which utilizes the 

OpenCV library 68 for image processing. Continuously, a rolling average of the last 100 

frames is computed. This background image is then subtracted from the latest image. 

Next, the image is smoothed and binarized by thresholding to finally obtain the contour 

using a border following algorithm 69 (for more details see Figure 2.3). 

Optionally, the setup is complemented by three lasers (OBIS 640 nm LX 40 mW, OBIS 

561 nm LS 50 mW and OBIS 488 nm LS 60 mW, Coherent Deutschland, Germany), which 

allow to excite fluorescence. Each laser excitation beam is focused to form a light-sheet 

in the region of interest in the microfluidic channel (ROI1 in Figure 2.1). Each cell 

traverses this sheet and the emitted fluorescence is collected by the objective and 

guided to a photodiode detector assembly (MiniSM10035, SensL Corporate, Ireland), 

resulting in up to three 1D fluorescence traces for each captured cell 13.  Bright-field 

images and fluorescence traces are acquired synchronously for each single cell. 

To create standing surface acoustic waves for sorting, the signal of a surface acoustic 

wave generator (BSG F20, BelektroniG, Germany) is duplicated using two fast-switches 

(BPS-300, BelektroniG, Germany) and connected to each IDT. Instead of glass, 

microfluidic chips for sorting use a LiNbO3 substrate, which is birefringent. To remove 

the resulting image distortion, a polarizer (Polarizer D, Zeiss, Germany) is used. 

For controlling the sorting system, dedicated software was developed, based on the C++ 

code for RT-DC. In case of RT-(F)DC queues of events are temporarily stored on RAM 

and multiple CPU-cores analyze stored events in parallel. For sorting, such a queue 

would result in varying computational time for each event. Therefore, the sorting 

software was optimized to strictly process only single events as fast as possible. The 

computational time for a single event is approximately 150 µs and the total delay 

between image acquisition and sorting trigger is 1 ms 14. Depending on the computed 
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quantities (e.g. area and deformation) and user defined thresholds for sorting, a trigger 

signal is send from the frame grabber card to the SAW generator, inducing a sorting 

pulse. Further details on the Sorting Software are presented in section 3.4.2. 

 

2.1.5. Physics of surface acoustic wave mediated sorting  

The capability to sort cells based on real-time parameters is achieved using standing 

surface acoustic waves (SSAW). Upon actuation of the opposing IDTs at resonance 

frequency, counter propagating surface acoustic waves are generated due to the 

piezoelectricity of lithium niobate. Each IDT consists of a pair of comb-shaped 

electrodes that are interlocked, but not touching. The inner distance between 

electrodes defines the resonance frequency of the IDT: 𝑓 = 𝑣/𝜆, where 𝑣 is the speed of 

sound in lithium niobate 𝑣 (𝑣 = 3978.2 𝑚/𝑠 70) and 𝜆 is the wavelength, defined by the 

distance between two electrodes. When two opposing IDTs are excited simultaneously 

at the same frequency and amplitude, the counter-propagating SAW generate a 

standing surface acoustic wave (SSAW). In the design used for sorting chips, the 

wavelength of the SSAW is 𝜆 = 70 µ𝑚 and the distance between the IDTs is 350 µm. 

Particles or cells interact with the SSAW via acoustic radiation force, which is described 

by 71: 

 𝐹𝑡 = − (
𝜋𝑝0

2𝑉𝑐𝛽𝑤

2𝜆
) 𝜙(𝛽, 𝜚)𝑠𝑖𝑛(2𝑘𝑥), 2.1 

with the acoustic contrast factor 𝜙, 

 𝜙(𝛽, 𝜚) =
5𝜚𝑐 − 2𝜚𝑤

2𝜚𝑐 + 𝜚𝑤
−

𝛽𝑐

𝛽𝑤
, 2.2 

acoustic pressure  𝑝
0

, wavelength  𝜆 , cell volume  𝑉𝑐 , cell compressibility  𝛽𝑐 , fluid 

compressibility 𝛽𝑤, cell density 𝜚𝑐 and fluid density 𝜚𝑤. The acoustic factor determines if 

the cells travel towards the pressure node of the SSAW (𝜙 > 0) or towards the pressure 

antinode. Typically, cells have positive 𝜙 (assuming a water based surrounding fluid) 

and move towards the pressure node, on the one hand because cells contain protein, 

which increases their density in comparison to water (𝜚𝑊𝑎𝑡𝑒𝑟 ≈ 1.0  𝑔/𝑚3, 𝜚𝑃𝑟𝑜𝑡𝑒𝑖𝑛 ≈
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1.3 … 1.4 𝑘𝑔/𝑚3) and on the other hand because cells have a higher compressibility than 

water (𝛽𝑤 ≈ 4.5 𝐺𝑃𝑎−1, 𝛽𝑐 ≈ 4 𝐺𝑃𝑎−1) 72–74. 

The current design of the IDTs causes a resonance frequency of 55.23 MHz, which 

corresponds to a wavelength of 𝜆 =
𝑣

𝑓
=

3978.2 𝑚/𝑠

55.23 𝑀𝐻𝑧
= 72.03 µ𝑚  for SSAW on lithium 

niobate substrate (using the speed of sound of LiNbO3 of 3978.2 m/s 70). Since the 

maximum translocation of a cell by a SSAW is only 𝜆/4 = 18.01 µ𝑚, it is important that 

the trajectory of cells goes very close to the dividing wall (see Figure 2.2) towards the 

default outlet (Out1) during a sorting experiment. This fine adjustment of the trajectory 

of cells is achieved using a third syringe pump which operates at a negative flowrate, 

effectively drawing liquid out from the default outlet. 

 

2.1.6. Measurement buffer (MB) for RT-DC 

In principle, any cell medium could be used and flushed through the microfluidic chip, 

but it has several advantages to use media with an elevated viscosity. Firstly, higher 

viscosity increases the shear stress and therefore allows to deform eukaryotic cells 

already at low flowrates 12. Secondly, higher viscosity reduces sedimentation which is 

necessary for longer experiment durations for example for cell sorting. Therefore, the 

viscosity of a given cell medium is increased to 15 mPas or 26 mPas (zero shear viscosity 

at 24°C) by adding 0.5% (w/w) or 0.6% (w/w) methyl cellulose (4000 cPs, Alfa Aesar, 

Germany), respectively. These buffers show a shear thinning effect, which causes a drop 

of the apparent viscosity when increasing the flowrate. The dependency of viscosity and 

flowrate has been shown in a publication for a PBS based MB with 0.5% and 0.6% 

methyl cellulose (MC) in microfluidic chips with a channel width of 20 µm and 30 µm, 

resulting in the following relations for viscosity: 

 𝜂0.5%𝑀𝐶 = 179 ∙ (7.922 ∙
𝑄

𝑙3
)

−0.323

∙ (
𝜗

23.2
)

−0.866

 2.3 

for buffer containing 0.5% MC, and  

 𝜂0.6%𝑀𝐶 = 360 ∙ (8.093 ∙
𝑄

𝑙3
)

−0.366

∙ (
𝜗

23.2
)

−0.866

 2.4 

for buffer containing 0.6% MC 75. 
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For the experiments in this thesis, measurement buffer based on phosphate-buffered 

saline without magnesium or calcium (PBS−) and 0.5% and 0.6% MC were prepared. 

Furthermore, a measurement buffer based on PBS−, complemented with 10% Leibovitz 

medium (Thermo Fischer, Germany) and 0.6% methyl cellulose was prepared. The 

viscosity of each buffer was adjusted using a falling ball viscometer (Haake, Germany). 

 

2.2. Online parameters 

The main improvement RT-DC introduced for microfluidics-based assessment of cell 

mechanics is the capability to analyze images in real-time. To make this possible, image 

analysis has to be performed at least at the same rate as image acquisition of the 

camera. This requirement is met by a camera, operating at thousand frames per second 

and an image analysis pipeline, which requires approximately 1 ms to process one 

image. Real-time analysis allows to only save frames which actually contain interesting 

objects, while images of the empty channel or debris can be omitted. Additionally, the 

experimenter can observe measured quantities while running the experiment, and, 

most importantly for the project of this thesis, parameters calculated in real-time can be 

used to trigger sorting. Due to a direct streaming of the data to a hard disk drive, the 

duration of the experiment is practically only limited by sample volume. The image 

analysis pipeline is sketched in Figure 2.3.  

 

Figure 2.3 Online image processing pipeline 

For fast image processing, RT-DC uses an image processing pipeline, which consists of three steps: 

background subtraction, binarization and contour finding. Figure is adapted from 76. 

 

A rolling average of the last 100 images delivers a background image, which is 

subtracted from the current image. After smoothing and thresholding operations, the 

resulting binary image is used to perform a contour finding algorithm 69, which returns 
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the contour of the cell as indicated in Figure 2.3. The contour and the bright-field image 

are used to compute online parameters, but are also stored on hard disk to allow for 

ancillary offline analyses. The following list summarizes parameters that are computed 

in real-time. 

Area (𝐴ℎ𝑢𝑙𝑙 or 𝐴) 

The convex hull of the contour defines a cross-sectional area of the cell 𝐴ℎ𝑢𝑙𝑙, which is a 

parameter linked to cell size (see Figure 2.4). 

 

Length (𝐿𝑥) and height (𝐿𝑦) 

The bounding box is determined using the contour and allows to estimate the length 𝐿𝑥 

and height 𝐿𝑦 of the object (see Figure 2.4). 

 

Aspect ratio (𝛾) 

The aspect ratio is defined by the ratio of height 𝐿𝑦 and length 𝐿𝑥: 𝛾 =
𝐿𝑥

𝐿𝑦
. 

 

Circularity (𝐶) and deformation (𝐷) 

Circularity expresses how well a shape matches a perfect circle and is defined by the 

area of the convex hull 𝐴ℎ𝑢𝑙𝑙  and the corresponding perimeter ( 𝑃ℎ𝑢𝑙𝑙 ) using the 

equation 𝐶 =
2√𝜋𝐴ℎ𝑢𝑙𝑙

𝑃ℎ𝑢𝑙𝑙
. The convex hull is used since dents or protrusions would cause an 

increase of the perimeter while reducing the area, which would result in a strong 

decrease of the circularity value. For example, the cell in Figure 2.4 shows a deep dent in 

the upper left. Deformation (𝐷) is calculated as following: 𝐷 = 1 − 𝐶.  

 

Inertia Ratio (𝐼) 

The contour of an object describes how area is distributed in space. Contours of 

elongated objects contain more patches of area that are more distant from the 

centroid, which can be quantified by the second moment of area. The second moment 
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with respect to the x-direction is 𝐼𝑥𝑥 = ∬ 𝑦2𝑑𝑥 𝑑𝑦
𝐴

 and with respect to the y-

direction 𝐼𝑦𝑦 = ∬ 𝑥2𝑑𝑥 𝑑𝑦
𝐴

. When increasing the size of an object, both 𝐼𝑥𝑥 and 𝐼𝑦𝑦 will 

increase. Therefore, to get a measure of how deformed an object is, the inertia ratio 

𝐼 =  
𝐼𝑦𝑦

𝐼𝑥𝑥
  is calculated. In contrary to circularity, inertia ratio is not computed using the 

convex hull, but the original contour (red in Figure 2.4). 

 

Porosity (𝛺) 

Figure 2.4 shows a deep dent in the upper left part of the cell, causing a difference 

between the area of the convex hull and the area of the original contour. Porosity (Ω) 

quantifies this difference using Ω =
𝐴ℎ𝑢𝑙𝑙

𝐴𝑐𝑜𝑛𝑡𝑜𝑢𝑟
. Related terms for porosity are “Area ratio” 

which is a synonym, and “solidity” which is the inverse of porosity 𝑆 =
1

Ω
. 

 

x and y position (𝑐𝑥 and 𝑐𝑦) 

The contour allows to compute the centroid (𝑐𝑥, 𝑐𝑦), which is used to define the position 

of the cell. 

 

Brightness (𝐵) and standard deviation of brightness (𝐵𝑠𝑡𝑑) 

Simple texture and transparency properties are obtained by calculating the mean and 

the standard deviation of the grayscale values inside the cell (see Figure 2.4) which are 

denoted as 𝐵 and 𝐵𝑠𝑡𝑑, respectively. 
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Figure 2.4 Parameters derived from contour and bright-field image 

(A) Schematic shows grayscale values (pixels) of a recorded cell and the corresponding tracked contour. 

Centroid (𝑐), area (𝐴ℎ𝑢𝑙𝑙), as well as the bounding box are derived from the contour. The bounding box 

defines the length 𝐿𝑥 and height 𝐿𝑦of the cell. The grayscale values inside the contour are used to 

calculate mean and standard deviation of brightness.  

(B) By rotating the contour around an axis 𝑧 which is defined by the centroid and the flow direction, the 

volume of the cell can be estimated. 

 

2.3. Offline parameters 

The following list shows parameters that are not available in real-time, but can be 

computed after the experiment, using the stored contour and bright-field image. 

Volume (𝑉) 

By revolving the contour around the central axis  𝑧⃗⃗⃗ ( 𝑧⃗⃗⃗ is defined by the centroid of the 

cell and the flow direction as shown in Figure 2.4 B), the volume can be calculated under 

the assumption of rotational symmetry. In principle, this assumption would only be 

valid for cylindrical channels and not for channels with square cross-section, as used in 

RT-DC, but it was shown that the parabolic flow profile is a good assumption for cells 

that do not cover more than 90% of the channel width 77. By revolving the upper and 

lower half ( 𝑧⃗⃗⃗ is the dividing axis) of the contour around  𝑧⃗⃗⃗  individually, two volume 

estimations are obtained, which are averaged 78. Green`s theorem and the Gaussian 

divergence theorem allow to formulate the volume as a line integral and convert the 

expression into an equation accepting discrete Cartesian coordinates 79,80:  

 𝑉 =  
1

3
∮ 𝑥[𝑥𝑑𝑦 − 𝑦𝑑𝑥] =  

2𝜋

3
∫ (𝜌(𝑠)[𝜌(𝑠)𝑧′(𝑠) − 𝑧(𝑠)𝜌′(𝑠)]) 𝑑𝑠

1

0
𝐶𝑜𝑛𝑡𝑜𝑢𝑟

 2.5 

with 𝜌′(𝑠) = 𝑑𝜌(𝑠)/𝑑𝑠 and 𝑧′(𝑠) = 𝑑𝑧(𝑠)/𝑑𝑠 and 0 ≤ 𝑠 ≤ 1. 
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In the equation on the left-hand side, the contour is expressed in Cartesian coordinates, 

while on the right-hand side the distance from every contour point to the centroid 𝜌 and 

the coordinate along the central axis  𝑧⃗⃗⃗  is used. Primes in the equation denote 

derivatives. Because the contour is piecewise linear, derivatives are simply the 

differences between consecutive contour points. The application of this algorithm to 

RT-DC data has been published 81,82 and implemented into ShapeOut (courtesy of Paul 

Müller), the open source analysis software for RT-DC data 83. 

 

Elastic modulus (𝐸) 

The elastic modulus (𝐸) is a material parameter, which can be computed for RT-DC 

measurements, using an analytical model that leverages steady state hydrodynamics 

and linear elasticity theory and assuming that cells are fully elastic spheres flowing 

through a cylindrical channel 77. The validity of this approach is limited to small 

deformations (𝐷 < 0.02) since changes of the fluid flow around strongly deformed 

objects are not regarded by the model. This effect is considered by a numerical model, 

which validates the analytical model and is applicable also for higher deformation 

values 84. In this thesis, the elastic modulus will be abbreviated 𝐸𝑎𝑛𝑎 or 𝐸𝑛𝑢𝑚, to indicate 

if the analytical or numerical approach was used. Both approaches can be used to 

calculate the elastic modulus for given area and deformation values, but especially the 

numerical simulations require a lot of computational time. Therefore, a close-meshed 

lookup-table (LUT) was generated for both approaches, which can be used to quickly 

obtain 𝐸 for whole measurements. LUTs are computed only for a given flowrate 𝑄, 

channel width 𝑙 and viscosity 𝜂, and the scaling relation 𝐸′ =
𝑄′𝜂′𝑙3

𝑄𝜂𝑙′3 𝐸 allows to convert the 

LUT to different conditions 77. An exemplary use case of the lookup table and the scaling 

relation is shown in Figure 2.5. 

For a valid transformation to elastic modulus, certain boundary conditions regarding 

cell size should be met. Firstly, cells should cover between 30% and 90% of the channel 

width. For smaller sizes, a minute change in deformation causes a large change of the 

elastic modulus, which results in large errors. Cells larger than 90% of the channel width 
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could touch the channel wall, causing non-hydrodynamic forces, which are not 

considered by the models. Since cells are captured using a CMOS camera with a 

particular pixel size, even perfectly round objects appear pixelated and have a 𝐷 > 0 75. 

This offset in deformation depends on cell size and has to be considered when 

computing the elastic modulus 75. 

 

Figure 2.5 Lookup-table (LUT) 

Each location in the area vs. deformation space is mapped to a corresponding elastic modulus, which is 

indicated by a color code from black (low elastic modulus) to red (high elastic modulus). The shown LUT 

was obtained using the numerical approach 84. An exemplary measurement of the human breast 

epithelial cell line MCF10A is shown as scatterplot in area vs. deformation and also area vs. elastic 

modulus space (the measurement was performed in a 30 µm chip at a flowrate of 0.16 µl/s) 85. 

 

Principal inertia ratio and orientation (𝜑) 

Principal inertia ratio is derived from inertia ratio (section 2.2), and is rotation-invariant. 

To achieve rotation invariance, first, the orientation of the cell with respect to 𝑒𝑥 is 

computed by 86: 

 𝜑 =  
1

2
𝑎𝑟𝑐𝑡𝑎𝑛 (

2𝐼𝑥𝑦

−(𝐼𝑦𝑦 − 𝐼𝑥𝑥)
) 2.6 

with 𝐼𝑥𝑥 and 𝐼𝑦𝑦 as introduced in section 2.2 and the biaxial second moment of area 

 𝐼𝑥𝑦 = − ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦
𝐴

. 2.7 

Next, the contour which is given in Cartesian coordinates is translated into polar 

coordinates and rotated by – 𝜑  and subsequently translated back into Cartesian 
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coordinates to compute the inertia ratio as introduced in section 2.2. Principal inertia 

ratio was implemented into ShapeOut (courtesy of Paul Müller)83. 

 

Haralick texture features 

The average or the standard deviation of the gray scale values are very simple features 

describing the texture of an object. But when we try to describe the look of a cell we 

would use adjectives such as “blurry” and “glossy” or argue using the number of 

speckles. The Haralick texture features quantify such texture properties by leveraging 

the so-called co-occurrence matrix. An image with 𝑝 different grayscale values results in 

a co-occurrence matrix with 𝑝 × 𝑝 dimensions, where the matrix item at location (𝑖, 𝑗) 

shows how many pixels with the grayscale value 𝑖 are bordering on pixels with the 

grayscale value 𝑗. The Haralick features are 13 defined quantities obtained from this 

matrix 87. In this thesis the implementation of Haralick texture features from the Python 

package “mahotas” was used 88. 

 

Local binary pattern (LBP) 

Local binary patterns (LBPs) quantify local texture properties by comparing the 

intensities of each pixel with its surrounding pixels 89. First, the pixel 𝑖 is compared to 

the neighboring pixel 𝑗 on the top left, resulting in 0 if the pixel 𝑖 has a larger grayscale 

value than the neighbor 𝑗, or 1 otherwise. This procedure is repeated for all 8 neighbors 

of pixel 𝑖 by going clockwise. The resulting 8-digit binary number is then converted to a 

decimal number, the LBP value. Since there are 8 digits, there are 28 = 256 possible LBP 

values. This LBP value is then obtained for every pixel in the image. Lastly, a histogram, 

showing the frequency of LBP values is computed and finally used as feature vector. 

Therefore, there are in principle 256 values representing texture properties, but only 36 

of them are rotation invariant and used in practice. Since 3x3 pixel patches are used to 

compute LBP values, only very fine-grained image details are expressed. The LBP 

features are illumination independent, which could be of advantage for example when 
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comparing images from different RT-DC experiments. In this thesis the implementation 

of LBP from the Python package “mahotas” was used 88.  

 

Threshold adjacency statistics (TAS) 

The threshold adjacency statistics (TAS) are also measures of texture, which are 

obtained after binarization of the image by thresholding 17. In the binary image, the 

number of white pixels around each white pixel are counted. There are 9 possible 

outcomes (a white pixel can have 0,1,2,3,4,5,6,7 or 8 white neighboring pixels) and since 

the routine is carried out for each white pixel, a histogram is obtained, which shows 

how often a white pixel is surrounded by a certain number of white pixels. For example, 

when an image is almost entirely dark with only very few sparse white pixels, most 

likely, each white pixel would have 0 white neighboring pixels. The histogram is 

normalized by dividing it by the total number of white pixels in the binary image, 

resulting in 9 TAS feature values. The appearance of the binary image is dependent on 

the thresholding operation. Therefore, three different thresholding routines are 

applied, each resulting in 9 TAS feature values 90. Additionally, each binary image is also 

inverted (black becomes white and vice versa) and TAS feature values are retrieved, 

which results in a total of 2 ∙ 3 ∙ 9 = 54 TAS feature values. Since TAS are not illumination 

invariant, the input images were always normalized. Normalization was performed by 

multiplying each image with a factor, such that the resulting image has a background 

brightness (median brightness in the middle of the channel) of 100. In this thesis the 

implementation of parameter free TAS from the Python package “mahotas” was used 88. 

 

Background brightness (𝐵𝑏𝑎𝑐𝑘.𝑚𝑒𝑑𝑖𝑎𝑛 and 𝐵𝑏𝑎𝑐𝑘.𝑠𝑡𝑑) 

Since there is no automatic focus and illumination adjustment, the brightness of images 

might alter which affects the mean brightness of cells. For normalization, the 

background brightness levels can be used. Getting information about the background is 

straight forward since the captured images of RT-DC are usually much larger than the 

cells. The background is evaluated in the center of the channel at a location without cell. 
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I decided to use window size of 20 pixels height (=6.8 µm) and 40 pixels length 

(=13.6 µm) to determine the background properties. Since most of the cells travel in the 

middle of the channel, the average 𝑦-position of an experiment was used to place the 

window in the center of the channel. To avoid having a cell inside the window, the 𝑥-

position of the window was adjusted for each frame such that the window is located 

behind the cell. The grayscale values inside that window are then used to determine the 

median ( 𝐵𝑏𝑎𝑐𝑘.𝑚𝑒𝑑𝑖𝑎𝑛 ) and the standard deviation ( 𝐵𝑏𝑎𝑐𝑘.𝑠𝑡𝑑 ) of the background 

brightness.  

 

Normalized and maximum brightness (𝐵𝑛𝑜𝑟𝑚 and 𝐵𝑚𝑎𝑥) 

The median of the background intensity (𝐵𝑏𝑎𝑐𝑘.𝑚𝑒𝑑𝑖𝑎𝑛) should not change during an 

experiment (typically, focus and illumination are adjusted before an experiment and 

kept constant). Therefore, 𝐵𝐵𝑎𝑐𝑘.𝑀𝑒𝑑𝑖𝑎𝑛 which is the median of all 𝐵𝑏𝑎𝑐𝑘.𝑚𝑒𝑑𝑖𝑎𝑛 values is a 

good estimate to describe the illumination setting of an experiment and can be used to 

normalize the mean brightness value 𝐵 of each event using: 

 𝐵𝑛𝑜𝑟𝑚 = 𝐵 ∙
100

𝐵𝐵𝑎𝑐𝑘.𝑀𝑒𝑑𝑖𝑎𝑛
. 2.8 

The maximum brightness 𝐵𝑚𝑎𝑥 of an object was determined by sorting the grayscale 

values inside the contour and computing the median of the 10 brightest pixels (this is 

equal to the value of the 5th brightest pixel). This definition of the maximum is slightly 

more robust than just taking the maximum of all grayscale values, since the impact of 

single very bright pixels is smaller. Such bright pixels could appear due to noise, or 

when the contour includes regions of the bright halo which is typically situated around 

the cell (usually, the contour does not include the halo). 

 

Elliptical Fourier features (EFFs) 

The elliptical Fourier features allow a more detailed quantification of the shape of 

closed contours. Besides the elongation of tracked objects in RT-DC, certain contour 

properties, such as protrusions or bending curvatures could play an important role for 
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cell classification. EFFs have been used in several biological studies for example to 

analyze the shapes of blood cells, lamina or leaves 91–93.  

A closed contour 𝑀(𝑡) with  𝑡 = 1 … 𝑚 (𝑚  is the number of discrete contour points) can 

be described by a sum of N ellipses, resulting in the following approximations for 𝑥 and 

𝑦 coordinates of contour points 94,95: 

 𝑥(𝑡) = 𝐴0 + ∑[𝑎𝑛𝑐𝑜𝑠𝜙 + 𝑏𝑛𝑠𝑖𝑛𝜙]

N

𝑛=1

 2.9 

 𝑦(𝑡) = 𝐶0 + ∑[𝑐𝑛𝑐𝑜𝑠𝜙 + 𝑑𝑛𝑠𝑖𝑛𝜙]

N

𝑛=1

 2.10 

with =
2𝑛𝜋𝑡

𝑇
 , the constants 𝐴0, 𝐶0 and Fourier descriptors 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 and 𝑑𝑛. When 𝑁 → ∞, 

the constants become 𝐴0 =
1

𝑇
∫ 𝑥(𝑡)𝑑𝑡

𝑇

0
 and 𝐶0 =

1

𝑇
∫ 𝑦(𝑡)𝑑𝑡

𝑇

0
. Since the functions 𝑥(𝑡) and 

𝑦(𝑡) are piecewise linear, the Fourier coefficients are defined by the following equations 

94: 

 𝑎𝑛 =
𝑇

2𝑛2𝜋2
∑

Δ𝑥𝑖

Δ𝑡𝑖

[𝑐𝑜𝑠𝜙𝑖 − 𝑐𝑜𝑠𝜙𝑖−1]

m

𝑖=1

 2.11 

 𝑏𝑛 =
𝑇

2𝑛2𝜋2
∑

Δ𝑥𝑖

Δ𝑡𝑖

[𝑠𝑖𝑛𝜙𝑖 − 𝑠𝑖𝑛𝜙𝑖−1]

m

𝑖=1

 2.12 

 𝑐𝑛 =
𝑇

2𝑛2𝜋2
∑

Δ𝑦𝑖

Δ𝑡𝑖

[𝑐𝑜𝑠𝜙𝑖 − 𝑐𝑜𝑠𝜙𝑖−1]

m

𝑖=1

 2.13 

 𝑑𝑛 =
𝑇

2𝑛2𝜋2
∑

Δ𝑦𝑖

Δ𝑡𝑖

[𝑠𝑖𝑛𝜙𝑖 − 𝑠𝑖𝑛𝜙𝑖−1]

m

𝑖=1

 2.14 

with  𝜙𝑖 = 2𝑛𝜋𝑡𝑖/𝑇 , Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 , Δ𝑦𝑖 = 𝑦𝑖 − 𝑦𝑖−1 , Δ𝑡𝑖 = √Δ𝑥2 + Δ𝑦2 , 𝑡𝑖 = ∑ Δ𝑡𝑗
𝑖
𝑗=1  and 

T = 𝑡𝑚 = ∑ Δ𝑡𝑗
𝑚
𝑗=1 . These Fourier coefficients allow to describe and reconstruct contours 

with arbitrary precision, depending on N (see Figure 2.6 A). Higher N  results in less 

deviation from the original contour (see Figure 2.6 B). 



28 

 

 

Figure 2.6 Contour reconstruction using elliptical Fourier coefficients 

(A) Plots show the contour of a cell (black) from which the elliptical Fourier coefficients of the first N 

orders are computed.  Next, the contour is reconstructed from the coefficients (red). Allowing only one 

order results in an elliptical fit. By increasing N, the reconstructed contour gets closer to the original 

contour until even small deviations of single pixels are resolved. 

(B) Plot shows the mean squared error (MSE) which describes the difference between original and 

reconstructed contour. The error decreases the more orders N are used to encode the contour. 

 

To obtain rotation, scale and translation invariant elliptical Fourier features (EFFs), the 

coefficients 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 and 𝑑𝑛 are transformed by aligning the semi-major axis with the 𝑥-

axis and dividing the coefficients by the magnitude of the semi-major axis. In this thesis 

the coefficients for N = 10 orders were computed using the Python package PyEFD 96, 

resulting in a total of 40 EFFs (10 times 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 and 𝑑𝑛). 

 

2.4. Linear mixed models (LMM) 

Features from RT-DC datasets, for example those defined in sections 2.2 and 2.3 could 

be used as label-free markers to track the behavior of cells for example upon treatment 

with a specific drug or to compare different cell types. In many applications, a treatment 

only causes a small shift of the population, leading to the question if the change is 

significant or just a random fluctuation. Let’s consider experimental data for area (as 

defined in section 2.2) of two samples of human skeletal stem cells (SSC) and three 

samples of the human osteosarcoma cell line MG-63 as shown by boxplots in Figure 2.7 
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82,97. The task is to compare these cell types, which is interesting because MG-63 is often 

used as a model system for SSCs.  

 

Figure 2.7 Area of SSCs and MG-63 

Boxplot shows the cross-sectional area of a duplicate measurement of human skeletal stem cells (SSCs) 

and a triplicate measurement of the human osteosarcoma cell line MG-63, all measured using RT-DC in a 

30 µm wide channel and a flowrate of 0.16 µl/s. Data was published in 82,97. Boxes show the interquartile 

ranges (𝐼𝑄𝑅), which are defined by the 25th percentile (𝑄1) and the 75th percentile (𝑄3): 𝐼𝑄𝑅 = 𝑄3 − 𝑄1. 

White lines in the boxes show the medians. Whiskers represent the range of the data (lower bound: 

𝑄1 − 1.5 ∙ 𝐼𝑄𝑅, upper bound: 𝑄3 + 1.5 ∙ 𝐼𝑄𝑅. This representation is commonly used for boxplots, and will 

be applied for each following boxplot in this thesis. Figure is adapted from 82. 

 

To compare the two different cell types one could fit a linear model, which is defined by:  

 𝑌 = 𝑋𝛽 + 𝜀 2.15 

Here, the output variable 𝑌 (measured values) is fitted assuming a linear relationship to 

the effect size 𝛽 (also called fixed effect). The design matrix 𝑋 encodes the categorical 

variable “cell type” which is either “SSC” or “MG-63” in this example. Additionally, there is 

the error term  𝜀 , which accounts for all possible fluctuations using a Gaussian 

distribution. Figure 2.7 indicates variation in the mean levels across the biological 

replicates, which is expected for biological samples. For example, the median (white line 

in the boxplots) of the first MG-63 dataset is lower than of the second. In a linear 

model, 𝜀, would have to describe that.  

Linear mixed models (LMM) take these fluctuations into account by adding an additional 

term to the model: 

 𝑌 = 𝑋𝛽 + 𝑍𝑢 + 𝜀 2.16 

which is called random effect term (𝑍𝑢). In this term, systematic measurement errors 

(e.g. different cell confluency, slightly varying channel widths, viscosity, focus and 

illumination), which affect all replicates differently, can be explained. This essentially 

leads to a subdivision of the error into a systematic part which we can be explained (𝑍𝑢) 
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and some random error, which cannot be further explained (𝜀). The design matrix 𝑍 

describes, which data point corresponds to which replicate.  

In the terminology of LMMs, the variation in mean values of a given parameter across 

replicates of a given sample is named a “random intercept”. For example, there is a 

variation of the mean levels of SSCs (see Figure 2.7), and the random intercept term, 

which is the first part of the random effect term (𝑍𝑢) accounts for that.  

Furthermore, the difference between pairs of the same replicate number varies. For 

example, the difference between the mean of the 1st replicate of SSC and the 1st 

replicate of MG-63 is different than for the respective 2nd replicates. This second part of 

the random effect term is a so-called “random slope”. For better explanation of the 

concept of random slope let me show a second example. Let us assume, a drug against 

hypertension is tested on three patients. For each patient, the blood pressure is 

measured before and after taking the drug and the reduction of the blood pressure is 

determined. If the decrease of the blood pressure is different for each patient, the 

random slope is high. If the decrease of the blood pressure is similar for each patient, 

the random slope is low. 

The basic equation of an LMM showing all components allows a more comprehensive 

representation of an LMM with random intercept and random slope: 

 𝑌𝑖𝑗 = 𝛽0 + 𝑥𝑗𝛽1 + 𝑢0𝑖 + 𝑥𝑗𝑢1𝑖 + 𝜀𝑖𝑗 2.17 

In the light of the above example (shown in Figure 2.7), 𝑌𝑖𝑗 is the area of the 𝑖-th cell of 

cell type 𝑥𝑗 (cell types are categorical variables: SSC or MG-63). 𝛽0 is the fixed intercept 

and 𝛽1 is the fixed slope. The random intercept and random slope are expressed by 𝑢0𝑖 

and 𝑢1𝑖 , respectively, which are Gaussian distributions with a mean of zero and 

standard deviations, which express the variability of the means of one condition (e.g. 

MG-63) and the variability of the differences between two conditions (SSC and MG-63).  

The R 98 package “lme4” 99 was used to define an LMM as shown in equation 2.17 and to 

fit it to experimental data. In order to design a statistical test (based on a likelihood ratio 

test), another LMM which is lacking the fixed effect term was fitted as well (a so-called 

“null-model”). After fitting each model, the maximized likelihood values 𝐿𝑀𝑜𝑑𝑒𝑙 
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and 𝐿𝑁𝑢𝑙𝑙𝑀𝑜𝑑𝑒𝑙  are returned, which are employed to compute the likelihood ratio Λ =

𝐿𝑀𝑜𝑑𝑒𝑙/𝐿𝑁𝑢𝑙𝑙𝑀𝑜𝑑𝑒𝑙. This ratio expresses how much better a model fits the data if it 

assumes the presence of a fixed effect compared to a model without fixed effect. The 

corresponding p-value can be computed based on Wilks theorem, which states that 

−2log (Λ) approaches a 𝜒2 distribution for large sample sizes 100. The degrees of freedom 

associated to the chi-squared distribution is the difference in degrees of freedom of the 

compared models, which equals to one in this case, since the models only differ by the 

fixed effect. The resulting p-value allows evaluating if the null hypothesis “model and 

null-model are identical” is true. If the p-value is below a given significance level 

(typically chosen to be 0.05), the null hypothesis can be rejected, which in this example 

would mean that the area of SSCs and MG-63 cells are considered to be significantly 

different. 

The advantage of this statistical test is that it does not automatically return low p-values 

for very large sample sizes, since it takes the reproducibility of an effect across 

biological replicates into consideration. This is important for a meaningful statistical 

interpretation of data and discussed in further detail in section 3.2.2. The test was 

implemented as part of the work of this thesis. Moreover, the test was integrated into 

the analysis software ShapeOut 83 (courtesy of Paul Müller) and has already been used 

in several RT-DC related publications 13,15,22,23,85,97,101–106. 

 

2.5. Normality test using probability plots  

Several statistical tests such as the t-test are designed for data that follows a Gaussian 

distribution. To test data for normality, one of several normality tests can be employed. 

Here, a test based on probability plots is introduced. This test requires to first sort the 

measured 𝑛 data points in ascending order and to compute the quantiles 𝑚 according 

to Filliben’s estimate: 

 𝑚(𝑖) = 1 − 0.5
1

𝑛⁄ , for 𝑖 = 1 2.18 

 𝑚(𝑖) =
𝑖 − 0.3175

𝑛 + 0.635
, for 𝑖 = 2,3, … , 𝑛 − 1 

2.19 

 𝑚(𝑖) = 0.5
1

𝑛⁄ , for 𝑖 = 𝑛. 2.20 
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Next, the ordered data is plotted versus the quantile values, resulting in the so-called 

probability plot, which shows a linear relation if the data was normally distributed. This 

linearity can be quantified using the square of the Pearson coefficient of correlation 𝑅2: 

 𝑅2 =  (
1

𝑛𝜎𝑥𝜎𝑦
∑[(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)])

2

 2.21 

with the mean of the values 𝜇𝑥 , the mean of the quantiles 𝜇𝑦 and the respective 

standard deviations 𝜎𝑥 and 𝜎𝑦. 

 

2.6. Gaussian mixture model (GMM) and Bayesian information 

criterion (𝐵𝐼𝐶) 

Gaussian mixture models (GMMs) belong to the group of unsupervised machine 

learning algorithms. A GMM is applied with the aim to model an 𝑛 × 𝑘-dimensional 

dataset 𝑋 (𝑛-number of events, 𝑘-number of parameters) using a superposition of 𝐾 

Gaussian distributions 𝒩(𝝁𝒊, 𝚺𝒊) (with the 𝑘-dimesnional mean vector  𝝁𝒊 and a 𝑘 × 𝑘-

dimesnional covariance matrix 𝚺𝒊) 
107:  

 𝑋 ~ ∑ 𝑤𝑖𝒩(𝑋|𝝁𝒊, 𝚺𝒊)

𝐾

𝑖=1

. 2.22 

The contribution of each Gaussian 𝑖 is modulated by a scalar weight 𝑤𝑖. The probability 

density function of a multivariate Gaussian is defined by: 

 𝒩(𝑋|𝝁𝒊, 𝚺𝒊) = (2𝜋)−
𝑘
2|𝚺𝐢|

−
1
2 𝑒𝑥𝑝 (−

1

2
(𝑋 − 𝝁𝒊)

𝑇  𝚺𝐢 (𝑋 − 𝝁𝒊)). 2.23 

The expectation-maximation algorithm is an iterative optimization process and can be 

used to fit the GMM to a dataset and find the parameters 𝑤𝑖, 𝝁𝒊 and 𝚺𝒊 
108. In this thesis 

the Python implementation for GMM from the sklearn package 109 was used. The 

resulting probability distributions can for example be used to define borders of 

subpopulations (clustering) or to quantify subpopulations in a dataset using their mean 

and covariance.  
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If the number of subpopulations 𝐾 is not known, several models with different 𝐾 have 

to be fitted and compared. The performance of each model can be quantified using the 

Bayesian information criterion (𝐵𝐼𝐶), which should be minimized: 

 𝐵𝐼𝐶 =  −2 ln(𝐿) + 𝑡 𝑙𝑛(𝑛). 2.24 

 

The first term in equation 2.24 is dependent on 𝐿, the maximized value of the likelihood 

function 𝑝 

 𝑙𝑛 𝑝(𝑋|𝝁, 𝚺, 𝑤) =  ∑ 𝑙𝑛 {∑ 𝑤𝑖𝒩(𝑋𝑗|𝝁𝒊, 𝚺𝒊)

𝐾

𝑖=1

}

𝑛

𝑗=1

. 2.25 

Typically, increasing the number of Gaussians 𝐾 in a GMM will increase 𝐿 and the 

highest 𝐿 corresponds to a GMM which has as many Gaussians as data points (𝐾 = 𝑛). 

To avoid such overfitting, the second term in equation 2.24 introduces a penalization of 

the number of parameters 𝑡, which implies constraining 𝐾 in a GMM. 

 

2.7. Random forests 

Unlike GMM, random forest-based classification is a supervised machine learning 

technique which means the model is trained on labeled datasets. A random forest 

consists of several decision trees, which aim to predict the label, based on a chain of 

thresholds in multiple dimensions. Figure 2.8 exemplarily shows the sketch of a decision 

tree for a two-dimensional input. Training a decision tree implies finding optimal 

thresholds, which allow to correctly predict the majority of events in the training set. 

Since single decision trees tend to overfit quickly, several decision trees are trained 

using random subsets of the training data, hence the name random forest. For 

prediction, the input data is passed through each decision tree of the random forest, 

each returning a prediction. Class probabilities are computed based on the proportion 

of votes of the trees and classification is performed by taking the majority vote. Decision 

trees work by splitting up the data at a node using a certain feature and a threshold. A 

perfect feature would allow splitting up the entire dataset correctly into the existing 

classes. Less performant features only allow guiding a small portion of the data into the 
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correct classes. Before a split, the data is usually mixed (impure) and after the split as 

pure as possible. Impurity is quantified using the Gini impurity index: 

 𝐺 = 1 − ∑ 𝑝𝑖
2

𝑛𝑐

𝑖=1

 2.26 

with the number of classes 𝑛𝑐 and the fraction of events that belong to class 𝑖 𝑝𝑖 (𝑝𝑖 = 

number of events of class 𝑖 divided by the total number of events). If a feature 

separates the data well, it decreases the Gini impurity index: 

 𝛥𝐺 = 𝐺𝑝𝑎𝑟𝑒𝑛𝑡 − (𝐺𝑆𝑝𝑙𝑖𝑡1 + 𝐺𝑆𝑝𝑙𝑖𝑡2). 2.27 

Therefore, the 𝐺 can be used to quantify the importance of a feature for the overall 

classification performance. 

The bootstrap aggregation of decision trees used to create a random forest was shown 

to improve classification accuracy and robustness of the models. This is true not only 

for decision trees, but in general for any predictive model 110. In this thesis the Python 

implementation for random forest classifiers from the sklearn package 109 was used, 

which employs the Gini impurity index to quantify feature importance. 

 

Figure 2.8 Example of a decision tree 

Sketch of a decision tree, which takes two inputs to decide between two classes. Red lines indicate the 

decision process for the given example event. 

 

2.8. Confusion matrix 

Quantification of the performance of machine learning models is an essential part 

before choosing a final model. The method for performance quantification should be 

chosen depending on the application of the model. For example, a HIV-test should be 

tuned to result in more false positives (FP) instead of false negatives since the 

consequence of a wrongly detected HIV case (FP) only results in additional tests and 
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maybe unnecessary treatment, but the consequence of a false negative would mean 

that a sick patient would not be treated.  

Commonly, machine learning models are used to predict data into classes or give 

probabilities for certain classes. If probabilities are given, the prediction is performed 

using the maximum probability. For example, in a binary classification task, an event 

would be predicted to belong to class 1 of the probability for class 1 is larger than 50%. 

Such a prediction could either be correct (true positive - TP) or wrong (false positive - 

FP). A confusion matrix (CM) summarizes the prediction of several events and allows 

reading the number of true and false positives and negatives, respectively. Figure 2.9 A 

exemplarily shows the CM for a binary classification of 250 positive and 500 negative 

examples. Common quantities that are derived from the confusion matrix 

are accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
, sensitivity =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, specificity =

𝑇𝑁

𝑇𝑁+𝐹𝑃
 and precision =

𝑇𝑃

𝑇𝑃+𝐹𝑃
. In 

the example in Figure 2.9 A, these metrics would be: accuracy = 0.87, sensitivity = 0.8, 

specificity = 0.9, and precision = 0.8. The normalized confusion matrix is obtained by 

dividing each matrix element by the total number of events of the respective class (see 

Figure 2.9 B), which especially helps to visualize the performance of the model, if there 

are different numbers of events in each class. 

 

Figure 2.9 Confusion matrix and normalized confusion matrix 

(A) Sketch shows an exemplary CM for a binary classification into two classes: positive (Pos.) and negative 

(Neg.). The upper and lower row of the CM show the prediction of 250 positive events and 500 negative 

events, respectively. Common quantities that are derived from the confusion matrix are accuracy, 

sensitivity, specificity and precision. 

(B) Sketch shows the normalized CM, corresponding to the CM shown in (A). This representation is 

helpful, especially when the numbers of events for each class are not equal. Conditional coloring is 

added to visualize large and small values (white – small, dark blue – large) 

 



36 

 

2.9. Deep learning 

Average brightness, Haralick texture features, LBP and TAS (see 2.2 and 2.3) are only a 

selection of image features and in principle infinitely many features could be computed. 

Some features might be better suited than others for a given classification task and the 

discovery or design of suitable features is a challenging task (often called ‘feature 

engineering’). Deep learning is a category of machine learning methods which 

automatize feature learning using artificial neural networks. Since these methods allow 

computers to learn suitable actions to perform a given task, the term “artificial 

intelligence” is also frequently used 111. Artificial neural networks are loosely inspired by 

the functionality of brain-neurons and were first suggested in 1943 112, but only became 

popular in 2012 after a neural network substantially outperformed all other machine 

learning techniques in the large scale image classification challenge 113. Beside 

computer vision, which is most relevant for this thesis, deep learning is applicable in 

many fields for example natural language processing, stock price prediction or speech 

recognition.  

A general characteristic of neural networks is that they process the input information in 

subsequent (sometimes interconnected) layers. The first layer of a network contains the 

input information (input layer). Next, the information is passed to the next layers which 

are called hidden layers. Hidden layers perform particular operations on the input data. 

The last layer is called output layer (see Figure 2.10 A). A selection of network types and 

the corresponding layers operations are introduced in the following. 

 

Multilayer perceptron 

Multilayer perceptrons (MLPs) are a kind of neural network which consists of a number 

of stacked layers with nodes (see Figure 2.10 A). The nodes of the first layer contain the 

input values 𝑥, which could be the single pixels of an image. For a 32x32 pixel image this 

would result in 1024 input nodes. Each node is then connected to all the nodes in the 

next layer, which is called a hidden layer ℎ. In the example of 1024 input values, each 

node in the first hidden layer is defined by 1024 weights one bias and an activation 

function (see Table 1 and Figure 2.10 B). Let the matrix 𝑊(1) represent the weights of all 
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nodes, 𝑏(1) all biases and 𝑠 the activation function of the first hidden layer. Then, the 

operation, performed by the first hidden layer can be expressed in matrix notation:  

 ℎ(𝑥) =  𝑠(𝑏(1) + 𝑊(1)𝑥). 2.28 

The weights allow each node of ℎ to give more or less “attention” to specific input values 

(pixels). In each node of ℎ, the weighted input and the bias are added together and the 

resulting sum is passed through an activation function, returning the final score of this 

node. The ensemble of nodes in the first hidden layer contains combinations of 

contributions of the pixels, which can be of a nonlinear fashion because of the 

activation function. In the simplest possible form, the MLP has only one hidden layer. 

Then, ℎ(𝑥) is connected to the nodes in the output layer by another weight matrix 𝑊(2), 

bias 𝑏(2) and activation function 𝐺. The full MLP can be written in matrix notation: 

 𝑓(𝑥) =  𝐺 (𝑏(2) + 𝑊(2) (𝑠(𝑏(1) + 𝑊(1)𝑥))). 2.29 

In an MLP, each node of a layer is connected to all nodes of the preceding layer. This 

kind of fully connecting layer is also called “dense layer”. Nowadays, neural nets typically 

contain a cascade of multiple hidden layers, which allows an abstract representation of 

the input data. While neural nets are called “deep” when they have many layers, the 

“width” of a network refers to the number of nodes in each layer. If the architecture has 

no hidden layer, the input nodes are directly linked to the output nodes through 

weights. Such a model is just called perceptron 114. When the final output of a 

perceptron is modulated by a sigmoid activation function (see Table 1 and Figure 2.10 

B), the model is identical to a logistic regression model. 

Without such modulation, even an MLP with hundreds of hidden layer would only be 

able to fit linear functions. To allow deep neural nets to fit non-linear functions, so-

called activation functions are used, which are typically applied to modulate the output 

of each layer. Commonly used activation functions are the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, 𝑡𝑎𝑛ℎ, rectified linear 

unit (𝑅𝑒𝐿𝑈) and the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function (see Table 1 and Figure 2.10 B). 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 and 𝑡𝑎𝑛ℎ 

work like switches between two states (0,1 for 𝑠𝑖𝑔𝑚𝑜𝑖𝑑  and -1,1 for 𝑡𝑎𝑛ℎ ) and a 

generalization to 𝑘 states is given by the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function: 
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Name Function Eq. nr. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑦 = 1/(1 + 𝑒−𝑥) 2.30 

𝑡𝑎𝑛ℎ 𝑦 = tanh(𝑥) =
2

1 + 𝑒−2𝑥
− 1 2.31 

𝑅𝑒𝐿𝑈 𝑦 = 𝑚𝑎𝑥(0, 𝑥) 2.32 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑦 =
exp (𝑥𝑖)

∑ exp (𝑥𝑖)𝑘
𝑗=0

 𝑓𝑜𝑟 𝑖 = 0,1, … 𝑘 2.33 

Table 1 Activation functions 

 

Initially, the model parameters are set to random values and the error of the model is 

high. The error is quantified by a so-called “cost” or “loss” function such as the mean 

squared error: 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖̂ − 𝑌𝑖)

2𝑛
𝑖=0 , where 𝑌𝑖̂ are the predictions and 𝑌𝑖 the desired 

values. Another loss function is the cross-entropy (also called “log-loss”): 𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =

− ∑ 𝑌̂𝑜,𝑐
𝑀
𝑐=1 log (𝑝𝑜,𝑐), where 𝑀 is the number of classes, 𝑌̂𝑜,𝑐 is a binary indicator showing if 

the class label 𝑐  is the correct classification for the observation 𝑜  and 𝑝𝑜,𝑐  is the 

corresponding probability, predicted by the model. 

By computing the gradient of the loss with respect to each parameter of the model, it is 

possible to calculate how the parameters need to be changed in order to decrease the 

loss. This routine allows to iteratively optimize the model parameters and is called 

gradient descent. For gradient descent, the entire training dataset is used to compute 

the gradient for one parameter update, which is not feasible for large datasets. A 

solution is to use random batches of the training dataset to perform parameter 

updates. This method is called stochastic gradient descent (SGD). 

 

Dropout layer 

Due to the high complexity and large number of parameters of deep neural networks, 

overfitting becomes an issue. Overfitting means that models learn to perfectly predict 

the training data but fail to generalize to new data. Dropout is a regularization method 

which can be applied to prevent overfitting. In a dropout layer, a defined number of 

nodes of a layer is randomly switched off during training (see Figure 2.10 C), which 
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essentially creates a different, less complex model in each training iteration 115. 

Currently, dropout is perhaps the most used regularization technique in deep learning.  

 

Figure 2.10 Multilayer perceptron, activation functions and dropout 

(A) Sketch of a multilayer perceptron with one hidden layer. Values of the input layer are altered by a set 

of weights (indicated by lines) and biases. In the nodes (represented by circles), the altered values of all 

nodes of the preceding layer in the network are added up and modulated by an activation function. 

(B) Examples of popular activation functions. 

(C) Sketch showing an MLP, where the hidden layer is regularized by a dropout of 50% (𝑝 = 0.5). 

 

Batch normalization layer 

The batch normalization layer performs a normalization of the activations of the 

preceding hidden layer, which avoids that a few activations are much larger than others 

116. A domination of single activations would strongly determine the state of succeeding 

layers and cause instability of the network. Therefore, batch normalization helps to 

speed up the training process and also tends to regularize the network (prevents 

overfitting). 

 

Convolutional layer 

One of the most important developments of deep learning during the last few years is 

the convolutional layer, which gives the name for a class of neural nets called 

convolutional neural nets (CNNs). While in an MLP, every node of one layer is connected 

to every node in the next layer (“dense layer”), in a convolutional layer, so-called 

convolutional filters are used, which restrict the connection of nodes to a defined 

neighborhood 117,118. This restriction is very helpful to learn representations of 

structured data such as images, sound and text. The principle of a convolutional layer is 
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that convolutional filters scan over the input image and a dot product is computed at 

every position using the image patch at this position and the weights of the filter as 

exemplarily shown in Figure 2.11. During SGD, these weights (values in the 

convolutional filters) are learned. For images, the filters in the first convolutional layer 

usually learn to detect edges 119 as shown in Figure 2.11 A and B. By performing another 

convolution on the resulting feature maps, more complex features (see Figure 2.11 B) 

can be described and modern CNNs often consist of several or even thousands of 

succeeding convolutional layers. The first popular CNN contained three convolutional 

layers and two dense layers and attracted attention because of its performance in 

character recognition (“LeNet-5”) 117. In recent years, the most widely used network 

architectures were often introduced during the annual “Large Scale Visual Recognition 

Competition” (ILSVRC). In 2015 a novel network architecture which introduced residual 

blocks (hence named “ResNet”) won this competition. In residual blocks, feature maps 

resulting from a convolutional layer are merged with data from an earlier layer (see 

Figure 2.11 C). 

 

Maxpooling layer 

Maxpooling is a subsampling operation in which a window of defined size is moved over 

the input image and at each position, only the maximum value within the window is 

kept. Figure 2.11 A shows maxpooling using a window size of 2x2 which reduces the 

number of pixels by a factor of four. While subsampling reduces the resolution, it is still 

heavily used in practice since it improves translation invariance and reduces the 

computational cost of the model. 
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Figure 2.11 Convolution, maxpooling, feature maps, and residual block 

(A) Exemplary calculation of a convolution using a 5x5 pixel input image and a 2x2 convolutional filter. 

The input image shows the number seven and the example convolutional filter changes the input image 

such that horizontal lines are highlighted in the feature map. This feature is still highlighted after a 

subsequent maxpooling operation. An exemplary computation of a convolution for a region in the input 

image (indicated by black rectangle and blue numbers) with the convolutional filter (yellow numbers) is 

shown. 

(B) Visualization of feature maps of a trained CNN with multiple convolutional layers. The first 

convolutional layer captures simple image characteristics such as edges. Filters of subsequent layers 

capture increasingly complex features. Figure is adapted from 119. 

(C) Principle of a residual block. The input data or data from an earlier layer is added to the result of a 

convolutional layer. 

 

Generative adversarial networks (GANs): Cycle-GAN 

Well trained deep neural networks should have learned representations of the data, 

allowing the network to correctly predict new data, which might deviate from the 

training data. In other words, the network should learn the basic nature of the input 

data. From here, one could imagine that these learned latent representations could be 

used to generate images, by basically inverting the neural net, such that data is inserted 

in the former output layer and the result is shown in the former input layer. The 

problem is that this is a one-to-many-mapping since different inputs to the original 

neural net could produce the same output. Hence, there is no close-formed expression 

for inverting a neural net. 

GANs approach the issue of data generation by training two models. On the one hand, a 

model 𝐺 is trained to generate realistic looking images (“generator”) and on the other 

hand, a second model 𝐷  is trained to distinguish real and generated images 

(“discriminator”) (see Figure 2.12 A). In each training iteration both models are optimized 

individually to get better at generating realistic images and detecting generated images, 

respectively. The objective is to find an equilibrium (Nash equilibrium). GANs were 

introduced in 2014, showing for example the generation of images of human faces 120, 
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using multilayer perceptrons for 𝐷 and 𝐺, but the image quality was relatively low and 

the appearance partially unrealistic. The limited quality of the results arose from the 

problem of minimizing the loss of two models simultaneously, which can for example 

result in generators that do not learn to generate a distribution of images but only a 

given number of different images (mode collapse). Similarly, a generator can learn to 

generate images that are identical to images of the training set. Major improvements 

were shown by the Wasserstein GAN 121,122. The basic principle of GANs is shown in 

Figure 2.12 A. 

A related task in this domain is image to image translation for example to change the 

style of an image. Datasets that provide pairs of images for both domains would allow 

to learn the mapping between the domains (for example photograph to painting or 

sharp image to image with Bokeh-effect), but such datasets of paired images are rare 

and often difficult or impossible to generate. This issue is addressed by Cycle GAN 

which uses two generators, one generator 𝐺 which translates images from domain 𝑋 to 

domain 𝑌 and a generator 𝐹 for mapping from 𝑌 back to 𝑋 123 (see Figure 2.12 B). The 

results of generator 𝐺 and 𝐹 are fed into discriminator 𝐷𝑌  and 𝐷𝑋 , respectively. The 

discriminator 𝐷𝑌 promotes 𝐺 to return images that look like images in domain 𝑌 and the 

other way around for 𝐷𝑋 and 𝐹. Additionally, a cycle consistency loss is introduced to 

ensure that mapping an image 𝐼 from 𝑋 to 𝑌 using 𝐺 and then mapping this image back 

using 𝐹, results in an image that is very similar to the initial image: 𝐼 ≈ 𝐹(𝐺(𝐼)) and vice 

versa 𝐼 ≈ 𝐺(𝐹(𝐼)). In the original paper the generators are neural nets with several 

convolutional layers and residual blocks. The discriminators are neural nets with four 

convolutional layers. This model architecture allowed the authors to create stunning 

results for a style transfer in images for example a translation of photographs to 

paintings with styles of different popular artists such as Monet and van Gogh. 
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Figure 2.12 Generative adversarial networks (GANs) and principle of Cycle-GAN 

(A) Sketch of the basic principle of generative adversarial networks. Usually, random noise is fed into a 

generator, which is a neural net, translating the input to images that look similar to real images. Another 

neural net takes generated (fake) images and real images and learns to distinguish them. Both neural 

nets are trained in adversarial fashion such that the performance of both increases from training 

iteration to training iteration. 

(B) Sketch of the principle of Cycle-GAN. A generator 𝐺 translates images 𝐼 of domain 𝑋 (e.g. horses) to 

domain 𝑌 (e.g. zebras). A discriminator 𝐷𝑌 learns to discriminate real and generated images in domain 𝑌, 

promoting  𝐺 to improve in performance, i.e. to get better at creating images that look like real images 

of 𝑌. Additionally, generated images 𝐺(𝐼) are translated back to domain 𝑋 by generator 𝐹, which allows to 

formulate a cycle consistency loss supporting that 𝐼 ≈ 𝐹(𝐺(𝐼)). Equivalently, 𝐹 is trained adversarial to a 

discriminator 𝐷𝑋 using the respective cycle consistency 𝐼 ≈ 𝐺(𝐹(𝐼)) (not shown in sketch). Images of 

horse, zebra, and generated zebra were taken from 123. 

 

For better illustration, the principle will be explained using the example, where 

domain 𝑋 are images of cells that were captured in sorting chip A, which results in a 

specific appearance of cells because of unique image distortion (see section 3.3.5, 

Figure 3.17) by the lithium niobate substrate. Equivalently, domain 𝑌 is defined by 

images of cells in sorting chip B with different image distortion. Since it is not possible to 

measure the same cell in both chips, we are dealing with an unpaired dataset. Hence, 

the Cycle-GAN algorithm can be used to fit a generator 𝐺, which transforms images 

from the phenotype of sorting chip A to the phenotype of sorting chip B. Similarly, the 

opposite direction can be performed using the generator 𝐹. Such image augmentations 

could allow to artificially increase the size of the dataset, which is especially of interest 

when training neural nets.  

 

2.10. Preparation of retina samples 

Rod photoreceptor cells were isolated from pups of the mouse line Nrl-GFP at the 

following maturation stages: embryonic day (E) 15.5 and postnatal days (P) 4, 10 and 20. 
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To retrieve retina cells at embryonic stage E15.5, the females were continuously 

checked for a vaginal plug. When a vaginal plug was found, the respective female was 

transferred to an individual cage and that day was counted as embryonic day (E) 0.5. At 

E15.5, the females were euthanized using cervical dislocation. Their abdomen was 

cleaned with 70% ethanol (vol/vol) and the embryos were taken out using scissors. After 

this step, the preparation is identical for E15.5, P04, P10 and P20. Following dissection of 

the eyes, the retinas were isolated, transferred to a Papain solution (Worthington 

Biochemical Corporation, USA) and incubated for 35 minutes at 37˚C to dissociate the 

retinas into single cells as described previously 2. After dissociation, cells were 

centrifuged for 5 minutes at 300 g and re-suspended in in a particular buffer suitable 

for the prospective measurement technique. For FAC-sorting, cells were re-suspended 

in FACS buffer (2mM EDTA and 1% fetal calf serum (FCS) in PBS) and passed through a 

40 µm Nylon cell strainer (BD Biosciences, USA). For RT-DC and RT-FDC measurements 

the cells were re-suspended in a measurement buffer based on PBS complemented 

with 0.5% methyl cellulose after filtering using a 40 µm Nylon cell strainer. For SAW-

sorting experiments, the cells were re-suspended in a measurement buffer based on 

PBS, complemented with 10% Leibovitz medium (Thermo Fischer, Germany), 0.6% 

methyl cellulose and 0.01 mg/ml DNase (Invitrogen, USA). (Without DNAse, cell-clumps 

appear after approximately one hour. Such cell clumps would congest the filters in the 

sorting chip or could accidentally flow into the target outlet during a sorting 

experiment.) 

 

2.11. Preparation of blood samples 

10 ml venous whole blood was drawn from healthy donors after informed consent 

(ethical approval EK89032013, granted by the ethics committee of the Technische 

Universität Dresden) into sodium-citrate tubes (S-Monovette® 10ml 9NC, Sarstedt, 

Germany). After adding 2.5ml of dextran solution (6% dextran (Dextran T500, 

Pharmacosmos A/S, Denmark) solved in Sodium chloride (0.9% Sodium Chloride 

Irrigation, Baxter Healthcare, Switzerland)), the sample was gently mixed and incubated 

at room temperature for 30 min allowing red blood cells (RBCs) to sediment. The 
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supernatant was moved to a new falcon tube and centrifuged at 900 rpm (≙120g) for 10 

min (Universal 30RF, Hettich, Switzerland). After removal of supernatant, the pellet was 

resuspended in measurement buffer (MB) for RT-DC. 

 

2.12. Staining of neutrophils and monocytes 

Approximately 50,000 cells, (suspended in MB) were transferred into a 2 ml Eppendorf-

tube and centrifuged at 3500 rpm (≙822g) for 5min (Mini Spin, Eppendorf, Germany). 

The pellet was resuspended in 40 µl of supernatant. Next, 1 µl of CD66 conjugated to PE 

(PE anti-human CD66a/c/e, Biolegend, USA) and 2 µl of CD14 conjugated to APC (Anti-

Human CD14, Invitrogen, USA) were added. Sufficient distribution of staining molecules 

despite the viscous buffer was achieved by pipetting the sample up and down 10 times.  

The sample was incubated for 25 min at 25 °C in a block thermomixer (Thermomixer, 

Eppendorf, Germany) using 600 rpm. 
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3. Results 

In RT-DC, bright-field images of cells are captured by a high-speed camera and 

parameters such as deformation and cell size are determined from the tracked contour. 

This chapter first assesses universal properties of such parameters. Next, the measured 

parameters of samples of retina cells at different maturation stages are compared. 

Knowledge about universal properties of parameters is applied to choose certain 

modeling approaches and statistical tests.  

In section 3.3, multiple supervised machine learning techniques are employed to 

develop methods for the identification of photoreceptors in mixed retina samples. First, 

a classification algorithm is optimized to provide the highest classification accuracy 

possible. Next, an algorithm is optimized to deliver good classification accuracy at 

minimal computational time such that the algorithm could be applied for real-time 

analysis and sorting. The different algorithms are then compared and software is 

introduced, which eases the access to those methods and allows to quickly apply them 

for new datasets. Finally, in section 3.5, the developed methods and software are 

leveraged to perform sorting of rod photoreceptors from retina and of neutrophils from 

human blood. 

 

3.1. Meta-analysis of RT-DC data 

A multitude of label-free features is available in RT-DC. Some features are determined in 

real-time but other features which require more computational power can be calculated 

after the measurement. Ideally, all parameters would be orthogonal, meaning; they 

describe non-correlated information to avoid redundancy. In the set of features 

described in 2.2 and 2.3, this is clearly not the case as for example area and volume 

both express the concept “cell size”. When analyzing a single measurement, appearing 

correlations could originate from an artifact or a unique biological property. To discover 

the general nature of features as well as general trends and effects, it requires a large 

number of measurements of different cells-types. In order to do that, I ran a meta-

analysis using the existing data from data from 21,000 experiments which were 
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acquired by multiple users (members of Guck-lab and collaboration partners). The data 

was captured over a time range of approximately two years, multiple flowrates were 

used and many different cell types were measured. Table 2 shows an overview of the 

number of experiments and the number of measured events that were captured in 10, 

15, 20, 30, 40 µm channels or in the reservoir. Especially when analyzing deformation, it 

is important to remove doublets, badly tracked cells, and cells that have a very irregular 

shape. For this purpose, typically porosity is used and all cells with Ω > 1.05, or Ω > 1.15 

are removed. Table 2 shows the number of events remaining after applying each filter. 

For each case, there are thousands of experiments and several millions of events 

available. 

Region 
Nr. of 

experiments 

Nr. events 

(total) in mio. 

Nr. events 

(Ω≤1.05) in mio. 

Nr. events 

(Ω≤1.15) in mio. 

20 µm channel 10066 48.2 25.7 45.7 

30 µm channel 6541 23.7 13.7 22.3 

10, 15 and 

40 µm channel 
1322 10.7 5.4 10.2 

Reservoir 3071 11.1 6.9 10.4 
Table 2 Data leveraged for meta-analysis 

 

3.1.1. Correlations of area and volume 

Area, volume and deformation are features that originate from calculations based on 

the tracked contour. The dependency of deformation on cell size has been described by 

analytical and simulation approaches 75,77,84. In brief, larger cells deform more in the 

channel as they are exposed to larger shear and normal forces 75,77,84. To visualize this 

effect, measurements of human neutrophils are displayed in Figure 3.1 A using 

scatterplot-contours, which show a slight “tilt”, and align well with the iso-elasticity lines 

77 (regions of equal elastic modulus according to the analytical model, depicted as gray 

lines in Figure 3.1 A). Scatterplot-contours are obtained by computing the event-density 

in a scatterplot and highlighting regions that refer to 95% (solid line) and 50% (dashed 

line) of the maximum density. When comparing the scatterplot-contours from 

measurements of different flowrates, there is a shift towards larger area for higher 

flowrates. This effect could occur because more deformed objects cover a larger area 
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when being projected into two dimensions, as illustrated in Figure 3.1 B. When 

approximating the shape of a deformed cell as an ellipsoid, the corresponding volume 

is: 

 𝑉 =
4

3
𝜋𝑎𝑏𝑐. 3.1 

This equation can be rearranged to 

 
3𝑉

4𝑐
= 𝜋𝑎𝑏 = 𝐴. 3.2 

Equation 3.2 shows that the projected area 𝐴 depends on the height (𝑐) of the ellipsoid, 

allowing to construct ellipsoids of identical volume, but different projected 𝐴. As the 

height of cells in RT-DC is affected due to the channel height and hydrodynamic forces, 

𝐴 might not be the optimal measure for cell size. When using volume (𝑉) instead of area, 

the shift of the scatterplot-contours (for different flowrates) is reduced as shown in 

Figure 3.1 C. Also, the scatterplot-contours appear to have less “tilt”, indicating lower 

correlation of volume and deformation. To quantify correlation, the Pearson correlation 

coefficient 𝑅 (see Materials and Methods 2.5) for area vs. deformation (𝐴 vs. 𝐷)  and 

volume vs. deformation ( 𝑉  vs. 𝐷 ) was computed for all experiments that were 

performed in the channel region (17929 experiments) and displayed in a boxplot (see 

Figure 3.1 D) (only events with Ω≤1.05 are used). The boxplots in Figure 3.1 D show an 

overall lower correlation for 𝑉 vs. 𝐷, as compared to 𝐴 vs. 𝐷, indicating that volume is 

less affected by deformation. 

 

3.1.2. Correlations of deformation and inertia ratio 

A measure that is frequently used in context of RT-DC is deformation (𝐷, see section 

2.2). 𝐷 is calculated using the perimeter and area of the convex hull of a tracked object. 

The convex hull is chosen since protrusions or dents in the contour would cause a large 

increase of 𝐷. To exclude objects from the analysis, which are badly tracked or have a 

very irregular shape, typically, the porosity (Ω) is used and objects with Ω > 1.05 are 

omitted from the measurement. After cleaning the data using this filter, there is still a 

positive correlation  𝑅  between deformation and porosity ( 𝑅(𝐷 𝑣𝑠. Ω) ) for many 

measurements, as shown in Figure 3.1 E. The median of 𝑅(𝐷 𝑣𝑠. Ω)  is approximately 
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0.28. This indicates that 𝐷 tends to be larger for contours with protrusions or dents, 

despite using the convex hull for computing 𝐷. 

An alternative parameter for 𝐷 is inertia ratio (𝐼), which is computed using the raw 

contour. With a median correlation of 0.18, the correlation between inertia ratio and 

porosity 𝑅(𝐼 𝑣𝑠. Ω) is lower as compared to 𝑅(𝐷 𝑣𝑠. Ω) (see Figure 3.1 E). Hence, inertia 

ratio is more robust to quantify contours with irregular shapes.  

Similar to volume, 𝐼 is not invariant to rotation, which requires the user to manually 

align the channel axis to 𝑒𝑥⃗⃗⃗⃗⃗ before an experiment, to obtain reproducible results. 

Alternatively, the principal inertia ratio (𝐼𝑝) could be computed, which is invariant to 

rotation, but requires more computational power. As indicated by the rightmost box in 

Figure 3.1 E, 𝑅(𝐼𝑝 𝑣𝑠. Ω) is very similar to 𝑅(𝐼 𝑣𝑠. Ω) (median of 𝑅(𝐼𝑝 𝑣𝑠. Ω) = 0.19). 
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Figure 3.1 Correlations of area vs. volume and deformation vs. inertia ratio  

(A) Plot shows RT-DC measurements of purified human neutrophils at different flowrates in a 20 µm 

channel. For better comparison between measurements, the density of scatter-dots was computed and 

scatterplot-contours show regions of 95% (solid line) and 50% (dashed line) of the maximum density. 

(B) Schematic explanation how deformation affects area. Both ellipsoids (black) have the same volume, 

but the projected area (red) is different. 

(C) Same measurements as in (A), but represented using 𝐷 and V. 

(D) Boxplots summarize the Pearson correlation coefficients of 𝐴 𝑣𝑠. 𝐷 and 𝑉 𝑣𝑠. 𝐷, obtained from 17,929 

experiments (only experiments where cells are captured in the channel and events with Ω≤1.05 were 

used). Boxplot shows median, interquartile range and range of data, as introduced in Figure 2.7. 

(E) Boxplots summarize the Pearson correlation coefficients of 𝐷 𝑣𝑠. Ω, 𝐼 𝑣𝑠. Ω, and 𝐼𝑝 𝑣𝑠. Ω obtained from 

17,929 experiments. There is trend, that inertia ratio is less affected by Ω, as compared to deformation. 

Boxplot shows median, interquartile range and range of data, as introduced in Figure 2.7. 

 

3.1.3. Further screening of correlations 

The previous section presented correlations of a couple of chosen parameters which 

are of special interest since they are employed in almost every publication that uses 

RT-DC. To pursue a more unbiased search for correlated features, the correlation 

matrix of the following features is determined: 𝐴, 𝑉, 𝐿𝑥, 𝐿𝑦, 𝛾, 𝐷, 𝐸𝑎𝑛𝑎, 𝐸𝑛𝑢𝑚, 𝐼, 𝐼𝑝, 𝜑, Ω,  𝑐𝑥, 

𝑐𝑦, 𝐵,  𝐵𝑚𝑎𝑥, 𝐵𝑆𝑡𝑑 (for abbreviations and explanation how features are computed see 

sections 2.2 and 2.3). For a set of two given features, the correlation coefficient was 

determined for all measurements that were performed in the channel region. 
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Subsequently, the median of the resulting values was determined. This procedure was 

repeated for each possible pairing of features, resulting in the correlation matrix, 

displayed in Figure 3.2 A. The shown correlation matrix reproduces aforementioned 

(see section 3.1.1 and 3.1.2) insights: 𝑅(𝐴 𝑣𝑠. 𝐷) > 𝑅(𝑉 𝑣𝑠. 𝐷) (indicated by magenta 

rectangle) and 𝑅(𝐷 𝑣𝑠. Ω) > 𝑅(𝐼 𝑣𝑠. Ω) (indicated by blue rectangle). Furthermore, a green 

rectangle in Figure 3.2 A highlights an astonishingly high correlation of all features 

describing cell size (𝐴, 𝑉, 𝐿𝑥 , 𝐿𝑦) with features related to transparency (𝐵, 𝐵𝑚𝑎𝑥). For each 

matrix-element within the green rectangle, the correlation is positive, meaning large 

cells tend to be more transparent. To obtain a better understanding of this 

phenomenon, the underlying values of 𝑅(𝐴 𝑣𝑠. 𝐵) from all measurements that were 

performed in the channel region and that have more than 100 events (in total 16,330 

individual experiments) are plotted as a histogram in Figure 3.2 B (green).  For highly 

negative (𝑅 ≈ −1) and positive (𝑅 ≈ 1) correlations, I only found measurements of beads 

and droplets, respectively (see I and II in Figure 3.2 B). To focus on data of biological 

cells, all experiments for beads and (silicone) droplets were removed and the remaining 

values (from 15,116 experiments) are visualized as a histogram in Figure 3.2 B (cyan). 

This histogram still shows a positive correlation for area and brightness for the majority 

of experiments, indicating that this could be a general property of cells. 
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Figure 3.2 Correlation Matrix 

(A) Confusion matrix shows the medians of the correlation coefficients from 16,330 experiments. The 

magenta rectangle indicates an elevated correlation of 𝐴 𝑣𝑠. 𝐷 and 𝑉 𝑣𝑠. 𝐷. The blue rectangle highlights a 

slightly elevated correlation of 𝐷 𝑣𝑠. Ω, 𝐼 𝑣𝑠. Ω, and 𝐼𝑝 𝑣𝑠. Ω (discussed in 3.1.2). The green rectangle 

highlights an elevated correlation of parameters describing cell size with parameters describing 

transparency (brightness). The correlation matrix shows Pearson correlation coefficients which range 

from -1 (perfect negative linear correlation) to 1 (perfect positive linear correlation). 

(B) Histogram shows the Pearson correlation coefficient for area vs. brightness of all 16,330 experiments 

(green). I and II indicate small peaks, which are caused by measurements of oil droplets and beads, 

respectively. When removing all experiments which contain the keywords “oil”, “drop”, and “bead”, 15,116 

experiments remain, and the corresponding Pearson correlations are plotted as histogram (cyan). 

 

3.1.4. Shape of distributions 

Measurable properties of cells typically underlie an intrinsic variability, which originates 

for example from genetic or environmental differences. If such influences change the 

measured quantity by additive or multiplicative factors, the resulting spread will be 

better approximated by a Gaussian or lognormal distribution, respectively 124,125. 

Furthermore, when a parameter has by definition a lower bound and most values 

gather close to the lower bound, the resulting distribution can also be modeled well by 

a lognormal distribution 125. 

To determine whether either a normal or lognormal distribution is the underlying 

distribution of a parameter, so-called probability plots (see section 2.5) can be 

leveraged. Such plots are shown exemplarily in Figure 3.3 using an RT-DC measurement 

of dissociated Nrl-GFP retina cells that were FACS sorted for the GFP+ fraction (rod 
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photoreceptor precursor cells). In the upper left and lower left plot, original and log-

transformed data of area (𝐴) is shown. If the distribution was Gaussian, a linear function 

would be a perfect fit (red line in each plot). To quantify how well data aligns to the 

linear fit, the square of the Pearson correlation coefficient is given for original (𝑅2) and 

log-transformed data (𝑅2′). At low and high area values, there is a deviation between 

data and fitting function for the original data as well as for the log-transformed data, 

resulting in an 𝑅2  and 𝑅2′  of approximately 0.97 (see Figure 3.3). Such deviation 

(between data and lin. fit) is also present for the original deformation data (upper right 

plot in Figure 3.3, 𝑅2 = 0.957), but not for the log-transformed data (lower right plot in 

Figure 3.3, 𝑅2′
= 0.999), indicating that the underlying distribution of deformation could 

be a lognormal function. The explanatory power of this finding is quite small as the 

analysis is based only on a single measurement, which could be erroneous. Artifacts 

such as technical error or presence of subpopulations could potentially skew the 

distribution, resembling a lognormal.  

 

Figure 3.3 Examples of probability plots 

Probability plots (introduced in section 2.5) show data (area, log transformed area values, deformation 

and log-transformed deformation values) of an RT-DC experiment of GFP+ retina cells from an Nrl-GFP 

mouse at maturation stage P04. The measurement was performed in the channel region (20 µm 

channel) at 0.04 µl/s. Blue dots represent the experimental data and the red line is a linear fit. The 

Pearson correlation coefficient quantifies how well the linear function fits the original (𝑅2) and log-

transformed (𝑅2′) values. 
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Therefore, 𝑅2 and 𝑅2′ was computed for each measurement (see Table 2) and each 

feature (𝐴, 𝑉, 𝐷, 𝐼), (using only events where Ω≤1.05) allowing to make a more general 

statement about the distribution properties of those features. Scatterplots in Figure 3.4 

show 𝑅2 and 𝑅2′ of individual measurements for area, volume, deformation and inertia 

ratio and the color of each dot represents the median value of the respective 

parameter. The line 𝑅2 = 𝑅2′ is drawn as a guide for the eye and the numbers of events 

lying above and below this line are given. For all features, there are more events above 

the line than below (𝑅2′
> 𝑅2), indicating that the spread of each feature is better 

modeled by lognormal than by a normal distribution. 

 

Figure 3.4 Shape of distributions 

Scatterplots show the Pearson correlation coefficients of original (𝑅2) and log-transformed (𝑅2′
) data for 

area, volume, deformation and inertia ratio. Each dot represents one experiment and the Pearson 

correlation coefficients were obtained from probability plots for the original (𝑅2) and log-transformed 

(𝑅2′
) data. Furthermore, the median was computed for each experiment and used to colorize each 

scatter-dot (blue refers to low values and red to high values). The red line indicates 𝑅2 = 𝑅2′. 

 

3.1.5. Discussion 

In this chapter, a meta-analysis was performed in order to discover universal properties 

of chosen features that are important for RT-DC. A total of 93.7 million measured events 

from 21,000 experiments that were performed over a time-range of 2 years were used 

for this analysis. A correlation of area and deformation was found, which can be 

explained by an increase of the projected area when objects are deformed. Therefore, 

volume is a more robust parameter to describe cell size, but one has to consider that 

the current implementation to compute volume relies on a rotation of the tracked 

contour. Hence, rotational symmetry is assumed, which requires all cells to be aligned 
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to 𝑒𝑥⃗⃗⃗⃗⃗, which is for example not the case for reservoir measurements. Furthermore, the 

channel has to be aligned to 𝑒𝑥⃗⃗⃗⃗⃗, which is adjusted manually in the current setup. 

Like area and volume, also deformation is computed based on the tracked contour of 

the object. Imperfect tracking and protrusions or dents on cells can cause an increase of 

the area ratio. I showed that area ratio and deformation are correlated, indicating that 

deformation is not only a measure of how stretched a cell is, but also how smooth its 

contour is. The correlation of area ratio and inertia ratio is slightly lower, indicating that 

inertia ratio is less affected by non-smooth contours. This indicates that inertia ratio 

should be favored instead of deformation, especially for non-smooth cells such as 

macrophages. 

After a broader screening of correlations between 17 features, a surprisingly consistent 

correlation of cell size and transparency emerged. A possible explanation of this effect 

could be a dilution of the cytoplasm during cell growth which was suggested in a recent 

publication 126. Normally, one would expect that larger objects scatter more light and 

hence appear darker. Such a behavior appears to be true for multiple measurements of 

beads (I Figure 3.2), since they show a negative correlation between area and brightness 

in Figure 3.2. Beads such as polyacrylamide microgel beads tend to have a much higher 

refractive index as compared to cells. 

Knowledge about the shape of a distribution can be important information for the 

choice of a statistical test or for data-modeling. Therefore, I analyzed the shape of the 

distributions for area, volume, deformation and inertia ratio. For the majority of 

experiments, area (63%), volume (67%), deformation (77%), and inertia ratio (83%) is 

better modeled by a lognormal distribution. The trend towards a lognormal distribution 

is clearer for 𝐷  and  𝐼 , which suggests that those features are modulated by 

multiplicative factors (which could for example be environmental or genetic factors). A 

more pragmatic explanation could be that errors in contour tracking will always cause 

an increase of deformation, causing a positive bias. Furthermore, by definition, 

deformation has a lower limit of 0, which creates a bias of the spread of the distribution 

towards larger deformation values. In order to design a symmetric deformation 

distribution (Gaussian) of a given width, one would need to shift the population towards 
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larger values until there is enough space left and right of the population center. This 

effect can actually be observed in Figure 3.4: while experiments with low median 

deformation (blue dots) tend to have higher  𝑅2′
, experiments with high median 

deformation (orange-red dots) are more likely to result in a higher  𝑅2  (indicating 

Gaussian behavior). The same trend can be observed for inertia ratio. In an identical 

analysis for 𝐷 using an older and smaller set of RT-DC data, I came to the same result, 

which has been published earlier 82. Area and volume can also not be negative, which 

might explain the trend that the distributions of 𝐴 and 𝑉 of most experiments are better 

modeled by a lognormal distribution. 

Data used for the meta-analyses in this section was collected by multiple users and 

data-quality was not checked. Moreover, individual measurements could be 

heterogeneous (contain subpopulations) and the correlation of features could be non-

linear. In both cases, the Pearson correlation coefficient would be distorted. In a future, 

subsequent analysis of this data, a rank correlation could be used, which is robust for 

non-linear behavior. Furthermore, heterogeneous datasets could be removed or each 

subpopulation could be gated and analyzed individually. As this meta-analysis is not the 

main objective of this thesis, only 17 of 140 features were used, indicating potential for 

further analyses. 
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3.2. Characterization of retina cells in RT-DC 

Retina tissue of Nrl-GFP-mice is already well characterized for several maturation stages 

using FACS and MACS technology 2,32,34,36,127,128. In this chapter, label-free morphological 

and rheological characteristics during retina maturation are assessed using RT-DC. 

RT-DC was chosen as its high throughput is beneficial to resolve subpopulations 

contained in retina samples and allows tracking small changes that might occur during 

maturation. 

 

3.2.1. Maturation of retina cells 

Retina tissue from Nrl-GFP mice at the following developmental stages was assessed: 

embryonic day (E) 15.5 (15.5 days after fertilization of the parent animal), postnatal day 

(P) 4, 10 and 20. An established FAC-sorting protocol 29,32 was used to obtain the GFP+ 

(rod photoreceptors) or the GFP- fraction. For each maturation stage, three biological 

replicates of the unsorted, GFP+ and GFP- fraction were measured in RT-DC (using chips 

with 20 µm constriction and a flowrate of 0.04 µl/s). One representative scatterplot for 

each condition is shown in Figure 3.5. The uppermost row of plots shows the 

maturation stage E15.5, which displays a wide population of cell sizes in the unsorted 

and GFP- sample, while the GFP+ sample shows a narrow distribution of relatively small 

cells. A similarly narrow distribution of cell sizes does also appear for the GFP+ fraction 

of all other maturation stages. Especially at P10 and P20 there are two clearly 

distinguishable distributions in the unsorted sample and one of them is located in the 

same region on the scatterplot like the events of GFP+ samples, indicating that GFP+ cells 

form a subpopulation that is distinct in cell size. But, when inspecting the GFP- samples, 

one can see that there are still those two populations, suggesting that some cells of the 

population with small cell size are not rod precursor cells. For P04 there is no clear 

separation of subpopulations in the unsorted sample because the population of GFP- 

cells is shifted even more towards the region where GFP+ cells are located. For P10 and 

P20, the cells in the population with larger cell sizes seem to be more deformed in the 

GFP- sample as compared to the unsorted sample, indicating that FAC-sorting might 

altered the mechanical properties of those cells. 
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Figure 3.5 Area and deformation of retina cells at different maturation stages 

Scatterplots show area and deformation of single cells, resulting from RT-DC measurements of 

dissociated retina samples. Unsorted as well as the Nrl-GFP+ and Nrl-GFP- (obtained by FAC-sorting) were 

measured at multiple maturation stages (E15.5…P20). Color in the scatterplots represents the event-

density. Measurements were performed using microfluidic chips with a 20 µm wide channel constriction, 

a flowrate of 0.04 µl/s and a measurement buffer with a viscosity of 15 mPas (PBS+0.5% methyl 

cellulose). 
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To evaluate each subpopulation in mixed samples individually, a two-dimensional 

Gaussian mixture model was used for clustering. For the unsorted and GFP- samples, a 

model with two Gaussians and for the GFP+ samples a model with a single Gaussian was 

fitted. Since section 3.1.4 showed that area and deformation behave more like a 

lognormal distribution, the data was first normalized using a log-transformation. Most 

machine learning models need scaled data in order to avoid issues due to variables that 

are defined on very different scales. For example, area values are usually above 30 

(µm2), but deformation values are always below 1.0. Therefore, before fitting the 

mixture model, each variable was scaled by removing the mean and dividing by the 

standard deviation (the resulting values are often called standard-score or z-score). After 

fitting, the resulting model parameters were transformed back to the original scale. 

Figure 3.6 A exemplarily shows the result of GMMs for maturation stage P04. The found 

Gaussians define clusters, which are indicated by blue and red dots in the scatterplot 

and lines in the histogram projections. The superposition of both populations is shown 

using orange lines and yellow histograms. The mean of each subpopulation for area (µA) 

and deformation (µD) as well as the number of data points (N), which is assigned to each 

cluster, is shown in Figure 3.6 A. The boundary between the cluster of small cells (blue 

dots) and cluster of larger cells (red dots) is almost vertical, indicating that the GMM 

uses primarily area to distinguish both populations.  

To get an overview about the development of the cell size, the same algorithm has been 

applied to all other maturation stages and replicates, and the result is shown as a 

scatterplot in Figure 3.6 B. The leftmost plot shows the result for unsorted samples, 

where a GMM with two Gaussians was fitted. The means of the population with smaller 

cell size (blue) correspond closely to the means of the GFP+ sample for each maturation 

stage. This indicates that the population with small cell size, found by GMM in the 

unsorted sample corresponds to the GFP+ fraction. Similarly, the mean values of the 

population with larger cell size in the unsorted sample are similar to the mean values of 

the population with larger cell size in the GFP- sample. The displayed error-bars visualize 

the standard error of the mean, which is quite small for P04, P10 and P20 compared to 

E15.5, indicating high reproducibility. 
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Figure 3.6 GMM for P04 and development of cell size 

(A) Scatterplots show the result after fitting GMMs to the data of P04 measurements. The populations 

with smaller and larger cell size are shown in blue and red color, respectively.  

(B) The scatterplot shows the mean area for four maturation stages for the population with small and 

large cell size (blue and red, respectively). For each maturation stage, three replicates were measured 

and a GMM was employed to find the mean of each subpopulation. Dots and error bars show the mean 

and standard error of the mean (SEM), computed using the means of each replicate. 

 

When comparing the populations of GFP- cells across the developmental stages (see 

Figure 3.6) one can see that the population with larger cell size shifts towards smaller 

cell sizes during development. The cells of the GFP+ fraction also show a slightly shift 

towards smaller sizes during development. The distance between the means of the 

population with small and large cell size is largest at E15.5 and smaller at P04, P10 and 

P20. Despite the large size gap between the clusters at E15.5, the clusters are highly 

overlapping at this maturation stage because of the wide spread (high standard 

deviation) of the GFP- distribution. Especially at P10 and P20, most of the cells in the 

range from 20 to 30 µm2 are rods since the number of cells in that region in the GFP- 

sample is relatively small compared to the number of cells in the population with larger 

cell size. At P04 there is not such a clear distinction of subpopulations in the unsorted 



61 

 

sample, but the GFP+ sample still shows a very narrow size distribution. While the values 

for area are much smaller for the GFP+ as compared to the GFP- fraction (compare red 

and blue cluster in Figure 3.6 A), it is not immediately clear whether the distributions of 

deformation are significantly different. This topic is highlighted in the next section. 

 

3.2.2. Comparing retina cell types using statistical tests 

Student’s t-test 129, Mann-Whitney rank test 130 and Kruskal-Wallis H-test 131 are 

examples of tests, which can be used to compare two independent samples. Figure 3.7 

shows the application of these tests to artificial and experimental data. The two artificial 

datasets were obtained by drawing 1500 values from a normal distribution generated 

by a random number generator with a mean of zero and standard deviation of one. The 

histogram on the left in Figure 3.7 shows both distributions (red and blue histogram in 

Figure 3.7), which are strongly overlapping. Let us assume that sampling and comparing 

using statistical tests is repeated 100 times. Then, one would expect to get a p-value 

below 0.05 in 20 cases due to the definition of the p-value 125. Such an example of a 

significant difference despite drawing values from an identical random number 

generator is shown in Figure 3.7 and the table (Figure 3.7, bottom) shows the 

corresponding the p-values. The histograms on the right in Figure 3.7 show area-

distributions of two GFP+ rod photoreceptor samples, which were measured individually 

using RT-DC. Again, the distributions are highly overlapping, but the resulting p-values 

when comparing these distributions indicate a significant difference. Using these 

statistical tests, one is essentially asking for the probability that both samples were 

obtained by sampling from the same distribution (null hypothesis). In case of the Nrl-

GFP data, cells of different mice were measured, which means that cells originate from 

different populations. Therefore, it makes sense that the tests return low p-values. Even 

when measuring identical cells from the same donor twice, there could be slight 

differences due to experimental noise (cells aged, room temperature changed,…). Such 

small differences are typically not resolved when for example measuring 30 cells, but in 

in RT-DC the sample size is normally on the order of thousands of cells, which allows 

detecting minute differences. Assuming, the second sample of Nrl-GFP+ cells was for 
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example drug-treated, it would not be possible to decipher if the statistically significant 

difference arose due to an effect of the treatment or due to experimental noise. 

 

Figure 3.7 Application of three statistical tests to artificial and experimental data 

The histogram on the left shows two Gaussian distributions (red and blue) with 1500 data-points each, 

produced by a random number generator. The histogram on the right shows the population of GFP+ cells 

from Nrl-GFP retina cells at P04 for two biological replicates (red and blue). The distributions in each 

histogram are compared and tested for significant differences using student’s t-test, Mann-Whitney rank 

test, and Kruskal-Wallis H-test. The table states the corresponding p-values. Despite strongly overlapping 

populations, the resulting p-values are all below 0.05, indicating significant differences, especially for the 

Nrl-GFP data. 

 

To compute meaningful significance levels for such large sample sizes, it is important to 

consider not only the difference between two populations but also how reliably this 

difference can be measured. Section 2.4 described a method based on linear mixed 

models and a likelihood ratio test that allows considering biological variation and 

reproducibility of the effect. To use this model, data from biological replicates is 

required. Hence, the GFP+ as well as the GFP- fraction was obtained for three biological 

replicates by FACS sorting. Three biological replicates of each developmental stage were 

measured using RT-DC. Figure 3.8 shows boxplots for area and deformation for each 

measurement. Green and gray boxes show data from GFP+ and GFP- samples, 

respectively and p-values (obtained using the LMM-based approach) in each plot 

indicate whether the difference between GFP+ and GFP- is significant.  Since GFP+ cells 

are consistently smaller than GFP- cells for each replicate, p-values indicate a significant 

difference for area at each developmental stage. At E15.5, deformation of GFP+ is 

considerably lower compared to GFP- for the first and second replicate, but not for the 

third, resulting in a p-value above 0.05 implying a non-significant difference (due to 
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insufficient reproducibility). In contrast, the difference in deformation between GFP+ 

and GFP- is very small for each replicate at P04, but this small difference is so similar 

across all replicates, that the LMM-based significance test returns a p-value of 0.0073. At 

P10, the differences are larger, but same as consistent, resulting in a p-value of 0.0019. 

At P20, the differences are also large for the first and second replicate, but not for the 

third, resulting in a p-value of 0.0276. 

 

Figure 3.8 Boxplots for area and deformation and statistical analysis using LMM 

Boxplots show area and deformation for triplicate measurements of GFP+ (green boxes) and GFP- (gray 

boxes) samples at four developmental stages. Subscript numbers at x-axis indicate the replicate number. 

Deformation and area tend to be smaller for GFP+ cells compared to GFP- cells and p-values in each plot 

indicate whether this difference is significant. The p-values were computed using a test based on linear 

mixed models, which allows taking reproducibility of a measurement into account by considering 

replicates. Boxplot shows median, interquartile range and range of data, as introduced in Figure 2.7. 

 

3.2.3. Discussion  

RT-DC measurements of Nrl-GFP retina samples from mice at different maturation 

stages reveal a continuous change of morphological and mechanical properties, which 

is expected since the retina develops rapidly at the chosen ages. Using FAC-sorting, the 

GFP+ rods were isolated and measured individually in RT-DC, resulting in a narrow 

distribution of cell sizes for each maturation stage. Such a population of cells with a 

narrow area-range was also found in unsorted samples. Using a 2D GMM I showed that 

it is possible to predict the location of the GFP+ fraction in an unsorted sample. 

Predicting the location of the GFP+ cells is easier for maturation stage P10 and P20 as 

there are clearly distinguishable populations, but for transplantation, especially samples 
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from maturation stage P04 are of interest due to a higher transplantation success 2. 

Despite the narrow area-distribution of GFP+ cells, in an unsorted sample at P04, this 

population is overlapped by GFP- cells. To fully discriminate GFP+ and GFP- cells, more 

label-free features are required. Therefore, deformation was assessed, which shows a 

significant difference between GFP+ and GFP- cells (at P04). For the significance analysis, 

a test based on linear mixed models was leveraged, which allows to include biological 

replicates. Other approaches (see Figure 3.7) such as the t-test tend to return lower p-

values for larger sample sizes. Therefore, a low p-value can be obtained even for a very 

small effect by simply measuring more cells. In contrast, the LMM based approach 

considers if an effect is reproducible across biological replicates. This approach appears 

to be robust and was used in multiple RT-DC related publications 13,15,22,23,85,97,101–106.  

Like many other statistical tests, the LMM based test requires data to follow a normal 

distribution, but it was shown that the test is robust and results in useful outcome also 

for considerably skewed distributions 132. Especially for deformation one could 

alternatively use a generalized linear mixed model, which uses a log-link function to 

account for the lognormal behavior of deformation 133. I implemented this alternative 

and it was integrated into ShapeOut (courtesy of Paul Müller). Furthermore, LMM 

requires equal variances of the residuals of the compared distributions 

(homoscedasticity), which is certainly not given for most biological cases. Recently, 

approaches that are robust for heteroscedasticity were published 134,135. Therefore, I 

implemented a test using the more robust Bayesian hierarchical models (BHM) and 

compared the p-values resulting for several scenarios (several experiments and artificial 

datasets) to the p-values from the analogous LMM based test. In general, the p-values 

were very similar in all cases, but the computational time for BHM was orders of 

magnitude longer (while LMM took seconds, BHM required multiple minutes), rendering 

the application of BHM unfavorable, especially when dealing with large amounts of data 

or many  experiments. 

The LMM based significance test can also result in a very low p-value even for very small 

differences, if the effect is highly reproducible. This shows that the p-value only 

indicates that there is a difference between two states (e.g. between GFP+ and GFP- 
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sample), but not if the difference is large enough to distinguish single cells from those 

populations when samples were mixed. Since the goal of this thesis is to find 

parameters that allow distinguishing rod precursor cells from other retina cells in mixed 

samples, the next section presents more advanced methods for classification. 
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3.3. Classification of retina cells using supervised machine learning 

The previous section showed that the target cells, which are rod photoreceptors are 

strongly overlapping with non-photoreceptors in size-deformation scatterplots, 

especially for retina samples from P04 mice, which are best suited for transplantation 2. 

The introduced unsupervised learning method (GMM) allowed to get insight into the 

data and could be used for classification. A more promising approach to get accurate 

models for classification is supervised machine learning. For supervised machine 

learning, a labeled dataset is required, which means that for each captured cell, the Nrl-

GFP expression needs to be measured. This is indeed possible with RT-FDC, and 

therefore, further samples from P04 mice were measured using this technique. The 

maturation stage P04 was chosen since due to its relevance for photoreceptor 

transplantation 2. 

 

3.3.1. The dataset 

A total of six biological replicates of (not FACS sorted) dissociated retinas from Nrl-GFP 

mice at postnatal day 4 (P04) were measured using RT-FDC in the channel region of 

sorting chips (see 2.1.2) and the 488 nm laser was employed to excite the GFP marker, 

allowing to measure the fluorescence expression. Each biological replicate originated 

from an individual litter and was measured on a different day. Data from the first three 

replicates will be used as a training dataset to fit machine learning models. The last 

three replicates were measured three months later, which allows using the datasets as 

testing set to check the performance of models in a realistic scenario. Figure 3.9 shows 

scatterplots of a measurement from the training set. Figure 3.9 A shows the label-free 

parameters deformation and area on the axes. The top histogram projects the area 

distribution, indicating two populations, as one would expect for an unsorted sample. 

The scatterplot also shows a population of more deformed and larger cells, indicating 

doublets. The scatterplot in Figure 3.9 B shows a combination of a label-free and a label-

based parameter on the axes. The y-axis shows the GFP-fluorescence intensity and the 

x-axis the area. Rod photoreceptors show elevated fluorescence signals and can be 

found in a narrow area range from 25 µm2 to 40 µm2 (see cell type 1 in Figure 3.9 B). 
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Another population of larger cells with a high fluorescence signal is created due to the 

presence of doublets (cell type 2 in Figure 3.9 B). The distribution of fluorescence 

intensities does not show a clearly separate distribution of GFP+ rods, but continuously 

extends towards lower intensities where a third population of small GFP- cells is defined 

(cell type 3 in Figure 3.9 B). This pattern is expected since it is also observed in FACS 

measurements of these cells 31. The threshold to distinguish fluorescent and non-

fluorescent cells was determined in two ways. First, a threshold was determined using 

the minimum of the histogram of fluorescence values (𝑇ℎ𝑖𝑠𝑡 in Figure 3.9 B). A second 

threshold (indicated by 𝑇𝐺𝑀𝑀 in Figure 3.9 B) was determined using a 1D Gaussian 

mixture model (GMM) with two Gaussian clusters, which was applied to the distribution 

of the log-transformed fluorescence values log (𝐹). The GFP- population was split at 

40 µm2 in order to have small GFP- cells (cell type 3 in Figure 3.9 B) as a separate class in 

the same size region like the rod photoreceptors and an individual class for cells larger 

than 40 µm2 (cell type 4 in Figure 3.9 B). 
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Figure 3.9 Unsorted Nrl-GFP retina cells in RT-FDC 

(A) Scatterplot shows an example measurement from one of 6 biological replicates in area vs. 

deformation space. Cells were measured in the channel region of a 30 µm wide sorting chip at a flowrate 

of 0.1 µl/s. Debris and very irregular objects were removed from the dataset by gating out all objects with 

porosity Ω > 1.08. The upper histogram shows area, which has a narrow peak at approximately 30 µm2. A 

second population of large and strongly deformed cells is formed due to events of doublets and triplets 

of cells. 

(B) Scatterplot shows the same measurement as in (A), but the y-axis now displays the maximum 

fluorescence intensity 𝐹 [arbitrary unit]. In this plot, four subpopulations are distinguished (example 

images are given as inset images 1-4). In the upper left are highly fluorescent single cells, which can be 

interpreted as rod photoreceptors (1). Rods are concentrated within a narrow area range from 25 µm2 to 

40 µm2 as indicated by red lines.  Doublets are located in the upper right corner (2). In the lower left are 

non-fluorescent cells (3), which partly populate the same area-range like rods, but the populations also 

extend towards cell sizes larger than 40 µm2 (4). The green lines indicated by 𝑇ℎ𝑖𝑠𝑡 and 𝑇𝐺𝑀𝑀, define two 

different thresholds between GFP+ and small GFP- cells. Scale bar: 10 µm. 

 

Table 3 gives a coarse idea about the number of cells in each population when gating 

using 𝑇𝐺𝑀𝑀 . When not restricting to the range from 25 µm2 to 40 µm2, there are 

approximately 
𝑐1+𝑐2

𝑐1+𝑐2+𝑐3+𝑐4
= (49.2 ± 4.6)% GFP+ cells in the samples, which is in good 

agreement with an earlier study, where a percentage of 53.0% ± 9.01% was found 31. 

The number of GFP+ cells increases to 
𝑐1

𝑐1+𝑐3
= (53.0 ± 6.4)%, when gating to the range 

from 25 µm2 to 40 µm2, showing that cell size could maybe be used to increase the 

concentration of rods, especially, when the sample preparation is optimized to avoid 

cell doublets. The fluorescence threshold found by the GMM-method tends to be very 

low and close to the population of small GFP- cells (see Figure 3.9 B) for all experiments. 

Therefore, an alternative threshold was defined using the minimum of the fluorescence 

histogram, indicated by Thist in Figure 3.9 B. Thist is considerably higher than TGMM for all 
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experiments. Despite this difference, the resulting cell numbers do not change 

dramatically (
𝑐1+𝑐2

𝑐1+𝑐2+𝑐3+𝑐4
= 47.4% ± 3.5% and 

𝑐1

𝑐1+𝑐3
= 54.7% ± 4.7%) but show a higher 

increase of the concentration of GFP+ cells upon gating from 25 µm2 to 40 µm2, 

suggesting that area gating could be used to enrich rod photoreceptors. Area is already 

an online parameter, which can be used to trigger SAW to sort cells. MACS based 

enrichment of photoreceptors using CD73 allows to enrich rod photoreceptor precursor 

cells to 87.7% ± 4.7%  and shows a significantly higher transplantation success 

compared to transplanting unsorted cells 31. Therefore, for label-free rod identification, 

a concentration of >80% rods is desired. The initial concentration of rods is 

approximately 50%, resulting in a required enrichment by a factor of approximately 

𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
80%

50%
= 1.6. 

Repl. c1 [%] c2 [%] c3 [%] c4 [%] 

1 32.7 17.8 22.3 27.2 

2 38.2 19.4 25.4 17.0 

3 30.3 15.4 31.2 23.1 

4 33.9 22.6 20.2 23.3 

5 13.1 15.2 44.4 27.2 

6 37.2 19.5 21.4 21.8 

Mean±SEM 30.9±3.8 18.3±3.8 27.5±3.8 23.3±1.5 
Table 3 Nr. of cells when using GMM-based fluorescence gates 

Repl. c1 [%] c2 [%] c3 [%] c4 [%] 

1 30.7 13.9 24.3 31.1 

2 27.6 13.5 36.0 22.8 

3 23.3 11.8 38.2 26.6 

4 35.5 16.7 18.6 29.2 

5 36.2 20.6 21.3 21.9 

6 36.7 17.9 21.9 23.4 

Mean±SEM 31.7±2.2 15.7±1.3 26.7±3.4 25.8±1.5 
Table 4 Nr. of cells when using histogram-based fluorescence gates 

 

The cell numbers shown in Table 3  and Table 4 give an estimate of the initial mix of the 

cell types, which is approximately 50% rods vs. 50% non-rods. Shifting the fluorescence 

threshold results in a slight change of the classification of cells (rods become classified 

as non-rods and vice versa). The cells of interest for a prospective sorting application 

are single GFP+ cells (1). Many GFP- cells can simply be gated out using the area 



70 

 

threshold of 40 µm2, but the more challenging task is to distinguish, small GFP+ (1) and 

small GFP- (3) cells (highlighted in Figure 3.10 A). Therefore, all machine learning models 

presented in the following will focus on the discrimination of those two classes. 

To avoid training of machine learning models on misclassified cells, events in a broad 

window of fluorescence values (gray regions in Figure 3.10 A) were deleted from the 

datasets. Misclassification could also occur when multiple cells are contained in the 

same frame as shown in Figure 3.10 B. Each captured event corresponds to an image 

with a length of roughly 87 µm. The fluorescence trace for each event (an example 

fluorescence trace is shown in Figure 3.10 C) has the same length. In case of multiple 

cells in one frame, it is important to check if florescence peaks are assigned to the 

correct cells to avoid misclassifications. After filtering for fluorescent cells, the peak 

positions and the x-positions should be highly correlated and most of the events should 

be close to a linear fit as shown in Figure 3.10 D. To determine events for which the x-

position and fluorescence peak match, two parallel linear functions above and below 

the fit were defined by modulating the intercept of the fitting function using a factor of 

1.15 and 0.85, respectively (dash-dot-lines in Figure 3.10 D). Only events within the both 

dash-dot-lines were kept for the training, validation and testing datasets. 

It might be interesting to note that the slope of the linear fit allows computing the speed 

of cells since the fluorescence peak position is measured in µs and the x-position of the 

centroid of the cell in µm. In the example shown in Figure 3.10 D, the slope 𝑠 of the 

linear fit (𝑠 = 4.76 µ𝑠/µ𝑚) corresponds to a velocity of 0.21 m/s, which is close the 

theoretical velocity computed according to Mietke et. al. 77 using 𝑢′ = 2.0962 ∙
𝑄

𝐿2 = 0.23
𝑚

𝑠
, 

with flowrate 𝑄 = 0.1 µ𝑙/𝑠, channel width 𝐿 = 30 µ𝑚, and 𝐾1 = 2.0962. The constant 𝐾1 

results from a representation of the flow field in a channel with squared cross-section 

using a Fourier series 77. 
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Figure 3.10 Area/ fluorescence gating and fl.-peak assignment 

(A) Scatterplot and histograms show the same data like Figure 3.9 B, but additionally illustrate the area 

range as well as the fluorescence ranges, which were applied to filter the data to create training, 

validation and test datasets. 

(B) Image of a captured event with two cells in the region of interest but only the left cell was analyzed. 

The corresponding fluorescence trace is shown in C, indicating a mismatch between location of the 

analyzed cell (indicated by red contour) and location of the fluorescence peak. 

(C) The fluorescence trace corresponding to the frame shown in B shows one peak on the right. The 

maximum of this trace was used to quantify the fluorescence signal of the detected cell (left cell in B), 

which is a mismatch since the peak was actually caused by a second cell.  

(D) Scatterplot showing the position of the fluorescence peak vs. the x-position of the cell. For correct 

peak-assignments both quantities should be highly correlated. The color-map shows the data-density, 

which illustrates this correlation. For fitting a linear function, only events with a density, higher than 40% 

of the maximum density were used.  

 

In machine learning it is good practice to have three datasets, a training set to fit the 

model, a validation set to quantify the performance of the model on new data after 

each training iteration (e.g. to diagnose overfitting) and a testing set to check the 

performance of the final model in a realistic use-case scenario (new experiment, other 

biological replicate). A validation set was created by taking 167 random small GFP+ cells 

(cell type 1 in Figure 3.9 B) and 167 small GFP- cells from the first, second and third 

dataset, resulting in a total of 167 ∙ 2 ∙ 3 = 1002 cells. Table 5 shows the number of GFP+ 

rods (n1) and GFP- non-rods (n3) in the training, validation and test sets after restricting 

the data to an area range (red lines in Figure 3.10 A), specific fluorescence regions 

(green lines in Figure 3.10 A) and deleting cells with invalid fluorescence peaks (see 
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Figure 3.10 D). The following sections will use this data to find algorithms, which allow 

distinguishing small GFP+ (1) and small GFP- cells (3).  

Training   Validation   Testing  

Repl. n1 n3  Repl. n1 n3  Repl. n1 n3 

1 21670 9868  1 167 167  4 37924 11696 

2 51748 25313  2 167 167  5 10201 814 

3 27748 33840  3 167 167  6 18873 14069 

Sum 101166 69021  Sum 501 501  Sum 66998 26579 
Table 5 Nr. of small GFP+ and small GFP- cells in training, validation and testing set 

 

3.3.2. Cell classification using optimized area gating 

By closely inspecting the distributions of the small GFP+ and GFP- cells in the red window 

in Figure 3.10, one can already recognize that the center of the GFP+ population tends to 

be at a lower cell size compared to the GFP- population. This results in the question, if 

an optimized area gating would already suffice to enrich rods to the desired 

concentration of above 80%. To asses this question, the histograms for area of GFP+ and 

GFP- cells are plotted for one biological replicate (training set 1) in Figure 3.11 A and a 

red line indicates an upper area threshold. All cells below this threshold were classified 

to be rods and would in practice be sorted. Cells of type 1 (GFP+ rod photoreceptors, 

green histogram) tend to be smaller than cells of type 3 (GFP- cells, grey histogram). By 

moving the upper area threshold (Athresh) to values smaller than 40 µm2, many GFP- cells 

can be gated out, resulting in an increase of the rod concentration in the target region, 

but also in a decrease of the total number of rods (yield). This analysis has been 

performed individually for the data of all three biological replicates in the training set 

and the second plot in Figure 3.11 A shows the mean and standard error of the mean 

for the yield and the concentration of rods in the target region for various thresholds. 

The dashed lines show the optimal upper area threshold, which is 32 µm2 and results in 

the maximum concentration of rods of 66.48%±3.81%, but only yields 39.53%±11.3% of 

the available rods. Figure 3.11 B shows the normalized confusion matrix for the 

validation set when applying the optimal upper area threshold of 32 µm2 as a classifier 

to predict. Since the validation set was obtained by randomly sampling from the 

training set, the area distributions are very similar, resulting in a very similar 
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performance of the classifier in validation and training set. The upper left square shows 

that 40% of the rods are correctly predicted (true positive = TP), which equals the yield. 

Cells that are actually rods, but are classified to be non-rods are false negative events 

(FN). In general, yield is computed using the following equation:  

 𝑦𝑖𝑒𝑙𝑑 =
𝑁𝑟.  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑜𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑟.  𝑜𝑓 𝑟𝑜𝑑𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦. 3.3 

Apparently, 𝑦𝑖𝑒𝑙𝑑 equals 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (see section 2.8). While 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 is commonly used 

in the jargon of statisticians, I decided to use the word “yield” as it easier to interpret, 

especially in the context of cell sorting. 

Approximately 19% of the GFP- cells have an area which lies in the target region and are 

wrongly predicted to be rods (false positive = FP), which results in a concentration of 

rods in the target region of 𝑐𝑡𝑎𝑟𝑔𝑒𝑡 =
40

40+19
= 68%. In more statistical terms this equation 

can be rewritten to  

 𝑐𝑡𝑎𝑟𝑔𝑒𝑡 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
= 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 3.4 

Again, there is an established phrase (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) that is commonly used by statisticians, 

but I will continue calling this metric concentration due to its meaning when applying 

the model for cell sorting. 

Figure 3.11 C shows confusion matrices, illustrating the performance of the area gating 

method on the testing set. The initial mixing condition of 50% rods and 50% non-rods 

was created for the testing data for each biological replicate individually, by determining 

the difference in number of events and randomly deleting this number of events from 

the population, which has more events. The resulting balanced testing datasets were 

pooled to determine the confusion matrix, which indicates a yield of only 26%, but a 

similar concentration of rods in the target region of approximately 70%. 
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Figure 3.11 Cell classification using area gating 

(A) Histogram showing the area distributions of GFP+ and GFP- events in training set 1.  Red line indicates 

the upper area threshold (Athresh), defining the target region. This analysis has been performed 

individually for data of three biological replicates in the training set. The second plot shows the mean 

and standard error of the mean for the yield and the concentration of rods in the target region for 

various Athresh. Dashed lines show the optimal upper area threshold, resulting in the maximum 

concentration of rods. 

(B) The normalized confusion matrix for the validation set when applying the upper area threshold of 

32 µm2 as a classifier to predict. The concentration of rods in the target region is 69.20% ± 4.61%. 

(C) The normalized confusion matrix resulting when using the area threshold of 32 µm2 as classifier to 

predict data from the testing set. The concentration of rods in the target region is 70.30% ± 4.61%. 

 

3.3.3. Cell classification using random forests 

Beside area also deformation, inertia ratio, x-length, y-length, porosity, average 

brightness, and standard deviation of brightness are online parameters that could be 

used to trigger SAW for sorting. The optimal thresholds for such a multidimensional 

problem can be found by training a random forest. Training was performed using the 

training data shown in Table 5. The final random forest model was then used to 

compute the probability to be positively fluorescent P(GFP+) for each cell in training set 

1, resulting in histograms for GFP- and GFP+ shown in Figure 3.12 A. The histogram for 

GFP- cells (gray) shows a pronounced peak at low P(GFP+), indicating that a large number 

of cells can be confidently predicted to be not GFP+. For classification of cells to either 

cell type, a certain threshold P(GFP+)thresh has to be chosen. Cells with a probability below 

or above P(GFP+)thresh were classified as GFP- and GFP+ cells, respectively. The 

concentration of cells that are truly rods within the target region depends on this 

threshold as shown in the scatterplot (see Figure 3.12 A). By moving P(GFP+)thresh 

towards higher values, the concentration of rods in the target region increases, but at 

the same time the total number of rods within the target region decreases. For better 
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comparability, to the area gating method presented in section 3.3.2, P(GFP+)thresh was 

adjusted such that an average yield of 40% is obtained on the training sets. The 

resulting concentration of rods in the target region is 𝑐40 = 75.7% ± 4.09%. A more 

practical reason for the chosen yield of 40% arises from an approximation of the 

minimum yield as explained in the following. To estimate the minimum yield, required 

to sort 100,000 cells (necessary number of rods for transplantation) within 3 hours 

(duration of keeping cells in vitro should be minimized), let us assume that cells are 

analyzed at a constant rate of 50 cells/s. As shown in section 3.3.1, approximately 50% 

of the cells are rods, resulting in a frequency of 25 rods/s, which could potentially be 

sorted. Therefore, the minimum yield is: 𝑦𝑖𝑒𝑙𝑑𝑚𝑖𝑛 =
100,000 𝑟𝑜𝑑𝑠

25 𝑟𝑜𝑑𝑠/𝑠 ∙3ℎ
= 37. % ≈ 40%. The used 

PC is actually capable to analyze up to 300 cells/s which would allow using higher cell 

concentrations, but this would increase the risk of having two cells within the sorting 

region and accidentally sorting both.  

 

Figure 3.12 Performance of random forest that uses online features 

(A) Distributions of the probability to be GFP+ for GFP+ (green) and GFP- (gray) cells from training set 1. All 

cells above the threshold P(GFP+)thresh are predicted to be rods. The scatterplot (middle) shows the 

resulting concentration of rods in the target region and the yield for various P(GFP+)thresh. When adjusting 

P(GFP+)thresh such that a yield of 40% is obtained, the resulting concentration of rods in the target region 

of three training datasets is 𝑐40 = 75.7% ± 4.09% (mean and SEM). 

(B) The normalized confusion matrix for the validation set when using the random forest and 

P(GFP+)thresh=0.69 to predict. The concentration of rods in the target region is 72.29% ± 4.65%. 

(C) The normalized confusion matrix for the testing set when using the random forest and 

P(GFP+)thresh=0.69 to predict. The concentration of rods in the target region is 77.61% ± 1.01%. For better 

comparison, the same data as shown in Figure 3.11 C was used. 

 

While there are still misclassified cells, it is clear from the analyses and the histograms 

in Figure 3.11 A and Figure 3.12 A that the separation of GFP+ and GFP- cells is better 

when using more features to perform the classification. This leads to the question if 
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additional texture and shape descriptors would help to distinguish GFP+ and GFP- cells 

even better to improve the classification performance. Therefore, volume, principal 

inertia ratio, orientation, median and standard deviation of the background intensity, 

normalized and maximum brightness, Haralick texture features, local binary pattern 

(LBP), threshold adjacency statistics (TAS), and elliptical Fourier features (EFFs) were 

computed for all cells listed in Table 5 using the stored contours and images of the 

events. Next, a random forest model was trained, which results in a validation accuracy 

of 0.746 and the feature importance values were examined as shown in Figure 3.13 A. 

“Online” features (red in Figure 3.13) are area, length, height, aspect ratio, deformation, 

inertia ratio, porosity, mean, and standard deviation of brightness. “Other” features 

(orange in Figure 3.13) are volume, principal inertia ratio, orientation, median and 

standard deviation of the background brightness, as well as the normalized and 

maximum brightness. “Haralick” (yellow in Figure 3.13) are the Haralick texture features. 

“TAS” (green in Figure 3.13) represents the threshold adjacency statistics. “Fourier” (blue 

in Figure 3.13) represents the elliptical Fourier features. “LBP” (magenta in Figure 3.13) 

represent the local binary pattern features. 



77 

 

 

Figure 3.13 Feature importance of online and offline features 

(A) Scatterplot shows the sorted feature importance values, resulting after training a random forest using 

140 offline and online features. Deformation appears at index 27. 

(B) A new model was optimized, which uses only those 70 features, which had the highest feature 

importance in model 1(A). Now, deformation appears already at index 19, indicating that collinear 

features were removed. 

(C) For the third random forest model, the top 35 features with the highest feature importance of model 

2 were used for training. Deformation appears at index 17. The feature names and exact values of the 

first 20 features are shown in Table 6. 

 

At index zero in Figure 3.13 A one can see the most important feature, which is volume 

(belongs to “Others“). While online, others and Haralick features have in general high 

importance, Fourier features and local binary pattern (LBP) features carry only low 

importance. This could either mean that these features are not useful for classification, 

or that there is collinearity between the features, such that they have to share 

importance. For example, if deformation and several Fourier features described a very 

similar feature, which is helpful for classification, the resulting importance would be 

shared among those features. To avoid that, the feature importance values from the 
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first random forest model were used to define 70 features with the highest importance, 

which were then used to train a second random forest. The resulting feature 

importance values are shown in Figure 3.13 B. Next, the 35 most important features of 

that model were used to train a third model (see Figure 3.13 C). The resulting feature 

importance values should reflect better the properties which distinguish 

photoreceptors from non-photoreceptors. An overview of the 20 most important 

features, resulting from model 3 (see Figure 3.13 C) is shown in Table 6.  

Index Feature- 

name Importance 

 Index Feature- 

name Importance 

0 𝐴 0.270  10 𝐻𝑎𝑟𝑎𝑙𝑖𝑐𝑘10 0.021 

1 𝑉 0.129  11 𝐻𝑎𝑟𝑎𝑙𝑖𝑐𝑘11 0.020 

2 𝐵𝑏𝑎𝑐𝑘.𝑠𝑡𝑑 0.078  12 𝐻𝑎𝑟𝑎𝑙𝑖𝑐𝑘13 0.019 

3 𝐵𝑛𝑜𝑟𝑚 0.042  13 𝐻𝑎𝑟𝑎𝑙𝑖𝑐𝑘4 0.016 

4 𝐵 0.036  14 𝐵𝑠𝑡𝑑 0.015 

5 𝐻𝑎𝑟𝑎𝑙𝑖𝑐𝑘6 0.036  15 𝐵𝑏𝑎𝑐𝑘.𝑚𝑒𝑑𝑖𝑎𝑛 0.015 

6 𝐻𝑎𝑟𝑎𝑙𝑖𝑐𝑘12 0.028  16 𝐻𝑎𝑟𝑎𝑙𝑖𝑐𝑘2 0.014 

7 𝐵𝑚𝑎𝑥 0.024  17 𝐷 0.014 

8 𝑇𝐴𝑆19 0.022  18 𝐹𝑜𝑢𝑟𝑖𝑒𝑟4 0.013 

9 𝐻𝑎𝑟𝑎𝑙𝑖𝑐𝑘3 0.022  19 𝑇𝐴𝑆46 0.013 

Table 6 Feature importance values of random forest model that uses 35 features 

 

The process of deleting features with low predictive power might seem like a reduction 

of information which could decrease the validation accuracy. In practice, often the 

opposite is the case. Here, the model, which uses all features, reached 74.6% validation 

accuracy while the models, which used 70 and 35 features, reached 75.7 and 76.2% 

validation accuracy, respectively. Apparently, a reduction of features continuously 

improves the validation accuracy. Therefore, the feature importance values from the 

third model were used to select the 20, 15, 10 and 5 most important features and a 

random forest model was trained for each case. The resulting optimized models 

reached a validation accuracy of 75.9% (20 features), 76.8% (15 features), 75.6% (10 

features) and 75.3% (5 features), respectively. The corresponding concentrations of rods 

in the target region for a yield of 40% were 𝑐40 = 80.0%, 83.5%, 77.6%  and  78.1% , 

respectively. Apparently, the model which uses 15 features achieved the best 
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performance and was therefore chosen for further assessment (see Figure 3.14). The 

probability histogram in Figure 3.14 A clearly shows two separate peaks for the GFP+ 

and GFP- population and allows a much better separation of these two populations 

compared to the random forest which only uses online features (see Figure 3.12 A) or 

area-based classification (see Figure 3.11). The concentration and yield plot shows that 

the concentration of rods in the target region can even go beyond 90% (but at a yield 

below 5%). Also, the concentration of rods in the target region for the validation (see 

Figure 3.14 B) and testing set (see Figure 3.14 C) is higher as compared to the random-

forest that uses only online features. Therefore, it can be concluded that including 

information about the background as well as texture properties of the object (primarily 

Haralick features and TAS as shown in Table 6) significantly helps to distinguish rods 

from non-rods.  

This evaluation shows the potential of texture properties as a label-free marker, but the 

abundance of such texture properties is large and it is not clear whether the Haralick 

and TAS features are the optimal choice for all applications. Furthermore, it could be 

difficult to perform the computation of Haralick and TAS features and in real-time. The 

image processing library “mahotas” 88 provides C++ implementations for Haralick 

features, TAS and LBP, which require approximately 4 ms, 8 ms and 2 ms, respectively 

for a single image from an RT-DC dataset (on an Intel® Core™ i7-4810MQ @ 2.80 GHz). 

These numbers show that even computing LBP alone, would take approximately 10 

times longer than computing the current online features (which takes approximately 

150 µs). Long computational times could in principle be countered by increasing the 

distance between analysis and sorting region, but this would reduce the achievable 

sorting throughput. Therefore, it would be advantageous to have a machine learning 

tool which allows to compute a minimal number of very suitable features that are 

optimized for a given classification task. Deep neural nets are such a tool and therefore 

the next sections will introduce methods to optimize DNNs for real-time analysis. 
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Figure 3.14 Performance of random forest that uses 15 online and offline features 

(A) The best performing random forest uses only 15 particular online and offline features (see Table 6). 

The histogram shows the resulting probability distributions of GFP+ and GFP- events from training set 1. 

The gray histogram (GFP-) as well as the green histogram (GFP+) show pronounced and separated peaks. 

When adjusting P(GFP+)thresh to get a yield of 40%, the concentration of rods in the target region is in 

average 𝑐40 = 83.5% ± 2.63% for the three training datasets. 

(B) The normalized confusion matrix for the validation set when using the random forest and a threshold 

of P(GFP+)thresh=0.74 to predict rods. Here, the concentration of rods in the target region is 77.91% ±

1.79%. 

(C) The normalized confusion matrix for the testing set when using the random forest and a threshold of 

P(GFP+)thresh=0.74 to predict rods. Here, the concentration of rods in the target region is 77.30% ± 0.69%. 

For better comparison, the same data as shown in Figure 3.11 C was used. 

 

3.3.4. Cell classification using deep neural nets 

Current development in the domain of deep learning mostly focuses on developing 

more complex and accurate algorithms, which often require a high-performance 

graphics processing unit (GPU) or even a GPU cluster to execute training or inference in 

a reasonable time. For image-based sorting, there is a restriction in terms of inference 

time (time to classify one image) which has to be below 1ms (ideally around 150 µs, 

matching the computational time of current online parameters). Such short inference 

times exclude the usage of online GPU clusters since sending the image to the cluster 

and receiving back the information is linked to long and varying latency times. Batch-

wise processing would reduce the total time per image since GPUs are optimized for 

parallel computation, but this is not applicable for image-based cell sorting since 

inference has to be performed image-by-image. Therefore, on-board hardware has to 

be used for inference. 

Inference time and accuracy of a deep neural net (DNN) are dependent on the 

complexity of the DNN. More complex DNNs can be more accurate, but at cost of more 

computational power and longer inference time. For real-time classification, an accurate 
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and yet very fast model is required. Convolutional neural nets are currently very 

popular because of their enormous performance in image classification, audio signal 

processing and other tasks where they can even beat human performance 136. A basic 

deep neural net architecture where each node of one layer is connected to each node in 

the next layer is called multilayer perceptron (MLP). MLPs are characterized by the 

number of hidden layers and the number of nodes in each hidden layer. Convolutional 

neural nets are just special cases of multilayer perceptrons. While each input node is 

connected to every node in the next hidden layer in MLPs, CNNs use filters to restrict 

the network to link neighboring pixels within a certain filter size. This technique tends to 

result in more accurate classification algorithms, especially for small datasets, but 

convolutional filters typically require longer computational times (see appendix A) due 

to implementation details (convolutions are realized using sparse matrix 

multiplications). Since the task of real-time classification requires fast inference, a 

screening of different MLP architectures was performed. Each screened MLP had an 

input layer, three hidden layers and an output layer as sketched in Figure 3.15 A. A total 

of 369 different network architectures were defined, which differed in the number of 

nodes in the hidden layers (n1, n2, n3). The smallest network had 16 nodes and the 

largest had 72 nodes in each hidden layer. To limit the computational time, models 

were trained using a subset of all 6 datasets. 

Another important factor which influences the inference time is the size of the input 

image. The larger the input image, the more multiplications are performed in the first 

hidden layer. Original images of RT-FDC are typically 256x96 pixels in size, but cells only 

cover a small region on that image. To avoid performing a large number of unnecessary 

computations, the images were cropped to 32x32 pixels such that the cells appear 

mass-centered in the image (cropping with respect to the centroid). Such cropped 

images are then used as input for the neural nets. 

The uppermost scatterplot in Figure 3.15 B shows the maximum validation accuracy of 

each trained model vs. its numbers of parameters. As expected, more complex models 

with more parameters tend to achieve higher maximum validation accuracies. One 

model with 25458 parameters stands out since it has a higher validation accuracy 



82 

 

compared to other models with a similar number of parameters. This MLP has 24 nodes 

in the first, 16 in the second and 24 nodes in the third hidden layer (magenta dot in 

Figure 3.15 B). Such model architectures with funnels (low number of nodes in a hidden 

layer in the middle of the network) are typically used in variational autoencoders 137 with 

the aim to get a compressed representation of the input data in a hidden layer which is 

then used to reconstruct the data. Here, we do not want to train models to compress 

and reconstruct, but to classify the data it into two classes, which might result in a 

similar task since the model has to learn the general phenotype of the cells which allows 

it to robustly classify new data. MLP1 was chosen for further assessments (see next 

sections). A second MLP was chosen by considering Master’s rule, which states that the 

number of nodes should decrease when going from input to output layer, forming a 

pyramid structure 138. The chosen MLP has 64 nodes in the first 32 in the second and 16 

nodes in the third hidden layer (red dot in Figure 3.15 B). The scatterplot in the middle 

of Figure 3.15 B shows the maximum validation accuracy of each trained model vs. its 

inference time (time to predict a single 32x32 pixel image) on a CPU (Intel® Core™ i7-

3930K @ 3.20 GHz) in a Python environment. This plot shows less correlation, which 

suggests that two models with different numbers of parameters can still have the same 

inference time. This is possible due to the capability of the CPU to compute a certain 

number of parameters of the model in parallel. Nevertheless, the more accurate MLP2 

(t1=0.11 ms) has a slightly longer inference time compared to MLP1 (t1=0.107 ms). In 

general, the inference time of these models is very small, such that both would be 

suitable for online analysis and sorting. The inference time when using a GPU (NVIDIA® 

GTX™ 1080) is shown in the scatterplot at the bottom of Figure 3.15 B. GPUs allow to 

process orders of magnitude more operations in parallel than CPUs. As a result, the 

scatterplot in Figure 3.15 B (bottom) shows no correlation between maximum accuracy 

and inference time. Since the data first has to be transferred to the GPU, there is an 

additional delay, which causes that the GPU inference times are all approximately six 

times longer than the CPU inference times. 
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Figure 3.15 Screening of MLP architectures 

(A) Basic architecture of the screened MLPs. The raw images (mass-centered body of the cell in 32x32 

pixel image) are the input of the model. All architectures consist of three hidden layers with defined 

numbers of nodes (n1, n2, n3) and two output nodes, which refer to two classes of cells (photoreceptor/ no 

photoreceptor).  

(B) A total of 369 different MLP architectures were trained and the performance of each architecture was 

quantified using the maximum validation accuracy. The x-axis in the uppermost scatterplot shows the 

number of parameters of each MLP. MLPs with more parameters tend to deliver a higher accuracy. Two 

models are highlighted (magenta and red dot) because they deliver a higher accuracy compared to 

models with a similar number of parameters. The number of nodes in each hidden layer of these two 

MLPs is indicated above the plot. 

The scatterplot in the middle shows the same data as the top scatterplot, but the x-axis was changed, 

which now shows the inference time for a single image on a CPU. The inference time for the model with 

fewer parameters (MLP1) is lower.  

The bottom scatterplot analogously shows the inferences time on a GPU, which are approximately 6 times 

longer compared to the inference times on CPU for all models. 

 

To obtain a benchmark for the best classification performance, if there was no 

restriction in terms of inference time, also different CNNs were trained. To obtain the 

highest classification accuracy, very complex CNN architectures should be used, but 

they often tend to overfit. To prevent overfitting, the regularization technique dropout 

was used. Dropout is based on the idea that a certain number of nodes in the network 

is randomly switched off during training. A CNN with 6 subsequent blocks was designed 

(see Figure 3.16 A). The first four blocks consist of a convolutional, a batch 

normalization, a ReLU-activation, and a dropout layer. The number of convolutional 

filters is 𝑐1 in the first and second block and 𝑐2 in the third and fourth block. While the 
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filter size of the first and second convolutional layer is 3x3, the filter size is increased to 

5x5 in the third, and to 7x7 in the fourth convolutional layer, in order to increase the 

receptive field of a single filter (see Figure 3.16 A). Larger filter sizes (i.e. larger receptive 

fields) allow describing larger features in the image. In the fourth block an additional 

subsampling layer is inserted between ReLU-activation and dropout layer, which 

reduces the number of pixels in the feature map (FM) by a factor of 4 and helps to 

facilitate translation invariance of the model. The feature maps (FM) continuously 

decrease in size because the computation of a convolutional filter is stopped at the 

border of the image. The fifth and sixth block each consist of a fully connected layer 

with 512 and 265 nodes, respectively, a ReLU-activation layer, a batch normalization 

layer, and a dropout layer. An identical dropout rate of 𝑑 is used in the dropout layers at 

the end of each block. To find a very performant model with ideal hyperparameters, a 

total of 772 CNNs with different 𝑑 (range from 0.1 to 0.6) and different numbers of 

convolutional filters 𝑐1, 𝑐2 (range from 4 to 36, respectively) were trained. The training 

accuracy of most models quickly surpassed the validation accuracy (see Figure 3.16 B), 

which is a sign of overfitting. Training was terminated when the mean training accuracy 

over the last 100 training iterations was larger than the respective mean validation 

accuracy. The CNN with 𝑑 = 0.4, 𝑐1 = 6 and 𝑐2 = 36 (CNN1 in Figure 3.16 C) outperformed 

all other models and was therefore chosen for further assessment. This CNN has a 

maximum validation accuracy of above 0.81, while the best performing MLP does not 

even surpass a validation accuracy of 0.73.  

While convolutional filters are only a special case of fully connected layers, CNNs tend to 

generalize better and obtain better performance with less data compared to MLPs. 

Therefore, optimized training routines, more data and image augmentation can help to 

further increase the performance, especially of the MLP architectures. In the following 

section, the training routine for the models which were highlighted in the MLP and CNN 

screenings are further optimized in order to improve the validation accuracy. 
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Figure 3.16 Screening of CNN architectures 

(A) Sketch of screened model architectures. The architectures each consist of four blocks with 

convolutional layers with different filter sizes and two blocks with fully connected layers with 512 and 

265 nodes, respectively. Each block also contains a batch normalization layer, a ReLU-activation layer and 

a dropout layer. After the last convolutional block, the feature maps are subsampled by a maxpooling 

layer with a 2x2 filter. The output is obtained by a layer with two nodes, which is modulated by a softmax 

activation function.  

(B) Left plot: training and validation accuracy of a model that shows overfitting (training accuracy 

becomes larger than the validation accuracy). Most of the screened models showed overfitting 

characteristics. Right plot: Desirable behavior of training and validation accuracy: both curves converge 

and the validation accuracy tends to be slightly higher than the training accuracy. 

(C) Bar plot showing the maximum validation accuracy of the three best models after screening of 772 

CNNs. The model, with dropout rate 𝑑 = 0.4, 6 convolutional filters in the first and second convolutional 

layer and 36 convolutional filters in the third and fourth convolutional layer outperformed all other 

architectures. 

 

3.3.5. Improving DNN accuracy using image augmentation 

A useful model for predicting photoreceptor cells needs to be robust for all changes 

that could occur between or during experiments. This includes changes in illumination 

and focus, which can result in substantial alterations of the image phenotype. 

Moreover, the alignment of the microfluidic chip could differ, resulting in images of 

slightly rotated cells. The lithium niobate (LiNbO3) substrate, which is required for 

generating standing surface acoustic waves in microfluidic sorting chips is also a source 

of image distortion. Beside birefringence, which is corrected by a polarizer (at the cost 
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of losing light), LiNbO3 also causes scattering noise 139,140, which varies for different units 

of sorting chips (see Figure 3.17). 

 

Figure 3.17 Image distortion by lithium niobate substrate 

Images of cells, recorded using three different microfluidic chips with glass substrate (left) and three 

different microfluidic chips with LiNbO3 substrate (right). Each chip has a channel width of 30 µm and the 

images are recorded in the channel at a flowrate of 0.1 µl/s using 40x magnification. Scale bar: 10µm. 

 

Furthermore, the appearance of cells from different biological replicates differs, 

potentially resulting in a high variability of the data. The ideal dataset for training a 

robust model would consist of a large number of experiments, capturing all possible 

variations of illumination, focus, rotation, scattering noise and biological variation, but 

of course it would require an enormous effort to create such a dataset. Therefore, this 

section introduces methods for optimized data acquisition and data generation to 

reduce the required experimental time and the demand of biological replicates. 

 

Optimized acquisition of training data 

While, the focus is usually left constant during RT-DC experiments, it should be altered 

continuously during acquisition of the training dataset. This is a very simple, yet 

important task since otherwise the resulting data would support overfitting to particular 

focus settings. The range of focus alterations should be chosen similar to the range that 

appears in usual RT-DC experiments and also during future sorting applications. 

Similarly, the illumination should be continuously altered by changing the opening of 

the aperture on the microscope. Both, the focus and illumination altering has to be 

done gently in order to avoid problems during online tracking.  

While the change of focus and illumination setting can be quickly realized in a 

continuous fashion during the experiment, the rotation of the chip in the chip holder 

under the microscope requires a stop of the acquisition and an opening of the 
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microscope head, which takes time and was therefore only performed two to four times 

during the acquisition of the datasets used in section 3.3. Since the image distortion is 

different for different sorting chips, each biological replicate was measured in several 

sorting chips but since the change of a chip requires even more time, it was performed 

only up to three times for one biological replicate. Alteration of focus, brightness, 

rotation, and change of the sorting chip was performed for the all training datasets 

introduced in section 3.3.1. 

 

Image augmentation 

Image augmentation is a very common practice to improve performance and 

robustness of machine learning models for image classification. In order to obtain a 

dataset representing a continuous distribution of rotations, a mathematical image 

transformation was applied. Rotation of images only requires that the input image is 

slightly larger than the final image to avoid cutting off edges as shown in Figure 3.18. 

Moreover, also random vertical flipping can increase the information content of the 

dataset. In contrast, horizontal flipping would result in images in which it looks like cells 

would travel in the opposite direction, which never occurs in RT-DC and would therefore 

not help to train a more accurate model. Additionally, brightness augmentation of each 

image 𝐼 was performed using a linear transformation with random numbers 𝑟1 and 𝑟2: 

𝐼′ = 𝑟1 ∙ 𝐼 + 𝑟2 . Augmentation was performed on the fly during the model training 

process.  

 

Figure 3.18 Image augmentation by rotating and flipping 

Initially, all recorded images were cropped to 48x48 pixels with the cell mass-centered in the image. 

Next, the images were randomly rotated by ±3° (example shows 10° for better illustration) and finally 

cropped to 32x32 pixels. Additionally, vertical flipping was applied on a random basis. 
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The captured dataset reflects the phenotype of only a few biological replicates 

measured in some sorting chips with certain image distortion levels arising from the 

LiNbO3 substrate. To augment the data to obtain a continuous distribution, covering all 

nuances of biological variation and image distortion, a mathematical transformation 

mimicking these differences is required. Ideally, a dataset to train such a function would 

contain a version of each cell for every possible combination. Since we only have an 

unpaired dataset with different cells at different conditions, a Cycle-GAN is an 

appropriate choice to learn the mapping between the image properties 123 (see section 

2.9). Cycle-GANs show an impressive performance in transforming the style of an image 

reaching almost photorealistic quality.  

Let us consider the image distortion of sorting chip A and B as style domains 𝐴 and 𝐵. 

Then, a Cycle-GAN can be trained to transform images of domain 𝐴 into images that 

look like they were measured in sorting chip B (style domain 𝐵). Training the Cycle-GAN, 

results in two generator functions 𝐺 and 𝐹, mapping from style A to style B and from 

style B to style A, respectively. Similar to image distortion in sorting chips, also different 

biological replicates differ in appearance, defining individual style domains. As a result a 

multitude of transfer functions could be generated, which map between each possible 

pair of distortion levels and biological replicates. To limit the computational cost, a 

random selection of seven combinations of experiments was used to train 

corresponding Cycle-GANs. Some examples of transformed and reconstructed images 

were plotted after each training iteration as shown in Figure 3.19 A to allow for visual 

inspection of the image quality. Since the quality of some iterations was equally good, I 

kept up to four versions. The versions only differ in the number of training iterations, 

and show slightly different transformation results. Since the aim of image augmentation 

is to alter the training data in a multifarious but meaningful manner, each version which 

delivers good (according to visual inspection) results can be used to generate data. A 

total of 27 different Cycle-GANs was kept, mapping between the seven chosen style 

domains. While a Cycle-GAN was actually only trained to map images from one given 

style A to another style B (𝐺) and vice versa (𝐹), the transformation functions can also be 

applied to datasets of different styles C, D, F,… resulting in images with entirely new 

styles (C’, D’, F’,…) that were not contained in the initial dataset. The principle is sketched 
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in Figure 3.19 B under the assumption styles could be defined in a two-dimensional 

space and a generator is defined by a vector, mapping from one style to another.  

Consequently, by applying each Cycle-GAN to each dataset it is possible to generate 

images showing novel nuances of image distortions, which were not present in the 

initial training dataset, but could potentially occur in a new sorting chip or biological 

replicate (see Figure 3.19 C). Since the computational cost for the transformation of an 

image is quite large, only a random sample of 500 images of photoreceptors and non-

photoreceptors was transformed from each dataset. Since there are 27 Cycle-GANs 

which were applied to three training datasets, a total of 81 new datasets was created, 

each containing 2000 images (500 images of photoreceptors transformed by 𝐺 and by 𝐹 

and equivalently for 500 images of non-photoreceptors). This results in a total of 

162,000 generated images, which can be used during training of the neural network.  

Yann LeCun, one of the most respected researchers in the field of deep learning, thinks 

“Adversarial training is the coolest thing since sliced bread” 141, but GANs are still heavily 

studied to get them working reliably and practical applications reach from text to image 

translation 142 over image super resolution 143 to image manipulation for creating novel 

artworks 144. To my knowledge, Cycle-GANs were not yet used to produce training data 

for the improvement of model performance. Therefore, the following subsection 

compares models that were trained with and without generated data. 
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Figure 3.19 Image transformation using Cycle-GANs 

(A) Four examples of images, which were transformed by a trained Cycle-GAN. The performance of the 

Cycle-GAN was checked by visually inspecting the quality of the transformed images. The transformed 

images show unique image distortions. The reconstructed images 𝐹(𝐺(𝐼)) do not look identical to the 

original images, indicating potential improvement of the Cycle-GAN. 

(B) Sketch, indicating three training datasets (black dots A, B and C) in a 2D style domain space. A Cycle-

GAN was trained to learn the transformation between A and B, resulting in the generators 𝐺𝐴𝐵 and 𝐺𝐵𝐴, 

which are vectors mapping between points in the 2D style domain space. By applying 𝐺𝐴𝐵 and 𝐺𝐵𝐴 to the 

third dataset C, new datasets C’ and C’’ (red dots) with unique style properties were generated. 

(C) Images of four random cells, which are transformed by six different generators (𝐺1 … 𝐺6) resulting from 

trained Cycle-GANs. Each Cycle-GAN was trained to learn the mapping between different datasets. 

 

Retraining models using augmented and generated data  

In this section, the MLP and CNN network architectures, which appeared to be most 

suitable for the task of classifying retina cells (see section 3.3.4), are retrained using the 

aforementioned augmentation methods.  

In each training iteration, 500 random cells of each class (photoreceptor and non-

photoreceptor) and of each biological replicate in the training set (3 in total) were used, 

which results in a total of 3000 images. I decided to use the same number of cells from 

each training set for each training iteration since the total cell number differs for each 

replicate and it is important to avoid overfitting the algorithm to the largest dataset. 

Similarly, the number of rods and non-rods was kept equal for each training iteration to 

prevent the algorithm from finding the trivial solution which would mean that it simply 

classifies each event as non-rod since non-rods occur more often in the dataset. Models 

were trained individually, once with 0%, and once with 20% of the 3000 cells being 
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replaced by random generated images. All images were additionally altered by random 

rotation, vertical flipping and brightness change. In summary, each training iteration 

used 3000 different images that are differently augmented, which effectively reduces 

the risk of overfitting (as shown in Figure 3.20). Figure 3.20 shows the rolling median 

(window size=250 iterations) of the training (transparent lines) and validation accuracy 

(opaque lines) of MLP1, MLP2 and CNN1. The rolling median was calculated using the 

accuracies of 250 successive iterations, which allows visualize the overall convergence 

and training behavior of a model. Specific single training iterations can indeed result in 

models with classification accuracies higher than the median and in practice a single 

model would have to be chosen and implemented into an image-based sorting device. 

When training MLP1 with generated data (red lines in Figure 3.20), the rolling median of 

the validation accuracy increases slower compared to the training without generated 

data (opaque blue line is above opaque red line for iteration<175,000). For MLP2 the 

opposite is true (opaque red line is mostly above opaque blue line in Figure 3.20) and 

for CNN1 there is not much difference. 

 

Figure 3.20 Training MLPs and CNN using 0% and 20% generated data 

Plots show the rolling median of the accuracy (window size = 250 training iterations) for MLPs and CNN, 

which were trained without generated data (0% gen. data, blue) and with 20% generated data (red). MLPs 

were trained for 250,000 iterations, showing very slow but continuous improvement of the validation 

accuracy. The CNN was trained for only 50,000 iterations, showing a steep increase in accuracy for the 

first 10,000 iterations and a plateau afterwards. Overfitting (training accuracy>validation accuracy) 

appears for MLP1 after 150,000 iterations, for MLP2 after 50,000 iterations and for CNN1 already after 

30,000 iterations, when training without generated data (blue lines). When training with 20% generated 

data (red lines), the training accuracy is always below the validation accuracy, which shows that the 

generated data introduces variation, which represses overfitting. 
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Interestingly, the global maximum of the rolling median curve of the validation accuracy 

is slightly higher for each model when being trained with 20% generated data as 

summarized in Table 7. Furthermore, the maximum validation accuracy of a single 

model was higher, when training with 20% generated data. On the one hand one could 

find this surprising since the validation set does not contain generated data and 

therefore training on generated data would not introduce information that would help 

to learn classifying images in the validation set. On the other hand, generated data 

introduces variation into the training set, just like other image augmentation methods, 

which is known to often be helpful to train more robust models.  

The optimized training routines caused a rise of the validation accuracy of MLP1 from 

0.7201 (see Figure 3.15 B) to 0.7854 (see Table 7) and of MLP2 from 0.7241 (see Figure 

3.15 B) to 0.7954 (see Table 7), which corresponds to a relative improvement by a factor 

of  
0.7854 

0.7201
= 1.091 and  

0.7954

0.7241
= 1.098, respectively. The CNN does only benefit slightly from 

the optimized training routines, showing an increase in validation accuracy from 0.8139 

(see Figure 3.16 C) to 0.8273 (see Table 7), which results in a relative improvement 

factor of  
0.8273

0.8139 
= 1.016. This behavior is expected since CNNs tend to deliver more 

robust and generalizable models, already for smaller datasets, compared to MLPs 117. 

Since MLPs improved more than the CNN, their maximum validation accuracy is now 

close to the performance of the CNN. Table 7 shows the classification performance of 

MLP1, MLP2, and CNN1 using the maximum of the curves of the rolling median of the 

validation accuracy (window size=250 training iterations) and also the maximum 

validation accuracy of a single iteration. 

Model MLP1 MLP1 MLP2 MLP2 CNN1 CNN1 

% gen. data 0% 20% 0% 20% 0% 20% 

Max. val. acc. rolling median 0.7575 0.7605 0.7635 0.7704 0.8144 0.8174 

Max. val. acc. single iteration 0.7824 0.7854 0.7864 0.7954 0.8253 0.8273 

Table 7 Validation accuracy with and without generated data 
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3.3.6. Tuning of final models and classification performance 

During training, only the best performing models (in terms of validation accuracy) were 

saved. The models were trained to return P(GFP+) – the probability that the input image 

is a GFP+ cell. A perfect model would return P(GFP+)=0.0 for each non-rod and 

P(GFP+)=1.0 for each rod, but in reality, we obtain a broad distribution of probability 

values as shown in the histograms in Figure 3.21. The histograms were obtained by 

predicting the cells from training set 1 (see Table 5) using MLP1 (top), MLP2 (middle) and 

CNN1 (bottom), which were trained without (0%, left histograms) and with 20% 

generated data (20%, right histograms). As expected, GFP+ cells (green histograms) 

return larger P(GFP+) values compared to GFP- cells (gray histograms), but there is a 

certain overlap of both distributions for all models.  

The analysis routine and data is identical as used for Figure 3.11 (area gating), Figure 

3.12 (random forest based on online features) and Figure 3.14 (random forest based on 

online and offline features), allowing to compare the methods. The overlaps of green 

and gray histograms are smaller for all DNNs (MLPs and CNN) as compared to all other 

methods (compare Figure 3.21 to Figure 3.11 A, Figure 3.12 A, and Figure 3.14 A), 

suggesting superior classification performance of these DNNs.  

Usually, the threshold P(GFP+)thresh, upon which an event is predicted as GFP+, is 0.5. By 

increasing P(GFP+)thresh (indicated in upper left histogram in Figure 3.21 by a red line), the 

number of false positives within the target region  decreases, resulting in an increase of 

the concentration of rods as shown by the plots in the middle in Figure 3.21. 

Simultaneously, the number of rods in the target region (“yield”) decreases, as shown in 

the plots on the right in Figure 3.21. For all three DNNs, the concentration of rods 

increases until approximately P(GFP+)thresh≈0.9. Above 0.9, the yield drops to zero. MLPs 

trained with 20% generated data show improved performance in terms of rod-

concentration and yield. This is not the case for CNN1, but CNN1 performs in general 

better than the MLPs. A concentration above 90% is obtained by MLP2 for thresholds 

above 0.85 and by CNN1 already for P(GFP+)thresh≥0.8. For the validation data and the 

testing data, the distributions might look different and one would maybe like to use a 
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different threshold, but since P(GFP+)thresh modulates the prediction, it belongs to the 

model parameters and has to be defined using the training data alone.  

 

Figure 3.21 Performance of DNN based cell classification 

Histograms show the probability distributions for GFP+ (green) and GFP- (grey) cells resulting from 

training set 1 using MLP1, MLP2 and CNN1, which were trained without generated data (0%, blue) and with 

20% generated data (red), respectively. The red line indicates the threshold P(GFP+)thresh, which is the 

decision boundary between GFP+ and GFP-. The concentration and number of rods (yield) within the 

target region is dependent on the threshold as shown in the middle and right plots. The target 

concentrations and yields were determined for all three training sets individually and the plots show the 

resulting mean and standard error of the mean. This routine has been applied to models that were 

trained without generated data (0%, blue) and to models that were trained with 20% generated data 

(20%, red). 

 

To allow comparison to the area gating method (see section 3.3.2) and random forest 

based classification (see section 3.3.3), the identical analysis-routine was applied, to 

obtain the confusion matrices: for each DNN, a certain P(GFP+)thresh was determined, 

which delivers in average a yield of 40% on the training sets. This threshold is denoted 
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as P(GFP+)thresh 40. The resulting confusion matrices when applying the models on the 

validation and test set are shown in Figure 3.22, which indicate that each DNN performs 

better on the validation set compared to the random forests (see Figure 3.14 B) or the 

area gating method (see Figure 3.11). 

 

Figure 3.22 Confusion matrices for DNNs 

Normalized confusion matrices show the classification performance of each DNN model. The adjusted 

classification threshold which results in a yield of 40% on the training set is used (P(GFP+)thresh 40).  

 

An analysis of the concentration and yield in the target region for each model (MLP1, 

MLP2 and CNN1) is shown in Figure 3.23. Besides the usual threshold of P(GFP+)thresh 40, 

also another threshold, which delivers a yield of 20% on the training sets (denoted as 

P(GFP+)thresh 20) is used in order to check, if  higher concentrations could be achieved. As 

one would expect, the achievable concentration is higher for the validation data (dark 

gray bars) compared to the testing data (light gray bars) since the testing data 

corresponds to new biological replicates which might show slightly different phenotypes 

and therefore deviate from training and validation data. Furthermore, the testing data 

has been recorded several months after the training data and the measurement system 

was continuously used, adjusted and has altered (a different LED was implemented). 

Both, validation and testing dataset, contain data of three biological replicates, which 

were analyzed individually, allowing to compute a mean and standard error of the mean 
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for concentration and yield, which is shown in Figure 3.23. The left plot in Figure 3.23 A 

shows the concentration of rods in the target when using P(GFP+)thresh 40. For the 

validation data the concentrations are above 80% for all MLPs and even above 85% for 

CNN1. The concentrations for the testing set are in average approximately 8% lower 

than for the validation set. The right plot in Figure 3.23 A shows the same analysis, when 

using P(GFP+)thresh 20. Interestingly, MLP2 reaches a concentration of 89.2% for the 

validation set, but at the same time, the yield drops by approximately 20% and 10% for 

the validation data and testing data, respectively (see Figure 3.23 B). So one can 

conclude that increasing P(GFP+)thresh allows to increase the resulting concentration but 

at cost of a large decrease of the yield.  

 

Figure 3.23 Performance of models on validation and testing set 

(A) Barplots show the concentration of rods in the target region when the threshold P(GFP+)thresh is 

adjusted such that a yield of 40% (P(GFP+)thresh 40, left) or 20% (P(GFP+)thresh 20, right) is achieved. Models 

were either trained using 0% or 20% generated data. Each model was applied to three validation and 

three testing datasets individually, resulting in a certain mean concentration and standard error of the 

mean, which is displayed by error bars. 

(B) The corresponding yield for each case shown in A. 
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Table 8 summarizes c40 of each algorithm when being applied to the training and 

validation set: 

Approach c40 (training set) c40 (validation set) 

Area gating 66.5% ± 3.8% 69.20% ± 4.6% 

Random forest (online features) 75.7% ± 4.1% 72.29% ± 4.7% 

Random forest (online & offline features) 83.5% ± 2.6% 77.91% ± 1.8% 

MLP1 (0% gen. data) 83.0% ± 3.5% 82.9% ± 1.7% 

MLP1 (20% gen. data) 84.2% ± 3.8% 82.5% ± 3.6% 

MLP2 (0% gen. data) 85.2% ± 3.5% 80.4% ± 3.1% 

MLP2 (20% gen. data) 86.1% ± 3.6% 84.9% ± 2.1% 

CNN1 (0% gen. data) 92.0% ± 3.1% 87.7% ± 1.8% 

CNN1 (20% gen. data) 91.7% ± 3.0% 87.3% ± 4.1% 

Table 8 Comparison of c40 for all classification methods 

 

The training datasets were tightly restricted to very low (GFP-) and very high (GFP+) 

fluorescence intensities in order to avoid training on mislabeled cells (see section 3.3.1). 

In the following, the performance of the models is checked on unfiltered datasets, 

spanning the full range of fluorescence values. In the worst case, cells with moderate 

fluorescence levels would show a different phenotype and would be incorrectly 

classified by the models. The blue vertical histograms in Figure 3.24 show the 

distributions of GFP fluorescence expressions of two testing sets (without gating to 

fluorescence ranges as shown in section 3.3.1). Testing set 1 was captured at a higher 

laser power, which causes relatively higher fluorescence values compared to testing set 

3. The blue horizontal histograms show the corresponding area distributions. 

Apparently, cells of testing set 1 tend to be slightly larger compared to testing set 3, 

which could be due to biological variation. The squared plots show scatterplot-contours 

at 95% (solid blue line) and 50% (dashed blue line) of the maximum event-density. Here, 

the initial data of both testing sets shows a population in high and low fluorescence 

intensity ranges. MLP1 was used to predict which events are rods and the area and 

fluorescence distributions of the identified cells are shown by green histograms and 

contours. While the histogram of the fluorescence of the initial dataset (blue vertical 

histograms) showed two peaks, the distribution of the cells that are predicted to be rods 

has only one peak at high fluorescence intensity. Even though, there is a difference in 
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cell size between training set 1 and 3, MLP1 based selection of rods succeeds to shift the 

fluorescence distributions towards higher values for both datasets. This indicates that 

the model is robust for such differences in the phenotype. 

 

Figure 3.24 Rod-identification in full range of fluorescence values using MLP1 

The plots show the area (horizontal histograms) and fluorescence (vertical histograms) distributions of 

two testing sets. Squared plots between the histograms show the 95% (solid line) and 50% (dashed line) 

scatterplot-contour lines. The distribution of the initial data is shown in blue. MLP1 was used to predict 

which events correspond to rods and the resulting populations are shown in green. 

 

3.3.7. Visualization of model attention 

Interpreting why a machine learning model returned a certain prediction is helpful to 

understand and optimize a model. While such interpretation is possible for machine 

learning models such as random forest, which use a set of pre-defined features, it is still 

a subject of current research to interpret the decision of a neural net. A simple 

approach to get an idea of the typical phenotype is to look for cells of each cell type that 

are very confidently and correctly classified. The upper row in Figure 3.25 A shows four 

rods, with the highest P(GFP+) scores and similarly the lower row shows images of non-

rods which have the lowest P(GFP+) scores. Here, it seems the GFP+ cells tend to have a 

thinner black border in the periphery and a brighter center compared to the GFP- cells. 

This pattern is also visible when averaging 10 cells with the highest or lowest P(GFP+) 

scores as shown in Figure 3.25 B. A more involved approach is to create an image, which 
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maximizes the probability for a certain class. This task is not straight forward since it 

requires to use the DNN in a reverse fashion, which is a one-to-many-mapping (one 

label could be caused by many different images). Figure 3.25 C shows the activation 

maps, which were produced using MLP1 (trained using 20% generated data) and the 

“keras-vis” Python library 145. Activation maps are generated images, which result in a 

high probability for a given class. Again, it appears that the generated image which 

maximizes the probability for a GFP+ cell has a brighter center compared to the 

activation map for GFP-.  

 

Figure 3.25 Appearance of correctly predicted cells 

(A) MLP1, (trained using 20% generated data) was used to predict P(GFP+) for the images from training set 

1. The images show examples of cells that are predicted correctly and with high confidence, which 

means P(GFP+) is very high for GFP+ cells and very low for GFP- cells. The GFP+ cells seem to be slightly 

brighter in the center, and have a sharper, thinner dark ring on the outside compared to the GFP- cells. 

(B) The same phenomenon can be visualized by averaging 10 GFP+ with the highest P(GFP+) and 10 GFP- 

cells with the lowest P(GFP+). 

(C) Activation maps show images created such that they cause the DNN to return maximized 

probabilities for a given cell type. The map which maximizes the probability for a GFP+ cell shows more 

contrast between border and center of the cell compared to the map of for GFP- event. 

  

A distinct feature of RT-DC is the ability to measure a mechanical readout but it is not 

yet clear if that information is used by the DNNs. A computation of the elastic modulus 

would be linked to high error since cells cover only approximately 20% of the channel 

width (see section 2.3). Also, the usage of deformation or inertia ratio is problematic 

due to the significant size difference between GFP+ and GFP- cells. Therefore, I filtered 

the dataset for cells in a very narrow area range from 34 µm2 to 36 µm2 and determined 

P(GFP+) of these events. The scatterplots in Figure 3.26 show that there is a positive 
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correlation between the inertia ratio and P(GFP+), which indicates that the model tends 

to return higher P(GFP+) values for more deformed cells. 

 

Figure 3.26 Correlation between DNN output and inertia ratio 

The scatterplots show the probability, resulting from MLP2 (probability that the event is a GFP+ cell) and 

the inertia ratio for cells from three training and three testing datasets. Only cells in a range from 34 µm2 

to 36 µm2 were used for that analysis to keep the influence of size differences small. In all cases there is 

a positive correlation, which is also visualized by a linear fit and quantified using the Pearson coefficient 

of correlation 𝑅2. 

 

3.3.8. Discussion 

In this chapter, I showed different approaches to use machine learning for label-free 

image-based identification of rod precursor cells. Gating to a particular area range 

would be easiest since it already works in real-time in RT-DC (up to 1000 cells/s). 

Unfortunately, the expected concentration of rod precursors upon sorting is below 70%. 

Random forests allow considering more features for classification and would actually 

reach a final concentration c40 of 83.5% (see Figure 3.14).  Unfortunately, computing the 

required features takes approximately 8 ms, limiting the possible throughput to a 

maximum of 55 cells/s. The highest c40 of 92.0% was achieved using a convolutional 
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neural net, which required a computational time of 3ms (corresponds to a throughput 

of 150 cells/s). Despite a lower c40, of 86.1% certain multilayer perceptron (MLP) 

architectures are the most promising algorithms for sorting because of a low 

computational time of approximately 100 µs (corresponds to a throughput of 

10,000 cells/s). The given inference times were determined using an Intel® Core™ i7 

processor, showing that standard PC hardware is sufficient to perform AI-based image 

classification at high-throughput.  

Because of parameter sharing, CNNs typically generalize better than MLPs, resulting in a 

more robust classification performance upon rotation or translation of the objects the 

image 117. In RT-DC, cells are aligned in the channel, and images are cropped such that 

the cell body is centered. Both processes reduce the degrees of freedom, which 

effectively also reduces the required computational complexity for image analysis. 

Likely for this reason, MLPs deliver acceptable performance for RT-DC data. MLP 

architectures are more prone to overfitting as compared to CNN architectures which 

perform the same number of multiplications. One approach to prevent overfitting is to 

use a larger dataset, which is often linked to high costs and effort. Therefore, I used 

image augmentation and data generation using a generative adversarial net and 

successfully trained MLPs and the CNN for tens of thousands of training iterations 

without overfitting. As a result, the validation accuracies of the MLPs increased 

considerably and reached almost the performance of the CNN. The contribution of 

generated data on the performance increase was assessed individually and it turned 

out that only MLP architectures did benefit slightly. The computational cost of data 

generation is quite high and the resulting images from GANs often simply look like the 

original image with noise added and different contrast. Since addition of noise and 

contrast changes are a simpler operations, they would be practical alternatives to using 

GANs.  

The training dataset only consisted of three biological replicates and between the 

acquisition of training and testing set, the LED illumination assembly needed to be 

changed, which is not optimal as it changes the image properties. Nevertheless, the 

models achieved final rod concentrations between 74% and 79% on the testing set. By 
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using more biological replicates for training, and keeping the system constant, one can 

expect to increase the accuracy and hence the theoretically achievable concentration to 

87%. Even a concentration of 90% could be reached but at a reduction of yield, which in 

practice would require a longer time for sorting. Hence, using these algorithms for 

image-based sorting would allow enriching rod photoreceptors to similar 

concentrations like MACS (87.7% ± 4.7%), which were already shown to be sufficient for 

photoreceptor transplantation 31.  

A higher accuracy and concentration could theoretically be achieved using more 

complex neural nets, but this would require more powerful computational hardware to 

keep inference times at the same level. The screening of MLPs (see Figure 3.15), was 

limited to architectures with three hidden layers. One could extend this search by 

altering also the number of hidden layers, in order to find even better performing 

architectures. Alternatively, one could start to train a large network and subsequently 

identify nodes that are of low importance and remove those. Next, one would continue 

to train the reduced model and again remove unimportant nodes. The process is 

continued iteratively, until the validation accuracy falls below a given threshold. This 

approach is called “network pruning” and is subject of current research especially 

because quantification of the importance of nodes is not trivial 146. The classification 

performance and robustness of models can also be expected to increase when 

improving the image quality. For example, by reducing the thickness of the LiNbO3 

substrate (currently 0.5 mm), the level of noise could be reduced. Furthermore, one 

could provide more information to the neural net, for example by increasing the 

framerate of the camera to capture multiple images of the same cell, which could then 

all be used for classification. Even more promising would be to add information of 

another physical (label-free) property, for example by simultaneously performing 

quantitative phase imaging (QPI) 51. The resulting maps for refractive index or mass-

density could be used in parallel to the bright-field image and neural nets could be 

designed to use all that information in parallel. 

Currently, many companies and research institutes put a lot of effort into the 

acceleration of neural nets using dedicated hardware such as tensor processing units or 
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field-programmable gate arrays (FPGAs). Furthermore, the optimization of software 

such as the Intel® Math Kernel Library for Deep Neural Networks results in a continuous 

increase of performance. Therefore, it is likely that deep CNNs will soon be feasible for 

real-time analysis on standard PCs as acceleration by a factor of 10 would already be 

sufficient. 

A recent publication showed the application of FPGAs for image classification, but a 

relatively long inference time of 5.8 ms was reported and the authors assume an 

improvement when using a GPU instead 147. For intelligent image activated cell sorting 

(iIACS), a GPU was used and inference times of 3 ms were reported 63. While iIACS 

actually allows image-based sorting using DNNs, running this setup requires a team of 

specialized staff 148. In contrast, the approach suggested in this section could be used on 

the existing soRT-FDC setup, which can be operated by a single person.  

Despite the drawbacks of the current setup (MLP only, image distortion due to sorting 

chip), this section shows that remarkable classification performance is achievable using 

standard computational hardware. Therefore, image-based sorting using the existing 

setup is feasible and such a technology would not only be interesting for of label-free 

sorting of rod-progenitor cells but for example also for label-free sorting of induced or 

embryonic pluripotent stem cells or certain subpopulations of blood cells. Recent 

publications showed that discrimination of granulo-monocytes 15, prediction of 

differentiation lineages 149 and distinguishing B and T cells 150 can be performed in a 

label-free fashion based on bright-field images. In general, the specificity of established 

fluorescent labels can be employed to create labeled datasets using RT-FDC which can 

then be used to train DNNs which perform cell classification based on bright-field 

images. Besides image-based sorting, real-time classification by a DNN could be used as 

a diagnostic tool for example to detect malignant cells. These examples indicate the 

potential and wide applicability of image-based label-free cell identification and sorting.  

Unfortunately, the need for programming skills excludes a lot of users from applying 

deep learning for image classification. Image processing software such as cell profiler 151 

or ImageJ 152 did not yet implement such tools. Therefore, at the beginning of the next 

section, I will introduce software I developed that allows non-programmers to train, 
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evaluate and apply deep learning for image classification. This software provides an 

easy access to the concepts introduced in section 3.3 and offers the possibility to 

convert the resulting DNNs to a format that can be used by soRT-FDC.  
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3.4. Software tools to train and apply deep neural nets for sorting 

In this section, I present software, which allows even non-programmers to train deep 

neural nets for image classification and to convert the final models to a format accepted 

by the software, controlling the sorting device (called “Sorting Software”). Furthermore, 

the working principles of the Sorting Software (courtesy of Martin Nötzel) are explained.  

 

3.4.1. AIDeveloper 

Installing a programming language including all required libraries for deep learning and 

their dependencies can be a time consuming and complicated task. Furthermore, due 

to the rapid development in the field of deep learning, software libraries quickly change, 

loose compatibility to other libraries or are even stopped being supported at all. A 

prominent example is Theano 153, which used to be one of the most popular Python 

libraries for deep learning, until a major support was stopped in September 2017 since 

other libraries such as TensorFlow 154 from Google or Pytorch 155 from Facebook started 

to offer the same or even more functionality. Code, which runs on one machine does 

not necessary work right away on another machine and I must admit that I broke my 

own code several times upon updates of Python libraries. Such problems could delay or 

even inhibit sorting experiments if a particular model needs to be trained and would 

limit the accessibility of image-based sorting to people with sufficient programming 

skills and persistency. 

Therefore, I created AIDeveloper (AID), a software suite which allows non-programmers 

to train, evaluate and apply deep learning for image classification. The software was 

frozen to a standalone executable which runs identically on each Windows 7 and 10 PC. 

AID guides the user through the entire working pipeline: starting from loading data, 

assembling training and validation set, setting sensible image augmentation parameters 

towards choice and training of a neural net. During the training process, model metrics 

such as accuracy and loss are displayed in real-time. Furthermore, hyperparameters 

(image augmentation parameters, learning rate, dropout rates,…) can be changed 

during the training process and all details are documented in an excel file. Support for 
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MLPs was implemented into the Sorting Software (courtesy of Martin Nötzel), and AID 

allows to convert models to the required format. 

 

File loading 

Figure 3.27 shows a screenshot of the main window of AID. Data is loaded into AID by 

dragging and dropping rtdc-files into a dedicated table (indicated by a red rectangle A in 

Figure 3.27). Alternatively, also folders containing images (.jpeg, .png, .bmp, .tif, .eps, .gif, 

.ico and many more) can be dropped into this region. The contents of each dropped 

folder would then automatically be converted to individual rtdc-files. The rtdc file format 

is based on the hdf5 format which allows for fast data loading. ShapeIn (Version ≥ 2.0.6, 

Zellmechanik Dresden GmbH, Germany) writes this file format and the open-source 

software ShapeOut 83 allows to post-process RT-DC experiment-files and to export data 

to rtdc-format. To showcase the functionality of AID, images of automobiles and cats 

from the CIFAR10 dataset are used 156. 

AID lists the loaded files in a table (indicated by red rectangle (A) in Figure 3.27). The file 

location is displayed and the number of contained images. Upon double-clicking on the 

filename, an example image of the dataset is shown. Corresponding fields in the table 

allow users to set the class of each file and whether the data should be used for training 

or validation. Furthermore, the number of images that are used in each training 

iteration (epoch) are customizable. Optionally, a zooming factor can be applied, which is 

useful when images were captured using different magnification levels. 

An overview box (orange box (B) in Figure 3.27) shows the total number of images in 

each class in training (T) and validation (V) set which allows for a quick sanity check and 

is especially helpful, when working with many files.  
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Figure 3.27 Main window of AID 

Screenshots show the main window of AID. Colored rectangles indicate units with specific functions. Red 

rectangle (A): Region to load data by drag and drop. Table shows loaded data. Orange rectangle (B): 

Summary of the number of images in each class. Yellow rectangle (C): Menu to choose a neural net 

architecture. Light and dark green rectangles (D, E): Menus for image augmentation methods. Blue 

rectangle (F): Options to show example images with and without augmentation. Magenta rectangle (G): 

Access to hyperparameters such as batch size, epochs, learning rate and dropout rates. 
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Model definition 

The yellow rectangle (C) in Figure 3.27 indicates a menu, which allows choosing a neural 

net architecture. Seven different multilayer perceptron (MLP) architectures, including 

MLP1 (MLP-24-16-24) and MLP2 (MLP-64-32-16) as well as 23 different convolutional 

neural nets of a wide range of complexities, are implemented. All neural nets are 

defined in a Python script (model_zoo.py), allowing customization and adding of 

models. Furthermore, loading of previously trained models into AID to continue or 

restart the training process is supported, allowing to re-use (“transfer learning” 157) and 

share models. User input boxes for setting the input image size and color depth 

(grayscale or RGB) are available and the neural net is built accordingly. To obtain images 

of the requested image size, AID performs center cropping, using the centroid, which is 

always recorded for RT-(F)DC experiments (𝑐𝑥 and 𝑐𝑦). Optionally, one of the following 

data normalization methods can be chosen in a drop-down menu: division by 255, 

standard scaling using the mean and standard deviation of each individual image, 

standard scaling using the mean and standard deviation of the entire training set. Each 

of those normalization techniques was also implemented into the Sorting Software 

(courtesy of Martin Nötzel). 

 

Image augmentation 

The light-green (D) and dark-green (E) boxes in Figure 3.27 indicate tabs which allow 

defining parameters for image augmentation. The following augmentation methods are 

available: vertical and horizontal flipping, image rotation, width shift, height shift, 

zooming, shearing, additive and multiplicative brightness change, addition of Gaussian 

noise, Gaussian blurring, average blurring, motion blurring, as well as alteration of 

contrast, saturation (only for RGB images) and hue (only for RGB images). In the tab, 

indicated by a blue box (F) in Figure 3.27 random example images are shown, visualizing 

the effect of the chosen image augmentation parameters. The last tab (magenta box (G) 

in Figure 3.27) provides options to change learning rate, dropout rates (if applicable for 

the chosen neural net) and the trainability status of individual layers of the neural net. 

The last option is especially interesting for the application of transfer learning (loading a 
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pre-trained neural net to optimize it for a different classification task) as it allows to 

unfreeze single layers when optimizing the model. 

 

Starting and monitoring the training process 

When all parameters are set, the training process is started upon the push of a button. 

The training process is carried out in a separate processing thread and a dedicated 

popup window allows interacting with it. The window shows information about the 

chosen model (see red box (A) in Figure 3.28) and provides the same options as the 

main screen (see Figure 3.27) allowing to adjust all hyperparameters during the training 

process. A text-box (indicated by orange rectangle (B) in Figure 3.28) displays metrics 

(such as accuracy and loss) of completed training iterations. Furthermore, all metrics 

are available for real-time plotting (indicated by a yellow rectangle (C) in Figure 3.28). 

Real-time plotting allows for example to quickly spot overfitting, which could 

immediately be countered by increasing image augmentation (e.g. by adding more 

Gaussian noise). When the training process is started, an excel file is created, listing 

information about files used, properties of the PC-system and all chosen parameters. 

Each change of parameters during the training process is documented in the excel file 

as well. After each training iteration, the model is automatically saved if the validation 

accuracy or validation loss reached a new maximum or minimum, respectively. The 

metrics (such as accuracy and loss) are also saved to the excel file for each training 

iteration. 
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Figure 3.28 Training window of AID 

During training, a separate window shows information about the model (highlighted by red rectangle, A) 

and allows to change hyperparameters. After each training iteration, information is displayed in a 

textbox (highlighted by orange rectangle, B). Model metrics (e.g. accuracy) are plotted in real-time 

(highlighted by yellow rectangle, C).  

 

Reviewing a training history and preparing a model for the Sorting Software 

A dedicated tab (see Figure 3.29) provides tools for loading and displaying metrics from 

a previous training session. Additionally, a rolling median and a linear fit can be added 

(see red rectangle (A) in Figure 3.29), which could for example help to figure out trends. 

Further information about a model is shown after clicking on the respective dot in the 

plot (see orange rectangle (B) in Figure 3.29). Furthermore, tools to convert the model to 

other formats such as protocol buffer (.pb), onnx (.onnx) 158 and to the format required 

by the Sorting Software (.nnet) are provided (see yellow rectangle (C) in Figure 3.29). 
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Figure 3.29 Reviewing a training history in AID 

AID allows loading and displaying the history of a previous training session. Optionally, a rolling median 

and linear fit can be added to the plot (see red rectangle, A). Upon clicking on a dot, additional 

information about the corresponding model is displayed (see orange rectangle, B). Functions for 

converting models to other formats are provided (see yellow rectangle, C). 

 

In-depth assessment of individual models 

A dedicated tab (see Figure 3.30) provides tools to load a model (see red rectangle (A) in 

Figure 3.30) as well as data (see orange rectangle (B) in Figure 3.30) and to analyze the 

performance of the model. Tools to determine the inference time (processing time to 

predict the class of a single image) (see yellow rectangle (C) in Figure 3.30) as well as 

classification of unlabeled data (see light-green rectangle (D) in Figure 3.30) are 

provided. Interactive confusion matrices (see dark-green E rectangle in Figure 3.30) 

visualize the decision of the model for each class. By double-clicking on a confusion 

matrix item, the corresponding images can either be shown or saved to an rtdc-file. 
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Showing correctly and incorrectly classified images can help to figure out issues of the 

model. Standard plots such as receiver operating characteristic (ROC) and Precision-

Recall curve 159 as well as sorting specific plots such as enrichment vs. sorting threshold 

(pthresh) or yield vs. pthresh are accessible (see blue (F) and magenta (G) rectangles in 

Figure 3.30). Export of each image or plot to.png and vector graphics file (.svg) is 

supported.  

 

Figure 3.30 Assessing a trained model in AID 

Screenshot shows the tab in AID, which allows to load a trained model and data to assess the performance 

of the model. 

 

Implementation details and availability of AIDeveloper 

AID was programmed using Python 3.5. For deep learning, the Python packages Keras 

(version 2.2.2) 160 and TensorFlow (version 1.10) 154 were leveraged. The graphical user 

interface was created using PyQt (version 5.9.2, Riverbank Computing, United Kingdom). 
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PyQtGraph (version 0.10) was used for plotting and the standalone executable was 

generated using PyInstaller (version 3.5). AID is open-source software which is available 

as standalone executable and script: https://github.com/maikherbig/AIDeveloper. The 

standalone executable of AID currently leverages CPU implementations of TensorFlow 

to provide compatibility to many PC-systems. Running AID from script allows using 

individual Python installations with GPU support. 

 

3.4.2. Sorting Software 

The software to control sorting was written by Martin Nötzel. For the sake of 

completeness, I want to describe here the parts, which are important for image-based 

sorting using DNNs. The software is written in C++ and OpenCV 68 is used for image 

processing. Frames are continuously retrieved from the high-speed camera at 3000 

frames per second. A background image is obtained by computing a rolling average of 

the last 100 frames, which is subtracted from each subsequent frame. After background 

subtraction, thresholding is applied to binarize the image. Next, dilation and eroding 

operations are applied to finally obtain smooth contours using a contour finding 

algorithm 69. Optionally, computation is stopped at this point if the number of found 

contours exceeds a defined number. For sorting, it is advantageous to have only a single 

object in the region of interest to avoid sorting cells which are in the proximity of a 

target cell (see Figure 3.31). Furthermore, the time difference between the current and 

last captured event is tracked which can be used to prohibit sorting when events 

appeared too short after each other. Using this option one can avoid accidental sorting 

of multiple cells, which is especially helpful when working with samples that tend to 

form clusters (such as retina). 

The contour of each object is used to compute the bounding box, returning the length, 

height and aspect ratio of the object. Computation is only continued if the object meets 

certain user defined criteria (min. and max. length, height and aspect ratio), which 

allows to stop computation for example when debris (small) or a red blood cell (high 

aspect ratio) is captured. Next, the original image (not the binary one) is cropped to a 

user defined region around the middle of the bounding box. The cropped image shows 
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the object in the middle and has dimensions matching the requirements of the chosen 

neural net. The C++ library keras2cpp 161 is leveraged to forward the image through the 

trained neural net, which returns the probability for each class. A sorting pulse is 

triggered when the probability exceeds a defined threshold for a defined class. To 

decrease the computational time, saving of images and parameters is omitted entirely 

during image-based sorting. 

 

Figure 3.31 Preventing accidental sorting of multiple cells 

Sorting pulses are omitted if multiple contours are detected within the region of interest. Scale bar: 

20µm. 

 

3.4.3. Discussion  

Before image-based sorting can be performed, a suitable DNN needs to be trained 

which can be a substantial challenge, as programming skills are required. The most 

popular programming language for deep learning is Python and a large open source 

community drives a rapid software development, resulting in quickly improving 

software libraries, but also in a risk of losing compatibility to older code and a need of 

continuous software maintenance. Therefore, I developed AID, a software with 

graphical user interface, which allows to perform all required steps to obtain a model 

that can be used for soRT-FDC. Since AID was embedded into a standalone executable, 

it runs identically on each Windows 7 and 10 PC, allowing for reproducible analyses. AID 

provides several DNN architectures (including MLP1 and MLP2) which can be extended 

and customized. Methods for image augmentation are implemented and their effect is 

visualized by example images. Hyperparameters such as image augmentation 

parameters can be changed during the training process and the effect on metrics such 

as accuracy and validation accuracy is immediately displayed by interactive plots. AID 

eases the applicability of DNNs for image-based sorting using soRT-FDC because it 
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provides tools to convert final models to a format that is accepted by the Sorting 

Software. 

Other tools for image processing using machine learning are “Zen Intellesis” from Zeiss 

and ilastik 162, but both programs use fixed (non-trainable) DNNs for feature extraction 

and only support training of Random forests for image segmentation. The more 

popular image analysis tools Fiji 163 and ImageJ 152 offer only very limited support for 

neural nets. DIGITS™ from NVIDIA® provides a GUI and allows to train DNNs, but only 

very few DNNs are available, the input dimensions are fixed and access to optimization 

of hyperparameters is limited. The most complete GUI based program I found is “Deep 

learning studio” (DLS) from DeepCognition, which provides a flexible solution, allowing 

to train DNN models for many use cases (e.g. image classification, image segmentation, 

and natural language processing). In contrast, AID is just optimized for image 

classification due to its intention for image-based sorting. Unfortunately, DLS does not 

provide solutions to handle unbalanced datasets, which are quite common in biology 

(for example red blood cells are orders of magnitudes more abundant in blood than 

white blood cells). DLS supports training of models on certain GPUs which is currently 

not supported by AID (at least not in the standalone executable). Despite limitation to 

CPU power, training of models in AID is more than sufficiently fast, for example training 

MLP1 and MLP2 for a single iteration using 200,000 images (grayscale, 32x32 pixels) 

takes 3.6s and 4.4s, respectively (on an Intel® Core™ i7-4810MQ @ 2.80 GHz). More 

computational time (9s) is actually spent to perform affine image augmentations 

(random rotation, shift, zoom, shear and flip). Therefore, GPU support only becomes 

attractive when training of larger neural nets is proposed, but those are not yet of 

interest for soRT-FDC due to long inference times. 

In conclusion, AID helps to accelerate and standardize the process of DNN training. 

Hence, the time between the first RT-FDC measurement of a sample and the image-

based sorting of such a sample using soRT-FDC is shortened. AID allows everyone to use 

deep learning methods and train DNNs, which extends accessibility of DNN based 

image analysis and image-based sorting also to non-programmers. The combination of 

AID and basic MLP architectures allows for very fast training of models. Measuring a 
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sample, training a neural net, and sorting using that neural net, is a routine that can be 

conducted by one person within a single day. To show that, the next section presents 

two examples of sorting experiments, where AID was used to perform training of the 

DNN.  
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3.5. Sorting experiments 

While the scope of this thesis is the development of real-time analysis methods for 

image-based identification of cells, this section goes beyond that goal, showing 

successful sorting experiments. Gained knowledge about well performing deep neural 

nets (see section 3.3.4), AID (see section 3.4.1), the specific sorting-chip design (see 

2.1.2), and the Sorting Software (see section 3.4.2) are employed. First, sorting of rod 

precursor cells from an Nrl-GFP retina sample (P04) is presented. Those cells originate 

from tissue, and chemical dissociation is required to obtain single cells. Furthermore, 

application of soRT-FDC to naturally suspended cells is shown by sorting neutrophils 

from human blood.  

 

3.5.1. Sorting of rod precursor cells 

Label-free identification of rod precursor cells in heterogeneous retina samples is one 

main motivation of this thesis.  This section shows a practical sorting experiment in 

which rod precursor cells were successfully enriched. 

 

Dataset assembly 

Dissociated retina cells were resuspended in measurement buffer for RT-DC to a 

concentration of 20 million cells/ml (prepared by Karen Teßmer). The sample was 

loaded into a sorting chip (chip design is shown in 2.1.2) and RT-FDC, together with 

ShapeIn were used to capture training data. Normally a 40x magnification is used 

during RT-FDC experiments (see Figure 2.1). For sorting-experiments it is currently 

essential to use a 20x magnification to have a wider field of view, allowing to supervise 

the sorting-region. Therefore, training data was captured using 20x magnification. The 

resulting data shows the typical spread of GFP expressions, which was also seen for 

previous experiments, performed using 40x magnification (see Figure 3.9). ShapeOut 83 

was employed to gate for events of the small GFP+ and small GFP- fraction (similar as 

shown in Figure 3.10). A region with medium GFP expression was omitted since it is 

difficult to assign the events either to GFP+ or GFP- class, creating a slight unbalance in 
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the dataset. To obtain a balanced validation set, 2000 cells of each class were randomly 

selected (see Table 9). The numbers of cells for each class in training and validation set 

are shown in Table 9.  

 Training Validation Balanced validation 

Small GFP+ 2471 2048 2000 

Small GFP- 4512 4434 2000 
Table 9 Training and validation data of retina cells 

 

Training of MLP for rod identification using AID 

The balanced validation set was loaded into AID (see section 3.4.1) and an MLP with 24, 

16 and 24 nodes in the first, second and third hidden layer was trained (MLP1). The 

performance of the resulting model, when using a threshold P(GFP+)thresh of 0.6 is shown 

in the confusion matrix in Figure 3.32. In the balanced validation set, the initial 

concentration of GFP+ cells is 50% and sorting for GFP+ cells would theoretically result in 

a target concentration of 𝑐𝐺𝐹𝑃+ =
1238

1238+490
∙ 100 = 71.6%.  

 

Figure 3.32 Performance of MLP1 on validation set 

Confusion matrix shows the performance of the final model (MLP1) when being applied to the validation 

dataset, which contains 2000 images of small GFP+ and small GFP- cells.  A cell is only classified to be 

GFP+, when the corresponding probability (P(GFP+)thresh) is ≥0.6 (red rectangle). Those cells would 

theoretically be sorted when using this model for an actual sorting experiment. 

 

Application of final MLP to enrich rod precursor cells 

The model was converted to .nnet using AID and loaded into the Sorting Software 

(version 1.556_rev1727, see section 3.4.2). A bounding box mediated gating for cells of 

length between 4 and 12 µm was applied to gate out events that are too small (debris) 

or too large. The SAW function generator was connected to the IDTs of the sorting chip 

and frequency as well as phase were adjusted such that pulses of 2 ms pushed single 
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cells into the target outlet. AI-based sorting was carried out for 1 hour, effectively 

collecting 25,000 cells, which corresponds to an average sorting speed of approximately 

7 cells/second.  

For analysis of the target and initial sample, a normal glass-PDMS chip (with 20 µm 

channel) and 40x magnification (standard setting for RT-FDC) was used to obtain 

optimal fluorescence signals. The scatterplots in Figure 3.33 show the cell size and 

fluorescence expression for the initial and target sample, respectively. The color code of 

the scatter dots illustrates the event-density, suggesting a maximum density at a 

fluorescence intensity of approximately 300 and 4000 for the initial and target sample, 

respectively. Apparently, cells in the target sample tend to have higher fluorescence 

expression, which is also confirmed by the medians of the fluorescence intensity 

(MInit=728 and MTarg=1684, see Figure 3.33). The solid green rectangle in Figure 3.33 

indicates a gating strategy for GFP+ cells, which was chosen manually. The percentage of 

events within that gate is 𝑐𝐺𝐹𝑃+
𝐼𝑛𝑖𝑡 =

3957

7428
∙ 100 = 53.2%  for the initial sample and 

𝑐𝐺𝐹𝑃+
𝑇𝑎𝑟𝑔

=
1516

2180
∙ 100 = 69.5% for the target sample. When omitting doublets from the count 

of GFP+ cells (region indicated by dashed green rectangle in Figure 3.33), the 

concentration of GFP+ cells in initial and target sample is 𝑐𝐺𝐹𝑃+
𝐼𝑛𝑖𝑡 =

2949

7428
∙ 100 = 39.7% and 

𝑐𝐺𝐹𝑃+
𝑇𝑎𝑟𝑔

=
1187

2180
∙ 100 = 54.4%, respectively. 
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Figure 3.33 RT-FDC analysis after sorting rod precursor cells 

The scatterplots show RT-FDC experiments of the initial and target sample. Axes display cells size and 

fluorescence expression and the color code represents the density of scatter dots. MInit (=728) and MTarg 

(=1684) show the locations of the medians of the fluorescence intensity. The solid green box indicates a 

gating strategy to select GFP+ events, resulting in 53.2% and 69.5% GFP+ cells in the initial and target 

sample, respectively. An alternative gating strategy, indicated by dashed lines, results in 39.7% and 54.4% 

GFP+ cells in the initial and target sample, respectively. 

 

The sorting process apparently caused a shift of the distribution of fluorescence 

expressions towards higher values, which means an enrichment of GFP+ rod precursor 

cells. Each gating strategy (solid and dashed green rectangles in Figure 3.33) indicates 

an increase of GFP+ cells by approximately 15%.  

While the presented sorting experiment shows enrichment of rod precursor cells, it is 

still an open question whether the suggested MLP is capable to generalize for new 

biological samples and new sorting chips, given enough training-data. Furthermore, so 

far, the suggested MLP architecture was only applied for a binary classification task of 

retina cells (rod vs. non-rod) and it is not clear, whether the architecture would also 

work well for another specimen and more classes. Therefore, in the next section, a large 

number of existing datasets of human blood is leveraged to answer these questions. 

 

3.5.2. Sorting of neutrophils 

To support the claim that the presented methods for label-free sorting are also 

applicable for a different specimen than retina, this section describes the training of a 

neural net to distinguish different blood cell types (debris/thrombocytes, lymphocytes, 

red blood cells (RBCs), doublets, monocytes, neutrophils and eosinophils). In the 
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following, the neural net is used to actively sort neutrophils from human RBC-depleted 

(mediated through dextran-sedimentation) blood using soRT-FDC. 

 

Dataset assembly 

Experimental data, suitable for the training and validation set are all whole blood 

measurements and measurements of dextran-based RBC-depleted blood, which were 

captured at 20x magnification in a sorting chip. In total, 100 measurements using blood 

from 20 donations were available. In multiple experiments, an alteration of the focus 

was performed, enriching the information about possible phenotypes of the cells. Each 

subpopulation was gated manually, using polygon-filters in ShapeOut. First, 

debris/thrombocytes, lymphocytes, RBCs and doublets were gated in an area vs. 

deformation scatterplot, as indicated by the red, orange, yellow and light-green 

polygons in Figure 3.34 A. The remaining granulo-monocyte fraction (dark-green 

rectangle in Figure 3.34 A) was then plotted in a brightness vs. standard deviation of 

brightness scatterplot and gated as indicated by blue, magenta and black polygons in 

Figure 3.34 B, which corresponds to the eosinophil, neutrophil and monocyte 

population, respectively 15. This representation (𝐵 vs. 𝐵𝑠𝑡𝑑) allows a better discrimination 

of the individual subpopulations as compared to scatterplots showing area and 

brightness 15. Even upon alteration of the focus, which affects the brightness, the 

subpopulations still appear well separated. In rare cases, doublets of cells fall into the 

gating regions, as shown by example-images in Figure 3.34 B. Since these events 

typically contain at least one RBC, they occur more frequently in whole blood 

measurements, making whole blood measurements ideal to get training data for 

doublets (and for RBCs as well). By checking 50 random images of eosinophils, 

neutrophils and monocytes, I estimated the ratio of doublets to approximately 4%.  

Relatively bright and relatively dark neutrophils are difficult to classify due to their 

similarity to monocytes and eosinophils, respectively. Therefore, the corresponding 

regions (see light-gray and dark-gray polygons in Figure 3.34 B) were gated separately, 

which allows to use the corresponding images more frequently during training in AID. 

The data of each gated subpopulation of each measurement-file was exported to a 
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format this is suitable for import into AID. Table 10 shows an overview of the available 

data, consisting in total of more than 3.4 million cells. Several smaller measurement 

files were chosen randomly to assemble a validation set. All other measurement files 

were used for training.  

 

Figure 3.34 Manual gating for different blood cell types 

(A) Scatterplot shows a measurement of RBC-depleted blood and the gating strategy for debris (red), 

lymphocytes (orange), RBCs (yellow), granulo-monocytes (dark-green), and doublets (light-green). 

(B) Scatterplot shows the granulo-monocyte fraction from (A) plotted using 𝐵 and 𝐵𝑠𝑡𝑑. Three populations 

appear, which can be assigned to eosinophils (blue), neutrophils (magenta) and monocytes (black) 15. 

Example images of each subpopulation are shown at the upper right. In rare cases, the brightness levels 

of doublets match those of single eosinophils, neutrophils or monocytes. Example images are displayed 

at the lower right. 

 

Class Train Valid 

Debris 69959 770 

Lymphocytes 363936 492 

RBCs 207071 950 

Doublets 93031 1063 

Eosinophils 110201 1094 

Monocytes 211808 1074 

Neutrophils 2349493 3388 
Table 10 Training and validation data of different blood cells 

 

Training of MLP for neutrophil identification using AID 

All files of gated cells were loaded into AID. To train a robust model, the data should 

reflect all alterations that occur from experiment to experiment. Measurements which 

run longer can contain orders of magnitude more events compared to other 
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measurements. To avoid overfitting to conditions of experiments containing many 

events, only a certain number of random cells is used from such datasets in each 

training iteration.  

 

Figure 3.15 showed a screening, which highlighted MLP architectures that performed 

well in predicting data from 6 biological replicates of retina. The blood dataset has a 

much higher variability because it contains more experiments and data of more donors. 

Furthermore, in the blood dataset, 7 classes of cells were defined, while in the retina 

dataset only two cell types were used. Therefore, the blood dataset is suited to repeat 

the MLP screening for a more demanding setting (more variability and more classes). 

AID allows training of collections of models on identically augmented data. This feature 

was used to perform a screening of 162 MLP architectures. Figure 3.35 A shows the 

maximum validation accuracy reached by each architecture after training for 500 

epochs and the corresponding inference time (on an Intel® Core™ i7-3930K @ 3.2GHz). 

An MLP with 24, 16 and 24 nodes in the first, second and third hidden layer, 

respectively, appears to be a well performing architecture (magenta dot in Figure 3.35 

A). This is in accordance with the previous MLP screening, documented in section 3.3.4 

(see Figure 3.15), indicating that this MLP architecture could be a good choice in general. 

Hence, this MLP was trained further, reaching a validation accuracy of 0.94. In order to 

reduce the risk of falsely classifying an event as neutrophil, a threshold 

P(neutrophil)thresh = 0.8 was chosen. While the confusion matrix in Figure 3.35 B suggests 

that 3% of the neutrophils are wrongly classified as doublets (red box), example images 

of the corresponding events actually show doublets. Apparently, the model generalized 

well despite noisy training labels (see doublets in Figure 3.34). This behavior is expected 

since neural nets are robust to noisy labels, especially for large datasets 164. 
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Figure 3.35 MLP screening and training 

(A) 162 different multilayer perceptron architectures were trained to distinguish seven different blood 

cell types for 500 epochs each. The scatterplot shows the maximum validation accuracy and the 

inference time of each architecture. One model is marked (magenta) since it offers a good trade-off 

between inference time and maximum validation accuracy. This model has 24, 16 and 24 nodes in the 

first, second and third hidden layer, respectively.  

(B) This MLP (see magenta dot in (A)) was trained further and then applied to the validation set, resulting 

in the displayed normalized confusion matrix. A red box indicates that 3% of the cells that are labeled as 

neutrophils are predicted to be a ‘Doublet’. Example images of these events are presented on the right, 

actually showing doublets.   

 

Application of final MLP to enrich neutrophils 

Typically, whole blood is measured in RT-DC using a 1:20 dilution of blood in MB 15. The 

resulting frequency of capturing granulo-monocytes then lies between 0.2 and 0.8 

cells/s (for a flowrate of 0.06 µl/s). In conclusion, sorting 50,000 cells would take at least 

17 hours. Therefore, venous blood was drawn from a healthy donor and RBCs were 

depleted using dextran-based RBC sedimentation (see section 2.11). In biomedical 

research, dextran-based RBC depletion is a widely applied method, often as an initial 

step before density gradient centrifugation 165,166. Cells were then resuspended in 

measurement buffer at a concentration of 200 mio. cells/ml. The SAW function 

generator was connected to the IDTs and phase as well as frequency were optimized 

such that cells exposed to SAW for 2 ms were pushed into the target outlet. The Sorting 

Software (version 1.556_rev1727, see section 3.4.2) was used to start and control the 

image-based sorting experiment using the trained MLP. To reduce unnecessary load on 

the CPU, cells with an aspect ratio above 2.0 (mostly RBCs), shorter than 6 µm (mostly 
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debris), longer (𝐿𝑥) than 18 µm (chunks) or higher (𝐿𝑦) than 12 µm were gated out and 

were not analyzed by the MLP. 

After sorting approximately 50,000 cells, the target as well as the initial sample was 

stained using CD14 and CD66 (see section 2.12). Each stained sample was measured 

using RT-FDC using a regular 20 µm glass-PDMS chip and a magnification of 40x. CD14 

is a marker for monocytes and CD66 labels neutrophils 167. The initial sample contained 

3% CD14+, 74.5% CD14-/CD66- and 22.3% CD66+ cells (see Figure 3.36 A). For the target 

sample, the populations of CD14+ and CD14-/CD66- cells reduced to 0.6% and 9.3%, 

respectively. In exchange, the concentration of CD66+ cells increased to 89.9%. The 

experiment was repeated three times using blood from three different donors and 

three different sorting chips, (see barplot in Figure 3.36 C). For each sorting experiment, 

the same MLP was used. 

 

Figure 3.36 RT-FDC analysis after sorting neutrophils 

(A) Scatterplot shows fluorescence expressions for CD14 and CD66 of the initial sample. The majority of 

cells (74.5%) is fluorescence negative, implying events of RBCs or lymphocytes. 

(B) In the target sample, most cells are CD66 positive (89.9%), implying neutrophils. A vertical histogram 

visualizes the distribution of CD66 expression levels for the initial and target sample. 

(C) The sorting experiment was repeated three times using blood from three different donors, resulting 

in a similar enrichment of neutrophils as shown by the barplot. The height of the bar represents the 

mean of three individual sorting experiments and the error bar shows the standard deviation. 

 

3.5.3. Discussion 

For the sorting of photoreceptors and neutrophils, only software with graphical user 

interface was used (ShapeIn, ShapeOut, AID and Sorting Software), showing that no 
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programming skills are required to perform image-based sorting using soRT-FDC. 

Furthermore, with these experiments I show that the system can be operated by a 

single person, which allows access of the technology to a broader audience. 

In the rod-sorting experiment a total of 25,000 cells were collected within one hour, 

which extrapolates to 100,000 cells within four hours. A sorting time of four hours is 

feasible and 100,000 cells already match the number of cells needed for a 

transplantation (50,000 per eye). The obtained concentration of rod precursor cells after 

sorting is only 70%, which reflects the precision of the model used. For a better sorting 

result, more data should be acquired and the model should be trained longer until a 

validation accuracy above 0.75 is reached. While a 40x magnification is standard for RT-

DC and RT-FDC experiments, for sorting, currently a 20x magnification is essential, since 

the bifurcation point of the sorting chip needs to be observed during sorting. Due to the 

change of the objective from 40x (0.75 NA) to 20x (0.8 NA), the image appears different 

and cells are projected to less pixels. Hence, the trained models presented in section 3.3 

could not be used for sorting. Instead, new data was captured right before the 

experiment and a new model was trained.  

In contrast, for the neutrophil sorting experiments, a model was trained days/weeks in 

advance using existing data. For all three replicates, an increase of the concentration of 

CD66+ cells to above 86% was achieved, which indicates an enrichment of neutrophils. 

Equally consistently, the concentration of CD14-/CD66- cells was reduced to below 10% 

for each experiment, indicating a depletion of RBCs and lymphocytes. Monocytes were 

stained using CD14, which were reduced to below 1.15% in each experiment. 

Apparently, the chosen MLP architecture is capable to generalize to a sufficient 

bandwidth of experimental conditions (focus, brightness, different sorting chips and 

donors). To obtain the labeled dataset to train the model, data from existing RT-DC 

measurements were gated for the individual subpopulations using specific features 

(𝐴, 𝐷, 𝐵 and 𝐵𝑠𝑡𝑑, see Figure 3.34). This gating strategy implies that classification and 

sorting could also be achieved based on these features. Together with Ahsan Nawaz I 

indeed performed brightness-based sorting of neutrophils and recognized that 

adjustments of the brightness threshold for sorting are required due to slight shifts of 
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brightness and focus during the long duration of the sorting experiment. Furthermore, 

doublets of cells can be located in the same brightness region like neutrophils as shown 

in Figure 3.34 B and would be sorted. This highlights the advantages of the MLP based 

sorting, as the MLP was trained to be robust for such cases.  

While cells of the retina samples tended to clump together, especially for high cell-

concentrations (>20 million cells/ml), blood cells mostly stayed separate for the entire 

time of sorting, even when using concentrations of approximately 200 million cells/ml. 

The resulting increase in throughput allowed to sort approximately 30 cells/s. Hence, 

100,000 neutrophils could theoretically be sorted within approximately one hour. Thus, 

sorting of rarer subpopulations is feasible. For example, monocytes occur ten times less 

than neutrophils, which would theoretically allow sorting 10,000 cells within one hour 

when using the same cell concentration. As neutrophils and monocytes play an 

important role in immune defense, functional studies often require isolated but 

unaltered cells. Common purification methods include density gradient based methods 

168, lysis of RBCs  as well as molecular markers (immunomagnetic selection 169, FACS 170). 

Each of these techniques implies a chemical exposition, potentially changing the 

properties of the cells 171–173. While cell separation methods such as deterministic lateral 

displacement (DLD), elutriation, or acoustophoresis do not introduce any chemical 

contamination, these methods allow sorting only based on size (DLD), a combination of 

size and density (elutriation) or acoustic contrast (acoustophoresis) 6,174,175. Intelligent 

image activated cell sorting (iIACS) is a novel technique, which would actually allow to 

perform label-free sorting using a DNN, but it offers a lower throughput compared to 

soRT-FDC and a team of researchers with multifarious skillset is required to run the 

setup 148. As soRT-FDC can be operated by a single person it is a promising alternative 

which can be implemented relatively inexpensively, especially if an RT-DC or RT-FDC 

setup is already present in the lab. 
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4. Conclusion and outlook 

In this thesis, I assessed the potential of bight-field images captured using real-time 

deformability cytometry (RT-DC) to distinguish different cell types. Using the example of 

retina cells, I showed that morphological information in the bright-field image allows 

identifying rod precursor cells. After assessing multiple classification techniques, certain 

deep neural net (DNN) architectures were identified, which provide sufficient 

classification accuracies at analysis rates of >1000 cells/s on commercially available 

computer hardware. Those DNNs are therefore suitable to be used for real-time 

analysis to trigger a cell sorting unit. The performance of these DNNs was tested for the 

identification of rod precursor cells in samples of whole dissociated retinae. DNNs can 

be tuned to deliver either higher yield or higher purity and would allow obtaining a 

photoreceptor concentration after image-based sorting that is comparable to MACS-

based sorting (using CD73). Therefore, image-based sorting would allow obtaining the 

desired concentration for photoreceptor transplantations. The methods were 

successfully implemented into software tools with graphical user interface, which allows 

usage without need for programming. Exceeding the scope of this thesis, I leveraged all 

introduced tools to perform sorting experiments using two different specimens. 

 

Sections 2.2 and 2.3, introduced parameters that are deduced from RT-DC data and 

section 3.1 highlighted universal properties of chosen parameters. Strong evidence for 

lognormal behavior of the deformation parameter was found after assessing 21,000 

individual experiments, containing a total of 93.7 million measured events. The insights 

were then used in section 3.2 to characterize mechanical and morphological 

parameters of retina samples from different maturation stages. A major finding was 

that the population of rod precursor cells has a lower spread and is located in a region 

of smaller cell sizes compared to the distribution of non-rod precursor cells. A method 

for robust statistical analysis of RT-DC data based on linear mixed models was 

introduced and applied to characterize differences between subpopulations in retina, 

indicating size and mechanical differences. I implemented the statistical test using 

Python and R and it was already adopted by several other RT-DC related publications 
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13,15,22,23,85,97,101–106,176. In section 3.3.3, a total of 140 parameters, calculated from bright-

field images was used to train random forests to distinguish photoreceptor and non-

photoreceptor cells. Beside area, also several texture parameters (Haralick and TAS) 

were found to be important for the classification task. While LBP are also texture 

parameters, they appeared not to be important for this classification task. Deformation 

was under the 20 most important parameters, but its importance was 20 times lower 

than that of area. From this analysis one can conclude, that certain texture parameters 

are useful to distinguish photoreceptor and non-photoreceptor cells. Sections 3.3.4, 

3.3.5, 3.3.6, and 3.3.7 focused on deep learning methods to decipher optimal texture 

descriptors. Hundreds of deep neural nets (DNNs) were screened to find a method that 

delivers a good trade-off between classification accuracy and inference time. 

Interestingly, certain architectures of multilayer perceptrons (MLPs), which are the 

simplest form of DNNs are more accurate than the random forest models and allow to 

classify a single image in 100 µs, which is fast enough for application in real-time. In 

section 3.4 I show a software tool with GUI that I developed to ease the training of DNNs 

for image classification. Due to the leverage of highly optimized Python libraries, the 

software provides a sufficient performance to train DNNs for sorting. As a result, DNN 

training becomes a standardized, reproducible task which is also feasible for non-

programmers, allowing a broader audience to use soRT-FDC. 

In section 3.5, I employed all introduced tools to perform an image-based sorting 

experiment using dissociated retinae where I achieved a final purity of 70% rods. 

Furthermore, I sorted unstained neutrophils from human blood, resulting in a target 

concentration above 90%. This shows that all introduced tools are practically working 

and the setup can even be handled by a single person. The achieved cell numbers after 

sorting for one hour were between 25,000 and 50,000 cells, indicating a throughput that 

is sufficient to collect cells for transplantation.  

In this thesis, I developed image analysis methods that allow leveraging the specificity of 

established molecular markers to train DNNs for sorting using label-free characteristics, 

hence facilitating the enhancement of soRT-FDC to recognize and sort based on 

arbitrary patterns in cells. This approach opens up a wide field of potential applications, 
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for example sorting of stem cells for transplantation, CFU assays or investigations of 

gene expression. Furthermore, unsupervised learning approaches such as UMAP or PCA 

could be used to discover and sort unknown cell types that can currently not be stained 

using molecular markers.  

I showed the application of image-based sorting of photoreceptors from Nrl-GFP mice, 

but the final goal is the curation of retinal dystrophy in humans for which retina cells 

from human origin are required. To translate the approach to human cells, 

photoreceptors from human retinal organoids (created from embryonic or induced 

pluripotent stem cells) could to be used. Therefore, this project will continue in that 

direction, leveraging reporter lines of human origin, expressing fluorescence tags on 

photoreceptor cells (DFG grant 399422891 to Marius Ader). 

The primary bottleneck limiting the sorting throughput is the time of 2 ms, which is 

currently required to exert sufficient force on cells to push them into the target channel. 

Using traveling surface acoustic waves, that time could be reduced. Higher classification 

accuracies could be obtained by improving the image quality. For example, by using a 

thinner substrate for the sorting chip or brighter LEDs, the image noise could be 

reduced. Furthermore, quantitative phase imaging could be integrated into the setup to 

use the resulting mass and density maps in addition to the bright-field image for 

classification. Even without sorting capability, real-time classification by specifically 

trained models could be employed for diagnostic purposes for example to detect and 

count interesting blood cell types or to identify malignant cells. 
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A. Appendix 

I. Comparison of dense and convolutional layer 

For sorting applications, highly optimized computational routines are required. After 

assessing multiple neural net architectures, convolutional neural nets (CNNs) resulted in 

the most accurate and multilayer perceptrons (MLPs) in the fastest algorithms (see 

section 3.3.4). The difference between such neural nets is only the presence of 

convolutional layers in CNNs, which are lacking in MLPs. While in a dense layer a node is 

connected to all nodes of the preceding layer, a convolutional layer limits the 

connections to certain neighborhoods, defined by convolutional filters. When 

computing a convolution, matrix multiplications using the input image and the values of 

the convolutional filter are performed. By screening over the image, each possible 

neighborhood region of the input image is assessed using the same convolutional filter 

(see Figure 2.11). Due to the limitation that each neighborhood region is manipulated by 

the same convolutional filter, the degrees of freedom is reduced, which in practice often 

results in robust classification performance of CNNs. The reduction in degrees of 

freedom reduces the complexity of the network and to compensate, more 

convolutional filters would need to be added. 

If we neglect the reduction in degrees of freedom, the number of multiplications 

performed by a DNN, should be a proxy for the complexity of the DNN. The utmost 

processing power in MLPs and CNNs is created due to matrix multiplications. For a 

comparison of the dense and convolutional layer, let us design very simple 

architectures which only have an input layer of size 32x32 pixels which is connected to 

one dense or one convolutional layer. If the dense layer contains 𝑑1 nodes, a forward 

pass through the network would result in 𝑚𝑀𝐿𝑃 = 32 ∙ 32 ∙ 𝑑1  multiplications. The 

numbers of multiplications and inference times of 100 architectures with 1 ≤ 𝑑1 ≤ 100 

are shown in Figure A.1 A. Instead of the dense layer, let us now use a convolutional 

layer with 𝑐1 convolutional filters of size 3x3. This convolutional filter is screened over 

the input image and is therefore applied 32 ∙ 32 = 1024 times, resulting in 𝑚𝐶𝑁𝑁 = (32 ∙

32) ∙ 𝑐1 ∙ (3 ∙ 3) multiplications. The numbers of multiplications and inference times of 15 

architectures with 1 ≤ 𝑐1 ≤ 15 are shown in Figure A.1 A. The range of 𝑑1 and 𝑐1 was 
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chosen such that the number of multiplications of MLP1 and MLP2 are covered 

(𝑚𝑀𝐿𝑃1 = 25024 and 𝑚𝑀𝐿𝑃2 = 68096 for an input size of 32x32). Despite having similar 

numbers of multiplications, the architectures containing a convolutional layer require 

approximately twice the inference time compared to architectures with a dense layer 

(see Figure A.1 A). As the same convolutional filter is used multiple times to modulate 

each neighborhood in the input image, the number of parameters of a convolutional 

layer is in general much lower than of a dense layer (see Figure A.1 B). While these 

properties give rise to the better generalization of CNNs, they also currently render 

convolutional layers unfavorable for DNNs for real-time application in RT-(F)DC or 

soRT-FDC.  

 

Figure A.1 Inference time of dense vs. convolutional layer 

(A) Scatterplot shows the inference time and number of multiplications of neural net architectures that 

only contain an input layer and one dense (blue) or convolutional layer (green). Computations were 

performed on an Intel® Core™ i7-4810MQ @ 2.80 GHz. 

(B) Scatterplot shows the same architectures as in (A), but the x-axis shows the number of parameters of 

the network (log. scale). The CNNs have orders of magnitude less parameters due to parameter sharing. 
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Acronyms 

1D One-dimensional 

2D Two-dimensional 

3D Three-dimensional 

AI Artificial intelligence 

AID 
AIDeveloper (official name). Do not use “artificial intelligence 

developer” 

AMD Age-related macular disease 

APC Allophycocyanin; a fluorophore 

BIC Bayesian information criterion 

C++ 
This is no abbreviation but the official name of a programming 

language 

CAD Computer-aided design 

CD14, 66, 73,... Cluster of differentiation. Indicate surface molecules of cells.  

CIFAR10 
A dataset named after the Canadian Institute for Advanced 

Research 

CM Confusion matrix 

CMOS Complementary metal-oxide-semiconductor 

CNN Convolutional neural net 

CPU Central processing unit 

DC Deformability cytometry; a microfluidic technique 62 

DLD Deterministic lateral displacement 9,10 

DNA Deoxyribonucleic acid 

DNN Deep neural net 

E15 Embryonic day 15, which means 15 days after fertilization 

EDTA 
Ethylenediaminetetraacetic acid; anticoagulant during for blood 

collection 

EFF Elliptic Fourier function 

FACS Fluorescence-activated cell sorting 

FCS Fetal calf serum (often also called Fetal bovine serum – FBS) 

FM Feature map 

FN False negative 

FP False positive 

FPGA Field-programmable gate array 

GAN Generative adversarial network 

GFP Green fluorescent protein 

GMM Gaussian mixture models 

GPU Graphics processing unit 

GUI Graphical user interface 

HIV Human immunodeficiency virus 

IDT Interdigital transducer 

iIACS Intelligent Image-Activated Cell Sorting 63 

IQR Interquartile range 

LBP Local binary patterns 89 
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LED Light-emitting diode 

LMM Linear mixed model 

LUT Lookup table 

MACS Magnetic-activated cell sorting 

MB Measurement buffer 

MC Methyl cellulose 

MCF10A 
Michigan Cancer Foundation – 10A; a human breast epithelial cell 

line 

MG-63 Human osteosarcoma cell line 

mio. Million 

MLP Multilayer perceptron 

MSE Mean squared error 

NA Numerical aperture 

Nrl Neural retina-specific leucine zipper protein 

P04, P10,... Postnatal day 4, 10, ... 

PBS Phosphate-buffered saline 

PC Personal computer 

PDMS Polydimethylsiloxane 

PE Phycoerythrin; a fluorophore 

PSC Pluripotent stem cell 

RBC Red blood cell 

ReLU Rectified linear unit 

RF Random forest 

RGB Red green blue 

ROC Receiver operating characteristic 

ROI Region of interest 

RP Retinitis pigmentosa 

rpm Revolutions per minute 

RT-DC Real-time deformability cytometry 12 

RT-FDC Real-time fluorescence and deformability cytometry 13 

SAW Surface acoustic wave 

SGD Stochastic gradient descent 

soRT-FDC Sorting real-time fluorescence and deformability cytometry 14 

SSC Human skeletal stem cells 

Std Standard deviation 

TAS Threshold adjacency statistics 17 

TN True negative 

TP True positive 
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