Toward Resilience in High Performance Computing:
A Prototype to Analyze and Predict System Behavior

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universitat Dresden
Fakultat Informatik

eingereicht von
Siavash Ghiasvand

Gutachter: Prof. Dr. rer. nat. Wolgang E. Nagel
Technische Universitat Dresden

Prof. Dr. rer. nat. Martin Schulz
Technische Universitat MlUnchen

16 September 2020

Abstract

Following the growth of high performance computing systems (HPC) in size and com-
plexity, and the advent of faster and more complex Exascale systems, failures became the
norm rather than the exception. Hence, the protection mechanisms need to be improved.
The most de facto mechanisms such as checkpoint/restart or redundancy may also fail to
support the continuous operation of future HPC systems in the presence of failures. Fail-
ure prediction is a new protection approach that is beneficial for HPC systems with a short
mean time between failure. The failure prediction mechanism extends the existing protec-
tion mechanisms via the dynamic adjustment of the protection level. This work provides
a prototype to analyze and predict system behavior using statistical analysis to pave the
path toward resilience in HPC systems. The proposed anomaly detection method is noise-
tolerant by design and produces accurate results with as little as 30 minutes of historical
data. Machine learning models complement the main approach and further improve the
accuracy of failure predictions up to 85%. The fully automatic unsupervised behavior anal-
ysis approach, proposed in this work, is a novel solution to protect future extreme-scale
systems against failures.

Contents

Introduction
1.1 Background and Statement of the Problem
1.2 Purpose and SignificanceoftheStudy
1.3 Jam-e jam: A System Behavior Analyzero Lo L.
Review of the Literature
2.1 Syslog Analysis e
2.2 Usersand SystemsPrivacy
2.3 Failure Detection and Prediction
2.3.1 Failure Correlation e
2.3.2 Anomaly Detection L
2.3.3 Prediction Methods
2.3.4 Prediction Accuracyandlead Time
Data Collection and Preparation
3.1 Taurus HPC Cluster o o e e e e e e e e
3.2 MonitoringData
3.2 DataCollection e
3.2.2 TaurusSystemlLogDataset
3.3 DataPreparation e e
3.3.1 Usersand SystemsPrivacy
3.3.2 StorageandSize Reduction L Lo L
3.3.3 Automation and Improvements
3.3.4 Data Discretization and Noise Mitigation
3.3.5 Cleansed Taurus System LogDataset
3.4 Marking Potential Failures
Failure Prediction
4.1 NullHypothesis e
4.2 Failure Correlation e
4.2 NodeVicinities e
4.2.2 ImpactofVicinities
4.3 Anomaly Detection
4.3.1 Statistical Analysis (frequency) oL
4.3.2 Pattern Detection (order)

4.3.3 MachineLearning. e

12
15
16
16
19
22

4.4 Adaptiveresilience e e

5 Results
5.1 TaurusSystem Logs e
5.2 System-wide Failure Patterns e
5.3 Failure Correlations e
5.4 Taurus Failures Statistics e
5.5 Jam-ejam Prototype e e e
5.6 Summary and DiSCUSSION e

6 Conclusion and Future Works

Bibliography

List of Figures

List of Tables

Appendix A Neural Network Models

Appendix B External Tools

Appendix C Structure of Failure Metadata Databse
Appendix D Reproducibility

Appendix E Publicly Available HPC Monitoring Datasets
Appendix F Glossary

Appendix G Acronyms

105

108

131

133

137

143

145

147

149

152

154

1 Introduction

The increasing demand for higher computation power, leads to production of more
complex computing units. According to Moore's Law [1], the number of transistors per
square centimeter on integrated circuits are doubled every two years thus, the computa-
tional performance. The Moore's Law holds true since 1965, and it is expected to remain
valid in near future'. However, despite the higher computation power of complex comput-
ing units, this complexity contributes to instability and error proneness of components as
well as the entire computing system.

On a higher granularity, failure rate in high performance computing (HPC) systems rapidly
increases due to the growth in system size and complexity. Hence, failures became the
norm rather than the exception [2, 3, 4, 5, 6]. The efficiency of failure recovery mech-
anisms, e.g., checkpoint-restart, is highly dependent on the mean time between failure
(MTBF). With the arrival of Exascale computers in the near future [7], the MTBF of HPC sys-
tems is expected to become too short, and that current failure recovery mechanisms will
no longer be able to efficiently protect the systems against failures [8, 9, 10, 11, 12, 13].

Early failure detection is a new class of failure recovery methods which is in particular
beneficial for large computing systems with short MTBF [14, 15]. Detecting failures in their
early stage can reduce their negative effects via barricading their propagation [16]. This
work provides a prototype to analyze and predict system behavior. The behavioral analysis
is then used to detect node-level failures as early as possible which paves the way toward
resilience in Exascale high performance computing.

1.1 Background and Statement of the Problem

Although the distribution, origin, and cause of failures have changed throughout the
years, addressing failures remained an important challenge in computing systems [17, 18].
Reliability of computing systems is becoming more and more important as the demand for
higher computing performance is increasing. To fulfill the performance requirements of
new algorithms and software, the computing units became complex and dense. Further-
more, additional computing units are employed by HPC systems. High complexity and den-
sity of computing units and higher number of components in computing systems, as well
as aggressive power management approaches such as dynamic frequency scaling (CPU
throttling) highly contribute to HPC systems error proneness [19].

Various approaches are proposed to address failures in HPC systems. Regardless of
the system layer of application, existing general-purpose approaches can be categorized

'Although the transistors may not shrink their size anymore, the computational performance tends to double
every two years.

4 1. INTRODUCTION

in three main categories of: (1) checkpointing, (2) replication, and (3) failure predictionZ.
The first two categories (checkpointing and replication) are currently de facto approaches
to address failures in production HPC systems. Although these categories are shown sepa-
rately, in most cases an integrated approach consisting both checkpointing and replication
is being used [20].

Statistics indicate a persistent number of critical failures in major production HPC sys-
tems. Table 2.1 on page 8 summarizes the failure statistics of various HPC systems over
the course of 37 years (1948-2020). Hardware unreliability is one of the main sources of
system failures in both industrial and commodity hardware [21, 22, 23]. The failure rate
of commodity components in most computing systems can be described using the Bath-
tub Curve [24] hazard function shown in Figure 1.1 [25]. Furthermore, the same relation
is observed between failure rate and the system up-time. In Chapter 4 the bathtub curve
concept is used to adjust the anomaly detection method.

A

Failure Rate

I I
1 1
1 1
I I
I I
1 1
I I
I I
1 1
1 1

Early life End of lif
ary e ; Random Failures ; nd.o e
Failures | i Failures

Time

Figure 1.1: The Bathtub Curve hazard function

Exascale HPC systems are expected to arrive by 2020 [7]. Current failure statistics in-
dicate the dire need of failure mitigation mechanisms in Exascale systems. In various
researches the MTBF is projected to be in the range of seconds and minutes instead of
days3 [2, 3, 27, 28, 29, 30, 31, 32].

Considering the short mean time to interrupt (MTTI) and the large size of Exascale HPC
systems, none of the existing approaches in their current form may remain beneficial to
address failures in the future. The checkpointing mechanisms require a certain amount
of time to generate snapshots of the current system status (Tcpeckpoint) @nd to restore the
snapshot after each failure (Trestore)*. Decreasing the MTTI to less that Tepeckpoint OF TRestore
prevents further progress of applications. Full replication of the system status is also not
cost-effective regarding the large size of the future Exascale HPC systems. Additional chal-
lenges such as consistency, synchronization, and network congestion which are side effects
of checkpointing and replication approaches may in turn introduce additional failures in
HPC systems.

*This categorization considers general purpose approaches and does not include domain-specific and special-
purpose methods such as algorithm-based fault tolerance (ABFT).

3Exponential distribution is often used to predict the time interval until future events (failure). This distri-
bution predicts the time until the first failure. Gamma distribution, on the other hand, predicts the time
interval until the iy, failure occurrence. Weibull, Gamma, and Pearson6 are the best-fit distributions for the
MTBF [26].

4Asynchronous (live) methods can reduce the required checkpoint/restart time.

1.2. PURPOSE AND SIGNIFICANCE OF THE STUDY 5

It is important to note that most failure statistics shown in Table 2.1 belong to HPC sys-
tems that operate in highly controlled environments. These HPC systems enforce strict
usage regulations and are under constant monitoring and maintenance by administration
personnel which regardless of the high imposed expenses, greatly contribute to systems
reliability. The aim is to fully automate the system monitoring and optimize the mainte-
nance periods according to systems behavior, and yet preserve the systems functionality.

1.2 Purpose and Significance of the Study

Operational HPC systems are facing failures on a daily basis, regardless of their size
and application. Failures in HPC systems are often correlated. In many cases these cor-
relations cause a failure chain> to form. Regular maintenance as well as hardware and
software upgrades constantly change the system'’s behavior. Analyzing and predicting the
system behavior can effectively improve the HPC systems uptime, and reduce penalties
imposed by regular failures®. Furthermore, automatic monitoring of the system reduces
the maintenance costs and increases the system’s functionality. The arrival of Exascale
HPC systems with their massive number of components further reveals the importance of
failure prediction for current and future computing systems.

This work provides a prototype to analyze and predict system behavior in order to de-
tect node-level failures as early as possible. The proposed approach respects the users
and system'’s privacy and is applicable on operational HPC systems without further mod-
ifications. Behavioral analysis enables the system to consider protective measures such
as checkpointing, redundancy, and migration in useful time to stabilize the systems status
and prevent further damages. Due to the large size of computing systems and the high vol-
ume of monitoring data, the proposed approach performs the main tasks fully automatic
or with minimum interactions.

Itis important to emphasis that this work does not intend to introduce a replacement for
de facto failure protection mechanisms. Instead, this work provides a prototype to analyze
and predict systems behavior, to improve the functionality of available mechanisms. In an-
other word, this work proposes an adaptive resilience approach that employs appropriate
protective measures according to the system’s behavior.

The results of this work contribute to answer questions including the followings: Are
the failures in HPC systems predictable? Which failures can be detected or predicted? Is it
possible to provide a general behavioral analysis method? How to expand this approach
to protect the Exascale computing systems? Which monitoring data has the required infor-
mation for behavioral analysis? How to comply with data protection regulations (GDPR)?
How to process and store the monitoring data for longer periods?

5Series of correlated failures (Section 3.1).
5An unintential failure caused by internal factors (Section 3.4).

6 1. INTRODUCTION

1.3 Jam-e jam: A System Behavior Analyzer

This work introduces jam-e jam?, a prototype to analyze and predict system behavior to
detect node-level failures as early as possible, in order to employ appropriate protective
measures in useful time. The system log (syslog) entries are chosen as the main source
of monitoring data in this work, due to their availability and information richness. A com-
prehensive anonymization technique is proposed to address privacy concerns raised by
syslog analysis. The proposed approach is applicable to HPC systems without any fur-
ther modifications. To provide an automatic approach suitable for extremely large HPC
systems, jam-e jam utilizes statistical analysis and failure correlations among nodes with
similar characteristics (node vicinity) to detect abnormal behaviors and predict upcoming
node failures.

Figure 1.2 illustrates an example of system behavior analysis performed on Taurus. Timely
detection of anomalies could have reduced the damages caused by failures via activating
the protection mechanisms before the occurrence of the failure.

Failure
(at this point node crashed) \

o @ o

Events

ow indicates a different type of events)

Normal behavior w
.

Steps

(each dot stands for a single syslog entry, in chronological order)

Figure 1.2: The time interval between detection of an anomaly and occurrence of the sub-
sequent failure (golden interval). The goal is to react during the golden interval
to reduce the damages caused by failures via timely activation of the failure re-
covery mechanisms.

Jam-e jam’s approach can be likened to the function of smoke detectors in buildings. The
smoke detectors activate protection mechanisms upon detection of smoke (the anomaly)
to reduce the damages of a potential fire (the failure).

Although the behavior analysis in this work is aimed for early detection of node-level fail-
ures, the proposed mechanism can be used to detect other anomalies too. Furthermore,
syslog entries, that are used as the main monitoring data in this work, can be replaced with
any other data source as long as it provides required information relevant to the granular-
ity of the expected anomalies.

The remainder of this work is structured as follows. Chapter 2 provides a review of the
literature. Details of the data collection and preparation process are provided in Chapter 3.
The methods are described in Chapter 4 and the major findings are explained in Chapter 5.
Chapter 6 concludes the work and specifies the important future work directions.

7Proper noun; a cup of divination in ancient mythology. Pronounced as Jam-e Jam.

https://en.wikipedia.org/wiki/Cup_of_Jamshid

2 Review of the Literature

With drastic increase in the number of HPC system components, it is expected to ob-
serve a sudden increase in the number of failures, which consequently poses a threat to
the continuous operation of the HPC systems. Current statistics show a persistent number
of critical failures in major production HPC systems. Hardware failures are responsible for
the majority of long-lasting down times in computing systems. As an example, the root
causes of network failures in data centers are shown in Figure 2.1.

80% 50%
72%
70% W failures 45%)
60% downtime 40% " fallure.s 38%
35% downtime 33%
&, 50% @
En ‘n,!p 30% 26%
S 40% S 25%
O @
g % 2F g 204
g 30% & 20%
o 15% 14%
15% 11%
20% 15%
3% 10% 8% 79
10% 3004% 5% 59 6% 5% - 5% A% 3% 3%
0% W _J | | __. | 0% J - | | | | L
Change Incident Net. Sw HW Config Change Incident Net. SW HW Config
Conn. Conn.
Problem type Problem type
Figure 11: Device problem types. Figure 12: Link problem types.

Figure 2.1: Root causes of network failures in data centers [33]. Failures are defined as any
unsuccessful link in the network. HW and SW stand for hardware and software
respectively.

Table 2.1 summarizes 37 years of HPC systems failure statistics. The inconsistency of
failure assessments and the heterogeneity of HPC systems shown in Table 2.1 make it dif-
ficult to perform a one-to-one comparison. However, it can be concluded that failures are
integral part of HPC systems. Therefore, failures must be addressed in order to guarantee
efficient progress of computations on HPC systems. The studies summarized in Table 2.1
conclude that large scale regular failures are mostly caused by file systems however, the
main cause of failures is hardware. The resiliency in HPC systems plays a vital role in com-
parison to other computing systems due to the complexity of workflows, applications and
the requirements of HPC systems. However, similar techniques can be applied on all types
of computing systems.

In summary, failures became an integral part of computing systems. Although, despite
imposing excessive overheads, existing failure recovery mechanisms such as checkpointing-
restart and redundancy are still useful for current HPC systems, it is predicted that future
HPC systems will not be able to perform efficient forward progress while running large ap-
plications due to their ever reducing MTBF. To ensure the aliveness of HPC systems in the
existence of failures, additional protective measures must be taken.

8 2. REVIEW OF THE LITERATURE

Table 2.1: High performance computing systems failure statistics from 1984 to 2020

Date Environment Observation
1984-1986 IBM Mainframe [34] 456 failures

1988-1990 Tandem [35, 36] 800 failures

1990 VAX [37] 364 failures

1989-1990 VICE [38] 300 failures

1999 70 Windows NT nodes [39] 1100 failures

1999 503 nodes [40] 2127 failures

2003 3000 nodes [41] 501 failures
2003-2004 395 nodes [42] 1285 failures
2004-2005 Liberty [43] 7.8 alerts per day
2005-2006 Blue Gene/L [43] 1,620 alerts per day
2005-2006 Thunderbird [43] 13,312 alerts per day
2006 Red Storm [43] 16,016 alerts per day
2005-2007 Spirit (ICC2) [43] 309,707 alerts per day
2007 BlueGene/L Coastal [44] MTBF 7-10 days
2007-2009 Unknown [45] MTBF 3-37 minutes
2005-2010 CENIC [46] 16-302 failures per link
2008-2010 Jaguar [47] 2.33 failures per day
2008-20M Jaguar XT4 [18] MTBF 36.91 hours
2008-20M Jaguar XTs [18] MTBF 22.67 hours
2008-20M Jaguar XK6 [18] MTBF 8.93 hours
2012-2013 K Computer [48] Failures rate 1.6%
2013 Blue Waters [49] MTBF 4.2 hours

2014 Titan [50] 317 HW and 270 SW failures
2014 Titan [51] g failures per day
2013-2015 EOS XC 30 [18] MTBF 189.04 hours
2013-2015 Titan XK7 [18] MTBF 14.51 hours
2015 BlueGene/Q Mira [52] MTBF 5.5 hours

2015 Petascale systems [53] MTBF 7-10 hours

2015 Cielo [54, 55] MTBF 24 hours
2011-2017 Facebook network [56] MTBF 1.8 months
2016-2017 Beocat [57] 10% job failure

2017 Argonne FUSION [58] MTBF 3-52 minutes
2013-2018 IBM Blue Gene/Q Mira [5] MTBF 1.3 days (99,245 job failure)
2014-2018 Titan [59] MTBF few minutes
2015-2018 Titan [60] 164,593 alerts per day
2020 TaihuLight [61] MTBF relatively short
2020 Summit [62] MTBF several hours

2.1 Syslog Analysis

Syslog was developed in the 1980s and since then became the de facto standard for
logging systems activities. RFC 3164 [63] first documented the details of the syslog protocol,
and later RFC 5424 [64] standardized it. All data fields in syslog entries are structured,
except the message field, which contains free-form text. Each syslog entry begins with a
PRIVAL (priority value) that represents the severity and the facility (origin) of the
message. The PRIVAL is calculated by multiplying the facility number by 8 and adding the
severity value to it. Table 2.2 provides an overview of syslog de facto facility codes and
severity levels used in Unix-like operating systems.

2.1. SYSLOG ANALYSIS 9

Table 2.2: syslog facility names and severity levels as described in RFC 5424

Code | Keyword Facility Keyword | Severity

0 kern kernel messages emerg Emergency: system is unusable

1 user user-level messages alert Alert: action must be taken immediately
2 mail mail system crit Critical: critical conditions

3 daemon system daemons err Error: error conditions

4 auth security/authorization messages warning | Warning: warning conditions

5 syslog messages generated internally by syslogd || notice Notice: normal but significant condition
6 lpr line printer subsystem info Informational: informational messages

7 news network news subsystem debug Debug: debug-level messages

8 uucp UUCP subsystem

9 cron clock daemon

10 authpriv security/authorization messages

1 ftp FTP daemon

12 ntp NTP subsystem

13 security log audit

14 console log alert

15 solaris-cron | clock daemon

16-23 | localo-local7 | local use o0-7

Due to the simplicity of the syslog protocol and its usefulness, wide range of computing
systems generate their system logs according to the syslog protocol. The information rich-
ness of syslog entries and the availability of syslogs on various computing systems made
them a good candidate for systems monitoring. Apart from the operating systems and
system-level services, the majority of the commodity applications also report their exe-
cution status in detail through log generation. On average, between 1% and 5% of the
software source code is dedicated to log generation [65].

Various studies utilize syslog entries for behavioral analysis and anomaly detection.
There are available platforms such as Elastic Stack [66], CloudSeer [67], and LogSCAN [68]
which provide comprehensive analytics toolkit for administrators in order to have a better
accessibility to system logs.

Parsing the syslog entries is a challenging task due to the existence of free-form text
within the message part of the syslog entries. Even though that the syslog entries produced
by each software are generated via predefined message templates, these templates are
not uniform across various software. Furthermore, the large number of variables used in
message templates contributes to the complexity of the pattern detection, e.g., the Ubuntu
operating system reports 70,506 variables in its log entries and Openssh reports 3,290 vari-
ables [65]. Therefore, throughout the years various tools and platforms were developed
to collect, digest, and analyze the log messages.

Several research projects attempt to automate the parsing of unstructured log mes-
sages. Most of the proposed algorithms where exclusively designed for handling system
logs. SLCT [69] and LFA [70] algorithms use frequent item set mining to detect similar pat-
terns among syslog entries. AEL [71] and LKE [72] use heuristic methods to detect variables.
IPLoM [73] utilizes iterative partitioning based on word count. LogSig [74] generates sys-
tem events from textual log messages via detecting the most representative message sig-
natures. SHISO [75] proposes a structured tree capable of refining log formats in realtime.
LogCluster [69] applies hierarchical clustering to cluster system logs. LenMa [76] detects
message patterns using the length of words in each message. LogMine [77] employs a mul-

10 2. REVIEW OF THE LITERATURE

tiple sequence alignment algorithm to group similar log messages. Spell [78] and Drain [79]
provide online parsing methods, Spell utilizes a longest common sub-sequence based ap-
proach to detect log patterns, while Drain uses a fixed depth parse tree. MoLFI [80] in other
hand uses the domain knowledge and performs a reverse search in the space of solutions
for a Pareto optimal set of message templates.

Among these algorithms the source code of Drain and LenMa as online log parsers are
available. Some other log parsing algorithms are re-implemented in other studies’. Com-
parison of the parsing accuracy of these 13 algorithms on different log datasets is shown
in Table 2.3 [81, 82]. Despite the high parsing accuracy on certain software logs such as
Apache web server, all algorithms perform poorly on Linux system log (syslog)s which is
the main source of monitoring data in this work [83].

Table 2.3: Accuracy of log parsers on different datasets [82]

Dataset SLCT | AEL | IPLoM | LKE | LFA | LogSig | SHISO | LogCluster | LenMa | LogMine | Spell | Drain | MoLFI
HDFS 0.545 | 0.998 1 1 0.885 | 0.850 | 0.998 0.546 0.998 0.851 1 0.998 | 0.998
Hadoop 0.423 | 0.538 | 0.954 | 0.670 | 0.900 | 0.633 | 0.867 0.563 0.885 0.870 0.778 | 0.948 | 0.957
Spark 0.685 | 0.905 | 0.920 | 0.634 | 0.994 | 0.544 | 0.906 0.799 0.884 0.576 0.905 | 0.920 | 0.418
Zookeeper | 0.726 | 0.921 | 0.962 | 0.438 | 0.839 | 0.738 | 0.660 0.732 0.841 0.688 0.964 | 0.967 | 0.839
OpenStack | 0.867 | 0.758 | 0.871 | 0.787 | 0.200 | 0.200 0.722 0.696 0.743 0.743 0.764 | 0.733 | 0.213
BGL 0.573 | 0.758 | 0.939 | 0.128 | 0.854 | 0.227 0.71 0.835 0.69 0.723 0.787 | 0.963 | 0.960
HPC 0.839 | 0.903 | 0.824 | 0.574 | 0.817 | 0.354 | 0.325 0.788 0.830 0.784 0.654 | 0.887 | 0.824
Thunderb. | 0.882 | 0.941 | 0.663 | 0.813 | 0.649 | 0.694 | 0.576 0.599 0.943 0.919 0.844 | 0.955 | 0.646
Windows 0.697 | 0.690 | 0.567 | 0.990 | 0.588 | 0.689 | 0.701 0.713 0.566 0.993 0.989 | 0.997 | 0.406
Linux 0.297 | 0.673 | 0.672 | 0.519 0.279 | 0.169 0.701 0.629 0.701 0.612 0.605 | 0.690 | 0.284
Mac 0.558 | 0.764 | 0.673 | 0.369 | 0.599 | 0.478 | 0.595 0.604 0.698 0.872 0.757 | 0.787 | 0.636
Android 0.882 | 0.682 | 0.712 | 0.909 | 0.616 | 0.548 | 0.585 0.798 0.880 0.504 0.919 | 0.9M 0.788
HealthApp | 0.331 | 0.568 | 0.822 | 0.592 | 0.549 | 0.235 | 0.397 0.531 0.174 0.684 0.639 | 0.780 | 0.440
Apache 0.731 1 1 1 1 0.582 1 0.709 1 1 1 1 1

OpenSSH 0.521 | 0.538 | 0.802 | 0.426 | 0.501 | 0.373 0.619 0.426 0.925 0.431 0.554 | 0.788 | 0.500
Proxifier 0.518 | 0.518 | 0.515 | 0.495 | 0.026 | 0.967 | 0.517 0.951 0.508 0.517 0.527 | 0.527 | 0.013
Average 0.637 | 0.754 | 0.777 | 0.563 | 0.652 | 0.482 | 0.669 0.665 0.721 0.694 0.751 | 0.865 | 0.605

Beside research projects, various industrial tools for parsing and analyzing log mes-
sages are available. Table 2.4 provides a list of 31 log management and analyzing tools
which are capable of analyzing system logs. Other industrial platforms such as AlienVault,
BLESK, Bugfender, Chart.io, GoAccess, jKool, Knowi, Logary, Looker, ManageEngine, Octo-
pussy, PagerDuty, Papertrail, Pentaho, Prometheus, Qlik, Retrace, Rocana, ScoutApp, Sen-
tine, Sentry, Seq, Sisense, and Tableau are also able to perform basic syslog analysis with
the help of additional plugins.

Identifying the variable terms within system logs is a common practice for log pattern
extraction before performing log analysis. The goal is to extract of common patterns from
similar log messages. Direct extraction of log patterns from software source code provides
the highest accuracy [65]. However, in many cases the software source code is not available
or accessible. Furthermore, the efficiency of direct pattern extraction from software source
code is significantly low due to the inconsistency of log messages generated using various
versions of a software. Therefore, log patterns must be re-extracted after each software

'https://github.com/logpai/logparser

2.1. SYSLOG ANALYSIS 1

Table 2.4: Names and description of 31 log management and analyzing tool

Tool Name

Description by the producer

Alert Logic [84]
Cloudlytics [85]
EventSentry [86]
EventTracker [87]

Collect, aggregate, and search log data

Orchestration for log analysis and monitoring

Log Monitoring and beyond

Monitor, search, alert and report on any log or any format

Fluentd [88]
Apache Flume [89]
Graylog [90]
InTrust [91]
IPSwitch [92]

Data collector for unified logging layer

Efficiently collecting, aggregating and moving large amounts of log data
Industry leading log management

Smart and scalable event log management

An automated tool that collects, stores, archives and backs-up Syslog

Inav [93] The Log File Navigator

LOGalyze [94] The best way to collect, analyze, report and alert log data
LogDNA [95] Instantly centralize, monitor, and analyze logs in real-time
Logentries [96] The Fastest Way to Analyze Your Log Data

Loggly [97] Perform log analysis on text based logs

Logmatic [98]
LogRhythm [99]
Logsign [100]
Logstash [101]
LOGStorm [102]
Logsurfer [103]
Logz.io [104]
Loom [105]
Motadata [106]
Nagios [107]

Log Centralization, Analytics and Visualization

Log Management and Log Analysis

Real-Time Analysis

Collect, Parse, Transform Logs

Complete log management with powerful correlation technology
Monitoring system logs in real-time

Al-Powered Log Analysis

Predict and Prevent IT incidents

Find Actionable Context in Log Data

Centralized Log Management, Monitoring and Analysis Software

NXLog [108] Log manarement solutions for everyone
OVIS (Baler) [109, 110] | HPC data collection, transport, storage, analysis, visualization, and response
Scalyr [111] Log management and visibility for modern applications

Splunk [112]
Sumo Logic [113]
Swatch [114]

XpolLog [115]

Predict and prevent with an Al-powered monitoring and analytics solution
Proactive and predictive

Monitoring events on a large number of servers andworkstations

Fully Automated Log Management

update. Alternative approach is the extraction of log patterns through reverse analyzing
of collected log messages. This method is used in this work. More details are provided in
Section 3.3.

A common approach proposed by several algorithms such as LogSig [74], IPLoM [73],
LogCluster [69], LogMine [77], and MoLFI [80] is to convert the syslog entries into system
events via multiple passes of clustering and categorization. In several cases, the times-
tamps of log entries are discarded as a side effect of such clustering methods, resulting
in the elimination of temporal correlations among system logs [116, 65, 117]. Although few
approaches preserve the temporal correlations of log entries [118], most of the existing ap-
proaches utilize static sets of rules to differentiate among various classes of system logs
which negatively affects the accuracy of these approaches in processing of unseen and
sophisticated log entries.

The main challenge in all available parsing methods is the analyzing of the unstructured
part of syslog messages. Due to the unreliable nature of the syslog protocol, noises and in-
consistencies also exist among the collected system log entries. Majority of the existing log
parsers require multiple passes of processing which makes them inadequate for real-time

12 2. REVIEW OF THE LITERATURE

monitoring and analysis of large HPC systems. Due to the unavailability of the original im-
plementation of the existing algorithms, most features of the proposed algorithms cannot
be evaluated. None of the existing tools are able to automatically analyze unstructured
free-form log messages. User privacy remains a great concern since the industrial plat-
forms provide the log analyzing process as a remote service, and the log analysis may take
place on the third-party servers. Reliance on static rule sets restricts the flexibility of pat-
tern detection. Due to the dynamic nature of HPC systems, manual adjustment of rule sets
is also not preferred.

2.2 Users and Systems Privacy

Conducting any form of behavior analysis, for the purpose of failure detection and pre-
diction, requires in-depth details about the actual state of the computing system. System
logs readily contain such information. The usage of an HPC system is regulated by the
privacy guidelines in force, according to its functionality, production environment, and ad-
ministration domain. Depending on the applicable privacy regulations, certain information
within the system logs may be considered as sensitive information. Examples include user-
names and IP addresses. Information deemed sensitive on one HPC system can be consid-
ered not sensitive to another HPC system. Analyzing and distributing raw system logs, that
may contain sensitive information, endangers the privacy of data subjects such as users,
system owners, and system vendors. Therefore, data anonymization is required before the
analysis and distribution of (raw) system logs. However, due to the uncertainties about
the imperfection of the existing anonymization methods, the owners of HPC systems are
reluctant to publish their monitoring data [119]. A list of publicly available HPC monitoring
data® is shown in Chapter E.

The data protection and privacy guidelines of each computing system mandate the re-
moval of certain sensitive information from system logs. Therefore, a certain amount of
information loss cannot be prevented during the anonymization phase. After anonymiza-
tion, the system logs may have already lost their usefulness for certain types of analyses.
For example, the anonymized system logs of a computing system, with a privacy guideline
that mandates complete removal of all usernames from system logs before any analysis,
are not useful for user accounting purposes.

In March 2014, European Parliament approved the new privacy legislation. According to
these regulations, personal data is defined as "any information relating to an identified or
identifiable natural person (‘data subject.)" [120]. This information must remain private to
ensure a person’s privacy. Based on this definition, syslog entries contain numerous terms
which represent personal data and must, therefore, be protected.

Encryption and de-identification are the most common approaches to protect personal
data in log entries. Encryption reduces the risk of unauthorized access to personal data.
However, encryption is reversible. Any form of encryption is theoretically breakable, pro-

*To the best knowledge of author, at the time of writing, these are the only existing large-scale publicly-
available HPC monitoring data.

2.2. USERS AND SYSTEMS PRIVACY 13

vided enough time and computational power. The encryption key having to be securely
preserved yet also shared in order to make further analysis possible. Therefore, encryp-
tion can only be used within a trusted environment and the encrypted syslog entries can-
not be freely used or distributed in the public domain. Therefore, log encryption is not a
suitable approach for analyzing and distributing system logs. In contrast, de-identification
eliminates the sensitive data and only preserves the nonsensitive (cleansed) data. As such,
de-identification provides the possibility of distributing de-identified data in the public do-
main. However, due to the potential excessive information loss, the de-identified data may
turn out to no longer be of real use.

Pseudonymization and anonymization are two different forms of de-identification. In
pseudonymization, the sensitive terms are replaced by dummy values to minimize the risk
of disclosure of the data subject identity. Nevertheless, with pseudonymization the data
subject can potentially be re-identified using supplementary information [121]. Anonymiza-
tion, in contrast, refers to protecting user privacy via irreversible de-identification of per-
sonal data.

Generalization and suppression are two well-known methods for data anonymization.
These methods either group or remove data to reduce uniqueness, and thus, the chance
of identification of individual data subjects from the records in the dataset. In 2002 k-
anonymity [121] was introduced as a model for protecting privacy via generalization. Al-
though k-anonymity addressed the main challenge of data privacy in anonymized datasets,
it had several shortcomings such as attribute disclosure, and complementary data release.
To overcome these shortcomings, several models such as i-diversity [122] and ¢-closeness [123]
were introduced. These models reduced the data representation granularity (grouping) be-
yond the level used in k-anonymity, which could result in decreased data usefulness. The
I-diversity models are also potentially vulnerable to algorithm-based attacks. Some studies
considered an integration of both, the i-diversity and ¢-closeness models [124]. In 2006 the
formal principle of differential privacy was introduced [125]. The differential privacy prin-
ciple addresses the vulnerability to algorithm-based attacks and provides a strong privacy
model. However, identifying a good strategy to implement differential privacy is difficult,
it further decreases the data utility, imposes high overhead, and cannot be automated.
According to the articles 2, 4(1) and (5) and recitals (14), (15), (26), (27), (29) and (30) of the
GDPRS3, in order to analyze sensitive information, an irreversible anonymization of personal
data must be guaranteed [126]. To the best knowledge of the author, no existing model can
guarantee the data privacy and provide useful data.

Various tools have been developed to address the privacy concerns of using syslog in-
formation. Most of these tools provide log encryption as the main feature, while certain
tools also provide de-identification as an additional feature. Syslog-ng and Rsyslog are
two open-source centralized logging infrastructures that provide out of the box encryption
and message secrecy for syslogs, as well as de-identification of syslog entries [127, 128].
Both tools provide a pattern database feature, which can identify and rewrite personal data
based on pre-defined text patterns. Logstash [129] is another open-source and reliable

3The European General Data Protection Regulation.

14 2. REVIEW OF THE LITERATURE

tool to parse, unify, and interpret syslog entries. Logstash provides a text filtering engine
which can search for the text patterns in live streams of syslog entries and replace them
with predefined strings [130]. In addition to the off-line tools (local installation), such as
syslog-ng and Logstash, there is a growing number of online tools (remote services) such
as Loggy [131], Logsign [100], and Scalyr [111], that offer a comprehensive package of syslog
analysis services. The existence of sensitive data in the system logs barricades the usage
of such remote services.

Alongside these industrial-oriented tools, several research groups have developed scientific-
oriented toolkits to address the syslog anonymization challenge. eCPC toolkit [132], sd-
cMicro [133], TIAMAT [134], ANON [135], UTD Anonymization Toolbox [136], and Cornell
Anonymization Toolkit [137] are selected examples of such toolkits. These tools apply var-
ious forms of k-anonymity [121] and /-diversity [122] to ensure data anonymization. Achiev-
ing an optimal k-anonymity is an NP-hard problem [138]. Heuristic methods, such as k-
Optimize, can provide effective results at the cost of a longer time [139].

The process of data anonymization incurs a certain degree of information loss. With
significant information loss comes decreased usefulness of the anonymized data. Vari-
ous studies attempted to address the problem of achieving k-anonymity protection with
minimal information loss. Gionis and Tassa proved that solving the problem for the two
conflicting goals above is NP-hard [140]. Later, it has been shown that dynamic optimiza-
tion of the anonymization process considerably reduces the loss of information [141]. In
another attempt to address the high information loss during data anonymization, utility-
based anonymization methods were proposed. Xu et al. [142] introduced an approach which
first, specifies the utility of each attribute, and second, proposes two heuristic local record-
ing-based anonymization methods [143] to boost the quality of the analysis later. A data re-
location mechanism has also been applied to reduce granularity and populate small groups
of tuples to increase data usefulness [144]. In another similar effort, quasi-identifiers have
been divided into two groups of ordered and unordered attributes [145]. To reduce the
information loss, more flexible strategies for data generalization have been applied on the
unordered attributes. More recently, co-utility [146] has been introduced as a global dis-
tributed mechanism for data anonymization, such that a balance between data utility and
data privacy is achieved. Although these efforts decrease the information loss during data
anonymization, they still cannot guarantee data privacy. The non-zero probability of pri-
vacy breaches through anonymization by the use of approaches such as those mentioned
in this section has been experimentally determined [147].

Quantifying data utility4, which is a qualitative property of data, provides a measure to
control the balance between privacy and utility of data. Anumber of studies proposed such
measures to quantify the utility of anonymized data. Data utility is mostly described as the
amount of information loss. Information loss, in general, can be quantified according to
the uncertain change in attribute values during the anonymization [145], via result-driven
approaches to compare the data before and after anonymization [148], or even according
to the data entropy in the dataset [149]. These measures are generally divided into two cat-

4Utility and usefulness are used interchangeably in this work.

2.3. FAILURE DETECTION AND PREDICTION 15

egories: (1) entropy-based and (2) distance-based (e.g., the Hellinger distance). Furthermore,
most of the above mentioned usefulness quantification approaches are implemented into
data anonymization tools, such as ARX [150].

Existing approaches for quantification of data usefulness aim to increase data privacy,
data utility, or both, in anonymized datasets. However, these approaches implicitly make
the fundamental assumption of having a structured format for the data entries. In reality,
system log entries are of mixed structured and unstructured data formats. The structured
part contains the meta-data (e.g., time or location related to the particular syslog entry),
and the unstructured part contains the detailed event information. Sensitive information
mainly resides within the unstructured part of the data. In the author’s best knowledge,
due to the unstructured nature of the detailed event information (no two distinct events
generate the same information pattern), none of the existing approaches provide utility-
based anonymization of system logs. Moreover, although a few studies addressed the de-
identification of unstructured datasets [151], none of these studies, nor the known privacy
models guarantee data privacy at an acceptable overhead (time and complexity).

Using the existing anonymization approaches, in general: (1) The quality of the anonymized
data dramatically degrades, and (2) The size of the anonymized syslogs remains almost
unchanged. The industrial-oriented approaches are unable to attain full anonymization at
micro-data level [121]. Even though scientific-oriented approaches can guarantee a high
level of anonymization, they are mainly not capable of applying effective anonymization
in an online manner. Certain scientific-oriented methods, which can effectively anonymize
online streams of syslogs, need to manipulate log entries at their origin [152, 153].

The data application is not considered in existing methods of data usefulness assess-
ment. Although data may lose its usefulness for certain analysis, it may remain useful for
other applications. Therefore, it is important to assess the data usefulness in respect to
the data application. While the anonymization methods try to uniform the data variance
in order to protect users privacy, anomaly detection techniques on the other hand require
those differences in input data to detect anomalies. Thus, useful data from this perspective
must project a balance between variation and uniformity.

2.3 Failure Detection and Prediction

When defects within the system’s components (fault) are triggered (error), they might
prevent system’s components to perform their expected functionalities, thus cause failure.
Although failures are run-time events, failure prediction can be performed using both on-
line and offline approaches. Offline failure prediction approaches employ the knowledge
gained during previous executions to predict the probability of future failure occurrences.
Due to the static nature of offline prediction approaches and their reliance on historic data,
dynamic behaviors cannot be predicted using offline approaches. Online failure predic-
tion approaches consider run-time information beside the historic executions’ knowledge
to predict the probability of future failure occurrences [154]. Given the dynamic nature of
general-purpose HPC systems, online approaches are more suitable for failure prediction.

16 2. REVIEW OF THE LITERATURE

During the past decade, multiple studies investigated the existing failure detection and
prediction methods in the context of HPC [155, 156, 157, 158]. This sub-section, along with
an overview of existing literature, fills the gap via investigating failure prediction methods
that are based on log processing and are not covered in the existing studies.

2.3.1 Failure Correlation

Studies have shown different forms of correlations among failures in large computing
systems [159, 68, 160]. In most cases, these correlations proved to be beneficial for syslog
analysis. Itis expected to observe similarities among the footprints of correlated failures in
system logs. These similarities are captured and utilized to detect correlated failures. Two
groups of correlations exist: static (i.e., permanent) and dynamic (i.e., temporary) [161, 162,
163, 164].

Majority of correlations are static correlations that are part of the system characteristics
and will remain unchanged during the lifetime of the computing system. Simultaneous
failure of multiple computing nodes located in a single rack caused by malfunctioning of the
rack’s cooling system is an example of static (spatial) correlation among failures. Dynamic
correlations are mainly appearing due to the dynamic assignment of shared resources and
user interactions. The simultaneous failure of multiple computing nodes that are accessing
a certain file on an unstable distributed file system is an example of a dynamic failure
correlation.

2.3.2 Anomaly Detection

Anomaly detection is the main building block of failure detection mechanisms. The goal
of anomaly detection is detecting irregularities in normal behavior. To achieve this goal,
(1) the normal behavior and (2) the acceptable deviation threshold from this norm should
be defined. Any deviation more than the acceptable threshold is considered abnormal
behavior. Since the behavior of computing systems is constantly changing in response
to their users and environment, static models are not sufficient to describe the dynamic
behavior of modern HPC systems. Therefore, the model that describes the normal system'’s
behavior should be constantly updated according to the new behavior of the computing
system.

Various methods are proposed to extract the behavioral patterns of computing sys-
tems. Estimating probability of upcoming failures based on system'’s load [34, 42], calcu-
lating failure frequency via word counting, using time series analysis, generating hidden
Markov models [165], anomaly detection via predefined rule-sets [103], automatic pattern
mining [166], various forms of clustering [167], and decision trees [168] are examples of ma-
jor anomaly detection methods. Furthermore, several studies suggested to form blocks of
correlated syslog entries using the semantic correlation among system logs before further
analysis [169, 116]. Directed acyclic graphs (DAG) have been also used in anomaly detection
methods to preserve the correlation of log entries [170].

2.3. FAILURE DETECTION AND PREDICTION 17

However, system logs are not the only monitoring data which are used for detecting
anomalies in computing systems. CASPER [171] monitors the network activities, TIRESIAS [172]
observes CPU, memory, and context switches, SEAD [173] monitors the hypervisor, and
ALERT [174] collects various metrics including CPU load, memory usage, input/output data
rate and buffer queue length (more information in Table 2.7). This section briefly introduces
the 3 most used methods of anomaly detection that are based on system log analysis.

Time Series Analysis

System logs by default are discrete series of timestamped events. Therefore, they can
be best described using time series. Time series analysis are mainly focused on detecting
auto-correlations, trends or seasonal variations among the input data.

The first steps in time series analysis is data discretization and assignment of an alpha-
bet according to the potential input values. Assuming that the number of syslog entries
received during a 5-minute time window is a value between 0 and 1000 depending on the
computing system'’s condition, the alphabet ¥ can be defined as ¥ = a,b,¢,d such that
a={0:0},b={1:10}, ¢ ={11:100} and d = {101 : 1000}. According to the newly defined
alphabet, the set of syslog records R = {10, 34,0,512,23,12} which is collected during a
30-minute interval (5-minute time window) can be written as R = {b, ¢, a,d, c,c}, or simply
R = "beadcc”.

Using time series, 3 types of periodicity can be defined: (a) symbol periodicity: when one
symbol repeats periodically e.g., a in "abcaeceabeabdacea”, (b) partial periodicity: when a pat-
tern consists of more than one symbol repeats periodically e.g., abc in abcaeedabcbeababed”,
and (3) full periodicity: when the time series is mostly represented by a periodic pattern
e.g., abdc in "abdcabdcabdc”.

The definition of alphabet has a significant impact on the results of time series analysis.
Assigning a symbol to a range of values eliminates potential noises in data, and improves
the consistency of results. However, the semantic of values must be considered in choosing
the value ranges. An uninformed assignment may hide anomalies via an unintentional
flattening of the outliers.

Suffix trees and suffix arrays are powerful data structures for analyzing time series [175,
176]. Suffix trees can be generated in linear time [177]. A bottom-up traverse of suffix
tree results in generation of the occurrence vector. Occurrence vectors are common data
structures to store the position of repetitive patterns in time series. The sorted list of all
suffixes of a string, forms the suffix array of that string. Suffix arrays proved to be extremely
efficient data structures for anomaly detection in very large time series [178].

Pattern and Rule Mining

Pattern mining is a powerful tool to discover sequential and periodic recurring patterns
in various sequences (e.g., time series). In Table 2.5a, 5 sequences of events have been
shown. The sequence of < b, ¢, g > is a recurring sequential pattern with support value of

18 2. REVIEW OF THE LITERATURE

4, since it has been repeated in 4 sequences. Significant changes of the recurring patterns’
support value during fixed-size time windows can be an indication of abnormal behavior.

Main drawback of this approach is the lack of probability assessment. Therefore, it is not
known how plausible is the re-occurrence of an upcoming event. For example in Table 2.53,
itisindicated that the <b,c,g> sequence is recurring with a support value of 4. However, itis
not known that this sequence has a re-occurrence probability of 80% (4 out of 5 sequences;
the order of appearance is not considered).

(a) Pattern mining (b) Rule mining
Name | Sequence Name | Sequence
Sq1 <a,b,c,d,ee g h> Sq1 <a,d,cd,eegh>
Sq2 <f,b,e,gcf,gb> Sq2 <f,b,e,gcfga>
Sq3 <gb,fd,h,gb,a> Sq3 <g,b,f.d,h,gb,a>
Sq4 <b,c,a,a,df,ga> Sq4 <b,c,a,a,dfga>
Sqs <b,a,c.efh,cg> Sqs <a,b,c.efh,cg>

Table 2.5: Examples of pattern and rule mining in sequences

Various algorithms such as PrefixSpan (2004), LAPIN (2005), CM-SPADE (2014), VMSP
(2014), CM-SPAM, FCloSM, FGenSM, Spade, SPAM and GSP have been introduced for pat-
tern mining. However, the lack of probability assessment is one of the main limitations to
use these algorithms in failure prediction.

To overcome this limitation, the rule mining has been introduced. A (sequential) rule is
defined as A => B, where both A and B are itemsets. The A => B rule is interpreted
as if items in itemset A occur, then they will be followed by the items in itemset B. The
items within A and B can occur in any order, but it is required that the items of B occur
only after items of A. Considering Table 2.5b as sets of sequences and {b} => {a, f} as the
sequential rule, it can be concluded that the support of sequential rule {6} => {a, f} is 3.
Since, in 3 sequences the events a and f are occurring after event b.

To calculate the probability of a sequential rule, another measure called confidence will
be considered. Confidence of the rule A => B is the support of the rule divided by the
number of sequences containing the items of A. In the given example, since in 4 out of 5
sequences {b} occurs but only in 3 of them itis followed by {a, f} therefore, the confidence
of rule {b} => {a, f} is 75%.

Various algorithms such as CMRules (2010), TopSeqRules (2011), RuleGrowth (2011), TNS
(2013), ERMiner (2014), TRuleGrowth, PFP-Tree, HUSRM, MKTPP, ITL-Tree, PF-tree and Max-
CPF are proposed for sequential and periodic rule mining. Studies show that rule mining
provides higher detection accuracy than pattern mining [179].

Machine Learning

From another perspective, anomaly detection methods are divided into three main cate-
gories of rule-based, supervised, and unsupervised [180]. Although many rule-based meth-
ods have been proposed, the unstructured nature of syslog messages extremely limits the
functionalities and the detection domain of rule-based approaches. Supervised methods

2.3. FAILURE DETECTION AND PREDICTION 19

on the other hand require both normal and abnormal patterns to train a functional behav-
ioral classifier. Therefore, rule-based approaches as well as supervised approaches are not
able to detect anomalies which are not seen before. Furthermore, extraction of rules and
patterns for rule-based and supervised approaches are time-consuming and inaccurate,
respectively [181].

In contrast, unsupervised approaches are able to automatically extract the system'’s
behavioral pattern from the monitoring data. However, most of the unsupervised ap-
proaches and available tools are domain specific. They are built specifically for a certain
class of problems e.g., security threads detection [182], DNS poisoning attacks identifica-
tion [183], or performance bottleneck detection [184]. Furthermore, general approaches
such as invariant log mining [185] and principal component analysis (PCA) [186] only con-
sider the chronological order of the events, discarding the temporal correlation among log
entries.

Unsupervised syslog-based anomaly detection methods were further improved via re-
cent advances in machine learning techniques [118, 166, 187, 188]. Despite the rapid im-
provements in performance and accuracy of unsupervised anomaly detection approaches
using machine learning, certain challenges remained unsolved. As the volume of generated
system logs on HPC systems is rapidly increasing, the storage and processing of syslog en-
tries becomes challenging. Due to the diversity of HPC systems characteristics, in contrast
to many use cases of machine learning, reuse of pre-trained models for anomaly detec-
tion in HPC systems is not an effective alternative. Processing system logs that contain
various personal data, raises serious concerns regarding users privacy. Due to the compo-
nents’ heterogeneity in modern HPC systems, each component projects a different behav-
ior which cannot be accurately modeled via a single system-wide general model. Software
and hardware updates, various applications and the multi-user environment of HPC sys-
tems, continuously change the system’s behavior. Therefore, a static behavioral model
of the HPC system is not sufficient to accurately model the dynamic behavior of modern
HPC systems. In addition, system logs are generated by individual computing nodes, thus,
any failure directly affects syslog entries via introducing noises, interrupting log generation
mechanisms, or impeding the log collection procedure. Furthermore, harmless errors that
are not causing failures may also introduce noises in syslog entries.

2.3.3 Prediction Methods

Salfner et al. [155] divide the procedure of failure prediction into 5 steps of (1) testing,
(2) auditing, (3) monitoring, (4) reporting and (5) tracking. Figure 2.2 shows 3 main steps that
are performed by most online failure prediction mechanisms. In a recent study, Jauk et al.
classified more than 30 existing prediction methods. Table 2.6 shows the two-dimensional
classification of prediction methods as originally proposed in [158].

20 2. REVIEW OF THE LITERATURE

Bayesian Stochastic
Probability prediction models
distribution N
Failure estimation on- :
N parametric Fun§t|on_ Regression
tracking methods approximation
Co-occurrence
Machine
learning
Bayesian
classifiers
Classifiers F“?Z.V
classifiers
Other
approaches
Online failure Symptom Instance
prediction monitoring models
Clustered
instance
models
System models
Rule-based Stochastic
approaches models
Co-occurrence Graph models
Detected error Pattern .
reporting recognition Regression
Statistical tests Time series Feature
analysis analysis
Classifiers Time.se.ries
prediction

Figure 2.2: A taxonomy for online failure prediction approaches [155]

Failure tracking

Failure tracking uses the recorded failures of the past to predict potential future failures.
The prediction is made either via estimating the probability distribution of failures, or via
analyzing the correlation between failures.

Symptom monitoring

Symptoms are side effects of failures which can be directly or indirectly related to the
cause of failure. Sudden increase of network traffic or higher CPU consumption are di-
rect and indirect side effects of network driver failure, respectively. Constant monitoring
of the computing system parameters can reveal the symptoms and help to identify the
causing failures. Common methods of symptom detection are: (1) function approximation
that compares the actual and the expected output of unknown functions fed with system

2.3. FAILURE DETECTION AND PREDICTION 21

Table 2.6: A classification of literature on failure prediction in HPC [158]
Class SW/S | Node Disk [Mem. [Net.
Root Cause unspecified pinpoint-able
[189] \ -/82
[190] -/-
[191] 93/43
[192] =//=

Log

78775
[83] 69/58
Correlation Probability 88/ 46
[193] 91.2/45.8
88/ 75
[194] 77 /69

81/ 85
[195] =/=

[196] 80/90
[197] 58/74
[

Rule

[199] 98/93

[201] 40/ 80
[202] /-

-/-
* / *

Mathematical, Analytical

98/ 91

94.2/ 85.9
79.5/50
95/94
[209] 53/-
[210] =/ =
[211] | 72/87
Regression [212] /-
[213] 55* / 8o*
[214] 66.4/59.3
Classification [215] /-
[
[

1
1
[205] 74/ 81
1
1
]

Decision Trees / Forest

216] */* */*
202] -/-
2171 93/91

82.3/85.4
64.8/65.2

Bayesian Network, Markov

Neural Network 8 /-

80/ -
[220] 90* / 70*
[221] -/-
(with precision/recall values in %)

Blue shows ability to predict this type of failure.

A : Results for different data sets.

B : Results for different training parameters.

C: Results varies greatly with different parameters.

D : Paper lists several methods or setups.

*: Many results provided, see reference.

- No numerical result is given.

Meta-Learning

parameters, (2) classifiers that identify the value of system parameters as normal or ab-
normal based on predefined thresholds, (3) system models that build a model according
to the normal state of the system and search for significant deviations from this model and
(4) time series analysis that detects deviations within the chronological sequence of system
parameters.

22 2. REVIEW OF THE LITERATURE

Detected Error reporting

In contrast to symptom monitoring, that constantly monitors certain system parame-
ters to detect potential deviations in their values, this approach only analyzes the detected
and reported errors. Undetectable errors are hidden to detected error reporting as an on-
line event-driven approach, thus, certain failures are out of the scope of this prediction
method. The reported errors can be compared against a set of predefined rules or pat-
terns (rule-based systems and pattern recognition), searched for detecting correlations
between reported errors (co-occurrence), statistically compared to previous records (sta-
tistical tests) or labeled according to their importance and impact (classifiers).

2.3.4 Prediction Accuracy and Lead Time

Among the available prediction methods, regardless of the chosen failure prediction
approach, the final reported assessments are either (1) the location and time of potential
future failures (i.e., when a certain node is expected to fail) or (2) continuous reporting of
the stability status of computing nodes (i.e., no conclusion is provided). Both formats may
include a certainty value that indicates the confidence of assessment. Table 2.7 provides
a list of recent failure prediction methods and their respective accuracy and recall values.
Each method is evaluated using a different set of input data.

The Precision, Recall, Accuracy, and FyScore are calculated as shown in Figure 2.3. True
positives (TP) indicate failures that are correctly identified. Higher precision value in Ta-
ble 2.7 indicates less false positives (FP), that represent normal events that mistakenly
identified as failure. Higher recall value indicates less false negatives (FN), that represent
failures that remained unidentified>.

All events
Precision — TP
recision = TP+ FP
l= ———
Recall = 75 TN
A (TP+TN)
ceuracy =
N Y= TPYFP{FN<TN)
Precision.Recall
Fi1Score =2 —
) Precision + Recall
All failures

Figure 2.3: Calculation of precision and recall values. TP, FP, FN, and TN stand for true posi-
tive, false positive, false negative, and true negative respectively. UF represents
the unpredictable failures explained in Section 5.4. Unpredictable failures are
subset of false negatives.

>Some studies suggest additional metrics to evaluate the usefulness of prediction methods [15]. However,
in the context of this work, precision, recall, and the F,Score are the most relevant metrics to describe the
usefulness of prediction methods.

23

2.3. FAILURE DETECTION AND PREDICTION

ydeun 2124y paa.Ig :ova

sisAjeuy Jusuodwo) [edidulld v¥dd
Kiows\ |edodwa] [edrydiesalH (NLIH
Alows\ wia-1oys 8uoT :INLST
sdomiaN [ednaN daag :NNA

3J0MIBN [BINBN [BUOIIN|OAUOD :NND
3JOMIDN [BIN3N JUB4IN23Y :NNY
's80| paJnidnuis uo 3jqesstyde AjluQ
‘9|gejieae Apiignd jou s| eleq

N1H .
S9A 1| snune 19POI P3SEG-RUUPIA we[-a-we[| ozoz
0jUl 948M}OS pue
(24nyesadwal pue NdY uey) ON | uoSoN NNa [S1] ‘e 3@ queu4 | 6LoT
SJOSUIS dJempieH
2InuIL-S Yoea pajesda.3de o J91snp JATAY SJI9P0dUd-0IN [gzz] *|e 19 Isay8.o 6Lo0z
$I1IBW 9oL N 1SND DdH 'I'dTAY'd p ny 8 |e 13 Isaysiog
uodafur yney wAxoud as1anay .
AEINBYIUAS- WS OoN 03 "1BAISS GOM SupLisnp) o7 [LzZ] |e 12 Janepue] | gLoT
uissan0ud 1xa 1 .
SOA }J0Mmiau uopdnpoud adie| v SuLeISNp 807 [£9L] "|e 32 eanuury | gLoOT
YHOMISN SJBMP.eH asel aseg-awl|
‘A8ojodo] ‘Jamod SOA swaisAs Aedd ‘%n_ pased L [66L] 491 | gLoT
. . ulepon 21doL
9j0su0) ‘qof
o S/BMP.EH o eJs| 'S93J4] UOISIDD [922] psuizpese 10z
N "A30j0doy “1amod ‘qof N *|BNISIN ZYMa NND 1 uoisi>ag 9ce] suizpesez | 8
0EDX/0DX
o o] S9 Gzz] ysa 102
N N 7 A ‘obIX ‘93X ‘0ExX AB1D (NLST) NNY [Sezelysaq | 8
’HOMISN N pasiniadng
ON ON ‘saJniesadwa] ‘ued ON *HLMY 38 DdH , pas! [902] ‘|e 3@ Suaquasuly | Lloz
, . sonsnels aandudsaq
J9MOd ‘S1IIBW WR3IsAS
|enJed ON pPeoIoM ON J91snpd 918009 (IWLST) NN¥ [6G1] e 12 weys| | Loz
uodafur yney 98pajmouy [ednidaUYdIY
ON ON USAT ‘SOIIDW WIDISAS ON *#XIJI9N ‘SYI0MIDN Uelsakeg [vee] eio | Lioz
J/3uan an|g “peisuado
o o UDA) 11] 8o1das L1oT
N N JUaAg A 'S1AH ‘INA Paseq-pnop (NLST) NNY [gL] So7daag
) ; J/3usDen|g INAS pue ‘93] uoisipag .
ON ON S4AaH | %6L - %S | %L9-%L9 SOA ' zy3 uozewy | ‘uoissaigay FnsI807 Yod [LS1] e aH | 9loz
uolewoiny ‘oyd
ON ON SjUaAT ydeIsuado ON »191sn|d 191 9pou § ‘ydes mojpom [£9] 429SpNo|D | 9LoT
. paseg a|ny .
OoN OoN 28e1015 ‘qeoN 9%0L %09 SOA £SJ91BM 2N|g BUIS5920. [PUSIS [E€22] "|e 12 nJeulen | bioz
doopeH | sydeio uoneja440 JUaAJ
eie o UdA L-0lS | 90L-QE S9 : £g] Ja1se8o zLoz
|ened N JUBAT | %9L-% %0L-8 A “1/3usD an|g Wl ' 1-1ioLdy [E8] 4o3se NS0T
lenJed ON 28esn ‘aun|ie4 %9L ON €2 Wa1SAS TNV 99J4] uolIsag [Goz] "|le 1@ exeN | Loz
. ANV ‘71X AeJD “INNd | 8ulaisn|d auluQ/aullyo
lenJed ON sa8eInQ ‘Juang %9 %05 S9A KINdsI 1/9U9D aNjg Wl Buiss3014 [eUSIS [zz2] 0713H/VS13 | Loz
lenJed ON qof‘svy | %ES - %Ll | 9%08-09 0p017-0L ON d/°uaD an|g INgI wiyao3)y d1suan [Loz] je 3@ 8uayz | oloz
foennd fpdnewoiny | eleq jeuonippy sasinbay 2403SL4 | ||e2ay | uoisidaud | SojsAs uo paseg | ereg SulioUOA JO 924N0S poyBIN awenN BLIEYN

spoylaw uondipaJd aunjied :Lz 3|gel

24 2. REVIEW OF THE LITERATURE

Since each method is evaluated using a different set of input data, it is not possible to
directly compare the performance of listed methods solely based on their precision and
recall values. For example, DeepLog reports a surprisingly high precision and recall rate
of 96% in comparison to Hora with the precision rate of 42%. The main distinction lies
in the datasets that were used to evaluate each of these methods. DeeplLog uses HDFS,
OpenStack and Blue Gene/L logs while Hora analyzes Netflix's server logs. HDFS dataset
contains 11.1 million log messages collected from Amazon EC2 platform, manually labeled
by the original domain experts [65]. BGL data contains 4.7 million log messages recorded
by the BlueGene/L supercomputer system at Lawrence Livermore National Labs (LLNL),
manually labeled by the original domain experts [43]. The HDFS and OpenStack datasets
that were used to evaluate DeeplLog contain semi-structured log entries. The diversity of
log entries is very limited and log entries are directly related to the reported events. On
the other hand Netflix's server logs are more diverse, less structured and the log entries do
not directly relate to the reported events, which negatively influence the failure prediction
accuracy. Looking at the lower precision of Deeplog in predicting Blue Gene/L failures®
(less structured) reveals the importance of data preparation for failure analysis.

Among the listed methods in Table 2.7 Desh’s input data is the most similar to the data
used in this work, unstructured and low level. Although there are similarities between the
prediction methods used in this work and Desh, the main difference is the use of a fully
unsupervised approach and utilizing fully anonymized monitoring data in this work. The
data labeling step (phrase labeling), greatly contributes to the high precision and recall
rates of Desh’s predictions.

Useful failure predictors must predict failures as early as possible to provide enough
time for protective measures to take place. The current state-of-the-art lead time is be-
low 10 minutes [225, 15] (although with the prediction precision of 42%). Recent recov-
ery techniques require about 3 minutes lead-time to perform a complete cycle of check-
pointing [229].

In summary, detection and analysis of dynamic correlations are more complicated due
to constant changes in their characteristics. However, due to their significant influence, it
is required to consider the impact of both static and dynamic correlations in failure anal-
ysis. The syslogs of real-world production HPC systems contain unstructured, noisy, and
erroneous entries. Therefore, a failure predictor should work in the existence of all these
imperfections. Modern HPC systems are dynamic and multi-purpose, therefore, any pre-
diction model must adapt itself to the dynamic nature of such environments. The large
number of syslog entries generated by modern HPC systems as well as the dynamic na-
ture of large computing systems, demand automatic analysis approaches. Therefore, su-
pervised approaches are not good candidates as long-term solutions.

b0riginally 16%. With feedback from experts (online training) precision increased to 88%.

3 Data Collection and Preparation

25

Chapter 3 describes the methodology, workflow, and tools which were used and devel-

oped in this work to collect and prepare the monitoring data for the next steps. Figure 3.1
illustrates the major building blocks of the proposed approach as well as the workflow of
the analysis. To maintain the readability of Figure 3.1, overlapping blocks and flows are not

shown. The colored building blocks are covered in this chapter and the white blocks are
covered in Chapter 4.

Data Collection and Preparation Blocks

Failure Prediction Blocks

Collecting
monitoring data

Data
anonymization

Notifications

-

O
o
T s
—
-]
&

 Jobinfo

-

 Sysog

Topological
analysis

—— Data visualization

Clustering

| \
Time DNA
series sequence

Rejecting the null
__, Extracting syslog hypothesis
statistics I

. 7L N Detecting

: anomalies in data

taurusMETA l

|, Marking potential Cate%%r:ﬂ;% node
node failures i

}

Extracting significant
data features

|

Automatic failure
detection

| |

Automatic log
classification

Noise mitigation ———

Majority voting Automatic failure
x Prediction
Introducing \
neighborhood Introducing 3D

Detecting failure
chains

T

Root cause
analysis

to analyze and predict

Statistical analysis

Machine learning

Hierarchical
temporal memory

Providing a prototype

computing systems
behavior

. failure correlations
homogeneity

Figure 3.1: Major building blocks and the workflow of jam-e jam. Building blocks shown in
orange are covered in Chapter 3.

This work addresses the system failure, a main challenge of production HPC systems.
Due to the nature of HPC systems, as well as their special production environment and
conditions, certain assumption and limitation must be considered. Below is a short list of
the most important assumptions and limitations which are considered in this work:

26 3. DATA COLLECTION AND PREPARATION

* Taurus is used as the main use case in this work (Section 3.1).

* Faultinjection tools can be used to evaluate the resilience of HPC systems [119]. How-
ever, fault injection tests are intrusive and may interrupt the systems progress [230,
231]. Taurus is a production computing system with a large group of active users.
Therefore, this work refrains to use intrusive approaches such as fault injection.

* To propose an approach that is generally applicable to other HPC system, no changes
should be required to be made on the target systems (Section 3.2.1).

* The failure analysis will be conducted at the node-level (Section 3.4).

+ To avoid overheads and prevent unwanted side effects on the target system, active
monitoring techniques will be avoided. This limitation becomes vital during nodes
instability conditions (Section 3.2.1).

* The source of monitoring data should be available on the majority of HPC systems
(Section 3.2).

* There are only a few publicly available sources of monitoring data (Chapter E). User
privacy is the main challenge to publish such monitoring data. Therefore, data
anonymization is required before further analysis (Section 3.3.1).

* The collected monitoring data may have extensive amount of noises. Therefore, data
cleaning is required before further analysis (Section 3.3.4).

* Due to the large size of HPC systems and high volume of monitoring data, a high
degree of automation is required (Section 3.3.3).

* The exact time and count of node failures on Taurus is unknown. Therefore, data pre-
processing for marking the potential failures is required before analysis (Section 3.4).

3.1 Taurus HPC Cluster

Taurus is a production high performance computing system located in Dresden, Ger-
many. Taurus (at the time of writing) consists of 2046 computing nodes located in 6 islands.
Taurus monitoring data is the main use case of this work. This section provides detailed
information about Taurus’ hardware and software specifications. Additional details, live
system status, list of services and future upgrades are accessible via Taurus information
page'.

The 2046 computing nodes on Taurus consist of four different processor architectures:
Intel Haswell, Broadwell, Sandy Bridge, and Westmere. The 108 nodes with Sandy Bridge
and Haswell processors are also equipped with NVIDIA Tesla GPUs, out of them 44 nodes
are each equipped with two NVIDIA Tesla K20x, and another 64 nodes are powered by each
four NVIDIA Tesla K8o. 32 additional nodes are equipped with Intel Xeon Phi manycore
processors? and 14 servers are also equipped with Intel Xeon E5-2603 CPU and NVIDIA
GTX1080 GPU cards.

'https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
2https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/KnINodes

27

108

32

O00000000D00O0DO0O0DO0DO0OO0OO0ODO0OODOODODOOODOODOOOOOO
00000000000 0DO0DO0DO0DO0OO0OO0ODO0OO0DO0OO0ODODOO0OODOODOOODOOO
0000000000000 0DO0DO0OO0O0DO0OO0DO0OO0ODODO0OOODO0OODOOODOOO
0000000000000 0DO0DO0OO0OO0DO0OODO0OO0OODO0OO0OODO0OODOOODOOO
OO0O0O0000O0D0O0O0DO0OO0DO0O0DO0DO0DO0DOO0DO0OOO0OOOOOOOOOO0O0O0
O00000000D00O0DO0OO0DODO0OO0OODO0OODOODODODOOODOOOOOOO
O00000000D0D00DO0OO0DO0DO0OO0OO0DO0OO0DOODODOOOOODOOODOOO
OO00000000D0D00DO0O0DO0DO0OO0OO0ODO0OO0DOODODOODOOODOOODOOO
0000000000000000OOOOOOOOOOOOOOOOOOM
0000000000000 O0DO0DO0OO0O0ODO0OODO0OO0OODO0OO0OODO0OODOOODOOO
0000000000000 0DO0DO0OO0OO0DO0OODO0OO0DODO0OO0OODO0OODOOOOOO
0OO0O0O0000000O0DO0OO0DO0OO0DO0O0DO0DO0OO0DO0OOO0OOODOO0ODOOOOO0O0O0
O00000000DO00O0DO0OO0DO0ODO0OO0OOO0OODOODODOOOODODOOODOOO
O00000000D000DO0OO0DO0DO0OO0OO0ODO0OODOODODOOODOODOOOOOO
OO00000000D0D00DO0O0DO0DO0OO0OO0ODO0OO0DOODODOODOOODOOODOOO
0000000000000 O0DO0DO0DO0O0DO0OO0DO0OO0ODODO0OODODOODOOODOOO
0000000000000 O0DO0DO0DO0OO0DO0OO0DO0OO0DODO0OO0OODO0OODOOODOOO
0000000000000 O0OO0ODO0DO0O0ODO0O0OO0OO0OO0OO0OODO0OOODODOOO0O0O0

180

270

O000000D00D00O0DO0OO0DO0DO0OO0OO0ODO0OODOOODODOOOODOOODOOO
O00000000D000DO0OO0DO0DO0OO0OO0ODO0OO0DOODODOOODOODOOODOOO
OO00000000D0D00DO0O0DO0DO0OO0OO0ODO0OO0DO0OO0ODODOODODOODOOODOOO
000000000000 O0DO0DO0DO0OO0O0ODO0OODOO0ODODOOODOODOODODOOO
0000000000000 0DO0DO0OO0OO0DO0OODO0OO0OODO0OO0OODO0OODOOODOOO
000000000000 O0DO0DO0OO0ODO0O0ODO0O0O0OO0DO0DO0OODOOODODOOOOO
O00000000D00O0DO0OO0OO0ODO0OO0OODO0OODOODODODOOODODOOODOOO
O000000D00D000DO0OO0DO0ODO0OO0OODO0OODOODODOOOODODOOODOOO
OO00000000D0D00DO0O0DO0DO0OO0OO0ODO0OO0DOODODOODOOODOOODOOO
0000000000000 O0DO0DO0OO0OO0ODO0OODO0OODODODODODOODOOODOOO
0000000000000 O0DO0DO0OO0OO0ODO0OO0ODO0OO0ODODO0OO0OODOODOOODOOO
0000000000000 0DO0DO0OO0OO0DO0OODO0OO0OODO0OO0OODO0OODOOODOOO
0OO0O0O00000D0O0O0DO0OO0DO0OO0DO0O0DO0DOO0DO0OOO0OOODOO0OOOOOO0O0O0
O00000000D00O0DO0OO0OO0ODO0OO0OODO0OODOODODODOOODODOOOOOO
O00000000D000DO0OO0OO0DO0OO0OO0ODO0OO0DOODODOOOOODOOODOOO
OO00000000D0D0O0DO0OO0DO0DO0OO0OO0ODO0OO0ODOODODOODODOODOODODOOO
0O00000000D0D00DO0DO0DO0DO0OO0OO0DO0OO0DO0OO0ODODOODODOODOOODOOO
O00000000D000DO0O0DO0DO0OO0OO0ODO0OODOODODOOOOODOOODOOO

Island 5

=)
0
$ < 2
T X O = .m
T Q9 5 o =
o N 9 2 =T
X £ v >
> = 5 © ©
el 173 © W
) n
c g 9 O
© S © O
S 0O 2 a2
io[olefe]o] |

1456
4,5, 6

This work uses the data collected from 2046 regular computing nodes as the main use
Table 3.1: Hardware architecture of Taurus computing nodes
Figure 3.2 provides a schematic illustration of Taurus islands. Each O represents a single

Nodes count
Island

OO00O0O00OO0OO0OO0ODO0OO0O0O0DO0O0OO0O
0OO0OO0O00O0DO0OO0O0OO0O0O0O0OO0OO0
000000000000 O0O0O0

O 00000
Oo0Oo0O00O0

OO0OO0OO0OO0OO0OO0OO0OO0OO
0OO0OO0OO0OO0O0OOO0OO0OO
000000 OO0OO0OO0OO0OO0OO0OO0OO0OO
OO00O0O00OO0OO0O0OO0OO0O0O0DO0O0O0O
0OO0OO0O00O0OO0OO0O0OO0O0O0O0OO0OO

0000000000000 O0O0

O O0OO00O0Oo
[elieleoNeloNe]

OO0OO0OO0OO0OO0OO0OO0OO0OO
O0OO0OO0OO0OO0OOO0OO0OO
000000 OO0OO0OO0OO0OO0OO0OO0OO0OO
OO00O0O00OO0OO0OO0ODO0OO0O0ODO0O0OO0O
0OO0OO0O00O0OO0OO0O0OO0O0O0OO0O0OO0

~
0000000000000 0O0Z| [pooooco3F |[ocooooooooo3
2 2 2

O 00000
0Oo0Oo0O0OO0O0

©O0O0O0OO0OO0OOO0OO
©OO00O0O0O0O0O0O0O0
©O000000000000O0O0G |[POOOOOF| |[POOOOOOOOO Z
0O0O00O0OO0DO0O0OO0OO0O0OO0O0O ocoooo0o0 O0OO0DO0OO0OO0OO0OO0OO
0O00O0OO0OO0DO0OO0OO0OOO0O0O0O ocoooo0o0 ©O000OO0O0O0O0O0O
0O0OO0O0OO0OO0DO0DO0OO0OO0OOO0O0O0O
0O0O00OO0OO0DO0O0OO0OO0O0OO0O0O

0O00000O0O0O0ODO0O0OO0OD0O0O0O

O 00000
0Oo0Oo0O0O0O0

OO0OO0OO0OO0OO0OO0OO0OO0OO
OO0OO0OO0OO0OO0OO0OOO0OO
O0OO0Oo00O0O0 OO0OO0OO0OO0OO0OOO0OO0OO
OO00O000OO0ODO00ODO0OO0OO0OO0O0O0O
0OO0OO0O00O0OO0OO0O0OO0O0O0OO0O0OO0

0O00000000ODO0O0OO0O0O0OO0O

O 00000
Oo0Oo0O0O0O0

OO0OO0OO0OO0OO0OO0OO0OO0OO
OO0OO0OO0OO0OO0OO0OOO0OO
OO0OO0OO0OO0OO0OOO0OO0OO

O0OO0Oo0O0O0O0

0000000000000 0o
0000000000000 o
0000000000000 O0
0000000000000
0000000000000
0000000000000 O0
0000000000000 0 0
0000000000000 0 0
000000000000000“
OOOOOOOOOOOOOOOWM
OO0OO0OO0OO0OO0O0O00OO0OO0O0O0O0 o
0000000000000 0O0
0000000000000 0 0
OO0OO0OO0OO0OO0O0OO0OO0OO0OO0O0O0O0 o
0000000000000 0O0
0000000000000 0 0
OO0OO0OO0OO0OO0O0O00OO0OO0O0O0O0 o

0000000000000 O0 0o

Architecture | Haswell | Sandy Bridge | Westmere | Broadwell | GPU (K20X/k80) |

computing node. Identical colors represent identical hardware architectures (processing

units).

The number of nodes in each category and the node’s dominant processor architecture are

case. Considering the hardware architecture, Taurus nodes are divided into five categories.
shown in Table 3.1.

3.1. TAURUS HPC CLUSTER

Figure 3.2: Schematic island topology of Taurus. Node colors represent the dominant pro-

cessing unit type of a node. Thick border lines indicate the 6 islands of Taurus.
All nodes inIsland 2 (108 nodes) beside their Sandy bridge or Haswell CPUs are equipped

with graphical processing units (GPU). Since the majority of jobs submitted to Island 2
mainly utilize GPUs rather than CPUs, GPUs are considered as dominant processing units

of these nodes. Therefore, in this work, Island 2 is considered as a homogeneous GPU

28 3. DATA COLLECTION AND PREPARATION

island, despite other heterogeneity of its nodes. Taurus is powered by Linux and em-
ploys Slurm [232] as its job scheduler. The parallel filesystem of Taurus is powered by
Lustre [233]. The syslog-ng daemons are running on all nodes.

During the first stages of the analysis, three important phenomena were observed,
namely (1) failure propagation, (2) failure chains and (3) side effects of protection mech-
anism. Each of these phenomena highly contribute in providing a better understanding
of the system'’s behavior. Thus, they play an important role in detection and prediction of
upcoming failures.

Failure propagation

Analyzing Taurus behavior revealed that certain failures are propagating through the
system. This propagation may happen within local components of a single node, or may
affect other nodes and remote components. Failures originate in different layers, and they
may be of different types. Failures always propagate horizontally within a single layer, as
well as from bottom to top across the system layers. For example, as shown in Figure 3.3
those failures which occur at the hardware layer will have influence on the application layer.

oy
User 1 User 2 User 4 User 5 User 6 .
| Applicatior
Application .I Application3 Ievel

o — e A ts — . —— —— —— — — — — —

Operating system
_ | System
Hardware and Network leve'

>

amage and impact
Visibility

\

Figure 3.3: Propagation of failures within a computing node. The yellow arrows indicate a
potential propagation of failures among layers.

The failure propagation in an HPC system can be analogized to a tree which hasits rootin
the lowest layer and its leaves in the highest layer. Going from top to bottom, the diversity
of failures decreases while theirimpacts are greater. Majority of propagated failures, cause
new forms of failure in comparison to their original form. A sample of failure propagation
on Taurus is shown in Figure 3.4.

In the example shown in Figure 3.4, early detection of the original failure could have
prevented the propagation of the failure into vital components of the computing node
which finally caused the complete failure of node taurusiso71 at 14 : 10 : 01 on January 1st.
The lead time in this example is surprisingly large, which makes it an interesting case for
further analysis.

Out of 878 failures on Taurus in the year 2017, 213 failures were simultaneous node fail-
ures3 that affected between 2 and 83 nodes. 665 failures occurred on a single node. Majority
of the propagated failures into the kernel space first appeared as user space problems4.

3Confirmed failures which occurred on more than one node during a one-second time window.
4At the beginning this appears counterintuitive since failures would normally propagate from bottom to top

3.1. TAURUS HPC CLUSTER 29

ate

taurusis071 20170105 14:10:01
2017-01-02 0O
2017-01-02 01+
2017-01-02 02:,
2017-01-02 03:.

2017-01-02 04-30.
2017-01-02 05:.
2017-01-02 07+
2017-01-02 08
JOlTJDl 02 09:;
l

Original

Propagated

ZUlY-Dl 02 16:20¢ DD—

2017-01-02 17-30-00 -

2017-01-02 18:40:00 - "
2017-01-02 19:50:00 -

2017-01-02 21:00:00 -

2017-01-02 22:10-00 -

2017-01-02 23-20-00

[SreTTeTe
SS5535
e
éb &5
EEEEEE
Soboo
ISTSI~1S1~]
[
NENCCEEAN RS
5 25 L o P o 5 i b i
R =1
coooonoonon o
300800830
T
&
]

2017-01-03 00-30:00 - 120
2017-01-03 01-40:00 -

2017-01-03 02-50-00 -

2017-01-03 04-00:00 - -

2017-01-03 05:10:00 -

2017-01-03 06:20:00 -

2017-01-03 07:30:00 -

2017-01-03 08:40:00 -

2017-01-03 09:50-00 -

2017-01-03 11-00:00 -

2017-01-03 12:10:00 -

2017-01-03 13:20:00 - -

2017-01-03 1430-00 - =

2017-01-03 15:40-00 - = “%0
2017-01-03 16:50:00 - B

2017-01-03 18:00:00 - -

2017-01-03 19:10:00 - = = =

2017-01-03 20:20-00 - |

2017-01-03 21:30:00 - B

2017-01-03 22:40:00 - = -

2017-01-03 2350:00 -

2017-01-04 01-00-00 - =

2017-01-04 02:10:00 -] B =

2017-01-04 03:20:00 - - = =

2017-01-04 04:30:00 - =

2017-01-04 05:40-00 -

2017-01-04 06-50-00 - @
2017-01-04 08:00:00 -

2017-01-04 09:10:00 -

2017-01-04 10-20-00 -

2017-01-04 11-30-00 -

2017-01-04 12:40:00 -

2017-01-04 13:50:00 -

2017-01-04 15:00:00 -

2017-01-04 16:10:00 -

2017-01-04 17-20-00 -

2017-01-04 18-30:00 -

2017-01-04 19:40:00 -

2017-01-04 20:50:00 -

2017-01-04 22-00-00 - 0
2017-01-04 23-10-00 -

2017-01-05 00:20:00 -

2017-01-05 01:30:00 -

2017-01-05 02:40:00 -

2017-01-05 03-50-00 -

2017-01-05 05:00:00 - | |
2017-01-05 06:10:00 -

2017-01-05 07:20:00 -

20174}105094000—
2017-61-05 10:50:00 -
20170105 17:30.00 -
2017-01-05 13-10:00 -
LT T T T T T T T T T T O T T T T T S A T T T T S S S O SO S S Y S A S T IR B -0

£ o ¥ e o C B v e X oo 2 E oW =] &g oW E ow £ £ 5w 2 £ oo U e oo o

PEE G ELEEgES EUESEEEREE P ETE e 2LEn B EEERELEE P EEEEEEL

EM o ES DD EB DB SECSE S EB DD EE DD EE D8 D WLSEBE DS EBEIENE DB

o't g8 S ER b E g O m-—c\cc.\::‘gwﬁz‘gngm:‘mg::;.zhm:g—im:‘g:‘ﬁmﬂc

' E B EE 88 E o WBEEEEEEZ RS 28E o2 SEEEEESEEEESEL B EE

E g (B £ om o il EEE DIEES SRE 2T Ef£E£ L Z2EBEl2oTEN0E

H] g9 8 7 FEESESE R RTEes B £5FzEf" " g2i2g w=g

8 g g g 258§ s B 5= &£ = Es 2] 2

&E 4 & ER = =

Figure 3.4: Failure propagation in a single node. Vertical axis represents the time in reverse

order. Each value on the horizontal axis represents a class of events. The orig-
inal event was a user error, that later propagated to other parts of the system
and caused kernel and daemon errors.

%] %]

3 . 160 < %120
o v o v
2 € 140 £S5 .,
O Y VU o
g8 £3
T O 80 T C
Y- C Y= 1
o9 60 °2L
3@ 3=
£z 40 £ 2

2 20 3=

Time of the day (hour) Time of the day (hour)
(a) Single-node failures (b) Multiple-node failures

Figure 3.5: Correlation among users behavior and node failures. Most single-node failures

and almost all multiple-node failures occurred during the daily working hours,
from 08 : 00 to 17 : 00.

however, although the problem first appears in the user space the root cause lies in the kernel space.
Therefore, the failure itself is propagating from bottom to top and the symptoms are first observable once
it reaches the user space.

30 3. DATA COLLECTION AND PREPARATION

Most single-node failures and almost all multiple-node failures, as shown in Figure 3.5,
occurred during the daily working hours (08 : 00 to 17 : 00) implying a strong correlation
between users activities and node failures>.

Failure Chains

A sequence of successive failures is called a failure chain. Failure chains are special form
of failure propagation. Figure 3.6 illustrates a potential scenario of failure propagation
forming a failure chain.

Component failed
Fault triggered :

= I
]
§_1 Faulty behavior l Error | Failure
£ '] N
v '\
‘\
g Healthy behavior IFaulty behavior | Error | Failure
O

| |
Fault occurred Fault triggered I
Component failed

Figure 3.6: Propagation of failures and formation of Failure chains

Failures of a failure chain are identical. Itis more probable to detect failure chains as well
as their root cause in comparison to mutated propagated failures. Figure 3.7 illustrates a
detailed sample of a failure chain in Taurus.

In Figure 3.7 events shown using dotted outline are contributing to the expansion of
failure chain, although they may not experience the failure themselves (interface nodes).
In general failure chains are local phenomena therefore, the majority of failures involved
in a chain of failures are physically co-located. However, there are multiple counter exam-
ples such as the failure chain shown in Figure 3.7. Detection of failure chains, in useful
time and in the presence of interface nodes, is practically infeasible. Omitting the interface
nodes divides the failure chain into shorter sub-chains. These sub-chains are detectable
and provide adequate functionality to prevent excessive damages.

Side Effects of Protection Mechanism

HPC systems are equipped with various protection mechanisms to prevent hardware
damages in emergency situations such as overheating. Although protection mechanisms
prevent fatal damages to the system, their interference can unexpectedly change the be-
havior of HPC systems and introduce additional failures. As shown in Figure 3.8, a major
system-wide node failure in October 2016 was caused by the automatic overheating pro-
tection mechanism on Taurus.

5Similar correlations are observed on DKRZ cluster [4].

3.1. TAURUS HPC CLUSTER 31

Island 1 Island 3
Rack 1 Rack 2 R.1 Rack 2 Rack 3
|C4| |C5 C7| |C8| |C9 (E2 C4| |CG C9| |C10
ey
______ (e,
i_los8 } =g
(1128 f
3167
______ 3170
E‘:E%EJ
1157
L B 1117
8:55:35 | 1040
1072 |
1161 |
3105
1080

Node | Received reboot command
Node | Suddenly rebooted

Figure 3.7: Sample of a failure chain on Taurus, including the interface nodes that are con-
tributing to the expansion of the failure chain.

2,000
Problem with the

. —_—————»
Central log collection node
1,600
(%]
9]
(%]
)
€
< 1,200
2
° Scheduled maintenance
2 Automatic overheating
8 800 protection mechanism
oo
o) \
©
>
()
400
0
© © © © © © © © © © © A A
& N N & & N N N N N N & &
R A S S A A O O O O G
< o Q 3 > N S 2 fox 9 @ NS <
nE & s N N N s N N & O N nE

Time period: 01-02-2016 to 28-02-2017

Figure 3.8: Major system-wide failures caused by activation of the automatic overheating
protection mechanism on Taurus.

Another example of such interference is shown in Figure 3.20 on page 52. Although
the independent automatic protection mechanisms are required, in certain cases (e.g., Fig-
ure 3.20) their radical reactions can be delayed or avoided via timely prediction of the up-
coming emergency situations. During the period of this work, two major system-wide fail-
ures on Taurus were caused by automatic overheating protection mechanisms which led
to job loss. Both incidents could have been predicted. Timely prediction of major prob-
lems of cooling systems via analyzing system logs is possible. However, due to the small

32 3. DATA COLLECTION AND PREPARATION

footprint of anomalies, timely prediction of such problems using fully anonymized system
logs is extremely complicated.

3.2 Monitoring Data

System logs® are the main source of monitoring data in this work. Syslog entries pro-
vide a wide range of information about the behavior of the underlying hardware, software,
and users. All current TOP500 [234] HPC systems are powered by Linux. The Linux logging
protocol is implemented according to RFC 5424 [64] thus, there is a high degree of con-
sistency among system log entries generated by all TOP500 HPC systems’. Therefore, the
results of syslog-based analysis as a general approach can be applied to all other TOP500
HPC systems without further modifications.

In addition to syslog entries, three other data sources were employed to assist the anal-
ysis in this work: outages database, service notifications, and job status reports. The outages
database reports all system outages from the users perspective, the service notifications
notify users regarding scheduled maintenance and system-wide outages, and the job sta-
tus reports indicate the final status of submitted jobs after their allocation. Table 3.2 pro-
vides an overview of the four main data sources used in this work.

Table 3.2: Four main data sources used as monitoring data

Data source | Data collection | Information | Granularity
System logs Automatic Software and hardware | Component
Outage database Semi-automatic | Service availability Entire system
Service notifications | Manual Service availability Entire system
Job status report Automatic Job completion status Node

System Log Entries

Syslog entries typically consist of four parts: PRIVAL, t imestamp, source and message.
PRIVAL, timestamp and source contain structured data while message is unstructured.
The timestamp denotes the time at which an event occurs. The source provides infor-
mation about the location of the event occurrence, and the message describes the event
properties. Table 3.3 illustrates three syslog entries divided into their t imestamp, source
and message fields. In this example, the timestamps are in the UNIX time format®, the
sources are node IDs, and the messages contain event details.

3.2.1 Data Collection

Taurus syslog entries were collected since September 2014. During this time two fun-
damental hardware and software upgrades affected the data collection process. From the

System log and syslog are used interchangeably in this work

It worth to mention that /proc/kmsg and /dev/kmsg provide the kernel ring buffer, thus their entries are not
in RFC 5424 format.

8Also known as POSIX time or UNIX Epoch time.

https://www.kernel.org
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/printk/printk.c?h=v5.2-rc1#n283
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/printk/printk.c?h=v5.2-rc1#n283

3.2. MONITORING DATA 33

Table 3.3: Sample of raw syslog entries
Timestamp | Source | Message
1515625261 | taurusil230 | (siavash) CMD (/home/config.sh > output.stat)
1515625370 | taurusi3417 | pam_unix: session closed for siavash
1515625713 | taurusi6201 | disabling lock debugging due to kernel taint

available collection of syslog entries, the period of January to December 2017 is chosen as
the main data source for this work. The main reasons for focusing on the time frame of
01-01-2017 to 31-12-2017 are (1) experiencing the lowest number of updates and unplanned
maintenance, (2) having the most reliable data sub-collection, (3) constant monitoring of
data consistency, and (4) availability of other monitoring data (i.e. Table 3.2). Figure 3.9
provides an overview of the Taurus syslog collection timeline since 2014.

May 2015 June 2018 April 2019
Extending Syslog collection to Fundamental update of Live collection of
Islands 4-6 (on an external server) software stack to SCS5 System logs...
‘ |
September 2014 Aprll 2016 Reliable collection [
Beginning of Syslog collection Switching to syslog collection Unreliable collection
Islands 1-3 on an external server on an internal Taurus node No collection

Figure 3.9: Timeline of syslog collection on Taurus

The collection mechanism is passive. Syslog daemons, on each node, collect the syslog
entries and forward them to a central log collector. To maintain the neutrality of the results
and providing a general approach suitable for all HPC systems, the pre-configured syslog
daemons were used without any modifications.

Although the most reliable period of data collection is chosen for the purpose of this
study, there are certain gaps in the data. These gaps are mainly incurred due to the in-
terruption of the data collection mechanism. Syslog entries cover the entire period of the
year 2017. The job status reports generated by Slurm covers the period of 28-02-2017 to 14-
11-2017. Service notifications and outages database, shown in Figure 3.10a and Figure 3.10b
respectively, provide information from a higher perspective and are available for the entire
period of one year from January to December 2017.

Outage| | Ccr'r'plele
Instability || | Taurus Par(la\
Maintenance il | | |] I Unknown

S gy Yy JE. O ’If Availability
% o . Yo %0 i Y,
b b B Y, %, %, R
Date (2017)

Date (2017)

(a) Service notifications (b) Outages database

Figure 3.10: Availability and Maintenance Notifications of Taurus in 2017

In each section of this work, different subsets of the collected Taurus syslog entries
(2014-2018) are used according to the requirements of the respective analysis. However, the

34 3. DATA COLLECTION AND PREPARATION

behavior of Taurus is generally analyzed for year 2017 with the focus being on the period of
01-03-2017 t0 31-10-2017. Existence of gaps in data sources is a common challenge in similar
works [163, 15].

During the first round of data collection from September 2014 until April 2016, an exter-
nal server was used as the central data collector. The external data collector was passively
receiving syslog entries over UDP? protocol. The UDP protocol was chosen because of its
higher transmission speed and lower overhead. However, further analysis revealed vari-
ous inconsistencies between the remotely collected syslog entries and their local copy on
Taurus computing nodes. Most inconsistencies were observed during the high workload
periods of the HPC system. Therefore, the data transfer protocol was switched to TCP™.
Using the TCP protocol, fewer inconsistencies between the remotely collected syslog en-
tries and their local copy were detected. However, high network congestion during major
system-wide failures still introduced inconsistencies and delays.

Since April 2016, the central syslog collector resides inside the Taurus HPC system, and
is using TCP protocol to collect syslog entries. Using an internal syslog collector, the syslog
collection may not be accessible during a major system-wide failure, however, the prob-
ability of such major system-wide failures are significantly low and does not impair the
functionality of the current setup. Additionally, the collected syslog entries can be backed
up on external storage for further analysis and long-term archiving.

Beside the noises and gaps among collected syslog entries, several irregularities were
identified. These irregularities are part of the system’s normal behavior. Thus, they should
not be considered as abnormal behavior. Due to the insignificant difference of these irreg-
ular system logs and regular syslog entries, in most cases they can not be easily detected.
The proposed approach in this work is highly noise-tolerant. Therefore, syslog irregulari-
ties are not affecting the final results. The most frequent irregularities observed on Taurus
are (1) out-of-order entries, (2) out of sync clock, (3) daylight saving, and (4) invalid entries.

The sequential arrangement of syslog entries is one of the most important character-
istics that make them a highly adequate data source for behavioral analysis. However,
among the collected syslog entries various instances of irregular appearance of syslog en-
tries were observed. In Table 3.4 three occurrences of such timestamp confusions are
marked in red. Further analysis revealed that this problem is mainly caused by unsuccess-
ful timezone detection. The problem can be solved by restarting the problematic daemons
on the HPC system. However, the occurrence of such timestamp confusions on Taurus is
so few that they can safely be ignored without significant negative impacts.

During cold boots, similar confusions may happen due to delayed clock synchroniza-
tion, as shown in Table 3.5. Data analyzing approach in this work skips a short interval
of instability after each reboot (and failure) to address the early-life failures suggested by
Bathtub Curve (Figure 1.1 on page 4), which additionally addresses the out-of-sync clock
phenomena.

Another important point to consider is the missing and overlapping hours caused by

Shttps://tools.ietf.org/html/rfc768
®https://tools.ietf.org/html/rfc7805

3.2. MONITORING DATA 35

Table 3.4: System logs with out-of-order timestamps

Example 1 | Example 2 | Example 3

1514974801 2018-01-03 11:20:01 taurusi5003 | 1516901631 2018-01-25 18:33:51 taurusi5003 | 1516344245 2018-01-19 taurusi5003
1514974835 2018-01-03 11:20:35 taurusi5003 | 1516902001 2018-01-25 18:40:01 taurusi5003 | 1516344286 2018-01-19 taurusi5003
1514974835 2018-01-03 11:20:35 taurusi5003 | 1516902241 2018-01-25 18:44:01 taurusi5003 | 1516344601 2018-01-19 taurusi5003
1514974852 2018-01-03 11:20:52 taurusi5003 | 1516898641 2018-01-25 17:44:01 taurusi5003 | 1516345017 2018-01-19 taurusi5003
1514971326 2018-01-03 10:22:06 taurusi5003 | 1516902601 2018-01-25 18:50:01 taurusi5003 | 1516341419 2018-01-19 06 9 taurusi5003
1514974951 2018-01-03 11:22:31 taurusi5003 | 1516902834 2018-01-25 18:53:54 taurusi5003 | 1516345201 2018-01-19 taurusi5003
1514974993 2018-01-03 11:23:13 taurusi5003 | 1516902834 2018-01-25 18:53:54 taurusi5003 | 1516345201 2018-01-19 taurusi5003
1514975032 2018-01-03 11:23:52 taurusi5003 1516345201 2018-01-19 taurusi5003

1516345261 2018-01-19 taurusi5003

Table 3.5: Invalid syslog entries timestamp caused be out of sync system clock

Example 1 | Syslog message

1486462610 2017-02-07 11:16:50 taurusi6086 | Disabling lock debugging due to kernel taint

1486462610 2017-02-07 11:16:50 taurusi6086 | Succesfully Started x86 Adapt Processor Feature Device Driver
1486462610 2017-02-07 11:16:50 taurusi6086 | 0.0.0.0 c6lc Oc clock_step -3459.669479 s

1486459151 2017-02-07 10:19:11 taurusi6086 | 0.0.0.0 c615 05 clock_sync

1486459152 2017-02-07 10:19:12 taurusi6086 | 0.0.0.0 c618 08 no_sys_peer

1486459154 2017-02-07 10:19:14 taurusi6086 | br0O: no IPv6 routers present

1486459154 2017-02-07 10:19:14 taurusi6086 | ethO: no IPv6 routers present

daylight saving time changes. Therefore, for the data used in this work (collected in 2017),
one missing hour of information on March 26th from 02:00 to 03:00, as well as one over-
lapping hour of information on October 29th from 02:00 to 03:00 is considered.

The TCP connections guarantee the correct transmission of syslog entries from their
source to the central syslog collector. However, due to component failures at the source
as well as the silent errors, syslog messages may be incorrectly generated or incompletely
stored. Therefore, each syslog entry which does not contain all the expected data fields is
considered invalid and is excluded from further analysis.

3.2.2 Taurus System Log Dataset

During the year 2017, in total more than 3.2 billion syslog entries with a total size of 344
GiB were collected. Less than 0.33% of the collected syslog entries were incorrect or pro-
vided no useful information for the purpose of this work. Detailed statistics regarding the
number of syslog entries collected on Taurus divided by their originating island are shown
in Table 3.6. The column /Node/Day shows the average number of entries generated by
a single node per day in its respective island. The #Event patterns column indicates
the number of extracted unique event patterns per island. The event pattern extraction
process is further explained in Section 3.3.1.

Table 3.6: Statistics of Taurus syslog Entries in year 2017

#Log entries #Event patterns
Island #Nodes Total Invalid /Node/Day | Total | Exclusive
1 270 299,046,032 535,719 3,034 1,601 291
2 108 58,106,243 603,848 1,474 1,360 357
3 180 56,778,161 16,443 864 1,254 215
4 264 490,299,895 4,585,815 5,088 1,667 285
5 612 1,034,193,160 | 1,846,396 4,629 1,945 340
6 612 1,328,650,822 | 3,264,407 5,947 2,168 483
All islands 2046 3,267,074,313 | 10,852,628 4,374 4,026 1,488

36 3. DATA COLLECTION AND PREPARATION

Since the message field of syslog entries is an unstructured free-format text, the mes-
sage length has a great impact on the performance and implementation of log processing
methods. The message field of Taurus syslog entries has a diverse length of 1 to 1108 char-
acters. Most of this variation is caused by variables such as hardware addresses and file
paths. Although there are extremely long messages with 1108 characters, the majority of
Taurus syslog messages are shorter than 100 characters. Figure 3.11a illustrates the fre-
quency of syslog messages with their lengths count in characters.

100% 2.9E9 100% 2.9E9
90% 90%
80% 80%
0,
> 70% 70%
2 60%
s 7 S 60%
8‘ 50% S
0,
f{ 40% % 50%
30% - L 40%
1.8E5 1.2E4 1F -~ 3.2E8
.)
10% | [5:9E6| [3.284/9.186) 4€5 ° 157 16.4E3 1E1 5 opy
0% 10%
OO0 00000 OO O O I1-9E71-7E1 6 9
°S88$388888°¢S 0% -
TS S0 909990999
- N M <¥MNONOKOOSO & & 48 &8 &8 48 &8 4848 A
Message Length (characters) Message Length (words)
(a) 90% of syslog messages are shorter (b) 89% of syslog messages are shorter
than 100 characters than 10 words

Figure 3.11: Frequency of Taurus syslog messages with various lengths

The impact of variables on diversifying the length of syslog messages can be reduced
via performing word processing rather than character processing. Considering words as
the measurement unit decreases the length diversity by the factor of 10. Although Taurus
syslog messages consist of 1 to 99 words, using the new measurement unit, the majority
of Taurus syslog messages are shorter than 10 words. Which is an acceptable message
length for achieving a near real-time processing performance. Figure 3.11b illustrates the
frequency of syslog messages with their length measured in words. Converting syslog mes-
sages into event patterns (Section 3.3.1), reduces the size of syslog entries to a constant
length that significantly improves the syslog processing performance.

3.3 Data Preparation

The entire procedure of syslog generation, transmission, and collection is prone to er-
rors caused by software and hardware failures. Same principle applies to all other mon-
itoring data collected from computing nodes such as power consumption, CPU load, or
memory utilization. Therefore, data preparation is necessary.

The goal of this step is the conversion of monitoring data to noise-less anonymized dis-

3.3. DATA PREPARATION 37

crete time series (reasons are explained in Chapter 2). Furthermore, the relative semantic
of anonymized data entries must be preserved. The relative semantic refers to the in-
context semantic of an entry in comparison to other entries in that context. As an instance,
both pairs of log entries in Example 3.1 deliver similar relative semantics that a user was
connected and disconnected correctly, although, the second pair is fully anonymized.

Example 3.1: Original and anonymized system logs with similar relative semantics

Al Accepted publickey for root from 192.64.12.13 port 32431 ssh2

A2 Received disconnect from 192.64.12.13: 12: disconnected by user

Bl Accepted publickey [...]

B2 Received disconnect [...]

Among the available monitoring data in HPC systems such as power consumption, mem-
ory usage, cpu workload, jobs status, user behaviors, and components aging, system logs
are the most sophisticated input data due to their free-form and qualitative nature. There-
fore, system logs require additional steps of data preparation in comparison to most other
monitoring data. Since syslog entries are the main source of monitoring data in this work,
the proposed data preparation methods in this section are exemplified using Taurus syslog
entries. However, these methods are applicable to any other forms of monitoring data.

3.3.1 Users and Systems Privacy

The existence of sensitive data within the system logs as explained in Chapter 2 raises se-
rious concerns about their storage, analysis, dissemination, and publication. The anonymiza-
tion of system logs is a mean to address the data privacy challenge. During the process of
anonymization, the sensitive data will be eliminated. The remaining data is considered as
cleansed data. However, there is the probability that sensitive data passes through filters
of anonymizers and leaks into the cleansed data. To the best of author's knowledge, no
existing automatic anonymization method guarantees full user privacy.

It is worth mentioning that common data and output perturbation™ methods that are
beneficial to provide differential privacy [125] are not suitable for fulfilling the goals of this
work. Since in this work (1) the entire dataset is intended to be publicly available, (2) it is
aimed to reduce the size of dataset as much as possible, (3) there are no trusted parties
out of the HPC systems, and (4) the sensitive data cannot be kept for long-term storage
and analysis, the hybrid techniques such as PrivApprox [235] are also not a good fit for the
purpose of this work.

Anonymization of system logs, as a side effect, reduces the usability of data for further
analysis. After a certain degree of anonymization, the cleansed syslog entries lose their
general semantic, however, they remain useful for certain statistical analysis, such as time
series analysis and anomaly detection. At this stage, it is possible to encode syslog entries

"Providing noisy or approximate answers to data queries in order to prevent revealing individual records in
a database. Swapping, random sampling, varying perturbation, and randomization are some of the most
common methods of data and output perturbation.

38 3. DATA COLLECTION AND PREPARATION

into shorter strings. Such encoding reduces the required capacity for the storage of sys-
tem logs. Shortening the log entries’ length also reduces their processing complexity and,
therefore, improves the performance of further analysis on syslogs. Furthermore, an ir-
reversible encoding guarantees full user privacy via masking any potential sensitive data
leakage. Itis important to note that the sensitivity and the significance of syslog entries are
relative to HPC system'’s policies.

Atermis a string of characters with certain semantics (e.g., root, 2, CMD). Each term is ei-
ther constant or variable. A constant term remains identical in all syslog entries. A variable
term, in contrast, takes different values across different syslog entries. Each term in a sys-
log entry, depending on the policies of the computing system that it originates from, may
(or may not) be considered as sensitive data. The same degree of relativity applies to the
significance of syslog entry terms. The significance of syslogs entries is assessed depend-
ing on the chosen data analysis method. Even though the classification of each term as
sensitive or significant is relative (e.g., not, semi, or highly significant), the final assessment
of sensitivity and significance of a term is a binary value of true or false. Therefore, every
single term in a syslog entry can only be sensitive/significant or nonsensitive/nonsignificant
(e.g., a username).

A zero-length term is not significant. A significant term has a nonzero length and can be
either sensitive or nonsensitive. A sensitive term is significant. Figure 3.12a illustrates the
relation between the sensitivity, the significance and the length of syslog terms.

i) Length ii) Sensitivity iii) Length iv) Sensitivity
Sensitivity g : g z
s -] 2
. epe 2 2 =
Significance £ £ g
5o 2 o 3
v v Significance Length
Length
Legend: .Desirable state . Undesirable state <;:| Possible desirable transition
(@) (b)

Figure 3.12: (@) The sensitivity, significance, and length of terms in syslog entries and their
relation. (b) Trade-off scenarios between the significance, sensitivity, and
length of a system log entry. Each of the i, i, and ii: illustrations depicts the
four possible states of a syslog entry based on its sensitivity, significance, and
length. The trade-off triangle in illustration iv shows the trade-off between the
three parameters (sensitivity, significance, length) in a single unified view.

A triple trade-off exists between sensitivity, significance, and length of syslog entries.
The preferred input for data analysis should contain significant content to provide accurate
information, nonsensitive data to comply with users privacy, and shorter length to facili-
tate online analysis using less resources and higher performance. Figure 3.12b, regardless
of the system policies and syslog analysis methods, schematically illustrates this trade-off.
This illustration shows that a syslog entry can be in four distinct states. Green color states
denote best conditions while red color states denote undesirable conditions. White color
states represent median conditions. The yellow arrows in Figure 3.12b indicate the possi-
ble preferable actions to improve the overall condition. The significance of syslog entries

3.3. DATA PREPARATION 39

cannot be increased, and reducing the length of syslog entries decreases their significance,
which is an undesirable transition. Therefore, the remaining possibilities to improve the
condition are (1) decreasing the sensitivity of syslog entries or (2) reducing their length.

Syslog entries are generated using static templates predefined in components of the
computing system. Assuming the sample syslog entry E;: “1462053899 taurusil013
Accepted publickey for Siavash from 4.3.2.1". Inthisentry, “146205389"is the
timestamp, “taurusi1013” is the source, and the rest of the line “Accepted publickey
for Siavash from 4.3.2.1"isthe message. Inthe message part, the terms Accepted,
publickey, for, and from are constant terms, while siavash and 4.3.2.1 are variable
terms, in the sense that for the above variable terms, the user name and IP can vary among
users and machines. The syslog entries shown in Example 3.2 are generated using a similar
template. The constant terms are marked in red.

Example 3.2: Constant and variable terms in system logs

1462053899 taurusil01l3 Accepted publickey for siavash from 4.3.2.1
1462053909 taurusidl24 Accepted publickey for root from 192.168.1.15
1462054899 taurusi6312 Accepted publickey for parya from 12.38.121.49

This step attempts to transit current condition towards a better condition as shown in
Figure 3.12b via eliminating sensitive terms (anonymization) or reducing the syslog entries
length. However, each sensitive term is also a significant term thus, carries information.
Therefore, certain information may be lost during the anonymization process. The goal
is to preserve the highest possible (permissible) quality of syslog entries throughout the
anonymization process while preserving user privacy. To achieve this goal PaRS is pro-
posed [236, 237].

The PaRS anonymization approach consists of 8 steps. The input data is a stream of log
entries split into content and metadata parts. For the case of syslog entries, the content
is the message field of syslog entry and the metadata covers the rest of the entry (e.g.,
timestamp and source). Since metadata contains no sensitive data, PaRS targets the
sensitive data within the content part of the input data as following™:

Step 1) The variable terms in the syslog entries are divided into 3 groups:
(a) sensitive (e.g., username, IP address),
(b) significant (e.g., temperature, memory address),

(¢) nonsignificant (e.g., cron job name, path).
Step 2) The sensitive terms are eliminated to comply with the privacy policies.
Step 3) The nonsignificant terms are replaced with predefined constants.

Step 4) Every syslog entry that does not have any remaining variable terms (event pat-
tern'3), is mapped to a hash key, via a collision-resistant hash function. The hashing
step is called encoding.

"Figure 3.14 on page 43 provides a graphical illustration of the PaRS workflow.
3Also known as log key or message type; examples are shown in Table 3.9c.

40 3. DATA COLLECTION AND PREPARATION

Step 5) The quality of the remaining syslog entries is measured with a utility function.

Step 6) Wheniitis revealed that removing a significant term from the syslog entry improves
the quality of syslog, that particular term is replaced with a predefined constant.

Step 7) The remaining processed syslog entries that do not contain additional variable
terms, are mapped into hash keys (similar to step (4) above).

Step 8) Upon completion of steps (4) and (7), the hash key codes can be optimized based
on their frequency of appearance.

Regular expressions are used for the automatic detection of variable terms within syslog
entries. Categorization of automatically detected terms into sensitive and/or significant is
performed based on the information in Table 3.7.

Table 3.7: Classification of syslog entry terms into sensitive and/or significant. Severity de-
notes the importance of the characteristics for the respective terms.

Term Sensitivity | Severity Term Significance |Severity
User Name Y 10 acceptx Y o7
IP Address Y 08 reject« Y 10
Port Number Y 01 closex Y 08
Node Name Y 03 *connect* Y 09
Node ID Y 03 startx Y 02
Public Key Y 10 rkey* Y 01
App Name N 00 session Y 07
Path / URL N 00 userx* Y 05

This information is manually inferred from the policies and conditions of the host high-
performance computing system. Automatically detected variable terms which do not be-
long to any of the sensitive and significant categories are considered as nonsignificant.
PaRS uses the variable length, collision resistant hash algorithm SHAKE-128 [238, 239] to
encode the syslog entries.

During the early stages of analysis at the beginning of this work, manually extracted reg-
ular expressions were used to detect sensitive terms in syslog entries. Table 3.8 contains
15 (out of 38) manually extracted regular expressions which were used to detect variable
terms in syslog entries of Taurus. Regular expressions shown in Table 3.8 are dedicatedly
generated to match Taurus syslog entries. The order of their application is important since
certain patterns are subsets of other patterns. Although these regular expressions are
compatible with log entries of many HPC systems, to address other sources of monitoring
data as well as potential major changes in the templates of log entries, an automatic ap-
proach was required. Section 3.3.3 provides detailed information regarding the automatic
approach for extracting regular expressions from general log entries.

Even though most variables can be detected with these basic regular expressions, in
an unlikely case of similarity between variables and constants, the regular expression may
not be able to differentiate between constants and variables correctly. For example the
username panic may be misinterpreted as a constant value like kernel panic. Vari-
ous possibilities for such misinterpretations are imaginable, yet unlikely. Therefore, the

3.3. DATA PREPARATION 41

Table 3.8: Regular expressions used to detect certain terms within Taurus syslogs

Variable Regular expression

Path (IN(\Ns\,A>\:\=]) ([\/][a-z0-9_\.\-\:]x)+
Version ([\w\.\-]+x86_64)

Email ([a=z0-9_\-\.1+Q@ ([a-2z0-9_-]1+\.)+[a-z]+)
DateTime (\d{4}-\d{2}-\d{2}) T(\d{2}:\d{2}:\d{2})
IPv4 (\d+\ . \d+\ . \d+\ o\ dH+)

Port ([\W]) (port \d+)

Parameter (\$[a-z0-9_1+)

URID (uid=[\w\-1+)

User (for) ((user\)=*[a-z0-9_-1+)

Library ([a—z0-9_\-1+\.so(\.\dx) *)

Hardware address (0[x] [a-f0-9]+\-0[x] [a—f0-9]+)

Hex Number (0[x][a—£0-9]+)

Percentage (\d+\ . x [\d]*\%)

Serial number ((\s) ([a—£0-9\.\=1+\:)+(\s))

Size ([*a-z0-9]) (\d+ [bkmg]) ([*a-z0-9])

overhead imposed by employing sophisticated methods, such as named entity recognizer
(NER) to detect misinterpretations, is not justifiable. In contrast, encoding is a robust and
lightweight approach to address all forms of misinterpretations. In such scenarios, the
undetected variables are considered as constants and will be eliminated through the en-
coding step. The final encoding step masks any potential data-leakage and guarantees the
highest attainable level of anonymization.

Table 3.9 shows an example of applying PaRS on Taurus syslog entries. Table 3.9a con-
tains the original syslog entries (the input data). De-identified entries (event patterns) are
shown in Table 3.9b, and Table 3.9c contains the fully anonymized (encoded) syslog entries.
While the message part of syslog entries are fully anonymized, the metadata remains un-
changed.

Through the anonymization phase, sensitive terms of syslog messages were de-identified
(page 39, step (4)). The sensitive terms can be de-identified in various forms according to
the intended usage. In contrast, the nonsignificant terms are de-identified always via sub-
stitution by an identical symbol (e.g., all paths such as /usr/bin/ will be substituted by
#PATH#). This form of de-identification in which, all instances of a variable term is sub-
stituted with an identical symbol is referred to as global de-identification. On the other
hand, the substitution of each instance of a variable term by an individual symbol is called
individual de-identification. The global de-identification, by default, applies to all nonsignifi-
cantvariable terms. Global de-identification provides the highest degree of generalization,
while individual de-identification prevents any generalization. Categorizing syslog terms
into multiple groups and substituting all terms of each group with an identical group sym-
bol is called group de-identification. The group de-identification provides various degrees
of generalization according to the grouping granularity (variable granulation). The trade-off
between privacy and distinguishability of de-identified syslog entries via individual, group,
and global de-identification methods is shown in Figure 3.13.

42 3. DATA COLLECTION AND PREPARATION
(a) Raw system log entries
Timestamp Source Message
1515625261 | taurusil230 | (siavash) CMD (/home/config.sh > output.stat)
1515625370 | taurusi3417 | pam_unix: session closed for siavash
1515625390 | taurusid023 | (parya) CMD (/usr/bin/cmon > mon-1.log)
1515625713 | taurusi620l | disabling lock debugging due to kernel taint
(b) Event patterns
Timestamp Source Message
1515625261 | taurusil230 | (#USER#) CMD (#PATH# > #PATH#)
1515625370 | taurusi3417 | pam_unix: session closed for #USER#
1515625390 | taurusi4023 | (#USER#) CMD (#PATH# > #PATH#)
1515625713 | taurusi6201 | disabling lock debugging due to kernel taint
(c) Encoded system log entries
Timestamp Source Message
1515625261 | taurusil230 | 1808e388
1515625370 | taurusi3417 | 0964ded?2
1515625390 | taurusi4023 | 1808e388
1515625713 | taurusi6201 | 59f2da35

Table 3.9: Anonymization of syslog entries via PaRS

Distinguishability | |

Individual Global

R T
R TN <18, e
s ..ﬁ.-!.:;". Ve

‘?‘f};; ~. s

s
¢
0

8 2%

De-identification granularity

Figure 3.13: Distinguishability trade-off. Better privacy is achieved via increasing the granu-
larity towards global de-identification in exchange for worse distinguishability.

Considering that on January 29, 2018 11:00:01 PM user siavash executed the
command /usr/bin/check on computing node taurusi1020. This eventin system logs
isshownasentry E»: 1517266801 taurusil020 CMD (/usr/bin/check).
In this entry siavash and /usr/bin/check are variable terms, and cMD is a constant
term. In accordance to the intended future usage of the anonymized system logs in this
work, namely behavior analysis, siavash is considered as a significant variable term and
/usr/bin/check as a nonsignificant variable term. The entries of an ideal dataset for
behavioral analysis should have a certain degree of distinguishability as well as similarity.
Based on the entries’ similarity a majority may form (the normal behavior), while the out-
liers (abnormal behavior) could be still distinguished from this majority. To address this
challenge, the event patterns where introduced.

Figure 3.14 illustrates the PaRS anonymization workflow. The event pattern of a syslog
entry is generated through global de-identification of all variable terms in the message part
of the respective syslog entry. Global de-identification extracts identical event patterns
from syslog entries with similar messages. Therefore, the similarity between syslog entries
is preserved such that the results of further data analysis are not skewed.

(siavash)

3.3. DATA PREPARATION 43

System log entry

AL

#1 1517266801 T-1020 (siavash) CMD (/usr/bin/check)
#2 1517266925 T-1023 (root) CMD (/fast/sbin/start)

Timestamp Location Message

- T

#1 (siavash) CMD (/usr/bin/check) #2 (root) CMD (/fast/sbin/start)

N N

Significant Constant Insignificant Significant Constant Insignificant
variable term term variable term variable term term variable term
(HUSR1#) CMD (#PATH#) (#HUSR2#) CMD (#PATH#)
(#USRn#) CMD (#PATH#) (HUSRp#) CMD (#PATH#)
(HUSR_#) CMD (#PATH#) (HUSR_#) CMD (#PATH#)
de-identification global de-identification global
according to usage de-identification according to usage de-identification
2053d15d E9efd3a5
608bdaea le7ed485

Encoding Encoding

62440f7d 62440f7d

#USR1#, #USR2#: Individual de-identification; replacing each username with a new symbol
#USRNn#, #USRp#: Group de-identification; replacing usernames according to the user groups
#USR_#, #USR_#: Global de-identification; replacing all usernames with an identical symbol

: Event pattern, the result of global de-identification of all variable terms

Figure 3.14: The event pattern is the result of a full de-identification of syslog entries. Note
that other forms of de-identification are also possible. The final encoding step
guarantees full data privacy.

Although a hash key might appear devoid of semantics, given the one-to-one relation
between hash keys and event patterns, it is always possible to reaccredit the original se-
mantics to the pattern denoted by a hash key. This accreditation can only be done by the
owners of the adequate information about the event patterns and the hashing function.
However, regardless of the reaccreditation of the original semantics to the pattern, it is
always possible to track similar events according to the similarity of their event patterns
without endangering the users privacy.

The final output of PaRS consists of the log entries metadata in its original format and the
anonymized message as hash key. Depending on the strictness of the applicable privacy
guidelines, the relative semantics of each hash key can also be added to the final output.
Table 3.10 contains the final output of applying PaRS on the given sample syslog entries
in Table 3.9a, accompanied by the semantics of hash keys.

44 3. DATA COLLECTION AND PREPARATION

Table 3.10: Final output of PaRS
Timestamp | Source | Hash key | Semantics
1515625261 | taurusil230 | 1808e388 | A command executed by a user
1515625370 | taurusi3417 | 0964ded42 | A user logged out
1515625713 | taurusi6201 | 59f2da35 | Kernel is in taint mode

The anonymization phase may severely affect the quality and usefulness of the input
data. The PaRS anonymization approach proposes a utility function to quantify the quality
of anonymized system log entries. It has been shown that the quality of anonymized syslog
entries for conducting behavioral analysis for failure detection remains at an adequate
degree, such that the anonymized system logs are useful for further analysis [240].

Since 25th of May 2018 the general data protection regulation (GDPR) is enforced [120].
Complying with the GDPR and the current Technische Universitat Dresden (TUD) privacy
regulations [241], syslog entries must be excessively anonymized such that the remaining
significant terms among system logs are so few that it is not worth to preserve them (e.g.,
"failed password for #USER# from #IPvi4# port 32134 ssh2"). Theonlyremain-
ing useful information in these cases is the relative semantics (meaning) of the event pat-
tern itself. For the above example the semantics is authentication via ssh failed.

Further analysis on Taurus syslog entries anonymization indicated that: (1) The cleansed
system logs consist of approximately 90% nonsignificant entries (after performing the manda-
tory de-identification), (2) Approximately 5% of the entries are constant (without any vari-
able terms), (3) approximately 5% are entries with significance (retained their useful prop-
erties even after de-identification). Following the necessary de-identification enforced by
policy guidelines, 95% of syslog entries no longer have any significance and therefore, can
be directly converted to hash keys. The 5% of syslog entries which still had a certain degree
of significance even after de-identification, may remain untouched. However, statistical
analysis that focus on anomaly detection™ does not require such information.

Furthermore, the overhead of calculations for preserving these 5% semantics is not jus-
tifiable. Therefore, according to the chosen analysis method in this work the remaining
5% of the syslog entries will be also encoded to hash keys. Thus, regardless of the quality
measurements, PaRS applies the global de-identification on all Taurus syslog entries.

3.3.2 Storage and Size Reduction

The volume of generated system log entries is in proportion to the system size. The
storage of syslog entries, produced by large parallel computing systems, in view of their
analysis requires high storage capacity. The number of syslog entries generated by each
node of Taurus during 2017 is shown in Figure 3.15.

Size reduction can be achieved via any general lossy or lossless compression algorithm.
When the applied compression method does not change the significance and sensitivity of

4e.g., PrefixSpan, Spade, SPAM, GSP, CM-SPADE, CM-SPAM, FCloSM, FGenSM, PFP-Tree, MKTPP, ITL-Tree, PF-
tree, and MaxCPF.

3.3. DATA PREPARATION 45

10
0 (0]
0:-’ 8 o
=Ry ° ©
HS °° ®
o = @ [0}
- E 4 §
> =
H#

0&31) @ @ o

Island 1 Island 2 Island 3 Island 4 Island 5 Island 6

Figure 3.15: Number of Taurus syslog entries per node in 2017

syslog entries, from the perspective of this work, itis considered as lossless. If the compres-
sion method modifies the significance or sensitivity, it is considered as lossy and is taken as
an additional level of anonymization rather than compression. A careful consideration of
various effective compression algorithms, including Brotli, Deflate, Zopfli, LZMA, LZHAM,
and Bzip2 revealed that in affordable time, compression could reduce the size of non-
anonymized system logs to 25% of their original size (75% reduction) [242, 242, 243, 244].
In contrast, the size of anonymized system logs after anonymization via PaRS is only 5% to
10% of the original size (90%-95% reduction) [245].

Log aggregation can also significantly reduce the size of the final log collection. However,
since entries will be merged or discarded during the aggregation process, this work consid-
ers log aggregation as a form of lossy compression thus, an additional level of anonymiza-
tion. Furthermore, the log aggregation is affecting entries prior to the log collection phase.
Therefore, it is considered similar to any other configuration which is part of the HPC sys-
tem characteristics. As a side note, log compression during the transfer phase is also not
recommended [127].

In contrast to the compressed syslog entries which require a decompression phase be-
fore any further analysis, the syslog entries that are anonymized using PaRS are ready
to be processed in their current hash key format. In addition, compression (as well as
encryption) are bidirectional and may endanger the users privacy. However, the unidirec-
tional anonymization approach of PaRS eliminates all potential privacy threats and also
preserves the required distinguishability among log entries. Table 3.11 denotes the size re-
duction achieved via anonymization of a syslog dataset consisting of more than 8.6 billion
entries.

Table 3.11: Size reduction by PaRS, applied on syslog entries collected from Taurus in the
years 2016 and 2017.
| Original | Anonymized

Syslog size 984.2 GiB | 163.4 - 49 GiB™
No. of entries 8.6 % 107 8.6 % 109
Unique entries | > 108 < 3000

>The output size with and without metadata.

46 3. DATA COLLECTION AND PREPARATION

3.3.3 Automation and Improvements

This section further improves the previously proposed methods to achieve a higher ac-
curacy and automation. There are available methods for automatic generation of regular
expressions [246] However, automatic generation of regular expressions for natural lan-
guages is extremely inefficient [247]. As mentioned in Section 3.3.1 regular expressions are
used to identify various terms in system log entries and to substitute them with relevant
invariants (constants). For this purpose a set of 38 regular expressions, partly shown in Ta-
ble 3.8, were extracted from Taurus syslog entries. Although these 38 regular expressions
are fulfilling the expected tasks on Taurus syslog entries, some of these expressions are de-
pendent on specific log patterns which prevent proper generalization of the proposed ap-
proach. Therefore, an automatic regular expression generator has been developed [248].

Automatic generation of regular expressions for a given text is a complex and time-
consuming task [247]. However, restricting the input text to a set of syslog entries signif-
icantly reduces the time and computational complexities. Each application has a limited
number of message templates which are used to generate syslog messages. Therefore,
although the message part of syslog entries is unstructured and may hold messages with
any pattern, the number of these message patterns is limited by the number of running
applications and daemons (syslog message generators).

Considering Example 3.3 with four sample syslog entries. Although the username, IP
address, and port number (shown in red) are different in each syslog entry, the general
semantics for these particular events is identical. The similarity among syslog entries gen-
erated for a particular event facilitates the automatic generation of regular expressions
for system log entries. Figure 3.16a illustrates the workflow of automatic regular expres-
sion generation. The last line in Example 3.3 (marked as RE) denotes the automatically
generated regular expression. An example of automatic regular expression generation for
multiple syslog entries is shown in Figure 3.16b. The same method can be applied on any
other monitoring data that contains unstructured free-form text.

Example 3.3: Similar syslog entries

A] failed password for siavash from 192.168.3.5 port 5734 ssh2
B] failed password for u7754 from 192.168.4.35 port 30740 ssh2
C] failed password for parya from 192.168.7.43 port 3405 ssh2
D] failed password for root from 192.168.5.74 port 5407 ssh2

RE] failed password for (\w+) from 192.168. (\d+). (\d+) port (\d+) ssh2

As shown in Figure 3.16a, five detection classes are used to identify textual structures
such as functions, parentheses, dates, IP addresses, and so forth in system logs. Further
analysis of system logs revealed that only two detection sub-classes of parentheses and
numbers are sufficient for correct detection of textual structures in syslog entries.

Two main tasks must be fulfilled in view of understanding system behavior via syslog en-
tries. First, the identification of similar events and second, the distinction of the differences
between similar events. Table 3.12 provides a set of syslog entries with their hash keys (in-

3.3. DATA PREPARATION

47

Marking common terms in
system log entries
(marking terms as invariant)

Functions

Parentheses and quotations

File/application addresses

Dates, Hours, IP addresses

Names, Numbers

Classifying

log entries into classes, based
on Levenshtein similarity metric

Harmonizing

differences across entries of

the same class
L

Refining

and adjusting the resulting
regular expressions

(a) Workflow

(b) Example

Figure 3.16: Automatic generation of regular expressions for syslog entries. A variation of
Levenshtein similarity metric [249] is used for the classification of log entries.

dividual de-identification) and event patterns (global de-identification). The log entries #2
and #9 from Table 3.12 report the occurrence of similar events. However, different users
triggered each of these similar events. For a detection mechanism it is important to un-
derstand that the same type of event occurred by different users of the system. The event
patterns in Table 3.12, enables the detection mechanism to identify similarities between
events, while the hash keys are employed to represent the differences.

Table 3.12: Pre-anonymized entries; nonsignificant terms are de-identified

| Message Significant term | Hash key | Event pattern
1 | (siavash) CMD (#PATH#) siavash bb2dgsd2 66dc2742
2 | (parya) CMD (#PATH#) parya 23343ado 66dc2742
3| (siavash) CMD (#PATH#) siavash bb2dgsd2 66dc2742
4 | starting Oanacron oanacron 47c6bo1d dd740712
5 | Anacron started on #TIME# Anacron 22bb4f1a €5a59462
6 | Jobs will be executed sequentially - fie7eacs fie7eacs
7 | Normal exit (0 jobs run) 0 e4q6cibdb eac7924f
8 | finished Oanacron oanacron 76690e70 a5803a8a
9 | (siavash) CMD (#PATH#) siavash bb2dgsd2 66dc2742
10| (root) CMD (#PATH#) root 752d8638 66dc2742
1| (root) CMD (#PATH#) root 752d8638 66dc2742
12| (siavash) CMD (#PATH#) siavash bb2dgsd2 66dc2742
13| (parya) CMD (#PATH#) parya 23343ado 66dc2742
14| (siavash) CMD (#PATH#) siavash bb2dgsd2 66dc2742
15| (siavash) CMD (#PATH#) siavash bb2dgsd2 66dc2742
16| starting Oanacron oanacron n 47c6bo1d dd740712
17| Anacron started on #TIME# Anacron 22bbgf1a €5a59462
18| Jobs will be executed sequentially - fie7eacs fie7eacs
19| Normal exit (4 jobs run) 4 0c3b639c eac7924f
20| finished Oanacron oanacron 76690e70 a5803a8a

System logs are either periodic or event-driven. The periodic syslog entries reappear

with a constant frequency (e.g., once every 10 minutes). The event-driven entries on the
other hand, only appear after the occurrence of a certain event. The absence of periodic
syslog entries, as well as changes in their frequency may indicate an abnormal behavior.
Furthermore, differentiating between periodic and event-driven entries reduces the com-

48 3. DATA COLLECTION AND PREPARATION

plexity of pattern detection among event-driven entries.

The automatic categorization method in this work employs the majority voting approach
among a homogeneous neighborhood™ of computing nodes. Since general purpose HPC
systems such as Taurus are used by a large community of users, their events mostly follow
a daily pattern (Figure 3.5 on page 29). Therefore, analyzing 24 hours of monitoring data
(i.e. system logs) reveals both periodic and common event-driven patterns. The majority
voting among homogeneous neighborhood of computing nodes mitigates potential incon-
sistencies and noises among monitoring data. Therefore, an accurate pattern for periodic
and common event-driven entries can be extracted. Then any log entry can be automati-
cally assigned to any of these two categories. A log entry which does not follow the known
patterns can be the sign of a potential anomaly.

3.3.4 Data Discretization and Noise Mitigation

The proposed approach in this work is based on time-series analysis. Therefore, prior
to analysis the continuous monitoring data collected from computing systems should be
discretized. System logs are discrete time-series by nature, therefore, further discretization
is not required. However, discrete binning of syslog entries can be used to mitigate noises.
In this work a dynamic time binning is applied on syslog entries. Each bin contains the
accumulated number of events occurred in a certain time window per node and per event
class.

The dynamic binning significantly contributes to detection of periodic patterns in mon-
itoring data. Many patterns are only visible using a certain (binning) bucket size. Larger
bucket sizes may completely hide a pattern and smaller bucket sizes may reduce the sig-
nificance of patterns. A sample binning of system logs using three different bucket sizes is
shown in Figure 3.17. Only in Figure 3.17b a significant periodic pattern can be detected.

3 3 3
52 52 52
z z H
£, £, £,
‘ o

(a) Bucket size = 1 second: (b) Bucket size = 5 seconds: (c) Bucket size = 10 seconds:
Patterns are not significant. Significant periodic patterns. No detectable patterns.

Figure 3.17: Significance of data binning bucket size on detectability of periodic patterns

To calculate the suitable bucket size, syslog entries of correlated nodes', collected in
the period of one hour, are re-sampled using multiple bucket sizes. The size of each bucket
varies from 60 to 3600 seconds with 60-second steps. Each bucket holds the average num-
ber of syslog entries generated during that period per second. The standard deviation of
values in buckets with a similar size are calculated.

®Node vicinity defined in Section 4.2.1 further expands the concept of neighborhood homogeneity.
"7Refer to Section 4.2.1 for more information.

3.3. DATA PREPARATION 49

The smallest bucket size that is (1) a local minimum in comparison to the nearest smaller
and larger buckets, (2) is less than a certain threshold®, and (3) projects a descending trend
is chosen as the suitable bucket size. Figure 3.18 illustrates the final step of this calculation
for Taurus. Green dots are potential suitable bucket sizes (local minimums). The horizontal
yellow line indicates the threshold (standard deviation = 1) and the vertical red line repre-
sents the automatically chosen bucket size (600 seconds = 10 minutes) for data binning.
This calculation will be repeated after each major change in syslog generation pattern.

2.0

L
> o o

Standard deviation
=
[N)

o o =
o © o
{

original
60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
960

Bucket size (second)

Figure 3.18: Calculation of suitable bucket size for data binning

Noise is an erroneous presence or absence of entries within the monitoring data. Sys-
logs are generated by applications on individual computing nodes, thus, any failure directly
affects syslog entries via introducing random noises, interrupting log generation, or im-
peding log collection. Furthermore, even harmless errors may introduce random noises in
syslog entries.

To identify the normal behavior of computing systems, it is necessary to remove the ran-
dom noises. Beside software and hardware failures which may inject random noises into
the monitoring data, other actions such as software updates, administration activities, and
system maintenance can also introduce noises. In addition, most production HPC systems
are used by various groups of users and for different applications. Therefore, existence of
random noises in monitoring data is highly plausible due to human errors and applications
misbehavior [57, 5]. Part of these noises can be removed via discrete binning of the mon-
itoring data.However, an extreme discrete binning can decrease the accuracy of anomaly
detection by decreasing the monitoring data precision and hiding the existing patterns.

This work utilizes the neighborhood homogeneity of HPC systems to mitigate random
noises. Computing nodes in HPC systems are divided into smaller subsets such as chassis
or racks. Majority of these small subsets consist of homogeneous computing nodes which
share various physical resources such as power supply, cooling system, and network in-
frastructure. Homogeneous computing nodes which are physically collocated (adjacent)
and share similar physical resources tend to project similar behaviors [250]. Therefore,
in a homogeneous subset of computing nodes, common behavior of the majority can be
considered as the normal behavior in that particular subset.

®The threshold is system dependent and should be adjusted once for each computing system.

50 3. DATA COLLECTION AND PREPARATION

Figure 3.19 shows the extraction of common node behavior from noisy syslog entries on
Taurus in a subset consisting of 8 homogeneous computing nodes. Colored cells mark the
occurrences of event a5803a8a (event pattern) on 8 adjacent nodes during 32 minutes.
The bucket size is 60 seconds. The bottom row indicates the normal pattern of event oc-
currences, extracted via majority voting among the 8 computing nodes. Events are placed
in each bin according to their relative time passed since midnight. Further time synchro-
nization is not required.

Node ID
Node 1
Node2 | | [l
Node 3
Node 4
Node 5
Node 6 .
Node 7
Node 8

Normal l l l l l
behavior

Figure 3.19: A sample of normal behavior extraction using majority voting. Occurrence pat-
tern of one event class (a5803a8a) on 8 nodes, in 32 minutes with bucket size
of 60 seconds. The bottom row, shown in green, holds the result of majority
voting on all 8 nodes. The darker shades indicate higher number of entries.

Since each event class has its own pattern, to emphasis on the important de-
tails only one event class is shown.

...
~
w
IS
@
o
~
®
©
5
=

12 (13 (14 |15 |16 (17 (18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32

Outliers are valid events which distant from the norm. Outliers can impede correct anal-
ysis of systems behavior. However, in contrast to noises, outliers are part of the systems
behavior, thus, they should not be removed. Outliers are not always indicators of abnor-
mal behaviors. It is worth to emphasize that the goal of this stage is extracting the pattern
of normal (healthy) system behavior. Therefore, standardizing the data range (scaling) is
sufficient to omit the negative effect of outliers.

Considering the noise mitigation approach shown in Figure 3.19, when the majority of
computing nodes project abnormal behavior, the extracted behavior pattern will be in-
correct. However, analyzing Taurus behavior revealed that except major system failures,
that affect the majority of computing nodes, utilizing the neighborhood homogeneity and
majority voting extracts the common event patterns correctly. Nevertheless, the system
log entries collected during major system failures must be excluded from the training data
(ground truth) to prevent unexpected results.

3.3.5 Cleansed Taurus System Log Dataset

Syslog entries collected from 2046 Taurus nodes were processed using PaRS and en-
coded into their respective anonymized format (event pattern). Out of the total number of
3.26 billion collected syslog entries in the year 2017, 10.8 million entries were marked as in-

3.4. MARKING POTENTIAL FAILURES 51

valid entries and were removed from dataset. 1, 488 unique event patterns were extracted
from the remaining 3.25 billion syslog entries forming the cleansed Taurus Syslog dataset;
the TaurusCleansed.

Each record of TaurusCleansed consists of five fields: timestamp, node ID, facility,
severity and the message hash key (event pattern). A sample of TaurusCleansed records
is shown in Example 3.4. It is important to note that this dataset is only created for the
purpose of this work. In production environment all pre-processing steps are performed
online on the stream of incoming monitoring data.

Example 3.4: Sample of TaurusCleansed records

timestamp node facility Severity hash key
1488424393 5103 4 4 23666bbc
1488424483 5101 3 6 23666bbc
1488424501 5104 O 3 85f5c18b
1488424573 5102 3 4 23666bbc
1488424657 5101 4 6 760c5208
1488424657 5103 4 6 bba3d47c

4 5

1488424657 5102 £9cfalb9

3.4 Marking Potential Failures

Failures can be observed and analyzed in different granularities, from a single transistor
to the entire HPC system. Nodes are the smallest units in HPC systems which have a fully
functional computational stack, yet are independent and can be added to or removed from
HPC systems with minimum side-effects [6]. Therefore, the granularity of failure detection
in this work is set at the node level™.

Due to various technical reasons, a complete list of all node failures on Taurus for the
period of this work is not available. Therefore, this section retrieves a complete list of
Taurus node failures as ground truth for further analysis. The available collection of Taurus
system log entries contains data gaps, explained in Section 3.2.1, which are mainly incurred
due to interruption of data collection mechanism. These gaps do not necessarily indicate
node outages. On the other hand, some failures, such as failures caused by power outage,
leave no traces in syslog entries. Therefore, one of the first challenges is to identify real
node failures on Taurus using the existing imperfect monitoring data [251].

Node failures in computing systems can be divided into two main categories according
to their causes. Some failures are occurring during the normal operation of the HPC system
and are caused by internal factors such as software and hardware errors or racing condi-
tions. While other failures are occurring due to external causes such as power outages and
human errors. Analyzing the impact of external causes on node failures requires additional

“Node failure and failure are used interchangeably in the rest of this work.

52 3. DATA COLLECTION AND PREPARATION

5522 :
0 FH
o~ H
X 5516
[
oz
5505 :
5504 : 5504
~ FH
o -
4
(o)
T
fod
5487
5486
O
o
4
v
T
fod
5469
5468
N
o~
-
v
]
oz
5451
5450
N
> 5446
v
]
oz
5433
Normal : :
Abnormal| 09:17:32 09:26:16 09:41:45 |09:48:01 10:50:01
Failure ‘ ‘ 09:49:15
‘ ‘ 09:44:15
I—|
Abnormal . Abnormal Abnormal . . .
behavioron —~FAMEEE — behaoran — behavioron — PSS PRl . Falurectal
node 5446 node 5516 node 5504

Figure 3.20: Timeline of the major failure on March 16th

information regarding the external factors, such as detailed information about the behav-
ior of the power supplier company, which is currently not available. Furthermore, multiple
independent protection mechanisms protect Taurus against severe damages such as over-
heating. Therefore, beside the human interactions and external causes of failure such as
power outage, the protection mechanism is also the cause of certain outages. As an ex-
ample, the large failure shown in Figure 3.20 was caused by the overheating protection
mechanism to prevent further damages to computing nodes.

In this particular example 3 nodes (out of 9o) were able to detect and report the unusual
temperature increase before activation of the overheating protection mechanism. There-
fore, it was possible to detect the reason behind this major failure via analyzing syslog
entries. However, in most cases the protection mechanism detects the unusual behavior
earlier than computing nodes and will be activated. Thus, no footprints of the failure’s
cause exist in Taurus syslog entries. In such cases, the activity logs of protection mech-
anisms should be included. Similar analysis methods, as used for syslog analysis in this
work, can be applied to any other form of activity logs. However, to improve the general-
ity of the proposed approach, the protection mechanism is considered an external cause
similar to power outages and human interactions. Therefore, in this work the focus is on
the first group of node failures which are referred to as regular failures and are caused by
internal factors.

The first step to identify such failures is to retrieve all node outages and afterwards
distinguish regular failures from those which may happen as a result of external factors

3.4. MARKING POTENTIAL FAILURES 53

such as maintenance, human errors, and so forth. Figure 3.21 illustrates the main root
causes of Taurus node outages in 2017.

40%

30%

20%

10% I

. e _

m Count Duration

< (4 N NS C - N <
& & o 4,\"‘6 NS N A $@ & 3% & O P &R O\o"o @6 & \7}6\ o
N4 S NN X AN & <& Q O 0 SN Qo
& > o5 & & (& 8 R\ ¢ T e
N N Q}@ Q QQ/Q) % N &
@ & 9

Figure 3.21: Main root causes of Taurus node outages in 2017

Taurus computing nodes generate and send syslog entries to a central log collector
which stores them for future analysis. This passive log collection mechanism is chosen
since it imposes no additional overheads, and is applicable to all HPC systems. However,
this approach leads to a common problem shared by all remote-access systems: it is not
possible to truly indicate whether a node is down, too busy to respond, or simply lost its
connectivity. Therefore, the failure identification process becomes more challenging. Due
to employment of the passive log collection mechanism, a node outage can be confidently
detected only when a direct indication in form of an entry in monitoring data (e.g., syslog)
is generated by the failing node and correctly received and stored by the central log col-
lector, e.g., “Kernel panic - not syncing: Fatal Exception.” However,in many
cases a node outage leaves no direct indication in system logs. A workaround is to assume
the absence of log entries, for longer than a certain time interval, an indication of a poten-
tial outage. Nonetheless, this assumption is not accurate. For various reasons the flow of
system log entries from computing nodes to the central log collector might be interrupted
or delayed, which appears as log absence interval and therefore, might be interpreted as
outage, although, the computing nodes are functional. Also, in many cases immediately
after the occurrence of an outage, protection mechanisms recover the node. In the both
later scenarios, an active node probing approach may also fail to detect all node outages
correctly. Therefore, in this work two overlapping methods of (1) analyzing syslog-ng in-
ternal metrics and (2) back tracking and cross-checking are used to retrieve Taurus node
outages and provide a reliable set of ground truth for the next steps.

The syslog-ng daemons periodically report statistics of collected system logs2°. On Tau-
rus, under current configuration, once per hour syslog-ng's internal metrics are recorded
as a log statistics entry. These metrics are mostly based on various message counters such
as the number of messages that successfully reached their destination driver (processed),
the number of dropped messages (dropped), and the number of messages passed to the
message queue of the destination driver that are waiting to be sent to the destination
(queued). To retrieve the potential time frame of a node failure, three syslog-ng metrics

?°syslog-ng.com/technical-documents/doc/syslog-ng-open-source-edition/3.16/administration-guide/8o

54 3. DATA COLLECTION AND PREPARATION

are used: timestamp, stamp and processed. The timestamp is the UNIX timestamp of
the recorded log statistics entry, while the stamp is the UNIX timestamp of the last message
sent to the destination.

Two consecutive Syslog-ng log statistics entry are shown in Example 3.5. In the first entry
the timestamp is 1485965346, the stamp is 1485961746, and the processed counter is
29954. The unused metrics are removed to increase readability.

Example 3.5: Syslog-ng log statistics entry

1485965346 [...] Log statistics; processed=’src.internal (s_sys#1l)=29954",
stamp='src.internal (s_sys#1)=1485961746", [...]

1485968946 [...] Log statistics; processed=’src.internal (s_sys#1)=29955",
stamp='src.internal (s_sys#1)=1485965346", [...]

To retrieve the potential time frame of a node instability on Taurus, two following condi-
tions are checked. First, the time difference between t imestamp and stamp of each entry
on a healthy Taurus node should always remain equal to 3600 seconds (1 hour). Second,
the processed counter for s_sys in each entry must be incremented by exactly 1 unitin
comparison to the previous entry. For both entries shown in Example 3.5, both conditions
hold true. These two conditions for the entire Taurus syslog dataset were controlled. All
intervals of node instability were retrieved and marked. It is expected that each node had
experienced at least one failure during its instability interval.

Through analyzing Taurus system logs it has become experimentally evident that all
nodes during a healthy boot, leave similar footprints in their syslog entries. If a node fails
to generate the expected footprint at boot time, it is an indication of a faulty boot process
and thus the node will be either automatically rebooted again or fails shortly afterwards.
The higher frequency of log generation at boot time in comparison to the normal operation
time is another indicator of a boot event, which can be used to identify a boot process as
well as, distinguishing between healthy and problematic boot processes.

The proposed node outage retrieval method also searches for the footprint of boot
events among system log entries. Upon detection of a boot event, syslog entries are back-
tracked to extract the last syslog entry before the boot event. The timestamp of last syslog
entry before the boot event is considered as the point of outage?'. Using the proposed
method, all node outages will be identified. The only exception is when a node fails and
has no further successful boot process. In such cases, comparing the timestamp of the
last available syslog entry with the current time (31-12-2017 23:59:59 in this work) re-
veals the missing outage. Figure 3.22a illustrates all detected boot events on Taurus within
the period of one year. Unexpected events (shown in red) indicate the absence of infor-
mation in system logs which might be signs of potential crashes. Expected events indicate
scheduled boot events which are due to maintenance or intentionally caused via protection
mechanisms?.

Retrieved node outages are then compared against the other available data sources

#The last entry might also be a shutdown or reboot command.
#In such cases, rather than a sudden power off, a shutdown command is executed.

3.4. MARKING POTENTIAL FAILURES 55

Island 1 Island 2 Island 1 _
1250) 21001) ' v 1250
1225 | 2090) } ' 1225
1200 2080 1200
175 20701 . 175
o o
éHSO 2060 EHSO
g 1125 1: 2050 . g 1125
1100 2040 1100
1075 | 2030 . 1075
1050) 2020 1050
1025 ; 2010 | 1025
Island 3 Island 4
3180 : - . - 31807
: ' 4250
3160 | ; | sl L : 3160
3140 | ; a0 Tl 1 3140
3120 i ; 4175 . L . 3120
23100 4150 2 3100
g : : 4125 i g
2 3080 [2 3080
| : 41001 | ||
3060 : : : | ! 3060
. 40751 | .
3040 ! : as0] ‘ 3040
3020 : : 4025 ; 3020
Island 5 Island 6
5600 T T 6600 5600
5500 | ‘ | ; ‘ 6500 ' ‘ ! 5500
o |
el | Ay i
5400 i i 6400 5400
[=] i\ | ! ‘ =]
v v
g 5300 Il i 6300 ‘ g 5300
z s H z
5200 i ! 6200 i 5200
I !
5100 i | 6100 ; 5100
B | il ‘
S0 e S0 5000
fSf2g32=28028 Sf2<323°28c028)
Date Date
I Expected HEE Unexpected I Completed HEE Failied job
(a) Node outages retrieved via syslog analysis. (b) Slurm job status report

Figure 3.22: Node outages and job reports on Taurus. Intervals of unavailability of job re-
ports do not necessarily specify node outages.

described in Table 3.2 on page 32. When a node outage is happened out of the scheduled
maintenance period, and no job could be accomplished on that particular node at the time
of the detected outage, the outage is marked as a regular failure. As Figure 3.22b illustrates,
it is common that certain jobs on a specific node fail although other jobs on the same
node are accomplished simultaneously. The red dots indicate jobs that are failed due to
node failures. Node outages that are recorded in the outages database, which monitors
the availability of the HPC system from users perspective, are also considered as regular
failures.

Using the procedures introduced in this section, a set of ground truth is built for Taurus
failure statistics. This dataset together with the information obtained in previous steps are
stored in an SQLite database, namely taurusMETA. The schema of taurusMETA database
is shown in Figure C.1 on page 145.

In total 11, 463 intervals of instability were detected via analyzing Syslog-ng internal met-
rics stored in syslog entries and back tracking of boot events, out of which, 3,332 inci-
dents were either initiated or interrupted by system moderators. Figure 3.23 shows an
overview of Taurus instability intervals. Among instability intervals, Figure 3.23a indicates
five system-wide instabilities. Further analysis revealed that on March 14th, as well as on
June 26th and 27th, system-wide maintenance was the root cause of nodes instability.

56 3. DATA COLLECTION AND PREPARATION

In addition, on 8th and 21st of December 2017, the system-wide failures were caused
by human error and filesystem bug respectively. Therefore, all incidents related to these
five days (5, 358 incidents) were removed from the potential Taurus node failures dataset.
Figure 3.23d shows the impact of these five incidents on individual Taurus nodes. The re-
maining 2, 773 incidents (node outages) are considered as potential node failures. As shown
in Figure 3.23b, the majority of nodes were recovered to stable conditions in less than five
hours. Out of 2,046 Taurus computing nodes, 29 nodes did not have any useful failure
information?3.

2000 ;
6000

1500 5000 7=

Pl
4000 &

node

1000 [
3000 P

number of failed nodes

500 |- ° 2000 [

& 1000 P2

° O ® <) <)
Rz 8 o (*) 1 1 L L 1 I I

2017-01-01 2017-04-01 2017-07-01 2017-10-01 2018-01-01 0 500 1000 1500 2000 2500 3000 3500

date instability duration (hour)

(a) Total number of node instabilities per day.(b) Duration of each instabilities per node. Some
Large number of unstable nodes on 5 days nodeswere powered down for several months
(marked in blue) indicate system wide failures

o 8 o (-]
“@”af R | g1
6000 - é%ﬂo Oom 0% &O 8°8 o o& 5990 6000 g 8 8 8 o
ogo o ® ©° © (-3-] .)
e - Rk B ok SEE ik :
5000 - 8@%30 ‘<§ 5000 F © 5 | °
g 4000 B0 Boo Plapstor, @oeSP° o B YR 38 o) g 4000 °°8glnescs, °
a0 F 8o o080 oo @ ° ° 3 00 20008 °
2000 o % oodo ®o O ofP® o %o R ° 2000 @ 8 8 o o °
1000 @0%0 %ggo% &O G’ogg@o oo%o ooi' 10007"Ego o
2017-‘01-01 2017-‘04-01 2017-‘07-01 2017-‘10-01 2018-‘01-01 0 é 1‘0 1‘5 2‘0 2‘5
date count
(c) Distribution of node instabilities. (d) Number of instabilities per node. 13 nodes
(marked in blue) experienced 10 or more inci-
dents

Figure 3.23: Taurus node instability intervals in year 2017

Figure 3.24 illustrates the number of potential Taurus node failures per day in 2017. The
pattern of node failures over the year 2017, shown in Figure 3.24a, has no linear correla-
tion to the pattern of job failures shown in Figure 3.24b, implying that the number of jobs
running on some nodes are extremely larger than the others. However, the low number

23The 29 nodes are: 1005, 1125, 1149, 1160, and 1172 from Island 1, 2045-2047, 2050, 2055, 2063, 2069-2070, 2078,
2081-2082, 2085, 2087, 2089-2091, 2097, 2098 and 2102-2104 from Island 2, and 3073 and 3175 from Island 3.

3.4. MARKING POTENTIAL FAILURES 57

of node failures on weekends, as shown in Figure 3.24a, implies a direct relation between
user activities and node failures. Figure 3.5 on page 29 indicates similar correlations with
a different granularity.

|| | L] [[| | L
NN N H EN EeNETe [| | [B | m
Cn HE EE BN = [| [| | w 100
HEE FENTETEE. || _HEEN ENEE T
EETET. N | H EEN H N | F
S 100
| | s
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 0
2017
(a) Potential node failures
|| | | [[[| | H N M 10
T N HES B BN g T .
| B] | [[| | [w b
L | | HES EOeSN | T .
|| | L [| F 10
u [| s .
[I | | s 10
Jan Feb Mar Apr May Jun | Aug Sep Oct Nov Dec 0

Ju
2017

(b) Job failures caused by node failures

Figure 3.24: Number of potential failures per day in year 2017

The taurusMETA dataset provides a list of all regular failures4 of Taurus HPC cluster.
Figure 3.25 shows a node-level overview of potential Taurus node failures.

During the year 2017, 93.96% of all jobs submitted to Taurus were executed on single
nodes, 4.43% on 2 to 4 nodes, 1.33% on 5 to 16 nodes, and 0.27% on 16 to 512 nodes. In
total 1.41% of jobs that were running on multiple nodes, as reported by Slurm, failed due
to node failures. Out of which, 10.77% of job failures were directly caused by node failures.
Resulting the interruption of 1857 tasks on various nodes. The distribution of accomplished
and failed jobs, as reported by Slurm, is shown in Figure 3.26.

No significant pattern or correlation can be observed between node and job failures=>.
However, this might be due to the low number of multiple-node failures on Taurus in the
year 2017. The independence of job failures and node failures can be better illustrated via
a side by side comparison of daily pattern of job accomplishments versus job failures. As
shown in Figure 3.27, although there are days with multiple job failures, the number of job
accomplishments remains almost identical throughout the year. Furthermore, even those
job failures that are reportedly caused by node failures do not have any direct correlation
with the number of node failures.

Analyzing taurusMETA provides better understanding of patterns in Taurus behavior.
The frequency of all potential failures according to the duration of each failure (in hours) is
listed in Figure 3.28. The majority of failures last longer than 1 hour and recover in less than
6 hours. However, there are three exceptions: (a) 91 failures with the length of 22 hours,
(b) 43 failures with the length of 28 hours and (c) 47 failures with the length of 48 hours.
Considering the large differences between these peak values and their neighboring values,
it is concluded that failures in each group (a, b, and c) are strongly correlated.

*4Failures that are caused by internal factors during the normal production interval.
*Two other large-scale studies on IBM BlueGene/Q Mira and Blue Waters also conclude that 99.4% and 98.5%
of job failures were due to user behaviors, respectively [5, 252].

58 3. DATA COLLECTION AND PREPARATION

Island 1 Island 5

taurusi[lOOl—lOlB]nZ 0 0 0 000 0 0O 00 0 0 0 0 o 1 tauusi501508-21 3 1 0 1 1 1 1 2 1 2 1 1 1
taurusi[5019-5036]- 3 3 2 2 3 3 3 3 2 3 4 4 3 3

-
~N
-
-

taurusi[1019-1036] - 0 0 0 0 0 0 0 1 2 0 0 0 0 0 1 1 0 0
ursit ! taurusi(5037-5054]- 1 1 1 1 1 1 2 1 0 1 1 1 1

~

w o w
=
=
-

taurusi{1037-1054]-1 1 0 0 0 1 0O 0 0 O O 1 0 O 0 ©0 1 0 taurusi50555072]-0 4 3 3 4 0 3 3 2 3 4 4 5 3 3 gkl 5
taurusi(5073-5090]- 1 0 0 0 0 1 0 0 0 0 O 1 1 1 1 0 1 0
taurusi[1055-1072]- 0 0 0 0O 0 0 0 0O 2 0 0 0 0O 0 0 0 0 0
taurusi(5091-5108]- 1 1 0 0 0 2 0 0 0 1 0 0O 2 1 1 1 0 O

,_.
-
-
-
~N
w
-
~N
w
~N
~N
~N
-
-
-
-

taurusi(1073-1090])- 0 1 o0 o0 1 o0 O 0 O 0 1 0 O O 1 1 0 1 taurusi[5109-5126]- 0 3

taurusi[5127-5144] - 0 1 i 0 0 o0 2 2 0 0 1 0 2 1 0 0 0 o0
taurusi[1091-1108)- 0 0 O O O 0O O O O O O O O O O 1 0 1

taurusi(5145-5162)- 0 1 1 o0 1 0 0 O 1 1 0 O 1 0 O 0O 1 O
taurusi{1109-1126])- 0 1 1 0 0 0 O 1 0 O O O O O O O 0 O taurusi[5163-5180]- 2 2 2 1 3 3 2 2 3 4 2 2 2 2 3 2 3 4

taurusi[5181-5198] - 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 3 2

x
3 taurusi{1127-1144]- 0 0 0 0 0 0 0O 0 0O 0 0O 0O 0O O 0O 0O 0 0
< taurusi(5199-5216]- 1 1 1 1 2 2 1 1 2 1 1 0 2 1 1 1 2 2
taurusi[1145-1162]- 0 0 0 0 O 1 0 0 0 1 0 0 O O O O 0 |2 ‘taurus(5217-5234-1 1 0 1 1 1 1 1 2 2 1 1 0 1 1 1 2 2
taurusif52355252]- 2 5 1 1 4 2 0 1 2 3 1 1 1 1 1 2 2 2
taurusi{1163-1180]- 0 0 0 0 O 0 0 0 0 0 0 1 0 1 0 0|2 1 ! !
taurusi(525352701- 2 1 1 1 1 1 2 1 2 1 1 1 1 0 0 1 2 1
taurusi(1181-1198)- 0 0 1 0 0 ©O0 ©0 0 0 1 0 0 0 ©0 1 1 0 1 taurusi5271-5288)-1 1 1 1 1 1 o0 1 1 1 1 2 1 0 1 0 1 1
i5289-5306]- 1 1 1 1 1 1 1 2 2 11 i 26
taurusif1199-1261- 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 o o unsi52895306] © CRECRRC
taurusifs307.53241- 1 0 2 2 1 1 1|02 2 4 1 1 1 2 2 1 1
taurusii1217-1234]-1 0 0 ©0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 uigssmsssdz-1 1 0 1 1 1 1 0 0o 1 0 1 1 0 1 1 2 1
taurusif1235-1252-1 1 0 0 1 1 0 0 0 0 0 O 0 o0 o0 o 1 o ‘eurusils343se0l-1 03 123 11 1 1 0 1 1 1 1 1 23
taurusii536153781- 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 2 2
taurusif1253-12701 - 1 0 H t 10 0 0 0 0 082 1 1 0 0 0 0 gs3795306-1 1 1 1 1 1 1 1 1 0 2 1 1 1 1 1 0 0
- p—— o Emem.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 taurusif53975414]- 0 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 2
Island 2 taurusi(5415-5432]- 2 3 2 2 1 2 3 4 2 1 3 2 2 2 2 3 3 2
taurusif2001-2018]- 0 0o o 1 oM o o 2 0 0 0 0 o o o o o ‘aurusi5433-5450] T4 TETNANEG T4 T4 TG R4 RN 4 e el 4
taurusif5451-546814 7 | 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
taurusi[2019-2036)- 0 0 O O O 0 4 2 0 0 O O O O O O O O taurusi[5469-5486]- 4 4 5 5 4 4 4 4 5 4 4 4 5 5 4 3 6 5
taurusi(5487-55041- 5 5 4 4 4 4 4 4 4 4 4 5 4 5 4 5 4 4
taurusif203720541- 0 0 0 0 0 O 0 3 0 0 0 1 0 0O 1 0 0 ©
% taurusi(550555221- 4 4 5 3 4 4 6 5 4 4 4 6 5 5 4 5 5 5
3
& " J
taurusif20552072]- 0 0 0 0 0 ©0 O 0O 0 0 ©0 O 0 0 0 o o o ‘eurusiss23ssa0)-1 1 1 0 24 3 4 0 1 1 1 1 1 0 1 11
taurusi(5541-5558]- 4 2 2 2 2 1 0 1 2 3 1 1 1 2 1 1 2 1
taurusi[2073-2090)- 0 1 0 ©0 1 0 1 0 0O O 1 2 0 1 0 0 O O taurusi[5559-5576])- 1 2 2 2 2 3 1 1 1 2 0 1 2 2 1 1 1 2
taurusi(5577-55941- 1 1 1 0 2 2 1 1 0 0 1 0 1 1 2 3 2 1
taurusi2091-2108]- 0 0 0 0 0 ©0 0 0 1 1 3 0 0 0 0 1 0 0
: ! taurusif55955612]- 0 2 1 1 2 1 1 1 1 1 1 1 1 1 3 2 0 3
B s S R S I s i S S R S SR
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 001 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17
Island 3 Island 6
taurusif3001-3018]-1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 taurusi(6001-6018]- 2 n 22 2 2102 2| B0lz2/2 2 1 2lala
taurusi(3019-3036] - 1 0 n 10 0 0 0 1 0 1 0 1 1 1 1 1 1 taurusi6019-6036]-1 2 2 2 3 1 2 2 2 3 2 3 3 3 1 2 3
taurusi{3037-3054]- 0 0 0 0 O 0 0 0 0 0 1 0 0 0 1 0 1 1 taurusi(6037-6054]-2 2 3 3 3 2 2 2 1 2 2 3 2 2 2 1 2
taurusi[3055-3072]- 0 1 0 0 O 0 0 1 0 0 1 0 0 O O O 1 0 taurus(60556072]-3 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2
4 taurusil307330901- 0 1 0 1 0 1 0 n 11 0 o n 1 1 0 1 0 taurusil6073-6000]- 2 2 2 |[ENERERE m 3 3 3 1 2
3
@ taurusi{3091-3108]- 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 0 teurus6091-6108]-1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 0
taurusi(3109-3126]- 0 0 1 0 0 0 0 1 o 0o o o oMo o o |‘teuusieroo61261-2 0 1 1 1 2 2 3 2 2 1 1 0 1 2 1 1 1
taurusi(3127-3144]-1 1 1 0 0 1 0 1 1 0 0 0 O O 1 0 1 0 taurus(6127-6144]-3 2 1 1 1 2 1 0 1 1 2 2 1 1 1 1 0 2
taurusi[3145-3162]= RN o n 11 0 0 1 0 1 1 0 1 1 0 tauusi6l4s6l62]-1 2 1 1 1 2 0 0 1 1 1 0 1 0 1 1 1 1
taurusi(3163-3180] - 1 0 “ 0 n 1 0 n 0 0 0 0 0 0 1 1 0 1 taurusi(6163-6180]- 2 3 3 1 1 1 1 1Bl o 10201 0o 1 18
- . - L, R
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 taurusi618l6198]- 1 1 1 1 1 2 0 1 1 1 1 1 0 1 3 2 1 2
Island 4 taurusi(61996216]- 0 1 1 o0 1 1 1 o0 1 1 1 1 1 1 1 1 2 1
taurusil4001-4018]- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ‘ftauusil6217-6234)-2 1 0 2 2 2 0 0 1 0 O 1 1 1 1 2 1 1
taurusif62356252]- 1 1 0 1 0 1 2 1 2 3 1 0 1 1 1 1 1 1
taurusi4019-4036]- 3 2 2 2 3 3 2 3 2 2 2 2 2 2 2 2 2 3
t ! taurusil62536270]- 1 2 1 0 1 1 1 1 2 T T
taurusi(4037-4054)- 1 1 o0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 taurusil6271-6288)- 0 0 1 1 o0 o0 1 1 1 1 1 1 2 2 1 2 1 1
taurusi(6289-6306]- 2 1 0 1 1 1 1 1 0 1 0 1 2 1 0 1 2 0
taurusif4055-4072]- 1 Rl 1 1 1 1 1 1 1 2 1 2 1 1 2 1 2
taurusi63076324]- 1 1 1 1 1 1 1 0 1 1 0 1 1 1 2 1 1
taurusil4073-4090]- 1 1 1 0 1 1 1 2 3 2 2 1 1 1 1 2 2 teurusi(63256342)-1 1 1 1 1 1 1 1 1 1 1 2 0 2 2 2 1 1
taurusi(6343-6360]- 2 1 3|1 2 2 '3 2 2 3 3 3 3 3 H ENERE
taurusil4091-4108] - 2 2 2 2 2 2 [Nzl > 33 2|3 33 3
taurusii63616378]- 1 1 1 2 1 1 2 2 1 1 1 1 1 0 2 2 1 1
taurusi4109-4126]< 4 3 1 3 4 4 2 3 2 4 1 1 3 2 2 2 3 4 teurusi63796396]-1 0 2 2 2 1 1 0 1 1 1 2 0 1 1 1 1 0
% taurusi(639764141- 1 1 1 2 0 1 1 3 1 1 0 1 0 1 2 2 1 1
3 taurusi(4127-4144] - 3 3 3 3 3 3 3 3 3 3 3 3 4 4 a
& taurusil64156432]- 2 1 0 1 1 1 1 0 1 1 0 1 1 1 2 1 0 1
taurusil4145-4162)- 1 1 2 2 3 3 1 1 2 2 1 1 1 1 3 3 2 2 tauru51[6433-6450]ﬂ 010 0 0 0 0 0 1 0 0 0 0 2 2 3 3
) taurusil6451-64681- 2 2 2 2 2 3 1 2 1 2 1 1 3 2 2 2 2 2
taurusii41634180J-3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
taurusif6469-6486]- 1 1 1 0 1 1 1 1 1 0 1 2 1 0 0 2 1 2
taurusil4181-4198] - 4 @ cle|a)e m taurusi(6487-6504]- 0 0 O 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1
65221 - 2
taurusi(4109-42161 14 (4| 2 2 3 3 MM 3 2 1 3 3 3 1 3 2[4 4 (ourusi6505-6522] 53 HEIEEN ° E 2 2 g B
taurusi[6523-6540]- 1 1 2 2 2 [EREl 2 : 2 n 2 2B 2 :
2

taurusi[4217-4234] - 2 1 3 1 1 0 1 1 2 2 2 1 1 1 1 1 0 2 taurusi[6541-6558] - 1 1 1 1 1 1 1

taurusif42354252]- 0 0 0 0 0 0 O 0 0 0 O O O 0 ©0 o o o ‘aurusil6559-6576]-1 1 1 17371 1 1 1 0

taurusi[6577-6594] - 1 1 1 1 1 1 1 0 1 1 1 1 1 2 1 1 2 1

taurusi(4253-4270]- 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 ueececo 1 1 2 2 103 3 1 1 2 3 ﬂ 2 2 3
L e e S T T A E T N S R T S B
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 1‘1 12 1‘3 1‘4 15 16 17 1‘8
In-Rack node sequence number In-Rack node sequence number

Figure 3.25: Potential node failures occurred in 2017. Each cell represents a single node
and each row represents a rack. The total number of potential node failures is
shown in each cell.

3.4. MARKING POTENTIAL FAILURES 59

§ x
200
x
x x
€ 1s0f X% % X
i X
| B

8 ¥

x xX X
x
x x x X% "
x 3

x x x % S0 * X - X

50 x-x x x X
x x X
. x x x X X

0 .

L x L L L s
0
1000 2000 3000 4000 5000 6000 1000 2 3000 4000 5000 6000
node node

8 100 %
X

e
el

(a) Total number of jobs that has terminated all its(b) Total number of jobs terminated due to failure
processes on all nodes with exit code of zero of one or more allocated nodes

Figure 3.26: Jobs status reported by Slurm per node in year 2017

102

103
10?

10t

wumHs Az

10°

Ju
2017

(b) Job failures caused by node failures

Figure 3.27: Number of jobs accomplished or failed per day in year 2017

Analyzing the failures in group (a), confirms the correlation hypothesis. 85 out of 91
failures with the duration of 22 hours were simultaneous failures occurred on March 16th.
Analyzing the syslog entries of these 85 nodes does not provide any information regarding
the cause of this failure. Looking at the list of all node failures on March 16th reveals 5 addi-
tional node failures on the same day with different failure duration. More interestingly all
of these 9o failures (85 + 5) were occurred on five neighboring racks?®. Fortunately, 3 of the
newly discovered node failures had traces of the cause of this major failure. Analyzing the
syslog entries of node 5446, 5504 and 5516 revealed that this major failure was caused by
malfunctioning of the central cooling system in those five neighboring racks which conse-
quently activated the overheating protection mechanism and resulted in the sudden power
down of all five racks. The timeline of significant events from the first detectable anomaly
on node 5446 until the failure of all 9o nodes is shown in Figure 3.20 on page 52. Early
detection of the abnormal behavior at 09:17 could have provided more than 1.5 hours lead
time to prevent the major failure at 10:50.

Analyzing the failures in group (b) and (c) confirms the existence of similar form of tem-
poral correlations. Out of the 43 failures with the duration of 28 hours in group (b), the 35
failures that occurred on February 13th were most likely caused by network problems. Out
of 47 failures with the duration of 48 hours in group (c), the 46 failures that occurred on
January 17th were also caused by overheating protection mechanism.

2Racks: 24, 25, 26, 27, and 28

60 3. DATA COLLECTION AND PREPARATION

1000 s
[] .
22 h: 91x 28 h: 43x
5 .
% 100) 48h: 47x
“ 40 " . . e
o
g .
E 10 . B
> ° 000
[J [BN J (X}
0000 O [] [] []
[] @ 0 e o [X]
1 000 (& . . I . & L
1 5 10 100 1000 10000

Duration (hour)

Figure 3.28: Number of potential node failures classified based on the duration of each
failure. More than 81% of failures were recovered in less than 5 hours.

The reasons behind each of these 3 major failures, namely, malfunctioning of cooling
system and problem in network connectivity, reveals the unexpectedly long failure dura-
tion as well as the large number of simultaneous node failures. Both cases which were
caused by malfunctioning of cooling system could have been prevented with few hours
lead time, providing enough time to prevent the upcoming failures. Therefore, it can be
concluded that certain failures are predictable. However, to evaluate the generality of this
conclusion, first the null hypothesis should be rejected.

61

4 Failure Prediction

Chapter 4 describes the methodology and tools which were used and developed in this
work to analyze computing systems behavior. Chapter 4 covers the orange building blocks
shown in Figure 4.1. The output of this chapter is a comprehensive failure predictor for HPC
systems. Behavior analysis in this work are conducted through 3 phases: failure correla-
tion, pattern detection, and anomaly detection. Methods of the first phase manually ana-
lyze HPC system monitoring data to identify potential correlations among failures. During
the second phase semi-automatic methods detect potential patterns in HPC system mon-

itoring data prior failure events. The third phase attempts to automate the entire failure
prediction process.

Failure Prediction Blocks | |

|

Data Collection and Preparation Blocks C|ustering Time DNA
series sequence
———— Data visualization
Rejecting the null
| Extracting syslog hypothesis
statistics I Detecting failure
l chains
Detecting T
Collecting anomalies in data
monitoring data taurusMETA Root cause
T analysis
|, Marking potential Categfc;n;:lzjlpegs node
node failures |
Data Automatic log Extracting significant
anonymization classification data features Statistical analysis
— | o
S Machine learning
| Notifications Noise mitigation Automatic failure
T . g detection Hierarchical
,, Admins DB i l temporal memory
>
Job info . . Providing a prototype
3 Majority voting Automatic failure to analyze and predict
= Syslog Prediction computing systems
T T | behavior
. Introducing .
Topolog!cal neighborhood !ntroducmg 3D
analysis failure correlations

homogeneity

Figure 4.1: Major building blocks and the workflow of jam-e jam. Building blocks shown in
orange are covered in Chapter 4.

62 4. FAILURE PREDICTION

4.1 Null Hypothesis

This work uses syslog entries as the main monitoring data for detecting abnormal be-
haviors in HPC systems. Prior to practical syslog analysis, the fitness of syslog entries for
behavioral analysis should be proved. It should become evident that syslog entries, that
are collected before a node failure, project different patterns than the patterns observed
during the normal operation of HPC systems. To achieve this goal, the HPC system moni-
toring timeline is divided into 4 sections of pre-event time (PET), event time (ET), post-event
time (POET), and inter-event time (IET) around each identified node failure (ground truth).
A schematic illustration of the monitoring timeline is shown in Figure 4.2.

El E2 E3

Figure 4.2: Division of events timeline into inter-event time, pre-event time, event time, and
post-event time.

A node failure may last from seconds to hours or days, ET refers to the entire duration
of a node failure’. PET denotes a time window before the failure occurrence. POET marks
a short time window after node recovery. During the PoET interval, the system is unstable
and the collected syslog entries are not reliable. IET on the other hand, specifies a time
window that has no overlap with PET, ET, and PoET intervals. During the IET intervals, the
system is stable and operates normally.

The null hypothesis assumes that the patterns observed before node failures (PET) are
similar to patterns observed during the normal operation (IET). If this hypothesis holds true,
it is concluded that there is no correlation among syslog frequency and the system status
thus, the syslog frequency is not a useful measure to predict node failures. To reject the null
hypothesis, it must be shown that the distribution of certain data features, prior to a fail-
ure occurrence, significantly changes. For this purpose the distribution of syslog entries’
metadata, namely facility and severity, is analyzed. The facility and severity
values of Taurusil235 syslog entries for a duration of 24 hours before the failure are
shown in Figure 4.3. Horizontal axis in Figure 4.3 shows facility-severity pairs such
as usr-err that stands for syslog entries produced by a user facility with the error severity
level?. Sudden changes in the appearance of syslog entries regardless of the facility name
and severity level may be the indication of an upcoming failure. In Figure 4.3 four sudden
changes are marked with black circles, namely kern-err, kern-warning, kern-info,
and authpriv-info. Out of 2,773 potential failures on Taurus in 2017, 127 failures had
overlapping pre-/post-event intervals. Due to these overlaps the PET and PoET of respec-
tive failures cannot be correctly calculated. Therefore, these 127 failures were excluded
from the analysis in this section.

'E1, E2, and E3, in Figure 4.2, are examples of ET. Since no syslog entries are available during event times, ETs
are shown as solid vertical lines rather than time intervals.
*Table 2.2 on page 9 provides a complete list of syslog facilities and severity levels.

4.1. NULL HYPOTHESIS 63

20:50:00 - 15
22:00:00 -

23'10:00 -

002000 -

01:30-00 -

02:40-00 - =

03'50:00 -

05:00-00 -

15:30:00 -
16:40:00 -

notice -

auth_notice -

syslog_warning -

locald_warning

locals_warning

UsEer_err -

local0_err

mail_warning -

daemon_err -

daemon_debug -

daemon_alert -

auth_debug -

authpriv_alert -

locald_notice

kern_alert -
user_crit -
user_infa -
mail_crit -
mail_info -
auth_err -
auth_info -
syslog_err -
syslog_info -
on_err -
aon_info -
localD_crit
localD_info
local5_err
local5_info
local7_notice

user_debug -
daemon_notice -
daemon_info -
syslog_notice -
local0_notice

user_notice -
daemon_crit -

kern_emerg -
kern_debug
user_warning -

aon

daemon_warning -

symbaol

Figure 4.3: A sample of sudden increase in the frequency (marked with black circles) of
certain syslog entries shortly before the failure of node Taurusii235 at 17:42:22.

Upon observation of a sudden change in the node behavior, node enters an instability
interval. A useful prediction should provide enough lead time that allows required pro-
tective measures to be taken. Therefore, the feasibility of performing node failure predic-
tions with useful lead time should also be verified. To calculate the potential lead time,
the instability period before each failure, using the method introduced in Section 3.4, was
calculated. 97% of the failures had an instability period of 60 minutes or shorter and the
respective nodes were behaving normal (at least) during the last 24 hours before each fail-
ure. The distribution of instability periods for these 2,536 failures are shown in Figure 4.4.
The lead time of failure predictions at most can be equal to the duration of node instability
interval. According to Figure 4.4 it is concluded that for majority of failures, upon an early
detection of node’s instability, a node failure prediction with useful lead time can be made.

250
200
150
100

50

0
0 10 20 30 40 50 60
Duration of instability (minutes)

Figure 4.4: Distribution of the nodes instability interval before each failure. Out of 2,624
total failures, 88 failures with instability periods of longer than 1 hour are not
shown in this figure. Instability duration of 0 indicates failures that occurred
immediately after a system boot.

To extract the effective features that reveal abnormal behavior, the frequency of symbol
occurrences for all 2, 536 failures has been calculated. For this calculation the base distance
of 300 seconds (five minutes) is chosen. In each step the new distance is calculated as the
summation of previous distance and the base distance. Therefore, with the base distance
of 300 seconds, the first four distances will be 300, 600, 900 and 1200 seconds. In each step

64

4. FAILURE PREDICTION

the starting-point of collection is the point of failure minus the calculated distance. This
starting-point is assumed to be the point of instability. The total number of symbols before
and after the starting-point within an equal distance are counted. Figure 4.5a shows the
first four steps of counting symbols before a known node failure. In normal situations, the
ratio of counted symbols within the intervals before and after the moving starting-point
should remain equal. However, in an abnormal situation the ratio is expected to change

as shown

in Figure 4.5b.

FAILURE

Y Y
300 300

Y
900

Figure 4.5: Sampling and the expected ratio of syslog entry symbols to assess the null hy-
pothesis. A continuous change in the difference of syslog entries collected be-

The frequency of symbols counted in various distances from the point of failures is
shown in Figure 4.6. Among the available parameters and based on the amount of changes

Y
1200

Y
1200

(a) Sampling of syslog frequency

——After

2

Count of syslog entries

—
Detectable

Before Difference

Symptom

Time steps (reverse)

(b) Expected ratio of syslog frequency

fore and after a symptom indicates a potential problem.

between these values the user-err is chosen to assess the null hypothesis.

1,500,000

1,000,000

500,000

Symbol counts

0

1,500,000

1,000,000

500,000

Symbol counts

Figure 4.6: The frequency of syslog entries metadata of all Taurus nodes prior to occur-
rence of a failure. Control is a semi-random generated series of values repre-

The frequency of user—err symbols before and after the moving starting-pointis shown
in Figure 4.7. The ratio shown in Figure 4.7 closely follows the expected ratio shown in Fig-
ure 4.5b. The frequency of syslog entries closer to the point of failure significantly differs

300 3000 4500 6000
—e— After —e— After —e— After —e— After
—=— Before —— Before —=— Before —— Before
—— Control —— Control —— Control A —— Control
a n ”AA A - A .AA A 2 R AA
7500 9000 10500 12000
- — — —, —* After —e— After —e— After —e— After
| | —— Before —— Before —=— Before —— Before
| | —— Control —— Control —— Control —— Control
| |
| |
— 14
A .,gA A a 21 Al
L 5 £ 5 g o
= £ iy = < iy Sy £ iy ! < T
co) c 2 €y © c =2 cy] c =2 £y © c 2
=] §| <] =] 2 [=] 2 ° 5 =] 3 ° 5
= v = K4 c v = C| v = £ C v o
o 5 9] 5 o 5 9] 5
£ 3 £ & £ 3 € 3
[[} [[}
o o o fﬂ
© © ©

Syslog facilities and severities

Syslog facilities and severities

senting a normal distribution.

Syslog facilities and severities

Syslog facilities and severities

JEEEEEES

4.2. FAILURE CORRELATION 65

from the normal operation. This significant deviation rejects the null hypothesis. Based on
this observation the fitness of syslog entries for behavioral analysis is concluded.

- 800,0007 —— before
S after
§ 600,0001 —— djfference
Q2
£ 400,000
(]
&
< 200,000 A
>
[Va]
0.

0 2,500 5,000 7,500 10,000 12,500 15000 17,500 20,000
Radius of time-window from the point of failure (second)

Figure 4.7: The frequency of syslog entries metadata (usr-err) prior to occurrence of fail-
ures.

4.2 Failure Correlation

Early detection of failure chains prevents their propagation. Correlations among node
failures, leading to formation of failure chains, derive along three dimensions: (1) Temporal
denotes cases when the time interval between consecutive failures falls below a certain
threshold. (2) Spatial denotes cases when the failed nodes share a physical resource (e.g.,
chassis). (3) Logical denotes cases when the failed nodes share a logical resource (e.g.,
batch job).

Among the three dimensions of failure correlation (time, space, and logic), the most rele-
vant one is the logical dimension as it can help to prevent re-occurrence of the same failure
in the future. However, this correlation is the hardest to infer. Oftentimes the logic behind
a group of failures is so complex that the correlation can easily be overlooked. Whenever
the logical correlation between node failures is notimmediately visible, analyzing the other
two dimensions (time and space) of failure correlation might help to infer the existence or
absence of a logical correlation between failures. By definition, logical correlations are de-
rived from strong correlations in space and time [253].

Figure 4.8a shows a group of 22 failures over 24 hours in Taurus. Each column shows the
physical location of nodes in an Island.Rack.Chassis format (e.g., 11.R2.C3 indicates a node
located in Chassis 3 of Rack 2 in Island 1). The thick horizontal lines divide failures into
four sections according to the time of failure, i.e., temporal correlations. Same temporal
correlations are represented by four different colors in the Time row of Figure 4.8b. In
Fig. 4.8b, color coding is used to show the correlation between failures in each row. Failures
with identical color in the time row are occurred in a certain time window (e.g., 10 minutes).
Failures with identical color in the chassis, rack, or island rows, occurred in the same chassis,
rack, or island, respectively, as the failures preceding them in these locations. Failures with
identical color in the reason row, occurred due to the same logic as other failures on this

66 4. FAILURE PREDICTION

day.

R1.C1
1.R1.C2
11.R1.C3
11.R1.C4
11.R1.C5
11.R2.C6
11.R2.C7
11.R2.C8
11.R2.C9
11.R2.C10
11.R3.C11
11.R3.C12
11.R3.C13

01 7
:01 Vs

:01 R

:01 Vs

:01 sz

:01 S

:01 oy

:01 YN

m Vs
SN
01 77
01 RN
27 RN

55 A

10 S
30 : S Reason
9:04 S

(@) Node failures over 24 hours on 21-04-2015.(b) Correlation of node failures over 24 hours on
Temporally correlated failures are shown in 21-04-2015. The number of correlated failures
three different horizontally divided sections. plays an important role. In each group of
All failures with same color pattern are also correlated failures, the dimension which has
spatially correlated, regardless of their section. more correlations is the dominant one.

RPEONUINUOOOOOTRNTRTRG
o

W22 2000000000000 0
SLLNNNNNLVLVLWNODDDDDDDD

[NN NN Y

Figure 4.8: Temporal and spatial correlation among failures

The bottom section in Figure 4.8a contains only one failure and is, therefore, excluded
from further correlation analysis. The remaining three sections indicate strong temporal
correlations between failures. An identical color pattern, in Figure 4.8a, indicates spatial
correlation among failures i.e., failures that occurred in the same rack. All failures shown
in Figure 4.8 were occurred in one island (Island 1). According to Figure 4.8b except one
single failure, the remaining 21 failures are logically correlated. Backtracking the system
logs revealed that the 21 failures (shown in red) were raised by a problem in the distributed
file system3, and the failure with a different reason (shown in blue) was due to an out of
memory problem.

Temporal and spatial correlations are direct and simple correlations. There are more
complicated correlations among computing nodes in HPC systems that can better explain
the cause of failures and their propagation. Thus far, the complicated correlations were
referred to as the logical dimension. These three dimensions can be extended to arbitrary
number of dimensions based on the relations among computing nodes. This work pro-
poses the concept of node vicinity to extend the failure correlation dimensions on HPC
systems.

4.2.1 Node Vicinities

Computing nodes with similar characteristics are considered to be in the vicinity of each
other. Node characteristics include any physical, spatial, temporal, or logical properties of
the computing nodes. A group of computing nodes located in the same rack, performing

3Lustre file system maintains a large amount of POSIX-related metadata that are highly error-prone. The
implementation of Lustre file system checker(LFSCK) that is designed to detect metadata inconsistencies is
also sub-optimal. Therefore, the administrators reluctant to use it as regular maintenance tool [254].

4.2. FAILURE CORRELATION 67

different tasks of the same job, or sharing a common resource (e.g., file system, power
supply unit), are all examples of nodes in the vicinity of each other.

The concept of vicinity defines new dimensions of nodes correlation, beyond the natural
temporal and spatial correlations. Each vicinity can be imagined as a new dimension in
which two separated entities (nodes) become correlated. For example, points A : (1, 10)
and B : (4,6) in a 2D Cartesian representation are separated by the distance of4 — 1 =3
on the X axis and 10 — 6 = 4 on the Y axis, respectively. Defining the new dimension
Z, according to a common (but so far unseen) feature of A and B would result in a 3D
representation of A : (1,10,5) and B : (4,6,5). Here '5’ denotes that common feature. In
the new 3D representation, even though A and B are still separated on X and Y, their
distance on the dimension Z will be 5 — 5 = 0. In another word, 4 and B will be in the
vicinity of each other from the Z axis perspective.

Among the three dimensions of failure correlation, discussed in Section 4.2, the logical
dimension is an indirect and complex dimension, which is hard to infer. The logical dimen-
sion can be further divided into more direct dimensions such as hardware architecture and
resource allocation. Considering this division, node vicinities are observed from four differ-
ent perspectives: (1) hardware architecture, (2) resource allocation, (3) physical location, and
(4) time of failure. The first perspective denotes a node vicinity according to the node’s phys-
ical properties, the second perspective emphasizes the node’s logical properties, while the
third and fourth perspectives denote spatial and temporal properties, respectively. Sim-
ilar to the three-dimensional correlation approach, all correlations among nodes can be
mapped onto these four proposed vicinities, e.g., nodes connected to a single switch can
be mapped onto the physical location vicinity. In this subsection these four vicinities are
explained in more detail, based on the Taurus architecture.

The node vicinities are intended to mitigate the major characteristic differences between
nodes. Therefore, in cases that several parameters influence a certain node’s characteris-
tic, the most dominant parameter is considered to identify the node’s vicinity. All nodes in
Island 2 beside their Sandy bridge or Haswell CPUs are equipped with graphical processing
units (GPU). Since the majority of jobs submitted to Island 2 mainly utilize GPUs rather than
CPUs, GPUs are considered as dominant processing units of these nodes. Therefore, in this
work, Island 2 is considered as a homogeneous GPU island, despite the heterogeneity of
its nodes’ CPUs.

It is important to emphasize that in the context of this work, two nodes in the vicinity
of each other are not necessarily physically co-located. In fact, they may even belong to
physically separated partitions of the HPC system.

Hardware Architecture Vicinity

Computing nodes on Taurus may be of four different processors architectures: Intel
Haswell, Broadwell, Sandy Bridge, and Westmere. 108 nodes with Sandy Bridge and Haswell
processors are also equipped with GPUs (NVIDIA Tesla K2oX and K80). According to their
hardware architecture, the 2,046 computing nodes on Taurus can be divided into five cat-

68 4. FAILURE PREDICTION

egories. The node’s dominant processor architecture and the number of nodes in each
architecture category are shown in Table 3.1 on page 27. A schematic illustration of the
Taurus topology, including the type of each node’s hardware architecture is provided in
Figure 3.2 on page 27. Nodes with identical colors in Figure 3.2 are in the vicinity of each
other from the hardware architecture perspective.

Itisimportant to note that beside the processor architecture, other hardware character-
istics (e.g., the amount of physical memory) were also considered and analyzed. However,
the final results indicated that the node’s main processor plays the dominant role for the
purpose of this work thus, significantly outperforms the impact of other hardware charac-
teristics. Therefore, the hardware architecture vicinity considers only the node processor
architecture.

Resource Allocation Vicinity

Slurm [232] schedules the jobs in Taurus. The resources are allocated to each submitted
job according to the direct request of user, system policies, and the status of available
resources. All nodes that execute tasks of the same job are in the vicinity of each other
from the resource allocation perspective. In contrast to the static nature of the hardware
architecture perspective, the resource allocation vicinity is fully dynamic and may change
frequently as the running jobs are completed and new jobs are submitted to the cluster.

Physical Location Vicinity

Various granularities can be used to express the physical location of a node in Taurus,
e.g., chassis, rack, or island. Since the power, temperature, and connectivity of all nodes
located in a single rack are controlled together, this work considers racks as the physical
location granularity. Each row of an island shown in Figure 3.2 on page 27 represents one
rack of nodes. All nodes located in the same rack are in the vicinity of each other from the
physical location perspective4 5.

Time of Failure Vicinity

Often failure is a consequence of various node-level events on and of properties of sev-
eral nodes. However, a failure in itself is observable on a particular node at a specific mo-
ment. Therefore, the time of failure is considered as a temporal property of that particular
node even though, several nodes may fail due to the same reason. From this perspec-
tive, all nodes that experience a failure within the same predefined time interval, fall into
the same vicinity category. In this work, the time of failure interval is 10 minutes. The 10-
minute time interval is chosen according to the results of the previous study on Taurus
failure correlations [250]. That study revealed that the majority of failures correlated on
Taurus occurred within 10 minutes of each other. Therefore, failures that occur across the

4Other studies also confirm the "small-region locality correlation" [26].
>The phisycal localities are shown to be beneficial also for load balancing and resource allocation [255].

4.2. FAILURE CORRELATION 69

entire system within 10 minutes of each other are assumed to be in the same temporal
vicinity from the time of failure perspective.

4.2.2 Impact of Vicinities

Taurus nodes are located in 6 islands. As shown in Figure 3.2, on page 27, Island 4 hosts
nodes with two different processor types, while Islands 1, 2, 3, 5, and 6 are homogeneous.
Although the nodes’ hardware architecture influences the job allocation, as Figure 3.22b
on page 55 illustrates there is no noticeable difference among job allocation patterns of
Taurus islands. However, as shown in Figure 3.22a, except Island 5 and Island 6 that consist
of identical processor types, the node outages have different distribution pattern on each
island.

Figure 4.9 illustrates a one-to-one comparison of syslog generation patterns® in all Tau-
rus islands. This figure visualizes the temporal and spatial patterns among more than 46K,
82K, 45K, 968K, 940K, and 1M syslog entries generated by Islands 1to 6, respectively. Islands
5 and Island 6 present an almost identical pattern, which is also very similar to Island 4. In
contrast, Island 1, Island 2, and Island 3 have a completely different system log generation
pattern.

The comparison shown in Figure 4.9 indicates that the processor architecture has a di-
rect impact on node behavior. Therefore, the behavior of nodes in Island 1 (Sandy Bridge)
should not be predicted based on the behavior of nodes in Island 5 (Haswell), while a sim-
ilar behavior is expected from nodes in Island 5 (Haswell) and Island 6 (Haswell).

Node vicinities are intended to improve the accuracy of the anomaly detection method
(Section 4.3) by identifying the most relevant domain among the four vicinities considered
in this work. Furthermore, employing node vicinities enables the anomaly detection meth-
ods to analyze fully anonymized syslogs. To the best of author’'s knowledge, there is no
similar approach for detecting anomalies using fully anonymized system logs. Therefore,
a quantitative comparison cannot be conducted. However, Table 4.1 shows a qualitative
comparison of node vicinity impact on anomaly detection.

Table 4.1: The accuracy of anomaly detection inside node vicinities

Hardware Resource | Physical
Anomaly detection | architecture | allocation | location Time of failure
Inside node vicinity Fair Low High Fair (certain failures)
Outside node vicinity No Low Low No

Therefore, it can be concluded that the impact of anomaly detection inside resource
allocation and time of failure vicinities of Taurus is negligible. Anomaly detection inside the
Physical location vicinity, on the other hand, has a high impact on the accuracy of the final

5The dynamic frequency of syslog generation by each node during a time interval. This parameter is explained
in Section 4.3.1 and referred to as sG in the rest of document.

70 4. FAILURE PREDICTION

. @ (b)) () (d)
2 |
G Vs Bl Nt
@ : o | |
1 1- ;
")
(%]
(=}
c
1]
[
(7]
(=}
c
©
[
3 Log entry
c
i
a No Entry
Syslog entries

7 o 0o 7 o
2, %, 2, %, 2, %, %, % 2, %, %, %
2 % %9 % 2 % %9 % % % %9 %

00 V4 ,d’

Figure 4.9: Syslog generation patterns of Taurus islands. Each sub-diagram is vertically di-
vided into two sections. Each section illustrates the syslog generation pattern
of 100 nodes of the respective island during 24 hours. e.g., sub-diagram (e) illus-
trates the syslog generation pattern of Island 1 (bottom) versus Island 6 (top).

results. It also became evident that the nodes behavior outside their hardware architecture
vicinity varies significantly and is not suitable for anomaly detection.

4.3 Anomaly Detection

This work considers two behavioral patterns to model the behavior of HPC systems us-
ing discrete time series of monitoring data: (1) the order of events and (2) the frequency of
events. Both patterns are automatically inferred from the behavior of the majority (major-
ity voting) in each homogeneous neighborhood (node vicinity) and is constantly updated
according to the current system status [256].

4.3. ANOMALY DETECTION 71

Order of Events

The behavioral pattern can be inferred from the chronological order of events recorded
in monitoring data. Two different variants of this pattern are defined: (1) time-based (i.e.,
periodic) and (2) event-based. The former preserves the time interval between two con-
secutive events, and the later only considers the chronological order of events regardless
of the inter-event intervals. As described earlier, system logs contain both periodic and
event-driven entries. The time-based patterns are suitable for periodic entries (e.g., cron
jobs) while the event-based patterns are more suitable for event-driven entries (e.g., users
interaction). The behavioral patterns based on events’ order are extracted in different gran-
ularities. A subset of potential granularities is shown in Figure 4.10.

Syslog entry
esta Source Facility Severity Message
day, week, month, hour, minute, second node, chassis, rack kernel, user, etc. warning, error, etc. event patterns (hash)
j——— Coarse-grained |
} Fine-grained !

Figure 4.10: Main components of syslog entries. Each entry may perceived in different gran-
ularities.

For the purpose of this work, the preferred granularity of source is node ID and the
preferred granularity of timestamp is the full timestamp including both date and time.
Both facility and severity fields (metadata) of system logs are considered.

Frequency of Events

The behavioral pattern can also be inferred from the number of syslog entries received
during a certain time interval, regardless of the events order. A filtering mechanism sup-
presses the irrelevant entries. Similar to the patterns that are extracted based on events
order, the patterns of events frequency can be extracted in different granularities.

Figure 4.11 illustrates three anomaly patterns that are extracted using the events fre-
quency of Taurus syslog entries. The first pattern shown in Figure 4.11a identifies the faulty
node 1157 using its lower frequency of entries in comparison to the other nodes in its vicin-
ity. The second and third patterns shown in Figure 4.11b and 4.11c illustrate two common
failure patterns in form of valley and peak over time, respectively.

Taurus 1051

Taurus 1150-1159 %
Taurus 1215 w

LI 15
2 H =l
8 i
= ’“
s
g
2

Time (hours)

P

ies per 12 hours
per hour

« Faulty

Number of log entries per minute

Number of log entr
1153
1157
1158
mber of log

......

(a) Majority voting (b) Valley (c) Peak

Figure 4.11: Failure patterns inferred based on the frequency of events on Taurus

72 4. FAILURE PREDICTION

These two forms of behavioral patterns (order/frequency of events), extracted from
monitoring data, are the input data of various anomaly detection methods. In the following
subsections, these patterns are used to detect anomalies and consequently to detect and
predict failures.

4.3.1 Statistical Analysis (frequency)

Statistical analysis requires categorization of event entries by system experts. Such cat-
egorizations are time-consuming, only partially feasible, and subject to drastic changes
after each major maintenance of the HPC system. Furthermore, due to the heterogeneity
of modern HPC systems, every subset of the computing system may project a different be-
havior thus, a single threshold may not hold true for the entire system. To address these
challenges an unsupervised method of anomaly detection based on statistical analysis is
proposed. This method does not require manual categorization of entries and automati-
cally adapts its patterns to the current status of the system. The pattern of each vicinity is
separately extracted and regularly updated. Therefore, comparisons are performed locally
within each vicinity, hence, increasing the overall accuracy of the anomaly detection. Fig-
ure 4.12a and 4.12b show two snapshots of the comparisons among 11 nodes in the vicinity”
of each other.

The common behavior of the majority of nodes within a node vicinity is considered as
the "normal" behavior in that vicinity (majority voting). Behavior of a node is monitored
using the syslog generation frequency of that node (hereafter sG). The sG parameter is dy-
namically calculated based on the number of syslog entries received from each computing
node during a sliding time window prior to the current (observation) moment. A selection
mechanism filters out the unnecessary entries thus, maximizing the fluctuation of sG pa-
rameter®. The sG parameter of each node is compared against the sG of other nodes in
the same vicinity. Based on these comparisons, the normal value of the sG parameter for
certain node vicinity at a given moment of time is calculated. Once the deviation of a node’s
SG parameter from the normal value exceeds a certain threshold, the node's behavior is
considered abnormal.

The deviation threshold is dynamically calculated within each vicinity®. To calculate the
deviation threshold, all nodes within a vicinity (i.e. one row of Figure 4.12a) are partitioned
into two clusters based on their sG parameter via a clustering method such as K-Means.
The deviation threshold is the relative density of resulting clusters which is calculated as
the sum of squared distances of samples to their closest cluster center™.

Figure 4.12a illustrates the behavior of node 1110 and 8 other neighboring nodes (physical
location vicinity) prior to 11 points in time that node 1110 experienced failure in the year
2017. Figure 4.12b on the other hand, illustrates the behavior of the same nodes prior to
11 random points of time in which node 1110 was functioning normally. In Figure 4.12a and

7Physical location vicinity

8For example, all periodic entries can be suppressed to prevent smoothening of the irregular entries.

9A sample code written in python to demonstrate the calculation of dynamic thresholds via k-means is avail-
able: ghiasvand.net/u/param

"°Also known as: within cluster sum

4.3. ANOMALY DETECTION 73
Node ID
1106 1107 1108 1109(1110{1111 1112 1113 1114 Norm

10/03/2017 13:55:51 11 11 11 206|214 15 15 15 15 13
§ 10/03/2017 14:07:24 17 16 20 306(1681| 21 21 21 21 76
; 14/03/2017 16:45:56 69 71 67 77 | 76 | 59 68 76 = 55 71
8 22/03/201713:31:13 60 52 28 30 [107| 21 30 30 30 38
g 04/05/2017 01:39:16 7 7 7 7 7 7 7 7 7 7
o 31/07/201712:30:49 10 10 10 0 14 | 10 10 10 10 10
T:_r.: 31/07/2017 15:20:17 23 23 23 0 36 | 23 23 23 23 23
&= 02/08/2017 16:40:15 5 5 7 0 20 5 5 5 5 6
8 08/08/2017 12:27:44 10 10 10 341|212 11 11 11 11 10
E 08/08/201713:30:34 20 20 10 157|156 11 11 11 11 14

08/08/2017 13:55:20 12 6 6 1581|1593| 9 9 9 9 9

(a) Detection of failures (shown in orange) of node 1110 via the proposed failure detection mecha-

nism. Cells colored in light blue indicate non-responsive nodes.

Time of random events, node 111C

04/03/2017 15:07:52
08/04/2017 15:43:38
19/04/2017 07:30:36
01/05/2017 11:02:41
22/05/2017 14:29:44
03/06/2017 13:48:12
14/06/2017 16:45:55
02/07/2017 12:47:53
19/08/2017 13:23:33
20/09/2017 17:16:35
12/10/2017 05:16:35

1106 1107 1108 11091110

18
12
42
28
19
7
19
6
11
12
12

17
11
41
37
19
6
18
6
11
12
12

17
12
40
29
19
7
19
6
11
12
12

Node ID
0 19
11 12
41 | 41
29 | 17
19 | 19
6 7
18 | 19
0 9
12 | 12
12 12
12 | 12

1111 1112 1113 1114

19
12
41
17
19
7
19
6
11
12
12

19
11
41
36
19
6
18
6
11
12
12

17
11
41
34
19
6
18
6
11
12
12

17
11
41
30
19
6
18
9
11
12
12

Norm
17
11
41
31
19

6
18
6
11
12
12

(b) Application of the proposed failure detection mechanism during normal behavior of node 1110.
Detected failures are shown in orange. Cells colored in light blue indicate non-responsive nodes.

Figure 4.12: Anomaly detection in physical location vicinity using majority voting.

Figure 4.12b, the timestamp at the beginning of each row represents the failure observation
moment. The value of each cell represents the SG parameter of the respective node within
atime interval of 30 minutes before the observation moment. Cells with abnormal behavior
are shown in orange. The cell coloring in each row is relative to the value of other cells in
that particular row (vicinity). According to Figure 4.12a, node 1110 experienced 11 failures in
2017. For 7 out of the 11 failures illustrated in Figure 4.12a, the deviation of the SG parameter
correctly identifies the abnormal behavior of node 1110.

The strength of this method stems from the majority voting inside node vicinities. This is
an unsupervised method, therefore, no additional information, except the node vicinities,
is required. Fine tuning of the sliding time window interval, as well as adjusting the data

74 4. FAILURE PREDICTION

filtering rate improves the accuracy of anomaly detection. A simplified workflow of the
behavioral analysis method is described below™:

1. The hardware architecture and physical location vicinities are identified .
2. Taurus syslog entries are streamed from computing nodes into the syslog collector.

3. The structured part of each syslog entry (metadata) is parsed and reduced to four
fields, namely t imestamp, source, facility and severity.

4. PaRS processes, de-identifies, and encodes the unstructured part of each syslog en-
try (message) into a fixed-size' hash key (event pattern) using a collision resistant
hashing algorithm.

5. The timing errors are compensated via binning syslog entries using buckets of 10 min-
utes.

6. Syslog entries are grouped based on the values of their facility, severity and
message fields.

7. The normal behavioral pattern in each vicinity is defined as the behavior of the ma-
jority in that vicinity.

8. The frequency of syslog entries (the SG parameter) within a sliding time window of 30
minutes is calculated.

9. Derivation of the node’s SG parameter from the normal behavioral pattern in each
vicinity (majority voting among nodes of that vicinity) is considered as sign of an up-
coming failure.

Furthermore, the confidence value of failure prediction increases closer to the point of
failure. Simultaneous anomalous behavior of multiple monitoring parameters (facility,
severity and message) increases the confidence of failure prediction. Since failures
are more probable to occur on nodes with a history of failures (refer to Figure 5.9b), the
confidence of failure prediction for such nodes is higher. Larger derivation of the node's
SG parameter from the normal behavior further increases the confidence of failure pre-
diction.

4.3.2 Pattern Detection (order)

The pattern detection based approaches can be applied on a single node as well as mul-
tiple nodes. Applying the pattern detection approach on a group of nodes in the vicinity
of each other significantly increases the accuracy. Various pattern detection based meth-
ods shown acceptable results in detecting anomalies using HPC systems monitoring data.
Among them, suffix arrays and sequence analysis provides higher accuracy and less false
positives. Pattern detection methods in contrast to statistical analysis mainly utilize the
order of events for anomaly detection.

"The workflow of behavioral analysis method including all major building blocks is shown in Figure 3.1
"This is the only manual step of the entire workflow.

3The default size is 8 characters.

“SHAKE 128 is the default hashing function used in this work.

4.3. ANOMALY DETECTION 75

Suffix trees and arrays

Suffix trees and suffix arrays are powerful data structures to detect recurring patterns
in long sequences. Recurring patterns play an important role in describing the normal be-
havior of HPC systems. Numerous Cron jobs' generate periodic syslog entries that always
follow a certain order. Furthermore, multi-step procedures, such as authentication, gen-
erate blocks of syslog entries with predefined orders. Therefore, the goal is to detect the
recurring sequences of events in syslog entries. Sudden changes in the pattern of recurring
events might indicate anomalies.

Suffix arrays are constructed via performing a depth-first traversal of a suffix tree. Both
suffix trees and suffix arrays solve the same problem with similar time complexity. How-
ever, suffix arrays require less space and provide better cache locality. Similar to previous
method, various granularities of monitoring data can be used by suffix trees and suffix
arrays. Furthermore, an independent suffix tree is built for every computing node.

A sequence of 7 syslog entries is shown in Figure 4.13a. Each entry is encoded into its
event pattern (hash key) via PaRS. For better readability, every event pattern in this ex-
ample is further encoded into a single character (symbol). The collection of all symbols
forms the alphabet (i.e., alphabet={],A,M,E}). To extract the patterns of recurring sequences
of events, a simpler form of the classic problem of the longest repeated sub-string (LRS)
should be solved. Using suffix trees, the LRS can be found in O(n). The suffix tree of sys-
log entries from Figure 4.13a is shown in Figure 4.13b. The longest path' from the root to
non-leaf vertexes identifies the LRS. In this example, among the non-leaf vertexes of 5, 7
and 9 the path from root to vertex 5 is the longest path. Therefore, the longest repeated
sequenceis J» A»MOr 23666bbc » 760c5208 » 85£5c18b.

Any repeated sequence of events (two and more events) represents a pattern and is
significant. Thus, instead of extracting only the longest repeated sub-string, all repeated
sub-strings (RS) will be identified. In a suffix tree, repeated sub-strings are represented
by paths from root to the parent of each leaf. Among the overlapping paths with similar
repetition rate, the largest path is chosen. Paths should have a minimum length of two
symbols. Therefore, according to the suffix tree shown in Figure 4.13b, although both paths
from root to 5 and 7 represent a repeated sub-string, due to the overlaps only the pat h to
5 is considered.

The detected RS among system logs identifies the block of syslog entries which are ex-
pected to appear in a certain order. Any derivation from these patterns might be a sign of
anomalous behavior. An example of applying pattern detection on Taurus syslog entries
is shown in Figure 4.14.

Sequence Analysis

The structure of syslog entries has resemblance to Human's DNA. Both are long se-
quences of unites (log entries / base pairs) with numerous repeated sub-sequences [257].

>Jobs which are executed using Cron, the time-based job scheduler of Unix-like operating systems.
®The path with the most number of symbols.

76

4. FAILURE PREDICTION

TIMESTAMP EVENT

1488424393 23666bbc -> J

1488424398 760c5208 -> A

1488424414 85f5cl8b > M

1488424459 bba3ddic -> E

1488424570 23666bbc —> J

1488424596 760c5208 -> A

1488424611 85f5cl8b -> M

(a) Encoding event patterns into symbols

(b) The suffix tree of encoded event patterns.
Each path from root to a non-leaf vertex is a
repetitive sub-sequence.

Figure 4.13: Creation of suffix tree for sample syslog entries

Message Event

1 (siavash) CMD (/usr/bin/check >/dev/null 2>&1) |66dc2742
2 (parya) CMD (/usr/lib32/Im/Im1.1 1) 66dc2742
3 (siavash) CMD (run-parts /etc/cron.hourly) 66dc2742
4 starting Oanacron dd740712
5 Anacron started on 2018-01-30 e5a59462
6 Jobs will be executed sequentially fle7eac3
7 Normal exit (0 jobs run) eac7924f
8 finished Oanacron a5803a8a
9 (siavash) CMD (/usr/lib32/Im/Im1 1 1) 66dc2742
10 (root) CMD (/usr/lib32/cl/cl2 1 1) 66dc2742
11 (root) CMD (/usr/lib64/Im/Im1 1 1) 66dc2742
12 (siavash) CMD (/usr/bin/check >/dev/null 2>&1) [66dc2742
13 (parya) CMD (/usr/bin/run >/dev/null 2>&1) 66dc2742
14 (siavash) CMD (/usr/bin/exec >/dev/null 2>&1) |66dc2742
15 (siavash) CMD (run-parts /etc/cron.hourly) 66dc2742
16 starting Oanacron dd740712
17 Anacron started on 2018-01-31 e5a59462
18 Jobs will be executed sequentially fle7eac3
19 Normal exit (4 jobs run) eac7924f
20 finished Oanacron a5803a8a

1: Starting the daemon
2: Successfully started

3: Successfully finished

1: Starting the daemon

2: Successfully started

3: Successfully finished

Figure 4.14: Recurring blocks of syslog entries. Similar colors indicate similar events. The
events are automatically derived from syslog messages using PaRS.

Throughout the years various techniques and tools have been developed to analyze the
sequence of base pairs in DNA. The goal of this section is to employ DNA sequence ana-

4.3. ANOMALY DETECTION 77

lyzing methods for syslog analysis based on the similarities between DNA structures and
syslog entries (e.g., long range correlations [258]).

Sequence alighment map (SAM) is a text-based format suitable for storing DNA se-
quences aligned to a reference sequence [259]. Since the SAM format is widely used by
various DNA sequence analyzing tools, in order to apply the DNA sequence analyzing meth-
ods, Taurus syslog entries were transformed into the SAM format.

Sequence alignment is used to detect anomalies with a reduced false positive rate. Us-
ing majority voting among the nodes in the vicinity of each other, the reference sequence
of events on HPC system is extracted. The system logs are aligned to the reference se-
quence in their SAM format. Derivations from the reference sequence can be detected via
sequence alignment methods. All existing derivations are not erroneous, in fact a certain
degree of change is expected due to the dynamic nature of the HPC systems and the users
behavior.

Point mutation is a change in the bases of DNA. This concept is used to mitigate the
noises in system logs and reduce the false positives. Single mismatches during the com-
parison of current sequence and the reference sequence is interpreted as noise (point
mutation).

Sequence motifs are significant sequence patterns in DNA. For system logs the se-
quence motifs are defined according to their length, frequency, and accuracy of repetition.
Longer sequence patterns that are more frequent and have precise recurring time inter-
vals are considered as sequence motifs. Derivations of sequence motifs from the reference
sequence are interpreted as signs of anomalies.

The main advantage of using tools and methods that are originally built for analyzing
DNA sequences is their capability in processing radically large sequences. However, to
be able to use those tools and methods, the monitoring data (e.g., system logs) must be
transformed into compatible formats. Furthermore, the important features of the moni-
toring data must be preserved. In this work the transformation of Taurus system logs into
sequence alignment map is performed using PaRS.

PaRS encodes syslog entries into anonymized event patterns (anonymized list). Fre-
quency of each event pattern in a fixed interval (e.g., 24 hours) is calculated. A reverse
ordered (descending) list of all event patterns based on their frequency is generated (fre-
quency list). The frequency list is divided into subsections, each with 4 entries (frequency
sub-list). The anonymized list is divided into subsections according to the event patterns in
each frequency sub-list (anonymized sub-list). A unique symbol from a 4-letter predefined
alphabet (e.g., {A,T,C,G}) is assigned to each event pattern of a frequency sub-list. The event
patterns of each anonymized sub-list are substituted by the relevant symbols listed in the
corresponding frequency sub-list (sequence sub-list). Each sequence sub-list is converted
into a SAM file and is ready for further analysis. Table 4.2 provides an example of applying
the proposed workflow on a collection of syslog entries.

78 4. FAILURE PREDICTION

Table 4.2: Encoding syslog entries into DNA-like sequences

Anonymized list Frequency sub-list Sequence sub-list
Timestamp | Event pattern || Event pattern | Frequency | Symbol || timestamp | Symbol
1490997601 34b25731 1c6fodse 7 A 1490997601 C
1490997601 1c6fodse 1808e388 3 T 1490997601 A
1490997601 1808e388 34b25731 2 C 1490997601 T
1490997602 90a389bc fa144fosg 1 G 1490997661 G
1490997661 2e307f37 €92704ab 1 A 1490997901 A
1490997661 fa144fos ddab3doa 1 T 1490998201 A
1490997661 62343434 90a389bc 1 C 1490998201 T
1490997661 ddab3doa 8c41e908 1 G 1490998501 A
1490997661 8c41e908 8372c3dc 1 A 1490998801 T
1490997661 €92704ab 62343434 1 T 1490998801 A
1490997661 8372c3dc 35d87bso 1 C 1490999101 A
1490997661 35d87bso 2e307f37 1 G 1490999401 A
1490997901 1c6fodse 1490999401 C
1490998201 1c6fodse 1490997661 A
1490998201 1808€e388 1490997661 T
1490998501 1c6fodse 1490997661 C
1490998801 1808e388 1490997661 G
1490998801 1c6fodse 1490997661 A
1490999101 1c6fodse 1490997661 T
1490999401 1c6fodse 1490997602 C
1490999401 34b25731 1490997661 G

The size of alphabet can be increased to any arbitrary number of symbols. However,
large alphabets may negatively impact the detection mechanisms. According to Taurus
syslog analysis, high frequency entries deliver less significant information in comparison
to low frequency entries. Therefore, grouping the anonymized list on syslog entries into
smaller sub-lists according to their frequency improves the detectability of low frequency
(but significant) entries via comparing events only within groups of events with similar fre-
quency. It is important to note that in sequence analysis, similar to other methods pro-
posed in this work, the normal behavioral pattern is inferred via majority voting within
nodes vicinity.

Figure 4.15 shows a 24-hour sample of system logs (in SAM format) collected from 100
nodes visualized using Tablet (Table B.1). Each row represents a single node (100 rows)
and each column represents a one-minute time window (1,440 columns). Several potential
anomaliesin form of horizontal red zones are visible in the middle and bottom of the figure.

4.3.3 Machine Learning

The anomaly detection workflow, described in Section 4.3.1 on page 72, automatically
analyzes the monitoring data and detects the anomalous node behaviors. Since the pat-
terns of normal behavior are directly, individually and continuously extracted for each node
vicinity, the anomaly detector automatically adapts itself to the system changes. The only
exceptions are changing the node’s processor architecture or its physical location. In the

4.3. ANOMALY DETECTION 79

1 1,440

Figure 4.15: A 24-hour sample of system logs collected from 100 nodes visualized using
Tablet. Each row represents a node. Each column represents a one-minute
time window. Potential anomalies are visible in form of horizontal red zones
in the middle and bottom of the figure.

later scenarios nodes must be re-grouped according to the new vicinities (step 1 in the
workflow). However, the rest of the workflow (steps 2-9) remains intact.

In addition to the main behavioral analysis method, two alternative approaches were
proposed using neural and hierarchical temporal memory (HTM) networks. The neural
network approach is defined to extend the known set of correlations among nodes and
failures. The HTM approach on the other hand is intended to detect anomalous behaviors
of individual nodes without (explicitly) considering node vicinities. Preliminary results indi-
cate high potentials of machine learning techniques for automatic detection of abnormal
behaviors in HPC systems using anonymized system logs. Figure 4.16 illustrates the work-
flow of the proposed approach for detecting anomalies and predicting systems behavior
using system logs.

! '

Collecting Data .anonymiz.atiOH Data .discr('at.izat.ion # Images “—{ Data transformation H Sentences ‘
Svsterm | +Size reduction = + Noise mitigation ¥
ystem logs via PaRS via binning Model generation

Anomaly + Noise mitigation Beha_wor
detector via convolution and predictor
majority voting

I
v v

Event ‘ ‘ Anomaly detection ‘ ‘ Behavior prediction
T

classes ‘ 1

Figure 4.16: The workflow of anomaly detection via syslog analysis with the focus on ma-
chine learning.

Insufficient amount of failure samples was one of the main motivations to use an unsu-
pervised approach for anomaly detection in this work. On Taurus, except certain failures

80 4. FAILURE PREDICTION

which are caused by distributed file system, rest of the failures are not frequent'. Due to
insufficient amount of failure samples, automatic extraction of abnormal patterns, which
are leading to non-frequent failures is not feasible. Therefore, rather than extracting the
pattern of abnormal behaviors and using them to identify similar anomalies, this work con-
siders the common system behavior™ as the norm and evaluates the divergence of system
behavior from this norm.

Three classical neural network (NN) models and one hierarchical temporal memory
(HTM) model are used. For the first two NN models, syslog entries are transformed into im-
ages and processed via image processing techniques, while the third NN model uses a text
auto-completion technique to predict the upcoming events [260]. The HTM model, which is
based on a biologically constrained model of intelligence, uses a sparse distributed repre-
sentation of system logs. Although the classical NN models show promising potentials, the
HTM model outperforms them. Thus, this work focuses on the HTM model. Appendix A
provides detailed information about the proposed NN models.

Hierarchical Temporal Memory

The anomaly detection approach in this work relies on the node vicinity and majority vot-
ing. However, a large system-wide failure may alter the behavior of the majority of nodes.
In such cases, majority voting within the node’s vicinity may fail to detect the abnormal be-
havior. Furthermore, as HPC systems are becoming more heterogeneous, identifying the
homogeneous sections of the system becomes challenging. Therefore, the HTM model is
used to complement the vicinity-based anomaly detection method and improve the overall
prediction accuracy.

HTM is a biologically constrained model of intelligence [261]. The main ability of HTM
networks is anomaly detection using small amount of input data [262]. In the HTM model
used in this work, the input data (syslog) is semantically encoded (using PaRS) as a sparse
distributed representation (SDR). SDR is an array of 0's and 1's, that represent neurons. An
SDR at each stage has less than 2% of its elements 1's (active neurons). This encoded sparse
array is further normalized via spatial pooling into a sparse output vector with fixed spar-
sity. The process of spatial pooling uses the temporal memory algorithm to retain the con-
text of the input data. The temporal memory learns the transitions of patterns as they
occur and recalls the sequences of previous patterns. Therefore, as the input changes, the
HTM model updates itself (online learning). Using these steps, the HTM builds a predictive
model that is capable of providing multiple predictions simultaneously and evaluate their
likelihood online.

HTM models, in contrast to the other contextual-aware recurrent neural networks such
as LSTMs, do not employ back-propagation. Instead, HTM works based on (unsupervised)
Hebbian theory ™.

"7Less than 10 occurrences per year

®Within each node vicinity

YA theory in neuroscience that claims "an increase in synaptic efficacy arises from a presynaptic cell's re-
peated and persistent stimulation of a postsynaptic cell." In another word, "Cells that fire together wire

4.3. ANOMALY DETECTION 81

The HTM model, used in this work, is designed to consider the behavior of an individual
node and compare its current behavior with its previous behavior. Sudden changes in the
current behavior are assumed as abnormal behavior. The current implementation of the
HTM network in this work is based on NuPIC python library and heavily borrows from the
NuPIC's documentation and sample codes.

The task of anomaly detection in HPC systems using syslog entries is highly compat-
ible with the characteristics of HTM networks. Therefore, this approach has been also
applied on Taurus monitoring data. Designing the spatial pooler is the most challenging
part of building an HTM model. The spatial pooler must (1) maintain a fixed sparsity re-
gardless of the input size (normalizing the input) and (2) maintain the overlap properties
such that two similar input generate two similar output. Such spatial pooler provides a cor-
rect conversion of syslog entries into an equivalent sparse representation that accurately
delivers the semantics and correlations among syslog entries. Users behavioral pattern
significantly changes in respect to time and date. Since users behavior affects the behavior
of computing system, rather than using the temporal information of system logs only in
its chronological form, the timestamp is interpreted into three repetitive values, namely
time of the day,day of the week andweekday or weekend. Consideringthe fully
anonymized syslog entry shown in Example 4.1, the four remaining data fields are node 1D,
severity, facility, and message respectively. Therefore, the resulting SDR consists of
seven sections®°.

Example 4.1: Encoded syslog entry prepared for HTM model

Timestamp | Node ID | Severity | Facility | Message
2017-12-12 01:56:00 5314 6 10 f9cfalb9

The time of the day, day of the week and weekday or weekend are encoded
into 24, 7 and 2 bit SDRs respectively. In current implementation the node 1D is skipped,
since every node has its own HTM network. However, for technical reasons a dummy 2-bit
zero-filled SDR is reserved for the node 1D which can be extended. The remaining three
fields, namely facility, severity and message are encoded into 168, 504 and 500 bit
SDRs respectively. Concatenating these seven SDRs forms the final SDR with 1207 bits. The
higher weightin the currentsetupis giventothe facility, severity andmessage values
of the syslog entries.

The results of analyzing 2000 syslog entries of node taurusis314 using the implemented
HTM network is shown in Figure 4.17. Vertical red lines mark the anomalies within the
stream of syslog entries.

The HTM model predicts the future trends of syslog entries, based on the previously
seen entries. In current implementation, more than 50% derivation between the actual
trends of incoming system logs and the predicted trends based on previously seen sys-
tem logs is considered as an anomaly. In Figure 4.17 the first anomaly (901) was detected

together" [263].
2time of the day, day of the week, weekday or weekend, node ID, severity, facility, and
message.

82 4. FAILURE PREDICTION

at 14:19:13 based on abnormal s1urm daemon behavior. The second anomaly (1262) was
reported at 17:17:46 as kernel issued unexpected log entries. The complete node outage
happened at 21:35:01 and the node was rebooted at 21:38:19. The third and fourth anoma-
lies (1511 and 1541) reported by the HTM model are caused by system’s activities during the
unstable phase after the node reboot. In practice, jam-e jam utilizes both majority voting

W RV
RN .

T T T T T T T T T
200 400 600 800 1000 1200 1400 1600 1800 2000
t

—— normal
1T —— log
1 —— anomalies

o ¢
IS
L

Anomaly
Likelihoods
o o =
[=)] © o
-

o
N

o
o

e o =
o o o
L

Anomaly
Scores

—— A Scores
—— anomalies

[
C

o
o

260 460 660 860 1000 1200 14‘00 16‘00 18‘00 2000

[
‘ I{ ‘I‘ \. | “ H}
|
|H|\N | M MH| |H M\ ‘ il m
T - — T T
1000 11200].400 1600 1800 2000

i Ay

20 TN VUTTUWN TUNATTOTYNEY T W
0 260 460 660 860 10‘00].‘2‘00 14‘00 16‘00 18‘00 2000
Syslog entries [[

10

Facility

| — predicted
—— anomalies

Ll
‘

8
6
41 — actual
2
0

860

Severity

| — predicted
—— anomalies

L - -

Figure 4.17: Unsupervised detection of anomalies among 2000 syslog entries of node
taurusi5314 using the HTM network. Anomalies are marked with vertical red
lines.

and HTM methods simultaneously. The input stream of the system logs is sent to both
detectors, and both anticipate the future state of the system. If both methods predict simi-
larly, their prediction will be announced as the final prediction. However, if the outcome of
HTM and majority voting oppose each other, according to the confidence level of each pre-
diction (relative distance from the threshold), the final output will be a weighted average of
both predictions. Furthermore, as time passes, each round that a new prediction confirms
the outcome of previous prediction, the confidence value of that prediction increases. The
confidence value of each failure prediction is reported together with the prediction.

In summary, the HTM-based model monitors the behavior of each node individually.
The HTMis proposed as a complementary method for anomaly detection in heterogeneous
HPC systems and during major system-wide failures. The model is highly noise-resistant
with a short training phase, and continuously adapts itself to the new behavioral patterns.
The combination of statistical analysis (majority voting) and HTM-based model significantly
reduces the false positive predictions.

4.4. ADAPTIVE RESILIENCE 83

4.4 Adaptive resilience

Different approaches in HPC systems have been introduced to prevent failures (e.g.,
redundancy) or at least to minimize their impacts (e.g., via checkpoint-restart). In most
cases, when these approaches are employed to increase the resilience of certain parts of a
system, performance significantly degrades, and/or energy consumption rapidly increases.

Since thereis no eternal hardware, in theory, failures can not be truly avoided. However,
it is possible to significantly decrease the probability of their occurrence, or in some cases
postpone them. In this work, avoidable failures are defined as failures that can be hidden
from a specific system layer. The contrary cases are unavoidable failures. The origins of
failures in an HPC system can be analogized to a tree, which has its roots in the lowest
system layer and its leaves in the highest layers. Figure 3.3 on page 28 illustrates this anal-
ogy. Traversing the system from top to bottom, the diversity of failures decreases while
their impacts increase. During propagation across system layers, failures may retain their
original characteristics, or they may morph into other types of failures. Therefore, each
system layer requires its own protection to prevent the propagation of specific failures to
the upper layers.

While protection layers are added between system layers to identify, address, and pre-
vent failures from propagating upwardly, certain overheads are imposed on the system.
As long as the failure protection layers are in place, they impose overheads, regardless
of the presence or absence of failures. In certain cases, adding overheads might not be
worthwhile to provide fault tolerance.

The proposed approach in this work adapts the level of resiliency to the system con-
dition via on-demand activation of available failure protection mechanisms according to
probability of failure occurrence [264]. In the case that predicted failures cannot be miti-
gated using a predefined method, e.g., when no surrogate resource is available, the system
administrators will be notified in view of performing further investigations and reactions.
This approach provides adaptive resilience, progress in computation, and saves energy.

84 5. RESULTS

5 Results

This work proposes multiple data collection, preparation and validation approaches (Fig-
ure 3.1), as well as several methods for anomaly and failure detection (Figure 4.1). However,
some proposed methods have operational overlap, e.g., noise mitigation via data binning
and via majority voting. Others, such as DNA sequencing or topological analysis, are de-
signed to provide offline information about the HPC system and its requirements, thus
those are not directly utilized for online anomaly detection and failure prediction. There
are also several methods which are proposed to fulfill identical tasks of failure prediction
via various approaches and in different scenarios, e.g., LSTM and HTM. In the end, although
all proposed methods are providing competitive outcomes, jam-e jam utilizes only those
methods that provide the most appropriate result according to the conditions of the un-
derlying HPC system, i.e., Taurus. In Figure 5.1, orange blocks are those building blocks of
Jjam-e jam that are used to achieve the results provided in this chapter.

Utilized by Jam-e Jam | |

Used to learn the system Clustering Time DNA
series sequence
*5 Data/work flow
Data visualization
Rejecting the null
Extracting syslog hypothesis
statistics Detecting failure
chains
Detecting
Collecting anomalies in data
monitoring data taurusMETA Root cause
analysis
Marking potential Categfo::m:\g fode
node failures atlures
Data Automaticlog ~ E Extracting significant
anonymization classification data fe%atures Statistical analysis
|
N I
— ' Machine learning
g‘ Notifications ‘ Noise mitigation ——————— . Automatic failure
T - ! 8 detection Hierarchical
w‘ Admins DB ‘ ! temporal memory
3‘ !
Job info ‘ —) Providing a prototype
% § ; T BT Automatic failure to analyze and predict
'_‘ Syslog ‘ 4 Prediction computing systems
7 e ‘ behavior
! Topological eIl el Introdu#cin 3D
=== POIORICS, - » neighborhood — -----=- T icing =
analysis failure correlations

homogeneity

Figure 5.1: Building blocks and the workflow of jam-e jam in operation mode. Building
blocks shown in orange are used to achieve the results provided in Chapter 5.

5.1. TAURUS SYSTEM LOGS 85

Taurus has been used as the use case in this work. Various monitoring data of Taurus
such as syslog entries, power consumption and job reports were collected. To provide a
general approach that is applicable on other TOP500 HPC systems, the syslog entries were
chosen as the main source of monitoring data in this work and the rest were only used for
verification purposes. This chapter summarizes the results of proposed methods.

5.1 Taurus System Logs

During the 365 days of the year 2017, in total more than 3.2 billion syslog entries with
a total size of 344 GiB were collected. Detailed statistics regarding the number of Taurus
syslog entries, divided by their originating island, is shown in Table 3.6 on page 35.

The column Node/Day shows the average number of entries generated by a single node
per day in its respective island. Figure 3.15 illustrates the distribution of syslog entries
generated by each node in the year 2017. Although several outliers are visible, the majority
of nodes in each island generated similar number of syslog entries. Figure 5.2 shows a side
by side comparison of the average number of syslog entries generated by each node in the
year 2017.

140,000

$ 120,000 . M [sland 1
'E' 100,000 ° Island 2
< 80,000 M Island 3
%0 60,000 ¢
% 20,000 M Island 4
u>f 20'000 . 8 M Island 5

' 8 i i _i_ M Island 6

Islands

Figure 5.2: Comparison of the average number of syslog entries generated by each node
in the year 2017.

The timestamp of Taurus system logs has the accuracy of one second. Therefore, the
chronological order of syslog entries generated by a computing node within a second (here-
after: simultaneous entries) are not known. However, based on the analysis of Taurus mon-
itoring data, it can be concluded that the order of simultaneous entries is a consequence
of internal system characteristics. Therefore, recurring simultaneous entries either reap-
pear in the same order as previous occurrences or the change of the order can be safely
ignored".

Furthermore, a sudden increase in the number of simultaneous entries of each comput-
ing node can be a sign of behavioral anomalies. As shown in Figure 5.3, receiving up to 10
simultaneous entries per node is a common behavior. Between 10 and 40 simultaneous en-
tries is common but requires further investigations. Receiving more than 40 simultaneous
entries in a second is most likely a sign of behavioral anomaly.

'In this work the simultaneous events are always sorted to avoid the ordering problem.

86 5. RESULTS

100000 @
"

10000 t
1000 %

100

10

Number of occurrences

1
1 80 159 238 317 396 475 554 633 712 791 870 949 1028 1107 1186 1265 1344 1423

Number of simultaneous system logs

Figure 5.3: Average frequency of simultaneous entries in Taurus. Number of simultaneous
entries shown in light blue has low frequency, thus might be sign of anomalies.

The #Event patterns column in Table 3.6 on page 35 indicates the number of ex-
tracted unique event patterns per island. Event patterns carry the essential semantics of
syslog entries. The number of unique event patterns that exclusively exists in a certain
island is shown in the right most column of Table 3.6. According to the values shown in
column Exclusive, Island 2 has 357 exclusive event patterns which is the highest number
of exclusive patterns among all 6 islands of Taurus. Island 2 also has the highest ratio of
exclusive event patterns with as high as 26% of its total event patterns. Furthermore, Island
2 hosts the least number of computing nodes (108 nodes) in comparison to other islands of
Taurus (refer to Figure 3.2). This behavior is caused by the special hardware characteristics
of Island 2, as the only GPU enabled island of Taurus. Observing these phenomena further
confirms the importance of performing syslog analysis within the Hardware Architecture
Vicinity.

Data Filtering

Production HPC clusters such as Taurus are under constant maintenance. Furthermore,
various research projects demand frequent changing of hardware and software. Syslog is
an invaluable facility for monitoring and debugging such changes. Therefore, it is common
to observe temporary appearance of unknown syslog entries within the stream of system
logs. In this work data filtering is used to address this challenge as well as improving the
accuracy of anomaly detection mechanism.

In summary, all syslog entries with the severity level of debug are removed. Project
specific log entries? are kept in Taurus syslog collection, however, they are not included
in syslog analysis. To preserve the highest level of accuracy, no further filtering has been
performed in this work.

Syslog Event Patterns

In total 4027 unique event patterns were extracted from Taurus system logs in the year
2017. Figure 5.4 shows the distribution of extracted event patterns on 6 islands of Taurus.

2Certain research projects on Taurus are producing their own customized log entries which are directed to

5.1. TAURUS SYSTEM LOGS 87

1e8

— H T N,
g 1sana 2 }| ’HW HHHHHI |
£ gana 3 uuu 1l
oo lsland 4 H ' 15
@ Island 5 ‘ ’
t:t/t>{lsland6 (1)(5)

Total 0.0

1500 2000 2500 3000 3500 4000
Event patterns ID

Figure 5.4: Distribution of 4027 extracted event patterns in each of the 6 Taurus islands

Out of the 4027 event patterns shown in Figure 5.4, 660 common event patterns exist on
all Taurus islands. Although few exceptions are observable, the general ratio of common
event patterns frequency in all islands are identical.

Surprisingly, the generation of syslog entries on Taurus does not follow the Pareto prin-
ciple3. On Taurus, more than 80% of the common system logs are generated based on as
few as 25 event patterns4. Therefore, more than 80% of syslog entries are generated based
on less than 4% of common event patterns. These highly frequent syslog entries are peri-
odic and reappear after fixed time intervals. The deterministic pattern of highly frequent
syslog entries is used as a baseline to analyze the occurrence of event-driven syslog en-
tries. The absence or sudden changes in the occurrence pattern of highly frequent syslog
entries can be a sign of potential anomalies.

Storage Size Reduction

Applying PaRS on Taurus syslog collection from the year 2017 and preserving all meta-
data, reduces the total size of syslog collection from 416 GiB to 258 GiB which is 38%
reduction. Applying PaRS and preserving only the 4 necessary metadata (timestamp, node
ID, severity, and facility) reduces the size of syslog collection to 140 GiB which is equal to
66% reduction.

The above calculations are made assuming that the final hash key has a length of 8 bytes.
However, the total number of event patterns in Taurus is only 4026. Therefore, the entire
hashing space can be further squeezed into 3 bytes hash keys. Thus, a reduction ratio of
70% can be achieved. For long-term storage of the syslog collection, additional lossless
compression mechanisms can be employed. Different levels of size reduction using PaRS
are shown in Figure 5.5.

As shown in Figure 5.6, the message field of Taurus syslog entries consist of words with
various lengths from 1 to 34 letters. About 50% of Taurus syslog entries consist of 4-letter
words and on average, each syslog entry consists of 10 words. Therefore, choosing an
8-letter hash key reduces the length of Taurus syslog entries’ message field to 20% of its
original length. However, as shown in Figure 5.5, due to the importance of metadata for
syslog analysis this information must be kept. Thus, in practice encoding Taurus syslog

and captured by syslog facility.
3Also known as principle of factor sparsity, 80/20 rule and the law of the vital few.
4In some studies the Pareto principle holds true [5, 26].

88 5. RESULTS

100% 62% 34% 30% <10%

Anonymization of Elimination of Optimized
system logs using PaRS unnecessary metadata hashing Compression

Figure 5.5: Different levels of size reduction using PaRS.

entries using PaRS for the purpose of this work reduces the length of entries up to 44% of
their original length5. The encoded data are ready to be directly used for anomaly detection
without further decoding.

Unique words All words

450

o

400

Millions
w

350

300

IS

250

200

Frequency

150

100
1
. I 1l
| law. . Oul alills..

123 456 7 8 91011121314 1516 17 19 20 21 22 25 26 34 123 456 7 8 910111213 14 1516 17 19 20 21 22 25 26 34
Word length (letter) Word length (letter)

Figure 5.6: Distribution of words in syslog entries based on their size and frequency

Noise Mitigation

The proposed noise mitigation mechanism works based on majority voting among the
members of the chosen node vicinity. Therefore, the accuracy of noise mitigation is directly
influenced by the correct selection of node vicinity. The recommended node vicinities for
anomaly detection are hardware architecture and physical location vicinities. In Taurus,
computing nodes of each rack (18 nodes) are physically collocated and are equipped with
similar processor architecture. Thus, these computing nodes are member of both hard-
ware architecture and physical location vicinities.

The syslog generation pattern of 8 nodes within a single rack is shown in Figure 5.7.
The color of each cell represents the number of syslog entries generated during 24 hours.
Darker colors indicate higher number of syslog entries. On each day, the syslog generation
pattern of the majority of the nodes indicates the normal pattern for that day. Furthermore,
the sudden changes in this pattern in comparison to previous days may indicate anomalous
behavior.

5An ascii character (letter) can be stored in a single byte.

5.2. SYSTEM-WIDE FAILURE PATTERNS 89

(o)) [) u M
| | | | | | | | || | | | |
- weNl N w
|]
= FO -
= s S
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2017 2017
L~ | | [} M] | | M
o | | | | N u] [|
N == weN md w
] | |
o FO F
. s s
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2017 2017
| | | | Mv | | M
™] | u u u u u
N = U w
(=] FQ F
<« s s
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2017 2017
M |} | | M
Ln | | L | o | | | |
N = N om w
o FQ F
|
= s s

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2017 2017

Figure 5.7: Similar patterns of syslog generation by various nodes within the rack 2 of Island
1in Taurus. Each cell shows the number of entries generated per day during the
year 2017. Darker colors indicate higher number of syslog entries.

In summary, most noises caused during the collection of system logs can be mitigated
via majority voting within node vicinities. The majority voting must be performed within a
sliding time windows of 20 seconds® in order to suppress network congestion side effects
(refer to Figure 3.19). Using majority voting on Taurus, on average noises up to 20% of the
input data could be accurately mitigated”.

5.2 System-wide Failure Patterns

Existence of system-wide temporal and spatial patterns among failures greatly con-
tributes to identifying root causes of failures and predicting upcoming failures. Therefore,
the time and location of all potential failures of Taurus were analyzed. The temporal pat-
tern of potential Taurus failures in the year 2017 is shown in Figure 5.8.

In Figure 5.8 the bottom most diagram illustrates the timeline of all potential node fail-
ures on Taurus during 2017. The red and purple diagrams show the multiple node failures
and single node failures respectively. As shown in Figure 5.8, no system-wide temporal
patterns exist among the node failures. However, according to Figure 3.5 on page 29 the
number of failures significantly increases during the working hours (Monday to Friday from
08 : 00 to 17 : 00).

Figure 5.9a shows the location of failures occurred in the year 2017. The horizontal axis
denotes the node ID of each failure as its location. Node IDs are ordered based on their

5This should not being mistaken by the 30-minute time window for calculating the SG parameter in Sec-
tion 4.3.1. Majority voting in the 20-second time window only mitigates the network congestion.

7In theory it is possible to mitigate noises up to 49% of the input data however, due to node failures and
irregular activities on computing nodes it is reduced to 20%.

90 5. RESULTS

Single node failures

Multiple node failures

All node failures

Number of failed nodes
8

§ $ RS § RS § $ & § § § $ $ $
$ $ S S § § § § N S N N N §
& N ® © > S ® o % N
S 0% v N X 5 N N N N 25
N N N N N NG & N & g N N g N
S S S S S S S S S S S v S u
3 » » » » » - A » A A A A A

NUMBER OF FAILURES
NUMBER OF FAILURES

“

%,
-
%

<&

NODE ID NODE ID

(@) Node IDs sorted by physical location (b) Node IDs sorted by number of failures

Figure 5.9: Spatial distribution of potential failures occurred in Taurus in the year 2017

physical location in each island. According to Figure 5.9a there are no system-wide spatial
patterns among the potential node failures on Taurus.

However, sorting the node IDs based on the number of failures on each node, reveals
an exponential trend. The node IDs on the horizontal axis of Figure 5.9b are rearranged
according to the number of failures on each node. According to the exponential trend of
node failures in Figure 5.9b it is concluded that failures are more likely to happen on nodes
that already experienced more failures. Therefore, the probability of failure occurrence on
a node is in proportion to the number of previous failures on that node.

5.3 Failure Correlations

Failure correlation in contrast to system-wide failure patterns (Section 5.2) refers to cor-
relations among failures in smaller and not necessarily collocated subsets of computing
nodes in the HPC system. As proposed in Section 4.2.1, the probability of observing such
correlations in node vicinities is significantly higher than other subsets of computing nodes.
Therefore, Taurus node and job failures inside the recommended node vicinites, namely
hardware architecture vicinity and physical location vicinity were analyzed. The most im-
portant temporal/spatial failure correlations detected on Taurus in June, August, Septem-
ber and October 2017 are shown in Figure 5.10a and 5.10b.

5.3. FAILURE CORRELATIONS o1

taurusi4113 - | | taurusi1001 - taurusi2025 - | |
taurusi4114 ';:::z:g?fg] taurusi2026 - || taurusi1225 -
taurusi4121 - | {aurusi3150 — taurusi2077 = n taurusi1226 -
taurusi4122 = | taurusi4023 - taurusi2101 -| n taurusi2051 -
taurusi4153 - :aurus!:gs - n :aufusf:::; - taurusi2106 -
taurusid154 aurusid081 ~ aurusid148 - B
taurusi4165 - taurusi4121 - taurusi4149 - taurusi3128
taurusi4122 - taurusi4150 - faurusi4095 =
taurusi4166 taurusi4181 - tauci4163 - taurusi4109 -
taurusi4197 - taurusi4182 - taurusid110 —
taurusid198 - taurusi4183 - fauruci4164 7 taurusi4161 - |]
{aurusi4215 — taurusid184 - taurusi4181 - aurusi
" taurusi4 185 = taurusi4182 - taurusid 162 - |
taurusi4216 | taurusi4186 - taurusi4183 = taurusid203 -
laurusn:g§2 - :aurus!:lg; - taurusid4184 - taurusi4204 -
taurusis030 aurusi4 188 ~ N]
o - fureei4185 -] taurusi4185 taurusi5163 | |
; taurusi4190 - taurusi4186 - tauruel5164
taurusis058 - {aurusia191 — taurusid 187 — taurusi5165 — |]
taurusisost - [l taurusi4 192 - taurusi4188 — taurusis166 -
taurusis062 taurusid193 - taurusid 189 -
3 taurusi5167 -
taurusis063 - [l zumsmgg 2 taurusi4190 = taurusi5168 - =
taurusis064 — urusy taurusi4191 =
taurusid196 - taurusi5169 —
taurusisoes - [l {aurusid 197 — taurusid192 ~ U170 |
2 taurusisoss - [l $ taurusi4198 - S taurusi4193 - N o
€ taurusisoso - [l 2 taurusia209 - S taurusid194 - g taurusi
taurusiso70 - [l taurusid210 — taurusi4195 - 2 taurusis172 - | |
taurusid213 — taurusi5173 - |]
taurusis087 - ! taurusi4196 -
taurus214 - i taurusi5t74 -
{aurusis300 — {urusi4234 - taurusi4197 - i
taurusis310 — taurusid259 — taurusi4198 - taurusi5175 -]
{aurusi5a45 — taurusi5239 - taurusis071 - taurusi5176 -
taurusi5314 - taurusis137 - taurusi5177 - ||
taurusis481 - |] §
taurusis317 - [l) }
taurusi5482 - [| taurusi5a47 :aufus':g: - taurusis178 - |]
taurusis581 - taurusi5348 aurust taurusi5179 —
taurusis582 - taurusis377 - M teurusi5414 - taurusi5180 -]
B taurusi5378 - taurusi5471 = taurusi5a12 -
faurusig009 taurusi5485 — taurusi5472 - ‘aurusiS571 u
taunusi6010 - taurusi5486 taurusis529 = j
taurusi6083 -| taurusi5543 - taurusi5530 - taurusi5572 -
{aurusi6084 — taurusis544 ~ 41 - taurusi015 -
. taurusi6039 — faurusiss taurusi6114 — [
taurusi6217 - 010 taurusi6055 —
taurusi6262 - taurusie115 taurusi6os6 - taurusi6118 - |
taurusi6305 ~ | taurusi6116 - taurusi6195 | taurusi6 123 -
taurusisa 11 - taurusie165 | taurusi6196 - taurusi6150 —
taurusis412 - '{a““‘s'g;gs i u taurusie548 — taurusi6243 -
taurusie535 - t::[ﬂz:mss X taurusie610 - [] taurusi6244 —
taurusie563 — || taurusisB09 — taurusie611 = taurusi6449 —
taurusie598 taurusi6610 - taurusie612 - taurusi6450 —
L T O T T S S B i B L N L L s L L A | L T e R R B B B
888888888888 888888888888 888888888888 8588883888888
ddgsaB-agasa S¥RCSTaEESER CeBeEgINBEILL SEC0HEEEaAEEH
S55555555555 288338333332 8858885888588 333333333333
3333333333533 IIIILIIIII1< BHODODDBDDBDHD DD z2zzzzz2zzz2z22z2z2
graNLoIND DR S —amogoocowor < comomToNLEO® Scogmzszsoong
85V LP2IARIRR 5888382222255 S8B22IRINRERR 558888882¢eR8
date date date date
taurusi2048 - taurusi1001 = taurusi1018 = |]
taurusia113 - [l taurusit063 - W taurusi1o77 - | taurusi2101 -
taurusiatta - [l taurusi2025 - |
taurusid121 - taurusi2086 — taurusi2026 - B laurusi4109 -
} taurusi2077 -
taurusi4122 taurusi3145 — taurus(2101 u taurusi4110 -
taurusi153 taurusi3177 - taurusi4147 = [] ‘Bursi4161 -
taurusi4154 taurusid 148 - []
taurusi4165 - taurusid024 - taurusi4149 - taurusi4 162 -
taurusi4166 - taurusid121 — taurusi4150 -
taurusi4197 taurusi4163 - wmursiszos I
taurusid 198 taurusi4181 = taurusid 164 — taurusid204 .
taurusi4215 | taurusid183 — teurusia181 - [l
o216 -} | taurusi4182 - taurusi5163 -
i taurusi4185 — taurusid183 - |]
taurusis029 - — urusi4tes - [taurusi5164 - .
taurusi5030 ~ aurust taurusi4 185 - {aurusis165 —
taurusisos7 - taurusid189 — taurusia1es - [l
taurusis058 ~ taurusi4187 - taurusi5166 - .
faUs5061 -] taurusid191 - taurusid1es - [l —
taurusi5062 - taurusi4193 — taurusid 189 -
taurusi5063 - taurusi4190 - [l taurusi5 168 - B
taurusid195 — taurusi4191 -
2 taurusis064 - 3 g fauns - {aurusis 169 ||
taurusid 192 - © taurusis169 -
2 taurusi5065 - 2 taurusid197 — g i N 3
taurusi4193 [-J—
taurusi5066 ~ taurusid205 — taurusia194 - [l
taurusis069 - taurusi4195 - taurusi5171 - .
taurusis070 - taruei4210 = taurusia196 - [l
taurusi5087 taurusi4214 — taurusid 197 - taurusi5172 -
taurusis197 - taurusid198 - [| taurusi5173 - .
tausi5309 -] taurusis314 = taurusi4259 —]
: . taurusiso11 - taurusi5174 -
10 - taurusis347
taurusis310 taurusi5137 -)
taurusi5345 — taurusisa77 - {aUrusIS235 = u taurusi5175 -
taunsi5422 - u taurusi548s — taurusl5236 - taurusi5176 - .
taurusi5481 - taurusi5471 - []
taurusi5482 - taurusi5543 — = taurusi5472 = | | taurusis177 -
taurusi6009 - - taurusis529 -)
taurusi6010 — taurusi6039 {aurusiS530 = n taurusis178 — .
taurusi6083 taurusi6115 — taurusi6055 - B taurusis179 —
taurusi6056 -
taurus!eos«a taurusi6 146 — | taurusi6195 - taurusi5180 — .
taurusi6217 -| laurusi6166 taurusie196 -
aurusi6 166 — N
taurusi6411 - taurusi6433 - faurusis314 .
taurusied12 - taurusi6196 — taurusi6548 - taurusiss71
taurusie433 -l {aurusi6a68 — taurusie597 ~ ||
taurusi6598 - ! ! taurusi6600 — ! taurusi5572
RN T R o e e
88888888 888888888888 8883838888 g8 888 8
88888888 883888388838 888888888 g 88 8 8
cccceccee 289900929000 aaaaaaaaa >33 3 3
33333333 2323332233233 EREBBRBB B 222 2 2
erNBoND® —canI@gorbos cemronnen © 8 2 o o
85822y R 55888832r-eR; S82IR]NRER 8 88 e
date date date date

(b) Job failures

Figure 5.10: Temporal/spatial correlations of Taurus failures. Each column indicates a fail-
ure. In each subplot correlated failures are marked with identical colors.

92 5. RESULTS

Three important observations were made via analyzing temporal/spatial correlations of
Taurus node/job failures. These observations are used to perform root cause analysis on
node failures.

Observation 1. On Taurus, if a temporal correlation is being detected only between
two compute nodes, even if both failures occurred in the exact same moment, most likely
their simultaneous occurrence is just a coincidence. A strong temporal correlation between
failures occurring on three or more compute nodes, in many cases, implies an identical
failure reason.

Observation 2: Complementary to Observation 1, it is learned that on Taurus, when the
number of correlated failures is relatively high, the spatial correlation dominates. When
inferring correlations and analyzing reasons of failures, the highest priority should be given
to spatial correlations followed by temporal correlations. The chances of finding the same
reason for spatially correlated failures are higher than in the case of temporally correlated
failures.

Observation 3: On Taurus, the combination of temporal and spatial correlations is
highly revealing. In situations in which both strong temporal and spatial correlations are
observable, the reason behind the failure is identical. This lesson can reveal the logical
correlation of failures in situations which the logical correlation is not independently de-
tectable.

5.4 Taurus Failures Statistics

During the year 2017 in total 2, 535 regular node failures on Taurus were recorded. These
2,535 node failures occurred at 878 unique timestamps®. The entire collection of syslog en-
tries was analyzed using the proposed anomaly detection method. The root cause of false
negative and false positive cases, in comparison to the known ground truth, were manually
analyzed. Comparing the outcome of manual root cause analysis and the known ground
truth, failures were divided into two groups of unpredictable and predictable. The sys-
log metadata fields of facility and severity were chosen as the main parameters for
anomaly detection. Significant changes in the frequency of syslog messages generated by a
certain facilityatacertain severity level are considered as signs of failures. Figure 5.11
shows the distribution of syslog entries according to different combinations of facility
and severity values®. The facility columns which did not have any relevant syslog
entry were omitted from Figure 5.11 to improve the readability™.

In Figure 5.11 from left to right and from top to bottom, the significance of syslog entries
decreases. Therefore, the most significant syslog entries are entries generated by kern
(kernel) facility with the severity level of emerg (emergency).

8The precision of timestamps is 1 second.

°In syslog standard, there are 24 facilities and 8 severity levels. Therefore, there are 192 possible combina-
tions. However, in practice syslog entries of each HPC system only contain a subset of these combinations.

'°In addition, 65 syslog entries were broken, thus removed from the rest of analysis.

5.4. TAURUS FAILURES STATISTICS 93

kern user mail daemon | auth | syslog cron authpriv | local0 [local3llocal4| local5 |local7
emerg 124 3
alert 279848 37 1649268 67
crit 731311 475 1113 50028 10035 31
err 2993848 |157752175 29039273 | 16398 |131125941 101 44786 | 2351612 84312545
warning 23776899 43027 |13711624|383706552| 24 1785 53 57332 1 1855
notice 323770 | 37242432 260833 | 107 | 1318175 [90997923 | 8483 4716 2 10 789
info 1660566015| 210568 55 6773478 | 8829 | 17320003 |202124022(374238133(36121073| 2 39
debug 7405758 45261 423332 | 28998 2

Figure 5.11: Number of syslog messages collected on Taurus based on their facility
(columns) and severity (rows) level.

Table 5.1: Distribution of node failures in Taurus islands

Island | Node failures | Percentage | Nodes inisland | Average failure per node
1 63 2.49% 270 0.23
2 27 1.07% 108 0.25
3 79 3.12% 180 0.43
4 511 20.16% 264 1.93
5 1017 40.12% 612 1.66
6 838 33.06% 612 1.36

The distribution of 2,535 Taurus node failures among 6 islands of Taurus is shown in
Table 5.1. The highest number of node failures have occurred in Island 5 and 6 which is
due to the higher density™ of nodes in these 2 islands. However, on average, nodes in
Island 4 have the highest failure probability. From another perspective, nodes in islands
with higher density are more prone to failures.

Node failures are side effects of the interplay of multiple parameters. Islands with higher
number of nodes have higher complexity. Furthermore, larger islands attract larger paral-
lel jobs. User activities directly influence the HPC systems behavior. Therefore, the combi-
nation of serving more users and executing larger parallel jobs in more complex compu-
tation environment explains the higher probability of failures observed on larger Taurus
islands.

The anomaly detection method identifies abnormal behaviors and failures via tracing
anomalous trends of the monitoring parameter among syslog entries. Therefore, sudden
failures such as power outage or throttling via overheating protection mechanism that do
not leave any footprints in syslog entries cannot be individually detected. The distribu-
tion of Taurus node failures as well as unpredictable and predictable failures are shown in
Figure 5.12.

"Number of nodes in each island.

94 5. RESULTS
mmm All Failures

6001 Predictable
8 500 4
2
& 400 m
o
& 300 q
Q
g 200 1
z

100 4 [- N . — —

mlE e [} N - f— —
o _ I N N _ -

Jul-2017 Aug-2017 Sep-2017 Oct-2017 Nov-2017 Dec-2017 Jan-2018

Date

Jan-2017 Feb-2017 Mar-2017 Apr-2017 May-2017 Jun-2017

Figure 5.12: Distribution of predictable and unpredictable Taurus node failures over time

Unpredictable Failures

Out of the total number of 2, 535 node failures on Taurus in the year 2017, syslog analysis
revealed that 428 node failures were (individually™) unpredictable. In another word, the
normal behavior of these 428 failures according to the chosen monitoring parameters’3
did not change prior to the failure occurrence. These 428 unpredictable failures occurred
on 373 different nodes. The distribution of unpredictable node failures among 6 islands
of Taurus is shown in Table 5.2. According to Table 5.2 it is concluded that 16.88% of all
node failures on Taurus are unpredictable. The right most column in Table 5.2 shows the
percentage of unpredictable failures within each island. According to this measure, more
than one fourth of node failures on Island 4 are unpredictable.

Table 5.2: Distribution of unpredictable node failures in Taurus islands

Island | Unpredictable failures | Percentage | Percentage of unpredictable failures in the island
1 9 2.10% 14.28%
2 3 0.70% 11.11%
3 5 1.17% 6.32%
4 135 31.54% 26.41%
5 171 39.95% 16.81%
6 105 24.53% 12.52%

In summary, Island 4 beside having the highest ratio of node failures, has the highest
percentage (26.41%) of unpredictable failures. Although Islands 5 and 6 are identical in
the number of nodes and processor architecture, the behavior of nodes in Island 6 are
significantly more deterministic than Island 5. In current conditions, the highest possible
recall rate of failure prediction on Taurus (system-wide) is 83.12%.

Predictable Failures

The remaining 2,107 node failures on Taurus are predictable. Each of these failures,
prior of their occurrence, leave certain footprints in system logs which differs from the
normal syslog trends. Therefore, upon detection of these anomalous behavior via syslog
analysis, the related upcoming failures are predictable.

"Certain failures such as defect in cooling system can be predicted via monitoring other nodes of the vicinity.
Bfacility, severity and message of syslog entries.

5.4. TAURUS FAILURES STATISTICS 95

To perform the anomaly detection, the combination of two syslog metadata namely:
facilityand severity levels were used as the monitoring parameter. Analysis revealed
that up to 8 combinations of syslog facility-severity levels may simultaneously project
abnormal trends before a failure. Higher number of simultaneous abnormal pairs signifi-
cantly increases the accuracy of failure prediction. Table 5.3 shows all failures in the year
2017, that before their occurrence exactly 7 facility-severity pairs projected abnormal
behavior. These g failures could have been detected via any of the 7 pairs shown in the
third column. The right most column shows the pair that projected most abnormal trend,
thus proposing the best pair to be used for anomaly detection.

Table 5.3: Observation of abnormal trends in facility-severity pairs. These g failures
could have been detected via any of the 7 pairs shown in the third column. The
right most column shows the pair that projected most abnormal trend, thus the
best pair to be used for anomaly detection.

Failure time Node | Pairs showing abnormal trends Most abnormal trend

kern_err, kern_warning, kern_notice, kern_info,
2017-01-13 14:01:01 3165) user_err
kern_debug, user_err, user_notice

kern_err, kern_warning, kern_info, kern_debug,
2017-03-16 10:50:01 | 5451 . . user_err
user_err, user_notice, user_info

kern_crit, kern_err, kern_warning, kern_info,
2017-03-16 10:50:01 | 5468) user_err
kern_debug, user_err, user_notice

kern_crit, kern_err, kern_warning, kern_info, .
2017-03-16 10:50:01 5486 user_notice

kern_debug, user_err, user_notice

kern_err, kern_warning, kern_info, kern_debug, :
2017-03-16 10:50:01 | 5505 ' ' user_notice
user_err, user_notice, user_info

kern_notice, kern_info, kern_debug, user_err,

2017-03-24 07:29:41 | 4056 i] user_debug
user_notice, user_info, user_debug
kern_warning, kern_notice, kern_info, kern_debug,)
2017-06-23 08:30:01 | 6563 - & - - - & kern_info
user_notice, user_info, user_debug
kern_warning, kern_notice, kern_info, kern_debug, .
2017-08-3115:10:40 6196 - & - - - & kern_info

user_err, user_info, user_debug

kern_err, kern_warning, kern_notice, kern_info,

2017-10-26 14:14:03 6450)
kern_debug, user_err, user_notice

kern_warning

Table 5.4 shows a summary of facility-severity pairs that project abnormal trends
before a failure. The abnormal values shown in the header of each sub-table indicates the
number of facility-severity pairs that could have been used to detect the upcom-
ing failure. The facility-severity pairs shown in each sub-table are those combina-
tions which had the highest amount of derivation from the normal behavior. As shown
in Table 5.4, prior to the appearance of the majority of node failures, at least 2 parame-
ters simultaneously projected anomalous behavior. Figure 5.13 illustrates the dominant
parameters shown in Table 5.4.

96

5. RESULTS

Table 5.4: List of detected anomalies in Taurus system logs

Abnormal values | 1 Abnormal values | 2 Abnormal values | 3 Abnormal values | 4
kern-crit 1 kern-crit 27 || kern-crit 6 kern-crit 9
kern-err 1 kern-err 6 kern-err 6 kern-err 5
kern-info 105 || kern-info 60 || kern-info 24 || kern-info 25
kern-notice 0 kern-notice 0 kern-notice 0 kern-notice 0
kern-warning 6 kern-warning 17 || kern-warning 31 || kern-warning 22
user-debug 0 || user-debug o user-debug 0 || user-debug o
user-err 59 || user-err 211 || user-err 131 || user-err 75
user-notice 143 || user-notice 497 || user-notice 178 || user-notice 73
Total 315 || Total 818 || Total 376 || Total 209
Abnormal values | 5 Abnormal values | 6 Abnormal values | 7 Abnormal values | 8
kern-crit 5 kern-crit 0 kern-crit o} kern-crit o}
kern-err 5 kern-err 1 kern-err 0 kern-err o]
kern-info 36 || kern-info 1 kern-info 2 kern-info 1
kern-notice 2 kern-notice 0 kern-notice o} kern-notice o}
kern-warning 23 || kern-warning 1 kern-warning 1 kern-warning 0
user-debug 0 user-debug o user-debug 1 user-debug o
user-err 139 || user-err 45 || user-err 3 user-err 0
user-notice 75 || user-notice 46 || user-notice 2 user-notice 0
Total 285 || Total 94 || Total 9 Total 1
i I - 2
N BTN NREAE: NRENRNRREINET IR NN
EZQoQ0EyLEooEy 200yl 200yl 0ol UEEE0YEROYYER O
w z = w w z = w Z w oz = w Z w z = w Z w oz S wDjlw oz = w iz = w |z
JzogsgoZlggo 7 cgo o 2ro z 08¢z 20228207
;§§EIS$‘§§g§‘S$‘§i§;‘S$‘§§§§‘S$‘§iéé;lgﬁ‘ﬁg;‘gﬁ‘g;‘égﬁ‘g
g 3 g 5 g 3 g 5 vz 3 s 5 > 3
¢ ¢ ¢ ¢ ¢ ¢ ¢
1 2 3 4 5 6 7 8

Abnomal parameters (count / name)

Figure 5.13: Detected anomalies in Taurus system logs

Prediction Lead Time

Employing each of the facility-severity combinations of system logs metadata pro-
vides a different prediction lead time. Longer lead times provide better opportunities for
preventing failures propagation and activating protection and recovery mechanisms. How-
ever, predictions with shorter lead time provide higher accuracy, thus results in less false
positives™. Figure 5.14 shows the ranges of prediction lead time according to each of the 8
significant facility-severity combinations.

In summary, the most accurate failure predictions with useful lead time are achieved via
analyzing system logs generated by kernel facility with the severity level of critical.
The longest prediction lead time is achieved via analyzing system logs generated by kernel
facility with the severity level of error. Although in few cases system logs generated by

“Mistakenly evaluate the normal behavior as abnormal.

5.5. JAM-E JAM PROTOTYPE 97

=l g

user_err kern_notice kern_warning user_notice kern_err kern_crit user_debug kern_info
Abnormal parameter

Lead time (hours)
> N

wv

o

Figure 5.14: Prediction lead time based on various combinations of syslog parameters

kernel facility with the severity level of notice and the system logs generated by user
facility with the severity level of debug’™ could be used to predict upcoming failures, in
general they are not recommended due to their rareness and insignificant semantics.

5.5 Jam-e Jam Prototype

The current implementation of jam-e jam's prototype contains all main building blocks
that are shown in Figure 3.1. The prototype is implemented in Python using various li-
braries' for visualization (e.g., seaborn, Matplotlib, Plotly), statistical analysis (e.g., NumPy,
SciPy, Pandas) and machine learning (e.g., TensorFlow, Keras, NLTK, NuPIC). The entire im-
plementation will be accessible on Logalyst™ web page.

The prototype was implemented solely as a proof of concept and for the purpose of this
work. Therefore, advanced programming techniques, complex structures and all complex-
ities that could reduce the readability of codes were intentionally avoided. Consequently,
the algorithms behind each script can be better understood.

Visualization

To increase the self-descriptively of algorithms and proposed methods, various visu-
alization techniques were applied. The input/output of multiple intermediate steps were
also visualized to assist the better understanding of proposed methods. Example 5.1 shows
a sample of jam-e jam'’s final output. Each row consists of four values, namely Node 1ID,
Probability, Confidence and Updated. Each row predicts the Probability of failure
occurrence on a certain Node ID with a certain Confidence. The Updated field shows
the timestamp of last assessment.

Various visualization techniques were tested to demonstrate the output of jam-e jam in
an effective and intuitive form. Out of which, two demonstrations were chosen as the most
intuitive forms for visualizing the output of jam-e jam. Both visualizations use color codes

>The debug messages are not used in production mode.
©https://www.python.org/
https://wiki.python.org/moin/NumericAndScientific
Bhttps://logalyst.github.io

98 5. RESULTS

to indicate the probability of failures and different levels of transparency to indicate the
confidence level. The first visualization approach shown in Figure 5.15a groups nodes into
racks and provides additional information in each cell. The second visualization approach,
shown in Figure 5.15b, provides a single image of the entire HPC system. jam-e jam uses the
single image visualization approach as the default output and switches to the rack-based
visualization for monitoring smaller regions of the HPC cluster.

Example 5.1: Sample of jam-e jam final output

Node 1ID Probability Confidence Updated
taurusi3001 0.3 0.4 14:23:45
taurusi3002 0.2 0.6 14:23:53
taurusi3003 0.7 0.3 14:22:31
taurusi3004 0.3 0.4 14:23:45
taurusi3005 0.5 0.6 14:24:10
taurusi3006 0.8 0.7 14:13:04
taurusi3007 0.4 0.5 14:21:27
[]
. (P4 “.\ @ e
Last update: Wed Dec 19 2013 15:02:31 GMT+0100 (Central European Standard Time) 1 ‘ ' . é}g:.. ! ™
2001 2010 2028 2037 2046 2073 08 * . . &) L ; I\I\; e
2011 2020 - 2065 2074 2082 346 AL /' g '@’..I‘l' i
e wa e o L ,ﬂw e "o
= = -1 Y e |Ii ///4:‘“"
2007 2034 2043 - 2088 N‘.’mﬁ/ il /Rﬁdzo
2017 - - 071 2080 2098 Nodﬁn'g%\n"%’(k /‘R.aﬂ 10 .
L 2018 -Rz 036 1 L 072 -Rs 2090 L NmigﬂW

(a) Island view
taurusi4056

40000

30000

duration

Failure probability

taurusi4056

Confidence

(c) Probability and confidence

L X
2017-03-21
01:00:00

2017-03-22 20170323
01:00:00 01:00:00

start_date

2017-03-24
01:00:00

(d) Failures history of node

(b) Cluster view

taurusi4055-taurusi4072

taurusi4056

VAR ARARRLALRNNNNNY

(e) Failures history in vicinity

Figure 5.15: Visualization of failure prediction in jam-e jam

Jam-e jam provides additional information that are intended to help administrators in
taking adequate decisions during doubtful conditions. Figure 5.15¢ shows a single node

5.6. SUMMARY AND DISCUSSION 99

view, illustrating the relation of failure probability and the confidence of a failure predic-
tion. Figure 5.15d provides the history of previous failures on a particular node including
the duration of each failure. Figure 5.15e provides the number of previous failures in the
relevant node vicinity. Using this comparative information and the history of node failures,
administrators can assess the system stability even during uncertain conditions.

Precision and Recall

The current implementation of jam-e jam only using the majority voting module pre-
dicts node failures with a precision of 62%. It is important to note that the majority voting
approach predicts the upcoming node failures using an exceptionally short history interval
of 30 minutes. Increasing the history interval to 24 hours and coupling the majority voting
with the HTM model increases the precision of failure prediction to 85%. Table 5.5 shows
the detailed outcome of predictions made using majority voting and HTM model on Tau-
rus syslog entries collected in the year 2017. Table 5.6 summarizes the precision, recall, and
F.Score of both approaches.

Table 5.5: Predictions made using majority voting and HTM model

number of events

Correctly predicted as normal event (TN) | >3.2 billion
Normal events

Wrongly predicted as failure (FP) 351

Correctly predicted as failure (TP) 2034

Failure events | wrongly predicted Unpredictables 428

as normal event (FN) | Undetected 73

Table 5.6: Results of applying the proposed failure prediction methods on Taurus syslog

entries.
Prediction method Input data Precision | Recall | F;Score
Majority voting Fully anonymized Syslog entries 62.3% 83.1% 71.2%
Majority voting + HTM | Fully anonymized Syslog entries 85.2% 80.2% 82.6%

5.6 Summary and Discussion

The results indicate that, in general, certain failures in HPC systems are predictable. The
most important findings and limitations of this work are summarized and discussed in this
section.

100 5. RESULTS

System Logs as Main Monitoring Data

The choice of monitoring data is a fundamental decision. This work uses system logs
as the main source of monitoring data. However, other existing monitoring data can be
also used for similar purposes. The main advantage of system logs over other monitoring
data is their availability and generality. AImost every computing system generates certain
form of system logs. The standardization of syslog entries format via RFC5424 and the
widespread use of Linux kernel in HPC systems made syslog the only generic monitoring
facility that uniformly exists on all major HPC systems regardless of their underlying hard-
ware and software stack. Furthermore, other monitoring data can be simply redirected to
be collected and stored by syslog facility. Therefore, an analyzer which is able to process
syslog entries is also able to handle other monitoring data and can be universally applicable
to other computing systems.

Noises in Monitoring Data

As long as failures occur in HPC systems, noises are integral part of monitoring data
regardless of the chosen source of monitoring data. Noises are introduced by errors in
various components of the data collection mechanism from the producers to the storage.
The proposed approach in this work is noise-tolerant and in various stages of the workflow
noises are mitigated.

Statistical Analysis

During the early stages of syslog analysis in this work, various additional methods such
as natural language processing were tested. Although, these methods could provide addi-
tional information in certain cases, the exposed overhead caused by complexity of natural
language processing algorithms was not justifiable. Furthermore, through text analysis it
has been revealed that despite sudden changes of syslog entries after each software up-
date and the unstructured free-form message field of syslog entries, there are only a few
hundred syslog patterns. These patterns can be detected and learned, thus imposing ex-
cessive overheads through the use of complex methods is avoided.

Extraction of syslog patterns itself is a challenge. Several previous studies extracted
the syslog patterns from the software source code. Although, this seems to be the easi-
est and most accurate approach, many parts of the software stack are closed-source, or
they change frequently. Thus, the syslog patterns can not be directly extracted from the
software source code. To address this challenge and extract the syslog patterns (event
patterns) PaRS has been designed.

Comparison of the information gained via analyzing event patterns and analyzing orig-
inal syslog entries revealed that except for certain hardware related messages (e.g., CPU
temperature) there are no significant differences. Therefore, it was concluded that only
knowing the type of syslog entries (regardless of their variable values) is sufficient to track
nodes behavior. In another word, the required information to track nodes behavior is the

5.6. SUMMARY AND DISCUSSION 101

relation between events (e.g., first logged in then logged out) rather than the details
of each event (e.g., first siavash logged in to 192.168.0.1 then siavash logged
out from 192.168.0.1).

Furthermore, one of the goals of this study was to propose a general approach which
can be also applied to future Exascale HPC systems. Therefore, automation and scalability
of the approach was one of the main priorities. Knowing the insignificance of event details
and the demand for automation and scalability, the statistical analysis has been chosen as
the main analysis method.

Data Anonymization

Following the implementation of GDPR since May 2018 the processing and storage of
syslog entries are allowed only for a short amount of time and after proper de-identification
of the personal identifiers. Anonymization of syslog entries according to the privacy pol-
icy of computing centers and the general data protection regulations significantly reduces
the intelligible semantics of syslog entries. Majority of syslog entries lose their entire se-
mantics. To guarantee the data anonymization, an additional encoding (hashing) step was
added to PaRS, transforming it to a comprehensive classifier/anonymizer.

PaRS converts each syslog entry into a fixed size hash key. The hash key is an irreversible
encoded form of the event pattern. The temporal relation among events will be kept also
among the hash keys. The encoding step decreases the size of syslog messages up to
the 30% of their original size. Furthermore, the final encoding step prevents any potential
leakage of information into the anonymized output.

Due to the existence of highly frequent entries in syslog collections, the same level of
size reduction can be achieved via applying lossless compression algorithms. However,
the main advantage of size reduction using PaRS is the irreversible compression which still
preserves the relation of events and eliminates the need for decoding entries. Therefore,
the anonymized and encoded syslog entries can be archived and processed at any time
without requiring further data preparation. The PaRS mechanism is specially useful in sce-
narios that data must leave the secure zone of HPC system for long-term storage, further
analysis, or publications.

Correlations and Node Vicinities

About one third of failure incidents on Taurus are temporally correlated. This ratio rises
to about 80% by considering the number of individual node failures rather than the number
of failure incidents (Figure 3.25 on page 58). Therefore, this is a necessity to consider failure
correlations in behavioral analysis in order to prevent large scale failures.

The main anomaly detection method proposed in this study works solely based on sta-
tistical analysis. Its accuracy with only a 30-minute stream of syslog entries is already ac-
ceptable. This outstanding performance is rooted in the characteristics of HPC systems.
Preliminary results revealed strong correlations among certain node failures. The corre-
lations were further investigated in 3 dimensions namely time, space and logic. Although,

102 5. RESULTS

many correlations could be explained using these 3 dimensions, certain correlations were
observed however, could not be justified (Figure 3.20). Therefore, new dimensions (node
vicinities) were defined. The application of jam-e jam in various node vicinities was tested.
The best performance was achieved inside hardware architecture and physical location
vicinities.

According to the results of this work, similar computing nodes intend to project similar
behaviors. Users prefer homogeneous set of nodes to bypass potential incompatibilities
and technical challenges. Most batch schedulers are configured to allocate tasks of a job
to nearby computing nodes since communication between neighboring nodes is faster,
shared resources are better accessible, network congestion is less and many other reasons.
Therefore, the placement of computing nodes inside HPC systems and their connections
to each other are not random phenomena, rather a thoroughly thought decision. In cur-
rent HPC systems, nodes with similar characteristics are intentionally placed next to each
other to avoid various technical difficulties and improve performance. Because of these
considerations the hardware architecture and physical location vicinities in Taurus have
large overlaps. Similar conditions apply to other HPC systems. Therefore, it is enough to
apply jam-e jam on a rack-based setup in almost all current HPC systems (without knowing
the detail of system'’s topology) to utilize the benefits of hardware architecture and physical
location vicinities. However, going toward heterogeneous computing systems the impor-
tance of performing behavioral analysis inside hardware architecture and physical location
vicinities significantly increases.

Failures Propagate

Due to the shared resources in HPC systems and the tightly coupling of computing
nodes, failures may propagate through the system from one node to the other. Most prop-
agated failures are caused by errors in distributed file system and I/0 mechanisms. Sta-
bilizing the distributed file system eliminates a significant fraction of node failures in HPC
systems.

The Solution for Exascale

Unstructured format of syslog messages, continuous updates of software stack, fre-
quent system maintenance, dynamic algorithms, adaptive load balancing, performance/en-
ergy optimization mechanisms, unpredictable users behavior, nondeterministic protection
mechanisms and interactive computational environment are some factors that frequently
affect the behavior of HPC systems. Therefore, a static normal behavior cannot be defined.
Instead, the normal behavior should be dynamically adjusted to the current status of the
computing system. Given the size and complexity of future Exascale computing systems
unsupervised approaches are the only feasible solution. The unsupervised behavioral anal-
ysis approaches based on statistical methods provide more scalability and transparency
and do not require the complete semantics of the syslog entries. The later is required to
perform behavioral analysis using anonymized system logs.

5.6. SUMMARY AND DISCUSSION 103

Heterogeneity and Homogeneity of Nodes

Differences among available memory, disk space and network capacity of computing
nodes have minimum impact on nodes’ behavior in Taurus. On the other hand, CPU archi-
tecture significantly influences nodes’ behavior. Therefore, the heterogeneity and homo-
geneity of computing nodes in this work are defined according to the nodes CPU architec-
ture. The failure detection approach proposed in this work, performs more accurately on
homogeneous HPC systems. Thus, this study recommends dividing heterogeneous HPC
systems into smaller homogeneous sections before applying the proposed failure detec-
tion approach.

Itisimportant to mention that this work is focused on the resiliency of large HPC clusters.
Given the limited number of available different CPU architectures, it is a valid assumption
to consider any large heterogeneous computing system as a set of smaller homogeneous
sections, thus the proposed method is applicable. In the unlikely situation of lack of homo-
geneous sections in heterogeneous computing systems, the HTM model should be used
without majority voting.

Precision and Recall

Jam-e jam predicts Taurus node failures with outstanding F,Score value of 82%. How-
ever, as it is shown in Table 2.7, there are other failure prediction methods that achieved
even higher F,Score values. The main difference lies in the definition of failure and the
quality of monitoring data. In contrast to this work, system logs are not the only moni-
toring data used by the methods of Table 2.7. Some of those methods, beside the syslog
entries, had access to additional information that are required to predict irregular failures
such as failure of cooling system, CPU burn out, and disk failure. Furthermore, most stud-
ies did not provide sufficient information about the data curation and preparation process,
which have significant influence on the coverage and precision of final predictions. User in-
teractions also significantly increase the nondeterministic behaviors of HPC systems, thus
reducing the predictability of upcoming failures. In addition, certain failures are not pre-
dictable due to the lack of any footprints prior to the point of failure e.g., failures caused
by sudden reaction of the overheating protection mechanism, or power outage.

The prediction lead time can not be estimated. Although, in several cases the lead time
of failure prediction is surprisingly large, its duration itself cannot be accurately estimated.
Rather than statistically estimating the expected failure time, jam-e jam increases the value
of prediction confidence as time passes (Section 4.3.3).

Detection of system-wide failure patterns is not practical. Different subsets of comput-
ing nodes project different behaviors, thus different failure patterns. The dynamic nature
of the modern HPC systems and in particular the interactive computational environment
(users) is causing these differences. Therefore, detecting system-wide failure patterns is
not practical nor useful. A system-wide failure pattern will fail to accurately model the fail-
ure pattern of subsections of the HPC system. Therefore, the behavior pattern of each
subsection should be individually extracted.

104 5. RESULTS

Combining the majority voting and the HTM model, the proposed approach reached the
outstanding precision of 85% for node failure prediction (Table 5.6). A more reliable data
collection mechanism is expected to improve the precision of failure prediction.

To Predict or Not To Predict: On-demand Adaptive Resilience

In total more than 4, 000 incidents were recorded on Taurus during one year. More than
15,000 node outages occurred during these incidents. Many of these node outages were
caused by planned maintenance or urgent security updates (e.g., Spectre and Meltdown).
Another group of node outages were caused by hardware failures (e.g., failure of cooling
system). The third group of outages were consecutive outages that occurred during the
instability periods immediately after recovering from the previous outage (Figure 1.1). The
last group of node outages occurred during the normal operation of the HPC system and
are caused by internal factors such as software and hardware errors or racing conditions.
Only the last group of node outages (regular failures) can potentially be predicted.

During the year 2017 2,535 regular failures were recorded on Taurus. Only consider-
ing the blackout interval of those 2,262 nodes that recovered in less than 5 hours, a total
amount of 6, 175 node-hours are lost™. This amount of lost hours is comparable to shutting
down the entire Taurus cluster for more than 3 days®°. In larger HPC systems the failure
ratio may increase even further due to higher system complexities.

Itisimportantto mention that existing failure protection mechanisms (e.g., checkpoint/restart,
redundancy) themselves introduce failures in HPC systems. Furthermore, always-active
layers of protection impose unnecessary overhead and decrease the HPC systems perfor-
mance. Switching from an always-active resilience to an on-demand resilience decreases
the unnecessary overhead of always-active protection layers and reduces the probability
of failures caused by interference of protection mechanisms.

The decision among always-active and on-demand resilience heavily depends on the
requirements and demands of the HPC system. There are unpredictable failures and the
exact length of prediction lead time is usually unknown. Therefore, on-demand protection
mechanisms will fail to protect the system against certain failures. For HPC systems with
short jobs the on-demand resilience can be beneficial. On the other hand, always-active
resilience is the only solution to compensate irregular failures which may occur on HPC
system with long execution time or time-critical jobs.

However, regardless of the HPC system requirements and demands, the on-demand
adaptive resilience approach is the solution for protecting future HPC systems. The on-
demand adaptive resilience approach provides light-weight always-active protection layers
that are strengthened via on-demand activation of additional protection mechanisms in
case of detecting abnormal behaviors or predicting instabilities.

“Each node has multiple CPUs.
?°Taurus has 2046 computing nodes.

105

6 Conclusion and Future Works

Following the expansion of HPC systems in size and complexity, and the advent of Exas-
cale computing systems, the existence of failures became a norm rather than an exception.
In the presence of failures, even the most de facto mechanisms such as checkpoint/restart,
redundancy, and migration may fail to support the continuous operation of ever growing
large scale HPC systems. Predicting upcoming failures reinforces existing mechanisms and
enables timely protection via providing adequate lead time. The goal is to provide adaptive
resilience for HPC systems. In an ideal scenario all failure protection mechanisms remain
inactive during the normal conditions. Consequently, unnecessary overheads and perfor-
mance penalties are avoided, the energy consumption is reduced, and a potential source
of failure is removed. Upon prediction or detection of failures, proportional to the systems
condition, adequate protection mechanisms will be activated to prevent failure propaga-
tion and compensate potential side effects. The adequate action could be an on-demand
check-pointing of the unstable node, an on-demand cloning of the unstable processes or
an on-demand migration of tasks to other stable nodes (surrogates).

This work showed that the majority of failures in HPC systems are predictable. To pre-
dict the regular failures, jam-e jam as a general and unsupervised behavioral analyzer was
proposed and can be applied to other HPC systems without any modifications. It has been
shown that system logs have invaluable information about various levels of computing
system and is a useful source of monitoring data that exists on virtually all HPC systems.
To comply with data protection regulations and to address the users privacy concerns, a
robust data anonymization method was introduced. PaRS turned privacy constraints into
analysis advantage that further facilitates the storage and processing of anonymized mon-
itoring data.

Furthermore, the concepts of node vicinity and majority voting inside node vicinities
were introduced. The proposed behavior analysis method based on majority voting tol-
erates noise by design, and accurately works with as short as 30 minutes of logging his-
tory. The statistical-based anomaly detection inside relevant node vicinities significantly
improved the accuracy of failure prediction. The proposed machine learning based meth-
ods complemented the decisions of the statistical method to further improve the accuracy
of failure predictions. jam-e jam with its outstanding failure prediction precision of 85%,
achieved using a fully automatic and unsupervised approach, proved its functionality for
the future extreme scale HPC systems.

The goal of this work was designing a prototype to analyze and predict system behav-
ior as a main step toward resilience in high performance computing systems. Due to the
size and complexity of the problem, certain assumptions were made to generalize the out-
comes. The most important assumptions are explained on page 25. Although, these as-

106 6. CONCLUSION AND FUTURE WORKS

sumptions were necessary to conduct this study, for future studies several assumptions
can be loosened according to the outcomes of the current work.

To provide a general analysis approach applicable to all HPC systems, a general source
of data must have been chosen. Currently, system logs are the only widely available mon-
itoring data which exist virtually on all HPC systems. However, it seems that computing
centers and system producers are acknowledging the importance of behavioral analysis
via providing a broader range of monitoring data sources. The new widespread sources
of monitoring data should be added to jam-e jam in order to improve the accuracy of its
analysis.

The failure correlation detector in this work automatically detects correlation among
failures in two dimensions of time and space. Failure correlations in other dimensions are
mainly perceived indirectly via analyzing the temporal and spacial correlations. Therefore,
the automatic detection of failure correlation requires further improvements. Detecting
correlations among node vicinities is only the first step toward fully automatic detection of
system-wide failure correlations.

Selecting the node vicinities is the only manual part of the jam-e jam mechanism and
requires the expert knowledge of system topology. Automatic selection of node vicinities
eliminates the only manual step, and turns jam-e jam into a fully automatic mechanism.
However, as it has been discussed before, in the current HPC systems the automatic selec-
tion of node vicinities is not a high priority. Due to the fact that system providers intention-
ally group homogeneous computing nodes together, in current HPC systems a rack can be
considered as a default node vicinity. However, with the arrival of heterogeneous systems
the automatic selection of node vicinities remains as an important challenge.

Despite the promising preliminary results of Text Auto-completion model, the techni-
cal challenges of detecting very long recurring sequences of symbols in text strings re-
stricts the accuracy of Text Auto-completion model. Therefore, improvement of Text Auto-
completion model is postponed as part of the future work. Furthermore, the fine-tuning
of HTM model is planned.

As discussed in Section 5.6, the precision of the proposed failure prediction approach
in this work cannot be directly compared to previous failure predictors. However, a com-
parison study is planned to be conducted as soon as the requirements of the study are
fulfilled. Application of the proposed failure prediction approach on Taurus as a live ser-
vice is also planned. At the time of writing, the first prerequisite step (a reliable stream of
syslog entries) is already accomplished and further steps are in progress.

108

Bibliography

Bibliography

(]

[2]

[3]

[4]

(5]

[6]

[7]

[8]

G. Moore, “Cramming More Components Onto Integrated Circuits,” Proceedings of the
IEEE, vol. 86, pp. 82-85, Jan. 1998.

J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre, D. Barkai, J.-Y.
Berthou, T. Boku, B. Braunschweig, F. Cappello, B. Chapman, Xuebin Chi, A. Choud-
hary, S. Dosanjh, T. Dunning, S. Fiore, A. Geist, B. Gropp, R. Harrison, M. Hereld,
M. Heroux, A. Hoisie, K. Hotta, Zhong Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Ken-
way, D. Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas, B. Mac-
cabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S. Mueller, W. E. Nagel,
H. Nakashima, M. E. Papka, D. Reed, M. Sato, E. Seidel, J. Shalf, D. Skinner, M. Snir,
T. Sterling, R. Stevens, F. Streitz, B. Sugar, S. Sumimoto, W. Tang, J. Taylor, R. Thakur,
A. Trefethen, M. Valero, A. van der Steen, J. Vetter, P. Williams, R. Wisniewski, and
K. Yelick, “The International Exascale Software Project Roadmap,” The International
Journal of High Performance Computing Applications, vol. 25, pp. 3-60, Feb. 2011.

M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose,
F. Cappello, B. Carlson, A. A. Chien, P. Coteus, N. A. DeBardeleben, P. C. Diniz, C. Engel-
mann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyf-
fer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, and E. V. Hensbergen,
“Addressing Failures in Exascale Computing,” The International Journal of High Perfor-
mance Computing Applications, vol. 28, pp. 129-173, May 2014.

M. Platini, T. Ropars, B. Pelletier, and N. De Palma, “CPU Overheating Characterization
in HPC Systems: A Case Study,” in 2018 IEEE/ACM 8th Workshop on Fault Tolerance for
HPC at eXtreme Scale (FTXS), pp. 59-68, Nov. 2018.

S. Di, H. Guo, E. Pershey, M. Snir, and F. Cappello, “Characterizing and Understanding
HPC Job Failures Over the 2k-Day Life of IBM BlueGene/Q System,” in 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 473-
484, June 2019.

C. Pachajoa, C. Pacher, and W. N. Gansterer, “Node-Failure-Resistant Preconditioned
Conjugate Gradient Method without Replacement Nodes,” in 2019 IEEE/ACM gth Work-
shop on Fault Tolerance for HPC at eXtreme Scale (FTXS), pp. 31-40, Nov. 2019.

H. Casanova, Y. Robert, and U. Schwiegelshohn, “Algorithms and Scheduling Tech-
niques for Exascale Systems (Dagstuhl Seminar 13381),” Dagstuhl Reports, p. 122, 2014.

F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir, “Toward Exascale

Bibliography 109

[9]

[10]

[11]

[12]

[13]

Resilience: 2014 update,” Supercomputing Frontiers and Innovations, vol. 1, pp. 5-28,
June 2014.

Z. Hussain, X. Cui, T. Znati, and R. Melhem, “CoLoR: Co-Located Rescuers for Fault
Tolerance in HPC Systems,” in 2018 IEEE 24th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 569-576, Dec. 2018.

D. Dauwe, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “Resilience-Aware Resource
Management for Exascale Computing Systems,” IEEE Transactions on Sustainable Com-
puting, vol. 3, pp. 332-345, Oct. 2018.

B. Fang, J. Chen, k. Pattabiraman, M. Ripeanu, and S. Krishnamoorthy, “Towards Pre-
dicting the Impact of Roll-Forward Failure Recovery for HPC Applications,” in 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Sup-
plemental Volume (DSN-S), pp. 13-14, June 2019.

R. A. Ashraf, S. Hukerikar, and C. Engelmann, “Shrink or Substitute: Handling Process
Failures in HPC Systems Using In-Situ Recovery,” in 2018 26th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 178-185,
Mar. 2018.

M. A. Amrizal, P. Li, M. Agung, R. Egawa, and H. Takizawa, “A Failure Prediction-Based
Adaptive Checkpointing Method with Less Reliance on Temperature Monitoring for
HPC Applications,” in 2018 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 515-523, Sept. 2018.

[14] J. C. Duenas, J. M. Navarro, H. A. Parada G., J. Andion, and F. Cuadrado, “Applying

[15]

[16]

[17]

[18]

Event Stream Processing to Network Online Failure Prediction,” I[EEE Communications
Magazine, vol. 56, pp. 166-170, Jan. 2018.

A. Frank, D. Yang, A. Brinkmann, M. Schulz, and T. SUss, “Reducing False Node Failure
Predictions in HPC,” in 2019 IEEE 26th International Conference on High Performance
Computing, Data, and Analytics (HiPC), pp. 323-332, Dec. 2019.

A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Failure Prediction for HPC Systems
and Applications: Current Situation and Open Issues,” The International Journal of High
Performance Computing Applications, vol. 27, pp. 273-282, Aug. 2013.

M. Ball and F. Hardie, “Effects and Detection of Intermittent Failures in Digital Sys-
telns,” Proceedings of the AFIPS conference, vol. 35, pp. 329-335, 1969.

S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in Large Scale Systems: Long-
Term Measurement, Analysis, and Implications,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis on - SC
17, (Denver, Colorado), pp. 1-12, ACM Press, 2017.

10 Bibliography

[19] V. Chandra and R. Aitken, “Impact of Technology and Voltage Scaling on the Soft Error
Susceptibility in Nanoscale CMOS,” in 2008 IEEE International Symposium on Defect and
Fault Tolerance of VLSI Systems, pp. 114-122, Oct. 2008.

[20] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A Survey of Fault Tolerance Mech-
anisms and Checkpoint/Restart Implementations for High Performance Computing
Systems,” The Journal of Supercomputing, vol. 65, pp. 1302-1326, Sept. 2013.

[21] M. Prieur, “The Return Rates of the Components,” Tech. Rep. 9, hardware.fr, Oct. 2013.

[22] M. Prieur, “The Return Rates of the Components,” Tech. Rep. 12, hardware.fr, May
2015.

[23] M. Prieur, “The Return Rates of the Components,” Tech. Rep. 15, hardware.fr, Dec.
2016.

[24] J. Lienig and H. Bruemmer, “Reliability Analysis,” in Fundamentals of Electronic Systems
Design (J. Lienig and H. Bruemmer, eds.), pp. 45-73, Cham: Springer International
Publishing, 2017.

[25] W. M. Jones, J. T. Daly, and N. DeBardeleben, “Application Monitoring and Check-
pointing in HPC: Looking Towards Exascale Systems,” in Proceedings of the soth Annual
Southeast Regional Conference, ACM-SE "12, (Tuscaloosa, Alabama), pp. 262-267, ACM,
2012.

[26] S. Di, H. Guo, R. Gupta, E. R. Pershey, M. Snir, and F. Cappello, “Exploring Properties
and Correlations of Fatal Events in a Large-Scale HPC System,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, pp. 361-374, Feb. 2019.

[27] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann, “Combining
Partial Redundancy and Checkpointing for HPC,” in 2012 IEEE 32nd International Con-
ference on Distributed Computing Systems, (Macau, China), pp. 615-626, IEEE, June 2012.

[28] J. Daly, B. Harrod, T. Hoang, L. Nowell, B. Adolf, S. Borkar, N. DeBardeleben, M. El-
nozahy, M. Heroux, and D. Rogers, “Inter-Agency Workshop on HPC Resilience at Ex-
treme Scale,” in National Security Agency Advanced Computing Systems, Feb. 2012.

[29] B. Schroeder and G. A. Gibson, “Understanding Failures in Petascale Computers,”
Journal of Physics: Conference Series, vol. 78, p. 012022, July 2007.

[30] H. Hartig, S. Matsuoka, F. Mueller, and A. Reinefeld, “Resilience in Exascale Comput-
ing,” in Dagstuhl Reports (M. Herbstritt, ed.), vol. 4, (Dagstuhl, Germany), pp. 124-139,
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[31] C. Engelm and F. Lauer, “Facilitating Co-Design for Extreme-Scale Systems Through
Lightweight Simulation,” in 2010 IEEE International Conference On Cluster Computing
Workshops and Posters, (HERAKLION, Greece), pp. 1-8, IEEE, Sept. 2010.

Bibliography L

[32] C. Engelmann and T. Naughton, “Toward a Performance/Resilience Tool for Hard-
ware/Software Co-design of High-Performance Computing Systems,” in 2013 42nd In-
ternational Conference on Parallel Processing, (Lyon, France), pp. 960-969, IEEE, Oct.
2013.

[33] P. Gill, N. Jain, and N. Nagappan, “Understanding Network Failures in Data Centers:
Measurement, Analysis, and Implications,” Proceedings of the ACM SIGCOMM, vol. 41,
pp. 350-361, Aug. 2011.

[34] R. K. lyer, D.J. Rossetti, and M. C. Hsueh, “Measurement and Modeling of Computer
Reliability as Affected by System Activity,” ACM Transactions on Computer Systems,
vol. 4, pp. 214-237, Aug. 1986.

[35] J. Gray, “Why Do Computers Stop and What Can Be Done About It?,” Technical Report
85.7 PN87614, Tandem Computers, June 1985.

[36] J. Gray, “A Census of Tandem System Availability Between 1985 and 1990,” IEEE Trans-
actions on Reliability, vol. 39, no. 4, p. 10, 1990.

[37] D.Tang, R.lyer, and S. Subramani, “Failure Analysis and Modeling of a VAXcluster Sys-
tem,” in Digest of Papers. Fault-Tolerant Computing: 20th International Symposium(FTCS),
(Newcastle Upon Tyne, UK), pp. 244-251, IEEE, June 1990.

[38] T.-Y. Lin and D. P. Siewiorek, “Error Log Analysis: Statistical Modeling and Heuristic
Trend Analysis,” IEEE Transactions on Reliability, vol. 39, pp. 419-432, Oct. 1990.

[39] R.lyer, Z. Kalbarczyk, and M. Kalyanakrishnam, “Failure Data Analysis of a LAN of Win-
dows NT Based Computers,” in Reliable Distributed Systems, IEEE Symposium on(SRDS),

p. 178, Oct. 1999.

[40] Jun Xu, Z. Kalbarczyk, and R. lyer, “Networked Windows NT System Field Failure Data
Analysis,” in Proceedings 1999 Pacific Rim International Symposium on Dependable Com-
puting, (Hong Kong), pp. 178-185, IEEE Comput. Soc, 1999.

[41] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why Do Internet Services Fail,
and What Can Be Done About It?,” in Proceedings of the 4th Usenix Symposium on In-
ternet Technologies and Systems, p. 15, 2003.

[42] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, and Yanyong Zhang, “Failure Data
Analysis of a Large-Scale Heterogeneous Server Environment,” in International Con-
ference on Dependable Systems and Networks, 2004, pp. 772-781, June 2004.

[43] A. Oliner and J. Stearley, “What Supercomputers Say: A Study of Five System Logs,”
in 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN'07), pp. 575-584, June 2007.

[44] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d Supinski, “Design, Modeling, and
Evaluation of a Scalable Multi-level Checkpointing System,” in SC "70: Proceedings of the

12

Bibliography

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

2010 ACMV/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1-11, Nov. 2010.

K. Ferreira, J. Stearley, J. H. Laros, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen,
P. G. Bridges, and D. Arnold, “Evaluating the Viability of Process Replication Reliability
for Exascale Systems,” in SC “11: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1-12, Nov. 2011.

D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, “California Fault Lines: Un-
derstanding the Causes and Impact of Network Failures,” Proceedings of the ACM SIG-
COMM 2010 conference, pp. 315-326, 2010.

G. Zheng, X. Ni, and L. V. Kalé, “A Scalable Double in-Memory Checkpoint and Restart
Scheme Towards Exascale,” in IEEE/IFIP International Conference on Dependable Sys-
tems and Networks Workshops (DSN 2012), pp. 1-6, June 2012.

K. Yamamoto, A. Uno, H. Murai, T. Tsukamoto, F. Shoji, S. Matsui, R. Sekizawa,
F. Sueyasu, H. Uchiyama, M. Okamoto, N. Ohgushi, K. Takashina, D. Wakabayashi,
Y. Taguchi, and M. Yokokawa, “The K computer Operations: Experiences and Statis-
tics,” Procedia Computer Science, vol. 29, pp. 576-585, 2014.

C.D. Martino, Z. Kalbarczyk, R. K. lyer, F. Baccanico, J. Fullop, and W. Kramer, “Lessons
Learned from the Analysis of System Failures at Petascale: The Case of Blue Waters,”
in 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works, pp. 610-621, June 2014.

X. Ni, Mitigation of Failures in High Performance Computing via Runtime Techniques. PhD
thesis, University of Illinois at Urbana-Champaign, 2016.

M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar, “Exploring Auto-
matic, Online Failure Recovery for Scientific Applications at Extreme Scales,” in SC 14:
Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pp. 895-906, Nov. 2014.

D. Dauwe, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “An Analysis of Multilevel
Checkpoint Performance Models,” in 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 783-792, May 2018.

[53] J. Dongarra, T. Herault, and Y. Robert, “Fault Tolerance Techniques for High-

[54]

Performance Computing,” in Fault-Tolerance Techniques for High-Performance Comput-
ing (T. Herault and Y. Robert, eds.), Computer Communications and Networks, pp. 3-
85, Cham: Springer International Publishing, 2015.

S. Levy, K. B. Ferreira, N. DeBardeleben, T. Siddiqua, V. Sridharan, and E. Baseman,
“Lessons Learned from Memory Errors Observed over the Lifetime of Cielo,” in Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC 18, (Piscataway, NJ, USA), pp. 43:1-43:12, IEEE Press, 2018.

Bibliography 13

[55] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and
S. Gurumurthi, “Memory Errors in Modern Systems: The Good, The Bad, and The
Ugly,” in Proceedings of the Twentieth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS 15, (Istanbul, Turkey),
pp. 297-310, Association for Computing Machinery, Mar. 2015.

[56] J. Meza, T. Xu, K. Veeraraghavan, and O. Mutlu, “A Large Scale Study of Data Center
Network Reliability,” Proceedings of the Internet Measurement Conference, pp. 393-407,
Nov. 2018.

[57] V.-P. Ranganath and D. Andresen, “Why do Users Kill HPC Jobs?,” in 2018 IEEE 25th
International Conference on High Performance Computing (HiPC), pp.276-283, Dec. 2018.

[58] S. Di, Y. Robert, F. Vivien, and F. Cappello, “Toward an Optimal Online Checkpoint
Solution under a Two-Level HPC Checkpoint Model,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, pp. 244-259, Jan. 2017.

[59] E.Rojas, E. Meneses, T.Jones, and D. Maxwell, “Analyzing a Five-Year Failure Record of
a Leadership-Class Supercomputer,” in 2019 31st International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), pp. 196-203, Oct. 2019.

[60] B. H. Park, Y. Hui, S. Boehm, R. A. Ashraf, C. Layton, and C. Engelmann, “A Big Data
Analytics Framework for HPC Log Data: Three Case Studies Using the Titan Super-
computer Log,” in 2018 IEEE International Conference on Cluster Computing (CLUSTER),

pp. 571-579, Sept. 2018.

[61] Q. Chen, K. Chen, Z.-N. Chen, W. Xue, X. Ji, and B. Yang, “Lessons Learned from Opti-
mizing the Sunway Storage System for Higher Application I/0 Performance,” Journal
of Computer Science and Technology, vol. 35, pp. 47-60, Jan. 2020.

[62] Y. Zhu, Y. Liu, and G. Zhang, “FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Alge-
bra Computation on High-performance Computing Systems,” IEEE Access, vol. 8,
PP. 42674-42688, 2020.

[63] C. Lonvick, “The BSD Syslog Protocol.” https://tools.ietf.org/html/rfc3164,
Aug. 2001. [accessed 13-03-2020].

[64] R. Gerhards, “The Syslog Protocol.” https://tools.ietf.org/html/rfc5424,
Mar. 2009. [accessed 13-03-2020].

[65] W. Xu, L. Huang, A. Fox, D. Patterson, and M. |. Jordan, “Detecting Large-Scale System
Problems by Mining Console Logs,” in Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles - SOSP ‘09, (Big Sky, Montana, USA), p. 117, 2009.

[66] S. Chhajed, Learning ELK Stack. Packt Publishing Ltd, Nov. 2015.

https://tools.ietf.org/html/rfc3164
https://tools.ietf.org/html/rfc5424

14 Bibliography

[67] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang, “CloudSeer: Workflow Monitoring
of Cloud Infrastructures via Interleaved Logs,” in Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems - ASPLOS 16, (Atlanta, Georgia, USA), pp. 489-502, ACM Press, 2016.

[68] B. H. Park, S. Hukerikar, R. Adamson, and C. Engelmann, “Big Data Meets HPC Log
Analytics: Scalable Approach to Understanding Systems at Extreme Scale,” in 2017
IEEE International Conference on Cluster Computing (CLUSTER), pp. 758-765, Sept. 2017.

[60] R. Vaarandi and M. Pihelgas, “Logcluster - A Data Clustering and Pattern Mining Al-
gorithm for Event Logs,” in 2015 11th International Conference on Network and Service
Management (CNSM), pp. 1-7, Nov. 2015.

[70] M. Nagappan and M. A. Vouk, “Abstracting Log Lines to Log Event Types for Mining
Software System Logs,” in 2010 7th IEEE Working Conference on Mining Software Repos-
itories (MSR 2010), pp. 114-117, May 2010.

[71]1 Z. M. Jiang, A. E. Hassan, P. Flora, and G. Hamann, “Abstracting Execution Logs to
Execution Events for Enterprise Applications (Short Paper),” in 2008 The Eighth Inter-
national Conference on Quality Software, pp. 181-186, Aug. 2008.

[72] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution Anomaly Detection in Distributed Sys-
tems through Unstructured Log Analysis,” in 2009 Ninth IEEE International Conference
on Data Mining, (Miami Beach, FL, USA), pp. 149-158, IEEE, Dec. 2009.

[73] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A Lightweight Algorithm for Mes-
sage Type Extraction in System Application Logs,” IEEE Transactions on Knowledge and
Data Engineering, vol. 24, pp. 1921-1936, Nov. 2012.

[74] L. Tang, T. Li, and C.-S. Perng, “LogSig: Generating System Events from Raw Tex-
tual Logs,” in Proceedings of the 2o0th ACM International Conference on Information and
Knowledge Management - CIKM "11, (Glasgow, Scotland, UK), p. 785, ACM Press, 2011.

[75] M. Mizutani, “Incremental Mining of System Log Format,” in 2013 IEEE International
Conference on Services Computing, pp. 595-602, June 2013.

[76] K. Shima, “Length Matters: Clustering System Log Messages using Length of Words,”
arXiv:1611.03213 [cs], Nov. 2016.

[77] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen, “LogMine: Fast Pat-
tern Recognition for Log Analytics,” in Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management - CIKM 16, (Indianapolis, Indi-
ana, USA), pp. 1573-1582, ACM Press, 2016.

[78] M. Du and F. Li, “Spell: Streaming Parsing of System Event Logs,” in 2016 IEEE 16th
International Conference on Data Mining (ICDM), pp. 859-864, Dec. 2016.

Bibliography 15

[79] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An Online Log Parsing Approach with
Fixed Depth Tree,” in 2017 IEEE International Conference on Web Services (ICWS), (Hon-
olulu, HI, USA), pp. 33-40, IEEE, June 2017.

[80] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas, “A Search-
Based Approach for Accurate Identification of Log Message Formats,” in Proceedings
of the 26th Conference on Program Comprehension - ICPC 18, (Gothenburg, Sweden),
pp. 167-177, ACM Press, 2018.

[81] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An Evaluation Study on Log Parsing and Its
Usein Log Mining,” in 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 654-661, June 2016.

[82] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools and benchmarks
for automated log parsing,” in Proceedings of the 41st International Conference on Soft-
ware Engineering: Software Engineering in Practice, ICSE-SEIP 19, (Montreal, Quebec,
Canada), pp. 121-130, IEEE Press, May 2019.

[83] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu, “LogMaster: Mining Event Correla-
tions in Logs of Large-Scale Cluster Systems,” in 2012 IEEE 315t Symposium on Reliable
Distributed Systems, pp. 71-80, Oct. 2012.

[84] “The Alert Logic agent for Linux.” https://docs.alertlogic.com/prepare/
alert-logic-agent-linux.htm. [accessed 13-03-2020].

[85] “Cloudlytics.” https://cloudlytics.com/overview#event-section. [accessed
13-03-2020].

[86] “EventSentry.” https://www.eventsentry.com/documentation/overview/
html/index.html. [accessed 13-03-2020].

[87] “Log Management Solution for Compliance & Security - EventTracker.” https://
eventtracker.com/solutions/log-manager/. [accessed 13-03-2020].

[88] “Syslog Parser Plugin: Fluentd.” https://docs.fluentd.org/vl.0/articles/
parser_syslog. [accessed 13-03-2020].

[89] “Apache Flume 1.9.0 User Guide.” https://flume.apache.org/releases/
content/1.9.0/FlumeUserGuide.html#syslog-sources. [accessed 13-03-
2020].

[90] “Extractors — Graylog 3.0.0 documentation.” http://docs.graylog.org/en/3.
0/pages/extractors.html#the-problem-explained. [accessed 13-03-2020].

[91] “InTrust: Windows Event Log Management and Analysis Tool.” https://www.
quest .com/products/intrust/. [accessed 13-03-2020].

https://docs.alertlogic.com/prepare/alert-logic-agent-linux.htm
https://docs.alertlogic.com/prepare/alert-logic-agent-linux.htm
https://cloudlytics.com/overview#event-section
https://www.eventsentry.com/documentation/overview/html/index.html
https://www.eventsentry.com/documentation/overview/html/index.html
https://eventtracker.com/solutions/log-manager/
https://eventtracker.com/solutions/log-manager/
https://docs.fluentd.org/v1.0/articles/parser_syslog
https://docs.fluentd.org/v1.0/articles/parser_syslog
https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html#syslog-sources
https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html#syslog-sources
http://docs.graylog.org/en/3.0/pages/extractors.html#the-problem-explained
http://docs.graylog.org/en/3.0/pages/extractors.html#the-problem-explained
https://www.quest.com/products/intrust/
https://www.quest.com/products/intrust/

16 Bibliography

[92] “MOVEit Automation Web Admin Help.” https://docs.ipswitch.com/MOVEit/
Automation2019/Help/Admin/en/index.htm#48174.htm. [accessed 13-03-
2020].

[93] “Log Formats — Inav 0.8.4 documentation.” https://1lnav.readthedocs.io/en/
latest/formats.html. [accessed 13-03-2020].

[94] “LOGalyze - Log analysis.” http://www.logalyze.com/solutions/
log-analysis. [accessed 13-03-2020].

[95] “LogDNA Quick Start Guide.” https://docs.logdna.com/docs/. [accessed 13-03-
2020].

[06] Logentries, “Alerting and Reporting.” https://logentries.com/product/
alerting-and-reporting/. [accessed 13-03-2020].

[97] “Scrub Sensitive Data in Rsyslog.” https://www.loggly.com/docs/
scrub-data-rsyslog/. [accessed 13-03-2020].

[08] “Logmatic.” https://doc.logmatic.io/. [accessed 13-03-2020].

[99] “Log Management & Log Analysis | LogRhythm.” https://logrhythm.com/
solutions/security/log-management/. [accessed 13-03-2020].

[100] “Logsign: Intelligent Next-Gen SIEM Solution.” https://www.logsign.com/
index.php. [accessed 13-03-2020].

[101] J. Turnbull, The Logstash Book. Amazon, Mar. 2013.

[102] Logstrom, “Log Management Solutions.” https://www.blackstratus.com/
log-storm/. [accessed 11-Mar-2020].

[103] J. E. Prewett, “Analyzing Cluster Log Flles Using Logsurfer,” in Proceedings of the 4th
Annual Conference on Linux Clusters, June 2003.

[104] logzio, “Alerts.” https://docs.logz.io/user—-guide/alerts/. [accessed 13-03-
2020].

[105] “Loom’s Solution vs. Log Management Solutions.” http://support.loomsystems.
com/comparisons/looms—-solution-vs—log-management—solutions. [ac-
cessed 13-03-2020].

[106] motadata, “Log Management Tools | Event Log Analyzer | Log Monitoring Software.”

[107] “Nagios Log Server - Full Architecture Overview.” https://support.nagios.com/
kb/article/nagios—log-server—-full-architecture-overview-98.html.

[accessed 13-03-2020].

[108] “NXLog User Guide.” https://nxlog.co/documentation/nxlog-user—-guide.
[accessed 13-03-2020].

https://docs.ipswitch.com/MOVEit/Automation2019/Help/Admin/en/index.htm#48174.htm
https://docs.ipswitch.com/MOVEit/Automation2019/Help/Admin/en/index.htm#48174.htm
https://lnav.readthedocs.io/en/latest/formats.html
https://lnav.readthedocs.io/en/latest/formats.html
http://www.logalyze.com/solutions/log-analysis
http://www.logalyze.com/solutions/log-analysis
https://docs.logdna.com/docs/
https://logentries.com/product/alerting-and-reporting/
https://logentries.com/product/alerting-and-reporting/
https://www.loggly.com/docs/scrub-data-rsyslog/
https://www.loggly.com/docs/scrub-data-rsyslog/
https://doc.logmatic.io/
https://logrhythm.com/solutions/security/log-management/
https://logrhythm.com/solutions/security/log-management/
https://www.logsign.com/index.php
https://www.logsign.com/index.php
https://www.blackstratus.com/log-storm/
https://www.blackstratus.com/log-storm/
https://docs.logz.io/user-guide/alerts/
http://support.loomsystems.com/comparisons/looms-solution-vs-log-management-solutions
http://support.loomsystems.com/comparisons/looms-solution-vs-log-management-solutions
https://support.nagios.com/kb/article/nagios-log-server-full-architecture-overview-98.html
https://support.nagios.com/kb/article/nagios-log-server-full-architecture-overview-98.html
https://nxlog.co/documentation/nxlog-user-guide

Bibliography 17

[109] N. Taerat, J. Brandt, A. Gentile, M. Wong, and C. Leangsuksun, “Baler: Deterministic,
Lossless Log Message Clustering Tool,” Computer Science - Research and Development,
vol. 26, p. 285, Apr. 2011.

[110] J. Brandt, F. Chen, A. Gentile, C. B. Leangsuksun, J. Mayo, P. Pebay, D. Roe, N. Taerat,
D. Thompson, and M. Wong, “Framework for Enabling System Understanding,”
in Euro-Par 2011: Parallel Processing Workshops (M. Alexander, P. D'’Ambra, A. Bel-
loum, G. Bosilca, M. Cannataro, M. Danelutto, B. Di Martino, M. Gerndt, E. Jeannot,
R.Namyst, J. Roman, S. L. Scott, J. L. Traff, G. Vallée, and J. Weidendorfer, eds.), Lecture
Notes in Computer Science, (Berlin, Heidelberg), pp. 231-240, Springer, 2012.

[111] “Scalyr Under The Hood: Log Management That's Fast, At Scale.” https://www.
scalyr.com/product. [accessed 13-03-2020].

[112] splunk, “Al for IT: Preventing Outages With Predic-
tive Analytics.” https://www.splunk.com/en_us/form/
ai-for-it-preventing-outages—-with-predictive—-analytics.html.
[accessed 13-03-2020].

[113] “Machine Learning Powered Analytics.” https://www.sumologic.com/
solutions/machine-learning-powered-analytics/. [accessed 13-03-2020].

[114] S. E. Hansen and E. T. Atkins, “Automated System Monitoring and Notification With
Swatch,” in Proceedings of the 7th USENIX Conference on System Administration, pp. 145-
152, USENIX Association, May 1993.

[115] “XpoLog Center Documentation.” http://wiki.xplg.com/display/XPOL/
XpoLog+Analytics. [accessed 13-03-2020].

[116] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining Invariants from Console Logs for
System Problem Detection,” USENIX Annual Technical Conference (ATC), pp. 231-244,
2010.

[117] K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis, and H. Zhang, “Automated IT system
failure prediction: A deep learning approach,” in 2016 IEEE International Conference on
Big Data (Big Data), pp. 1291-1300, Dec. 2016.

[118] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly Detection and Diagno-
sis from System Logs through Deep Learning,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security - CCS ‘17, (Dallas, Texas, USA),
pp. 1285-1298, ACM Press, 2017.

[119] A. Netti, Z. Kiziltan, O. Babaoglu, A. Sirbu, A. Bartolini, and A. Borghesi, “FINJ: A
Fault Injection Tool for HPC Systems,” in Euro-Par 2018: Parallel Processing Workshops,
vol. 11339, pp. 800-812, Cham: Springer International Publishing, 2019.

[120] T. E. PARLIAMENT, “Regulation (EU) 2018/1725 of the European Parliament and of the
Council of 23 October 2018 on the Protection of Natural Persons with Regard to the

https://www.scalyr.com/product
https://www.scalyr.com/product
https://www.splunk.com/en_us/form/ai-for-it-preventing-outages-with-predictive-analytics.html
https://www.splunk.com/en_us/form/ai-for-it-preventing-outages-with-predictive-analytics.html
https://www.sumologic.com/solutions/machine-learning-powered-analytics/
https://www.sumologic.com/solutions/machine-learning-powered-analytics/
http://wiki.xplg.com/display/XPOL/XpoLog+Analytics
http://wiki.xplg.com/display/XPOL/XpoLog+Analytics

118

Bibliography

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Processing of Personal Data by the Union Institutions, Bodies, Offices and Agencies
and on the Free Movement of Such Data, and Repealing Regulation (EC) No 45/2001
and Decision No 1247/2002/ECText with EEA Relevance.,” Official Journal of the Euro-
pean Union, Oct. 2018.

L. Sweeney, “Simple Demographics Often Identify People Uniquely,”. Pittsburgh, p. 34,
2000.

A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam, “L-Diversity:
Privacy Beyond k-Anonymity,” in 22nd International Conference on Data Engineering
(ICDE'06), pp. 24-24, Apr. 2006.

N. Li, T. Li, and S. Venkatasubramanian, “T-Closeness: Privacy Beyond k-Anonymity
and |-Diversity,” in 2007 IEEE 23rd International Conference on Data Engineering, pp. 106-
115, Apr. 2007.

P. M. V. Kumar, “T-Closeness Integrated L-Diversity Slicing for Privacy Preserving Data
Publishing,” Journal of Computational and Theoretical Nanoscience, vol. 15, pp. 106-110,
Jan. 2018.

C. Dwork, “Differential Privacy,” in Automata, Languages and Programming (M. Bugliesi,
B. Preneel, V. Sassone, and I. Wegener, eds.), Lecture Notes in Computer Science,
pp. 1-12, Springer Berlin Heidelberg, 2006.

T. E. PARLIAMENT, “Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Pro-
cessing of Personal Data and on the Free Movement of Such Data, and Repealing
Directive 95/46/EC (General Data Protection Regulation) (Text with EEA Relevance),”
May 2016.

R. Dahlberg and T. Pulls, Standardized Syslog Processing : Revisiting Secure Reliable Data
Transfer and Message Compression. Karlstads universitet, 2016.

R. Gerhards, “RSyslog Documentation.” https://www.rsyslog.com/doc/. [acC-
cessed 13-03-2020].

J. Sissel, “Logstash, Centralize, Transform and Stash Your Data.” https://www.
elastic.co/products/logstash. [accessed 13-03-2020].

S. Sanjappa and M. Ahmed, “Analysis of Logs by Using Logstash,” in Proceedings of the
sth International Conference on Frontiers in Intelligent Computing: Theory and Applica-
tions, Advances in Intelligent Systems and Computing, pp. 579-585, Springer Singa-
pore, 2017.

[131] “Loggy, Log management.” http://www.loggly.com/. [accessed 11-Mar-2020].

[132]

A. Gholami, E. Laure, P. Somogyi, O. Spjuth, S. Niazi, and]J. Dowling, “Privacy-
Preservation for Publishing Sample Availability Data with Personal Identifiers,” Journal
of Medical and Bioengineering, vol. 4, no. 2, pp. 117-125, 2015.

https://www.rsyslog.com/doc/
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
http://www.loggly.com/

Bibliography 19

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

M. Templ, B. Meindl, and A. Kowarik, “sdcMicro: Statistical Disclosure Control Meth-
ods for Anonymization of Microdata and Risk Estimation,” May 2018.

C. Dai, G. Ghinita, E. Bertino, J.-W. Byun, and N. Li, “TIAMAT: A Tool for Interactive
Analysis of Microdata Anonymization Techniques,” Proceedings of the VLDB Endow-
ment, vol. 2, pp. 1618-1621, Aug. 2009.

M. Ciglic, J. Eder, and C. Koncilia, “Anonymization of Data Sets with NULL Values,”
in Transactions on Large-Scale Data- and Knowledge-Centered Systems XXIV: Special Is-
sue on Database- and Expert-Systems Applications, Lecture Notes in Computer Science,
pp. 193-220, Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.

“UTD Anonymization ToolBox.” http://cs.utdallas.edu/dspl/cgi-bin/
toolbox/. [accessed 13-03-2020].

X. Xiao, G. Wang, and J. Gehrke, “Interactive Anonymization of Sensitive Data,” in Pro-
ceedings of the 35th SIGMOD International Conference on Management of Data - SIGMOD
‘09, (Providence, Rhode Island, USA), p. 1051, ACM Press, 2009.

A. Meyerson and R. Williams, “On the Complexity of Optimal k-Anonymity,” in Pro-
ceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems - PODS ‘04, (Paris, France), p. 223, ACM Press, 2004.

R.J. Bayardo and R. Agrawal, “Data Privacy Through Optimal k-Anonymization,” in 21st
International Conference on Data Engineering (ICDE'05), pp. 217-228, Apr. 2005.

A. Gionis and T. Tassa, “K-Anonymization with Minimal Loss of Information,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, pp. 206-219, Feb. 2009.

K. Murakami and T. Uno, “Optimization Algorithm for k-Anonymization of Datasets
with Low Information Loss,” International Journal of Information Security, vol. 17,
pp. 631-644, Nov. 2018.

[142] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W.-C. Fu, “Utility-Based Anonymization for

[143]

[144]

[145]

Privacy Preservation with Less Information Loss,” ACM SIGKDD Explorations Newsletter,
vol. 8, pp. 21-30, Dec. 2006.

M. Terrovitis, N. Mamoulis, and P. Kalnis, “Local and Global Recoding Methods for
Anonymizing Set-Valued Data,” The VLDB Journal, vol. 20, pp. 83-106, Feb. 2011.

M. E. Nergiz, M. Z. Gok, and U. Ozkanli, “Preservation of Utility through Hybrid k-
Anonymization,” in Trust, Privacy, and Security in Digital Business, Lecture Notes in
Computer Science, pp. 97-111, Springer Berlin Heidelberg, 2013.

Z.-H. WANG, J. XU, W. WANG, and B.-L. SHI, “Clustering-Based Approach for Data
Anonymization,” Journal of Software, 2014.

http://cs.utdallas.edu/dspl/cgi-bin/toolbox/
http://cs.utdallas.edu/dspl/cgi-bin/toolbox/

120

Bibliography

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

J. Soria-Comas and J. Domingo-Ferrer, “Self-enforcing Collaborative Anonymization
Via Co-utility,” in Co-Utility: Theory and Applications, Studies in Systems, Decision and
Control, pp. 139-151, Cham: Springer International Publishing, 2018.

R. C.-W.Wong, A. W.-C. Fu, K. Wang, P. S. Yu, andJ. Pei, “Can the Utility of Anonymized
Data be Used for Privacy Breaches?,” ACM Transactions on Knowledge Discovery from
Data, vol. 5, pp. 1-24, Aug. 2011.

M. Templ, “Data Utility and Information Loss,” in Statistical Disclosure Control for Mi-
crodata: Methods and Applications in R (M. Templ, ed.), pp. 133-156, Cham: Springer
International Publishing, 2017.

G. Loukides and J. Shao, “Capturing Data Usefulness and Privacy Protection in k-
Anonymisation,” in Proceedings of the 2007 ACM Symposium on Applied Computing -
SAC ‘07, (Seoul, Korea), p. 370, ACM Press, 2007.

F. Prasser and F. Kohlmayer, “Putting Statistical Disclosure Control into Practice:
The ARX Data Anonymization Tool,” in Medical Data Privacy Handbook (A. Gkoulalas-
Divanis and G. Loukides, eds.), pp. 111-148, Cham: Springer International Publishing,
2015.

J. Gardner and L. Xiong, “An Integrated Framework for De-Identifying Unstructured
Medical Data,” Data & Knowledge Engineering, vol. 68, pp. 1441-1451, Dec. 2009.

C. Rath, “A Privacy-Aware Logging Framework Extension for Logback.:
Nobecutan/Privacy-Aware-Logging,” June 2016.

C. Rath, “Usable Privacy-Aware Logging for Unstructured Log Entries,” in 2016 11th In-
ternational Conference on Availability, Reliability and Security (ARES), pp. 272-277, Aug.
2016.

B. Ozcelik and C. Yilmaz, “Seer: A Lightweight Online Failure Prediction Approach,” in
2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 1,
pp. 624-625, July 2017.

F. Salfner, M. Lenk, and M. Malek, “A Survey of Online Failure Prediction Methods,”
ACM Comput. Surv., vol. 42, pp. 10:1-10:42, Mar. 2010.

T. Herault and Y. Robert, eds., Fault-Tolerance Techniques for High-Performance Com-
puting. Computer Communications and Networks, Cham: Springer International Pub-
lishing, 2015.

S. He, J. Zhu, P. He, and M. R. Lyu, “Experience Report: System Log Analysis for
Anomaly Detection,” in 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE), pp. 207-218, Oct. 2016.

Bibliography 121

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

D. Jauk, D. Yang, and M. Schulz, “Predicting faults in high performance computing
systems: An in-depth survey of the state-of-the-practice,” in Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis,
SC"9, (Denver, Colorado), pp. 1-13, Association for Computing Machinery, Nov. 2019.

T. Islam and D. Manivannan, “Predicting Application Failure in Cloud: A Machine
Learning Approach,” in 2017 IEEE International Conference on Cognitive Computing
(ICCC), pp. 24-31, June 2017.

G. Aupy, Y. Robert, and F. Vivien, “Assuming Failure Independence: Are We Right to be
Wrong?,” in 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp. 709-
716, Sept. 2017.

C. Liang, T. Benson, P. Kanuparthy, and Y. He, “Finding Needles in the Haystack: Har-
nessing Syslogs for Data Center Management,” arXiv:1605.06150 [cs], May 2016.

D. Zou, H. Qin, H. Jin, W. Qiang, Z. Han, and X. Chen, “Improving Log-Based Fault Di-
agnosis by Log Classification,” in Advanced Information Systems Engineering, vol. 7908,
pp. 446-458, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.

N. El-Sayed and B. Schroeder, “Reading Between the Lines of Failure Logs: Under-
standing How HPC Systems Fail,” in 2013 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 1-12, June 2013.

N. Yigitbasi, M. Gallet, D. Kondo, A. losup, and D. Epema, “Analysis and Modeling of
Time-Correlated Failures in Large-Scale Distributed Systems,” in 2010 11th IEEE/ACM
International Conference on Grid Computing, pp. 65-72, Oct. 2010.

K. Yamanishi, J.-i. Takeuchi, G. Williams, and P. Milne, “On-Line Unsupervised Outlier
Detection Using Finite Mixtures with Discounting Learning Algorithms,” Data Mining
and Knowledge Discovery, vol. 8, pp. 275-300, May 2004.

R. Vaarandi, B. Blumbergs, and M. Kont, “An Unsupervised Framework for Detecting
Anomalous Messages from Syslog Log Files,” in NOMS 2018 - 2018 IEEE/IFIP Network
Operations and Management Symposium, pp. 1-6, Apr. 2018.

T. Kimura, A. Watanabe, T. Toyono, and K. Ishibashi, “Proactive Failure Detection
Learning Generation Patterns of Large-scale Network Logs,” IEICE Transactions on
Communications, 2018.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online System Problem Detec-
tion by Mining Patterns of Console Logs,” in 2009 Ninth IEEE International Conference
on Data Mining, (Miami Beach, FL, USA), pp. 588-597, IEEE, Dec. 2009.

[169] J. P. Rouillard, “Real-time Log File Analysis Using the Simple Event Correlator (SEC),”

in 18th Large Installation System Administration Conference, (Atlanta, Georgia, USA),
pp. 133-150, USENIX Association, Nov. 2004.

122 Bibliography

[170] P. He, J. Zhu, P. Xu, Z. Zheng, and M. R. Lyu, “A Directed Acyclic Graph Approach to
Online Log Parsing,” arXiv:1806.04356 [cs], June 2018.

[171] R. Baldoni, L. Montanari, and M. Rizzuto, “On-line Failure Prediction in Safety-critical
Systems,” Future Generation Computer Systems, vol. 45, pp. 123-132, Apr. 2015.

[172] A.W.Williams, S. M. Pertet, and P. Narasimhan, “Tiresias: Black-Box Failure Prediction
in Distributed Systems,” in 2007 IEEE International Parallel and Distributed Processing
Symposium, pp. 1-8, Mar. 2007.

[173] H.S. Pannu, J. Liu, and S. Fu, “A Self-Evolving Anomaly Detection Framework for De-
veloping Highly Dependable Utility Clouds,” in 2012 IEEE Global Communications Con-
ference (GLOBECOM), Dec. 2012.

[174] Y. Tan, X. Gu, and H. Wang, “Adaptive System Anomaly Prediction for Large-scale
Hosting Infrastructures,” in Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, PODC "0, (Zurich, Switzerland), pp. 173-182, ACM,
2010.

[175] F. Rasheed, M. Alshalalfa, and R. Alhajj, “Efficient Periodicity Mining in Time Series
Databases Using Suffix Trees,” IEEE Transactions on Knowledge and Data Engineering,
vol. 23, pp. 79-94, Jan. 2011.

[176] K. F. Xylogiannopoulos, P. Karampelas, and R. Alhajj, “Periodicity Data Mining in Time
Series Using Suffix Arrays,” in 2012 6th IEEE International Conference Intelligent Systems,
pp. 172181, Sept. 2012.

[177] E. Ukkonen, “On-Line Construction of Suffix Trees,” Algorithmica, vol. 14, pp. 249-260,
Sept. 1995.

[178] K. F. Xylogiannopoulos, P. Karampelas, and R. Alhajj, “Analyzing Very Large Time Se-
ries Using Suffix Arrays,” Applied Intelligence, vol. 41, pp. 941-955, Oct. 2014.

[179] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B. Le, “A Survey of
Itemset Mining,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 7, July 2017.

[180] A. Patcha and J.-M. Park, “An Overview of Anomaly Detection Techniques: Existing
Solutions and Latest Technological Trends,” Computer Networks, 2007.

[181] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,” ACM Comput.
Surv., vol. 41, pp. 1-58, July 2009.

[182] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels, and E. Kirda,
“Beehive: Large-scale Log Analysis for Detecting Suspicious Activity in Enterprise Net-
works,” in Proceedings of the 29th Annual Computer Security Applications Conference,
ACSAC 13, (New Orleans, Louisiana, USA), pp. 199-208, ACM, 2013.

Bibliography 123

[183] A. Oprea, Z. Li, T. Yen, S. H. Chin, and S. Alrwais, “Detection of Early-Stage Enterprise
Infection by Mining Large-Scale Log Data,” in 45th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, pp. 45-56, June 2015.

[184] S. Roy, A. C. Kénig, I. Dvorkin, and M. Kumar, “PerfAugur: Robust Diagnostics for Per-
formance Anomalies in Cloud Services,” in 2015 IEEE 31st International Conference on
Data Engineering, Apr. 2015.

[185] I. Beschastnikh, Y. Brun, M. D. Ernst, A. Krishnamurthy, and T. E. Anderson, “Min-
ing Temporal Invariants from Partially Ordered Logs,” SIGOPS Oper. Syst. Rev., vol. 45,

pPp. 39-46, Jan. 2012.

[186] I. Jolliffe, “Principal Component Analysis,” in International Encyclopedia of Statistical
Science (M. Lovric, ed.), pp. 1094-1096, Berlin, Heidelberg: Springer, 2011.

[187] Z. Li, M. Davidson, S. Fu, S. Blanchard, and M. Lang, “Converting Unstructured Sys-
tem Logs into Structured Event List for Anomaly Detection,” in Proceedings of the 13th
International Conference on Availability, Reliability and Security - ARES 2018, (Hamburg,
Germany), pp. 1-10, ACM Press, 2018.

[188] N. Aussel, Y. Petetin, and S. Chabridon, “Improving Performances of Log Mining for
Anomaly Prediction Through NLP-Based Log Parsing,” in 2018 IEEE 26th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pp. 237-243, Sept. 2018.

[189] Y.Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. K. Sahoo, “BlueGene/L Failure
Analysis and Prediction Models,” in Dependable Systems and Networks, 2006. DSN 2006.
International Conference On, pp. 425-434, June 2006.

[190] J. Brandt, A. Gentile, J. Mayo, P. Pébay, D. Roe, D. Thompson, and M. Wong, “Method-
ologies for Advance Warning of Compute Cluster Problems Via Statistical Analysis:
A Case Study,” in Proceedings of the 2009 Workshop on Resiliency in High Performance,
(New York, NY, USA), pp. 7-14, ACM, 2009.

[191] A. Gainaru, F. Cappello, and W. Kramer, “Taming of the Shrew: Modeling the Nor-
mal and Faulty Behaviour of Large-Scale Hpc Systems,” in 26th IEEE Int’| Parallel and
Distributed Processing Symp, pp. 1168-1179, Scholar: IEEE, May 2012.

[192] C. Costa, Y. Park, B. Rosenburg, C. Cher, and K. Ryu, “A System Software Approach to
Proactive Memory-Error Avoidance,” in SC14: Int'l Conf. for High Performance Comput-
ing, Networking, Storage and Analysis, pp. 707-718, IEEE, Nov. 2014.

[193] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault Prediction Under the Micro-
scope: A Closer Look into Hpc Systems,” in 2012 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, (Salt Lake City, UT), pp. 1-11,
I[EEE, Nov. 2012.

124 Bibliography

[194] X. Fu, R.Ren, S. Mckee, J. Zhan, and N. Sun, “Digging Deeper into Cluster System Logs
for Failure Prediction and Root Cause Diagnosis,” in Cluster Computing (CLUSTER), 2014
IEEE International Conference On, pp. 103-112, Sept. 2014.

[195] R. Rajachandrasekar, X. Besseron, and D. K. Panda, “Monitoring and Predicting Hard-
ware Failures in HPC Clusters with FTB-IPMI,” in 2012 IEEE 26th International Parallel
and Distributed Processing Symposium Workshops PhD Forum, pp. 1136-1143, May 2012.

[196] Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi, and Y. Matsumoto, “Online Failure
Prediction in Cloud Datacenters by Real-Time Message Pattern Learning,” in 4th IEEE
Int'l Conf. on Cloud Computing Technology and Science Proceedings, (Scholar), pp. 504~
511, Dec. 2012.

[197] Y. Watanabe, H. Otsuka, and Y. Matsumoto, “Failure Prediction for Cloud Datacenter
by Hybrid Message Pattern Learning,” in IEEE 11th Int’| Conference on Ubiquitous Intelli-
gence / Computing IEEE 14th Int'l Conf on Scalable Computing and Communications and
Its Associated Workshops, pp. 425-432, Dec. 2014.

[198] L. Guo, D. Li, I. Laguna, and M. Schulz, “Understanding Natural Error Resilience in
HPC Applications,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, (Piscataway, NJ, USA), IEEE Press, 2018.

[199] A.Das, F. Mueller, P. Hargrove, E. Roman, and S. Baden, “Doomsday: Predicting Which
Node Will Fail when on Supercomputers,” in Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage, and Analysis, SC 18, (Piscat-
away, NJ, USA), pp. 9:1-9:14, |IEEE Press, 2018.

[200] A. Ma, R. Traylor, F. Douglis, M. Chamness, G. Lu, D. Sawyer, S. Chandra, and W. Hsu,
“RaidShield: Characterizing, Monitoring, and Proactively Protecting Against Disk Fail-
ures,” ACM Transactions on Storage, vol. 11, 4, Nov. 2015.

[201] Z.Zheng, Z. Lan, R. Gupta, S. Coghlan, and P. Beckman, “A Practical Failure Prediction
with Location and Lead Time for Blue Gene/P,” in 2010 International Conference on
Dependable Systems and Networks Workshops (DSN-W), pp. 15-22, June 2010.

[202] J. Thompson, D. Dreisigmeyer, T. Jones, M. Kirby, and J. Ladd, “Accurate Fault Predic-
tion of BlueGene/P RAS Logs via Geometric Reduction,” in Intl Conf. on Dependable
Systems and Networks Workshops (DSN-W, (Scholar), pp. 8-14, June 2010.

[203] C. Rincon, J. Paris, R. Vilalta, A. Cheng, and D. Long, “Disk Failure Prediction in Het-
erogeneous Environments,” in 2017 Int’l. Symp. on Performance Evaluation of Computer
and Telecommunication Systems (SPECTS, pp. 1-7, IEEE, July 2017.

[204] S. Ganguly, A. Consul, A. Khan, B. Bussone, J. Richards, and A. Miguel, “A Practical Ap-
proach to Hard Disk Failure Prediction in Cloud Platforms: Big Data Model for Failure
Management in Datacenters,” in IEEE Second Intl Conf. on Big Data Computing Service
and Applications (BigDataService, pp. 105-116, IEEE, Mar. 2016.

Bibliography 125

[205] N. Nakka, A. Agrawal, and A. Choudhary, “Predicting Node Failure in High Perfor-
mance Computing Systems from Failure and Usage Logs,” in 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp. 1557~
1566, May 2011.

[206] . Klinkenberg, C. Terboven, S. Lankes, and M. S. Muller, “Data Mining-Based Analysis
of HPC Center Operations,” in 2017 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 766-773, Sept. 2017.

[207] M. Soualhia, F. Khomh, and S. Tahar, “Predicting Scheduling Failures in the Cloud: A
Case Study with Google Clusters and Hadoop on Amazon Emr,” in Proceedings of the
2015 IEEE 17th Int'l Conf. on High Performance Computing and Communications, 7th Int.
Symp. on Cyberspace Safety and Security, and 12th Int’l Conf. on Embedded Software and
Systems, (Washington, DC, USA), pp. 58-65, IEEE Computer Society, 2015.

[208] N. El-Sayed, H. Zhu, and B. Schroeder, “Learning from Failure Across Multiple Clus-
ters: A Trace-Driven Approach to Understanding, Predicting, and Mitigating Job Ter-
minations,” in IEEE 37th Int’| Conf. on Distributed Computing Systems (ICDCS, pp. 1333-
1344, Scholar: |IEEE, June 2017.

[209] T. Chalermarrewong, T. Achalakul, and S. See, “Failure Prediction of Data Centers
Using Time Series and Fault Tree Analysis,” in 2012 IEEE 18th Int'l Conf. on Parallel and
Distributed Systems, pp. 794-799, Scholar: IEEE, Dec. 2012.

[210] Q. Guan, Z. Zhang, and S. Fu, “Proactive Failure Management by Integrated Unsuper-
vised and Semi-Supervised Learning for Dependable Cloud Systems,” in 2011 Sixth Int’l
Conf. on Availability, Reliability and Security, pp. 83-90, Scholar: IEEE, Aug. 2011.

[211] A. Sirbu and O. Babaoglu, “Towards Operator-Less Data Centers Through Data-
Driven, Predictive, Proactive Autonomics,” Cluster Computing, vol. 19, 2, June 2016.

[212] Q. Liu,]J.Zhou, G.]Jin, Q. Sun, and M. Xi, “FABSR: A Method for Cluster Failure Prediction
Based on Bayesian Serial Revision and an Application to LANL Cluster,” Quality and
Reliability Engineering Int’l, vol. 27, 4, 2011.

[213] Y. Liang, Y.Zhang, H. Xiong, and R. Sahoo, “Failure Prediction in IBM BlueGene/L Event
Logs,” in Seventh IEEE Int'l Conf. on Data Mining (ICDM 2007, pp. 583-588, Scholar: IEEE,
Oct. 2007.

[214] X. Lu, WANG, j. Z. H., R., GE, and B., “Autonomic Failure Prediction Based on Manifold
Learning for Large-Scale Distributed Systems,” The Journal of China Universities of Posts
and Telecommunications, vol. 17, 4, pp. 116-124, 2010.

[215] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma, “Proactive Drive Failure Prediction
for Large Scale Storage Systems,” in 2013 IEEE 29th Symp. on Mass Storage Systems and
Technologies (MSST, pp. 1-5, IEEE, May 2013.

126 Bibliography

[216] A. Pelaez, A. Quiroz, J. Browne, E. Chuah, and M. Parashar, “Online Failure Predic-
tion for HPCResources Using Decentralized Clustering,” in 2014 21st Int'l Conf. on High
Performance Computing (HiPC, pp. 1-9, Scholar: IEEE, Dec. 2014.

[217] B. Agrawal, T. Wiktorski, and C. Rong, “Analyzing and Predicting Failure in Hadoop
Clusters Using Distributed Hidden Markov Model,” in Revised Selected Papers of the
Second Int'l Conf. on Cloud Computing and Big Data, vol. 9106, pp. 232-246, New York,
NY, USA: Springer, 2015.

[218] L. Yu, Z. Zheng, Z. Lan, and S. Coghlan, “Practical Online Failure Prediction for Blue
Gene/P: Period-Based Vs Event-Driven,” in 2011 IEEE/IFIP 41st Int'l Conf. on Dependable
Systems and Networks Workshops (DSN-W, pp. 259-264, Scholar: IEEE, June 2011.

[219] X. Chen, C. Ly, and K. Pattabiraman, “Failure Prediction of Jobs in Compute Clouds: A
Google Cluster Case Study,” in 2014 IEEE Int'l. Symp. on Software Reliability Engineering
Workshops, pp. 341-346, Scholar: IEEE, Nov. 2014.

[220] J. Gu, Z. Zheng, Z. Lan, J. White, E. Hocks, and B. Park, “Dynamic Meta-Learning for
Failure Prediction in Large-Scale Systems: A Case Study,” in 2008 37th Int'l Conf. on
Parallel Processing, pp. 157-164, Scholar: IEEE, Sept. 2008.

[221] Z.Lan,). Gu, Z. Zheng, R. Thakur, and S. Coghlan, “A Study of Dynamic Meta-Learning
for Failure Prediction in Large-Scale Systems,” Journal of Parallel and Distributed Com-
puting, vol. 70, 6, pp. 630-643, 2010.

[222] A. Gainaru, F. Cappello, S. Trausan-Matu, and B. Kramer, “Event Log Mining Tool for
Large Scale HPC Systems,” in Euro-Par 2011 Parallel Processing (E. Jeannot, R. Namyst,
and J. Roman, eds.), vol. 6852, pp. 52-64, Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011.

[223] A. Gainaru, M. S. Bouguerra, F. Cappello, M. Snir, and W. Kramer, “Navigating the Blue
Waters: Online Failure Prediction in the Petascale Era,” Thechnical Report ANL/MCS-
P5219, Argonne National Laboratory Technical Report, 2014.

[224] T. Pitakrat, D. Okanovi¢, A. van Hoorn, and L. Grunske, “Hora: Architecture-aware
online failure prediction,” Journal of Systems and Software, vol. 137, pp. 669-685, Mar.
2018.

[225] A. Das, F. Mueller, C. Siegel, and A. Vishnu, “Desh: Deep Learning for System Health
Prediction of Lead Times to Failure in HPC,” in Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC "18, (New
York, NY, USA), pp. 40-51, ACM, 2018.

[226] M. Zasadzinski, V. Muntés-Mulero, M. Solé, D. Carrera, and T. Ludwig, “Early Termina-
tion of Failed HPC Jobs Through Machine and Deep Learning,” in Euro-Par 2018: Paral-
lel Processing (M. Aldinucci, L. Padovani, and M. Torquati, eds.), vol. 11014, pp. 163-177,
Cham: Springer International Publishing, 2018.

Bibliography 127

[227] M. Landauer, M. Wurzenberger, F. Skopik, G. Settanni, and P. Filzmoser, “Dynamic Log
File Analysis: An Unsupervised Cluster Evolution Approach for Anomaly Detection,”
Computers & Security, vol. 79, pp. 94-116, Nov. 2018.

[228] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini, “Anomaly Detection
Using Autoencoders in High Performance Computing Systems,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 9428-9433, July 2019.

[229] A. Rezaei, F. Mueller, P. Hargrove, and E. Roman, “Dino: Divergent Node Cloning for
Sustained Redundancy in HPC,” Journal of Parallel and Distributed Computing, vol. 109,
pp. 350-362, Nov. 2017.

[230] C.-K. Chang, S. Lym, N. Kelly, M. B. Sullivan, and M. Erez, “Evaluating and Accelerating
High-fidelity Error Injection for HPC,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis, SC 18, (Piscataway, NJ,
USA), pp. 45:1-45:13, IEEE Press, 2018.

[231] E. Horn, D. Fulp, J. Calhoun, and L. Olson, “FaultSight: A Fault Analysis Tool for HPC
Researchers,” in 2019 IEEE/ACM gth Workshop on Fault Tolerance for HPC at eXtreme Scale
(FTXS), pp. 21-30, Nov. 2019.

[232] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux Utility for Re-
source Management,” in Job Scheduling Strategies for Parallel Processing (D. Feitelson,
L. Rudolph, and U. Schwiegelshohn, eds.), Lecture Notes in Computer Science, pp. 44-
60, Springer Berlin Heidelberg, 2003.

[233] P. Schwan, “Lustre: Building a File System for 1,000-node Clusters,” In Proceedings of
the Ottawa Linux Symposium, vol. 2003, p. 9, 2003.

[234] “TOP500 Supercomputer Sites.” https://www.top500.0rg/lists/2019/11/.
[accessed 11-03-2020].

[235] D.L.Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe, “PrivApprox: Privacy-
preserving stream analytics,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17), (Santa Clara, CA), pp. 659-672, USENIX Association, July 2017.

[236] S. Ghiasvand and F. M. Ciorba, “Anonymization of System Logs for Preserving Privacy
and Reducing Storage,” in Proceedings of the 2018 Future of Information and Communi-
cations Conference (FICC), vol. 1, (Singapore), pp. 440-447, Springer, Apr. 2018.

[237] S. Ghiasvand, F. M. Ciorba, and W. E. Nagel, “Turning Privacy Constraints into Sys-
log Analysis Advantage,” in International Conference for High Performance Computing,
Networking, Storage and Analysis, (Salt Lake City, Utah, USA), Nov. 2016.

[238] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “The Making of KECCAK,” Cryp-
tologia, vol. 38, pp. 26-60, Jan. 2014.

https://www.top500.org/lists/2019/11/

128 Bibliography

[239] M.). Dworkin, “SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions,” Tech. Rep. NIST FIPS 202, National Institute of Standards and Technology,
July 2015.

[240] S. Ghiasvand and F. M. Ciorba, “Assessing Data Usefulness for Failure Analysis in
Anonymized System Logs,” in Proceedings of the 17th International Symposium on Par-
allel and Distributed Computing (ISPDC), (Geneva, Switzerland), pp. 164-171, June 2018.

[241] Technical University of Dresden, “Ordnung zur Errichtu ng und zum Betrieb eines
Identitatsmanagementsystems an der Technischen Universitat Dresden,” July 2011.

[242] L. Collin, “A Quick Benchmark: Gzip vs. Bzip2 vs. LZMA." http://tukaani.org/
lzma/benchmarks.html. [accessed 13-03-2020].

[243] G. Danti, “Linux Compressors Comparison on CentOS 6.5 x86-64: Lzo vs 124 vs gzip
vs bzip2 vs Izma.” https://www.ghiasvand.net/u/compression?2. [accessed 13-
03-2020].

[244] J. Alakuijala, E. Kliuchnikov, Z. Szabadka, and L. Vandevenne, “Comparison of Brotli,
Deflate, Zopfli, LZMA, LZHAM and Bzip2 Compression Algorithms,” tech. rep., Google
Inc., 22-Sep-2015.

[245] S. Ghiasvand, W. E. Nagel, and F. M. Ciorba, “Toward Resilience in HPC: A Prototype
to Analyze and Predict System Behavior,” in International Supercomputing, (Frankfurt,
Germany), June 2016.

[246] A. Bartoli, A. D. Lorenzo, E. Medvet, and F. Tarlao, “Inference of Regular Expressions
for Text Extraction from Examples,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 28, pp. 1217-1230, May 2016.

[247] Z. Zhong, J. Guo, W. Yang, T. Xie, J.-G. Lou, T. Liu, and D. Zhang, “Generating Regular
Expressions from Natural Language Specifications: Are We There Yet?,” in Workshops
at the Thirty-Second AAAI Conference on Artificial Intelligence, (New Orleans, Louisiana,
USA), p. 4, AAAI, Feb. 2018.

[248] S. Ghiasvand and F. M. Ciorba, “Automatic Classification of System Logs,” in Interna-
tional Supercomputing, (Frankfurt, Germany), June 2018.

[249] V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions, and Re-
versals,” Dokl. Akad. Nauk SSSR, vol. 10, pp. 707-710, Feb. 1965.

[250] S. Ghiasvand, F. M. Ciorba, R. Tschuter, and W. E. Nagel, “Lessons Learned from Spa-
tial and Temporal Correlation of Node Failures in High Performance Computers,” in
Proceedings of the 24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP), (Heraklion, Crete, Greece), pp. 377-381, |IEEE, Feb.
2016.

http://tukaani.org/lzma/benchmarks.html
http://tukaani.org/lzma/benchmarks.html
https://www.ghiasvand.net/u/compression2

Bibliography 129

[251] S. Ghiasvand and F. M. Ciorba, “Event Pattern Identification in Anonymized System
Logs,” in International Supercomputing, (Frankfurt, Germany), June 2017.

[252] C. D. Martino, W. Kramer, Z. Kalbarczyk, and R. lyer, “Measuring and Understand-
ing Extreme-Scale Application Resilience: A Field Study of 5,000,000 HPC Application
Runs,” in 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pp. 25-36, June 2015.

[253] S. Ghiasvand, F. M. Ciorba, R. Tschuter, and W. E. Nagel, “Analysis of Node Failures in
High Performance Computers Based on System Logs,” in International Conference for
High Performance Computing, Networking, Storage and Analysis, (Austin, Texas), Nov.
2015.

[254] D.Dai, O.R. Gatla, and M. Zheng, “A Performance Study of Lustre File System Checker:
Bottlenecks and Potentials,” in 2019 35th Symposium on Mass Storage Systems and Tech-
nologies (MSST), pp. 7-13, May 2019.

[255] S. M. Khorandi, S. Ghiasvand, and M. Sharifi, “Reducing Load Imbalance of Vir-
tual Clusters via Reconfiguration and Adaptive Job Scheduling,” in Proceedings of the
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
(Madrid, Spain), pp. 992-999, IEEE, May 2017.

[256] S. Ghiasvand and F. M. Ciorba, “Anomaly Detection in High Performance Computers:
A Vicinity Perspective,” in 2019 18th International Symposium on Parallel and Distributed
Computing (ISPDC), pp. 112-120, June 2019.

[257] A. P.J. de Koning, W. Gu, T. A. Castoe, M. A. Batzer, and D. D. Pollock, “Repetitive Ele-
ments May Comprise Over Two-Thirds of the Human Genome,” PLOS Genetics, vol. 7,
p. €1002384, Dec. 2011.

[258] C.-K. Peng, S.V. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and H. E.
Stanley, “Long-Range Correlations in Nucleotide Sequences,” Nature, vol. 356, p. 168,
Mar. 1992.

[259] H.Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
and R. Durbin, “The Sequence Alignment/Map Format and SAMtools,” Bioinformatics,
vol. 25, pp. 2078-2079, Aug. 2009.

[260] S. Ghiasvand, “uPAD: Unsupervised Privacy-Aware Anomaly Detection in High Per-
formance Computing Systems:,” in Proceedings of the 8th International Conference on
Pattern Recognition Applications and Methods, (Prague, Czech Republic), pp. 852-859,
SCITEPRESS - Science and Technology Publications, 2019.

[261] J. Hawkins, S. Ahmad, S. Purdy, and A. Lavin, Biological and Machine Intelligence (BAMI).
Numenta, 2016. Initial online release 0.4.

[262] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised Real-Time Anomaly Detec-
tion for Streaming Data,” Neurocomputing, vol. 262, pp. 134-147, Nov. 2017.

130 Bibliography

[263] S. Lowel and W. Singer, “Selection of Intrinsic Horizontal Connections in the Visual
Cortex by Correlated Neuronal Activity,” Science, vol. 255, no. 5041, pp. 209-212, 1992.

[264] S. Ghiasvand and F. M. Ciorba, “Towards Adaptive Resilience in High Performance
Computing,” in Proceedings of WiP in 25th EUROMICRO International Conference on Par-
allel, Distributed and Network-Based Processing (E. Grosspietsch and K. Kloeckner, eds.),
vol. 1, (St. Petersburg, Russia), pp. 5-6, SEA-Publications-Austria, 6.

[265] D. Duce, “Portable Network Graphics Specification.” w3.org, 2018.

List of Figures 131

List of Figures

11 The Bathtub Curve hazard function 4
1.2 Thegoldeninterval 6
2.1 Root causes of network failuresindatacenters 7
2.2 Ataxonomy for online failure prediction approaches 20
2.3 Calculation of precisionandrecall 22
3.1 Major building blocks of jgm-e jam covered in Chapter3 25
3.2 Schematicisland topology of Taurus 27
3.3 Propagation of failures within a computingnode 28
3.4 Failure propagationinasinglenode 29
3.5 Correlation among users behavior and node failures 29
3.6 Propagation of failures and formation of Failure chains 30
3.7 SampleofafailurechainonTaurus 31
3.8 Major system-wide failuresonTaurus 31
3.9 Timeline of syslog collectiononTaurus 33
3.10 Availability and Maintenance Notifications of Taurusin2017. 33
3.1 Frequency of Taurus syslog messages with various lengths 36
3.12 Trafe-off between sensitivity, significance, and length of terms. 38
3.13 Distinguishability trade-off 42
3.14 The event pattern extraction e 43
3.15 Number of Taurus syslog entries per nodein2017 45
3.16 Automatic generation of regular expressions for syslog entries 47
3.17 Significance of data binning bucket size on detectability of periodic patterns . 48
3.18 Calculation of suitable bucket size for data binning 49
3.19 A sample of normal behavior extraction using majority voting 50
3.20 Timeline of the major failure on March16th 52
3.21 Main root causes of Taurus node outagesin2017 53
3.22 Node outages and job reportsonTaurus. 55
3.23 Taurus node instability intervalsinyear2017 56
3.24 Number of potential failures perdayinyear2017 57
3.25 Potential node failures occurred in2017 oo 58
3.26 Jobs status reported by Slurm per node inyear2017 59
3.27 Number of jobs accomplished or failed per day inyear2017. 59
3.28 Potential node failures classified based on duration 60

4.1 Major building blocks of jam-e jam covered in Chapter4.. 61

132 List of Figures
4.2 Division of events timeline into PET, IET,and POET 62
4.3 Asample of sudden increase in the frequency of syslog entries before failure 63
4.4 Distribution of the nodes instability interval before each failure 63
4.5 Assessing the null hypothesis 64
4.6 The frequency of syslog entries metadata before failures 64
4.7 The frequency of usr—err entries before and after node instability. 65
4.8 Temporal and spatial correlation among failures 66
4.9 Syslog generation patternsof Taurusislands 70
4.10 Main components of syslogentries 71
4.11 Failure patterns inferred based on the frequency of events on Taurus 71
4.12 Anomaly detection in physical location vicinity using majority voting. 73
4.13 Creation of suffix tree for sample syslogentries 76
4.14 Recurring blocks of syslogentries 76
4.15 A 24-hour sample of system logs visualized using Tablet 79
4.16 The workflow of anomaly detection using machine learning 79
4.17 Unsupervised detection of anomaliesusing HTM 82
5.1 Building blocks of jam-e jam in operationmode 84
5.2 Average number of syslog entries generated by each node in the year 2017 . 85
5.3 Average frequency of simultaneous entriesin Taurus 86
5.4 Distribution of 4027 extracted event patterns in each of the 6 Taurus islands . 87
5.5 Different levels of size reductionusingPaRS. 88
5.6 Distribution of words in syslog entries based on their size and frequency . . . 88
5.7 Similar patterns of syslog generation by variousnodes 89
5.8 Timeline of Taurus potential failures occurrence intheyear2017 90
5.9 Spatial distribution of potential failures occurred in Taurus in the year 2017 . 90
5.10 Temporal/spatial correlations of Taurus failures 91
5.1 Number of syslog messages collectedon Taurus 93
5.12 Distribution of predictable and unpredictable Taurus node failures over time 94
5.13 Detected anomalies in Taurus systemlogs 96
5.14 Prediction lead time based on various combinations of syslog parameters . . 97
5.15 Visualization of failure predictioninjam-ejam 98
A1 Anomaly detection using image processing techniques. 138
A.2 Hourly pattern of computing nodes Taurusi4oo1-Taurusi4o18 139
A.3 Automatic extraction of behavioral pattern using Image Processing model . . 140
A.4 Failure prediction via text auto-completer 141
Ca1 Schemaof taurusMETAdatabase 145

List of Tables 133

List of Tables
2.1 High performance computing systems failure statistics from 1984 to 2020 .. 8
2.2 syslog facility names and severity levels as described inRFC 5424 9
2.3 Accuracy of log parsers on differentdatasets 10
2.4 Names and description of 31 log management and analyzing tool 1
2.5 Examples of pattern and rule mining in sequences 18
2.6 Aclassification of literature on failure predictionin HPC 21
2.7 Failure predictionmethods L 23
3.1 Hardware architecture of Taurus computingnodes 27
3.2 Four main data sources used as monitoringdata 32
3.3 Sampleofrawsyslogentries 33
3.4 System logs with out-of-order timestamps 35
3.5 Invalid syslog entries timestamp caused be out of sync system clock 35
3.6 Statistics of Taurus syslog Entriesinyear2017 35
3.7 Classification of syslog entry terms into sensitive and/or significant 40
3.8 Regular expressions used to detect certain terms within Taurus syslogs . . . 41
3.9 Anonymization of syslog entriesviaPaRS oL, 42
3.10 Finaloutputof PaRS 44
3.11 Sizereductionby PaRS 45
3.12 Pre-anonymized entries 47
4.1 The accuracy of anomaly detection inside node vicinities 69
4.2 Encoding syslog entries into DNA-like sequences 78
5.1 Distribution of node failuresin Taurusislands 93
5.2 Distribution of unpredictable node failures in Taurusislands 94
5.3 Observation of abnormal trends in facility-severity pairs. 95
5.4 List of detected anomalies in Taurus systemlogs 96
5.5 Predictions made using majority votingand HTM model 99
5.6 Results of failure detectiononTaurus 99
A.1 Sample of syslog entries with their respective severity level and event class . 140
B.1 Externaltoolsusedinthiswork., 143
D.1 Main libraries used for implementation of the jam-e jam prototype 147

Appendix

135

137

A Neural Network Models

In order to extend the known set of correlations among nodes and failures, in addi-
tion to the main behavioral analysis method and the hierarchical temporal memory (HTM)
model, three alternative neural network models are proposed. For the first and second
model, syslog entries are transformed into images and processed via image processing
techniques, while the third model uses a text auto-completion technique to predict the
upcoming events [260].

Image Processing

Many periodic events in HPC systems have static time intervals. The longest interval be-
tween two consecutive occurrences of a periodic event on Taurus is 60 minutes, thus, every
periodic syslog entry appears at least once during an hour. Therefore, the observation win-
dow of one hour was chosen to monitor Taurus behavior. To simplify future calculations,
the width of observation window is extended to 64 minutes'. However, in each observa-
tion, the window is shifted forward by 60 minutes such that the observation window always
starts exactly on the hour. Hereafter, the data which is captured in an observation window
is referred to as a frame. Figure A.1a shows the shifting of observation window to capture
data frames for a duration of four hours.

Each frame is represented as a two-dimensional matrix of F,, with ¢ columns and n
rows. t represents the time bins of one-minute and is equal to the width of the observation
window (64) and n is the number of nodes which have been observed. The value of each cell
(vne) denotes the re-occurrences of event e for all events of the same severity level? within
the time bin of ¢ on node n. A sample frame is shown in Figure A.1c(a), which represents
all events with the severity level of emergency that occurred on 18 adjacent computing
nodes (a rack) during a 64-minute time window. Two nodes (rows) are randomly chosen
to be removed from the frame to simplify the future calculations3. To eliminate potential
accuracy penalties caused by random node removals, two different copies of each frame
are generated. For the second copy, two nodes other than those which were removed from
the first copy are randomly chosen to be removed. During the learning phase, networks
are trained on both copies.

For each of the eight syslog severity levels, a separate frame is captured as shown in
Figure A.1c(b). Frames containing emergency, alert, and critical events are merged (accumu-
lated) into a single frame. Similarly, the error frame is merged with warning frame, and the

'64 is a power of two (2°).
*Table 2.2 on page 9 provides a complete list of syslog severity levels.
316 is a power of two (18 — 2 = 2%).

138 APPENDIX A. NEURAL NETWORK MODELS

64 minutes
[
[
3
00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 (a) :)
\ | > —
L
Observation 1 ame ‘
Observation 2 ame ‘ 3
© =
Observation 3 ame 8 'g 00|
| (b) = £ 3
Observation 4 ame 4 X 5_ o
2 =

(a) Capturing data frames from monitoring

data. 64 pixels
Loxd ex6a ea T T
o o
= [] - eeeesssss——
*CD:V ;
R ()
LA HEE
« [T « —— BA
o Image: [16 x 64 x 4 | RG
16x64 * 8x64 * 4x64

(c) Transforming syslog entries to an RGBA
image. Value of each cell indicates the
number of event re-occurrences per node
and per minute. (a) 2D representation of
syslog entries. (b) Removing extra rows
and merging events with similar severity
levels. (c) RGBA representation of syslog
entries.

(b) The lightweight convolutional autoen-
coder for extracting behavioral patterns.
Encoding layers perform the majority vot-
ing and noise mitigation. While decoding
layers are fine tuning the results.

Figure A.1: Anomaly detection using image processing techniques

notice frame is merged with information frame. The debug frame remains unchanged. Fur-
thermore, the values of each cell is normalized to the range of 0 and 255. The four resulting
frames are stored as a three-dimensional matrix shown in Figure A.1c(c), representing a 16
by 64 pixels RGBA PNG image [265].

Two different autoencoders are designed to model the normal behavior of Taurus via
image data. Both networks are trained via a sequence of 24 RGBA images in size of 16
by 64 pixels. The first approach trains a state-less convolutional autoencoder shown in
Figure A.1b. The expected output of the network is the same image (frame) as the input.

The second approach trains a long short term memory (LSTM) autoencoder. The ex-
pected output of the network in this approach is the next image (frame) in the input se-
qguence. In another word, the network should predict the next image of the sequence. A
similar network as shown in Figure A.1b is used, with the convolutional layers substituted
by convolutional LSTMs.

Using the neural network, the hidden correlations among nodes and failures within
node vicinities can be automatically detected and used to improve the failure prediction
accuracy. As described in Chapter A on page 137 two models of neural networks were de-
fined. The first model works based on image processing while the second model employs
text auto-completion techniques. Both models perform the analysis inside relevant nodes
vicinities. The image processing model has the additional advantage of providing intuitive
insights about the system behavior instantly, since its input and output are both figures.

139

Figure A.2 shows the behavior of 18 nodes from Island 4.

(c) From 02:00:00 to 03:00:00 (d) From 03:00:00 t0 04:00:00

Figure A.2: Hourly pattern of computing nodes Taurusi4o001-Taurusi4o18. Between 03 : 00
and 04 : 00 a.m. some nodes project abnormal behavior.

Each sub-figure shows a time interval of 60 minutes starting from a full hour to the next
full hour. Except Figure A.2d which indicates some abnormal behaviors, the hourly patterns
of all nodes are identical. Both models of neural networks are designed based on this
recurring hourly patterns4.

The Keras python library is used for the implementation of neural networks in this work.
The image processing model was able to automatically extract strong hidden correlations
among node behaviors inside their node vicinity. Figure A.3a demonstrates the image rep-
resentation of Figure A.2a that can be directly processed via image processing model.

The left side of Figure A.3b shows the automatically extracted behavioral pattern for
nodes taurusigoo1-taurusi4o18 from a set of 24 frames> similar to the frame shown on the
right side of Figure A.3b. Vertical concentrations of similar color as well as shades of blue
are identifying the significant regions of the behavioral pattern. This model will be updated
continuously after each 60 minutes. Derivation of nodes behavior from the extracted "nor-
mal" pattern is concluded as a behavioral anomaly. The performance of Image Processing
model is highly dependent on the correct selection of node vicinities. Figure A.3c shows
the behavioral pattern extracted from a more homogeneous node vicinity.

Text Auto-completion

The third NN model uses a text auto-completer. The input of network is a sequence of
anonymized syslog entries (event classes) and the expected output is the upcoming entries.
In another word, this network predicts the future events and completes the sequence.
The event class of each syslog entry is a word. A sequence of 60 words (one word per
minute) forms a sentence, and 24 sentences form a text (one day). Multiple occurrences of
an identical event within a minute are ignored, and the occurrence of concurrent distinct
events are accumulated. Empty bins (minutes) are filled with the event class of the previous

4The recurring hourly pattern is a common behavior in all HPC systems.
>Each frame covers the interval of one hour therefore, the 24 frames cover an entire day.

140 APPENDIX A. NEURAL NETWORK MODELS

taurusi4001 -
taurusi4002 -
taurusi4003
taurusi4004
taurusi4005-
taurusi4006-
taurusi4007 -
taurusi4008
taurusi4009
taurusi4010-
taurusi4011
taurusi4012-
taurusi4013
taurusi4014
taurusi4015-
taurusi4016-
taurusi4017-
taurusi4018

Node ID

00:13:00-
00:43:00-
00:44:00
00:45:00
00:46:00
00:47:00
00:48:00
00:50:00
00:53:00-
00:54:00
00:55:00
00:56:00
00:58:00
01:00:00

00:23:00-
00:38:00
00:39:00
00:40:00

o
Qe
©
hns
S
S

00:11:00-
00:34:00
00:35:00
00:36:00

00:03:00-

00:00:00/
5 00:30:00
® 00:33:00-

—

(a) Hourly pattern of 18 nodes (taurusi4001-taurusi4018)

Extracted behavioral pattern The ground truth

w)

._.
1)
Node sequence in rack

Node sequence in rack

-
@

30 40 50 60 [10 20 30 40 50 60
Minutes Minutes

(b) Significant hidden correlations among behavioral patterns of nodes taurusi4o01-taurusi4018

The ground truth

0 10 20

Extracted behavioral pattern

Node sequence in rack
Node sequence in rack

15 15
0 10 20 30 40 50 60 0 10 20 30
Minutes Minutes

(c) Improvement of automatic behavioral pattern extraction in more homogeneous node vicinities

40 50 60

Figure A.3: Automatic extraction of behavioral pattern using Image Processing model

bin. Figure A.4(a) transforms the sample syslog entries shown in Table A.1 into a five-word
(incomplete) sentence. Example of a text is shown in Figure A.4(b).

Table A.1: Sample of syslog entries with their respective severity level and event class

Timestamp | Source Message Severity Event class
1517266801 | taurusi1020 | (siavash) CMD (/usr/bin/check) Information | 62440f7d
1517266925 | taurusi1i020 | (root) CMD (/fast/sbin/start) Information | 62440f7d
1517266929 | taurusii020 | Accepted publickey for siavash from 192.68.31.32 Notice eabf83cg
1517267050 | taurusi1020 | pam_unix(sshd:session): session opened for user siavash | Notice feaeco17

The network used in this approach consists of two layers, a dense layer attached to an
LSTM. To increase the accuracy of detection mechanism, similar to other methods pro-
posed in this work, only the data collected from nodes in the vicinity of each other are
compared.

The preliminary results of Text Auto-completion model were promising. However, the
technical challenges of detecting very long recurring sequences of symbols in text restricts
the accuracy of Text Auto-completion model. Therefore, improvement of Text Auto-completion

141

(a)

(b)<
| 62440f7d 62440f7d 4CB39346 4CB39346 feaec9l7 ...
62440f7d 62440f7d 4CB39346 4CB39346 feaec917 ...

Syslog timestamp | 1517266801 | <no event> 1517266925 <no event> 1517267050 | -
1517266929
Time (minute) 23:00 23:.01 23:02 23:03 23:04
Event classes 62440f7d <no event> 62440f7d <no event> feaec917
+
eabf83c9
A lati
coumil ating 62440f7d <no event> | [1]4CB39346 | <no event> feaec917

concurrent events

Final sentence [62440f7d 62440f7d 4CB39346 4CB39346 feaec917]

o \J

60 wo

o \J

rds

(62440f7d 62440f7d 4CB39346 4CB39346 feaec9l7)...

62440f7d 62440f7d 4CB39346 4CB39346 feaec917.
... 62440f7d 62440f7d 4CB39346 4CB39346 feaec917.
62440f7d 62440f7d 4CB39346 4CB39346 feaec917.
62440f7d 62440f7d 4CB39346 4CB39346 feaec917.

Figure A.4: Failure prediction via text auto-completer. (a) Transforming sample syslog en-
tries from Table A.1into an incomplete sentence. (b) 24 hours of syslog entries
represented as 24 sentences with the constant length of 60 words.

model is postponed as part of the future work.

143

B External Tools

To gain a better understanding of Taurus's behavior, during the early stages of behav-
ioral analysis in this work, multiple external tools have been used. However, none of these
tools are required for reproducing the results of this work. Table B.1 provides a list of exter-
nal tools that were used to analyze Taurus behavior. Majority of tools listed in Table B.1are
data visualizers. Visualization is an outstanding method to achieve a global overview on
potential patterns in large datasets such as taurusCleansed in this work. A complemen-
tary web page’ (Logalyst) provides additional visualizations (e.g., interactive, animated) to
assist better understanding of the data used in this work.

Table B.1: External tools used in this work

Tool Purpose
Kibana Visualizing syslog entries
» github.com/elastic/kibana
Elasticsearch Storing syslog entries (online analysis)
» github.com/elastic/elasticsearch
SQLite Storing syslog entries (offline analysis)
» sqlite.org/src
Logstash Preprocessing and unifying syslog entries
» github.com/elastic/logstash
SAM Tools Manipulating sequence alignment map (SAM) files
» github.com/samtools/samtools
UGENE Visualizing SAM files
» github.com/ugeneunipro/ugene
Tablet Visualizing SAM files
» github.com/cropgeeks/tablet
New Genome Browser (NGB) Visualization of structural variations
» github.com/epam/NGB
GenomeView Interactive visualization of string sequences
» genomeview.org
PHIRE Detecting unusual sequence patterns in string sequences
» www.biw.kuleuven.be/logt/PHIRE.htm

The main data analysis tasks were conducted using Python scripts. Simple data handling
tasks were performed using GNU tools? and bash scripting. In addition, various python li-
braries3 were used for visualization (e.g., seaborn, Matplotlib, Plotly), statistical analysis
(e.g., NumPy, SciPy, Pandas) and machine learning (e.g., TensorFlow, Keras, NLTK, NuPIC).
Majority of scripts are accessible on Logalyst web page. These scripts were developed
solely as a proof of concept and for the purpose of this study. Therefore, advanced pro-
gramming techniques, complex structures and all complexities that could reduce the read-
ability of source codes were intentionally avoided. Consequently, the algorithms behind
each script can be better understood although the performance can still be improved.

'https://logalyst.github.io
*https://www.gnu.org/manual/blurbs.html
3https://wiki.python.org/moin/NumericAndScientific

https://github.com/elastic/kibana
https://github.com/elastic/elasticsearch
https://sqlite.org/src
https://github.com/elastic/logstash
https://github.com/samtools/samtools
https://github.com/ugeneunipro/ugene
https://github.com/cropgeeks/tablet
https://github.com/epam/NGB
https://genomeview.org
https://www.biw.kuleuven.be/logt/PHIRE.htm

145

C Structure of Failure Metadata Databse

The taurusMETA database’ contains the metadata that are used in this work to analyze
Taurus behavior. Figure C.1 shows a schema of the taurusMETA database.

. . abnormal_counters
potential_failures nodes —
node TEXT
roce e node TEXT start INTEGER
Star INTEGER island INTEGER ort date TEXT
start_date TEXT - . g
. - rack INTEGER |
admin_db g ———] < end INTEGER service_notices
— - cpu TEXT d_dat TEXT tart TEXT
id INTEGER end_date TEXT core INTEGER end_date 8
status TEXT old_councter INTEGER opu TEXT old_councter INTEGER event TEXT
new_counter INTEGER reason TEXT
reason TEXT new_counter INTEGER ram INTEGER
ti INTEGER
date TEXT duration INTEGER A duration € T EX
. job_status
job_status_codes .
syslog_entries_count syslog_reboot
at P node TEXT yslog_ = yslog_ syslog_reboot_codes
stals < date TEXT node INTEGER node TEXT >
code TEXT status TEXT
jobid INTEGER date TEXT date TEXT
comment TEXT comment TEST
—_— status INTEGER count INTEGER status INTEGER

Figure C.1: Schema of taurusMETA database

Relations? are omitted from this view to improve readability. The extracted ground truth
is stored in the potential_ failures table. Data in nodes table provides required infor-
mation aboutthe Taurus topology. Tables job_status_codesand syslog_reboot_codes
contain the definition of their respective numeric codes. Table syslog_entries_count
stores the number of syslog entries per node per day. The number of syslog entries per
day is used to quickly identify offline nodes (e.g., the nodes under maintenance) as well
as extreme outliers. The status of each record in syslog_reboot table indicates the
occurrence of a crash, shutdown or reboot on the respective node.

After each failure, system administrators investigate the reason behind it. This infor-
mation in addition to node id, status and the relevant timestamp are stored in table
admin_db. Table job_status stores the status of all submitted jobs. All scheduled
maintenance periods and significant outages are reported via an internal mailing list. Table
service_notices stores all service notification.

As discussed in Section 3.4, syslog-ng internal metrics can be monitored to detect the
abnormal behaviors of syslog daemon. The abnormal_counters table stores the time
intervals in which syslog-ng's internal metrics were abnormal. Although, these intervals do
not necessarily indicate a general abnormal behavior, the probability of observing failures
in these intervals is significantly higher. Therefore, the interplay of abnormal_counters
data and other available information such as syslog_reboot reveals failure intervals. All
potential node failures that occurred in the year 2017 are illustrated in Figure 3.25.

"More details in Section 3.4
2Foreign keys

147

D Reproducibility

This appendix provides technical details required to execute jam-e jam and reproduce
the results of this work. Regardless of the underlying operating system, the only required
software package is Python. All parts of jam-e jam except the HTM model are implemented
using Python3.z. Since the Python library of NuPIC is only compatible with Python2.7, the
HTM related sections of jam-e jam are implemented in Python2.7. The main libraries used
in this work are shown in Table D.1".

Table D.1: Main libraries used for implementation of the jam-e jam prototype

Library Version Library Version Library Version
Python 2.7 Python 3.7 redis 2.10.6
Cython 0.29.7 calmap 0.0.7 regex 2018.8.17
DBUtils 1.1 csuffixtree 0.3.3 scikit-learn 0.19.2
matplotlib 2.2.4 Flask 1.0.2 scipy 1.1.0
memory-profiler | 0.55.0 graphviz 0.10.1 seaborn 0.9.0
numpy 1.12.1 htmislib 1.0.1 simplejson 3.16.0
nupic 1.0.5 Keras 2.2.2 sqlite-bro 0.8.1
nupic.bindings 1.0.6 matplotlib 2.2.3 suffix-trees | 0.2.4.4
nupic-studio 1.1.3 memory-profiler | 0.55.0 tensorboard | 1.9.0
pysha3 1.0.2 nltk 3.3 tensorflow 1.9.0
redis 2.10.5 numpy 1.14.5+mkl|

Example D.1: Expected format of syslog entries for PaRS

EPOCH DATE TIME NODE FACILITY SEVERITY [PID] DAEMON <> MESSAGE

The current implementation of PaRS? accepts a stream of syslog entries as its input. To
use jam-e jam right out of the box, the syslog entries must have the structure shown in
Example D.1. However, only the EPOCH, NODE, FACILITY, SEVERITY andMESSAGE are
considered and the rest are ignored. Therefore, the non-required fields can be filled with
dummy data. The main use of <> symbol beside facilitating the correct division of syslog
entry into its structured (metadata) and unstructured (message) parts is to verify the con-
sistency and integrity of syslog entry. A valid Syslog entry must have 8 space-separated
fields before the <> symbol and 1 non-empty string after the <> symbol. System logs with
other combinations of fields and separators are considered invalid, thus ignored. Addi-
tional technical details are available at logalyst online repository.

"These libraries may have dependencies. The Python installer (pip) automatically resolves and installs the
required dependencies.
2The anonymizer module of jam-e jam

https://logalyst.github.io/

149

APPENDIX E. PUBLICLY AVAILABLE HPC MONITORING DATASETS

150

E Publicly Available HPC Monitoring Datasets

‘pasn aJe sanbjuyssy uondafulyney ,
‘uofe.si3ad sadinbay

gL0z - €661 Ul

|jway-s3o|/peopiomy|a)jeded/sqe|/|iae’iinyasd S92eJ1 PEO|YIOM UoneInp SnoLieA SWI21SAS snoliep VMd
/S92eJ1/Yd4easal /340 ua1snjpiadns S32B41 924N0SIY/PLOPIOM uopeinp snouea SJ131SN|d snolep INYIA
/S19se1ep/|U L apnY IMa ems S92eJ1 PROIOM 00z - 8661 Ul spli8 snovep VYMD

: uopeinp snoLea ‘ '
ooLiLL-opouaz/LgzS-oL/340°10p S90EJ]1 JUSAT V/N | Sapou oL - sapinoid pno|d 2Peisuado
/S92e.1/340°elUS BNO] saoe.y a8eu0is Ajuren uopeinp snoLea SWIDISAS snoliep HAMIND3
e1ep-4a1sn|3/a|3008/wod'qnyld S32eJ4) aulydew pue qof 610z "oz ooz ul S||192 98005 snolep 9|800H

’ : uopeunp snoLea :
616ESY1/p10239.4/810 0pousz Gisip pieH MLM,NM_\H%M_\N gLoz ul shep zi-¥ | €A 0E€9z-G3 U0y |91U] oML Xalewuy

sJ93unod asuewlopad
€/8152¢/pJ023./310°0pousz 01 $105UBS [B215AUd gLoz Ae\ - gLoz "Jen sapou giamoduadp S TATAY A
) . san|eA Josuas))

§59905L/9p wNygn wnie|paw pUE SONSNEIS BunpIey 610z "uef - groz '|nf S9pouU 21§ - J9ISNP DdH Vv uo3oA
/ne‘npaA3upAsulalsam wads eyl 8o| Juawade|das asempieH 900z “|n[- 00z "ue[| Ssapou 959z - 491SN|D DdH V Z0dH
/ne‘npa AsupAsulaIsam wads ey s2anlle} 2y1>ads 0/ 9002 - LO0Z S131SN|2 DdH Snoliep JSYIN

yum asegeleq ’
/J0113WaW/S0/YIIBaS24/NPI 13)1SaYJ04°S) e1ep 10443 AIOWIN L0 'ga4 - 90 23Q SIPOU ZLZ - WJie} JDAIIS Y Wod"MSY
(Svd) 80| Avjigeadialas pue
d8q#erep-upio/310°'xiuasn geleAy ARy 60 ‘8ny - 60 ‘uef d/auap an|g d/auap anig
, , saulydew salas
Keldgerep-ip)d/310'xjuasn s30| ajosu02 ‘30|sAs ‘s3o| Juang Yo € 1 e 210U 10 3UO Kead
diz'exepaJniiey/sajly/waishs/310°xiuasn saJnjie} aiempJey jo 307 Looz *das - €00z 'AON | S3pOU 086 - J31SN|D DdH V 1 INNd
/SY1LV/s1eserep/gnd/npanwd|pd-di) saoeJy qof uoneunp snoLe S191sN|D DdH Sholep SY1LVY
e|y/siaserep/gnd/npanwd|pd-dyy saseJy qof L0z 29Q - oLoz Ae|y | sapou g - ua3sn|) doopeH pnojpuado
odygerep-apsd/310'xjuasn s80| Wa1sAs pue Jusang 900z - 00z U} 1/2u03n|g "Auaan 72dH
: uopeunp snoLea “uds ‘paigiapunyl
s30| Jo1ua pue s30| peopjiom
dyd-eiep-ainjiey/erep/nog-jue|aisn 500z "AON - 9661 23Q SWIASAS 421SN|d DdH 22 INVT

‘'s98eIN0 3POU J3ISN|D JO SPJ0IBY

$S920Y 03 14N

ejeq

Sunioyiuo jo uoneang

uisiio

josejeq jo aweN

https://usrc.lanl.gov/data/failure-data.php
https://www.usenix.org/cfdr-data#hpc4
http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html
http://ftp.pdl.cmu.edu/pub/datasets/ATLAS/
https://www.usenix.org/system/files/failuredata.zip
https://www.usenix.org/cfdr-data#cray
https://www.usenix.org/cfdr-data#bgp
https://www.cs.rochester.edu/research/os/memerror/
http://fta.scem.westernsydney.edu.au/
http://fta.scem.westernsydney.edu.au/
https://mediatum.ub.tum.de/1506655
https://zenodo.org/record/3251873
https://zenodo.org/record/1453949
https://github.com/google/cluster-data
http://iotta.snia.org/traces/
https://doi.org/10.5281/zenodo.1144100
http://gwa.ewi.tudelft.nl/datasets/
https://web.archive.org/web/20080303060435/http://www.supercluster.org/research/traces/
https://www.cse.huji.ac.il/labs/parallel/workload/logs.html

Glossary

F Glossary

Jjam-e jam

Confidence

error
event

failure

failure chain
failure correlation

fault

golden interval

node failure

PaRS

regular failure

Support

Proper noun; a cup of divination in ancient
mythology. Pronounced as Jam-e Jam..

An indication of how often the rule has been
found to be true. Confidence of arule A => B
is the support of the rule divided by the number
of sequences containing the items of A.

Atriggered fault (e.g., ;Z5).
A change in the system. Event can emit a message.

The event in which a component fails to perform
its expected functionality.

A sequence of successive identical failures.
Interpretation of a set of events that happen
within a common dimention.

A defect within the systems’ components (e.g.,)

The time interval between detection of an

anomaly and occurrence of the subsequent
failure.

An event in which a computing node cannot per-
form any useful function.

A system log anonymization method for preserv-
ing Privacy and Reducing Storage.

An unintential failure caused by internal factors.

The number of sequences in which a certain pat-
tern appears.

https://en.wikipedia.org/wiki/Cup_of_Jamshid

Glossary 153

Taurus Taurus HPC cluster; a set of tightly coupled clus-
ters located in Dresden, Germany.

UNIX time Also known as POSIX time or UNIX Epoch time. Itis
equal to the number of seconds that have elapsed
since 00:00:00 January 1st 1970 in UTC timezone..

154

Acronyms

G Acronyms

ET

FN
FP

HPC
IET

MTBF
MTTI

NER

PET
PoET

syslog

N
TP

event time

false negative
false positive

high performance computing
inter-event time

mean time between failure
mean time to interrupt

named entity recognizer

pre-event time
post-event time

system log

true negative
true positive

156 Acronyms

Disclaimer

References to legal excerpts and regulations in this work are provided only to clarify the
proposed approaches and to enhance explanation. In no event will author of this work be
liable for any incidental, indirect, consequential, or special damages of any kind, based on
the information in these references.

	Introduction
	Background and Statement of the Problem
	Purpose and Significance of the Study
	jamejam: A System Behavior Analyzer

	Review of the Literature
	Syslog Analysis
	Users and Systems Privacy
	Failure Detection and Prediction
	Failure Correlation
	Anomaly Detection
	Prediction Methods
	Prediction Accuracy and Lead Time

	Data Collection and Preparation
	Taurus HPC Cluster
	Monitoring Data
	Data Collection
	Taurus System Log Dataset

	Data Preparation
	Users and Systems Privacy
	Storage and Size Reduction
	Automation and Improvements
	Data Discretization and Noise Mitigation
	Cleansed Taurus System Log Dataset

	Marking Potential Failures

	Failure Prediction
	Null Hypothesis
	Failure Correlation
	Node Vicinities
	Impact of Vicinities

	Anomaly Detection
	Statistical Analysis (frequency)
	Pattern Detection (order)
	Machine Learning

	Adaptive resilience

	Results
	Taurus System Logs
	System-wide Failure Patterns
	Failure Correlations
	Taurus Failures Statistics
	Jam-e Jam Prototype
	Summary and Discussion

	Conclusion and Future Works
	Bibliography
	List of Figures
	List of Tables
	Appendix Neural Network Models
	Appendix External Tools
	Appendix Structure of Failure Metadata Databse
	Appendix Reproducibility
	Appendix Publicly Available HPC Monitoring Datasets
	Appendix Glossary
	Appendix Acronyms

