MACROERGONOMICS FOR INTEGRATED PUBLIC HEALTH AND SAFETY

Rani AuliaImran1, Iftikar Z. Sutalaksana2
Program Studi Magister Teknik dan Manajemen Industri, Institut Teknologi Bandung, Indonesia1
Lab. Rekayasa Sistem Kerja dan Ergonomi, Kelompok Keilmuan Manajemen Industri, Institut Teknologi Bandung, Jln. Ganesha No. 10, Bandung2
Email: raniauran14@gmail.com, siftikar@y7mail.com

Abstract

Companies need manpower that has a certain ability to support their business processes. On the other hand, the manpower has needs that must be met to establish their economic life. The relationship between a company and the manpower is mutually beneficial, if the ability of workers that supplied by the community in accordance as the company expected. But sometimes there are communities that have varying capabilities, those in terms of skill, knowledge, or attitude (SKA). Lack of adequate manpower will have impacts on the company; one of them is safety and health issue.

More than 50% citizens of Indonesia as workers, with the number of work accidents nationwide are high at 103,000 each year; which resulted death, disability or occupational diseases. Increases number of accidents, the greater the losses materially, time-loss, and declining productivity of a company. Accidents from 2011-2014 was recorded; only 51.14% of cases workers can recover after workplace accidents. Unrecovered workers became dependents, unproductive and require social support because they can no longer work due to disability or illness caused by work. For the community, these facts imply that the company does not bring benefits to the fullest.

In macroergonomics, the interaction between manpower, technology, working environment and its interaction with the community will be assessed. This paper uses this approach to designs an entire system to accommodate human performance capability in all its aspects, and to provide solutions to solve the problems mentioned above by conducting a literature review and create a conceptual framework.

Keywords: macroergonomics, public health, safety, human well-being.

A. Introduction

Workplace or company has an impact on the community, generally easy to see are the impact to their economics and society1 With the employment, as a community members who became workers, have a source of income and economic support of their household. This makes the economic capacity of the workers can improve their social status in the society. The relationship between a company and the manpower is a mutually beneficial, if the ability of workers that supplied by the community is in accordance as the company expected. But sometimes there are communities that have varying capabilities, those in terms of skill, knowledge or attitude.

Other important impact of a workplace and sometimes under estimated is the impact on the health, physical or mental, of the workers2,3,17. Work is an economic activity but also health matters, because occupational injury and illness are part of the work8. There is evidence that companies are experiencing increased societal pressure to take on public responsibilities and are rapidly increasing their efforts to respond to health of workers2,3. To accomplish this goal, highly relevant and well suited to implement ergonomics as sustainable development to the business sector, and the more successful...
organizations seeing this as an opportunity, not a burden.3,27

More than 50% citizens of Indonesia as workers, with the number of work accidents nation wide are high at 103,000 each year; which resulted death, disability or occupational diseases.3 Increases number of accidents, the greater the losses materially, time-loss, and declining productivity of a company. Accidents from 2011 to 2014 was recorded every semester.28,51,14 51.14% of workers fully recover, 44.50% cannot work temporarily, 3.12% impaired, and 1.32% died after an accident. Almost 47.63% of workers, not to mention their family, became dependents, unproductive and require social support because they can no longer work due to disability or illness caused by work. For the community, these facts imply that the company does not bring benefits to the fullest.

<table>
<thead>
<tr>
<th>Table 01. Capability and Willingness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willing</td>
</tr>
<tr>
<td>Capable</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Not Capable</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Individual factors that substantial influence success as workers are the skills, knowledge and attitude.31,32 And as seen in Table 01, capability summarizes the skills and knowledge, and willingness summarizes the attitude. If someone has urge or motivation to work, then they can be productive, less or unproductive depending on the capabilities they possess. This capability differences not only the level of education, but can be caused by impaired physical, mental or well-being. Therefore, if someone do not have capability and do not have urge to work, they became dependent in the community.

C. Results and Discussion

1. Healthy Workplace

Public health is concerned with protection of the entire community from illness and the prevention of disease. This concern would certainly include the millions of people who go to work in a company, small or large businesses.13 It is quite apparent that work can, and does, influence health.10,15 Over the past several decades, WHO definitions of a healthy workplace have evolved greatly; from an exclusive focus on the physical work environment (traditional approach of occupational health and safety: direct interaction with physical, chemical, biological and ergonomic hazards), and broadened to include health practice factors (lifestyle); psychosocial factors (work organization and workplace culture); and interrelation to the community; all of which can have a great effect on worker's health.4,17,32

Factors Affects the Health of Workers

WHO estimated, out of the two million estimated deaths from occupational injuries and illnesses, in 1998 approximately 346,000 were due to traumatic workplace injuries. Protecting health by removing hazards in the workplace, and thus avoiding disease, does not guarantee
that workers will experience a good health. A worker's health is also influenced by his or her personal health practices (4).

Mind and body are one, and what affects one inevitably affects the other. Sometimes non-physical or psychosocial hazards in the workplace can also affect physical safety. In fact, psychosocial hazards can be associated with injuries in either a direct or indirect manner hazardous conditions in the workplace (4)(32)(31).

2. Safety

At first, occupational health evolved from the realization that the work can cause health problems or occupational diseases that require prevention efforts. In the prehistoric era, the Egyptians already knew the benefits of the veil for respiratory protection in the incinabar mine. In Switzerland there is a note on the effects of sunlight on the workers at the mine in the reign of Solomon. Ramazini, wrote a book called A Diatribe on Diseases of Workers that discuss diseases that arise among the workers (22)(32). Hence as industrial, technology and information vastly increase, ILO and WHO are collaborate a goal to help prevent, monitor and control occupational health and safety, as a national and worldwide concern (4).

In Indonesia, Menteri Tenaga Kerja Republik Indonesia is the national decision maker in occupational health and safety (OHS) regulation, with a vision for Safety Culture Indonesia in 2015. Some regulation examples of worker’s OHS rights are (17)(22)(31): UUD 1945 Pasal 27 ayat 2, every person have a right to have a job and live a good life; UU No. 1 Tahun 1970, concerning OH Sresponsibility of worker, employer and safety auditor; and UU No. 13 Tahun 2003 Pasal 4c, employer must cover work protections to aids worker’s wellbeing.

Safety on public health

Public health had developed a tool kit of ways to deal with injuries and diseases. The most important of these tools is epidemiology studies of determinants, distribution, and frequency of disease. This tool can be used as a way to look at the value of injury and illness and to determine how many units of whatever a company produces are required to pay for a workplace injury (13).

Many companies miss the distinction between mere compliance to the requirements of safety and health standards, and actively working on preventing problems (13). A standard typically grows out of a workplace problem: a set of injuries, illnesses, or fatalities; and some of events that gain attention nationally via the media, may start its rulemaking process. Therefore, it is important to have a regulation that can protect workers, even though the process of rulemaking seems to take forever (13).

3. Ergonomics

Ergonomics is a multidiscipline activity toward collecting information about human capacity and capability, and use it to design task, product, workplace and tools (18). Since the early days of the discipline, organizational design and management factors have sometimes been considered in ergonomic analysis and design, but it was not until the beginning of the 1980s that the area began to receive formal recognition as a distinct sub discipline of ergonomics (16)(32).

Ergonomics was born utilizing other basic studies about human; for example anatomy, psychology, physiology, orthopedic, health, and sociology; then rapidly grow and broaden (16)(18). There are some approaches to ergonomics: human-machine or hardware ergonomics, human-interface or cognitive ergonomics, human-environment or environmental ergonomics, and human-job or work design ergonomics. These first four approach constitute as micro-ergonomics cause dealing with
individual/smaller system; and the holistic human-organizational approach ergonomic is macroergonomics\(^{13}(14)(15)\). By implementation of ergonomics, reductions of 60 - 90\% or more in work-related musculoskeletal disorders, accidents, injuries, and scrap rates have been impressive productivity improvements\(^{16}\).

4. **Macroergonomics**

Macroergonomics formally identified by Hal Hendrick in 1986, to ensure that the overall work system design is compatible with organization characteristics, a sociotechnical system\(^{(20)(21)(24)}\) can adapt to technology and environment transformation. Designing effective and optimal work systems using a macroergonomics approach can lead to benefits that are recognized throughout the organization, and incorporate a systems approach to understanding the organization\(^{14}(15)\).

![Hierarchial model of socio-technical system](image)

In Hendrick\(^{16}\) there are 16 macro ergonomics effective and commonly use methods presents. Some of the methods can be used to aid the others. For example interview and survey methods\(^{(26)(16)}\), they can help identifying and gaining insight into problem. The focus group\(^{(26)}\) brings people from a particular work system together, to be interviewed, then reveal specific kinds of macroergonomics intervention that might be effective in either redesigning the work system or implementing the intervention. Participatory ergonomics\(^{(2)}\) adaptation of participatory management was developed for both micro and macroergonomics interventions.

There two methods can be used for the purpose of assessing the structure of work systems in terms of their compatibility with unique sociotechnical characteristics\(^{(14)(15)(26)(18)}\). Macroergonomics Analysis of Structure\(^{(11)}\) empirically combine analytical model of work system’s technology, personnel subsystem, and the external environment as the key characteristics to be evaluated; and Macroergonomics Analysis and Design\(^{(15)}\) clearly describes implementation of macroergonomics. The main value of MEAD is its ten-step process for evaluating work-system processes\(^{(10)(18)}\): (a) observe, (b) type of system and performance analysis, (c) analysis of the technical work, (d) identifying data variance, (e) matrix analysis of the role, (g) the design of organizations, joint, and functions, (h) analysis of the perception of responsibility, (i) the system design, support and interface, and (j) the implementation, iteration, improvement.

5. **Integrated Conceptual Model**

Murphy et al\(^{(25)}\) introduced a model with aim designing a methodology that extends the construct of safety climate beyond the safety climate scores in order to explore the organizational context relating to those scores using a sociotechnical systems (STS) approach; and the concept of mesoergonomics is one proposed way to tie it all together. Since STS are viewed as dynamic, open, with permeable boundaries, and continually evolving in response to multiple internal and external influences. Context is also important in macroergonomics to allow the examination of what specifically can cause accidents and injuries that occur as a result of the interface between workers and their environments, whereas safety climate assesses the overall perception of workers as they interact with their work environments. This Murphy\(^{(25)}\) model can be used to determine influences of organizational performance and safety outcomes within a work system. If a work system is poorly designed and subsystems are
misaligned, safety climate will be negatively impacted.

In recent years, a number of research and practice-oriented approaches towards systems design and safety have adopted an explicitly sociotechnical perspective. Kleiner et al. (21) approached the issue from the three sociotechnical perspectives with which researchers are most experienced: humansystems integration, macroergonomics and safety climate; to examine sociotechnical attributes of safe and unsafe systems. The need for an increased understanding of the factors that underlie and promote safety within sociotechnical systems has significantly grown as a direct result of the accelerating complexity of work environments. Some of the reasons are (23)(21): increased system complexity and interconnectedness, rapid pace of technological change, and changing nature of accidents.

Workplace safety is a persistent, international concern, and not only the absence of work-related injury (7)(30). Interest in the sociotechnical systems approach to workplace safety reflects a growing belief that many dimensions of safety are emergent properties of such systems (7)(21)(30). Carayon et al. (7) describe two fundamental problems with the current research paradigm in workplace safety: narrow identification of an injury event as a local failure in a system and limited focus on exposure of the individual worker to workplace hazards. The proposed Carayon (7) sociotechnical system model for workplace safety integrates the work system model of Smith and Carayon (6)(7).

Complex systems can be modeled as a hierarchy of levels of organization, each more complex than its level before them (6)(7). The innermost layer is labeled the work system and describes the local context in which work activities are performed. The second layer, termed the social-organizational context, refers to organizational culture and structure within the company. The outer layer represents the social, economic, legal and political environment (7)(25).

One of an effective health and safety programs is education, with involvement of community members and workers. Prioritizing educational needs not only make learning active, but they also value workers and community residents knowledge and experience; whose the ones most familiar with their jobs, homes, and communities. And also, participatory broaden the objectives of education to give workers and community residents the skills, support, context, framework, and strategic planning practice necessary for them to identify hazards and take action to improve health, safety, and environmental conditions (1)(17)(23)(30).

No one would disagree that work, health and community are related. The WHO’s model for creating healthy workplaces is intended to provide guidance for what a workplace can do, when workers and their representatives and the employer work together in a collaborative manner. But to make an effective program, should contain at least two points of reference to
ensure successful of the ergonomic–safety terrain through management-leadership commitment and worker involvement.

Figure 06. WHO Healthy Workplace Model

Governments, national and regional laws and standards, civil society, market conditions, and primary health care systems all have a tremendous impact, for better or for worse, on the workplace, and on what can be achieved by the workplace parties on their own. These interrelationships are complex. The broader work and occupational demographic context influences individual enterprises, their organizational culture and the specific system interfaces.

D. Conclusion

There is an urgent need to develop an integrated sociotechnical systems approach to workplace safety that include broaden organizational support in safety; for the worker, employer and the community. This paper uses Murphy et al., Karsh et al., Kleiner, et al., Burton, and Carayon et al. approach to designs an entire system to accommodate human performance capability in all its aspects, and to provide solutions to solve the problems mentioned by conducting a literature review and create a conceptual framework.

Many macroergonomics studies have been conducted to find the suitable method and approach to solve the industrial problems which are more complex with uncertainties. The next significant step is to explore this conceptual model and develop systematical approach as.

E. References

