

electronic reprint

provided by University of Mysore - Digital Repo

CrossMark

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)-2-(4-nitrophenyl)acetamide

Manpreet Kaur, Jerry P. Jasinski, H. S. Yathirajan, B. Narayana and K. Byrappa

Acta Cryst. (2014). E70, 0636-0637

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr's highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The average publication time is less than one month. Articles are published in a short-format style with enhanced supplementary materials. Each publication consists of a complete package – the published article, HTML and PDF supplements, CIF, structure factors, graphics, and any other submitted supplementary files.

Crystallography Journals Online is available from journals.iucr.org

organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3dihydro-1*H*-pyrazol-4-yl)-2-(4-nitrophenyl)acetamide

Manpreet Kaur,^a Jerry P. Jasinski,^b* H. S. Yathirajan,^a B. Narayana^c and K. Byrappa^d

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^dMaterials Science Center, University of Mysore, Vijyana Bhavan Building, Manasagangothri, Mysore 570 006, India

Correspondence e-mail: jjasinski@keene.edu

Received 26 April 2014; accepted 30 April 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.129; data-to-parameter ratio = 13.2.

In the title compound, $C_{19}H_{18}N_4O_4$, the nitrophenyl and phenyl rings are twisted by 67.0 (6) and 37.4 (4)°, respectively, with respect to the pyrazole ring plane [maximum deviation = 0.0042 (16) Å]. The dihedral angle between the mean planes of the phenyl rings is 59.3 (3)°. The amide group, with a C– N–C–C torsion angle of 177.54 (13)°, is twisted away from the plane of the pyrazole ring in an antiperiplanar conformation. In the crystal, N–H···O hydrogen bonds involving the carbonyl group on the pyrazole ring and the amide group, together with weak C–H···O interactions forming $R_2^2(10)$ graph-set motifs, link the molecules into chains along [100]. Additional weak C–H···O interactions involving the nitrophenyl rings further link the molecules along [001], also forming $R_2^2(10)$ graph-set motifs, thereby generating (010) layers.

Related literature

For the structural similarity of *N*-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin *et al.* (2008). For the coordination abilities of amides, see: Wu *et al.* (2008, 2010). For the pharmaceutical, insecticidal and non-linear properties of pyrazoles, see: Chandrakantha *et al.* (2013); Cheng *et al.* (2008); Hatton *et al.* (1993); Liu *et al.* (2010). For related structures, see: Fun *et al.* (2012); Butcher *et al.* (2013*a,b*); Kaur *et al.* (2013); Mahan *et al.* (2013). For standard bond lengths, see: Allen *et al.* (1987).

 $\gamma = 77.252 \ (7)^{\circ}$ V = 869.33 (13) Å³

Cu $K\alpha$ radiation $\mu = 0.84 \text{ mm}^{-1}$

 $0.28 \times 0.22 \times 0.12 \text{ mm}$

Z = 2

T = 173 K

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{18}N_4O_4\\ M_r = 366.37\\ \text{Triclinic, } P\overline{1}\\ a = 6.7023 \ (6) \ \text{\AA}\\ b = 8.6335 \ (8) \ \text{\AA}\\ c = 15.8720 \ (13) \ \text{\AA}\\ a = 76.305 \ (7)^{\circ}\\ \beta = 84.399 \ (7)^{\circ} \end{array}$

Data collection

Agilent Eos Gemini diffractometer	5113 measured reflections
Absorption correction: multi-scan	3262 independent reflections
(CrysAlis PRO and CrysAlis	2913 reflections with $I > 2\sigma(I)$
RED; Agilent, 2012)	$R_{\rm int} = 0.030$
$T_{\min} = 0.851, \ T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	247 parameters
$wR(F^2) = 0.129$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
3262 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2^{i}$	0.86	2.03	2.8658 (18)	164
C7−H7···O4 ⁱⁱ	0.93	2.54	3.307 (2)	139
$C18-H18B\cdots O2^{iii}$	0.96	2.56	3.336 (2)	138

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 2, -y, -z + 2; (iii) x - 1, y, z.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SUPERFLIP* (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

MK is grateful to the CPEPA–UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5393).

References

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013a). Acta Cryst. E69, 046–047.

- Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013b). Acta Cryst. E69, 039.
- Chandrakantha, B., Isloor, A. M., Sridharan, K., Philip, R., Shetty, P. & Padaki, M. (2013). Arab. J Chem. 6, 97–102.
- Cheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org. Chem. 28, 622–627.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, 02677.
- Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W. & Pearson, C. J. (1993). US Patent 5232940.
- Kaur, M., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Narayana, B. (2013). Acta Cryst. E69, 01726–01727.

- Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897–902.
- Mahan, A., Butcher, R. J., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013). Acta Cryst. E69, 0402–0403.
- Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.
- Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945– 950.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
- Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.

supplementary materials

Acta Cryst. (2014). E70, o636-o637 [doi:10.1107/S1600536814009738]

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)-2-(4-nitro-phenyl)acetamide

Manpreet Kaur, Jerry P. Jasinski, H. S. Yathirajan, B. Narayana and K. Byrappa

1. Comment

N-Substituted 2-arylacetamides are biologically active compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin *et al.*, 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu *et al.*, 2008, 2010). In a variety of biological heterocyclic compounds, N-pyrazole derivatives are of great interest because of their chemical and pharmaceutical properties (Cheng *et al.*, 2008). Some of the N-pyrazole derivatives have been found to exhibit good insecticidal activities (Hatton *et al.*, 1993), antifungal activities (Liu *et al.*, 2010) and non-linear optical properties (Chandrakantha *et al.*, 2013). Crystal structures of some related acetamide and pyrazole derivatives including: N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihrdro-1H-pyrazol-4-yl)-2- [4-(methyl-sulfanyl)phenyl]acetamide, (Fun *et al.*, 2012), 2-(2,4-dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2- phenyl)-N-(1,5-dimethyl-3-oxo-2- phenyl)-2,3-dihydro-1H-pyrazol-4-yl) acetamide (Butcher *et al.*, 2013*a,b*), 2-(3,4-Dichloro phenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) acetamide (Kaur *et al.*, 2013) have been reported. In view of the importance of amide derivatives of pyrazoles, this paper reports the crystal structure of the title compound (I), C₁₉H₁₈N₄O₄.

The title compound, (I), $C_{19}H_{18}N_4O_4$, crystallizes with one independent molecule in the asymmetric unit (Fig. 1). In the molecule, the pyrazole ring is nearly planar with C9 atom showing a maximum deviation of 0.0042 (16)Å. The mean planes of the 4-nitrophenyl and phenyl rings is twisted with respect to that of the pyrazole ring by 67.0 (6)° and 37.4 (4)°, respectively. The dihedral angle between the mean planes of the two phenyl rings is 59.3 (3)°. The amide group, with a torsion angle of 177.54° is twisted away from the plane of the pyrazole ring in an anti-periplanar conformation. Bond lengths are in normal ranges (Allen *et al.*, 1987). Classical N—H···O intermolecular hydrogen bonds involving the pyrazole ring and the amide group along with weak C—H···O intermolecular interactions forming $R_2^2(10)$ graph set motifs link the molecules into chains along [100]. Additional weak C—H···O intermolecular interactions involving the nitrophenyl rings link the molecules further along [001] also forming $R_2^2(10)$ graph set motifs and further extending crystal packing into a 2-D supramolecular network (Fig. 2).

2. Experimental

4-Nitrophenylacetic acid (0.181 g, 1 mmol) and 4-aminoantipyrine (0.203 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h (Fig. 3). The reaction completion was confirmed by thin layer chormatography. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. The organic layer was washed with a saturated NaHCO₃ solution and brine solution, dried and concentrated under reduced pressure to give the title compound, (I). Single crystals were grown from dichloromethane and and further recrystallised from methanol solution by the slow evaporation method which were subsequently used for x-ray studies.

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH); 0.97Å (CH₂); 0.96Å (CH₃) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂, NH)and 1.5 (CH₃) times U_{eq} of the parent atom. Idealised Me refined as rotating group.

Figure 1

ORTEP drawing of (I) ($C_{19}H_{18}N_4O_4$) showing the labeling scheme of the molecule with 30% probability displacement ellipsoids.

Figure 2

Molecular packing for (I) viewed along the *b* axis. Dashed lines indicate N—H…O intermolecular hydrogen bonds and weak C—H…O intermolecular interactions forming $R_2^2(10)$ graph set motifs linking the molecules into chains along [100]. Additional weak C—H…O intermolecular interactions involving the nitrophenyl rings link the molecules further along [001] also forming $R_2^2(10)$ graph set motifs viewed with dashed lines. H atoms not involved in hydrogen bonding have been removed for clarity.

Figure 3

Synthesis scheme of (I).

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-(4-nitrophenyl)acetamide

Crystal data

C₁₉H₁₈N₄O₄ $M_r = 366.37$ Triclinic, *P*1 a = 6.7023 (6) Å b = 8.6335 (8) Å c = 15.8720 (13) Å a = 76.305 (7)° $\beta = 84.399$ (7)° $\gamma = 77.252$ (7)° V = 869.33 (13) Å³

Data collection

Agilent Eos Gemini diffractometer Radiation source: Enhance (Cu) X-ray Source Detector resolution: 16.0416 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO* and *CrysAlis RED*; Agilent, 2012) $T_{\min} = 0.851, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.129$ S = 1.073262 reflections 247 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 384 $D_x = 1.400 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2476 reflections $\theta = 5.4-71.4^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$ T = 173 K Block, colourless $0.28 \times 0.22 \times 0.12 \text{ mm}$

5113 measured reflections 3262 independent reflections 2913 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 71.6^\circ, \ \theta_{min} = 5.4^\circ$ $h = -4 \rightarrow 8$ $k = -10 \rightarrow 10$ $l = -19 \rightarrow 19$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0731P)^2 + 0.1699P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2012* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0160 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.1021 (2)	0.22514 (15)	0.69436 (8)	0.0438 (3)
O2	0.42534 (16)	0.19900 (14)	0.42650 (7)	0.0318 (3)
O3	0.5894 (2)	0.31428 (19)	1.03446 (9)	0.0505 (4)
O4	0.8856 (2)	0.18161 (18)	1.00103 (10)	0.0521 (4)
N1	0.2446 (2)	0.05926 (16)	0.60349 (8)	0.0288 (3)
H1	0.3271	-0.0300	0.5983	0.035*
N2	-0.10661 (19)	0.30173 (16)	0.44159 (8)	0.0285 (3)
N3	0.08379 (19)	0.31651 (16)	0.39847 (8)	0.0273 (3)
N4	0.6997 (2)	0.22341 (17)	0.99332 (9)	0.0342 (3)
C1	0.2184 (2)	0.10192 (19)	0.68181 (10)	0.0295 (3)
C2	0.3372 (3)	-0.02284 (19)	0.75387 (10)	0.0333 (4)
H2A	0.2456	-0.0893	0.7878	0.040*
H2B	0.4453	-0.0940	0.7277	0.040*
C3	0.4314 (2)	0.04908 (18)	0.81419 (9)	0.0290 (3)
C4	0.3122 (3)	0.1581 (2)	0.86039 (11)	0.0345 (4)
H4	0.1727	0.1924	0.8516	0.041*
C5	0.3993 (3)	0.2157 (2)	0.91904 (11)	0.0347 (4)
Н5	0.3196	0.2879	0.9502	0.042*
C6	0.6072 (2)	0.16397 (18)	0.93061 (9)	0.0292 (3)
C7	0.7300 (3)	0.0574 (2)	0.88551 (11)	0.0348 (4)
H7	0.8698	0.0247	0.8940	0.042*
C8	0.6403 (3)	0.0001 (2)	0.82728 (10)	0.0336 (4)
H8	0.7208	-0.0721	0.7964	0.040*
C9	0.1396 (2)	0.15810 (18)	0.53105 (9)	0.0273 (3)
C10	-0.0656 (2)	0.20985 (19)	0.52365 (10)	0.0288 (3)
C11	0.2410 (2)	0.22118 (18)	0.45045 (9)	0.0259 (3)
C12	0.0955 (2)	0.35883 (18)	0.30627 (10)	0.0270 (3)
C13	-0.0571 (3)	0.33649 (19)	0.25914 (10)	0.0321 (4)
H13	-0.1676	0.2941	0.2878	0.039*
C14	-0.0426 (3)	0.3779 (2)	0.16951 (11)	0.0377 (4)
H14	-0.1457	0.3660	0.1378	0.045*
C15	0.1246 (3)	0.4370 (2)	0.12657 (11)	0.0402 (4)
H15	0.1350	0.4629	0.0662	0.048*
C16	0.2765 (3)	0.4574 (2)	0.17385 (11)	0.0377 (4)
H16	0.3896	0.4955	0.1449	0.045*
C17	0.2615 (2)	0.42151 (19)	0.26367 (10)	0.0319 (4)
H17	0.3612	0.4391	0.2951	0.038*
C18	-0.2656 (2)	0.4522 (2)	0.42912 (11)	0.0346 (4)
H18A	-0.2460	0.5174	0.4677	0.052*
H18B	-0.3983	0.4248	0.4414	0.052*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H18C	-0.2561	0.5122	0.3702	0.052*
C19	-0.2353 (3)	0.1816 (2)	0.58962 (11)	0.0402 (4)
H19A	-0.2664	0.2676	0.6206	0.060*
H19B	-0.1943	0.0792	0.6296	0.060*
H19C	-0.3545	0.1799	0.5612	0.060*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0579 (8)	0.0399 (7)	0.0327 (6)	0.0048 (6)	-0.0132 (5)	-0.0154 (5)
O2	0.0265 (6)	0.0381 (6)	0.0309 (6)	-0.0061 (4)	-0.0018 (4)	-0.0081 (5)
03	0.0527 (8)	0.0643 (9)	0.0441 (8)	-0.0095 (7)	-0.0063 (6)	-0.0315 (7)
O4	0.0444 (8)	0.0567 (8)	0.0606 (9)	-0.0034 (6)	-0.0248 (6)	-0.0207 (7)
N1	0.0320 (7)	0.0311 (7)	0.0243 (6)	-0.0055 (5)	-0.0044 (5)	-0.0077 (5)
N2	0.0241 (6)	0.0364 (7)	0.0266 (7)	-0.0075 (5)	-0.0009(5)	-0.0088 (5)
N3	0.0253 (6)	0.0338 (7)	0.0244 (6)	-0.0067 (5)	-0.0013 (5)	-0.0088(5)
N4	0.0423 (8)	0.0332 (7)	0.0280 (7)	-0.0087 (6)	-0.0102 (6)	-0.0044 (6)
C1	0.0351 (8)	0.0311 (8)	0.0252 (7)	-0.0097 (6)	-0.0051 (6)	-0.0075 (6)
C2	0.0468 (9)	0.0282 (8)	0.0269 (8)	-0.0086 (7)	-0.0076 (7)	-0.0068 (6)
C3	0.0401 (9)	0.0276 (7)	0.0197 (7)	-0.0090 (6)	-0.0050 (6)	-0.0023 (6)
C4	0.0303 (8)	0.0438 (9)	0.0318 (8)	-0.0058 (7)	-0.0037 (6)	-0.0135 (7)
C5	0.0375 (9)	0.0380 (9)	0.0307 (8)	-0.0035 (7)	-0.0029 (6)	-0.0147 (7)
C6	0.0371 (8)	0.0291 (8)	0.0226 (7)	-0.0099 (6)	-0.0064 (6)	-0.0032 (6)
C7	0.0322 (8)	0.0377 (9)	0.0328 (8)	-0.0025 (6)	-0.0080 (6)	-0.0065 (7)
C8	0.0402 (9)	0.0307 (8)	0.0284 (8)	-0.0003 (6)	-0.0045 (6)	-0.0088 (6)
C9	0.0318 (8)	0.0304 (8)	0.0237 (7)	-0.0098 (6)	-0.0041 (6)	-0.0095 (6)
C10	0.0322 (8)	0.0337 (8)	0.0252 (7)	-0.0118 (6)	-0.0017 (6)	-0.0107 (6)
C11	0.0284 (7)	0.0275 (7)	0.0254 (7)	-0.0068 (6)	-0.0041 (6)	-0.0106 (6)
C12	0.0324 (8)	0.0251 (7)	0.0242 (7)	-0.0042 (6)	-0.0034 (6)	-0.0078 (5)
C13	0.0356 (8)	0.0319 (8)	0.0310 (8)	-0.0077 (6)	-0.0064 (6)	-0.0085 (6)
C14	0.0478 (10)	0.0357 (9)	0.0313 (9)	-0.0048 (7)	-0.0133 (7)	-0.0098 (7)
C15	0.0567 (11)	0.0367 (9)	0.0234 (8)	-0.0037 (8)	-0.0041 (7)	-0.0041 (6)
C16	0.0453 (10)	0.0329 (8)	0.0311 (9)	-0.0073 (7)	0.0037 (7)	-0.0023 (7)
C17	0.0345 (8)	0.0309 (8)	0.0306 (8)	-0.0071 (6)	-0.0029 (6)	-0.0064 (6)
C18	0.0310 (8)	0.0354 (8)	0.0390 (9)	-0.0041 (6)	-0.0019 (6)	-0.0137 (7)
C19	0.0346 (9)	0.0571 (11)	0.0315 (9)	-0.0166 (8)	0.0025 (7)	-0.0098 (8)

Geometric parameters (Å, °)

01—C1	1.217 (2)	С7—Н7	0.9300
O2—C11	1.2436 (19)	C7—C8	1.384 (2)
O3—N4	1.2168 (19)	C8—H8	0.9300
O4—N4	1.2278 (19)	C9—C10	1.357 (2)
N1—H1	0.8600	C9—C11	1.435 (2)
N1—C1	1.3630 (19)	C10—C19	1.489 (2)
N1—C9	1.405 (2)	C12—C13	1.396 (2)
N2—N3	1.4047 (17)	C12—C17	1.390 (2)
N2-C10	1.373 (2)	C13—H13	0.9300
N2-C18	1.473 (2)	C13—C14	1.382 (2)
N3—C11	1.3905 (19)	C14—H14	0.9300

Acta Cryst. (2014). E70, o636-o637

N3—C12	1.4206 (19)	C14—C15	1.386 (3)
N4—C6	1.463 (2)	С15—Н15	0.9300
C1—C2	1.523 (2)	C15—C16	1.386 (3)
C2—H2A	0.9700	C16—H16	0.9300
C2—H2B	0.9700	C16—C17	1.384 (2)
C2—C3	1.508 (2)	С17—Н17	0.9300
C3—C4	1.394 (2)	C18—H18A	0.9600
C3—C8	1.391 (2)	C18—H18B	0.9600
C4—H4	0.9300	C18—H18C	0.9600
C4—C5	1.381 (2)	С19—Н19А	0.9600
С5—Н5	0.9300	С19—Н19В	0.9600
C5—C6	1.382 (2)	С19—Н19С	0.9600
C6—C7	1.378 (2)		
C1—N1—H1	119.3	N1—C9—C11	123.26 (13)
C1—N1—C9	121.36 (13)	C10—C9—N1	127.98 (14)
C9—N1—H1	119.3	C10—C9—C11	108.77 (13)
N3—N2—C18	115.56 (12)	N2-C10-C19	120.59 (14)
C10—N2—N3	106.45 (12)	C9—C10—N2	109.94 (13)
C10—N2—C18	120.24 (13)	C9—C10—C19	129.46 (15)
N2—N3—C12	118.84 (12)	O2—C11—N3	124.28 (14)
C11—N3—N2	109.85 (12)	O2—C11—C9	131.03 (14)
C11—N3—C12	125.33 (12)	N3—C11—C9	104.68 (13)
O3—N4—O4	122.92 (14)	C13—C12—N3	120.30 (14)
O3—N4—C6	118.50 (14)	C17—C12—N3	119.20 (14)
O4—N4—C6	118.56 (14)	C17—C12—C13	120.49 (15)
01—C1—N1	123.02 (14)	С12—С13—Н13	120.3
01	122.67 (14)	C14-C13-C12	119.43 (16)
N1-C1-C2	114.22 (13)	C14—C13—H13	120.3
C1-C2-H2A	108.6	C13—C14—H14	119.8
C1-C2-H2B	108.6	C_{13} C_{14} C_{15}	120 40 (16)
$H^2A - C^2 - H^2B$	107.6	C_{15} C_{14} H_{14}	119.8
C_{3} C_{2} C_{1}	114 64 (13)	C14—C15—H15	120.1
$C_3 - C_2 - H_2 A$	108.6	C_{14} C_{15} C_{16}	119 79 (15)
$C_3 - C_2 - H_2B$	108.6	C_{16} C_{15} H_{15}	120.1
$C_{4} - C_{3} - C_{2}$	121 41 (15)	C_{15} C_{16} H_{16}	119 7
$C_{1}^{*} = C_{2}^{*} = C_{2}^{*}$	121.41(15) 119.46(14)	$C_{12}^{}C_{16}^{}C_{15}^{}$	120.67 (16)
C_{3} C_{4}	119.40(14) 110.05(14)	C17 C16 H16	110 7
C_{0}	119.03 (14)	$C_{12} = C_{12} = H_{17}$	119.7
$C_{5} = C_{4} = 114$	117.7	$C_{12} = C_{17} = M_{17}$	120.4
$C_{5} = C_{4} = C_{5}$	120.04 (15)	$C_{10} = C_{17} = C_{12}$	119.10 (13)
$C_3 = C_4 = 114$	119.7	$N_2 C_{19} H_{19}$	120.4
C4 - C5 - C6	120.0	N2 - C18 - H18A	109.5
C4 - C5 - U5	110./1 (15)	N2 - C18 - H18C	109.5
C_{0}	120.0	$N_2 - C_{10} - H_{10}C$	109.5
C_{3} C_{4} C_{7} C_{6} N_{4}	110.90 (14) 110.90 (14)	$\frac{110}{10} - \frac{10}{10} - \frac{110}{10} - 10$	109.3
$C_{1} = C_{0} = 1N4$	110.00 (14)	$\Pi I 0 A - C I 0 - \Pi I 0 C$	109.5
C = C = C = C = C = C = C = C = C = C =	122.21 (14)	$\Pi 10D - U 10 - \Pi 10U$	109.5
C = C - H / C	120.8	C10 - C19 - H19A	109.5
U0-U/-U8	118.30 (13)	U10-U19-H19B	109.5

С8—С7—Н7	120.8	C10—C19—H19C	109.5
С3—С8—Н8	119.5	H19A—C19—H19B	109.5
C7—C8—C3	121.01 (15)	H19A—C19—H19C	109.5
С7—С8—Н8	119.5	H19B—C19—H19C	109.5
O1—C1—C2—C3	-43.2 (2)	C4—C5—C6—N4	-179.40 (14)
O3—N4—C6—C5	1.4 (2)	C4—C5—C6—C7	0.1 (3)
O3—N4—C6—C7	-178.19 (15)	C5—C6—C7—C8	-0.5 (2)
O4—N4—C6—C5	-177.43 (15)	C6—C7—C8—C3	0.2 (2)
O4—N4—C6—C7	3.0 (2)	C8—C3—C4—C5	-0.7 (2)
N1—C1—C2—C3	140.27 (14)	C9—N1—C1—O1	1.0 (2)
N1-C9-C10-N2	-178.78 (14)	C9—N1—C1—C2	177.54 (13)
N1-C9-C10-C19	2.0 (3)	C10-N2-N3-C11	5.88 (16)
N1-C9-C11-O2	3.9 (2)	C10-N2-N3-C12	160.12 (13)
N1-C9-C11-N3	-177.63 (13)	C10-C9-C11-O2	-176.07 (15)
N2—N3—C11—O2	173.55 (13)	C10-C9-C11-N3	2.41 (16)
N2—N3—C11—C9	-5.07 (15)	C11—N3—C12—C13	130.08 (16)
N2—N3—C12—C13	-19.9 (2)	C11—N3—C12—C17	-49.4 (2)
N2—N3—C12—C17	160.63 (13)	C11—C9—C10—N2	1.18 (17)
N3—N2—C10—C9	-4.27 (16)	C11—C9—C10—C19	-178.02 (16)
N3—N2—C10—C19	175.01 (13)	C12—N3—C11—O2	21.4 (2)
N3-C12-C13-C14	-179.79 (14)	C12—N3—C11—C9	-157.26 (14)
N3-C12-C17-C16	177.76 (14)	C12—C13—C14—C15	1.7 (2)
N4—C6—C7—C8	179.08 (14)	C13—C12—C17—C16	-1.8 (2)
C1—N1—C9—C10	-56.9 (2)	C13—C14—C15—C16	-1.1 (3)
C1—N1—C9—C11	123.16 (16)	C14—C15—C16—C17	-0.9 (3)
C1—C2—C3—C4	57.6 (2)	C15—C16—C17—C12	2.4 (2)
C1—C2—C3—C8	-125.41 (16)	C17—C12—C13—C14	-0.3 (2)
C2—C3—C4—C5	176.33 (15)	C18—N2—N3—C11	142.19 (13)
C2—C3—C8—C7	-176.71 (15)	C18—N2—N3—C12	-63.56 (17)
C3—C4—C5—C6	0.4 (3)	C18—N2—C10—C9	-138.12 (14)
C4—C3—C8—C7	0.3 (2)	C18—N2—C10—C19	41.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1····O2 ⁱ	0.86	2.03	2.8658 (18)	164
C7—H7···O4 ⁱⁱ	0.93	2.54	3.307 (2)	139
C18—H18 <i>B</i> ···O2 ⁱⁱⁱ	0.96	2.56	3.336 (2)	138

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+2, -*y*, -*z*+2; (iii) *x*-1, *y*, *z*.