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Abstract
Following the growth of high performance computing systems (HPC) in size and com-

plexity, and the advent of faster and more complex Exascale systems, failures became the
norm rather than the exception. Hence, the protection mechanisms need to be improved.
The most de facto mechanisms such as checkpoint/restart or redundancy may also fail to
support the continuous operation of future HPC systems in the presence of failures. Fail-
ure prediction is a new protection approach that is beneficial for HPC systems with a short
mean time between failure. The failure prediction mechanism extends the existing protec-
tion mechanisms via the dynamic adjustment of the protection level. This work provides
a prototype to analyze and predict system behavior using statistical analysis to pave the
path toward resilience in HPC systems. The proposed anomaly detection method is noise-
tolerant by design and produces accurate results with as little as 30 minutes of historical
data. Machine learning models complement the main approach and further improve the
accuracy of failure predictions up to 85%. The fully automatic unsupervised behavior anal-
ysis approach, proposed in this work, is a novel solution to protect future extreme-scale
systems against failures.
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1 Introduction

The increasing demand for higher computation power, leads to production of more
complex computing units. According to Moore’s Law [1], the number of transistors per
square centimeter on integrated circuits are doubled every two years thus, the computa-
tional performance. The Moore’s Law holds true since 1965, and it is expected to remain
valid in near future1. However, despite the higher computation power of complex comput-
ing units, this complexity contributes to instability and error proneness of components as
well as the entire computing system.

Onahigher granularity, failure rate in highperformance computing (HPC) systems rapidly
increases due to the growth in system size and complexity. Hence, failures became the
norm rather than the exception [2, 3, 4, 5, 6]. The efficiency of failure recovery mech-
anisms, e.g., checkpoint-restart, is highly dependent on the mean time between failure
(MTBF). With the arrival of Exascale computers in the near future [7], the MTBF of HPC sys-
tems is expected to become too short, and that current failure recovery mechanisms will
no longer be able to efficiently protect the systems against failures [8, 9, 10, 11, 12, 13].

Early failure detection is a new class of failure recovery methods which is in particular
beneficial for large computing systems with short MTBF [14, 15]. Detecting failures in their
early stage can reduce their negative effects via barricading their propagation [16]. This
work provides a prototype to analyze and predict system behavior. The behavioral analysis
is then used to detect node-level failures as early as possible which paves the way toward
resilience in Exascale high performance computing.

1.1 Background and Statement of the Problem

Although the distribution, origin, and cause of failures have changed throughout the
years, addressing failures remained an important challenge in computing systems [17, 18].
Reliability of computing systems is becomingmore andmore important as the demand for
higher computing performance is increasing. To fulfill the performance requirements of
new algorithms and software, the computing units became complex and dense. Further-
more, additional computing units are employed by HPC systems. High complexity and den-
sity of computing units and higher number of components in computing systems, as well
as aggressive power management approaches such as dynamic frequency scaling (CPU
throttling) highly contribute to HPC systems error proneness [19].

Various approaches are proposed to address failures in HPC systems. Regardless of
the system layer of application, existing general-purpose approaches can be categorized
1Although the transistorsmay not shrink their size anymore, the computational performance tends to doubleevery two years.



4 1. INTRODUCTION
in three main categories of: (1) checkpointing, (2) replication, and (3) failure prediction2.
The first two categories (checkpointing and replication) are currently de facto approaches
to address failures in production HPC systems. Although these categories are shown sepa-
rately, in most cases an integrated approach consisting both checkpointing and replication
is being used [20].

Statistics indicate a persistent number of critical failures in major production HPC sys-
tems. Table 2.1 on page 8 summarizes the failure statistics of various HPC systems over
the course of 37 years (1948-2020). Hardware unreliability is one of the main sources of
system failures in both industrial and commodity hardware [21, 22, 23]. The failure rate
of commodity components in most computing systems can be described using the Bath-
tub Curve [24] hazard function shown in Figure 1.1 [25]. Furthermore, the same relation
is observed between failure rate and the system up-time. In Chapter 4 the bathtub curve
concept is used to adjust the anomaly detection method.

Time

Failure Rate

Early life
Failures

Random Failures
End of life

Failures

Figure 1.1: The Bathtub Curve hazard function
Exascale HPC systems are expected to arrive by 2020 [7]. Current failure statistics in-

dicate the dire need of failure mitigation mechanisms in Exascale systems. In various
researches the MTBF is projected to be in the range of seconds and minutes instead of
days3 [2, 3, 27, 28, 29, 30, 31, 32].

Considering the short mean time to interrupt (MTTI) and the large size of Exascale HPC
systems, none of the existing approaches in their current form may remain beneficial to
address failures in the future. The checkpointing mechanisms require a certain amount
of time to generate snapshots of the current system status (TCheckpoint) and to restore thesnapshot after each failure (TRestore)4. Decreasing theMTTI to less that TCheckpoint or TRestore

prevents further progress of applications. Full replication of the system status is also not
cost-effective regarding the large size of the future Exascale HPC systems. Additional chal-
lenges such as consistency, synchronization, and network congestionwhich are side effects
of checkpointing and replication approaches may in turn introduce additional failures in
HPC systems.
2This categorization considers general purpose approaches anddoes not include domain-specific and special-purpose methods such as algorithm-based fault tolerance (ABFT).3Exponential distribution is often used to predict the time interval until future events (failure). This distri-bution predicts the time until the first failure. Gamma distribution, on the other hand, predicts the timeinterval until the ith failure occurrence. Weibull, Gamma, and Pearson6 are the best-fit distributions for theMTBF [26].4Asynchronous (live) methods can reduce the required checkpoint/restart time.
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It is important to note that most failure statistics shown in Table 2.1 belong to HPC sys-

tems that operate in highly controlled environments. These HPC systems enforce strict
usage regulations and are under constant monitoring and maintenance by administration
personnel which regardless of the high imposed expenses, greatly contribute to systems
reliability. The aim is to fully automate the system monitoring and optimize the mainte-
nance periods according to systems behavior, and yet preserve the systems functionality.

1.2 Purpose and Significance of the Study

Operational HPC systems are facing failures on a daily basis, regardless of their size
and application. Failures in HPC systems are often correlated. In many cases these cor-
relations cause a failure chain5 to form. Regular maintenance as well as hardware and
software upgrades constantly change the system’s behavior. Analyzing and predicting the
system behavior can effectively improve the HPC systems uptime, and reduce penalties
imposed by regular failures6. Furthermore, automatic monitoring of the system reduces
the maintenance costs and increases the system’s functionality. The arrival of Exascale
HPC systems with their massive number of components further reveals the importance of
failure prediction for current and future computing systems.

This work provides a prototype to analyze and predict system behavior in order to de-
tect node-level failures as early as possible. The proposed approach respects the users
and system’s privacy and is applicable on operational HPC systems without further mod-
ifications. Behavioral analysis enables the system to consider protective measures such
as checkpointing, redundancy, and migration in useful time to stabilize the systems status
and prevent further damages. Due to the large size of computing systems and the high vol-
ume of monitoring data, the proposed approach performs the main tasks fully automatic
or with minimum interactions.

It is important to emphasis that this work does not intend to introduce a replacement for
de facto failure protectionmechanisms. Instead, this work provides a prototype to analyze
and predict systems behavior, to improve the functionality of available mechanisms. In an-
other word, this work proposes an adaptive resilience approach that employs appropriate
protective measures according to the system’s behavior.

The results of this work contribute to answer questions including the followings: Are
the failures in HPC systems predictable? Which failures can be detected or predicted? Is it
possible to provide a general behavioral analysis method? How to expand this approach
to protect the Exascale computing systems? Whichmonitoring data has the required infor-
mation for behavioral analysis? How to comply with data protection regulations (GDPR)?
How to process and store the monitoring data for longer periods?
5Series of correlated failures (Section 3.1).6An unintential failure caused by internal factors (Section 3.4).
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1.3 Jam–e ȷam: A System Behavior Analyzer

This work introduces ȷam–e ȷam7, a prototype to analyze and predict system behavior to
detect node-level failures as early as possible, in order to employ appropriate protective
measures in useful time. The system log (syslog) entries are chosen as the main source
of monitoring data in this work, due to their availability and information richness. A com-
prehensive anonymization technique is proposed to address privacy concerns raised by
syslog analysis. The proposed approach is applicable to HPC systems without any fur-
ther modifications. To provide an automatic approach suitable for extremely large HPC
systems, ȷam–e ȷam utilizes statistical analysis and failure correlations among nodes with
similar characteristics (node vicinity) to detect abnormal behaviors and predict upcoming
node failures.

Figure 1.2 illustrates an example of systembehavior analysis performedonTaurus. Timely
detection of anomalies could have reduced the damages caused by failures via activating
the protection mechanisms before the occurrence of the failure.

Steps
(each dot stands for a single syslog entry, in chronological order)
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Figure 1.2: The time interval between detection of an anomaly and occurrence of the sub-sequent failure (golden interval). The goal is to react during the golden intervalto reduce the damages caused by failures via timely activation of the failure re-covery mechanisms.
Jam–e ȷam’s approach can be likened to the function of smoke detectors in buildings. The

smoke detectors activate protection mechanisms upon detection of smoke (the anomaly)
to reduce the damages of a potential fire (the failure).

Although the behavior analysis in this work is aimed for early detection of node-level fail-
ures, the proposed mechanism can be used to detect other anomalies too. Furthermore,
syslog entries, that are used as themainmonitoring data in this work, can be replaced with
any other data source as long as it provides required information relevant to the granular-
ity of the expected anomalies.

The remainder of this work is structured as follows. Chapter 2 provides a review of the
literature. Details of the data collection and preparation process are provided in Chapter 3.
Themethods are described in Chapter 4 and themajor findings are explained in Chapter 5.
Chapter 6 concludes the work and specifies the important future work directions.
7Proper noun; a cup of divination in ancient mythology. Pronounced as Jām-e Jam.

https://en.wikipedia.org/wiki/Cup_of_Jamshid
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2 Review of the Literature

With drastic increase in the number of HPC system components, it is expected to ob-
serve a sudden increase in the number of failures, which consequently poses a threat to
the continuous operation of the HPC systems. Current statistics show a persistent number
of critical failures in major production HPC systems. Hardware failures are responsible for
the majority of long-lasting down times in computing systems. As an example, the root
causes of network failures in data centers are shown in Figure 2.1.

Figure 2.1: Root causes of network failures in data centers [33]. Failures are defined as anyunsuccessful link in the network. HW and SW stand for hardware and softwarerespectively.
Table 2.1 summarizes 37 years of HPC systems failure statistics. The inconsistency of

failure assessments and the heterogeneity of HPC systems shown in Table 2.1 make it dif-
ficult to perform a one-to-one comparison. However, it can be concluded that failures are
integral part of HPC systems. Therefore, failures must be addressed in order to guarantee
efficient progress of computations on HPC systems. The studies summarized in Table 2.1
conclude that large scale regular failures are mostly caused by file systems however, the
main cause of failures is hardware. The resiliency in HPC systems plays a vital role in com-
parison to other computing systems due to the complexity of workflows, applications and
the requirements of HPC systems. However, similar techniques can be applied on all types
of computing systems.

In summary, failures became an integral part of computing systems. Although, despite
imposing excessive overheads, existing failure recoverymechanisms such as checkpointing-
restart and redundancy are still useful for current HPC systems, it is predicted that future
HPC systems will not be able to perform efficient forward progress while running large ap-
plications due to their ever reducing MTBF. To ensure the aliveness of HPC systems in the
existence of failures, additional protective measures must be taken.
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Table 2.1: High performance computing systems failure statistics from 1984 to 2020
Date Environment Observation1984-1986 IBM Mainframe [34] 456 failures1988-1990 Tandem [35, 36] 800 failures1990 VAX [37] 364 failures1989-1990 VICE [38] 300 failures1999 70 Windows NT nodes [39] 1100 failures1999 503 nodes [40] 2127 failures2003 3000 nodes [41] 501 failures2003-2004 395 nodes [42] 1285 failures2004-2005 Liberty [43] 7.8 alerts per day2005-2006 Blue Gene/L [43] 1,620 alerts per day2005-2006 Thunderbird [43] 13,312 alerts per day2006 Red Storm [43] 16,016 alerts per day2005-2007 Spirit (ICC2) [43] 309,707 alerts per day2007 BlueGene/L Coastal [44] MTBF 7-10 days2007-2009 Unknown [45] MTBF 3-37 minutes2005-2010 CENIC [46] 16-302 failures per link2008-2010 Jaguar [47] 2.33 failures per day2008-2011 Jaguar XT4 [18] MTBF 36.91 hours2008-2011 Jaguar XT5 [18] MTBF 22.67 hours2008-2011 Jaguar XK6 [18] MTBF 8.93 hours2012-2013 K Computer [48] Failures rate 1.6%2013 Blue Waters [49] MTBF 4.2 hours2014 Titan [50] 317 HW and 270 SW failures2014 Titan [51] 9 failures per day2013-2015 EOS XC 30 [18] MTBF 189.04 hours2013-2015 Titan XK7 [18] MTBF 14.51 hours2015 BlueGene/Q Mira [52] MTBF 5.5 hours2015 Petascale systems [53] MTBF 7-10 hours2015 Cielo [54, 55] MTBF 24 hours2011-2017 Facebook network [56] MTBF 1.8 months2016-2017 Beocat [57] 10% job failure2017 Argonne FUSION [58] MTBF 3-52 minutes2013-2018 IBM Blue Gene/Q Mira [5] MTBF 1.3 days (99,245 job failure)2014-2018 Titan [59] MTBF few minutes2015-2018 Titan [60] 164,593 alerts per day2020 TaihuLight [61] MTBF relatively short2020 Summit [62] MTBF several hours

2.1 Syslog Analysis

Syslog was developed in the 1980s and since then became the de facto standard for
logging systems activities. RFC 3164 [63] first documented the details of the syslog protocol,
and later RFC 5424 [64] standardized it. All data fields in syslog entries are structured,
except the message field, which contains free-form text. Each syslog entry begins with a
PRIVAL (priority value) that represents the severity and the facility (origin) of the
message. The PRIVAL is calculated by multiplying the facility number by 8 and adding the
severity value to it. Table 2.2 provides an overview of syslog de facto facility codes and
severity levels used in Unix-like operating systems.
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Table 2.2: syslog facility names and severity levels as described in RFC 5424
Code Keyword Facility Keyword Severity0 kern kernel messages emerg Emergency: system is unusable1 user user-level messages alert Alert: action must be taken immediately2 mail mail system crit Critical: critical conditions3 daemon system daemons err Error: error conditions4 auth security/authorization messages warning Warning: warning conditions5 syslog messages generated internally by syslogd notice Notice: normal but significant condition6 lpr line printer subsystem info Informational: informational messages7 news network news subsystem debug Debug: debug-level messages8 uucp UUCP subsystem9 cron clock daemon10 authpriv security/authorization messages11 ftp FTP daemon12 ntp NTP subsystem13 security log audit14 console log alert15 solaris-cron clock daemon16-23 local0-local7 local use 0-7

Due to the simplicity of the syslog protocol and its usefulness, wide range of computing
systems generate their system logs according to the syslog protocol. The information rich-
ness of syslog entries and the availability of syslogs on various computing systems made
them a good candidate for systems monitoring. Apart from the operating systems and
system-level services, the majority of the commodity applications also report their exe-
cution status in detail through log generation. On average, between 1% and 5% of the
software source code is dedicated to log generation [65].

Various studies utilize syslog entries for behavioral analysis and anomaly detection.
There are available platforms such as Elastic Stack [66], CloudSeer [67], and LogSCAN [68]
which provide comprehensive analytics toolkit for administrators in order to have a better
accessibility to system logs.

Parsing the syslog entries is a challenging task due to the existence of free-form text
within themessage part of the syslog entries. Even though that the syslog entries produced
by each software are generated via predefined message templates, these templates are
not uniform across various software. Furthermore, the large number of variables used in
message templates contributes to the complexity of the pattern detection, e.g., the Ubuntu
operating system reports 70,506 variables in its log entries and Openssh reports 3,290 vari-
ables [65]. Therefore, throughout the years various tools and platforms were developed
to collect, digest, and analyze the log messages.

Several research projects attempt to automate the parsing of unstructured log mes-
sages. Most of the proposed algorithms where exclusively designed for handling system
logs. SLCT [69] and LFA [70] algorithms use frequent item set mining to detect similar pat-
terns among syslog entries. AEL [71] and LKE [72] use heuristic methods to detect variables.
IPLoM [73] utilizes iterative partitioning based on word count. LogSig [74] generates sys-
tem events from textual log messages via detecting the most representative message sig-
natures. SHISO [75] proposes a structured tree capable of refining log formats in realtime.
LogCluster [69] applies hierarchical clustering to cluster system logs. LenMa [76] detects
message patterns using the length of words in eachmessage. LogMine [77] employs amul-
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tiple sequence alignment algorithm to group similar logmessages. Spell [78] andDrain [79]
provide online parsing methods, Spell utilizes a longest common sub-sequence based ap-
proach to detect log patterns, while Drain uses a fixed depth parse tree. MoLFI [80] in other
hand uses the domain knowledge and performs a reverse search in the space of solutions
for a Pareto optimal set of message templates.

Among these algorithms the source code of Drain and LenMa as online log parsers are
available. Some other log parsing algorithms are re-implemented in other studies1. Com-
parison of the parsing accuracy of these 13 algorithms on different log datasets is shown
in Table 2.3 [81, 82]. Despite the high parsing accuracy on certain software logs such as
Apache web server, all algorithms perform poorly on Linux system log (syslog)s which is
the main source of monitoring data in this work [83].

Table 2.3: Accuracy of log parsers on different datasets [82]
Dataset SLCT AEL IPLoM LKE LFA LogSig SHISO LogCluster LenMa LogMine Spell Drain MoLFI
HDFS 0.545 0.998 1 1 0.885 0.850 0.998 0.546 0.998 0.851 1 0.998 0.998
Hadoop 0.423 0.538 0.954 0.670 0.900 0.633 0.867 0.563 0.885 0.870 0.778 0.948 0.957
Spark 0.685 0.905 0.920 0.634 0.994 0.544 0.906 0.799 0.884 0.576 0.905 0.920 0.418
Zookeeper 0.726 0.921 0.962 0.438 0.839 0.738 0.660 0.732 0.841 0.688 0.964 0.967 0.839
OpenStack 0.867 0.758 0.871 0.787 0.200 0.200 0.722 0.696 0.743 0.743 0.764 0.733 0.213
BGL 0.573 0.758 0.939 0.128 0.854 0.227 0.711 0.835 0.69 0.723 0.787 0.963 0.960
HPC 0.839 0.903 0.824 0.574 0.817 0.354 0.325 0.788 0.830 0.784 0.654 0.887 0.824
Thunderb. 0.882 0.941 0.663 0.813 0.649 0.694 0.576 0.599 0.943 0.919 0.844 0.955 0.646
Windows 0.697 0.690 0.567 0.990 0.588 0.689 0.701 0.713 0.566 0.993 0.989 0.997 0.406
Linux 0.297 0.673 0.672 0.519 0.279 0.169 0.701 0.629 0.701 0.612 0.605 0.690 0.284
Mac 0.558 0.764 0.673 0.369 0.599 0.478 0.595 0.604 0.698 0.872 0.757 0.787 0.636
Android 0.882 0.682 0.712 0.909 0.616 0.548 0.585 0.798 0.880 0.504 0.919 0.911 0.788
HealthApp 0.331 0.568 0.822 0.592 0.549 0.235 0.397 0.531 0.174 0.684 0.639 0.780 0.440
Apache 0.731 1 1 1 1 0.582 1 0.709 1 1 1 1 1
OpenSSH 0.521 0.538 0.802 0.426 0.501 0.373 0.619 0.426 0.925 0.431 0.554 0.788 0.500
Proxifier 0.518 0.518 0.515 0.495 0.026 0.967 0.517 0.951 0.508 0.517 0.527 0.527 0.013
Average 0.637 0.754 0.777 0.563 0.652 0.482 0.669 0.665 0.721 0.694 0.751 0.865 0.605

Beside research projects, various industrial tools for parsing and analyzing log mes-
sages are available. Table 2.4 provides a list of 31 log management and analyzing tools
which are capable of analyzing system logs. Other industrial platforms such as AlienVault,
BLËSK, Bugfender, Chart.io, GoAccess, jKool, Knowi, Logary, Looker, ManageEngine, Octo-
pussy, PagerDuty, Papertrail, Pentaho, Prometheus, Qlik, Retrace, Rocana, ScoutApp, Sen-
tine, Sentry, Seq, Sisense, and Tableau are also able to perform basic syslog analysis with
the help of additional plugins.

Identifying the variable terms within system logs is a common practice for log pattern
extraction before performing log analysis. The goal is to extract of common patterns from
similar logmessages. Direct extraction of log patterns from software source code provides
the highest accuracy [65]. However, inmany cases the software source code is not available
or accessible. Furthermore, the efficiency of direct pattern extraction from software source
code is significantly low due to the inconsistency of log messages generated using various
versions of a software. Therefore, log patterns must be re-extracted after each software
1https://github.com/logpai/logparser
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Table 2.4: Names and description of 31 log management and analyzing tool
Tool Name Description by the producerAlert Logic [84] Collect, aggregate, and search log dataCloudlytics [85] Orchestration for log analysis and monitoringEventSentry [86] Log Monitoring and beyondEventTracker [87] Monitor, search, alert and report on any log or any formatFluentd [88] Data collector for unified logging layerApache Flume [89] Efficiently collecting, aggregating and moving large amounts of log dataGraylog [90] Industry leading log managementInTrust [91] Smart and scalable event log managementIPSwitch [92] An automated tool that collects, stores, archives and backs-up Sysloglnav [93] The Log File NavigatorLOGalyze [94] The best way to collect, analyze, report and alert log dataLogDNA [95] Instantly centralize, monitor, and analyze logs in real-timeLogentries [96] The Fastest Way to Analyze Your Log DataLoggly [97] Perform log analysis on text based logsLogmatic [98] Log Centralization, Analytics and VisualizationLogRhythm [99] Log Management and Log AnalysisLogsign [100] Real-Time AnalysisLogstash [101] Collect, Parse, Transform LogsLOGStorm [102] Complete log management with powerful correlation technologyLogsurfer [103] Monitoring system logs in real-timeLogz.io [104] AI-Powered Log AnalysisLoom [105] Predict and Prevent IT incidentsMotadata [106] Find Actionable Context in Log DataNagios [107] Centralized Log Management, Monitoring and Analysis SoftwareNXLog [108] Log manarement solutions for everyoneOVIS (Baler) [109, 110] HPC data collection, transport, storage, analysis, visualization, and responseScalyr [111] Log management and visibility for modern applicationsSplunk [112] Predict and prevent with an AI-powered monitoring and analytics solutionSumo Logic [113] Proactive and predictiveSwatch [114] Monitoring events on a large number of servers andworkstationsXpoLog [115] Fully Automated Log Management

update. Alternative approach is the extraction of log patterns through reverse analyzing
of collected log messages. This method is used in this work. More details are provided in
Section 3.3.

A common approach proposed by several algorithms such as LogSig [74], IPLoM [73],
LogCluster [69], LogMine [77], and MoLFI [80] is to convert the syslog entries into system
events via multiple passes of clustering and categorization. In several cases, the times-
tamps of log entries are discarded as a side effect of such clustering methods, resulting
in the elimination of temporal correlations among system logs [116, 65, 117]. Although few
approaches preserve the temporal correlations of log entries [118], most of the existing ap-
proaches utilize static sets of rules to differentiate among various classes of system logs
which negatively affects the accuracy of these approaches in processing of unseen and
sophisticated log entries.

The main challenge in all available parsing methods is the analyzing of the unstructured
part of syslog messages. Due to the unreliable nature of the syslog protocol, noises and in-
consistencies also exist among the collected system log entries. Majority of the existing log
parsers require multiple passes of processing which makes them inadequate for real-time
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monitoring and analysis of large HPC systems. Due to the unavailability of the original im-
plementation of the existing algorithms, most features of the proposed algorithms cannot
be evaluated. None of the existing tools are able to automatically analyze unstructured
free-form log messages. User privacy remains a great concern since the industrial plat-
forms provide the log analyzing process as a remote service, and the log analysis may take
place on the third-party servers. Reliance on static rule sets restricts the flexibility of pat-
tern detection. Due to the dynamic nature of HPC systems, manual adjustment of rule sets
is also not preferred.

2.2 Users and Systems Privacy

Conducting any form of behavior analysis, for the purpose of failure detection and pre-
diction, requires in-depth details about the actual state of the computing system. System
logs readily contain such information. The usage of an HPC system is regulated by the
privacy guidelines in force, according to its functionality, production environment, and ad-
ministration domain. Depending on the applicable privacy regulations, certain information
within the system logsmay be considered as sensitive information. Examples include user-
names and IP addresses. Information deemed sensitive on one HPC system can be consid-
ered not sensitive to another HPC system. Analyzing and distributing raw system logs, that
may contain sensitive information, endangers the privacy of data subjects such as users,
system owners, and system vendors. Therefore, data anonymization is required before the
analysis and distribution of (raw) system logs. However, due to the uncertainties about
the imperfection of the existing anonymization methods, the owners of HPC systems are
reluctant to publish their monitoring data [119]. A list of publicly available HPC monitoring
data2 is shown in Chapter E.

The data protection and privacy guidelines of each computing system mandate the re-
moval of certain sensitive information from system logs. Therefore, a certain amount of
information loss cannot be prevented during the anonymization phase. After anonymiza-
tion, the system logs may have already lost their usefulness for certain types of analyses.
For example, the anonymized system logs of a computing system, with a privacy guideline
that mandates complete removal of all usernames from system logs before any analysis,
are not useful for user accounting purposes.

In March 2014, European Parliament approved the new privacy legislation. According to
these regulations, personal data is defined as "any information relating to an identified or
identifiable natural person (‘data subject.’)" [120]. This information must remain private to
ensure a person’s privacy. Based on this definition, syslog entries contain numerous terms
which represent personal data and must, therefore, be protected.

Encryption and de-identification are the most common approaches to protect personal
data in log entries. Encryption reduces the risk of unauthorized access to personal data.
However, encryption is reversible. Any form of encryption is theoretically breakable, pro-
2To the best knowledge of author, at the time of writing, these are the only existing large-scale publicly-available HPC monitoring data.
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vided enough time and computational power. The encryption key having to be securely
preserved yet also shared in order to make further analysis possible. Therefore, encryp-
tion can only be used within a trusted environment and the encrypted syslog entries can-
not be freely used or distributed in the public domain. Therefore, log encryption is not a
suitable approach for analyzing and distributing system logs. In contrast, de-identification
eliminates the sensitive data and only preserves the nonsensitive (cleansed) data. As such,
de-identification provides the possibility of distributing de-identified data in the public do-
main. However, due to the potential excessive information loss, the de-identified datamay
turn out to no longer be of real use.

Pseudonymization and anonymization are two different forms of de-identification. In
pseudonymization, the sensitive terms are replaced by dummy values to minimize the risk
of disclosure of the data subject identity. Nevertheless, with pseudonymization the data
subject can potentially be re-identified using supplementary information [121]. Anonymiza-
tion, in contrast, refers to protecting user privacy via irreversible de-identification of per-
sonal data.

Generalization and suppression are two well-known methods for data anonymization.
These methods either group or remove data to reduce uniqueness, and thus, the chance
of identification of individual data subjects from the records in the dataset. In 2002 k-
anonymity [121] was introduced as a model for protecting privacy via generalization. Al-
though k-anonymity addressed themain challenge of data privacy in anonymized datasets,
it had several shortcomings such as attribute disclosure, and complementary data release.
To overcome these shortcomings, severalmodels such as l-diversity [122] and t-closeness [123]
were introduced. Thesemodels reduced the data representation granularity (grouping) be-
yond the level used in k-anonymity, which could result in decreased data usefulness. The
l-diversity models are also potentially vulnerable to algorithm-based attacks. Some studies
considered an integration of both, the l-diversity and t-closeness models [124]. In 2006 the
formal principle of differential privacy was introduced [125]. The differential privacy prin-
ciple addresses the vulnerability to algorithm-based attacks and provides a strong privacy
model. However, identifying a good strategy to implement differential privacy is difficult,
it further decreases the data utility, imposes high overhead, and cannot be automated.
According to the articles 2, 4(1) and (5) and recitals (14), (15), (26), (27), (29) and (30) of the
GDPR3, in order to analyze sensitive information, an irreversible anonymization of personal
datamust be guaranteed [126]. To the best knowledge of the author, no existingmodel can
guarantee the data privacy and provide useful data.

Various tools have been developed to address the privacy concerns of using syslog in-
formation. Most of these tools provide log encryption as the main feature, while certain
tools also provide de-identification as an additional feature. Syslog-ng and Rsyslog are
two open-source centralized logging infrastructures that provide out of the box encryption
and message secrecy for syslogs, as well as de-identification of syslog entries [127, 128].
Both tools provide a pattern database feature, which can identify and rewrite personal data
based on pre-defined text patterns. Logstash [129] is another open-source and reliable
3The European General Data Protection Regulation.
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tool to parse, unify, and interpret syslog entries. Logstash provides a text filtering engine
which can search for the text patterns in live streams of syslog entries and replace them
with predefined strings [130]. In addition to the off-line tools (local installation), such as
syslog-ng and Logstash, there is a growing number of online tools (remote services) such
as Loggy [131], Logsign [100], and Scalyr [111], that offer a comprehensive package of syslog
analysis services. The existence of sensitive data in the system logs barricades the usage
of such remote services.

Alongside these industrial-oriented tools, several research groups havedeveloped scientific-
oriented toolkits to address the syslog anonymization challenge. eCPC toolkit [132], sd-
cMicro [133], TIAMAT [134], ANON [135], UTD Anonymization Toolbox [136], and Cornell
Anonymization Toolkit [137] are selected examples of such toolkits. These tools apply var-
ious forms of k-anonymity [121] and l-diversity [122] to ensure data anonymization. Achiev-
ing an optimal k-anonymity is an NP-hard problem [138]. Heuristic methods, such as k-
Optimize, can provide effective results at the cost of a longer time [139].

The process of data anonymization incurs a certain degree of information loss. With
significant information loss comes decreased usefulness of the anonymized data. Vari-
ous studies attempted to address the problem of achieving k-anonymity protection with
minimal information loss. Gionis and Tassa proved that solving the problem for the two
conflicting goals above is NP-hard [140]. Later, it has been shown that dynamic optimiza-
tion of the anonymization process considerably reduces the loss of information [141]. In
another attempt to address the high information loss during data anonymization, utility-
based anonymizationmethodswere proposed. Xu et al. [142] introduced an approachwhich
first, specifies the utility of each attribute, and second, proposes two heuristic local record-
ing-based anonymizationmethods [143] to boost the quality of the analysis later. A data re-
locationmechanismhas also been applied to reduce granularity and populate small groups
of tuples to increase data usefulness [144]. In another similar effort, quasi-identifiers have
been divided into two groups of ordered and unordered attributes [145]. To reduce the
information loss, more flexible strategies for data generalization have been applied on the
unordered attributes. More recently, co-utility [146] has been introduced as a global dis-
tributed mechanism for data anonymization, such that a balance between data utility and
data privacy is achieved. Although these efforts decrease the information loss during data
anonymization, they still cannot guarantee data privacy. The non-zero probability of pri-
vacy breaches through anonymization by the use of approaches such as those mentioned
in this section has been experimentally determined [147].

Quantifying data utility4, which is a qualitative property of data, provides a measure to
control the balance between privacy and utility of data. A number of studies proposed such
measures to quantify the utility of anonymized data. Data utility is mostly described as the
amount of information loss. Information loss, in general, can be quantified according to
the uncertain change in attribute values during the anonymization [145], via result-driven
approaches to compare the data before and after anonymization [148], or even according
to the data entropy in the dataset [149]. Thesemeasures are generally divided into two cat-
4Utility and usefulness are used interchangeably in this work.
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egories: (1) entropy-based and (2) distance-based (e.g., the Hellinger distance). Furthermore,
most of the above mentioned usefulness quantification approaches are implemented into
data anonymization tools, such as ARX [150].

Existing approaches for quantification of data usefulness aim to increase data privacy,
data utility, or both, in anonymized datasets. However, these approaches implicitly make
the fundamental assumption of having a structured format for the data entries. In reality,
system log entries are of mixed structured and unstructured data formats. The structured
part contains the meta-data (e.g., time or location related to the particular syslog entry),
and the unstructured part contains the detailed event information. Sensitive information
mainly resides within the unstructured part of the data. In the author’s best knowledge,
due to the unstructured nature of the detailed event information (no two distinct events
generate the same information pattern), none of the existing approaches provide utility-
based anonymization of system logs. Moreover, although a few studies addressed the de-
identification of unstructured datasets [151], none of these studies, nor the known privacy
models guarantee data privacy at an acceptable overhead (time and complexity).

Using the existing anonymization approaches, in general: (1) Thequality of the anonymized
data dramatically degrades, and (2) The size of the anonymized syslogs remains almost
unchanged. The industrial-oriented approaches are unable to attain full anonymization at
micro-data level [121]. Even though scientific-oriented approaches can guarantee a high
level of anonymization, they are mainly not capable of applying effective anonymization
in an online manner. Certain scientific-oriented methods, which can effectively anonymize
online streams of syslogs, need to manipulate log entries at their origin [152, 153].

The data application is not considered in existing methods of data usefulness assess-
ment. Although data may lose its usefulness for certain analysis, it may remain useful for
other applications. Therefore, it is important to assess the data usefulness in respect to
the data application. While the anonymization methods try to uniform the data variance
in order to protect users privacy, anomaly detection techniques on the other hand require
those differences in input data to detect anomalies. Thus, useful data from this perspective
must project a balance between variation and uniformity.

2.3 Failure Detection and Prediction

When defects within the system’s components (fault) are triggered (error), they might
prevent system’s components to perform their expected functionalities, thus cause failure.
Although failures are run-time events, failure prediction can be performed using both on-
line and offline approaches. Offline failure prediction approaches employ the knowledge
gained during previous executions to predict the probability of future failure occurrences.
Due to the static nature of offline prediction approaches and their reliance on historic data,
dynamic behaviors cannot be predicted using offline approaches. Online failure predic-
tion approaches consider run-time information beside the historic executions’ knowledge
to predict the probability of future failure occurrences [154]. Given the dynamic nature of
general-purpose HPC systems, online approaches are more suitable for failure prediction.
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During the past decade, multiple studies investigated the existing failure detection and

prediction methods in the context of HPC [155, 156, 157, 158]. This sub-section, along with
an overview of existing literature, fills the gap via investigating failure prediction methods
that are based on log processing and are not covered in the existing studies.

2.3.1 Failure Correlation

Studies have shown different forms of correlations among failures in large computing
systems [159, 68, 160]. In most cases, these correlations proved to be beneficial for syslog
analysis. It is expected to observe similarities among the footprints of correlated failures in
system logs. These similarities are captured and utilized to detect correlated failures. Two
groups of correlations exist: static (i.e., permanent) and dynamic (i.e., temporary) [161, 162,
163, 164].

Majority of correlations are static correlations that are part of the system characteristics
and will remain unchanged during the lifetime of the computing system. Simultaneous
failure ofmultiple computing nodes located in a single rack caused bymalfunctioning of the
rack’s cooling system is an example of static (spatial) correlation among failures. Dynamic
correlations aremainly appearing due to the dynamic assignment of shared resources and
user interactions. The simultaneous failure ofmultiple computing nodes that are accessing
a certain file on an unstable distributed file system is an example of a dynamic failure
correlation.

2.3.2 Anomaly Detection

Anomaly detection is the main building block of failure detection mechanisms. The goal
of anomaly detection is detecting irregularities in normal behavior. To achieve this goal,
(1) the normal behavior and (2) the acceptable deviation threshold from this norm should
be defined. Any deviation more than the acceptable threshold is considered abnormal
behavior. Since the behavior of computing systems is constantly changing in response
to their users and environment, static models are not sufficient to describe the dynamic
behavior ofmodernHPC systems. Therefore, themodel that describes the normal system’s
behavior should be constantly updated according to the new behavior of the computing
system.

Various methods are proposed to extract the behavioral patterns of computing sys-
tems. Estimating probability of upcoming failures based on system’s load [34, 42], calcu-
lating failure frequency via word counting, using time series analysis, generating hidden
Markov models [165], anomaly detection via predefined rule-sets [103], automatic pattern
mining [166], various forms of clustering [167], and decision trees [168] are examples of ma-
jor anomaly detection methods. Furthermore, several studies suggested to form blocks of
correlated syslog entries using the semantic correlation among system logs before further
analysis [169, 116]. Directed acyclic graphs (DAG) have been also used in anomaly detection
methods to preserve the correlation of log entries [170].
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However, system logs are not the only monitoring data which are used for detecting

anomalies in computing systems. CASPER [171]monitors the network activities, TIRESIAS [172]
observes CPU, memory, and context switches, SEAD [173] monitors the hypervisor, and
ALERT [174] collects various metrics including CPU load, memory usage, input/output data
rate andbuffer queue length (more information in Table 2.7). This sectionbriefly introduces
the 3 most used methods of anomaly detection that are based on system log analysis.

Time Series Analysis

System logs by default are discrete series of timestamped events. Therefore, they can
be best described using time series. Time series analysis are mainly focused on detecting
auto-correlations, trends or seasonal variations among the input data.

The first steps in time series analysis is data discretization and assignment of an alpha-
bet according to the potential input values. Assuming that the number of syslog entries
received during a 5-minute time window is a value between 0 and 1000 depending on the
computing system’s condition, the alphabet Σ can be defined as Σ = a, b, c, d such that
a = {0 : 0}, b = {1 : 10}, c = {11 : 100} and d = {101 : 1000}. According to the newly defined
alphabet, the set of syslog records R = {10, 34, 0, 512, 23, 12} which is collected during a
30-minute interval (5-minute time window) can be written as R = {b, c, a, d, c, c}, or simply
R = ”bcadcc”.

Using time series, 3 types of periodicity can be defined: (a) symbol periodicity: when one
symbol repeats periodically e.g., a in ”abcaeeabeabdacea”, (b) partial periodicity: when a pat-
tern consists ofmore than one symbol repeats periodically e.g., abc in ”abcaeedabcbeababcd”,
and (3) full periodicity: when the time series is mostly represented by a periodic pattern
e.g., abdc in ”abdcabdcabdc”.

The definition of alphabet has a significant impact on the results of time series analysis.
Assigning a symbol to a range of values eliminates potential noises in data, and improves
the consistency of results. However, the semantic of valuesmust be considered in choosing
the value ranges. An uninformed assignment may hide anomalies via an unintentional
flattening of the outliers.

Suffix trees and suffix arrays are powerful data structures for analyzing time series [175,
176]. Suffix trees can be generated in linear time [177]. A bottom-up traverse of suffix
tree results in generation of the occurrence vector. Occurrence vectors are common data
structures to store the position of repetitive patterns in time series. The sorted list of all
suffixes of a string, forms the suffix array of that string. Suffix arrays proved to be extremely
efficient data structures for anomaly detection in very large time series [178].

Pattern and Rule Mining

Pattern mining is a powerful tool to discover sequential and periodic recurring patterns
in various sequences (e.g., time series). In Table 2.5a, 5 sequences of events have been
shown. The sequence of < b, c, g > is a recurring sequential pattern with support value of
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4, since it has been repeated in 4 sequences. Significant changes of the recurring patterns’
support value during fixed-size time windows can be an indication of abnormal behavior.

Main drawback of this approach is the lack of probability assessment. Therefore, it is not
known howplausible is the re-occurrence of an upcoming event. For example in Table 2.5a,
it is indicated that the <b,c,g> sequence is recurring with a support value of 4. However, it is
not known that this sequence has a re-occurrence probability of 80% (4 out of 5 sequences;
the order of appearance is not considered).

(a) Pattern miningName SequenceSq1 <a,b,c,d,e,e,g,h>Sq2 <f,b,e,g,c,f,g,b>Sq3 <g,b,f,d,h,g,b,a>Sq4 <b,c,a,a,d,f,g,a>Sq5 <b,a,c,e,f,h,c,g>

(b) Rule miningName SequenceSq1 <a,d,c,d,e,e,g,h>Sq2 <f,b,e,g,c,f,g,a>Sq3 <g,b,f,d,h,g,b,a>Sq4 <b,c,a,a,d,f,g,a>Sq5 <a,b,c,e,f,h,c,g>
Table 2.5: Examples of pattern and rule mining in sequences

Various algorithms such as PrefixSpan (2004), LAPIN (2005), CM-SPADE (2014), VMSP
(2014), CM-SPAM, FCloSM, FGenSM, Spade, SPAM and GSP have been introduced for pat-
tern mining. However, the lack of probability assessment is one of the main limitations to
use these algorithms in failure prediction.

To overcome this limitation, the rule mining has been introduced. A (sequential) rule is
defined as A => B, where both A and B are itemsets. The A => B rule is interpreted
as if items in itemset A occur, then they will be followed by the items in itemset B. The
items within A and B can occur in any order, but it is required that the items of B occur
only after items of A. Considering Table 2.5b as sets of sequences and {b} => {a, f} as the
sequential rule, it can be concluded that the support of sequential rule {b} => {a, f} is 3.
Since, in 3 sequences the events a and f are occurring after event b.

To calculate the probability of a sequential rule, another measure called confidence will
be considered. Confidence of the rule A => B is the support of the rule divided by the
number of sequences containing the items of A. In the given example, since in 4 out of 5
sequences {b} occurs but only in 3 of them it is followed by {a, f} therefore, the confidence
of rule {b} => {a, f} is 75%.

Various algorithms such as CMRules (2010), TopSeqRules (2011), RuleGrowth (2011), TNS
(2013), ERMiner (2014), TRuleGrowth, PFP-Tree, HUSRM, MKTPP, ITL-Tree, PF-tree and Max-
CPF are proposed for sequential and periodic rule mining. Studies show that rule mining
provides higher detection accuracy than pattern mining [179].
Machine Learning

Fromanother perspective, anomaly detectionmethods are divided into threemain cate-
gories of rule-based, supervised, and unsupervised [180]. Althoughmany rule-basedmeth-
ods have been proposed, the unstructured nature of syslog messages extremely limits the
functionalities and the detection domain of rule-based approaches. Supervised methods
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on the other hand require both normal and abnormal patterns to train a functional behav-
ioral classifier. Therefore, rule-based approaches as well as supervised approaches are not
able to detect anomalies which are not seen before. Furthermore, extraction of rules and
patterns for rule-based and supervised approaches are time-consuming and inaccurate,
respectively [181].

In contrast, unsupervised approaches are able to automatically extract the system’s
behavioral pattern from the monitoring data. However, most of the unsupervised ap-
proaches and available tools are domain specific. They are built specifically for a certain
class of problems e.g., security threads detection [182], DNS poisoning attacks identifica-
tion [183], or performance bottleneck detection [184]. Furthermore, general approaches
such as invariant log mining [185] and principal component analysis (PCA) [186] only con-
sider the chronological order of the events, discarding the temporal correlation among log
entries.

Unsupervised syslog-based anomaly detection methods were further improved via re-
cent advances in machine learning techniques [118, 166, 187, 188]. Despite the rapid im-
provements in performance and accuracy of unsupervised anomaly detection approaches
usingmachine learning, certain challenges remainedunsolved. As the volumeof generated
system logs on HPC systems is rapidly increasing, the storage and processing of syslog en-
tries becomes challenging. Due to the diversity of HPC systems characteristics, in contrast
to many use cases of machine learning, reuse of pre-trained models for anomaly detec-
tion in HPC systems is not an effective alternative. Processing system logs that contain
various personal data, raises serious concerns regarding users privacy. Due to the compo-
nents’ heterogeneity in modern HPC systems, each component projects a different behav-
ior which cannot be accurately modeled via a single system-wide general model. Software
and hardware updates, various applications and the multi-user environment of HPC sys-
tems, continuously change the system’s behavior. Therefore, a static behavioral model
of the HPC system is not sufficient to accurately model the dynamic behavior of modern
HPC systems. In addition, system logs are generated by individual computing nodes, thus,
any failure directly affects syslog entries via introducing noises, interrupting log generation
mechanisms, or impeding the log collection procedure. Furthermore, harmless errors that
are not causing failures may also introduce noises in syslog entries.

2.3.3 Prediction Methods

Salfner et al. [155] divide the procedure of failure prediction into 5 steps of (1) testing,
(2) auditing, (3)monitoring, (4) reporting and (5) tracking. Figure 2.2 shows 3main steps that
are performed by most online failure prediction mechanisms. In a recent study, Jauk et al.
classified more than 30 existing prediction methods. Table 2.6 shows the two-dimensional
classification of prediction methods as originally proposed in [158].
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Figure 2.2: A taxonomy for online failure prediction approaches [155]
Failure tracking

Failure tracking uses the recorded failures of the past to predict potential future failures.
The prediction is made either via estimating the probability distribution of failures, or via
analyzing the correlation between failures.

Symptommonitoring

Symptoms are side effects of failures which can be directly or indirectly related to the
cause of failure. Sudden increase of network traffic or higher CPU consumption are di-
rect and indirect side effects of network driver failure, respectively. Constant monitoring
of the computing system parameters can reveal the symptoms and help to identify the
causing failures. Common methods of symptom detection are: (1) function approximation
that compares the actual and the expected output of unknown functions fed with system
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Table 2.6: A classification of literature on failure prediction in HPC [158]
Class SW/S Node Disk Mem. Net.Root Cause unspecified pinpoint-able Log

[189] - / 82[190] - / -[191] 93 / 43[192] - / -
[83] 78 / 7569 / 5888 / 46[193] 91.2 / 45.8Correlation Probability

[194] 88 / 7577 / 6981 / 85[195] - / -[196] 80 / 90[197] 58 / 74[198] - / -[199] 98 / 93
Rule

[200] - / -[201] 40 / 80Mathematical, Analytical [202] - / -[203] - / -[204] * / *[205] 74 / 81[206] 98 / 91[207] 94.2 / 85.9
[208] 79.5 / 5095 / 94[209] 53 / -[210] - / -

Decision Trees / Forest

[211] 72 / 87Regression [212] - / -[213] 55* / 80*[214] 66.4 / 59.3[215] - / -[216] * / * * / *Classification
[202] - / -[217] 93 / 91Bayesian Network, Markov [218] 82.3 / 85.464.8 / 65.2[215] - / -[219] - / -Neural Network [206] 89 / -80 / -[220] 90* / 70*Meta-Learning [221] - / -(with precision/recall values in %)Blue shows ability to predict this type of failure.A : Results for different data sets.B : Results for different training parameters.C : Results varies greatly with different parameters.D : Paper lists several methods or setups.* : Many results provided, see reference.- : No numerical result is given.

parameters, (2) classifiers that identify the value of system parameters as normal or ab-
normal based on predefined thresholds, (3) system models that build a model according
to the normal state of the system and search for significant deviations from this model and
(4) time series analysis that detects deviations within the chronological sequence of system
parameters.
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Detected Error reporting

In contrast to symptom monitoring, that constantly monitors certain system parame-
ters to detect potential deviations in their values, this approach only analyzes the detected
and reported errors. Undetectable errors are hidden to detected error reporting as an on-
line event-driven approach, thus, certain failures are out of the scope of this prediction
method. The reported errors can be compared against a set of predefined rules or pat-
terns (rule-based systems and pattern recognition), searched for detecting correlations
between reported errors (co-occurrence), statistically compared to previous records (sta-
tistical tests) or labeled according to their importance and impact (classifiers).

2.3.4 Prediction Accuracy and Lead Time

Among the available prediction methods, regardless of the chosen failure prediction
approach, the final reported assessments are either (1) the location and time of potential
future failures (i.e., when a certain node is expected to fail) or (2) continuous reporting of
the stability status of computing nodes (i.e., no conclusion is provided). Both formats may
include a certainty value that indicates the confidence of assessment. Table 2.7 provides
a list of recent failure prediction methods and their respective accuracy and recall values.
Each method is evaluated using a different set of input data.

The Precision, Recall, Accuracy, and F1Score are calculated as shown in Figure 2.3. True
positives (TP) indicate failures that are correctly identified. Higher precision value in Ta-
ble 2.7 indicates less false positives (FP), that represent normal events that mistakenly
identified as failure. Higher recall value indicates less false negatives (FN), that represent
failures that remained unidentified5.

FN

FP

UF

TP

All events

All failures

Precision = TP

TP + FP

Recall = TP

TP + FN

Accuracy = (TP + TN)
(TP + FP + FN + TN)

F1Score = 2 Precision.Recall

Precision + Recall

Figure 2.3: Calculation of precision and recall values. TP, FP, FN, and TN stand for true posi-tive, false positive, false negative, and true negative respectively. UF representsthe unpredictable failures explained in Section 5.4. Unpredictable failures aresubset of false negatives.
5Some studies suggest additional metrics to evaluate the usefulness of prediction methods [15]. However,in the context of this work, precision, recall, and the F1Score are the most relevant metrics to describe theusefulness of prediction methods.
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Since each method is evaluated using a different set of input data, it is not possible to

directly compare the performance of listed methods solely based on their precision and
recall values. For example, DeepLog reports a surprisingly high precision and recall rate
of 96% in comparison to Hora with the precision rate of 42%. The main distinction lies
in the datasets that were used to evaluate each of these methods. DeepLog uses HDFS,
OpenStack and Blue Gene/L logs while Hora analyzes Netflix’s server logs. HDFS dataset
contains 11.1 million log messages collected from Amazon EC2 platform, manually labeled
by the original domain experts [65]. BGL data contains 4.7 million log messages recorded
by the BlueGene/L supercomputer system at Lawrence Livermore National Labs (LLNL),
manually labeled by the original domain experts [43]. The HDFS and OpenStack datasets
that were used to evaluate DeepLog contain semi-structured log entries. The diversity of
log entries is very limited and log entries are directly related to the reported events. On
the other hand Netflix’s server logs aremore diverse, less structured and the log entries do
not directly relate to the reported events, which negatively influence the failure prediction
accuracy. Looking at the lower precision of DeepLog in predicting Blue Gene/L failures6
(less structured) reveals the importance of data preparation for failure analysis.

Among the listed methods in Table 2.7 Desh’s input data is the most similar to the data
used in this work, unstructured and low level. Although there are similarities between the
prediction methods used in this work and Desh, the main difference is the use of a fully
unsupervised approach and utilizing fully anonymized monitoring data in this work. The
data labeling step (phrase labeling), greatly contributes to the high precision and recall
rates of Desh’s predictions.

Useful failure predictors must predict failures as early as possible to provide enough
time for protective measures to take place. The current state-of-the-art lead time is be-
low 10 minutes [225, 15] (although with the prediction precision of 42%). Recent recov-
ery techniques require about 3 minutes lead-time to perform a complete cycle of check-
pointing [229].

In summary, detection and analysis of dynamic correlations are more complicated due
to constant changes in their characteristics. However, due to their significant influence, it
is required to consider the impact of both static and dynamic correlations in failure anal-
ysis. The syslogs of real-world production HPC systems contain unstructured, noisy, and
erroneous entries. Therefore, a failure predictor should work in the existence of all these
imperfections. Modern HPC systems are dynamic and multi-purpose, therefore, any pre-
diction model must adapt itself to the dynamic nature of such environments. The large
number of syslog entries generated by modern HPC systems as well as the dynamic na-
ture of large computing systems, demand automatic analysis approaches. Therefore, su-
pervised approaches are not good candidates as long-term solutions.

6Originally 16%. With feedback from experts (online training) precision increased to 88%.
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3 Data Collection and Preparation

Chapter 3 describes the methodology, workflow, and tools which were used and devel-
oped in this work to collect and prepare the monitoring data for the next steps. Figure 3.1
illustrates the major building blocks of the proposed approach as well as the workflow of
the analysis. To maintain the readability of Figure 3.1, overlapping blocks and flows are not
shown. The colored building blocks are covered in this chapter and the white blocks are
covered in Chapter 4.
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Figure 3.1: Major building blocks and the workflow of ȷam–e ȷam. Building blocks shown inorange are covered in Chapter 3.
This work addresses the system failure, a main challenge of production HPC systems.

Due to the nature of HPC systems, as well as their special production environment and
conditions, certain assumption and limitation must be considered. Below is a short list of
the most important assumptions and limitations which are considered in this work:



26 3. DATA COLLECTION AND PREPARATION
• Taurus is used as the main use case in this work (Section 3.1).
• Fault injection tools can be used to evaluate the resilience of HPC systems [119]. How-
ever, fault injection tests are intrusive and may interrupt the systems progress [230,
231]. Taurus is a production computing system with a large group of active users.
Therefore, this work refrains to use intrusive approaches such as fault injection.

• To propose an approach that is generally applicable to other HPC system, no changes
should be required to be made on the target systems (Section 3.2.1).

• The failure analysis will be conducted at the node-level (Section 3.4).
• To avoid overheads and prevent unwanted side effects on the target system, active
monitoring techniques will be avoided. This limitation becomes vital during nodes
instability conditions (Section 3.2.1).

• The source of monitoring data should be available on the majority of HPC systems
(Section 3.2).

• There are only a few publicly available sources of monitoring data (Chapter E). User
privacy is the main challenge to publish such monitoring data. Therefore, data
anonymization is required before further analysis (Section 3.3.1).

• The collected monitoring data may have extensive amount of noises. Therefore, data
cleaning is required before further analysis (Section 3.3.4).

• Due to the large size of HPC systems and high volume of monitoring data, a high
degree of automation is required (Section 3.3.3).

• The exact time and count of node failures on Taurus is unknown. Therefore, data pre-
processing for marking the potential failures is required before analysis (Section 3.4).

3.1 Taurus HPC Cluster

Taurus is a production high performance computing system located in Dresden, Ger-
many. Taurus (at the time of writing) consists of 2046 computing nodes located in 6 islands.
Taurus monitoring data is the main use case of this work. This section provides detailed
information about Taurus’ hardware and software specifications. Additional details, live
system status, list of services and future upgrades are accessible via Taurus information
page1.

The 2046 computing nodes on Taurus consist of four different processor architectures:
Intel Haswell, Broadwell, Sandy Bridge, and Westmere. The 108 nodes with Sandy Bridge
and Haswell processors are also equipped with NVIDIA Tesla GPUs, out of them 44 nodes
are each equipped with two NVIDIA Tesla K20x, and another 64 nodes are powered by each
four NVIDIA Tesla K80. 32 additional nodes are equipped with Intel Xeon Phi manycore
processors2 and 14 servers are also equipped with Intel Xeon E5-2603 CPU and NVIDIA
GTX1080 GPU cards.
1https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus2https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/KnlNodes
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This work uses the data collected from 2046 regular computing nodes as the main use

case. Considering the hardware architecture, Taurus nodes are divided into five categories.
The number of nodes in each category and the node’s dominant processor architecture are
shown in Table 3.1.

Table 3.1: Hardware architecture of Taurus computing nodes
Architecture Haswell Sandy Bridge Westmere Broadwell GPU (K20X/k80)
Nodes count 1456 270 180 32 108
Island 4, 5, 6 1 3 4 2
Figure 3.2 provides a schematic illustration of Taurus islands. Each O represents a single

computing node. Identical colors represent identical hardware architectures (processing
units).
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Figure 3.2: Schematic island topology of Taurus. Node colors represent the dominant pro-cessing unit type of a node. Thick border lines indicate the 6 islands of Taurus.
All nodes in Island 2 (108 nodes) beside their Sandy bridge or Haswell CPUs are equipped

with graphical processing units (GPU). Since the majority of jobs submitted to Island 2
mainly utilize GPUs rather than CPUs, GPUs are considered as dominant processing units
of these nodes. Therefore, in this work, Island 2 is considered as a homogeneous GPU
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island, despite other heterogeneity of its nodes. Taurus is powered by Linux and em-
ploys Slurm [232] as its job scheduler. The parallel filesystem of Taurus is powered by
Lustre [233]. The syslog-ng daemons are running on all nodes.

During the first stages of the analysis, three important phenomena were observed,
namely (1) failure propagation, (2) failure chains and (3) side effects of protection mech-
anism. Each of these phenomena highly contribute in providing a better understanding
of the system’s behavior. Thus, they play an important role in detection and prediction of
upcoming failures.

Failure propagation

Analyzing Taurus behavior revealed that certain failures are propagating through the
system. This propagation may happen within local components of a single node, or may
affect other nodes and remote components. Failures originate in different layers, and they
may be of different types. Failures always propagate horizontally within a single layer, as
well as from bottom to top across the system layers. For example, as shown in Figure 3.3
those failureswhich occur at the hardware layerwill have influence on the application layer.
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Figure 3.3: Propagation of failures within a computing node. The yellow arrows indicate apotential propagation of failures among layers.
The failure propagation in anHPC systemcanbe analogized to a treewhich has its root in

the lowest layer and its leaves in the highest layer. Going from top to bottom, the diversity
of failures decreaseswhile their impacts are greater. Majority of propagated failures, cause
new forms of failure in comparison to their original form. A sample of failure propagation
on Taurus is shown in Figure 3.4.

In the example shown in Figure 3.4, early detection of the original failure could have
prevented the propagation of the failure into vital components of the computing node
which finally caused the complete failure of node taurusi5071 at 14 : 10 : 01 on January 1st.
The lead time in this example is surprisingly large, which makes it an interesting case for
further analysis.

Out of 878 failures on Taurus in the year 2017, 213 failures were simultaneous node fail-
ures3 that affectedbetween 2 and 83nodes. 665 failures occurred on a single node. Majority
of the propagated failures into the kernel space first appeared as user space problems4.
3Confirmed failures which occurred on more than one node during a one-second time window.4At the beginning this appears counterintuitive since failures would normally propagate from bottom to top
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Figure 3.4: Failure propagation in a single node. Vertical axis represents the time in reverseorder. Each value on the horizontal axis represents a class of events. The orig-inal event was a user error, that later propagated to other parts of the systemand caused kernel and daemon errors.
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however, although the problem first appears in the user space the root cause lies in the kernel space.Therefore, the failure itself is propagating from bottom to top and the symptoms are first observable onceit reaches the user space.
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Most single-node failures and almost all multiple-node failures, as shown in Figure 3.5,
occurred during the daily working hours (08 : 00 to 17 : 00) implying a strong correlation
between users activities and node failures5.
Failure Chains

A sequence of successive failures is called a failure chain. Failure chains are special form
of failure propagation. Figure 3.6 illustrates a potential scenario of failure propagation
forming a failure chain.
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Figure 3.6: Propagation of failures and formation of Failure chains
Failures of a failure chain are identical. It ismore probable to detect failure chains aswell

as their root cause in comparison to mutated propagated failures. Figure 3.7 illustrates a
detailed sample of a failure chain in Taurus.

In Figure 3.7 events shown using dotted outline are contributing to the expansion of
failure chain, although they may not experience the failure themselves (interface nodes).
In general failure chains are local phenomena therefore, the majority of failures involved
in a chain of failures are physically co-located. However, there are multiple counter exam-
ples such as the failure chain shown in Figure 3.7. Detection of failure chains, in useful
time and in the presence of interface nodes, is practically infeasible. Omitting the interface
nodes divides the failure chain into shorter sub-chains. These sub-chains are detectable
and provide adequate functionality to prevent excessive damages.
Side Effects of Protection Mechanism

HPC systems are equipped with various protection mechanisms to prevent hardware
damages in emergency situations such as overheating. Although protection mechanisms
prevent fatal damages to the system, their interference can unexpectedly change the be-
havior of HPC systems and introduce additional failures. As shown in Figure 3.8, a major
system-wide node failure in October 2016 was caused by the automatic overheating pro-
tection mechanism on Taurus.
5Similar correlations are observed on DKRZ cluster [4].
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Figure 3.7: Sample of a failure chain on Taurus, including the interface nodes that are con-tributing to the expansion of the failure chain.
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Figure 3.8: Major system-wide failures caused by activation of the automatic overheatingprotection mechanism on Taurus.

Another example of such interference is shown in Figure 3.20 on page 52. Although
the independent automatic protectionmechanisms are required, in certain cases (e.g., Fig-
ure 3.20) their radical reactions can be delayed or avoided via timely prediction of the up-
coming emergency situations. During the period of this work, two major system-wide fail-
ures on Taurus were caused by automatic overheating protection mechanisms which led
to job loss. Both incidents could have been predicted. Timely prediction of major prob-
lems of cooling systems via analyzing system logs is possible. However, due to the small
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footprint of anomalies, timely prediction of such problems using fully anonymized system
logs is extremely complicated.

3.2 Monitoring Data

System logs6 are the main source of monitoring data in this work. Syslog entries pro-
vide a wide range of information about the behavior of the underlying hardware, software,
and users. All current TOP500 [234] HPC systems are powered by Linux. The Linux logging
protocol is implemented according to RFC 5424 [64] thus, there is a high degree of con-
sistency among system log entries generated by all TOP500 HPC systems7. Therefore, the
results of syslog-based analysis as a general approach can be applied to all other TOP500
HPC systems without further modifications.

In addition to syslog entries, three other data sources were employed to assist the anal-
ysis in this work: outages database, service notifications, and job status reports. The outages
database reports all system outages from the users perspective, the service notifications
notify users regarding scheduled maintenance and system-wide outages, and the job sta-
tus reports indicate the final status of submitted jobs after their allocation. Table 3.2 pro-
vides an overview of the four main data sources used in this work.

Table 3.2: Four main data sources used as monitoring data
Data source Data collection Information GranularitySystem logs Automatic Software and hardware ComponentOutage database Semi-automatic Service availability Entire systemService notifications Manual Service availability Entire systemJob status report Automatic Job completion status Node

System Log Entries

Syslog entries typically consist of four parts: PRIVAL, timestamp, source and message.
PRIVAL, timestamp and source contain structured data while message is unstructured.
The timestamp denotes the time at which an event occurs. The source provides infor-
mation about the location of the event occurrence, and the message describes the event
properties. Table 3.3 illustrates three syslog entries divided into their timestamp, source
and message fields. In this example, the timestamps are in the UNIX time format8, the
sources are node IDs, and the messages contain event details.
3.2.1 Data Collection

Taurus syslog entries were collected since September 2014. During this time two fun-
damental hardware and software upgrades affected the data collection process. From the
6System log and syslog are used interchangeably in this work7It worth to mention that /proc/kmsg and /dev/kmsg provide the kernel ring buffer, thus their entries are notin RFC 5424 format.8Also known as POSIX time or UNIX Epoch time.

https://www.kernel.org
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/printk/printk.c?h=v5.2-rc1#n283
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/printk/printk.c?h=v5.2-rc1#n283
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Table 3.3: Sample of raw syslog entries
Timestamp Source Message
1515625261 taurusi1230 (siavash) CMD (/home/config.sh > output.stat)
1515625370 taurusi3417 pam_unix: session closed for siavash
1515625713 taurusi6201 disabling lock debugging due to kernel taint

available collection of syslog entries, the period of January to December 2017 is chosen as
the main data source for this work. The main reasons for focusing on the time frame of
01-01-2017 to 31-12-2017 are (1) experiencing the lowest number of updates and unplanned
maintenance, (2) having the most reliable data sub-collection, (3) constant monitoring of
data consistency, and (4) availability of other monitoring data (i.e. Table 3.2). Figure 3.9
provides an overview of the Taurus syslog collection timeline since 2014.

September 2014
Beginning of Syslog collection
Islands 1-3 on an external server

April 2016
Switching to syslog collection
on an internal Taurus node

May 2015
Extending Syslog collection to
Islands 4-6 (on an external server)

June 2018
Fundamental update of
software stack to SCS5

April 2019
Live collection of
System logs…

Reliable collection

Unreliable collection

No collection

Figure 3.9: Timeline of syslog collection on Taurus
The collection mechanism is passive. Syslog daemons, on each node, collect the syslog

entries and forward them to a central log collector. Tomaintain the neutrality of the results
and providing a general approach suitable for all HPC systems, the pre-configured syslog
daemons were used without any modifications.

Although the most reliable period of data collection is chosen for the purpose of this
study, there are certain gaps in the data. These gaps are mainly incurred due to the in-
terruption of the data collection mechanism. Syslog entries cover the entire period of the
year 2017. The job status reports generated by Slurm covers the period of 28-02-2017 to 14-
11-2017. Service notifications and outages database, shown in Figure 3.10a and Figure 3.10b
respectively, provide information from a higher perspective and are available for the entire
period of one year from January to December 2017.

(a) Service notifications (b) Outages database
Figure 3.10: Availability and Maintenance Notifications of Taurus in 2017

In each section of this work, different subsets of the collected Taurus syslog entries
(2014-2018) are used according to the requirements of the respective analysis. However, the
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behavior of Taurus is generally analyzed for year 2017 with the focus being on the period of
01-03-2017 to 31-10-2017. Existence of gaps in data sources is a common challenge in similar
works [163, 15].

During the first round of data collection from September 2014 until April 2016, an exter-
nal server was used as the central data collector. The external data collector was passively
receiving syslog entries over UDP9 protocol. The UDP protocol was chosen because of its
higher transmission speed and lower overhead. However, further analysis revealed vari-
ous inconsistencies between the remotely collected syslog entries and their local copy on
Taurus computing nodes. Most inconsistencies were observed during the high workload
periods of the HPC system. Therefore, the data transfer protocol was switched to TCP10.
Using the TCP protocol, fewer inconsistencies between the remotely collected syslog en-
tries and their local copy were detected. However, high network congestion during major
system-wide failures still introduced inconsistencies and delays.

Since April 2016, the central syslog collector resides inside the Taurus HPC system, and
is using TCP protocol to collect syslog entries. Using an internal syslog collector, the syslog
collection may not be accessible during a major system-wide failure, however, the prob-
ability of such major system-wide failures are significantly low and does not impair the
functionality of the current setup. Additionally, the collected syslog entries can be backed
up on external storage for further analysis and long-term archiving.

Beside the noises and gaps among collected syslog entries, several irregularities were
identified. These irregularities are part of the system’s normal behavior. Thus, they should
not be considered as abnormal behavior. Due to the insignificant difference of these irreg-
ular system logs and regular syslog entries, in most cases they can not be easily detected.
The proposed approach in this work is highly noise-tolerant. Therefore, syslog irregulari-
ties are not affecting the final results. The most frequent irregularities observed on Taurus
are (1) out-of-order entries, (2) out of sync clock, (3) daylight saving, and (4) invalid entries.

The sequential arrangement of syslog entries is one of the most important character-
istics that make them a highly adequate data source for behavioral analysis. However,
among the collected syslog entries various instances of irregular appearance of syslog en-
tries were observed. In Table 3.4 three occurrences of such timestamp confusions are
marked in red. Further analysis revealed that this problem is mainly caused by unsuccess-
ful timezone detection. The problem can be solved by restarting the problematic daemons
on the HPC system. However, the occurrence of such timestamp confusions on Taurus is
so few that they can safely be ignored without significant negative impacts.

During cold boots, similar confusions may happen due to delayed clock synchroniza-
tion, as shown in Table 3.5. Data analyzing approach in this work skips a short interval
of instability after each reboot (and failure) to address the early-life failures suggested by
Bathtub Curve (Figure 1.1 on page 4), which additionally addresses the out-of-sync clock
phenomena.

Another important point to consider is the missing and overlapping hours caused by
9https://tools.ietf.org/html/rfc76810https://tools.ietf.org/html/rfc7805
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Table 3.4: System logs with out-of-order timestamps
Example 1 Example 2 Example 3
1514974801 2018-01-03 11:20:01 taurusi5003 1516901631 2018-01-25 18:33:51 taurusi5003 1516344245 2018-01-19 07:44:05 taurusi5003
1514974835 2018-01-03 11:20:35 taurusi5003 1516902001 2018-01-25 18:40:01 taurusi5003 1516344286 2018-01-19 07:44:46 taurusi5003
1514974835 2018-01-03 11:20:35 taurusi5003 1516902241 2018-01-25 18:44:01 taurusi5003 1516344601 2018-01-19 07:50:01 taurusi5003
1514974852 2018-01-03 11:20:52 taurusi5003 1516898641 2018-01-25 17:44:01 taurusi5003 1516345017 2018-01-19 07:56:57 taurusi5003
1514971326 2018-01-03 10:22:06 taurusi5003 1516902601 2018-01-25 18:50:01 taurusi5003 1516341419 2018-01-19 06:56:59 taurusi5003
1514974951 2018-01-03 11:22:31 taurusi5003 1516902834 2018-01-25 18:53:54 taurusi5003 1516345201 2018-01-19 08:00:01 taurusi5003
1514974993 2018-01-03 11:23:13 taurusi5003 1516902834 2018-01-25 18:53:54 taurusi5003 1516345201 2018-01-19 08:00:01 taurusi5003
1514975032 2018-01-03 11:23:52 taurusi5003 1516345201 2018-01-19 08:00:01 taurusi5003

1516345261 2018-01-19 08:01:01 taurusi5003

Table 3.5: Invalid syslog entries timestamp caused be out of sync system clock
Example 1 Syslog message
1486462610 2017-02-07 11:16:50 taurusi6086 Disabling lock debugging due to kernel taint
1486462610 2017-02-07 11:16:50 taurusi6086 Succesfully Started x86 Adapt Processor Feature Device Driver
1486462610 2017-02-07 11:16:50 taurusi6086 0.0.0.0 c61c 0c clock_step -3459.669479 s
1486459151 2017-02-07 10:19:11 taurusi6086 0.0.0.0 c615 05 clock_sync
1486459152 2017-02-07 10:19:12 taurusi6086 0.0.0.0 c618 08 no_sys_peer
1486459154 2017-02-07 10:19:14 taurusi6086 br0: no IPv6 routers present
1486459154 2017-02-07 10:19:14 taurusi6086 eth0: no IPv6 routers present

daylight saving time changes. Therefore, for the data used in this work (collected in 2017),
one missing hour of information on March 26th from 02:00 to 03:00, as well as one over-
lapping hour of information on October 29th from 02:00 to 03:00 is considered.

The TCP connections guarantee the correct transmission of syslog entries from their
source to the central syslog collector. However, due to component failures at the source
as well as the silent errors, syslog messages may be incorrectly generated or incompletely
stored. Therefore, each syslog entry which does not contain all the expected data fields is
considered invalid and is excluded from further analysis.

3.2.2 Taurus System Log Dataset

During the year 2017, in total more than 3.2 billion syslog entries with a total size of 344
GiB were collected. Less than 0.33% of the collected syslog entries were incorrect or pro-
vided no useful information for the purpose of this work. Detailed statistics regarding the
number of syslog entries collected on Taurus divided by their originating island are shown
in Table 3.6. The column /Node/Day shows the average number of entries generated by
a single node per day in its respective island. The #Event patterns column indicates
the number of extracted unique event patterns per island. The event pattern extraction
process is further explained in Section 3.3.1.

Table 3.6: Statistics of Taurus syslog Entries in year 2017
#Log entries #Event patterns

Island #Nodes Total Invalid /Node/Day Total Exclusive
1 270 299,046,032 535,719 3,034 1,601 291
2 108 58,106,243 603,848 1,474 1,360 357
3 180 56,778,161 16,443 864 1,254 215
4 264 490,299,895 4,585,815 5,088 1,667 285
5 612 1,034,193,160 1,846,396 4,629 1,945 340
6 612 1,328,650,822 3,264,407 5,947 2,168 483

All islands 2046 3,267,074,313 10,852,628 4,374 4,026 1,488
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Since the message field of syslog entries is an unstructured free-format text, the mes-

sage length has a great impact on the performance and implementation of log processing
methods. The message field of Taurus syslog entries has a diverse length of 1 to 1108 char-
acters. Most of this variation is caused by variables such as hardware addresses and file
paths. Although there are extremely long messages with 1108 characters, the majority of
Taurus syslog messages are shorter than 100 characters. Figure 3.11a illustrates the fre-
quency of syslog messages with their lengths count in characters.
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Figure 3.11: Frequency of Taurus syslog messages with various lengths

The impact of variables on diversifying the length of syslog messages can be reduced
via performing word processing rather than character processing. Considering words as
the measurement unit decreases the length diversity by the factor of 10. Although Taurus
syslog messages consist of 1 to 99 words, using the new measurement unit, the majority
of Taurus syslog messages are shorter than 10 words. Which is an acceptable message
length for achieving a near real-time processing performance. Figure 3.11b illustrates the
frequency of syslogmessageswith their lengthmeasured inwords. Converting syslogmes-
sages into event patterns (Section 3.3.1), reduces the size of syslog entries to a constant
length that significantly improves the syslog processing performance.

3.3 Data Preparation

The entire procedure of syslog generation, transmission, and collection is prone to er-
rors caused by software and hardware failures. Same principle applies to all other mon-
itoring data collected from computing nodes such as power consumption, CPU load, or
memory utilization. Therefore, data preparation is necessary.

The goal of this step is the conversion of monitoring data to noise-less anonymized dis-
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crete time series (reasons are explained in Chapter 2). Furthermore, the relative semantic
of anonymized data entries must be preserved. The relative semantic refers to the in-
context semantic of an entry in comparison to other entries in that context. As an instance,
both pairs of log entries in Example 3.1 deliver similar relative semantics that a user was
connected and disconnected correctly, although, the second pair is fully anonymized.

Example 3.1: Original and anonymized system logs with similar relative semantics
A1 Accepted publickey for root from 192.64.12.13 port 32431 ssh2

A2 Received disconnect from 192.64.12.13: 12: disconnected by user

B1 Accepted publickey [...]

B2 Received disconnect [...]

Among the availablemonitoring data inHPC systems such as power consumption,mem-
ory usage, cpu workload, jobs status, user behaviors, and components aging, system logs
are the most sophisticated input data due to their free-form and qualitative nature. There-
fore, system logs require additional steps of data preparation in comparison tomost other
monitoring data. Since syslog entries are the main source of monitoring data in this work,
the proposed data preparationmethods in this section are exemplified using Taurus syslog
entries. However, these methods are applicable to any other forms of monitoring data.

3.3.1 Users and Systems Privacy

The existence of sensitive datawithin the system logs as explained in Chapter 2 raises se-
rious concerns about their storage, analysis, dissemination, andpublication. The anonymiza-
tion of system logs is a mean to address the data privacy challenge. During the process of
anonymization, the sensitive data will be eliminated. The remaining data is considered as
cleansed data. However, there is the probability that sensitive data passes through filters
of anonymizers and leaks into the cleansed data. To the best of author’s knowledge, no
existing automatic anonymization method guarantees full user privacy.

It is worth mentioning that common data and output perturbation11 methods that are
beneficial to provide differential privacy [125] are not suitable for fulfilling the goals of this
work. Since in this work (1) the entire dataset is intended to be publicly available, (2) it is
aimed to reduce the size of dataset as much as possible, (3) there are no trusted parties
out of the HPC systems, and (4) the sensitive data cannot be kept for long-term storage
and analysis, the hybrid techniques such as PrivApprox [235] are also not a good fit for the
purpose of this work.

Anonymization of system logs, as a side effect, reduces the usability of data for further
analysis. After a certain degree of anonymization, the cleansed syslog entries lose their
general semantic, however, they remain useful for certain statistical analysis, such as time
series analysis and anomaly detection. At this stage, it is possible to encode syslog entries
11Providing noisy or approximate answers to data queries in order to prevent revealing individual records ina database. Swapping, random sampling, varying perturbation, and randomization are some of the mostcommon methods of data and output perturbation.
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into shorter strings. Such encoding reduces the required capacity for the storage of sys-
tem logs. Shortening the log entries’ length also reduces their processing complexity and,
therefore, improves the performance of further analysis on syslogs. Furthermore, an ir-
reversible encoding guarantees full user privacy via masking any potential sensitive data
leakage. It is important to note that the sensitivity and the significance of syslog entries are
relative to HPC system’s policies.

A term is a string of characters with certain semantics (e.g., root, 2, CMD). Each term is ei-
ther constant or variable. A constant term remains identical in all syslog entries. A variable
term, in contrast, takes different values across different syslog entries. Each term in a sys-
log entry, depending on the policies of the computing system that it originates from, may
(or may not) be considered as sensitive data. The same degree of relativity applies to the
significance of syslog entry terms. The significance of syslogs entries is assessed depend-
ing on the chosen data analysis method. Even though the classification of each term as
sensitive or significant is relative (e.g., not, semi, or highly significant), the final assessment
of sensitivity and significance of a term is a binary value of true or false. Therefore, every
single term in a syslog entry can only be sensitive/significant or nonsensitive/nonsignificant
(e.g., a username).

A zero-length term is not significant. A significant term has a nonzero length and can be
either sensitive or nonsensitive. A sensitive term is significant. Figure 3.12a illustrates the
relation between the sensitivity, the significance and the length of syslog terms.
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Figure 3.12: (a) The sensitivity, significance, and length of terms in syslog entries and theirrelation. (b) Trade-off scenarios between the significance, sensitivity, andlength of a system log entry. Each of the i, ii, and iii illustrations depicts thefour possible states of a syslog entry based on its sensitivity, significance, andlength. The trade-off triangle in illustration iv shows the trade-off between thethree parameters (sensitivity, significance, length) in a single unified view.

A triple trade-off exists between sensitivity, significance, and length of syslog entries.
The preferred input for data analysis should contain significant content to provide accurate
information, nonsensitive data to comply with users privacy, and shorter length to facili-
tate online analysis using less resources and higher performance. Figure 3.12b, regardless
of the system policies and syslog analysis methods, schematically illustrates this trade-off.
This illustration shows that a syslog entry can be in four distinct states. Green color states
denote best conditions while red color states denote undesirable conditions. White color
states represent median conditions. The yellow arrows in Figure 3.12b indicate the possi-
ble preferable actions to improve the overall condition. The significance of syslog entries
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cannot be increased, and reducing the length of syslog entries decreases their significance,
which is an undesirable transition. Therefore, the remaining possibilities to improve the
condition are (1) decreasing the sensitivity of syslog entries or (2) reducing their length.

Syslog entries are generated using static templates predefined in components of the
computing system. Assuming the sample syslog entry E1: “1462053899 taurusi1013

Accepted publickey for Siavash from 4.3.2.1”. In this entry, “146205389” is the
timestamp, “taurusi1013” is the source, and the rest of the line “Accepted publickey

for Siavash from 4.3.2.1” is themessage. In themessage part, the terms Accepted,
publickey, for, and from are constant terms, while Siavash and 4.3.2.1 are variable
terms, in the sense that for the above variable terms, the user name and IP can vary among
users andmachines. The syslog entries shown in Example 3.2 are generated using a similar
template. The constant terms are marked in red.

Example 3.2: Constant and variable terms in system logs
1462053899 taurusi1013 Accepted publickey for siavash from 4.3.2.1

1462053909 taurusi4124 Accepted publickey for root from 192.168.1.15

1462054899 taurusi6312 Accepted publickey for parya from 12.38.121.49

This step attempts to transit current condition towards a better condition as shown in
Figure 3.12b via eliminating sensitive terms (anonymization) or reducing the syslog entries
length. However, each sensitive term is also a significant term thus, carries information.
Therefore, certain information may be lost during the anonymization process. The goal
is to preserve the highest possible (permissible) quality of syslog entries throughout the
anonymization process while preserving user privacy. To achieve this goal PαααRS is pro-
posed [236, 237].

The PαααRS anonymization approach consists of 8 steps. The input data is a stream of log
entries split into content and metadata parts. For the case of syslog entries, the content
is the message field of syslog entry and the metadata covers the rest of the entry (e.g.,
timestamp and source). Since metadata contains no sensitive data, PαααRS targets the
sensitive data within the content part of the input data as following12:
Step 1) The variable terms in the syslog entries are divided into 3 groups:

(a) sensitive (e.g., username, IP address),
(b) significant (e.g., temperature, memory address),
(c) nonsignificant (e.g., cron job name, path).

Step 2) The sensitive terms are eliminated to comply with the privacy policies.
Step 3) The nonsignificant terms are replaced with predefined constants.
Step 4) Every syslog entry that does not have any remaining variable terms (event pat-

tern13), ismapped to a hash key, via a collision-resistant hash function. The hashing
step is called encoding.

12Figure 3.14 on page 43 provides a graphical illustration of the PαααRS workflow.13Also known as log key or message type; examples are shown in Table 3.9c.
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Step 5) The quality of the remaining syslog entries is measured with a utility function.
Step 6) When it is revealed that removing a significant term from the syslog entry improves

the quality of syslog, that particular term is replaced with a predefined constant.
Step 7) The remaining processed syslog entries that do not contain additional variable

terms, are mapped into hash keys (similar to step (4) above).
Step 8) Upon completion of steps (4) and (7), the hash key codes can be optimized based

on their frequency of appearance.
Regular expressions are used for the automatic detection of variable termswithin syslog

entries. Categorization of automatically detected terms into sensitive and/or significant is
performed based on the information in Table 3.7.
Table 3.7: Classification of syslog entry terms into sensitive and/or significant. Severity de-notes the importance of the characteristics for the respective terms.

Term Sensitivity Severity
User Name Y 10
IP Address Y 08
Port Number Y 01
Node Name Y 03
Node ID Y 03
Public Key Y 10
App Name N 00
Path / URL N 00

Term Significance Severity
accept* Y 07
reject* Y 10
close* Y 08
*connect* Y 09
start* Y 02
*key* Y 01
session Y 07
user* Y 05

This information is manually inferred from the policies and conditions of the host high-
performance computing system. Automatically detected variable terms which do not be-
long to any of the sensitive and significant categories are considered as nonsignificant.
PαααRS uses the variable length, collision resistant hash algorithm SHAKE-128 [238, 239] to
encode the syslog entries.

During the early stages of analysis at the beginning of this work, manually extracted reg-
ular expressions were used to detect sensitive terms in syslog entries. Table 3.8 contains
15 (out of 38) manually extracted regular expressions which were used to detect variable
terms in syslog entries of Taurus. Regular expressions shown in Table 3.8 are dedicatedly
generated to match Taurus syslog entries. The order of their application is important since
certain patterns are subsets of other patterns. Although these regular expressions are
compatible with log entries of many HPC systems, to address other sources of monitoring
data as well as potential major changes in the templates of log entries, an automatic ap-
proach was required. Section 3.3.3 provides detailed information regarding the automatic
approach for extracting regular expressions from general log entries.

Even though most variables can be detected with these basic regular expressions, in
an unlikely case of similarity between variables and constants, the regular expression may
not be able to differentiate between constants and variables correctly. For example the
username panic may be misinterpreted as a constant value like kernel panic. Vari-
ous possibilities for such misinterpretations are imaginable, yet unlikely. Therefore, the
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Table 3.8: Regular expressions used to detect certain terms within Taurus syslogs
Variable Regular expression
Path ([\(\s\,\>\:\=])([\/][a-z0-9_\.\-\:]*)+Version ([\w\.\-]+x86_64)Email ([a-z0-9_\-\.]+@([a-z0-9_-]+\.)+[a-z]+)DateTime (\d{4}-\d{2}-\d{2})T(\d{2}:\d{2}:\d{2})IPv4 (\d+\.\d+\.\d+\.\d+)Port ([\W])(port \d+)Parameter (\$[a-z0-9_]+)URID (uid=[\w\-]+)User (for )((user\ )*[a-z0-9_-]+)Library ([a-z0-9_\-]+\.so(\.\d*)*)Hardware address (0[x][a-f0-9]+\-0[x][a-f0-9]+)Hex Number (0[x][a-f0-9]+)Percentage (\d+\.*[\d]*\%)Serial number ((\s)([a-f0-9\.\-]+\:)+(\s))Size ([^a-z0-9])(\d+[bkmg])([^a-z0-9])

overhead imposed by employing sophisticated methods, such as named entity recognizer
(NER) to detect misinterpretations, is not justifiable. In contrast, encoding is a robust and
lightweight approach to address all forms of misinterpretations. In such scenarios, the
undetected variables are considered as constants and will be eliminated through the en-
coding step. The final encoding step masks any potential data-leakage and guarantees the
highest attainable level of anonymization.

Table 3.9 shows an example of applying PαααRS on Taurus syslog entries. Table 3.9a con-
tains the original syslog entries (the input data). De-identified entries (event patterns) are
shown in Table 3.9b, and Table 3.9c contains the fully anonymized (encoded) syslog entries.
While the message part of syslog entries are fully anonymized, the metadata remains un-
changed.

Through the anonymization phase, sensitive termsof syslogmessageswere de-identified
(page 39, step (4)). The sensitive terms can be de-identified in various forms according to
the intended usage. In contrast, the nonsignificant terms are de-identified always via sub-
stitution by an identical symbol (e.g., all paths such as /usr/bin/ will be substituted by
#PATH#). This form of de-identification in which, all instances of a variable term is sub-
stituted with an identical symbol is referred to as global de-identification. On the other
hand, the substitution of each instance of a variable term by an individual symbol is called
individual de-identification. The global de-identification, by default, applies to all nonsignifi-
cant variable terms. Global de-identification provides the highest degree of generalization,
while individual de-identification prevents any generalization. Categorizing syslog terms
into multiple groups and substituting all terms of each group with an identical group sym-
bol is called group de-identification. The group de-identification provides various degrees
of generalization according to the grouping granularity (variable granulation). The trade-off
between privacy and distinguishability of de-identified syslog entries via individual, group,
and global de-identification methods is shown in Figure 3.13.
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(a) Raw system log entries
Timestamp Source Message
1515625261 taurusi1230 (siavash) CMD (/home/config.sh > output.stat)
1515625370 taurusi3417 pam_unix: session closed for siavash
1515625390 taurusi4023 (parya) CMD (/usr/bin/cmon > mon-1.log)
1515625713 taurusi6201 disabling lock debugging due to kernel taint

(b) Event patterns
Timestamp Source Message
1515625261 taurusi1230 (#USER#) CMD (#PATH# > #PATH#)
1515625370 taurusi3417 pam_unix: session closed for #USER#
1515625390 taurusi4023 (#USER#) CMD (#PATH# > #PATH#)
1515625713 taurusi6201 disabling lock debugging due to kernel taint

(c) Encoded system log entries
Timestamp Source Message
1515625261 taurusi1230 1808e388
1515625370 taurusi3417 0964de42
1515625390 taurusi4023 1808e388
1515625713 taurusi6201 59f2da35

Table 3.9: Anonymization of syslog entries via PαααRS

Individual

Distinguishability Privacy

De-identification granularity

GlobalGroup

Figure 3.13: Distinguishability trade-off. Better privacy is achieved via increasing the granu-larity towards global de-identification in exchange for worse distinguishability.
Considering that on January 29, 2018 11:00:01 PM user siavash executed the

command /usr/bin/check on computing node taurusi1020. This event in system logs
is shownas entryE2: 1517266801 taurusi1020 (siavash) CMD (/usr/bin/check).
In this entry siavash and /usr/bin/check are variable terms, and CMD is a constant
term. In accordance to the intended future usage of the anonymized system logs in this
work, namely behavior analysis, siavash is considered as a significant variable term and
/usr/bin/check as a nonsignificant variable term. The entries of an ideal dataset for
behavioral analysis should have a certain degree of distinguishability as well as similarity.
Based on the entries’ similarity a majority may form (the normal behavior), while the out-
liers (abnormal behavior) could be still distinguished from this majority. To address this
challenge, the event patterns where introduced.

Figure 3.14 illustrates the PαααRS anonymization workflow. The event pattern of a syslog
entry is generated through global de-identification of all variable terms in themessage part
of the respective syslog entry. Global de-identification extracts identical event patterns
from syslog entries with similar messages. Therefore, the similarity between syslog entries
is preserved such that the results of further data analysis are not skewed.
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1517266801 T-1020 (siavash) CMD (/usr/bin/check)

System log entry

MessageLocationTimestamp

(siavash) CMD (/usr/bin/check)

Significant
variable term

Insignificant
variable term

Constant
term

global
de-identification

( # U S R 2 # )  C M D  ( # P AT H # )
( # U S R p # )  C M D  ( # P AT H # )
( # U S R _ # )  C M D  ( # P AT H # )

de-identification
according to usage

1517266925 T-1023 (root)      CMD (/fast/sbin/start)

(root) CMD (/fast/sbin/start)

Significant
variable term

Insignificant
variable term

Constant
term

global
de-identification

( # U S R 1 # )  C M D  ( # P AT H # )
( # U S R n # )  C M D  ( # P AT H # )
( # U S R _ # )  C M D  ( # P AT H # )

de-identification
according to usage

E9efd3a5
1e7ed485
62440f7d

2053d15d
608bdaea
62440f7d

Encoding Encoding

#USR1#, #USR2#: Individual de-identification; replacing each username with a new symbol
#USRn#, #USRp#: Group de-identification; replacing usernames according to the user groups
#USR_#, #USR_#: Global de-identification; replacing all usernames with an identical symbol

#1

#2

#1 #2

: Event pattern, the result of global de-identification of all variable terms

Figure 3.14: The event pattern is the result of a full de-identification of syslog entries. Notethat other forms of de-identification are also possible. The final encoding stepguarantees full data privacy.

Although a hash key might appear devoid of semantics, given the one-to-one relation
between hash keys and event patterns, it is always possible to reaccredit the original se-
mantics to the pattern denoted by a hash key. This accreditation can only be done by the
owners of the adequate information about the event patterns and the hashing function.
However, regardless of the reaccreditation of the original semantics to the pattern, it is
always possible to track similar events according to the similarity of their event patterns
without endangering the users privacy.

The final output of PαααRS consists of the log entriesmetadata in its original format and the
anonymized message as hash key. Depending on the strictness of the applicable privacy
guidelines, the relative semantics of each hash key can also be added to the final output.
Table 3.10 contains the final output of applying PαααRS on the given sample syslog entries
in Table 3.9a, accompanied by the semantics of hash keys.
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Table 3.10: Final output of PαααRS
Timestamp Source Hash key Semantics
1515625261 taurusi1230 1808e388 A command executed by a user
1515625370 taurusi3417 0964de42 A user logged out
1515625713 taurusi6201 59f2da35 Kernel is in taint mode

The anonymization phase may severely affect the quality and usefulness of the input
data. The PαααRS anonymization approach proposes a utility function to quantify the quality
of anonymized system log entries. It has been shown that the quality of anonymized syslog
entries for conducting behavioral analysis for failure detection remains at an adequate
degree, such that the anonymized system logs are useful for further analysis [240].

Since 25th of May 2018 the general data protection regulation (GDPR) is enforced [120].
Complying with the GDPR and the current Technische Universität Dresden (TUD) privacy
regulations [241], syslog entries must be excessively anonymized such that the remaining
significant terms among system logs are so few that it is not worth to preserve them (e.g.,
"failed password for #USER# from #IPv4# port 32134 ssh2"). The only remain-
ing useful information in these cases is the relative semantics (meaning) of the event pat-
tern itself. For the above example the semantics is authentication via ssh failed.

Further analysis on Taurus syslog entries anonymization indicated that: (1) The cleansed
system logs consist of approximately 90%nonsignificant entries (after performing themanda-
tory de-identification), (2) Approximately 5% of the entries are constant (without any vari-
able terms), (3) approximately 5% are entries with significance (retained their useful prop-
erties even after de-identification). Following the necessary de-identification enforced by
policy guidelines, 95% of syslog entries no longer have any significance and therefore, can
be directly converted to hash keys. The 5% of syslog entries which still had a certain degree
of significance even after de-identification, may remain untouched. However, statistical
analysis that focus on anomaly detection14 does not require such information.

Furthermore, the overhead of calculations for preserving these 5% semantics is not jus-
tifiable. Therefore, according to the chosen analysis method in this work the remaining
5% of the syslog entries will be also encoded to hash keys. Thus, regardless of the quality
measurements, PαααRS applies the global de-identification on all Taurus syslog entries.

3.3.2 Storage and Size Reduction

The volume of generated system log entries is in proportion to the system size. The
storage of syslog entries, produced by large parallel computing systems, in view of their
analysis requires high storage capacity. The number of syslog entries generated by each
node of Taurus during 2017 is shown in Figure 3.15.

Size reduction can be achieved via any general lossy or lossless compression algorithm.
When the applied compression method does not change the significance and sensitivity of
14e.g., PrefixSpan, Spade, SPAM, GSP, CM-SPADE, CM-SPAM, FCloSM, FGenSM, PFP-Tree, MKTPP, ITL-Tree, PF-tree, and MaxCPF.
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Figure 3.15: Number of Taurus syslog entries per node in 2017

syslog entries, from the perspective of this work, it is considered as lossless. If the compres-
sionmethodmodifies the significance or sensitivity, it is considered as lossy and is taken as
an additional level of anonymization rather than compression. A careful consideration of
various effective compression algorithms, including Brotli, Deflate, Zopfli, LZMA, LZHAM,
and Bzip2 revealed that in affordable time, compression could reduce the size of non-
anonymized system logs to 25% of their original size (75% reduction) [242, 242, 243, 244].
In contrast, the size of anonymized system logs after anonymization via PαααRS is only 5% to
10% of the original size (90%-95% reduction) [245].

Log aggregation can also significantly reduce the size of the final log collection. However,
since entries will bemerged or discarded during the aggregation process, this work consid-
ers log aggregation as a form of lossy compression thus, an additional level of anonymiza-
tion. Furthermore, the log aggregation is affecting entries prior to the log collection phase.
Therefore, it is considered similar to any other configuration which is part of the HPC sys-
tem characteristics. As a side note, log compression during the transfer phase is also not
recommended [127].

In contrast to the compressed syslog entries which require a decompression phase be-
fore any further analysis, the syslog entries that are anonymized using PαααRS are ready
to be processed in their current hash key format. In addition, compression (as well as
encryption) are bidirectional and may endanger the users privacy. However, the unidirec-
tional anonymization approach of PαααRS eliminates all potential privacy threats and also
preserves the required distinguishability among log entries. Table 3.11 denotes the size re-
duction achieved via anonymization of a syslog dataset consisting of more than 8.6 billion
entries.
Table 3.11: Size reduction by PαααRS, applied on syslog entries collected from Taurus in theyears 2016 and 2017.

Original Anonymized
Syslog size 984.2 GiB 163.4 - 49 GiB15
No. of entries 8.6 ∗ 109 8.6 ∗ 109

Unique entries > 108 < 3000

15The output size with and without metadata.
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3.3.3 Automation and Improvements

This section further improves the previously proposed methods to achieve a higher ac-
curacy and automation. There are available methods for automatic generation of regular
expressions [246] However, automatic generation of regular expressions for natural lan-
guages is extremely inefficient [247]. As mentioned in Section 3.3.1 regular expressions are
used to identify various terms in system log entries and to substitute them with relevant
invariants (constants). For this purpose a set of 38 regular expressions, partly shown in Ta-
ble 3.8, were extracted from Taurus syslog entries. Although these 38 regular expressions
are fulfilling the expected tasks on Taurus syslog entries, some of these expressions are de-
pendent on specific log patterns which prevent proper generalization of the proposed ap-
proach. Therefore, an automatic regular expression generator has been developed [248].

Automatic generation of regular expressions for a given text is a complex and time-
consuming task [247]. However, restricting the input text to a set of syslog entries signif-
icantly reduces the time and computational complexities. Each application has a limited
number of message templates which are used to generate syslog messages. Therefore,
although the message part of syslog entries is unstructured and may hold messages with
any pattern, the number of these message patterns is limited by the number of running
applications and daemons (syslog message generators).

Considering Example 3.3 with four sample syslog entries. Although the username, IP
address, and port number (shown in red) are different in each syslog entry, the general
semantics for these particular events is identical. The similarity among syslog entries gen-
erated for a particular event facilitates the automatic generation of regular expressions
for system log entries. Figure 3.16a illustrates the workflow of automatic regular expres-
sion generation. The last line in Example 3.3 (marked as RE) denotes the automatically
generated regular expression. An example of automatic regular expression generation for
multiple syslog entries is shown in Figure 3.16b. The same method can be applied on any
other monitoring data that contains unstructured free-form text.

Example 3.3: Similar syslog entries
A] failed password for siavash from 192.168.3.5 port 5734 ssh2

B] failed password for u7754 from 192.168.4.35 port 30740 ssh2

C] failed password for parya from 192.168.7.43 port 3405 ssh2

D] failed password for root from 192.168.5.74 port 5407 ssh2

RE] failed password for (\w+) from 192.168.(\d+).(\d+) port (\d+) ssh2

As shown in Figure 3.16a, five detection classes are used to identify textual structures
such as functions, parentheses, dates, IP addresses, and so forth in system logs. Further
analysis of system logs revealed that only two detection sub-classes of parentheses and
numbers are sufficient for correct detection of textual structures in syslog entries.

Twomain tasksmust be fulfilled in view of understanding systembehavior via syslog en-
tries. First, the identification of similar events and second, the distinction of the differences
between similar events. Table 3.12 provides a set of syslog entries with their hash keys (in-
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Marking common terms in 
system log entries

(marking terms as invariant)

Parentheses and quotations

Functions

File/application addresses

Dates, Hours, IP addresses

Names, Numbers

Classifying
log entries into classes, based 

on Levenshtein similarity metric

Harmonizing
differences across entries of 

the same class

Refining
and adjusting the resulting 

regular expressions

(a) Workflow

(sshd:session): session closed for root

Job `cron.daily' terminated 96734

Job `cron.weakly' terminated 537352

(sshd:session): session closed for siavash

Job `cron.hourly' terminated 241325

(sshd:session): session closed for florina

(sshd:session): session closed for s125342

Job `cron.daily' terminated 14038

CLASS 1

#PARA#: session closed for root

#PARA#: session closed for siavash

#PARA#: session closed for florina

#PARA#: session closed for s125342

CLASS 1

#PARA#: session closed for #VARI#

CLASS 2

Job `cron.hourly' terminated #DGIT#

Job `cron.daily' terminated #DGIT#

Job `cron.weakly' terminated #DGIT#

Job `cron.daily' terminated #DGIT#

CLASS 2

Job #VARI# terminated #DGIT#

RegEx 1

(\(.+?\))\: #: session closed for (.+)

RegEx 2

Job (.+) terminated ([0-9]+)

(b) Example
Figure 3.16: Automatic generation of regular expressions for syslog entries. A variation ofLevenshtein similarity metric [249] is used for the classification of log entries.
dividual de-identification) and event patterns (global de-identification). The log entries #2
and #9 from Table 3.12 report the occurrence of similar events. However, different users
triggered each of these similar events. For a detection mechanism it is important to un-
derstand that the same type of event occurred by different users of the system. The event
patterns in Table 3.12, enables the detection mechanism to identify similarities between
events, while the hash keys are employed to represent the differences.

Table 3.12: Pre-anonymized entries; nonsignificant terms are de-identified
# Message Significant term Hash key Event pattern1 (siavash) CMD (#PATH#) siavash bb2d95d2 66dc27422 (parya) CMD (#PATH#) parya 23343ad0 66dc27423 (siavash) CMD (#PATH#) siavash bb2d95d2 66dc27424 starting 0anacron 0anacron 47c6b01d dd7407125 Anacron started on #TIME# Anacron 22bb4f1a e5a594626 Jobs will be executed sequentially - f1e7eac3 f1e7eac37 Normal exit (0 jobs run) 0 e46c1bdb eac7924f8 finished 0anacron 0anacron 76690e70 a5803a8a9 (siavash) CMD (#PATH#) siavash bb2d95d2 66dc274210 (root) CMD (#PATH#) root 752d8638 66dc274211 (root) CMD (#PATH#) root 752d8638 66dc274212 (siavash) CMD (#PATH#) siavash bb2d95d2 66dc274213 (parya) CMD (#PATH#) parya 23343ad0 66dc274214 (siavash) CMD (#PATH#) siavash bb2d95d2 66dc274215 (siavash) CMD (#PATH#) siavash bb2d95d2 66dc274216 starting 0anacron 0anacron n 47c6b01d dd74071217 Anacron started on #TIME# Anacron 22bb4f1a e5a5946218 Jobs will be executed sequentially - f1e7eac3 f1e7eac319 Normal exit (4 jobs run) 4 0c3b639c eac7924f20 finished 0anacron 0anacron 76690e70 a5803a8a
System logs are either periodic or event-driven. The periodic syslog entries reappear

with a constant frequency (e.g., once every 10 minutes). The event-driven entries on the
other hand, only appear after the occurrence of a certain event. The absence of periodic
syslog entries, as well as changes in their frequency may indicate an abnormal behavior.
Furthermore, differentiating between periodic and event-driven entries reduces the com-



48 3. DATA COLLECTION AND PREPARATION
plexity of pattern detection among event-driven entries.

The automatic categorizationmethod in this work employs themajority voting approach
among a homogeneous neighborhood16 of computing nodes. Since general purpose HPC
systems such as Taurus are used by a large community of users, their events mostly follow
a daily pattern (Figure 3.5 on page 29). Therefore, analyzing 24 hours of monitoring data
(i.e. system logs) reveals both periodic and common event-driven patterns. The majority
voting among homogeneous neighborhood of computing nodesmitigates potential incon-
sistencies and noises among monitoring data. Therefore, an accurate pattern for periodic
and common event-driven entries can be extracted. Then any log entry can be automati-
cally assigned to any of these two categories. A log entry which does not follow the known
patterns can be the sign of a potential anomaly.

3.3.4 Data Discretization and Noise Mitigation

The proposed approach in this work is based on time-series analysis. Therefore, prior
to analysis the continuous monitoring data collected from computing systems should be
discretized. System logs are discrete time-series by nature, therefore, further discretization
is not required. However, discrete binning of syslog entries can be used to mitigate noises.
In this work a dynamic time binning is applied on syslog entries. Each bin contains the
accumulated number of events occurred in a certain time window per node and per event
class.

The dynamic binning significantly contributes to detection of periodic patterns in mon-
itoring data. Many patterns are only visible using a certain (binning) bucket size. Larger
bucket sizes may completely hide a pattern and smaller bucket sizes may reduce the sig-
nificance of patterns. A sample binning of system logs using three different bucket sizes is
shown in Figure 3.17. Only in Figure 3.17b a significant periodic pattern can be detected.
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(a) Bucket size = 1 second:Patterns are not significant.
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(b) Bucket size = 5 seconds:Significant periodic patterns.
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(c) Bucket size = 10 seconds:No detectable patterns.
Figure 3.17: Significance of data binning bucket size on detectability of periodic patterns
To calculate the suitable bucket size, syslog entries of correlated nodes17, collected in

the period of one hour, are re-sampled usingmultiple bucket sizes. The size of each bucket
varies from 60 to 3600 seconds with 60-second steps. Each bucket holds the average num-
ber of syslog entries generated during that period per second. The standard deviation of
values in buckets with a similar size are calculated.
16Node vicinity defined in Section 4.2.1 further expands the concept of neighborhood homogeneity.17Refer to Section 4.2.1 for more information.
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The smallest bucket size that is (1) a local minimum in comparison to the nearest smaller

and larger buckets, (2) is less than a certain threshold18, and (3) projects a descending trend
is chosen as the suitable bucket size. Figure 3.18 illustrates the final step of this calculation
for Taurus. Green dots are potential suitable bucket sizes (local minimums). The horizontal
yellow line indicates the threshold (standard deviation = 1) and the vertical red line repre-
sents the automatically chosen bucket size (600 seconds = 10 minutes) for data binning.
This calculation will be repeated after each major change in syslog generation pattern.
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Figure 3.18: Calculation of suitable bucket size for data binning
Noise is an erroneous presence or absence of entries within the monitoring data. Sys-

logs are generated by applications on individual computing nodes, thus, any failure directly
affects syslog entries via introducing random noises, interrupting log generation, or im-
peding log collection. Furthermore, even harmless errors may introduce random noises in
syslog entries.

To identify the normal behavior of computing systems, it is necessary to remove the ran-
dom noises. Beside software and hardware failures which may inject random noises into
themonitoring data, other actions such as software updates, administration activities, and
systemmaintenance can also introduce noises. In addition, most production HPC systems
are used by various groups of users and for different applications. Therefore, existence of
random noises inmonitoring data is highly plausible due to human errors and applications
misbehavior [57, 5]. Part of these noises can be removed via discrete binning of the mon-
itoring data.However, an extreme discrete binning can decrease the accuracy of anomaly
detection by decreasing the monitoring data precision and hiding the existing patterns.

This work utilizes the neighborhood homogeneity of HPC systems to mitigate random
noises. Computing nodes in HPC systems are divided into smaller subsets such as chassis
or racks. Majority of these small subsets consist of homogeneous computing nodes which
share various physical resources such as power supply, cooling system, and network in-
frastructure. Homogeneous computing nodes which are physically collocated (adjacent)
and share similar physical resources tend to project similar behaviors [250]. Therefore,
in a homogeneous subset of computing nodes, common behavior of the majority can be
considered as the normal behavior in that particular subset.
18The threshold is system dependent and should be adjusted once for each computing system.
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Figure 3.19 shows the extraction of common node behavior from noisy syslog entries on

Taurus in a subset consisting of 8 homogeneous computing nodes. Colored cells mark the
occurrences of event a5803a8a (event pattern) on 8 adjacent nodes during 32 minutes.
The bucket size is 60 seconds. The bottom row indicates the normal pattern of event oc-
currences, extracted via majority voting among the 8 computing nodes. Events are placed
in each bin according to their relative time passed since midnight. Further time synchro-
nization is not required.

Node ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Normal 

behavior

Figure 3.19: A sample of normal behavior extraction usingmajority voting. Occurrence pat-tern of one event class (a5803a8a) on 8 nodes, in 32 minutes with bucket sizeof 60 seconds. The bottom row, shown in green, holds the result of majorityvoting on all 8 nodes. The darker shades indicate higher number of entries.Since each event class has its own pattern, to emphasis on the important de-tails only one event class is shown.
Outliers are valid events which distant from the norm. Outliers can impede correct anal-

ysis of systems behavior. However, in contrast to noises, outliers are part of the systems
behavior, thus, they should not be removed. Outliers are not always indicators of abnor-
mal behaviors. It is worth to emphasize that the goal of this stage is extracting the pattern
of normal (healthy) system behavior. Therefore, standardizing the data range (scaling) is
sufficient to omit the negative effect of outliers.

Considering the noise mitigation approach shown in Figure 3.19, when the majority of
computing nodes project abnormal behavior, the extracted behavior pattern will be in-
correct. However, analyzing Taurus behavior revealed that except major system failures,
that affect the majority of computing nodes, utilizing the neighborhood homogeneity and
majority voting extracts the common event patterns correctly. Nevertheless, the system
log entries collected during major system failures must be excluded from the training data
(ground truth) to prevent unexpected results.
3.3.5 Cleansed Taurus System Log Dataset

Syslog entries collected from 2046 Taurus nodes were processed using PαααRS and en-
coded into their respective anonymized format (event pattern). Out of the total number of
3.26 billion collected syslog entries in the year 2017, 10.8 million entries were marked as in-
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valid entries and were removed from dataset. 1, 488 unique event patterns were extracted
from the remaining 3.25 billion syslog entries forming the cleansed Taurus Syslog dataset;
the TaurusCleansed.

Each record of TaurusCleansed consists of five fields: timestamp, node ID, facility,
severity and the message hash key (event pattern). A sample of TaurusCleansed records
is shown in Example 3.4. It is important to note that this dataset is only created for the
purpose of this work. In production environment all pre-processing steps are performed
online on the stream of incoming monitoring data.

Example 3.4: Sample of TaurusCleansed records
timestamp node facility Severity hash key

---------- ---- -------- -------- --------

1488424393 5103 4 4 23666bbc

1488424483 5101 3 6 23666bbc

1488424501 5104 0 3 85f5c18b

1488424573 5102 3 4 23666bbc

1488424657 5101 4 6 760c5208

1488424657 5103 4 6 bba3d47c

1488424657 5102 4 5 f9cfa0b9

3.4 Marking Potential Failures

Failures can be observed and analyzed in different granularities, from a single transistor
to the entire HPC system. Nodes are the smallest units in HPC systems which have a fully
functional computational stack, yet are independent and can be added to or removed from
HPC systems with minimum side-effects [6]. Therefore, the granularity of failure detection
in this work is set at the node level19.

Due to various technical reasons, a complete list of all node failures on Taurus for the
period of this work is not available. Therefore, this section retrieves a complete list of
Taurus node failures as ground truth for further analysis. The available collection of Taurus
system log entries contains data gaps, explained in Section 3.2.1, which aremainly incurred
due to interruption of data collection mechanism. These gaps do not necessarily indicate
node outages. On the other hand, some failures, such as failures caused by power outage,
leave no traces in syslog entries. Therefore, one of the first challenges is to identify real
node failures on Taurus using the existing imperfect monitoring data [251].

Node failures in computing systems can be divided into two main categories according
to their causes. Some failures are occurring during the normal operation of theHPC system
and are caused by internal factors such as software and hardware errors or racing condi-
tions. While other failures are occurring due to external causes such as power outages and
human errors. Analyzing the impact of external causes on node failures requires additional
19Node failure and failure are used interchangeably in the rest of this work.
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Figure 3.20: Timeline of the major failure on March 16th

information regarding the external factors, such as detailed information about the behav-
ior of the power supplier company, which is currently not available. Furthermore, multiple
independent protectionmechanisms protect Taurus against severe damages such as over-
heating. Therefore, beside the human interactions and external causes of failure such as
power outage, the protection mechanism is also the cause of certain outages. As an ex-
ample, the large failure shown in Figure 3.20 was caused by the overheating protection
mechanism to prevent further damages to computing nodes.

In this particular example 3 nodes (out of 90) were able to detect and report the unusual
temperature increase before activation of the overheating protection mechanism. There-
fore, it was possible to detect the reason behind this major failure via analyzing syslog
entries. However, in most cases the protection mechanism detects the unusual behavior
earlier than computing nodes and will be activated. Thus, no footprints of the failure’s
cause exist in Taurus syslog entries. In such cases, the activity logs of protection mech-
anisms should be included. Similar analysis methods, as used for syslog analysis in this
work, can be applied to any other form of activity logs. However, to improve the general-
ity of the proposed approach, the protection mechanism is considered an external cause
similar to power outages and human interactions. Therefore, in this work the focus is on
the first group of node failures which are referred to as regular failures and are caused by
internal factors.

The first step to identify such failures is to retrieve all node outages and afterwards
distinguish regular failures from those which may happen as a result of external factors
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such as maintenance, human errors, and so forth. Figure 3.21 illustrates the main root
causes of Taurus node outages in 2017.

0%

10%

20%

30%

40%

Count Duration

Figure 3.21: Main root causes of Taurus node outages in 2017
Taurus computing nodes generate and send syslog entries to a central log collector

which stores them for future analysis. This passive log collection mechanism is chosen
since it imposes no additional overheads, and is applicable to all HPC systems. However,
this approach leads to a common problem shared by all remote-access systems: it is not
possible to truly indicate whether a node is down, too busy to respond, or simply lost its
connectivity. Therefore, the failure identification process becomes more challenging. Due
to employment of the passive log collection mechanism, a node outage can be confidently
detected only when a direct indication in form of an entry in monitoring data (e.g., syslog)
is generated by the failing node and correctly received and stored by the central log col-
lector, e.g., “Kernel panic - not syncing: Fatal Exception.” However, in many
cases a node outage leaves no direct indication in system logs. A workaround is to assume
the absence of log entries, for longer than a certain time interval, an indication of a poten-
tial outage. Nonetheless, this assumption is not accurate. For various reasons the flow of
system log entries from computing nodes to the central log collector might be interrupted
or delayed, which appears as log absence interval and therefore, might be interpreted as
outage, although, the computing nodes are functional. Also, in many cases immediately
after the occurrence of an outage, protection mechanisms recover the node. In the both
later scenarios, an active node probing approach may also fail to detect all node outages
correctly. Therefore, in this work two overlapping methods of (1) analyzing syslog-ng in-
ternal metrics and (2) back tracking and cross-checking are used to retrieve Taurus node
outages and provide a reliable set of ground truth for the next steps.

The syslog-ng daemons periodically report statistics of collected system logs20. On Tau-
rus, under current configuration, once per hour syslog-ng’s internal metrics are recorded
as a log statistics entry. These metrics are mostly based on various message counters such
as the number ofmessages that successfully reached their destination driver (processed),
the number of dropped messages (dropped), and the number of messages passed to the
message queue of the destination driver that are waiting to be sent to the destination
(queued). To retrieve the potential time frame of a node failure, three syslog-ng metrics
20syslog-ng.com/technical-documents/doc/syslog-ng-open-source-edition/3.16/administration-guide/80
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are used: timestamp, stamp and processed. The timestamp is the UNIX timestamp of
the recorded log statistics entry, while the stamp is the UNIX timestamp of the last message
sent to the destination.

Two consecutive Syslog-ng log statistics entry are shown in Example 3.5. In the first entry
the timestamp is 1485965346, the stamp is 1485961746, and the processed counter is
29954. The unused metrics are removed to increase readability.

Example 3.5: Syslog-ng log statistics entry
1485965346 [...] Log statistics; processed=’src.internal(s_sys#1)=29954’,

stamp=’src.internal(s_sys#1)=1485961746’, [...]

1485968946 [...] Log statistics; processed=’src.internal(s_sys#1)=29955’,

stamp=’src.internal(s_sys#1)=1485965346’, [...]

To retrieve the potential time frame of a node instability on Taurus, two following condi-
tions are checked. First, the time difference between timestamp and stamp of each entry
on a healthy Taurus node should always remain equal to 3600 seconds (1 hour). Second,
the processed counter for s_sys in each entry must be incremented by exactly 1 unit in
comparison to the previous entry. For both entries shown in Example 3.5, both conditions
hold true. These two conditions for the entire Taurus syslog dataset were controlled. All
intervals of node instability were retrieved and marked. It is expected that each node had
experienced at least one failure during its instability interval.

Through analyzing Taurus system logs it has become experimentally evident that all
nodes during a healthy boot, leave similar footprints in their syslog entries. If a node fails
to generate the expected footprint at boot time, it is an indication of a faulty boot process
and thus the node will be either automatically rebooted again or fails shortly afterwards.
The higher frequency of log generation at boot time in comparison to the normal operation
time is another indicator of a boot event, which can be used to identify a boot process as
well as, distinguishing between healthy and problematic boot processes.

The proposed node outage retrieval method also searches for the footprint of boot
events among system log entries. Upon detection of a boot event, syslog entries are back-
tracked to extract the last syslog entry before the boot event. The timestamp of last syslog
entry before the boot event is considered as the point of outage21. Using the proposed
method, all node outages will be identified. The only exception is when a node fails and
has no further successful boot process. In such cases, comparing the timestamp of the
last available syslog entry with the current time (31-12-2017 23:59:59 in this work) re-
veals the missing outage. Figure 3.22a illustrates all detected boot events on Taurus within
the period of one year. Unexpected events (shown in red) indicate the absence of infor-
mation in system logs which might be signs of potential crashes. Expected events indicate
scheduled boot eventswhich are due tomaintenance or intentionally caused via protection
mechanisms22.

Retrieved node outages are then compared against the other available data sources
21The last entry might also be a shutdown or reboot command.22In such cases, rather than a sudden power off, a shutdown command is executed.
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(a) Node outages retrieved via syslog analysis.
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(b) Slurm job status report
Figure 3.22: Node outages and job reports on Taurus. Intervals of unavailability of job re-ports do not necessarily specify node outages.

described in Table 3.2 on page 32. When a node outage is happened out of the scheduled
maintenance period, and no job could be accomplished on that particular node at the time
of the detected outage, the outage ismarked as a regular failure. As Figure 3.22b illustrates,
it is common that certain jobs on a specific node fail although other jobs on the same
node are accomplished simultaneously. The red dots indicate jobs that are failed due to
node failures. Node outages that are recorded in the outages database, which monitors
the availability of the HPC system from users perspective, are also considered as regular
failures.

Using the procedures introduced in this section, a set of ground truth is built for Taurus
failure statistics. This dataset together with the information obtained in previous steps are
stored in an SQLite database, namely taurusMETA. The schema of taurusMETA database
is shown in Figure C.1 on page 145.

In total 11, 463 intervals of instability were detected via analyzing Syslog-ng internal met-
rics stored in syslog entries and back tracking of boot events, out of which, 3, 332 inci-
dents were either initiated or interrupted by system moderators. Figure 3.23 shows an
overview of Taurus instability intervals. Among instability intervals, Figure 3.23a indicates
five system-wide instabilities. Further analysis revealed that on March 14th, as well as on
June 26th and 27th, system-wide maintenance was the root cause of nodes instability.
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In addition, on 8th and 21st of December 2017, the system-wide failures were caused

by human error and filesystem bug respectively. Therefore, all incidents related to these
five days (5, 358 incidents) were removed from the potential Taurus node failures dataset.
Figure 3.23d shows the impact of these five incidents on individual Taurus nodes. The re-
maining 2, 773 incidents (node outages) are considered as potential node failures. As shown
in Figure 3.23b, the majority of nodes were recovered to stable conditions in less than five
hours. Out of 2, 046 Taurus computing nodes, 29 nodes did not have any useful failure
information23.
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Figure 3.23: Taurus node instability intervals in year 2017

Figure 3.24 illustrates the number of potential Taurus node failures per day in 2017. The
pattern of node failures over the year 2017, shown in Figure 3.24a, has no linear correla-
tion to the pattern of job failures shown in Figure 3.24b, implying that the number of jobs
running on some nodes are extremely larger than the others. However, the low number
23The 29 nodes are: 1005, 1125, 1149, 1160, and 1172 from Island 1, 2045-2047, 2050, 2055, 2063, 2069-2070, 2078,2081-2082, 2085, 2087, 2089-2091, 2097, 2098 and 2102-2104 from Island 2, and 3073 and 3175 from Island 3.
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of node failures on weekends, as shown in Figure 3.24a, implies a direct relation between
user activities and node failures. Figure 3.5 on page 29 indicates similar correlations with
a different granularity.
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Figure 3.24: Number of potential failures per day in year 2017

The taurusMETA dataset provides a list of all regular failures24 of Taurus HPC cluster.
Figure 3.25 shows a node-level overview of potential Taurus node failures.

During the year 2017, 93.96% of all jobs submitted to Taurus were executed on single
nodes, 4.43% on 2 to 4 nodes, 1.33% on 5 to 16 nodes, and 0.27% on 16 to 512 nodes. In
total 1.41% of jobs that were running on multiple nodes, as reported by Slurm, failed due
to node failures. Out of which, 10.77% of job failures were directly caused by node failures.
Resulting the interruption of 1857 tasks on various nodes. The distribution of accomplished
and failed jobs, as reported by Slurm, is shown in Figure 3.26.

No significant pattern or correlation can be observed between node and job failures25.
However, this might be due to the low number of multiple-node failures on Taurus in the
year 2017. The independence of job failures and node failures can be better illustrated via
a side by side comparison of daily pattern of job accomplishments versus job failures. As
shown in Figure 3.27, although there are days with multiple job failures, the number of job
accomplishments remains almost identical throughout the year. Furthermore, even those
job failures that are reportedly caused by node failures do not have any direct correlation
with the number of node failures.

Analyzing taurusMETA provides better understanding of patterns in Taurus behavior.
The frequency of all potential failures according to the duration of each failure (in hours) is
listed in Figure 3.28. Themajority of failures last longer than 1 hour and recover in less than
6 hours. However, there are three exceptions: (a) 91 failures with the length of 22 hours,
(b) 43 failures with the length of 28 hours and (c) 47 failures with the length of 48 hours.
Considering the large differences between these peak values and their neighboring values,
it is concluded that failures in each group (a, b, and c) are strongly correlated.
24Failures that are caused by internal factors during the normal production interval.25Two other large-scale studies on IBM BlueGene/QMira and Blue Waters also conclude that 99.4% and 98.5%of job failures were due to user behaviors, respectively [5, 252].
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Figure 3.25: Potential node failures occurred in 2017. Each cell represents a single nodeand each row represents a rack. The total number of potential node failures isshown in each cell.
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(b) Total number of jobs terminated due to failureof one or more allocated nodes
Figure 3.26: Jobs status reported by Slurm per node in year 2017
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(b) Job failures caused by node failures
Figure 3.27: Number of jobs accomplished or failed per day in year 2017

Analyzing the failures in group (a), confirms the correlation hypothesis. 85 out of 91
failures with the duration of 22 hours were simultaneous failures occurred on March 16th.
Analyzing the syslog entries of these 85 nodes does not provide any information regarding
the cause of this failure. Looking at the list of all node failures onMarch 16th reveals 5 addi-
tional node failures on the same day with different failure duration. More interestingly all
of these 90 failures (85 + 5) were occurred on five neighboring racks26. Fortunately, 3 of the
newly discovered node failures had traces of the cause of this major failure. Analyzing the
syslog entries of node 5446, 5504 and 5516 revealed that this major failure was caused by
malfunctioning of the central cooling system in those five neighboring racks which conse-
quently activated the overheating protectionmechanismand resulted in the sudden power
down of all five racks. The timeline of significant events from the first detectable anomaly
on node 5446 until the failure of all 90 nodes is shown in Figure 3.20 on page 52. Early
detection of the abnormal behavior at 09:17 could have provided more than 1.5 hours lead
time to prevent the major failure at 10:50.

Analyzing the failures in group (b) and (c) confirms the existence of similar form of tem-
poral correlations. Out of the 43 failures with the duration of 28 hours in group (b), the 35
failures that occurred on February 13th were most likely caused by network problems. Out
of 47 failures with the duration of 48 hours in group (c), the 46 failures that occurred on
January 17th were also caused by overheating protection mechanism.
26Racks: 24, 25, 26, 27, and 28
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Figure 3.28: Number of potential node failures classified based on the duration of eachfailure. More than 81% of failures were recovered in less than 5 hours.
The reasons behind each of these 3 major failures, namely, malfunctioning of cooling

system and problem in network connectivity, reveals the unexpectedly long failure dura-
tion as well as the large number of simultaneous node failures. Both cases which were
caused by malfunctioning of cooling system could have been prevented with few hours
lead time, providing enough time to prevent the upcoming failures. Therefore, it can be
concluded that certain failures are predictable. However, to evaluate the generality of this
conclusion, first the null hypothesis should be rejected.
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4 Failure Prediction

Chapter 4 describes the methodology and tools which were used and developed in this
work to analyze computing systems behavior. Chapter 4 covers the orange building blocks
shown in Figure 4.1. The output of this chapter is a comprehensive failure predictor for HPC
systems. Behavior analysis in this work are conducted through 3 phases: failure correla-
tion, pattern detection, and anomaly detection. Methods of the first phase manually ana-
lyze HPC system monitoring data to identify potential correlations among failures. During
the second phase semi-automatic methods detect potential patterns in HPC system mon-
itoring data prior failure events. The third phase attempts to automate the entire failure
prediction process.
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Figure 4.1: Major building blocks and the workflow of ȷam–e ȷam. Building blocks shown inorange are covered in Chapter 4.
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4.1 Null Hypothesis

This work uses syslog entries as the main monitoring data for detecting abnormal be-
haviors in HPC systems. Prior to practical syslog analysis, the fitness of syslog entries for
behavioral analysis should be proved. It should become evident that syslog entries, that
are collected before a node failure, project different patterns than the patterns observed
during the normal operation of HPC systems. To achieve this goal, the HPC system moni-
toring timeline is divided into 4 sections of pre-event time (PET), event time (ET), post-event
time (PoET), and inter-event time (IET) around each identified node failure (ground truth).
A schematic illustration of the monitoring timeline is shown in Figure 4.2.

IET PET PoET IET PET PoET

E1 E2

IET PET PoET

E3

Figure 4.2: Division of events timeline into inter-event time, pre-event time, event time, andpost-event time.
A node failure may last from seconds to hours or days, ET refers to the entire duration

of a node failure1. PET denotes a time window before the failure occurrence. PoET marks
a short time window after node recovery. During the PoET interval, the system is unstable
and the collected syslog entries are not reliable. IET on the other hand, specifies a time
window that has no overlap with PET, ET, and PoET intervals. During the IET intervals, the
system is stable and operates normally.

The null hypothesis assumes that the patterns observed before node failures (PET) are
similar to patterns observed during the normal operation (IET). If this hypothesis holds true,
it is concluded that there is no correlation among syslog frequency and the system status
thus, the syslog frequency is not a usefulmeasure to predict node failures. To reject the null
hypothesis, it must be shown that the distribution of certain data features, prior to a fail-
ure occurrence, significantly changes. For this purpose the distribution of syslog entries’
metadata, namely facility and severity, is analyzed. The facility and severity

values of Taurusi1235 syslog entries for a duration of 24 hours before the failure are
shown in Figure 4.3. Horizontal axis in Figure 4.3 shows facility-severity pairs such
as usr-err that stands for syslog entries produced by a user facility with the error severity
level2. Sudden changes in the appearance of syslog entries regardless of the facility name
and severity level may be the indication of an upcoming failure. In Figure 4.3 four sudden
changes are marked with black circles, namely kern-err, kern-warning, kern-info,
and authpriv-info. Out of 2,773 potential failures on Taurus in 2017, 127 failures had
overlapping pre-/post-event intervals. Due to these overlaps the PET and PoET of respec-
tive failures cannot be correctly calculated. Therefore, these 127 failures were excluded
from the analysis in this section.
1E1, E2, and E3, in Figure 4.2, are examples of ET. Since no syslog entries are available during event times, ETsare shown as solid vertical lines rather than time intervals.2Table 2.2 on page 9 provides a complete list of syslog facilities and severity levels.
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Figure 4.3: A sample of sudden increase in the frequency (marked with black circles) ofcertain syslog entries shortly before the failure of node Taurusi1235 at 17:42:22.
Upon observation of a sudden change in the node behavior, node enters an instability

interval. A useful prediction should provide enough lead time that allows required pro-
tective measures to be taken. Therefore, the feasibility of performing node failure predic-
tions with useful lead time should also be verified. To calculate the potential lead time,
the instability period before each failure, using the method introduced in Section 3.4, was
calculated. 97% of the failures had an instability period of 60 minutes or shorter and the
respective nodes were behaving normal (at least) during the last 24 hours before each fail-
ure. The distribution of instability periods for these 2,536 failures are shown in Figure 4.4.
The lead time of failure predictions at most can be equal to the duration of node instability
interval. According to Figure 4.4 it is concluded that for majority of failures, upon an early
detection of node’s instability, a node failure prediction with useful lead time can bemade.
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Figure 4.4: Distribution of the nodes instability interval before each failure. Out of 2,624total failures, 88 failures with instability periods of longer than 1 hour are notshown in this figure. Instability duration of 0 indicates failures that occurredimmediately after a system boot.
To extract the effective features that reveal abnormal behavior, the frequency of symbol

occurrences for all 2, 536 failures has been calculated. For this calculation the base distance
of 300 seconds (five minutes) is chosen. In each step the new distance is calculated as the
summation of previous distance and the base distance. Therefore, with the base distance
of 300 seconds, the first four distances will be 300, 600, 900 and 1200 seconds. In each step
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the starting-point of collection is the point of failure minus the calculated distance. This
starting-point is assumed to be the point of instability. The total number of symbols before
and after the starting-point within an equal distance are counted. Figure 4.5a shows the
first four steps of counting symbols before a known node failure. In normal situations, the
ratio of counted symbols within the intervals before and after the moving starting-point
should remain equal. However, in an abnormal situation the ratio is expected to change
as shown in Figure 4.5b.
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Figure 4.5: Sampling and the expected ratio of syslog entry symbols to assess the null hy-pothesis. A continuous change in the difference of syslog entries collected be-fore and after a symptom indicates a potential problem.

The frequency of symbols counted in various distances from the point of failures is
shown in Figure 4.6. Among the available parameters and based on the amount of changes
between these values the user-err is chosen to assess the null hypothesis.
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Figure 4.6: The frequency of syslog entries metadata of all Taurus nodes prior to occur-rence of a failure. Control is a semi-random generated series of values repre-senting a normal distribution.
The frequency of user-err symbols before and after themoving starting-point is shown

in Figure 4.7. The ratio shown in Figure 4.7 closely follows the expected ratio shown in Fig-
ure 4.5b. The frequency of syslog entries closer to the point of failure significantly differs
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from the normal operation. This significant deviation rejects the null hypothesis. Based on
this observation the fitness of syslog entries for behavioral analysis is concluded.
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Figure 4.7: The frequency of syslog entries metadata (usr-err) prior to occurrence of fail-ures.

4.2 Failure Correlation

Early detection of failure chains prevents their propagation. Correlations among node
failures, leading to formation of failure chains, derive along three dimensions: (1) Temporal
denotes cases when the time interval between consecutive failures falls below a certain
threshold. (2) Spatial denotes cases when the failed nodes share a physical resource (e.g.,
chassis). (3) Logical denotes cases when the failed nodes share a logical resource (e.g.,
batch job).

Among the three dimensions of failure correlation (time, space, and logic), themost rele-
vant one is the logical dimension as it can help to prevent re-occurrence of the same failure
in the future. However, this correlation is the hardest to infer. Oftentimes the logic behind
a group of failures is so complex that the correlation can easily be overlooked. Whenever
the logical correlation between node failures is not immediately visible, analyzing the other
two dimensions (time and space) of failure correlation might help to infer the existence or
absence of a logical correlation between failures. By definition, logical correlations are de-
rived from strong correlations in space and time [253].

Figure 4.8a shows a group of 22 failures over 24 hours in Taurus. Each column shows the
physical location of nodes in an Island.Rack.Chassis format (e.g., I1.R2.C3 indicates a node
located in Chassis 3 of Rack 2 in Island 1). The thick horizontal lines divide failures into
four sections according to the time of failure, i.e., temporal correlations. Same temporal
correlations are represented by four different colors in the Time row of Figure 4.8b. In
Fig. 4.8b, color coding is used to show the correlation between failures in each row. Failures
with identical color in the time row are occurred in a certain time window (e.g., 10 minutes).
Failures with identical color in the chassis, rack, or island rows, occurred in the same chassis,
rack, or island, respectively, as the failures preceding them in these locations. Failures with
identical color in the reason row, occurred due to the same logic as other failures on this
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(b) Correlation of node failures over 24 hours on21-04-2015. The number of correlated failuresplays an important role. In each group ofcorrelated failures, the dimension which hasmore correlations is the dominant one.
Figure 4.8: Temporal and spatial correlation among failures

The bottom section in Figure 4.8a contains only one failure and is, therefore, excluded
from further correlation analysis. The remaining three sections indicate strong temporal
correlations between failures. An identical color pattern, in Figure 4.8a, indicates spatial
correlation among failures i.e., failures that occurred in the same rack. All failures shown
in Figure 4.8 were occurred in one island (Island 1). According to Figure 4.8b except one
single failure, the remaining 21 failures are logically correlated. Backtracking the system
logs revealed that the 21 failures (shown in red) were raised by a problem in the distributed
file system3, and the failure with a different reason (shown in blue) was due to an out of
memory problem.

Temporal and spatial correlations are direct and simple correlations. There are more
complicated correlations among computing nodes in HPC systems that can better explain
the cause of failures and their propagation. Thus far, the complicated correlations were
referred to as the logical dimension. These three dimensions can be extended to arbitrary
number of dimensions based on the relations among computing nodes. This work pro-
poses the concept of node vicinity to extend the failure correlation dimensions on HPC
systems.

4.2.1 Node Vicinities

Computing nodes with similar characteristics are considered to be in the vicinity of each
other. Node characteristics include any physical, spatial, temporal, or logical properties of
the computing nodes. A group of computing nodes located in the same rack, performing
3Lustre file system maintains a large amount of POSIX-related metadata that are highly error-prone. Theimplementation of Lustre file system checker(LFSCK) that is designed to detect metadata inconsistencies isalso sub-optimal. Therefore, the administrators reluctant to use it as regular maintenance tool [254].
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different tasks of the same job, or sharing a common resource (e.g., file system, power
supply unit), are all examples of nodes in the vicinity of each other.

The concept of vicinity defines new dimensions of nodes correlation, beyond the natural
temporal and spatial correlations. Each vicinity can be imagined as a new dimension in
which two separated entities (nodes) become correlated. For example, points A : (1, 10)
and B : (4, 6) in a 2D Cartesian representation are separated by the distance of 4 − 1 = 3
on the X axis and 10 − 6 = 4 on the Y axis, respectively. Defining the new dimension
Z, according to a common (but so far unseen) feature of A and B would result in a 3D
representation of A : (1, 10, 5) and B : (4, 6, 5). Here ’5’ denotes that common feature. In
the new 3D representation, even though A and B are still separated on X and Y , their
distance on the dimension Z will be 5 − 5 = 0. In another word, A and B will be in the
vicinity of each other from the Z axis perspective.

Among the three dimensions of failure correlation, discussed in Section 4.2, the logical
dimension is an indirect and complex dimension, which is hard to infer. The logical dimen-
sion can be further divided intomore direct dimensions such as hardware architecture and
resource allocation. Considering this division, node vicinities are observed from four differ-
ent perspectives: (1) hardware architecture, (2) resource allocation, (3) physical location, and
(4) time of failure. The first perspective denotes a node vicinity according to the node’s phys-
ical properties, the second perspective emphasizes the node’s logical properties, while the
third and fourth perspectives denote spatial and temporal properties, respectively. Sim-
ilar to the three-dimensional correlation approach, all correlations among nodes can be
mapped onto these four proposed vicinities, e.g., nodes connected to a single switch can
be mapped onto the physical location vicinity. In this subsection these four vicinities are
explained in more detail, based on the Taurus architecture.

The node vicinities are intended tomitigate themajor characteristic differences between
nodes. Therefore, in cases that several parameters influence a certain node’s characteris-
tic, the most dominant parameter is considered to identify the node’s vicinity. All nodes in
Island 2 beside their Sandy bridge or Haswell CPUs are equipped with graphical processing
units (GPU). Since themajority of jobs submitted to Island 2mainly utilize GPUs rather than
CPUs, GPUs are considered as dominant processing units of these nodes. Therefore, in this
work, Island 2 is considered as a homogeneous GPU island, despite the heterogeneity of
its nodes’ CPUs.

It is important to emphasize that in the context of this work, two nodes in the vicinity
of each other are not necessarily physically co-located. In fact, they may even belong to
physically separated partitions of the HPC system.

Hardware Architecture Vicinity

Computing nodes on Taurus may be of four different processors architectures: Intel
Haswell, Broadwell, SandyBridge, andWestmere. 108nodeswith SandyBridge andHaswell
processors are also equipped with GPUs (NVIDIA Tesla K20X and K80). According to their
hardware architecture, the 2, 046 computing nodes on Taurus can be divided into five cat-
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egories. The node’s dominant processor architecture and the number of nodes in each
architecture category are shown in Table 3.1 on page 27. A schematic illustration of the
Taurus topology, including the type of each node’s hardware architecture is provided in
Figure 3.2 on page 27. Nodes with identical colors in Figure 3.2 are in the vicinity of each
other from the hardware architecture perspective.

It is important to note that beside the processor architecture, other hardware character-
istics (e.g., the amount of physical memory) were also considered and analyzed. However,
the final results indicated that the node’s main processor plays the dominant role for the
purpose of this work thus, significantly outperforms the impact of other hardware charac-
teristics. Therefore, the hardware architecture vicinity considers only the node processor
architecture.

Resource Allocation Vicinity

Slurm [232] schedules the jobs in Taurus. The resources are allocated to each submitted
job according to the direct request of user, system policies, and the status of available
resources. All nodes that execute tasks of the same job are in the vicinity of each other
from the resource allocation perspective. In contrast to the static nature of the hardware
architecture perspective, the resource allocation vicinity is fully dynamic and may change
frequently as the running jobs are completed and new jobs are submitted to the cluster.

Physical Location Vicinity

Various granularities can be used to express the physical location of a node in Taurus,
e.g., chassis, rack, or island. Since the power, temperature, and connectivity of all nodes
located in a single rack are controlled together, this work considers racks as the physical
location granularity. Each row of an island shown in Figure 3.2 on page 27 represents one
rack of nodes. All nodes located in the same rack are in the vicinity of each other from the
physical location perspective4 5.

Time of Failure Vicinity

Often failure is a consequence of various node-level events on and of properties of sev-
eral nodes. However, a failure in itself is observable on a particular node at a specific mo-
ment. Therefore, the time of failure is considered as a temporal property of that particular
node even though, several nodes may fail due to the same reason. From this perspec-
tive, all nodes that experience a failure within the same predefined time interval, fall into
the same vicinity category. In this work, the time of failure interval is 10 minutes. The 10-
minute time interval is chosen according to the results of the previous study on Taurus
failure correlations [250]. That study revealed that the majority of failures correlated on
Taurus occurred within 10 minutes of each other. Therefore, failures that occur across the
4Other studies also confirm the "small-region locality correlation" [26].5The phisycal localities are shown to be beneficial also for load balancing and resource allocation [255].
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entire system within 10 minutes of each other are assumed to be in the same temporal
vicinity from the time of failure perspective.

4.2.2 Impact of Vicinities

Taurus nodes are located in 6 islands. As shown in Figure 3.2, on page 27, Island 4 hosts
nodes with two different processor types, while Islands 1, 2, 3, 5, and 6 are homogeneous.
Although the nodes’ hardware architecture influences the job allocation, as Figure 3.22b
on page 55 illustrates there is no noticeable difference among job allocation patterns of
Taurus islands. However, as shown in Figure 3.22a, except Island 5 and Island 6 that consist
of identical processor types, the node outages have different distribution pattern on each
island.

Figure 4.9 illustrates a one-to-one comparison of syslog generation patterns6 in all Tau-
rus islands. This figure visualizes the temporal and spatial patterns among more than 46K,
82K, 45K, 968K, 940K, and 1M syslog entries generated by Islands 1 to 6, respectively. Islands
5 and Island 6 present an almost identical pattern, which is also very similar to Island 4. In
contrast, Island 1, Island 2, and Island 3 have a completely different system log generation
pattern.

The comparison shown in Figure 4.9 indicates that the processor architecture has a di-
rect impact on node behavior. Therefore, the behavior of nodes in Island 1 (Sandy Bridge)
should not be predicted based on the behavior of nodes in Island 5 (Haswell), while a sim-
ilar behavior is expected from nodes in Island 5 (Haswell) and Island 6 (Haswell).

Node vicinities are intended to improve the accuracy of the anomaly detection method
(Section 4.3) by identifying the most relevant domain among the four vicinities considered
in this work. Furthermore, employing node vicinities enables the anomaly detection meth-
ods to analyze fully anonymized syslogs. To the best of author’s knowledge, there is no
similar approach for detecting anomalies using fully anonymized system logs. Therefore,
a quantitative comparison cannot be conducted. However, Table 4.1 shows a qualitative
comparison of node vicinity impact on anomaly detection.

Table 4.1: The accuracy of anomaly detection inside node vicinities
Hardware Resource Physical

Anomaly detection architecture allocation location Time of failure

Inside node vicinity Fair Low High Fair (certain failures)
Outside node vicinity No Low Low No

Therefore, it can be concluded that the impact of anomaly detection inside resource
allocation and time of failure vicinities of Taurus is negligible. Anomaly detection inside the
Physical location vicinity, on the other hand, has a high impact on the accuracy of the final
6The dynamic frequency of syslog generation by each node during a time interval. This parameter is explainedin Section 4.3.1 and referred to as SG in the rest of document.
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Figure 4.9: Syslog generation patterns of Taurus islands. Each sub-diagram is vertically di-vided into two sections. Each section illustrates the syslog generation patternof 100 nodes of the respective island during 24 hours. e.g., sub-diagram (e) illus-trates the syslog generation pattern of Island 1 (bottom) versus Island 6 (top).
results. It also became evident that the nodes behavior outside their hardware architecture
vicinity varies significantly and is not suitable for anomaly detection.

4.3 Anomaly Detection

This work considers two behavioral patterns to model the behavior of HPC systems us-
ing discrete time series of monitoring data: (1) the order of events and (2) the frequency of
events. Both patterns are automatically inferred from the behavior of the majority (major-
ity voting) in each homogeneous neighborhood (node vicinity) and is constantly updated
according to the current system status [256].
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Order of Events

The behavioral pattern can be inferred from the chronological order of events recorded
in monitoring data. Two different variants of this pattern are defined: (1) time-based (i.e.,
periodic) and (2) event-based. The former preserves the time interval between two con-
secutive events, and the later only considers the chronological order of events regardless
of the inter-event intervals. As described earlier, system logs contain both periodic and
event-driven entries. The time-based patterns are suitable for periodic entries (e.g., cron
jobs) while the event-based patterns are more suitable for event-driven entries (e.g., users
interaction). The behavioral patterns based on events’ order are extracted in different gran-
ularities. A subset of potential granularities is shown in Figure 4.10.

Timestamp
day, week, month, hour, minute, second

Facility
kernel, user, etc.

Severity
warning, error, etc.

Source
node, chassis, rack

Message
event patterns (hash)

Coarse-grained

Fine-grained

Syslog entry

Figure 4.10: Main components of syslog entries. Each entrymay perceived in different gran-ularities.
For the purpose of this work, the preferred granularity of source is node ID and the

preferred granularity of timestamp is the full timestamp including both date and time.
Both facility and severity fields (metadata) of system logs are considered.

Frequency of Events

The behavioral pattern can also be inferred from the number of syslog entries received
during a certain time interval, regardless of the events order. A filtering mechanism sup-
presses the irrelevant entries. Similar to the patterns that are extracted based on events
order, the patterns of events frequency can be extracted in different granularities.

Figure 4.11 illustrates three anomaly patterns that are extracted using the events fre-
quency of Taurus syslog entries. The first pattern shown in Figure 4.11a identifies the faulty
node 1157 using its lower frequency of entries in comparison to the other nodes in its vicin-
ity. The second and third patterns shown in Figure 4.11b and 4.11c illustrate two common
failure patterns in form of valley and peak over time, respectively.
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Figure 4.11: Failure patterns inferred based on the frequency of events on Taurus



72 4. FAILURE PREDICTION
These two forms of behavioral patterns (order/frequency of events), extracted from

monitoring data, are the input data of various anomaly detectionmethods. In the following
subsections, these patterns are used to detect anomalies and consequently to detect and
predict failures.
4.3.1 Statistical Analysis (frequency)

Statistical analysis requires categorization of event entries by system experts. Such cat-
egorizations are time-consuming, only partially feasible, and subject to drastic changes
after each major maintenance of the HPC system. Furthermore, due to the heterogeneity
of modern HPC systems, every subset of the computing systemmay project a different be-
havior thus, a single threshold may not hold true for the entire system. To address these
challenges an unsupervised method of anomaly detection based on statistical analysis is
proposed. This method does not require manual categorization of entries and automati-
cally adapts its patterns to the current status of the system. The pattern of each vicinity is
separately extracted and regularly updated. Therefore, comparisons are performed locally
within each vicinity, hence, increasing the overall accuracy of the anomaly detection. Fig-
ure 4.12a and 4.12b show two snapshots of the comparisons among 11 nodes in the vicinity7
of each other.

The common behavior of the majority of nodes within a node vicinity is considered as
the "normal" behavior in that vicinity (majority voting). Behavior of a node is monitored
using the syslog generation frequency of that node (hereafter SG). The SG parameter is dy-
namically calculated based on the number of syslog entries received from each computing
node during a sliding time window prior to the current (observation) moment. A selection
mechanism filters out the unnecessary entries thus, maximizing the fluctuation of SG pa-
rameter8. The SG parameter of each node is compared against the SG of other nodes in
the same vicinity. Based on these comparisons, the normal value of the SG parameter for
certain node vicinity at a givenmoment of time is calculated. Once the deviation of a node’s
SG parameter from the normal value exceeds a certain threshold, the node’s behavior is
considered abnormal.

The deviation threshold is dynamically calculated within each vicinity9. To calculate the
deviation threshold, all nodes within a vicinity (i.e. one row of Figure 4.12a) are partitioned
into two clusters based on their SG parameter via a clustering method such as K-Means.
The deviation threshold is the relative density of resulting clusters which is calculated as
the sum of squared distances of samples to their closest cluster center10.

Figure 4.12a illustrates the behavior of node 1110 and 8 other neighboring nodes (physical
location vicinity) prior to 11 points in time that node 1110 experienced failure in the year
2017. Figure 4.12b on the other hand, illustrates the behavior of the same nodes prior to
11 random points of time in which node 1110 was functioning normally. In Figure 4.12a and
7Physical location vicinity8For example, all periodic entries can be suppressed to prevent smoothening of the irregular entries.9A sample code written in python to demonstrate the calculation of dynamic thresholds via k-means is avail-able: ghiasvand.net/u/param10Also known as: within cluster sum
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1106 1107 1108 1109 1110 1111 1112 1113 1114 Norm

10/03/2017 13:55:51 11 11 11 206 214 15 15 15 15 13

10/03/2017 14:07:24 17 16 20 306 1681 21 21 21 21 76

14/03/2017 16:45:56 69 71 67 77 76 59 68 76 55 71

22/03/2017 13:31:13 60 52 28 30 107 21 30 30 30 38

04/05/2017 01:39:16 7 7 7 7 7 7 7 7 7 7

31/07/2017 12:30:49 10 10 10 0 14 10 10 10 10 10

31/07/2017 15:20:17 23 23 23 0 36 23 23 23 23 23

02/08/2017 16:40:15 5 5 7 0 20 5 5 5 5 6

08/08/2017 12:27:44 10 10 10 341 212 11 11 11 11 10

08/08/2017 13:30:34 20 20 10 157 156 11 11 11 11 14

08/08/2017 13:55:20 12 6 6 1581 1593 9 9 9 9 9
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(a) Detection of failures (shown in orange) of node 1110 via the proposed failure detection mecha-nism. Cells colored in light blue indicate non-responsive nodes.

1106 1107 1108 1109 1110 1111 1112 1113 1114 Norm

04/03/2017 15:07:52 18 17 17 0 19 19 19 17 17 17

08/04/2017 15:43:38 12 11 12 11 12 12 11 11 11 11

19/04/2017 07:30:36 42 41 40 41 41 41 41 41 41 41

01/05/2017 11:02:41 28 37 29 29 17 17 36 34 30 31

22/05/2017 14:29:44 19 19 19 19 19 19 19 19 19 19

03/06/2017 13:48:12 7 6 7 6 7 7 6 6 6 6

14/06/2017 16:45:55 19 18 19 18 19 19 18 18 18 18

02/07/2017 12:47:53 6 6 6 0 9 6 6 6 9 6

19/08/2017 13:23:33 11 11 11 12 12 11 11 11 11 11

20/09/2017 17:16:35 12 12 12 12 12 12 12 12 12 12

12/10/2017 05:16:35 12 12 12 12 12 12 12 12 12 12
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(b) Application of the proposed failure detection mechanism during normal behavior of node 1110.Detected failures are shown in orange. Cells colored in light blue indicate non-responsive nodes.
Figure 4.12: Anomaly detection in physical location vicinity using majority voting.

Figure 4.12b, the timestamp at the beginning of each row represents the failure observation
moment. The value of each cell represents the SG parameter of the respective node within
a time interval of 30minutes before the observationmoment. Cells with abnormal behavior
are shown in orange. The cell coloring in each row is relative to the value of other cells in
that particular row (vicinity). According to Figure 4.12a, node 1110 experienced 11 failures in
2017. For 7 out of the 11 failures illustrated in Figure 4.12a, the deviation of the SG parameter
correctly identifies the abnormal behavior of node 1110.

The strength of thismethod stems from themajority voting inside node vicinities. This is
an unsupervised method, therefore, no additional information, except the node vicinities,
is required. Fine tuning of the sliding time window interval, as well as adjusting the data
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filtering rate improves the accuracy of anomaly detection. A simplified workflow of the
behavioral analysis method is described below11:

1. The hardware architecture and physical location vicinities are identified 12.
2. Taurus syslog entries are streamed from computing nodes into the syslog collector.
3. The structured part of each syslog entry (metadata) is parsed and reduced to four

fields, namely timestamp, source, facility and severity.
4. PαααRS processes, de-identifies, and encodes the unstructured part of each syslog en-

try (message) into a fixed-size13 hash key (event pattern) using a collision resistant
hashing algorithm14.

5. The timing errors are compensated via binning syslog entries using buckets of 10min-
utes.

6. Syslog entries are grouped based on the values of their facility, severity and
message fields.

7. The normal behavioral pattern in each vicinity is defined as the behavior of the ma-
jority in that vicinity.

8. The frequency of syslog entries (the SG parameter) within a sliding time window of 30
minutes is calculated.

9. Derivation of the node’s SG parameter from the normal behavioral pattern in each
vicinity (majority voting among nodes of that vicinity) is considered as sign of an up-
coming failure.

Furthermore, the confidence value of failure prediction increases closer to the point of
failure. Simultaneous anomalous behavior of multiple monitoring parameters (facility,
severity and message) increases the confidence of failure prediction. Since failures
are more probable to occur on nodes with a history of failures (refer to Figure 5.9b), the
confidence of failure prediction for such nodes is higher. Larger derivation of the node’s
SG parameter from the normal behavior further increases the confidence of failure pre-
diction.
4.3.2 Pattern Detection (order)

The pattern detection based approaches can be applied on a single node as well as mul-
tiple nodes. Applying the pattern detection approach on a group of nodes in the vicinity
of each other significantly increases the accuracy. Various pattern detection based meth-
ods shown acceptable results in detecting anomalies using HPC systems monitoring data.
Among them, suffix arrays and sequence analysis provides higher accuracy and less false
positives. Pattern detection methods in contrast to statistical analysis mainly utilize the
order of events for anomaly detection.
11The workflow of behavioral analysis method including all major building blocks is shown in Figure 3.112This is the only manual step of the entire workflow.13The default size is 8 characters.14SHAKE 128 is the default hashing function used in this work.
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Suffix trees and arrays

Suffix trees and suffix arrays are powerful data structures to detect recurring patterns
in long sequences. Recurring patterns play an important role in describing the normal be-
havior of HPC systems. Numerous Cron jobs15 generate periodic syslog entries that always
follow a certain order. Furthermore, multi-step procedures, such as authentication, gen-
erate blocks of syslog entries with predefined orders. Therefore, the goal is to detect the
recurring sequences of events in syslog entries. Sudden changes in the pattern of recurring
events might indicate anomalies.

Suffix arrays are constructed via performing a depth-first traversal of a suffix tree. Both
suffix trees and suffix arrays solve the same problem with similar time complexity. How-
ever, suffix arrays require less space and provide better cache locality. Similar to previous
method, various granularities of monitoring data can be used by suffix trees and suffix
arrays. Furthermore, an independent suffix tree is built for every computing node.

A sequence of 7 syslog entries is shown in Figure 4.13a. Each entry is encoded into its
event pattern (hash key) via PαααRS. For better readability, every event pattern in this ex-
ample is further encoded into a single character (symbol). The collection of all symbols
forms the alphabet (i.e., alphabet={J,A,M,E}). To extract the patterns of recurring sequences
of events, a simpler form of the classic problem of the longest repeated sub-string (LRS)
should be solved. Using suffix trees, the LRS can be found in O(n). The suffix tree of sys-
log entries from Figure 4.13a is shown in Figure 4.13b. The longest path16 from the root to
non-leaf vertexes identifies the LRS. In this example, among the non-leaf vertexes of 5, 7
and 9 the path from root to vertex 5 is the longest path. Therefore, the longest repeated
sequence is J » A » M or 23666bbc » 760c5208 » 85f5c18b.

Any repeated sequence of events (two and more events) represents a pattern and is
significant. Thus, instead of extracting only the longest repeated sub-string, all repeated
sub-strings (RS) will be identified. In a suffix tree, repeated sub-strings are represented
by paths from root to the parent of each leaf. Among the overlapping paths with similar
repetition rate, the largest path is chosen. Paths should have a minimum length of two
symbols. Therefore, according to the suffix tree shown in Figure 4.13b, although both paths
from root to 5 and 7 represent a repeated sub-string, due to the overlaps only the pat h to
5 is considered.

The detected RS among system logs identifies the block of syslog entries which are ex-
pected to appear in a certain order. Any derivation from these patterns might be a sign of
anomalous behavior. An example of applying pattern detection on Taurus syslog entries
is shown in Figure 4.14.

Sequence Analysis

The structure of syslog entries has resemblance to Human’s DNA. Both are long se-
quences of unites (log entries / base pairs) with numerous repeated sub-sequences [257].
15Jobs which are executed using Cron, the time-based job scheduler of Unix-like operating systems.16The path with the most number of symbols.
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(a) Encoding event patterns into symbols (b) The suffix tree of encoded event patterns.Each path from root to a non-leaf vertex is arepetitive sub-sequence.

TIMESTAMP EVENT

1488424393 23666bbc -> J

1488424398 760c5208 -> A

1488424414 85f5c18b -> M

1488424459 bba3d47c -> E

1488424570 23666bbc -> J

1488424596 760c5208 -> A

1488424611 85f5c18b -> M

Figure 4.13: Creation of suffix tree for sample syslog entries
# Message Event

1 (siavash) CMD (/usr/bin/check >/dev/null 2>&1) 66dc2742

2 (parya) CMD (/usr/lib32/lm/lm1 1 1) 66dc2742

3 (siavash) CMD (run-parts /etc/cron.hourly) 66dc2742

4 starting 0anacron dd740712

5 Anacron started on 2018-01-30 e5a59462

6 Jobs will be executed sequentially f1e7eac3

7 Normal exit (0 jobs run) eac7924f

8 finished 0anacron a5803a8a

9 (siavash) CMD (/usr/lib32/lm/lm1 1 1) 66dc2742

10 (root) CMD (/usr/lib32/cl/cl2 1 1) 66dc2742

11 (root) CMD (/usr/lib64/lm/lm1 1 1) 66dc2742

12 (siavash) CMD (/usr/bin/check >/dev/null 2>&1) 66dc2742

13 (parya) CMD (/usr/bin/run >/dev/null 2>&1) 66dc2742

14 (siavash) CMD (/usr/bin/exec >/dev/null 2>&1) 66dc2742

15 (siavash) CMD (run-parts /etc/cron.hourly) 66dc2742

16 starting 0anacron dd740712

17 Anacron started on 2018-01-31 e5a59462

18 Jobs will be executed sequentially f1e7eac3

19 Normal exit (4 jobs run) eac7924f

20 finished 0anacron a5803a8a

1: Starting the daemon

2: Successfully started

3: Successfully finished

1: Starting the daemon

2: Successfully started

3: Successfully finished

Figure 4.14: Recurring blocks of syslog entries. Similar colors indicate similar events. Theevents are automatically derived from syslog messages using PαααRS.
Throughout the years various techniques and tools have been developed to analyze the
sequence of base pairs in DNA. The goal of this section is to employ DNA sequence ana-
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lyzing methods for syslog analysis based on the similarities between DNA structures and
syslog entries (e.g., long range correlations [258]).

Sequence alignment map (SAM) is a text-based format suitable for storing DNA se-
quences aligned to a reference sequence [259]. Since the SAM format is widely used by
various DNA sequence analyzing tools, in order to apply theDNA sequence analyzingmeth-
ods, Taurus syslog entries were transformed into the SAM format.

Sequence alignment is used to detect anomalies with a reduced false positive rate. Us-
ing majority voting among the nodes in the vicinity of each other, the reference sequence
of events on HPC system is extracted. The system logs are aligned to the reference se-
quence in their SAM format. Derivations from the reference sequence can be detected via
sequence alignment methods. All existing derivations are not erroneous, in fact a certain
degree of change is expected due to the dynamic nature of the HPC systems and the users
behavior.

Point mutation is a change in the bases of DNA. This concept is used to mitigate the
noises in system logs and reduce the false positives. Single mismatches during the com-
parison of current sequence and the reference sequence is interpreted as noise (point
mutation).

Sequence motifs are significant sequence patterns in DNA. For system logs the se-
quencemotifs are defined according to their length, frequency, and accuracy of repetition.
Longer sequence patterns that are more frequent and have precise recurring time inter-
vals are considered as sequencemotifs. Derivations of sequencemotifs from the reference
sequence are interpreted as signs of anomalies.

The main advantage of using tools and methods that are originally built for analyzing
DNA sequences is their capability in processing radically large sequences. However, to
be able to use those tools and methods, the monitoring data (e.g., system logs) must be
transformed into compatible formats. Furthermore, the important features of the moni-
toring data must be preserved. In this work the transformation of Taurus system logs into
sequence alignment map is performed using PαααRS.

PαααRS encodes syslog entries into anonymized event patterns (anonymized list). Fre-
quency of each event pattern in a fixed interval (e.g., 24 hours) is calculated. A reverse
ordered (descending) list of all event patterns based on their frequency is generated (fre-
quency list). The frequency list is divided into subsections, each with 4 entries (frequency
sub-list). The anonymized list is divided into subsections according to the event patterns in
each frequency sub-list (anonymized sub-list). A unique symbol from a 4-letter predefined
alphabet (e.g., {A,T,C,G}) is assigned to each event pattern of a frequency sub-list. The event
patterns of each anonymized sub-list are substituted by the relevant symbols listed in the
corresponding frequency sub-list (sequence sub-list). Each sequence sub-list is converted
into a SAM file and is ready for further analysis. Table 4.2 provides an example of applying
the proposed workflow on a collection of syslog entries.
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Table 4.2: Encoding syslog entries into DNA-like sequences
Anonymized list Frequency sub-list Sequence sub-listTimestamp Event pattern Event pattern Frequency Symbol timestamp Symbol1490997601 34b25731 1c6f9d5e 7 A 1490997601 C1490997601 1c6f9d5e 1808e388 3 T 1490997601 A1490997601 1808e388 34b25731 2 C 1490997601 T1490997602 90a389bc fa144f05 1 G 1490997661 G1490997661 2e307f37 e92704ab 1 A 1490997901 A1490997661 fa144f05 ddab3d0a 1 T 1490998201 A1490997661 6234343a 90a389bc 1 C 1490998201 T1490997661 ddab3d0a 8c41e908 1 G 1490998501 A1490997661 8c41e908 8372c3dc 1 A 1490998801 T1490997661 e92704ab 6234343a 1 T 1490998801 A1490997661 8372c3dc 35d87b50 1 C 1490999101 A1490997661 35d87b50 2e307f37 1 G 1490999401 A1490997901 1c6f9d5e 1490999401 C1490998201 1c6f9d5e 1490997661 A1490998201 1808e388 1490997661 T1490998501 1c6f9d5e 1490997661 C1490998801 1808e388 1490997661 G1490998801 1c6f9d5e 1490997661 A1490999101 1c6f9d5e 1490997661 T1490999401 1c6f9d5e 1490997602 C1490999401 34b25731 1490997661 G

The size of alphabet can be increased to any arbitrary number of symbols. However,
large alphabets may negatively impact the detection mechanisms. According to Taurus
syslog analysis, high frequency entries deliver less significant information in comparison
to low frequency entries. Therefore, grouping the anonymized list on syslog entries into
smaller sub-lists according to their frequency improves the detectability of low frequency
(but significant) entries via comparing events only within groups of events with similar fre-
quency. It is important to note that in sequence analysis, similar to other methods pro-
posed in this work, the normal behavioral pattern is inferred via majority voting within
nodes vicinity.

Figure 4.15 shows a 24-hour sample of system logs (in SAM format) collected from 100
nodes visualized using Tablet (Table B.1). Each row represents a single node (100 rows)
and each column represents a one-minute time window (1, 440 columns). Several potential
anomalies in formof horizontal red zones are visible in themiddle and bottomof the figure.

4.3.3 Machine Learning

The anomaly detection workflow, described in Section 4.3.1 on page 72, automatically
analyzes the monitoring data and detects the anomalous node behaviors. Since the pat-
terns of normal behavior are directly, individually and continuously extracted for each node
vicinity, the anomaly detector automatically adapts itself to the system changes. The only
exceptions are changing the node’s processor architecture or its physical location. In the
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Figure 4.15: A 24-hour sample of system logs collected from 100 nodes visualized usingTablet. Each row represents a node. Each column represents a one-minutetime window. Potential anomalies are visible in form of horizontal red zonesin the middle and bottom of the figure.

later scenarios nodes must be re-grouped according to the new vicinities (step 1 in the
workflow). However, the rest of the workflow (steps 2-9) remains intact.

In addition to the main behavioral analysis method, two alternative approaches were
proposed using neural and hierarchical temporal memory (HTM) networks. The neural
network approach is defined to extend the known set of correlations among nodes and
failures. The HTM approach on the other hand is intended to detect anomalous behaviors
of individual nodes without (explicitly) considering node vicinities. Preliminary results indi-
cate high potentials of machine learning techniques for automatic detection of abnormal
behaviors in HPC systems using anonymized system logs. Figure 4.16 illustrates the work-
flow of the proposed approach for detecting anomalies and predicting systems behavior
using system logs.
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+ Noise mitigation
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Event 
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Data transformation SentencesImages

Model generation
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Figure 4.16: The workflow of anomaly detection via syslog analysis with the focus on ma-chine learning.

Insufficient amount of failure samples was one of the main motivations to use an unsu-
pervised approach for anomaly detection in this work. On Taurus, except certain failures
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which are caused by distributed file system, rest of the failures are not frequent17. Due to
insufficient amount of failure samples, automatic extraction of abnormal patterns, which
are leading to non-frequent failures is not feasible. Therefore, rather than extracting the
pattern of abnormal behaviors and using them to identify similar anomalies, this work con-
siders the common system behavior18 as the norm and evaluates the divergence of system
behavior from this norm.

Three classical neural network (NN) models and one hierarchical temporal memory
(HTM)model are used. For the first two NNmodels, syslog entries are transformed into im-
ages and processed via image processing techniques, while the third NNmodel uses a text
auto-completion technique to predict the upcoming events [260]. The HTMmodel, which is
based on a biologically constrained model of intelligence, uses a sparse distributed repre-
sentation of system logs. Although the classical NNmodels show promising potentials, the
HTM model outperforms them. Thus, this work focuses on the HTM model. Appendix A
provides detailed information about the proposed NN models.

Hierarchical Temporal Memory

The anomaly detection approach in this work relies on the node vicinity andmajority vot-
ing. However, a large system-wide failure may alter the behavior of the majority of nodes.
In such cases, majority voting within the node’s vicinity may fail to detect the abnormal be-
havior. Furthermore, as HPC systems are becoming more heterogeneous, identifying the
homogeneous sections of the system becomes challenging. Therefore, the HTM model is
used to complement the vicinity-based anomaly detectionmethod and improve the overall
prediction accuracy.

HTM is a biologically constrained model of intelligence [261]. The main ability of HTM
networks is anomaly detection using small amount of input data [262]. In the HTM model
used in this work, the input data (syslog) is semantically encoded (using PαααRS) as a sparse
distributed representation (SDR). SDR is an array of 0’s and 1’s, that represent neurons. An
SDR at each stage has less than 2% of its elements 1’s (active neurons). This encoded sparse
array is further normalized via spatial pooling into a sparse output vector with fixed spar-
sity. The process of spatial pooling uses the temporal memory algorithm to retain the con-
text of the input data. The temporal memory learns the transitions of patterns as they
occur and recalls the sequences of previous patterns. Therefore, as the input changes, the
HTMmodel updates itself (online learning). Using these steps, the HTM builds a predictive
model that is capable of providing multiple predictions simultaneously and evaluate their
likelihood online.

HTMmodels, in contrast to the other contextual-aware recurrent neural networks such
as LSTMs, do not employ back-propagation. Instead, HTM works based on (unsupervised)
Hebbian theory 19.
17Less than 10 occurrences per year18Within each node vicinity19A theory in neuroscience that claims "an increase in synaptic efficacy arises from a presynaptic cell’s re-peated and persistent stimulation of a postsynaptic cell." In another word, "Cells that fire together wire



4.3. ANOMALY DETECTION 81
The HTMmodel, used in this work, is designed to consider the behavior of an individual

node and compare its current behavior with its previous behavior. Sudden changes in the
current behavior are assumed as abnormal behavior. The current implementation of the
HTM network in this work is based on NuPIC python library and heavily borrows from the
NuPIC’s documentation and sample codes.

The task of anomaly detection in HPC systems using syslog entries is highly compat-
ible with the characteristics of HTM networks. Therefore, this approach has been also
applied on Taurus monitoring data. Designing the spatial pooler is the most challenging
part of building an HTM model. The spatial pooler must (1) maintain a fixed sparsity re-
gardless of the input size (normalizing the input) and (2) maintain the overlap properties
such that two similar input generate two similar output. Such spatial pooler provides a cor-
rect conversion of syslog entries into an equivalent sparse representation that accurately
delivers the semantics and correlations among syslog entries. Users behavioral pattern
significantly changes in respect to time and date. Since users behavior affects the behavior
of computing system, rather than using the temporal information of system logs only in
its chronological form, the timestamp is interpreted into three repetitive values, namely
time of the day, day of the week and weekday or weekend. Considering the fully
anonymized syslog entry shown in Example 4.1, the four remaining data fields are node ID,
severity, facility, and message respectively. Therefore, the resulting SDR consists of
seven sections20.

Example 4.1: Encoded syslog entry prepared for HTM model
Timestamp | Node ID | Severity | Facility | Message

2017-12-12 01:56:00 5314 6 10 f9cfa0b9

The time of the day, day of the week and weekday or weekend are encoded
into 24, 7 and 2 bit SDRs respectively. In current implementation the node ID is skipped,
since every node has its own HTM network. However, for technical reasons a dummy 2-bit
zero-filled SDR is reserved for the node ID which can be extended. The remaining three
fields, namely facility, severity and message are encoded into 168, 504 and 500 bit
SDRs respectively. Concatenating these seven SDRs forms the final SDR with 1207 bits. The
higherweight in the current setup is given to the facility, severity and message values
of the syslog entries.

The results of analyzing 2000 syslog entries of node taurusi5314 using the implemented
HTM network is shown in Figure 4.17. Vertical red lines mark the anomalies within the
stream of syslog entries.

The HTM model predicts the future trends of syslog entries, based on the previously
seen entries. In current implementation, more than 50% derivation between the actual
trends of incoming system logs and the predicted trends based on previously seen sys-
tem logs is considered as an anomaly. In Figure 4.17 the first anomaly (901) was detected

together" [263].20time of the day, day of the week, weekday or weekend, node ID, severity, facility, and
message.
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at 14:19:13 based on abnormal slurm daemon behavior. The second anomaly (1262) was
reported at 17:17:46 as kernel issued unexpected log entries. The complete node outage
happened at 21:35:01 and the node was rebooted at 21:38:19. The third and fourth anoma-
lies (1511 and 1541) reported by the HTMmodel are caused by system’s activities during the
unstable phase after the node reboot. In practice, ȷam–e ȷam utilizes both majority voting
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Figure 4.17: Unsupervised detection of anomalies among 2000 syslog entries of node
taurusi5314 using the HTM network. Anomalies are marked with vertical redlines.

and HTM methods simultaneously. The input stream of the system logs is sent to both
detectors, and both anticipate the future state of the system. If bothmethods predict simi-
larly, their prediction will be announced as the final prediction. However, if the outcome of
HTM andmajority voting oppose each other, according to the confidence level of each pre-
diction (relative distance from the threshold), the final output will be a weighted average of
both predictions. Furthermore, as time passes, each round that a new prediction confirms
the outcome of previous prediction, the confidence value of that prediction increases. The
confidence value of each failure prediction is reported together with the prediction.

In summary, the HTM-based model monitors the behavior of each node individually.
TheHTM is proposed as a complementarymethod for anomaly detection in heterogeneous
HPC systems and during major system-wide failures. The model is highly noise-resistant
with a short training phase, and continuously adapts itself to the new behavioral patterns.
The combination of statistical analysis (majority voting) and HTM-basedmodel significantly
reduces the false positive predictions.
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4.4 Adaptive resilience

Different approaches in HPC systems have been introduced to prevent failures (e.g.,
redundancy) or at least to minimize their impacts (e.g., via checkpoint-restart). In most
cases, when these approaches are employed to increase the resilience of certain parts of a
system, performance significantly degrades, and/or energy consumption rapidly increases.

Since there is no eternal hardware, in theory, failures can not be truly avoided. However,
it is possible to significantly decrease the probability of their occurrence, or in some cases
postpone them. In this work, avoidable failures are defined as failures that can be hidden
from a specific system layer. The contrary cases are unavoidable failures. The origins of
failures in an HPC system can be analogized to a tree, which has its roots in the lowest
system layer and its leaves in the highest layers. Figure 3.3 on page 28 illustrates this anal-
ogy. Traversing the system from top to bottom, the diversity of failures decreases while
their impacts increase. During propagation across system layers, failures may retain their
original characteristics, or they may morph into other types of failures. Therefore, each
system layer requires its own protection to prevent the propagation of specific failures to
the upper layers.

While protection layers are added between system layers to identify, address, and pre-
vent failures from propagating upwardly, certain overheads are imposed on the system.
As long as the failure protection layers are in place, they impose overheads, regardless
of the presence or absence of failures. In certain cases, adding overheads might not be
worthwhile to provide fault tolerance.

The proposed approach in this work adapts the level of resiliency to the system con-
dition via on-demand activation of available failure protection mechanisms according to
probability of failure occurrence [264]. In the case that predicted failures cannot be miti-
gated using a predefinedmethod, e.g., when no surrogate resource is available, the system
administrators will be notified in view of performing further investigations and reactions.
This approach provides adaptive resilience, progress in computation, and saves energy.
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5 Results

Thiswork proposesmultiple data collection, preparation and validation approaches (Fig-
ure 3.1), as well as several methods for anomaly and failure detection (Figure 4.1). However,
some proposed methods have operational overlap, e.g., noise mitigation via data binning
and via majority voting. Others, such as DNA sequencing or topological analysis, are de-
signed to provide offline information about the HPC system and its requirements, thus
those are not directly utilized for online anomaly detection and failure prediction. There
are also several methods which are proposed to fulfill identical tasks of failure prediction
via various approaches and in different scenarios, e.g., LSTM andHTM. In the end, although
all proposed methods are providing competitive outcomes, ȷam–e ȷam utilizes only those
methods that provide the most appropriate result according to the conditions of the un-
derlying HPC system, i.e., Taurus. In Figure 5.1, orange blocks are those building blocks of
ȷam–e ȷam that are used to achieve the results provided in this chapter.
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Figure 5.1: Building blocks and the workflow of ȷam–e ȷam in operation mode. Buildingblocks shown in orange are used to achieve the results provided in Chapter 5.
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Taurus has been used as the use case in this work. Various monitoring data of Taurus

such as syslog entries, power consumption and job reports were collected. To provide a
general approach that is applicable on other TOP500 HPC systems, the syslog entries were
chosen as the main source of monitoring data in this work and the rest were only used for
verification purposes. This chapter summarizes the results of proposed methods.

5.1 Taurus System Logs

During the 365 days of the year 2017, in total more than 3.2 billion syslog entries with
a total size of 344 GiB were collected. Detailed statistics regarding the number of Taurus
syslog entries, divided by their originating island, is shown in Table 3.6 on page 35.

The column Node/Day shows the average number of entries generated by a single node
per day in its respective island. Figure 3.15 illustrates the distribution of syslog entries
generated by each node in the year 2017. Although several outliers are visible, the majority
of nodes in each island generated similar number of syslog entries. Figure 5.2 shows a side
by side comparison of the average number of syslog entries generated by each node in the
year 2017.

Figure 5.2: Comparison of the average number of syslog entries generated by each nodein the year 2017.
The timestamp of Taurus system logs has the accuracy of one second. Therefore, the

chronological order of syslog entries generated by a computing nodewithin a second (here-
after: simultaneous entries) are not known. However, basedon the analysis of Taurusmon-
itoring data, it can be concluded that the order of simultaneous entries is a consequence
of internal system characteristics. Therefore, recurring simultaneous entries either reap-
pear in the same order as previous occurrences or the change of the order can be safely
ignored1.

Furthermore, a sudden increase in the number of simultaneous entries of each comput-
ing node can be a sign of behavioral anomalies. As shown in Figure 5.3, receiving up to 10
simultaneous entries per node is a common behavior. Between 10 and 40 simultaneous en-
tries is common but requires further investigations. Receiving more than 40 simultaneous
entries in a second is most likely a sign of behavioral anomaly.
1In this work the simultaneous events are always sorted to avoid the ordering problem.



86 5. RESULTS

1

10

100

1000

10000

100000

1 80 159 238 317 396 475 554 633 712 791 870 949 1028 1107 1186 1265 1344 1423

N
u

m
b

er
 o

f 
o

cc
u

rr
en

ce
s

Number of simultaneous system logs

Figure 5.3: Average frequency of simultaneous entries in Taurus. Number of simultaneousentries shown in light blue has low frequency, thus might be sign of anomalies.
The #Event patterns column in Table 3.6 on page 35 indicates the number of ex-

tracted unique event patterns per island. Event patterns carry the essential semantics of
syslog entries. The number of unique event patterns that exclusively exists in a certain
island is shown in the right most column of Table 3.6. According to the values shown in
column Exclusive, Island 2 has 357 exclusive event patterns which is the highest number
of exclusive patterns among all 6 islands of Taurus. Island 2 also has the highest ratio of
exclusive event patterns with as high as 26% of its total event patterns. Furthermore, Island
2 hosts the least number of computing nodes (108 nodes) in comparison to other islands of
Taurus (refer to Figure 3.2). This behavior is caused by the special hardware characteristics
of Island 2, as the only GPU enabled island of Taurus. Observing these phenomena further
confirms the importance of performing syslog analysis within the Hardware Architecture
Vicinity.

Data Filtering

Production HPC clusters such as Taurus are under constantmaintenance. Furthermore,
various research projects demand frequent changing of hardware and software. Syslog is
an invaluable facility for monitoring and debugging such changes. Therefore, it is common
to observe temporary appearance of unknown syslog entries within the stream of system
logs. In this work data filtering is used to address this challenge as well as improving the
accuracy of anomaly detection mechanism.

In summary, all syslog entries with the severity level of debug are removed. Project
specific log entries2 are kept in Taurus syslog collection, however, they are not included
in syslog analysis. To preserve the highest level of accuracy, no further filtering has been
performed in this work.

Syslog Event Patterns

In total 4027 unique event patterns were extracted from Taurus system logs in the year
2017. Figure 5.4 shows the distribution of extracted event patterns on 6 islands of Taurus.
2Certain research projects on Taurus are producing their own customized log entries which are directed to
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Figure 5.4: Distribution of 4027 extracted event patterns in each of the 6 Taurus islands
Out of the 4027 event patterns shown in Figure 5.4, 660 common event patterns exist on

all Taurus islands. Although few exceptions are observable, the general ratio of common
event patterns frequency in all islands are identical.

Surprisingly, the generation of syslog entries on Taurus does not follow the Pareto prin-
ciple3. On Taurus, more than 80% of the common system logs are generated based on as
few as 25 event patterns4. Therefore, more than 80% of syslog entries are generated based
on less than 4% of common event patterns. These highly frequent syslog entries are peri-
odic and reappear after fixed time intervals. The deterministic pattern of highly frequent
syslog entries is used as a baseline to analyze the occurrence of event-driven syslog en-
tries. The absence or sudden changes in the occurrence pattern of highly frequent syslog
entries can be a sign of potential anomalies.
Storage Size Reduction

Applying PαααRS on Taurus syslog collection from the year 2017 and preserving all meta-
data, reduces the total size of syslog collection from 416 GiB to 258 GiB which is 38%
reduction. Applying PαααRS and preserving only the 4 necessary metadata (timestamp, node
ID, severity, and facility) reduces the size of syslog collection to 140 GiB which is equal to
66% reduction.

The above calculations aremade assuming that the final hash key has a length of 8 bytes.
However, the total number of event patterns in Taurus is only 4026. Therefore, the entire
hashing space can be further squeezed into 3 bytes hash keys. Thus, a reduction ratio of
70% can be achieved. For long-term storage of the syslog collection, additional lossless
compression mechanisms can be employed. Different levels of size reduction using PαααRS
are shown in Figure 5.5.

As shown in Figure 5.6, the message field of Taurus syslog entries consist of words with
various lengths from 1 to 34 letters. About 50% of Taurus syslog entries consist of 4-letter
words and on average, each syslog entry consists of 10 words. Therefore, choosing an
8-letter hash key reduces the length of Taurus syslog entries’ message field to 20% of its
original length. However, as shown in Figure 5.5, due to the importance of metadata for
syslog analysis this information must be kept. Thus, in practice encoding Taurus syslog

and captured by syslog facility.3Also known as principle of factor sparsity, 80/20 rule and the law of the vital few.4In some studies the Pareto principle holds true [5, 26].
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Figure 5.5: Different levels of size reduction using PαααRS.
entries using PαααRS for the purpose of this work reduces the length of entries up to 44% of
their original length5. The encoded data are ready to be directly used for anomaly detection
without further decoding.
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Figure 5.6: Distribution of words in syslog entries based on their size and frequency

Noise Mitigation

The proposed noise mitigation mechanism works based on majority voting among the
members of the chosen node vicinity. Therefore, the accuracy of noisemitigation is directly
influenced by the correct selection of node vicinity. The recommended node vicinities for
anomaly detection are hardware architecture and physical location vicinities. In Taurus,
computing nodes of each rack (18 nodes) are physically collocated and are equipped with
similar processor architecture. Thus, these computing nodes are member of both hard-
ware architecture and physical location vicinities.

The syslog generation pattern of 8 nodes within a single rack is shown in Figure 5.7.
The color of each cell represents the number of syslog entries generated during 24 hours.
Darker colors indicate higher number of syslog entries. On each day, the syslog generation
pattern of themajority of the nodes indicates the normal pattern for that day. Furthermore,
the sudden changes in this pattern in comparison to previous daysmay indicate anomalous
behavior.
5An ascii character (letter) can be stored in a single byte.



5.2. SYSTEM-WIDE FAILURE PATTERNS 89

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2017

M
W
F
S10

19

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2017

M
W
F
S10

20

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2017

M
W
F
S10

21

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2017

M
W
F
S10

22

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2017

M
W
F
S10

23

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2017

M
W
F
S10

24
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2017

M
W
F
S10

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2017

M
W
F
S10

26

Figure 5.7: Similar patterns of syslog generation by various nodeswithin the rack 2 of Island1 in Taurus. Each cell shows the number of entries generated per day during theyear 2017. Darker colors indicate higher number of syslog entries.
In summary, most noises caused during the collection of system logs can be mitigated

via majority voting within node vicinities. The majority voting must be performed within a
sliding time windows of 20 seconds6 in order to suppress network congestion side effects
(refer to Figure 3.19). Using majority voting on Taurus, on average noises up to 20% of the
input data could be accurately mitigated7.

5.2 System-wide Failure Patterns

Existence of system-wide temporal and spatial patterns among failures greatly con-
tributes to identifying root causes of failures and predicting upcoming failures. Therefore,
the time and location of all potential failures of Taurus were analyzed. The temporal pat-
tern of potential Taurus failures in the year 2017 is shown in Figure 5.8.

In Figure 5.8 the bottom most diagram illustrates the timeline of all potential node fail-
ures on Taurus during 2017. The red and purple diagrams show the multiple node failures
and single node failures respectively. As shown in Figure 5.8, no system-wide temporal
patterns exist among the node failures. However, according to Figure 3.5 on page 29 the
number of failures significantly increases during theworking hours (Monday to Friday from
08 : 00 to 17 : 00).

Figure 5.9a shows the location of failures occurred in the year 2017. The horizontal axis
denotes the node ID of each failure as its location. Node IDs are ordered based on their
6This should not being mistaken by the 30-minute time window for calculating the SG parameter in Sec-tion 4.3.1. Majority voting in the 20-second time window only mitigates the network congestion.7In theory it is possible to mitigate noises up to 49% of the input data however, due to node failures andirregular activities on computing nodes it is reduced to 20%.
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Figure 5.8: Timeline of Taurus potential failures occurrence in the year 2017
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Figure 5.9: Spatial distribution of potential failures occurred in Taurus in the year 2017

physical location in each island. According to Figure 5.9a there are no system-wide spatial
patterns among the potential node failures on Taurus.

However, sorting the node IDs based on the number of failures on each node, reveals
an exponential trend. The node IDs on the horizontal axis of Figure 5.9b are rearranged
according to the number of failures on each node. According to the exponential trend of
node failures in Figure 5.9b it is concluded that failures aremore likely to happen on nodes
that already experiencedmore failures. Therefore, the probability of failure occurrence on
a node is in proportion to the number of previous failures on that node.

5.3 Failure Correlations

Failure correlation in contrast to system-wide failure patterns (Section 5.2) refers to cor-
relations among failures in smaller and not necessarily collocated subsets of computing
nodes in the HPC system. As proposed in Section 4.2.1, the probability of observing such
correlations in node vicinities is significantly higher than other subsets of computing nodes.
Therefore, Taurus node and job failures inside the recommended node vicinites, namely
hardware architecture vicinity and physical location vicinity were analyzed. The most im-
portant temporal/spatial failure correlations detected on Taurus in June, August, Septem-
ber and October 2017 are shown in Figure 5.10a and 5.10b.
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(b) Job failures
Figure 5.10: Temporal/spatial correlations of Taurus failures. Each column indicates a fail-ure. In each subplot correlated failures are marked with identical colors.
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Three important observations were made via analyzing temporal/spatial correlations of

Taurus node/job failures. These observations are used to perform root cause analysis on
node failures.

Observation 1: On Taurus, if a temporal correlation is being detected only between
two compute nodes, even if both failures occurred in the exact same moment, most likely
their simultaneous occurrence is just a coincidence. A strong temporal correlation between
failures occurring on three or more compute nodes, in many cases, implies an identical
failure reason.

Observation 2: Complementary to Observation 1, it is learned that on Taurus, when the
number of correlated failures is relatively high, the spatial correlation dominates. When
inferring correlations and analyzing reasons of failures, the highest priority should be given
to spatial correlations followed by temporal correlations. The chances of finding the same
reason for spatially correlated failures are higher than in the case of temporally correlated
failures.

Observation 3: On Taurus, the combination of temporal and spatial correlations is
highly revealing. In situations in which both strong temporal and spatial correlations are
observable, the reason behind the failure is identical. This lesson can reveal the logical
correlation of failures in situations which the logical correlation is not independently de-
tectable.

5.4 Taurus Failures Statistics

During the year 2017 in total 2, 535 regular node failures on Taurus were recorded. These
2, 535 node failures occurred at 878 unique timestamps8. The entire collection of syslog en-
tries was analyzed using the proposed anomaly detection method. The root cause of false
negative and false positive cases, in comparison to the known ground truth, weremanually
analyzed. Comparing the outcome of manual root cause analysis and the known ground
truth, failures were divided into two groups of unpredictable and predictable. The sys-
log metadata fields of facility and severity were chosen as the main parameters for
anomaly detection. Significant changes in the frequency of syslogmessages generated by a
certain facility at a certain severity level are considered as signs of failures. Figure 5.11
shows the distribution of syslog entries according to different combinations of facility
and severity values9. The facility columns which did not have any relevant syslog
entry were omitted from Figure 5.11 to improve the readability10.

In Figure 5.11 from left to right and from top to bottom, the significance of syslog entries
decreases. Therefore, the most significant syslog entries are entries generated by kern
(kernel) facility with the severity level of emerg (emergency).
8The precision of timestamps is 1 second.9In syslog standard, there are 24 facilities and 8 severity levels. Therefore, there are 192 possible combina-tions. However, in practice syslog entries of each HPC system only contain a subset of these combinations.10In addition, 65 syslog entries were broken, thus removed from the rest of analysis.
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kern user mail daemon auth syslog cron authpriv local0 local3 local4 local5 local7

emerg 124 3

alert 279848 37 1649268 67

crit 731311 475 1113 50028 10035 311

err 2993848 157752175 29039273 16398 131125941 101 44786 2351612 84312545

warning 23776899 43027 13711624 383706552 24 1785 53 57332 1 1855

notice 323770 37242432 260833 107 1318175 90997923 8483 4716 2 10 789

info 1660566015 210568 55 6773478 8829 17320003 202124022 374238133 36121073 2 39

debug 7405758 45261 423332 28998 2

Figure 5.11: Number of syslog messages collected on Taurus based on their facility(columns) and severity (rows) level.

Table 5.1: Distribution of node failures in Taurus islandsIsland Node failures Percentage Nodes in island Average failure per node1 63 2.49% 270 0.232 27 1.07% 108 0.253 79 3.12% 180 0.434 511 20.16% 264 1.935 1017 40.12% 612 1.666 838 33.06% 612 1.36

The distribution of 2, 535 Taurus node failures among 6 islands of Taurus is shown in
Table 5.1. The highest number of node failures have occurred in Island 5 and 6 which is
due to the higher density11 of nodes in these 2 islands. However, on average, nodes in
Island 4 have the highest failure probability. From another perspective, nodes in islands
with higher density are more prone to failures.

Node failures are side effects of the interplay ofmultiple parameters. Islandswith higher
number of nodes have higher complexity. Furthermore, larger islands attract larger paral-
lel jobs. User activities directly influence the HPC systems behavior. Therefore, the combi-
nation of serving more users and executing larger parallel jobs in more complex compu-
tation environment explains the higher probability of failures observed on larger Taurus
islands.

The anomaly detection method identifies abnormal behaviors and failures via tracing
anomalous trends of the monitoring parameter among syslog entries. Therefore, sudden
failures such as power outage or throttling via overheating protection mechanism that do
not leave any footprints in syslog entries cannot be individually detected. The distribu-
tion of Taurus node failures as well as unpredictable and predictable failures are shown in
Figure 5.12.

11Number of nodes in each island.
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Figure 5.12: Distribution of predictable and unpredictable Taurus node failures over time
Unpredictable Failures

Out of the total number of 2, 535 node failures on Taurus in the year 2017, syslog analysis
revealed that 428 node failures were (individually12) unpredictable. In another word, the
normal behavior of these 428 failures according to the chosen monitoring parameters13
did not change prior to the failure occurrence. These 428 unpredictable failures occurred
on 373 different nodes. The distribution of unpredictable node failures among 6 islands
of Taurus is shown in Table 5.2. According to Table 5.2 it is concluded that 16.88% of all
node failures on Taurus are unpredictable. The right most column in Table 5.2 shows the
percentage of unpredictable failures within each island. According to this measure, more
than one fourth of node failures on Island 4 are unpredictable.

Table 5.2: Distribution of unpredictable node failures in Taurus islands
Island Unpredictable failures Percentage Percentage of unpredictable failures in the island1 9 2.10% 14.28%2 3 0.70% 11.11%3 5 1.17% 6.32%4 135 31.54% 26.41%5 171 39.95% 16.81%6 105 24.53% 12.52%
In summary, Island 4 beside having the highest ratio of node failures, has the highest

percentage (26.41%) of unpredictable failures. Although Islands 5 and 6 are identical in
the number of nodes and processor architecture, the behavior of nodes in Island 6 are
significantly more deterministic than Island 5. In current conditions, the highest possible
recall rate of failure prediction on Taurus (system-wide) is 83.12%.

Predictable Failures

The remaining 2, 107 node failures on Taurus are predictable. Each of these failures,
prior of their occurrence, leave certain footprints in system logs which differs from the
normal syslog trends. Therefore, upon detection of these anomalous behavior via syslog
analysis, the related upcoming failures are predictable.
12Certain failures such as defect in cooling system can be predicted via monitoring other nodes of the vicinity.13facility, severity and message of syslog entries.
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To perform the anomaly detection, the combination of two syslog metadata namely:

facility and severity levels were used as themonitoring parameter. Analysis revealed
that up to 8 combinations of syslog facility-severity levelsmay simultaneously project
abnormal trends before a failure. Higher number of simultaneous abnormal pairs signifi-
cantly increases the accuracy of failure prediction. Table 5.3 shows all failures in the year
2017, that before their occurrence exactly 7 facility-severity pairs projected abnormal
behavior. These 9 failures could have been detected via any of the 7 pairs shown in the
third column. The right most column shows the pair that projected most abnormal trend,
thus proposing the best pair to be used for anomaly detection.

Table 5.3: Observation of abnormal trends in facility-severity pairs. These 9 failurescould have been detected via any of the 7 pairs shown in the third column. Theright most column shows the pair that projected most abnormal trend, thus thebest pair to be used for anomaly detection.
Failure time Node Pairs showing abnormal trends Most abnormal trend

2017-01-13 14:01:01 3165 kern_err, kern_warning, kern_notice, kern_info,
kern_debug, user_err, user_notice user_err

2017-03-16 10:50:01 5451 kern_err, kern_warning, kern_info, kern_debug,
user_err, user_notice, user_info user_err

2017-03-16 10:50:01 5468 kern_crit, kern_err, kern_warning, kern_info,
kern_debug, user_err, user_notice user_err

2017-03-16 10:50:01 5486 kern_crit, kern_err, kern_warning, kern_info,
kern_debug, user_err, user_notice user_notice

2017-03-16 10:50:01 5505 kern_err, kern_warning, kern_info, kern_debug,
user_err, user_notice, user_info user_notice

2017-03-24 07:29:41 4056 kern_notice, kern_info, kern_debug, user_err,
user_notice, user_info, user_debug user_debug

2017-06-23 08:30:01 6563 kern_warning, kern_notice, kern_info, kern_debug,
user_notice, user_info, user_debug kern_info

2017-08-31 15:10:40 6196 kern_warning, kern_notice, kern_info, kern_debug,
user_err, user_info, user_debug kern_info

2017-10-26 14:14:03 6450 kern_err, kern_warning, kern_notice, kern_info,
kern_debug, user_err, user_notice kern_warning

Table 5.4 shows a summary of facility-severity pairs that project abnormal trends
before a failure. The abnormal values shown in the header of each sub-table indicates the
number of facility-severity pairs that could have been used to detect the upcom-
ing failure. The facility-severity pairs shown in each sub-table are those combina-
tions which had the highest amount of derivation from the normal behavior. As shown
in Table 5.4, prior to the appearance of the majority of node failures, at least 2 parame-
ters simultaneously projected anomalous behavior. Figure 5.13 illustrates the dominant
parameters shown in Table 5.4.
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Table 5.4: List of detected anomalies in Taurus system logs
Abnormal values 1 Abnormal values 2 Abnormal values 3 Abnormal values 4kern-crit 1 kern-crit 27 kern-crit 6 kern-crit 9kern-err 1 kern-err 6 kern-err 6 kern-err 5kern-info 105 kern-info 60 kern-info 24 kern-info 25kern-notice 0 kern-notice 0 kern-notice 0 kern-notice 0kern-warning 6 kern-warning 17 kern-warning 31 kern-warning 22user-debug 0 user-debug 0 user-debug 0 user-debug 0user-err 59 user-err 211 user-err 131 user-err 75user-notice 143 user-notice 497 user-notice 178 user-notice 73Total 315 Total 818 Total 376 Total 209
Abnormal values 5 Abnormal values 6 Abnormal values 7 Abnormal values 8kern-crit 5 kern-crit 0 kern-crit 0 kern-crit 0kern-err 5 kern-err 1 kern-err 0 kern-err 0kern-info 36 kern-info 1 kern-info 2 kern-info 1kern-notice 2 kern-notice 0 kern-notice 0 kern-notice 0kern-warning 23 kern-warning 1 kern-warning 1 kern-warning 0user-debug 0 user-debug 0 user-debug 1 user-debug 0user-err 139 user-err 45 user-err 3 user-err 0user-notice 75 user-notice 46 user-notice 2 user-notice 0Total 285 Total 94 Total 9 Total 1
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Figure 5.13: Detected anomalies in Taurus system logs

Prediction Lead Time

Employing each of the facility-severity combinations of system logsmetadata pro-
vides a different prediction lead time. Longer lead times provide better opportunities for
preventing failures propagation and activating protection and recoverymechanisms. How-
ever, predictions with shorter lead time provide higher accuracy, thus results in less false
positives14. Figure 5.14 shows the ranges of prediction lead time according to each of the 8
significant facility-severity combinations.

In summary, themost accurate failure predictions with useful lead time are achieved via
analyzing system logs generated by kernel facility with the severity level of critical.
The longest prediction lead time is achieved via analyzing system logs generated by kernel
facility with the severity level of error. Although in few cases system logs generated by
14Mistakenly evaluate the normal behavior as abnormal.
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Figure 5.14: Prediction lead time based on various combinations of syslog parameters
kernel facility with the severity level of notice and the system logs generated by user
facility with the severity level of debug15 could be used to predict upcoming failures, in
general they are not recommended due to their rareness and insignificant semantics.

5.5 Jam-e Jam Prototype

The current implementation of ȷam–e ȷam’s prototype contains all main building blocks
that are shown in Figure 3.1. The prototype is implemented in Python16 using various li-
braries17 for visualization (e.g., seaborn, Matplotlib, Plotly), statistical analysis (e.g., NumPy,
SciPy, Pandas) and machine learning (e.g., TensorFlow, Keras, NLTK, NuPIC). The entire im-
plementation will be accessible on Logalyst18 web page.

The prototype was implemented solely as a proof of concept and for the purpose of this
work. Therefore, advanced programming techniques, complex structures and all complex-
ities that could reduce the readability of codes were intentionally avoided. Consequently,
the algorithms behind each script can be better understood.

Visualization

To increase the self-descriptively of algorithms and proposed methods, various visu-
alization techniques were applied. The input/output of multiple intermediate steps were
also visualized to assist the better understanding of proposedmethods. Example 5.1 shows
a sample of ȷam–e ȷam’s final output. Each row consists of four values, namely Node ID,
Probability, Confidence and Updated. Each row predicts the Probability of failure
occurrence on a certain Node ID with a certain Confidence. The Updated field shows
the timestamp of last assessment.

Various visualization techniques were tested to demonstrate the output of ȷam–e ȷam in
an effective and intuitive form. Out of which, two demonstrations were chosen as themost
intuitive forms for visualizing the output of ȷam–e ȷam. Both visualizations use color codes
15The debugmessages are not used in production mode.16https://www.python.org/17https://wiki.python.org/moin/NumericAndScientific18https://logalyst.github.io
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to indicate the probability of failures and different levels of transparency to indicate the
confidence level. The first visualization approach shown in Figure 5.15a groups nodes into
racks and provides additional information in each cell. The second visualization approach,
shown in Figure 5.15b, provides a single image of the entire HPC system. ȷam–e ȷam uses the
single image visualization approach as the default output and switches to the rack-based
visualization for monitoring smaller regions of the HPC cluster.

Example 5.1: Sample of ȷam–e ȷam final output
Node ID Probability Confidence Updated

----------- ----------- ---------- -----------

taurusi3001 0.3 0.4 14:23:45

taurusi3002 0.2 0.6 14:23:53

taurusi3003 0.7 0.3 14:22:31

taurusi3004 0.3 0.4 14:23:45

taurusi3005 0.5 0.6 14:24:10

taurusi3006 0.8 0.7 14:13:04

taurusi3007 0.4 0.5 14:21:27

(a) Island view (b) Cluster view
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Figure 5.15: Visualization of failure prediction in ȷam–e ȷam

Jam–e ȷam provides additional information that are intended to help administrators in
taking adequate decisions during doubtful conditions. Figure 5.15c shows a single node
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view, illustrating the relation of failure probability and the confidence of a failure predic-
tion. Figure 5.15d provides the history of previous failures on a particular node including
the duration of each failure. Figure 5.15e provides the number of previous failures in the
relevant node vicinity. Using this comparative information and the history of node failures,
administrators can assess the system stability even during uncertain conditions.
Precision and Recall

The current implementation of ȷam–e ȷam only using the majority voting module pre-
dicts node failures with a precision of 62%. It is important to note that the majority voting
approach predicts the upcoming node failures using an exceptionally short history interval
of 30 minutes. Increasing the history interval to 24 hours and coupling the majority voting
with the HTM model increases the precision of failure prediction to 85%. Table 5.5 shows
the detailed outcome of predictions made using majority voting and HTM model on Tau-
rus syslog entries collected in the year 2017. Table 5.6 summarizes the precision, recall, and
F1Score of both approaches.

Table 5.5: Predictions made using majority voting and HTM model
# number of events

Normal events Correctly predicted as normal event (TN) >3.2 billion
Wrongly predicted as failure (FP) 351

Failure events
Correctly predicted as failure (TP) 2034
Wrongly predicted
as normal event (FN)

Unpredictables 428
Undetected 73

Table 5.6: Results of applying the proposed failure prediction methods on Taurus syslogentries.
Prediction method Input data Precision Recall F1Score

Majority voting Fully anonymized Syslog entries 62.3% 83.1% 71.2%

Majority voting + HTM Fully anonymized Syslog entries 85.2% 80.2% 82.6%

5.6 Summary and Discussion

The results indicate that, in general, certain failures in HPC systems are predictable. The
most important findings and limitations of this work are summarized and discussed in this
section.
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System Logs as Main Monitoring Data

The choice of monitoring data is a fundamental decision. This work uses system logs
as the main source of monitoring data. However, other existing monitoring data can be
also used for similar purposes. The main advantage of system logs over other monitoring
data is their availability and generality. Almost every computing system generates certain
form of system logs. The standardization of syslog entries format via RFC5424 and the
widespread use of Linux kernel in HPC systems made syslog the only generic monitoring
facility that uniformly exists on all major HPC systems regardless of their underlying hard-
ware and software stack. Furthermore, other monitoring data can be simply redirected to
be collected and stored by syslog facility. Therefore, an analyzer which is able to process
syslog entries is also able to handle othermonitoring data and can be universally applicable
to other computing systems.

Noises in Monitoring Data

As long as failures occur in HPC systems, noises are integral part of monitoring data
regardless of the chosen source of monitoring data. Noises are introduced by errors in
various components of the data collection mechanism from the producers to the storage.
The proposed approach in this work is noise-tolerant and in various stages of the workflow
noises are mitigated.

Statistical Analysis

During the early stages of syslog analysis in this work, various additional methods such
as natural language processing were tested. Although, these methods could provide addi-
tional information in certain cases, the exposed overhead caused by complexity of natural
language processing algorithms was not justifiable. Furthermore, through text analysis it
has been revealed that despite sudden changes of syslog entries after each software up-
date and the unstructured free-form message field of syslog entries, there are only a few
hundred syslog patterns. These patterns can be detected and learned, thus imposing ex-
cessive overheads through the use of complex methods is avoided.

Extraction of syslog patterns itself is a challenge. Several previous studies extracted
the syslog patterns from the software source code. Although, this seems to be the easi-
est and most accurate approach, many parts of the software stack are closed-source, or
they change frequently. Thus, the syslog patterns can not be directly extracted from the
software source code. To address this challenge and extract the syslog patterns (event
patterns) PαααRS has been designed.

Comparison of the information gained via analyzing event patterns and analyzing orig-
inal syslog entries revealed that except for certain hardware related messages (e.g., CPU
temperature) there are no significant differences. Therefore, it was concluded that only
knowing the type of syslog entries (regardless of their variable values) is sufficient to track
nodes behavior. In another word, the required information to track nodes behavior is the
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relation between events (e.g., first logged in then logged out) rather than the details
of each event (e.g., first siavash logged in to 192.168.0.1 then siavash logged

out from 192.168.0.1).
Furthermore, one of the goals of this study was to propose a general approach which

can be also applied to future Exascale HPC systems. Therefore, automation and scalability
of the approach was one of the main priorities. Knowing the insignificance of event details
and the demand for automation and scalability, the statistical analysis has been chosen as
the main analysis method.
Data Anonymization

Following the implementation of GDPR since May 2018 the processing and storage of
syslog entries are allowedonly for a short amount of time and after proper de-identification
of the personal identifiers. Anonymization of syslog entries according to the privacy pol-
icy of computing centers and the general data protection regulations significantly reduces
the intelligible semantics of syslog entries. Majority of syslog entries lose their entire se-
mantics. To guarantee the data anonymization, an additional encoding (hashing) step was
added to PαααRS, transforming it to a comprehensive classifier/anonymizer.

PαααRS converts each syslog entry into a fixed size hash key. The hash key is an irreversible
encoded form of the event pattern. The temporal relation among events will be kept also
among the hash keys. The encoding step decreases the size of syslog messages up to
the 30% of their original size. Furthermore, the final encoding step prevents any potential
leakage of information into the anonymized output.

Due to the existence of highly frequent entries in syslog collections, the same level of
size reduction can be achieved via applying lossless compression algorithms. However,
the main advantage of size reduction using PαααRS is the irreversible compression which still
preserves the relation of events and eliminates the need for decoding entries. Therefore,
the anonymized and encoded syslog entries can be archived and processed at any time
without requiring further data preparation. The PαααRSmechanism is specially useful in sce-
narios that data must leave the secure zone of HPC system for long-term storage, further
analysis, or publications.
Correlations and Node Vicinities

About one third of failure incidents on Taurus are temporally correlated. This ratio rises
to about 80% by considering the number of individual node failures rather than the number
of failure incidents (Figure 3.25 on page 58). Therefore, this is a necessity to consider failure
correlations in behavioral analysis in order to prevent large scale failures.

The main anomaly detection method proposed in this study works solely based on sta-
tistical analysis. Its accuracy with only a 30-minute stream of syslog entries is already ac-
ceptable. This outstanding performance is rooted in the characteristics of HPC systems.
Preliminary results revealed strong correlations among certain node failures. The corre-
lations were further investigated in 3 dimensions namely time, space and logic. Although,
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many correlations could be explained using these 3 dimensions, certain correlations were
observed however, could not be justified (Figure 3.20). Therefore, new dimensions (node
vicinities) were defined. The application of ȷam–e ȷam in various node vicinities was tested.
The best performance was achieved inside hardware architecture and physical location
vicinities.

According to the results of this work, similar computing nodes intend to project similar
behaviors. Users prefer homogeneous set of nodes to bypass potential incompatibilities
and technical challenges. Most batch schedulers are configured to allocate tasks of a job
to nearby computing nodes since communication between neighboring nodes is faster,
shared resources are better accessible, network congestion is less andmanyother reasons.
Therefore, the placement of computing nodes inside HPC systems and their connections
to each other are not random phenomena, rather a thoroughly thought decision. In cur-
rent HPC systems, nodes with similar characteristics are intentionally placed next to each
other to avoid various technical difficulties and improve performance. Because of these
considerations the hardware architecture and physical location vicinities in Taurus have
large overlaps. Similar conditions apply to other HPC systems. Therefore, it is enough to
apply ȷam–e ȷam on a rack-based setup in almost all current HPC systems (without knowing
the detail of system’s topology) to utilize the benefits of hardware architecture and physical
location vicinities. However, going toward heterogeneous computing systems the impor-
tance of performing behavioral analysis inside hardware architecture and physical location
vicinities significantly increases.
Failures Propagate

Due to the shared resources in HPC systems and the tightly coupling of computing
nodes, failuresmay propagate through the system from one node to the other. Most prop-
agated failures are caused by errors in distributed file system and I/O mechanisms. Sta-
bilizing the distributed file system eliminates a significant fraction of node failures in HPC
systems.
The Solution for Exascale

Unstructured format of syslog messages, continuous updates of software stack, fre-
quent systemmaintenance, dynamic algorithms, adaptive loadbalancing, performance/en-
ergy optimizationmechanisms, unpredictable users behavior, nondeterministic protection
mechanisms and interactive computational environment are some factors that frequently
affect the behavior of HPC systems. Therefore, a static normal behavior cannot be defined.
Instead, the normal behavior should be dynamically adjusted to the current status of the
computing system. Given the size and complexity of future Exascale computing systems
unsupervised approaches are the only feasible solution. The unsupervised behavioral anal-
ysis approaches based on statistical methods provide more scalability and transparency
and do not require the complete semantics of the syslog entries. The later is required to
perform behavioral analysis using anonymized system logs.
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Heterogeneity and Homogeneity of Nodes

Differences among available memory, disk space and network capacity of computing
nodes have minimum impact on nodes’ behavior in Taurus. On the other hand, CPU archi-
tecture significantly influences nodes’ behavior. Therefore, the heterogeneity and homo-
geneity of computing nodes in this work are defined according to the nodes CPU architec-
ture. The failure detection approach proposed in this work, performs more accurately on
homogeneous HPC systems. Thus, this study recommends dividing heterogeneous HPC
systems into smaller homogeneous sections before applying the proposed failure detec-
tion approach.

It is important tomention that thiswork is focusedon the resiliency of largeHPC clusters.
Given the limited number of available different CPU architectures, it is a valid assumption
to consider any large heterogeneous computing system as a set of smaller homogeneous
sections, thus the proposedmethod is applicable. In the unlikely situation of lack of homo-
geneous sections in heterogeneous computing systems, the HTM model should be used
without majority voting.

Precision and Recall

ȷam–e ȷam predicts Taurus node failures with outstanding F1Score value of 82%. How-
ever, as it is shown in Table 2.7, there are other failure prediction methods that achieved
even higher F1Score values. The main difference lies in the definition of failure and the
quality of monitoring data. In contrast to this work, system logs are not the only moni-
toring data used by the methods of Table 2.7. Some of those methods, beside the syslog
entries, had access to additional information that are required to predict irregular failures
such as failure of cooling system, CPU burn out, and disk failure. Furthermore, most stud-
ies did not provide sufficient information about the data curation and preparation process,
which have significant influence on the coverage and precision of final predictions. User in-
teractions also significantly increase the nondeterministic behaviors of HPC systems, thus
reducing the predictability of upcoming failures. In addition, certain failures are not pre-
dictable due to the lack of any footprints prior to the point of failure e.g., failures caused
by sudden reaction of the overheating protection mechanism, or power outage.

The prediction lead time can not be estimated. Although, in several cases the lead time
of failure prediction is surprisingly large, its duration itself cannot be accurately estimated.
Rather than statistically estimating the expected failure time, ȷam–e ȷam increases the value
of prediction confidence as time passes (Section 4.3.3).

Detection of system-wide failure patterns is not practical. Different subsets of comput-
ing nodes project different behaviors, thus different failure patterns. The dynamic nature
of the modern HPC systems and in particular the interactive computational environment
(users) is causing these differences. Therefore, detecting system-wide failure patterns is
not practical nor useful. A system-wide failure pattern will fail to accurately model the fail-
ure pattern of subsections of the HPC system. Therefore, the behavior pattern of each
subsection should be individually extracted.
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Combining themajority voting and the HTMmodel, the proposed approach reached the

outstanding precision of 85% for node failure prediction (Table 5.6). A more reliable data
collection mechanism is expected to improve the precision of failure prediction.
To Predict or Not To Predict: On-demand Adaptive Resilience

In total more than 4, 000 incidents were recorded on Taurus during one year. More than
15, 000 node outages occurred during these incidents. Many of these node outages were
caused by planned maintenance or urgent security updates (e.g., Spectre and Meltdown).
Another group of node outages were caused by hardware failures (e.g., failure of cooling
system). The third group of outages were consecutive outages that occurred during the
instability periods immediately after recovering from the previous outage (Figure 1.1). The
last group of node outages occurred during the normal operation of the HPC system and
are caused by internal factors such as software and hardware errors or racing conditions.
Only the last group of node outages (regular failures) can potentially be predicted.

During the year 2017 2, 535 regular failures were recorded on Taurus. Only consider-
ing the blackout interval of those 2, 262 nodes that recovered in less than 5 hours, a total
amount of 6, 175 node-hours are lost19. This amount of lost hours is comparable to shutting
down the entire Taurus cluster for more than 3 days20. In larger HPC systems the failure
ratio may increase even further due to higher system complexities.

It is important tomention that existing failure protectionmechanisms (e.g., checkpoint/restart,
redundancy) themselves introduce failures in HPC systems. Furthermore, always-active
layers of protection impose unnecessary overhead and decrease the HPC systems perfor-
mance. Switching from an always-active resilience to an on-demand resilience decreases
the unnecessary overhead of always-active protection layers and reduces the probability
of failures caused by interference of protection mechanisms.

The decision among always-active and on-demand resilience heavily depends on the
requirements and demands of the HPC system. There are unpredictable failures and the
exact length of prediction lead time is usually unknown. Therefore, on-demand protection
mechanisms will fail to protect the system against certain failures. For HPC systems with
short jobs the on-demand resilience can be beneficial. On the other hand, always-active
resilience is the only solution to compensate irregular failures which may occur on HPC
system with long execution time or time-critical jobs.

However, regardless of the HPC system requirements and demands, the on-demand
adaptive resilience approach is the solution for protecting future HPC systems. The on-
demand adaptive resilience approach provides light-weight always-active protection layers
that are strengthened via on-demand activation of additional protection mechanisms in
case of detecting abnormal behaviors or predicting instabilities.

19Each node has multiple CPUs.20Taurus has 2046 computing nodes.
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6 Conclusion and Future Works

Following the expansion of HPC systems in size and complexity, and the advent of Exas-
cale computing systems, the existence of failures became a norm rather than an exception.
In the presence of failures, even themost de factomechanisms such as checkpoint/restart,
redundancy, and migration may fail to support the continuous operation of ever growing
large scale HPC systems. Predicting upcoming failures reinforces existingmechanisms and
enables timely protection via providing adequate lead time. The goal is to provide adaptive
resilience for HPC systems. In an ideal scenario all failure protection mechanisms remain
inactive during the normal conditions. Consequently, unnecessary overheads and perfor-
mance penalties are avoided, the energy consumption is reduced, and a potential source
of failure is removed. Upon prediction or detection of failures, proportional to the systems
condition, adequate protection mechanisms will be activated to prevent failure propaga-
tion and compensate potential side effects. The adequate action could be an on-demand
check-pointing of the unstable node, an on-demand cloning of the unstable processes or
an on-demand migration of tasks to other stable nodes (surrogates).

This work showed that the majority of failures in HPC systems are predictable. To pre-
dict the regular failures, ȷam–e ȷam as a general and unsupervised behavioral analyzer was
proposed and can be applied to other HPC systems without any modifications. It has been
shown that system logs have invaluable information about various levels of computing
system and is a useful source of monitoring data that exists on virtually all HPC systems.
To comply with data protection regulations and to address the users privacy concerns, a
robust data anonymization method was introduced. PαααRS turned privacy constraints into
analysis advantage that further facilitates the storage and processing of anonymizedmon-
itoring data.

Furthermore, the concepts of node vicinity and majority voting inside node vicinities
were introduced. The proposed behavior analysis method based on majority voting tol-
erates noise by design, and accurately works with as short as 30 minutes of logging his-
tory. The statistical-based anomaly detection inside relevant node vicinities significantly
improved the accuracy of failure prediction. The proposed machine learning based meth-
ods complemented the decisions of the statistical method to further improve the accuracy
of failure predictions. ȷam–e ȷam with its outstanding failure prediction precision of 85%,
achieved using a fully automatic and unsupervised approach, proved its functionality for
the future extreme scale HPC systems.

The goal of this work was designing a prototype to analyze and predict system behav-
ior as a main step toward resilience in high performance computing systems. Due to the
size and complexity of the problem, certain assumptions were made to generalize the out-
comes. The most important assumptions are explained on page 25. Although, these as-
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sumptions were necessary to conduct this study, for future studies several assumptions
can be loosened according to the outcomes of the current work.

To provide a general analysis approach applicable to all HPC systems, a general source
of data must have been chosen. Currently, system logs are the only widely available mon-
itoring data which exist virtually on all HPC systems. However, it seems that computing
centers and system producers are acknowledging the importance of behavioral analysis
via providing a broader range of monitoring data sources. The new widespread sources
of monitoring data should be added to ȷam–e ȷam in order to improve the accuracy of its
analysis.

The failure correlation detector in this work automatically detects correlation among
failures in two dimensions of time and space. Failure correlations in other dimensions are
mainly perceived indirectly via analyzing the temporal and spacial correlations. Therefore,
the automatic detection of failure correlation requires further improvements. Detecting
correlations among node vicinities is only the first step toward fully automatic detection of
system-wide failure correlations.

Selecting the node vicinities is the only manual part of the ȷam–e ȷam mechanism and
requires the expert knowledge of system topology. Automatic selection of node vicinities
eliminates the only manual step, and turns ȷam–e ȷam into a fully automatic mechanism.
However, as it has been discussed before, in the current HPC systems the automatic selec-
tion of node vicinities is not a high priority. Due to the fact that system providers intention-
ally group homogeneous computing nodes together, in current HPC systems a rack can be
considered as a default node vicinity. However, with the arrival of heterogeneous systems
the automatic selection of node vicinities remains as an important challenge.

Despite the promising preliminary results of Text Auto-completion model, the techni-
cal challenges of detecting very long recurring sequences of symbols in text strings re-
stricts the accuracy of Text Auto-completion model. Therefore, improvement of Text Auto-
completion model is postponed as part of the future work. Furthermore, the fine-tuning
of HTM model is planned.

As discussed in Section 5.6, the precision of the proposed failure prediction approach
in this work cannot be directly compared to previous failure predictors. However, a com-
parison study is planned to be conducted as soon as the requirements of the study are
fulfilled. Application of the proposed failure prediction approach on Taurus as a live ser-
vice is also planned. At the time of writing, the first prerequisite step (a reliable stream of
syslog entries) is already accomplished and further steps are in progress.
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A Neural Network Models

In order to extend the known set of correlations among nodes and failures, in addi-
tion to the main behavioral analysis method and the hierarchical temporal memory (HTM)
model, three alternative neural network models are proposed. For the first and second
model, syslog entries are transformed into images and processed via image processing
techniques, while the third model uses a text auto-completion technique to predict the
upcoming events [260].

Image Processing

Many periodic events in HPC systems have static time intervals. The longest interval be-
tween two consecutive occurrences of a periodic event on Taurus is 60minutes, thus, every
periodic syslog entry appears at least once during an hour. Therefore, the observation win-
dow of one hour was chosen to monitor Taurus behavior. To simplify future calculations,
the width of observation window is extended to 64 minutes1. However, in each observa-
tion, the window is shifted forward by 60minutes such that the observation window always
starts exactly on the hour. Hereafter, the data which is captured in an observation window
is referred to as a frame. Figure A.1a shows the shifting of observation window to capture
data frames for a duration of four hours.

Each frame is represented as a two-dimensional matrix of Fe, with t columns and n

rows. t represents the time bins of one-minute and is equal to the width of the observation
window (64) and n is the number of nodeswhich have been observed. The value of each cell
(vnt) denotes the re-occurrences of event e for all events of the same severity level2within
the time bin of t on node n. A sample frame is shown in Figure A.1c(a), which represents
all events with the severity level of emergency that occurred on 18 adjacent computing
nodes (a rack) during a 64-minute time window. Two nodes (rows) are randomly chosen
to be removed from the frame to simplify the future calculations3. To eliminate potential
accuracy penalties caused by random node removals, two different copies of each frame
are generated. For the second copy, two nodes other than thosewhichwere removed from
the first copy are randomly chosen to be removed. During the learning phase, networks
are trained on both copies.

For each of the eight syslog severity levels, a separate frame is captured as shown in
Figure A.1c(b). Frames containing emergency, alert, and critical events are merged (accumu-
lated) into a single frame. Similarly, the error frame is merged with warning frame, and the
164 is a power of two (26).2Table 2.2 on page 9 provides a complete list of syslog severity levels.316 is a power of two (18 − 2 = 24).
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Figure A.1: Anomaly detection using image processing techniques

notice frame is merged with information frame. The debug frame remains unchanged. Fur-
thermore, the values of each cell is normalized to the range of 0 and 255. The four resulting
frames are stored as a three-dimensional matrix shown in Figure A.1c(c), representing a 16
by 64 pixels RGBA PNG image [265].

Two different autoencoders are designed to model the normal behavior of Taurus via
image data. Both networks are trained via a sequence of 24 RGBA images in size of 16
by 64 pixels. The first approach trains a state-less convolutional autoencoder shown in
Figure A.1b. The expected output of the network is the same image (frame) as the input.

The second approach trains a long short term memory (LSTM) autoencoder. The ex-
pected output of the network in this approach is the next image (frame) in the input se-
quence. In another word, the network should predict the next image of the sequence. A
similar network as shown in Figure A.1b is used, with the convolutional layers substituted
by convolutional LSTMs.

Using the neural network, the hidden correlations among nodes and failures within
node vicinities can be automatically detected and used to improve the failure prediction
accuracy. As described in Chapter A on page 137 two models of neural networks were de-
fined. The first model works based on image processing while the second model employs
text auto-completion techniques. Both models perform the analysis inside relevant nodes
vicinities. The image processing model has the additional advantage of providing intuitive
insights about the system behavior instantly, since its input and output are both figures.
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Figure A.2 shows the behavior of 18 nodes from Island 4.
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(b) From 01:00:00 to 02:00:00
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(c) From 02:00:00 to 03:00:00
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(d) From 03:00:00 to 04:00:00
Figure A.2: Hourly pattern of computing nodes Taurusi4001-Taurusi4018. Between 03 : 00and 04 : 00 a.m. some nodes project abnormal behavior.

Each sub-figure shows a time interval of 60 minutes starting from a full hour to the next
full hour. Except Figure A.2dwhich indicates some abnormal behaviors, the hourly patterns
of all nodes are identical. Both models of neural networks are designed based on this
recurring hourly patterns4.

The Keraspython library is used for the implementation of neural networks in thiswork.
The image processing model was able to automatically extract strong hidden correlations
among node behaviors inside their node vicinity. Figure A.3a demonstrates the image rep-
resentation of Figure A.2a that can be directly processed via image processing model.

The left side of Figure A.3b shows the automatically extracted behavioral pattern for
nodes taurusi4001-taurusi4018 from a set of 24 frames5 similar to the frame shown on the
right side of Figure A.3b. Vertical concentrations of similar color as well as shades of blue
are identifying the significant regions of the behavioral pattern. This model will be updated
continuously after each 60 minutes. Derivation of nodes behavior from the extracted "nor-
mal" pattern is concluded as a behavioral anomaly. The performance of Image Processing
model is highly dependent on the correct selection of node vicinities. Figure A.3c shows
the behavioral pattern extracted from a more homogeneous node vicinity.

Text Auto-completion

The third NN model uses a text auto-completer. The input of network is a sequence of
anonymized syslog entries (event classes) and the expected output is the upcoming entries.
In another word, this network predicts the future events and completes the sequence.
The event class of each syslog entry is a word. A sequence of 60 words (one word per
minute) forms a sentence, and 24 sentences form a text (one day). Multiple occurrences of
an identical event within a minute are ignored, and the occurrence of concurrent distinct
events are accumulated. Empty bins (minutes) are filledwith the event class of the previous
4The recurring hourly pattern is a common behavior in all HPC systems.5Each frame covers the interval of one hour therefore, the 24 frames cover an entire day.
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(b) Significant hidden correlations among behavioral patterns of nodes taurusi4001-taurusi4018
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(c) Improvement of automatic behavioral pattern extraction in more homogeneous node vicinities
Figure A.3: Automatic extraction of behavioral pattern using Image Processing model

bin. Figure A.4(a) transforms the sample syslog entries shown in Table A.1 into a five-word
(incomplete) sentence. Example of a text is shown in Figure A.4(b).
Table A.1: Sample of syslog entries with their respective severity level and event class

Timestamp Source Message Severity Event class1517266801 taurusi1020 (siavash) CMD (/usr/bin/check) Information 62440f7d1517266925 taurusi1020 (root) CMD (/fast/sbin/start) Information 62440f7d1517266929 taurusi1020 Accepted publickey for siavash from 192.68.31.32 Notice ea6f83c91517267050 taurusi1020 pam_unix(sshd:session): session opened for user siavash Notice feaec917

The network used in this approach consists of two layers, a dense layer attached to an
LSTM. To increase the accuracy of detection mechanism, similar to other methods pro-
posed in this work, only the data collected from nodes in the vicinity of each other are
compared.

The preliminary results of Text Auto-completion model were promising. However, the
technical challenges of detecting very long recurring sequences of symbols in text restricts
the accuracy of Text Auto-completionmodel. Therefore, improvement of Text Auto-completion
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Syslog timestamp 1517266801 <no event> 1517266925
1517266929

<no event> 1517267050 -

Time (minute) 23:00 23:01 23:02 23:03 23:04 …

Event classes 62440f7d <no event> 62440f7d
+

ea6f83c9

<no event> feaec917 …

Accumulating 
concurrent events

62440f7d <no event> [1]4CB39346 <no event> feaec917 …

Final sentence 62440f7d 62440f7d 4CB39346 4CB39346 feaec917 …

Copy Copy

62440f7d 62440f7d 4CB39346 4CB39346 feaec917 … 62440f7d 62440f7d 4CB39346 4CB39346 feaec917.
62480f7d 62440f7d 4CB39346 4CB39346 feaec917 … 62440f7d 62440f7d 4CB39346 4CB39346 feaec917.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
62440f7d 62440f7d 4CB39346 4CB39346 feaec917 … 62440f7d 62440f7d 4CB39346 4CB39346 feaec917.
62440f7d 62440f7d 4CB39346 4CB39346 feaec917 … 62440f7d 62440f7d 4CB39346 4CB39346 feaec917.

60 words

2
4

 li
n

es

(a)

(b)

Figure A.4: Failure prediction via text auto-completer. (a) Transforming sample syslog en-tries from Table A.1 into an incomplete sentence. (b) 24 hours of syslog entriesrepresented as 24 sentences with the constant length of 60 words.
model is postponed as part of the future work.
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B External Tools

To gain a better understanding of Taurus’s behavior, during the early stages of behav-
ioral analysis in this work, multiple external tools have been used. However, none of these
tools are required for reproducing the results of this work. Table B.1 provides a list of exter-
nal tools that were used to analyze Taurus behavior. Majority of tools listed in Table B.1 are
data visualizers. Visualization is an outstanding method to achieve a global overview on
potential patterns in large datasets such as taurusCleansed in this work. A complemen-
tary web page1 (Logalyst) provides additional visualizations (e.g., interactive, animated) to
assist better understanding of the data used in this work.

Table B.1: External tools used in this work
Tool PurposeKibana Visualizing syslog entries» github.com/elastic/kibanaElasticsearch Storing syslog entries (online analysis)» github.com/elastic/elasticsearchSQLite Storing syslog entries (offline analysis)» sqlite.org/srcLogstash Preprocessing and unifying syslog entries» github.com/elastic/logstashSAM Tools Manipulating sequence alignment map (SAM) files» github.com/samtools/samtoolsUGENE Visualizing SAM files» github.com/ugeneunipro/ugeneTablet Visualizing SAM files» github.com/cropgeeks/tabletNew Genome Browser (NGB) Visualization of structural variations» github.com/epam/NGBGenomeView Interactive visualization of string sequences» genomeview.orgPHIRE Detecting unusual sequence patterns in string sequences» www.biw.kuleuven.be/logt/PHIRE.htm

Themain data analysis tasks were conducted using Python scripts. Simple data handling
tasks were performed using GNU tools2 and bash scripting. In addition, various python li-
braries3 were used for visualization (e.g., seaborn, Matplotlib, Plotly), statistical analysis
(e.g., NumPy, SciPy, Pandas) and machine learning (e.g., TensorFlow, Keras, NLTK, NuPIC).
Majority of scripts are accessible on Logalyst web page. These scripts were developed
solely as a proof of concept and for the purpose of this study. Therefore, advanced pro-
gramming techniques, complex structures and all complexities that could reduce the read-
ability of source codes were intentionally avoided. Consequently, the algorithms behind
each script can be better understood although the performance can still be improved.
1https://logalyst.github.io2https://www.gnu.org/manual/blurbs.html3https://wiki.python.org/moin/NumericAndScientific

https://github.com/elastic/kibana
https://github.com/elastic/elasticsearch
https://sqlite.org/src
https://github.com/elastic/logstash
https://github.com/samtools/samtools
https://github.com/ugeneunipro/ugene
https://github.com/cropgeeks/tablet
https://github.com/epam/NGB
https://genomeview.org
https://www.biw.kuleuven.be/logt/PHIRE.htm
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C Structure of Failure Metadata Databse

The taurusMETA database1 contains the metadata that are used in this work to analyze
Taurus behavior. Figure C.1 shows a schema of the taurusMETA database.

abnormal_counters

node TEXT

start INTEGER

start_date TEXT

end INTEGER

end_date TEXT

old_councter INTEGER

new_counter INTEGER

duration INTEGER

admin_db

id INTEGER

status TEXT

reason TEXT

date TEXT

job_status_codes

status INTEGER

code TEXT

comment TEXT

job_status

node TEXT

date TEXT

jobid INTEGER

status INTEGER

potential_failures

node TEXT

start INTEGER

start_date TEXT

end INTEGER

end_date TEXT

old_councter INTEGER

new_counter INTEGER

duration INTEGER

service_notices

start TEXT

event TEXT

reason TEXT

end TEXT

syslog_entries_count

node INTEGER

date TEXT

count INTEGER

syslog_reboot_codes

status TEXT

comment TEST

nodes

node TEXT

island INTEGER

rack INTEGER

cpu TEXT

core INTEGER

gpu TEXT

ram INTEGER

syslog_reboot

node TEXT

date TEXT

status INTEGER

Figure C.1: Schema of taurusMETA database
Relations2 are omitted from this view to improve readability. The extracted ground truth

is stored in the potential_failures table. Data in nodes table provides required infor-
mation about the Taurus topology. Tables job_status_codes andsyslog_reboot_codes
contain the definition of their respective numeric codes. Table syslog_entries_count
stores the number of syslog entries per node per day. The number of syslog entries per
day is used to quickly identify offline nodes (e.g., the nodes under maintenance) as well
as extreme outliers. The status of each record in syslog_reboot table indicates the
occurrence of a crash, shutdown or reboot on the respective node.

After each failure, system administrators investigate the reason behind it. This infor-
mation in addition to node id, status and the relevant timestamp are stored in table
admin_db. Table job_status stores the status of all submitted jobs. All scheduled
maintenance periods and significant outages are reported via an internalmailing list. Table
service_notices stores all service notification.

As discussed in Section 3.4, syslog-ng internal metrics can be monitored to detect the
abnormal behaviors of syslog daemon. The abnormal_counters table stores the time
intervals in which syslog-ng’s internal metrics were abnormal. Although, these intervals do
not necessarily indicate a general abnormal behavior, the probability of observing failures
in these intervals is significantly higher. Therefore, the interplay of abnormal_counters
data and other available information such as syslog_reboot reveals failure intervals. All
potential node failures that occurred in the year 2017 are illustrated in Figure 3.25.
1More details in Section 3.42Foreign keys
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D Reproducibility

This appendix provides technical details required to execute ȷam–e ȷam and reproduce
the results of this work. Regardless of the underlying operating system, the only required
software package is Python. All parts of ȷam–e ȷam except the HTMmodel are implemented
using Python3.x. Since the Python library of NuPIC is only compatible with Python2.7, the
HTM related sections of ȷam–e ȷam are implemented in Python2.7. The main libraries used
in this work are shown in Table D.11.

Table D.1: Main libraries used for implementation of the ȷam–e ȷam prototype
Library VersionPython 2.7Cython 0.29.7DBUtils 1.1matplotlib 2.2.4memory-profiler 0.55.0numpy 1.12.1nupic 1.0.5nupic.bindings 1.0.6nupic-studio 1.1.3pysha3 1.0.2redis 2.10.5

Library Version Library VersionPython 3.7 redis 2.10.6calmap 0.0.7 regex 2018.8.17csuffixtree 0.3.3 scikit-learn 0.19.2Flask 1.0.2 scipy 1.1.0graphviz 0.10.1 seaborn 0.9.0html5lib 1.0.1 simplejson 3.16.0Keras 2.2.2 sqlite-bro 0.8.11matplotlib 2.2.3 suffix-trees 0.2.4.4memory-profiler 0.55.0 tensorboard 1.9.0nltk 3.3 tensorflow 1.9.0numpy 1.14.5+mkl

Example D.1: Expected format of syslog entries for PαααRS
EPOCH DATE TIME NODE FACILITY SEVERITY [PID] DAEMON <> MESSAGE

The current implementation of PαααRS2 accepts a stream of syslog entries as its input. To
use ȷam–e ȷam right out of the box, the syslog entries must have the structure shown in
Example D.1. However, only the EPOCH, NODE, FACILITY, SEVERITY and MESSAGE are
considered and the rest are ignored. Therefore, the non-required fields can be filled with
dummy data. The main use of <> symbol beside facilitating the correct division of syslog
entry into its structured (metadata) and unstructured (message) parts is to verify the con-
sistency and integrity of syslog entry. A valid Syslog entry must have 8 space-separated
fields before the <> symbol and 1 non-empty string after the <> symbol. System logs with
other combinations of fields and separators are considered invalid, thus ignored. Addi-
tional technical details are available at logalyst online repository.

1These libraries may have dependencies. The P ython installer (pip) automatically resolves and installs therequired dependencies.2The anonymizer module of ȷam–e ȷam

https://logalyst.github.io/
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E Publicly Available HPC Monitoring Datasets
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https://doi.org/10.5281/zenodo.1144100
http://gwa.ewi.tudelft.nl/datasets/
https://web.archive.org/web/20080303060435/http://www.supercluster.org/research/traces/
https://www.cse.huji.ac.il/labs/parallel/workload/logs.html




152 Glossary

F Glossary

ȷam–e ȷam Proper noun; a cup of divination in ancient
mythology. Pronounced as Jām-e Jam..

Confidence An indication of how often the rule has been
found to be true. Confidence of a rule A => B

is the support of the rule divided by the number
of sequences containing the items of A.

error A triggered fault (e.g., x
y=0 ).event A change in the system. Event can emit amessage.

failure The event in which a component fails to perform
its expected functionality.

failure chain A sequence of successive identical failures.
failure correlation Interpretation of a set of events that happen

within a common dimention.
fault A defect within the systems’ components (e.g., x

y ).
golden interval The time interval between detection of an

anomaly and occurrence of the subsequent
failure.
.

node failure An event in which a computing node cannot per-
form any useful function.

PαααRS A system log anonymization method for preserv-
ing Privacy and Reducing Storage.

regular failure An unintential failure caused by internal factors.
Support The number of sequences in which a certain pat-

tern appears.

https://en.wikipedia.org/wiki/Cup_of_Jamshid


Glossary 153
Taurus Taurus HPC cluster; a set of tightly coupled clus-

ters located in Dresden, Germany.
UNIX time Also known as POSIX time or UNIX Epoch time. It is

equal to the number of seconds that have elapsed
since 00:00:00 January 1st 1970 in UTC timezone..
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G Acronyms

ET event time
FN false negative
FP false positive
HPC high performance computing
IET inter-event time
MTBF mean time between failure
MTTI mean time to interrupt
NER named entity recognizer
PET pre-event time
PoET post-event time
syslog system log
TN true negative
TP true positive
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Disclaimer

References to legal excerpts and regulations in this work are provided only to clarify the
proposed approaches and to enhance explanation. In no event will author of this work be
liable for any incidental, indirect, consequential, or special damages of any kind, based on
the information in these references.
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