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1.  Introduction

Nanostructures of layered titanates have evolved from a laboratory curiosity into a standalone subfield of 
nanotechnology in the past 15 years. Their simple and readily scalable synthesis and favorable application potential 
render them good choices for several industrial applications. Relevant industrial sectors are (i) paints and coatings, 
(ii) pharmaceutics, (iii) electronics, (iv) energy storage and (v) photocatalysis.

TiO
2
 nanoparticles were among the first materials synthesized  <100 nm in diameter with monodisperse size 

distribution [1]. In 1998 Kasuga et al converted TiO
2
 into a layered multiwall nanotube by hydrothermal treat-

ment, thus opening a new field of research that has been evolving rapidly since then [2, 3]. An ISI Web of Science 
topic search for 1D titanate nanomaterials finds over 10 000 related publications and reveals an increasing recent 
scientific interest: a new paper is published almost daily in this field now. In-depth reviews on their general aspects 
[4] as well as their synthesis [5], growth mechanism [6] and photocatalytic applicability [7] are available. 2D TiO

2
 

nanosheets are also extensively studied since the onset of the graphene revolution. A recent review on this subject 
was published by Wang and Sasaki [8].

In this review we will first define our topic by showing the landscape of the presently available nanostructures 
containing titanium and oxygen. Then we introduce the properties and synthesis methods of layered titanates 
following the work of Bavykin and Walsh [9]. This will be followed by the discussion of the issues related to the 
industrial scale production of 1D trititanate nanomaterials. The second part of the paper will give an overview of 
their potential applications and provide examples of commercial trititanate nanoproducts.

2.  Fundamental properties

This section will introduce layered titanate nanomaterials by discussing their structure and basic properties.

2.1.  Titania phases
The three stable allotropes of TiO

2
 at ambient conditions are anatase (tetragonal), rutile (tetragonal) and brookite 

(orthorhombic). In addition, TiO
2
 exists in three more metastable forms TiO

2
 (B), TiO

2
 (H), TiO

2
 (R) and five 
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storage. In this review we first discuss the structure, synthesis and functionalization options of 
titanate nanotubes and nanowires, then the issues related to their industrial scale production, and 
finally present selected examples of their currently available applications.
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phases formed at high pressure only [10]. TiO
2
 is among the most common nanomaterials today. It is typically 

produced in the form of isotropic nanoparticles and used for photocatalysis, photovoltaics, coatings and sensors.
Regardless of the exact crystal structure, it is important to make a clear distinction between TiO

2
 and titanate 

phases. The former are mixed ionic (70%)—covalent (30%) wide bandgap indirect semiconductors [11] with little 
structural flexibility and a composition of Ti:O = 1:2 (although oxygen deficient structures can easily be obtained), 
whereas titanates are the salts of polytitanic acids. Titanates feature a negatively charged framework consisting of 
TiO

6
 octahedra sharing vertexes, edges or faces. Their band gap is wider, their framework charge is compensated by 

cations that can be exchanged by conventional ion exchange processes, and their Ti:O ratio can vary considerably 
depending on the exact formation conditions.

The most important titanates are perovskites and layered titanate materials. Perovskites are crystals with a 
structure analogous to the mineral CaTiO

3
 (ABX

3
 structure, where A and B are cations, A ions are much larger 

than B ions and X is a common anion). BaTiO
3
 and PZT (Pb[Zr

x
Ti

1−x
]O

3
) are two common, industrially impor-

tant perovskites used extensively because of their ferroelectric properties [12–14]. One the other hand, layered 
titanates are the materials that readily yield highly anisotropic lamellar nanostructures, therefore, we will focus 
on them from now on and refer to some excellent reviews for more information on TiO

2
 [15–18] and perovskite 

nanostructures [19–21].
The typical chemical formula of layered titanates is M

2n
Ti

m
O

2m + n
 ∙ H

2
O where M is a positively charged species: 

an alkali ion (Na+ or K+) directly after the hydrothermal synthesis, H+ after washing and practically any cation after 
appropriate ion exchange. Therefore, layered titanate nanostructures are best considered to be salts of polytitanic 
acids, for example Na

2
Ti

3
O

7
 as sodium trititanate, H

2
Ti

4
O

9
 as tetratitanic acid, K

2
Ti

5
O

11
 as potassium pentatitanate 

etc. These structures are all monoclinic, feature three steps of corrugated edge-sharing TiO
6
 octahedral layers and 

are very similar to each other, making unambiguous XRD phase identification rather challenging. The other struc-
tural possibility is that of dititanic acid H

2
Ti

2
O

4
(OH)

2
 and the closely related lepidocrocite H

x
Ti

2−x/4
[]

x/4
O

4
(OH)

2
 

where [] denotes a vacancy [22]. Both of these are orthorhombic structures where layers are made up of continuous 
planar arrays of edge-sharing TiO

6
 octahedra.

2.2.  Layered titanate structure and morphology
Considerable controversy can be observed in the literature concerning the exact crystalline structure of titanate 
nanoobjects [22–30]. The XRD profiles of such small particles experience line broadening, and when this effect 
is combined with the intrinsic similarity of the diffractograms of various titanates (e.g. trititanate, pentatitanate, 
nonatitanate, lepidocrocite etc.) it makes accurate Miller indexing and crystalline phase identification difficult. 
Moreover, layered titanates readily transform into each other, and the same starting material can yield multiple 
metastable end products upon thermal annealing depending on the cations of the starting material, the heating 
rate and the annealing time and temperature.

In spite of these ambiguities it is safe to say that the first product of the alkaline hydrothermal synthesis reac-
tion is a layered nanostructured titanate material that is well approximated as sodium trititanate (Na

2
Ti

3
O

7
). This 

structure is largely preserved during washing to neutral pH. Subsequent chemical treatment or prolonged storage 
yields a mixture of titanate phases.

The layered structure of metatitanic acid offers zero, one and two dimensional possible nanoparticle mor-
phologies as summarized in figure 1. The two most important ones are 1D titanate nanotubes and nanowires. 
Nanotubes resemble a rolled-up carpet measuring 50–200 nm in length, 4–8 nm inner and 8–15 nm outer diameter 
and consist of multiple (4–7) walls separated by approximately 1 nm, which corresponds to the 0.96 nm (1 0 0) 
interplanar distance of Na

2
Ti

3
O

7
. The two characteristic morphological differences between titanate nanotubes 

and the more well-known multiwall carbon nanotubes are that (i) the cross section of the former is a spiral instead 
of a Russian doll array, and (ii) the inner channel of titanate nanotubes is readily accessible, whereas that of the 
carbon nanotubes is closed by half-fullerene domes. Titanate nanowires are formed of Na

2
Ti

3
O

7
 sheets arranged 

into 300–1500 nm long and 30–60 nm thick structures with a roughly rectangular cross section and no hollow 
inner channel.

In addition to these dominant morphologies, many other titanate nanostructures were also observed. These are 
mostly either nanosheet based structures like flowers [31] or very thin sheets [32], or quasi-isomorphic particles 
measuring 10–30 nm in diameter and exhibiting a cuboid or spiral structure [33].

2.3.  Interconversions of nanostructured titanates
Spontaneous phase transformations can occur even when stored in ambient conditions. They can be accelerated 
by the humidity of the storage atmosphere and, in particular, by the pH of the storage media, since layered titanates 
do not tolerate mineral acids well. Sui et al have recently demonstrated that the pH-decrease induced gradual 
transformation of the H

2
Ti

2
O

5
 phase in hydrogenotitanate/titania composite nanotubes affects the distribution 

and electrocatalytic properties of Pt nanoparticles supported on the titanate nanostructure [34]. Acid resistance 
can be improved by iron ion exchange according to Marinkovic et al [35]. Hydrothermally synthesized titanate 
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nanotubes spontaneously convert into rhombic and spindle-shape anatase nanoparticles in 10 min in supercritical 
water [36]. Mao and Wong demonstrated that lepidocrocite titanate nanotubes and nanowires transform into 
anatase nanoparticles and nanowires, respectively, in neutral solution [37].

Titania nanostructures can also be converted into each other deliberately by multiple processes [38]. The 
simplest of all is the thermal treatment that induces the transformation to TiO

2
(B) (400 °C), anatase (700 °C) and 

then rutile (1000 °C). Kuo et al even reported on a trititanate to TiO
2
(B) transformation at 300 °C [39]. The details 

of this transformation were investigated by Morgado et al [40]. The open inner channel of nanotubes is preserved 
up to 400 °C, then the structure gradually collapses into shorter nanorods [41–44]. Nanowires can withstand 
temperatures up to 1000 °C without the loss of their fibrous morphology, and then they convert into more iso-
tropic fragments [45]. It is interesting to note that the phase transformation temperature is heavily influenced by 
the ion exchange, doping level and eventual nanoparticle decoration of the layered titanate starting material [46]. 
Beuvier et al established a ternary morphological diagram that summarizes the relative proportion of nanotubes, 
nanospheres and nanoribbons in heat treated H-form trititanates [47].

Fine tuning the temperature and duration of the alkaline hydrothermal synthesis can be used to either stop 
the process when titanate nanotube concentration is at a maximum, or let it run further and allow nanotubes 
to spontaneously merge into titanate nanowires [48]. Bavykin et al have shown nanowires to be the most stable 
morphology under these experimental conditions: the system gains approximately 20 kJ · mol−1 by the nanowire 
formation [49]. Nanotubes can also be converted directly into anatase and/or rutile nanoparticles by long (several 
months) exposure to mineral acids below 100 °C. Ultrasonic or mechanochemical energy transfer to titanate 
nanotubes first breaks them into shorter fragments, then these are morphed into titanate nanosheets. Further 
energy input yields quasi-isotropic anatase and finally, rutile nanoparticles.

Even though titanate nanowires are thermodynamically favored over nanotubes, it is also possible to trans-
form nanowires into nanotubes by a non-equilibrium process. Kozma et al have demonstrated that the careful 
engineering of mechanochemical process parameters (11 mJ · hit−1, 892 J · g−1 cumulative energy) in a high energy 
planetary ball causes titanate nanosheets to delaminate from nanowires upon ball impact, but prevents their phase 
transformation into anatase or rutile [50]. The system is thus quenched in a high-energy metastable state that can 
stabilize into a local energy minimum if the nanosheets roll up into nanotubes.

Nanotube delamination into nanosheets [51] can also be achieved by ultrasonication [52] or acid treatment 
[53]. Titania nanosheets can then be converted into TiO

2
 thin film hydrothermally [54].

Titanates can be converted into perovskites that inherit the 1D morphology of the parent sacrificial template. 
Ca-, Sr- and Ba- titanate microstructures were created this way by Li et al [55] from sodium trititanate nanofibers 
and by Cao et al from potassium tetratitanate nanowhiskers [56].

2.4.  Titanate nanomaterial properties
Layered titanate nanomaterials are white powders when synthesized correctly. Discolorations can be caused either 
by metallic impurities (e.g. iron ions from the steel walls of the synthesis vessel or piping) or oxygen deficiency. 
The latter can occur spontaneously when heating the material in an inert or reducing atmosphere. The density 
of titanate nanotubes as measured by He pycnometry is 3.12 g · cm−3 [57]. The main difference between bulk 
and nanostructured titanates is that the inner layers are not accessible in bulk; therefore, delamination and layer 

Figure 1.  Characteristic TEM images of layered titanate morphologies. 0D quasi-isomorphic particles (0D), 0D nanotubes (1D, 
top) and nanowires (1D, bottom) and 2D stacked nanosheets (2D).
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scrolling do not occur. The other notable differences are decreased band gap energy, increased specific surface 
area and lower melting point in nanomaterials (table 1). The difference between monoclinic and orthorhombic 
nanoscale titanates is in the arrangement of the edge-sharing TiO

6
 octahedra along the c-axis (i.e. around the 

nanotube perimeter). In monoclinic structures, there are three or four repeating octahedral units that are connected 
in their corners with the adjacent repeating units. In the case of the orthorhombic layered titanate nanotubes, the 
edge-sharing octahedra are continuing in a linear fashion. Accordingly, the surface of the monoclinic nanotubes 
is corrugated around the perimeter, while smooth for the orthorhombic ones. Note that the surface is corrugated 
along the tube axes for both kinds of crystal structure [9].

The BET specific surface area of titanate nanotubes is between 200–300 m2 · g−1 when calculated from the 
most common nitrogen adsorption isotherm. It is also possible to estimate the surface area from water adsorp-
tion isotherms evaluated by the Guggenheim–Anderson–de Boer (GAB) equation [58], but this method tends 
to overestimate the surface (approximately 350 m2 · g−1) because water adsorption is significantly more complex 
on the hydrophilic titanate surface than nitrogen sorption [59]. Surface area values calculated from geometrical 
models are closer to the BET than to the GAB values. The specific surface area of titanate nanowires is below  
50 m2 · g−1, the exact value depends on the aspect ratio of the nanowires.

The exfoliation of layered protonic titanates yields 2D lepidocrocite TiO
2
 nanosheets [8] with a band gap 

(3.84 eV) blue shifted compared to anatase TiO
2
 (3.2 eV). Rolling these sheets up into nanotubes results in addi-

tional changes in the electronic structure [60]. An experimental study on the UV-Vis absorption properties of 
titanate nanotube suspensions revealed a band gap of 3.87 eV [61]. The band gap energy was found to be independ-
ent of the internal diameter of the nanotubes.

The electrical conductivity of titanate nanotubes is generally higher than that of TiO
2
 nanoparticles (approx. 

10−9 S · cm−1) because conduction in nanotubes is largely governed by proton mobility [62]. Consequently, their 
conductivity is sensitive to humidity and temperature. A base conductivity of 5.5 · 10−6 S · cm−1 at 30 °C was found 
to increase to 1.5 · 10−5 S · cm−1 upon heating to 130 °C and then drop to 7.9 · 10−7 S · cm−1 at 225 °C [62] because 
of the loss of water from the nanotube pores [63]. This latter value corresponds to the electron conductivity of 
titanate nanotubes.

Layered titanate nanostructures are hydrophilic materials. They can be filtered into self-supporting mem-
branes similar to carbon nanotube buckypaper by dead-end filtration [66, 82–84]. Miyauchi and Tokudome have 
succeeded in creating transparent super-hydrophilic films featuring a water contact angle of 0 degrees under UV 
illumination [85]. Water sorption on titanate nanowires was extensively studied by Haspel et al using broadband 
dielectric spectroscopy [86]. Three relaxation processes plus ionic conduction were found in the 10 mHz–10 MHz 
frequency window. The conductivity variation originates from the increasing charge carrier concentration, middle 
frequency relaxations have a common interfacial origin and the high frequency loss process is due to the orienta-
tion relaxation of a dipolar moiety.

Bo et al have recently measured the mechanical properties of sodium trititanate nanowires [78]. The effec-
tive Young’s modulus of Na

2
Ti

3
O

7
 nanowires was found to be independent of the wire length and ranged from 

21.4 GPa to 45.5 GPa, with an average value of 33   ±   7 GPa. The yield strength of the Na
2
Ti

3
O

7
 was 2.7   ±   0.7 GPa. 

This result agrees qualitatively with the earlier work of Chang et al who found Young’s moduli in the 14–17 GPa 
range for titanate nanowires [77].

H-form titanate nanotubes are solid acids possessing both Bronsted and Lewis acid sites [87–89]. Kitano 
et al have shown that the Bronsted acid strength of titanate nanotubes is higher than that of the correspond-
ing nanosheets and attributed the difference to the lattice distortion due to the scrolling of the lamellar titan-
ate sheet [90]. There is a lack of standardized pKa data on titanate nanostructures in the literature. Available 
works typically use titration [89], thermogravimetry or adsorption (methylene blue [91], pyridine [87], CO

2
 

[92]) measurements to make smaller/larger type comparisons between the acidities of samples included in a 
particular study.

Table 1.  An overview of titanate nanomaterial properties.

Nanotube Nanowire Nanosheet

Diameter or thickness 8–15 nm [2, 9, 64] 5–300 nm [65–67]   <  10 nm [9]
Length or lateral dimensions Up to several  

micrometers [9]
Up to several micrometers [65, 66]   >  100 nm [9]

Band gap 3.3–3.9 eV [52, 61, 

68, 69]

3.4–3.6 eV [68, 70] 3.8 eV [8, 52]

Specific surface area 50–400 m2 · g−1  

[2, 58, 59, 64, 71]

18–130 m2 · g−1 [72–74] 240–380 m2 · g−1 [75, 76]

Young’s modulus n.a. 14–46 GPa [77, 78] n.a.
Electrical conductivity 1.5 · 10−6–7.9 · 10−7  

S · cm−1 [62, 63]

~10−7 S · cm−1 for porous films of NWs and 

~10−1S · cm−1 for individual belts [79, 80]

10−10 S · cm−1 for films of 

nanosheets [81]
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3.  Chemistry of titanate nanostructures

This section introduces the chemistry of titanate nanostructures.

3.1.  Synthesis
The alkaline hydrothermal synthesis discovered in 1998 by Kasuga et al has rapidly become the dominant non-
templated method for producing layered titanate nanomaterials. Its main advantages are the use of cheap raw 
materials (TiO

2
, NaOH, water), the good nanomaterial yield and the possibility to control the product morphology 

by tuning the composition of the reaction mixture.
In a typical titanate nanotube synthesis 2 g of anatase TiO

2
 is mixed into 140 ml 10 M NaOH aqueous solution 

until a white suspension is obtained, then the suspension is aged in a closed, Teflon-lined autoclave at 130 °C for 
72 h without shaking or stirring. The product is then washed with deionized water to reach pH 8 at which point 
the slurry is filtered and the titanate nanotubes are dried in air.

The recipe for titanate nanowires is very similar, since titanate nanotubes are actually intermediates in the 
TiO

2
 to titanate nanowire recrystallization process. Therefore, the same experimental setup and reaction mixture 

should be used, but the process must be intensified. This can be achieved by increasing the reaction temperature to 
approximately 180 °C, increasing the reaction time to approximately 1 week or agitating the system by e.g. rotating 
the whole autoclave around its short axis.

The alkaline hydrothermal synthesis is very robust: layered anisotropic titanate nanostructures can be prepared 
by using a broad range of TiO

2
 sources [93–95] and compositions, different bases [69, 96, 97], reaction times, tem-

peratures and post-synthetic treatments. However, changing the recipe will affect the properties of the product 
mixture (e.g. nanotube:nanowire ratio, diameter and length distribution) [46, 98–104]. Moreover, Dawson et al 
argued that trititanate nanotubes are formed exclusively from the anatase fraction of the starting material, whereas 
the rutile component produces trititanate sheets and plates [105]. However, this hypothesis is yet to be confirmed 
since there are reports on the successful synthesis of trititanate nanotubes from e.g. P25 [106] and tetraisopropyl 
orthotitanate as well [107].

The main drawback of the process is the need to use pressurized equipment. Bavykin et al were able to overcome 
this issue by refluxing TiO

2
 in an aqueous mixture of NaOH and KOH for 48 h at 100 °C. Similar to the hydrother-

mal process, the product distribution could be tuned by the reaction conditions [108].

3.2.  Modification
Layered titanate nanomaterials have a rich chemistry and offer some modification possibilities not available  
on TiO

2
.

Both titanate nanotubes and nanowires have exchangeable cations occupying positions on their surface as 
well as between the titanate layers. Indeed, ion exchange is an integral part of the synthesis process itself, since the 
majority of Na+ ions from the crystallized nanostructure are replaced by protons during washing. Monovalent 
cations are exchanged readily and almost quantitatively (that is, in the formula Me

x
H

2−x
Ti

3
O

7
, x can be close to 2), 

whereas cations with multiple positive charges are more difficult to exchange because they introduce extra stress 
into the lattice [109]. It has also been shown that the temperature-induced transformation of titanates into anatase 
can be hindered by the presence of metallic cations [99–101, 110]. Interestingly, the apparent rate of intercalation 
of alkaline metal cations is independent of the ion size, and the d

200
 interplanar distance of the resulting structures 

is also almost identical for all alkaline metals (0.88 nm for H-form, 1.18 nm for alkaline forms) [111].
It is possible to add extra functionality to layered titanate nanostructures by exploiting their ion exchange 

properties. Silver containing titanate nanotubes exhibit antimicrobial properties [112], Cd2+ and noble metal ions 
can be converted into CdS [113, 114] or metallic (e.g. Au, Rh) [115, 116] nanoparticles that decorate the nanotube 
surface and open up (photo)catalytic application possibilities, and cations can also serve as bridgeheads for further 
surface functionalization reactions, e.g. for tuning the hydrophilic/hydrophobic balance by anchoring fatty acid 
ions to surface cations. Hydrophobization is also possible by cationic surfactants like cetyl-trimethylammonium 
bromide [117] or poly(diallyldimethylammonium) chloride [118].

The modifiable structure of layered titanates combined with the possibility to transform them into anatase or 
rutile by thermal treatment renders them excellent precursors of doped TiO

2
. An interesting recent application is 

the synthesis of Co doped single crystalline rutile from ion exchanged titanate nanotubes by Forró et al [119]. Their 
material showed metallic behavior below 50 K even though the Co2+ dopant concentration was only 5  ⋅  1019 cm−3. 
It is likely that the same synthesis approach can be used for growing a large variety of doped TiO

2
 single crystals. 

Co2+ doping was also found to introduce a room temperature hysteresis loop into the magnetic properties of the 
doped nanotubes [120].

Although ion exchange or nanoparticle deposition onto the surface are often referred to as ‘doping’ in the 
literature [121], actually, substitutional and interstitial doping of layered titanate nanomaterials correspond to 
replacing either the framework Ti sites by heteroatoms, or to inserting extra atoms into the titanate framework, 
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respectively. Unfortunately, experimentally confirmed information on the substitutional or interstitial nature of 
the doping is scarcely available in the literature. Hu et al reported XPS evidence for interstitial N-doping on the 
basis of observing both Ti–O–N and Ti–N–O linkages [122]. According to Wu et al both interstitial N positions and 
new Ti–N bonds can appear in the lattice of titanate nanofibers depending on the synthesis route [123]. Chang et 
al studied the details of N-doping in the thermal transformation of ammonium trititanate nanotubes and found 
evidence for the formation of interstitial NH

2
 species after the dehydrogenation of NH

3
 [124]. Diaz-Guerra et al 

have synthesized Cr3+ doped titanate nanotubes and nanoribbons and interpreted near infrared emission data 
as indication of interstitial chromium incorporation between the titanate layers [125]. Evidence for framework 
Ti substitution was provided by Song et al for Mn, Cr and Cu in trititanate nanotubes [126] and by He et al for Zr 
doped Na

2
Ti

4
O

9
 nanobelts [127].

N-doped TiO
2
 [128] can be synthesized by calcining +NH4  exchanged titanate nanostructures in inert gas [129] 

or H-form titanate nanowires in ammonia flow above 600 °C [130]. Pt and Pd nanoparticles were deposited on the 
doped product to yield a material with appreciable photocatalytic water splitting ability [123]. The record lowest 
temperature for N-doping was reported by Buchholcz et al to be 200 °C [131]. This latter example is particularly 
interesting because the titanate structure is preserved during doping, and the user can decide later if a phase change 
to doped anatase or rutile is desirable. Phase and morphology changes are summarized in the simplified phase 
map in figure 2. Other dopants reported in the literature are e.g. Fe [132], Zn [133], Mn [121, 134], La

2
O

3
 [135], 

Nb [136], Cu [137, 138], Ni [139] and Ho-Yb [140].
The presence of surface –OH groups on layered titanates makes it possible to functionalize them by covalent 

chemistry. The most feasible route is the controlled hydrolysis of trialkoxysilanes (e.g. Si(EtO)
3
R) in the presence 

of titanates in anhydrous solvents [141]. This anchors the R chain onto the titanate by a strong Ti–O–Si–C bond. 
The primary use of this reaction is covalent hydrophobization, however, if the R group is reactive enough then 
it can also serve as a bridgehead for further organic functionalization steps and subsequent polymer grafting for 
nanocomposite applications [142–144]. The surface –OH groups can enter an esterification reaction with carbox-
ylic acids in anhydrous alcohol [145].

Covalent functionalization is beneficial when anisotropic layered titanates are used as polymer fillers. Brnardic 
et al reported 7 °C higher glass transition temperature and 10.4% higher storage modulus in epoxy composites 
loaded with 3 wt% silanized titanate nanotubes [143].

4.  Scaling issues

Let us now review the issues related to scaling layered titanate synthesis up to a commercial level.
The global production of metallic titanium sponge today is above 200 000 metric tons per year. Its main ores 

are anatase or rutile TiO
2
 and ilmenite (FeTiO

3
) which are mined in significantly larger quantities (combined 

world production over 7 million metric tons/year) because of the many uses of TiO
2
 besides reduction to titanium 

metal. Layered titanates can be produced directly from TiO
2
 cost-effectively (below 2 USD kg−1), therefore, they 

rank among the potentially cheapest commercially available nanomaterials.

Figure 2.  Variation of the morphology and crystalline phase of nitrogen-doped titanium-oxide nanostructures with nitrogen dotation 
(NH

3
 exposure) duration and calcination temperature. Reproduced from [131] with permission of the Royal Society of Chemistry.

5 None of the authors are officially affiliated with Auro-Science Ltd., Hungary. However, two authors (ZK and ÁK) acted 
regularly as external scientific consultants for this company. In this role they were actively involved in scaling up titanate 
nanomaterial production to a commercial scale in the Auro-Science plant.
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Na
2
Ti

3
O

7
, sodium metatitanate is registered in CAS as 12034-36-05 and is available commercially from all 

major lab chemical vendors without any morphology specification. Typical fine chemical prices are in the range 
of 3000 USD kg−1.

The world market of layered titanate nanomaterials has only started developing recently. It is a demand-driven 
market where buyers are waiting for demonstrations of the specific benefits this material can offer over the well-
known and abundant nanosized TiO

2
 powder. Titanate nanotubes are sold as CAS 12026-28-7 (metatitanic acid) 

by commercial nanotube suppliers (e.g. Auro-Science Ltd in Hungary, Smart Metal Limited, Xuzhou Jiechuang 
New Material Technology Co, JinZhongYan New Material Technology Co. and Hongwu International Group Ltd. 
in China), with an estimated combined capacity of 4000 metric tons per year [146, 147]. Prices range from 150 to 
250 USD kg−1 for pristine titanate nanotubes and can be significantly higher for functionalized and/or modified 
samples. Titanate nanowires are cheaper to manufacture than nanotubes because they can be produced in larger 
batches. The only dedicated commercial manufacturer of titanate nanowires in the world today is Auro-Science 
Ltd, Hungary5 [148].

Titanate nanotubes and nanowires stand out from the sea of diverse nanomaterials developed in the past two 
decades because it is actually feasible to scale their synthesis up and produce them on a commercial scale at reason-
able cost. This is possible because of the following advantages:

	(a)	They are obtained with close to 100% yield as the TiO
2
 raw material recrystallizes in the alkaline 

hydrothermal process. Conversion is 100% because titanates are thermodynamically favored over TiO
2
 at 

those experimental conditions, and there are no by-products or alternative products.
	(b)	The synthesis method is robust. Minor variations in reaction temperature and time or a change in the TiO

2
 

supplier will not affect the product quality severely.
	 (c)	The process in non-explosive, water based and has a very small environmental footprint. The only waste 

that leaves the plant is the brine formed upon the neutralization of Na
2
Ti

3
O

7
 by diluted hydrochloric acid.

	(d)	Equipment wise, the core layered titanate nanomaterial synthesis technology is very similar to that 
of synthetic zeolite production. Therefore, existing zeolite plants could be converted into titanate 
nanomaterial sources with little cost, thus supply will likely be able to keep up with growing demand in the 
foreseeable future.

Titanate nanostructures, in particular, titanate nanotubes are obtained as a fluffy white monolith even in a 
pilot scale autoclave. There is a big difference in the apparent density of the raw material TiO

2
 and the produced 

nanotubes, therefore, it is difficult to optimize the batch size. Moreover, the viscosity of the system changes con-
siderably from the start of the synthesis (TiO

2
 powder + NaOH solution) to the end (Na

2
Ti

3
O

7
 monolith) and this 

must be considered when designing the autoclave. The third factor complicating industrial scale production is the 
necessity of using special equipment (e.g. nickel plated, Teflon coated or enameled autoclave) that can cope with 
the highly concentrated alkaline solutions involved.

Unlike most chemicals, titanate nanotubes and nanowires do not have an infinite shelf life. Sodium metatitan-
ate is the thermodynamically favored phase under the alkaline hydrothermal conditions of the synthesis, but this 
is no longer the case under ambient conditions. Therefore, layered titanates must be either stabilized or used a few 
months after synthesis because they can gradually transform into other phases as discussed above. The rate of the 
transformation depends largely on the exact manufacturing and storage conditions (e.g. Na+:H+ ratio, moisture 
content). Lines of future research on non-perovskite titanate nanomaterial commercialization should focus on 
the following areas:
	(a)	Improving shelf life by e.g. partial ion exchange, polymer wrapping or nanocomposite formation.
	(b)	Broadening the scope of applications, with an emphasis on identifying fields where titanates can 

outperform TiO
2
 or offer functions unavailable in TiO

2
.

	 (c)	Developing new synthesis machinery to circumvent the issues arising from the viscosity variation of the lye 
during the hydrothermal recrystallization. Solutions considered today are e.g. fixed bed lye-recirculating 
units and pressurized tandem mixers.

5.  Applications

5.1.  Battery and supercapacitor electrodes
The high specific surface area (<400 m2 · g−1), electrical and ion conductivity as well as available space (0.65–
0.85 nm) between the lamellae (or rolled up sheets) of layered titanates [128] have motivated a considerable effort to 
implement these materials as anodes in lithium batteries. Although capable of storing less Li+ per mass of electrode 
than the widely used graphite (or other carbonaceous electrode materials) and having high redox potential (1.55 V) 
versus Li+/Li, both limiting the overall energy storage compared to graphite, titanates offer several benefits that make 
such materials practical for commercialization. One of the main motives for replacing the affordable and abundant 
carbon based electrodes is the significant improvement in reliability and lifetime since titanates are less prone to 
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structural degradation and device failure because of their lesser volumetric change upon charging–discharging 
cycles. Another advantage of titanates over carbon is the eliminated Li dendrite formation on the anode material 
upon charging, thus reducing the risk of short circuiting and consequently improving safety [149].

Over the past 10 years, a number of different phases of 1D titanates such as M
x
H

2−x
Ti

y
O

y + 1
 (MI denotes Na 

or K, and the value of y is 2 [150–152], 3 [153], 4 [154], 6 [155, 156], and 8 [151, 157, 158]), lepidocrocites  
H

x
Ti

2−x/4
□

x/4
O

4
  ×  H

2
O (x ~ 0.7, □ is vacancy) [159, 160], spinel-type structures such as Li

2
MIITi

3
O

8
 (MII denotes Co, 

Zn or Mg) [161], Li
4
Ti

5
O

12
 [95, 162–165] and Li

2
Na

2
Ti

6
O

14
 [166], as well as TiO

2
(B) phase [167] have been demon-

strated as excellent platforms for reversible Li ion intercalation with high specific charge storage capacity (figure 3).  
In typical experiments, the anode (negative electrode) is comprised of the actual titanate powders mixed with 
5–15% binder (PVDF, PTFE) and 10–45% porous conductive filler (carbon black, carbon nanotubes), which is cast 
or stencil printed on metallic foils (Cu or Al). The counter electrode (cathode) is a Li foil. For electrolytes, usually 

Figure 4.  SEM (a, b) and TEM (c) images of H
2
Ti

2
O

5
 nanowire arrays synthesized directly on the surface of a Ti foil by the 

hydrothermal method in 1 M NaOH aqueous solution at 220 °C for 24 h followed by soaking in 0.5 M HCl solution for 2 h to replace 
Na+ of Na

2
Ti

2
O

5
 with H+ thus forming H

2
Ti

2
O

5
. Panels (d) and (e) show the corresponding cyclic voltammetry and charge-

discharge curves at 0.1 C for the first ten cycles, respectively. Reproduced from [157]. Copyright 2014 American Chemical Society.

Figure 3.  SEM images of lepidocrocite-type titanate nanowires (a, b). Panels (c) and (d) show the potential-capacity profiles at the 
charge/discharge current density of 20 mA · g−1 (repeated 3 times) and at various current densities between 20 and 2000 mA · g−1, 
respectively. Cyclic voltammetry curve (e) and the cycling performance at different current densities ( f ). Reproduced from [159] 
with permission of the Royal Society of Chemistry.
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lithium hexafluorophosphate (LiPF
6
), 1 M lithium perchlorate (LiClO

4
) in a mixture of ethylene carbonate (EC), 

propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and their mixtures are 
applied. The performance of layered titanate based electrodes is quite promising considering the initial discharge 
capacity of 800–200 mA · h · g−1 at a corresponding current density of 20–2000 mA · g−1, and reversible capacity 
of ~300 mA · h · g−1 reported for the best materials (hydrogen titanates) [157]. The operation voltage range of the 
cells is between 2.5–1.0 V (the working electrode versus the Li electrode) resulting in an energy density that renders 
titanates indeed suitable for electrodes. Although most of the aforementioned phases fulfill the basic demands for 
reversible Li+ intercalation, the insignificant volumetric change in spinels is very appealing from a practical point 
of view; however the low ion mobility in the structures compared to layered titanates may set a trade-off.

Another appealing approach for obtaining titanate based electrodes has been demonstrated by using titanate 
forests directly grown on the surface of titanium foils using practically the same route as known from the hydro-
thermal synthesis of titanate nanowires and nanotubes from titania in alkaline media (figure 4). The benefit of the 
method is the direct and intimate electrical interface and the ordered pore structure allowing simplified device 
integration and easy ion transport from/to the electrodes, respectively [157].

When using the titanate working electrodes with similar titanate or carbon counter electrodes instead of Li 
metal, the cell assemblies can be operated as supercapacitors and pseudocapacitors. Intercalation of titanates with 
Li+ [168], Zn2+ [169], or Ni2+ [170] results in structures having specific capacitance of up to ~800 F · g−1, energy 
density of 90 W · h · kg−1 and average power density of 11 000 W · kg−1 [171].

5.2.  Adsorption and catalysis
Madarász et al have tested the water softening ability of titanate nanotubes in a fixed bed process simulating 
industrial usage [172]. The theoretical maximum ion exchange capacity for bivalent cations is 2.9 mmol · g−1 
(taking into account the 10 wt% structural water content of the nanotubes) which is actually higher than that of a 
reference water softener resin DOWEX-50W. The highest ion exchange capacity achieved was 1.2 mmol · g−1 and 
this value dropped to 0.66 mmol · g−1 after two usage–regeneration cycles. The capacity loss was traced back to the 
irreversible binding of Ca2+ ions to the nanotubes.

Owing to their high specific surface, tunable acidity/basicity, and available/accessible cationic sites, adsorp-
tion of ionic pollutants from water has emerged as a straightforward application of titanates. In a similar work-
ing principle to clays and other layered minerals [173], protons and alkali cations in the layered titanates can be 
replaced by divalent ions of alkali-earth and transition metals. Considerable uptake of metal cations such as Cu2+ 
(up to 1.3 mmol · g−1) and Pb2+ (up to 0.15 mmol · g−1) on nanotubes [174], Ba2+ (up to 0.6 mmol · g−1) and Sr2+ 
(up to 0.5 mmol · g−1) on nanofibers [175], as well as Pb2+ (up to 1.5 mmol · g−1) and mixtures of Cd2+, Ni2+, Zn2+ 
(total uptake of 1.5 mmol · g−1) on titanate nanoflowers [176] show the remarkable potential of various titanates 
to tackle environmental, public and industrial water management. The reported ion adsorption capacity values 
in some cases even compete with those of chemically modified celluloses [177], commercial ion exchange resins 
[178] and activated carbon [179]. Because of the hydrophilic nature of the surface, selective adsorption of polar 
constituents from mixtures of polar and non-polar compounds is possible as it was shown by a selective chem-
isorption of nitrosamines on highly protonated titanates without reducing the amount of tar in cigarette smoke 
[180]. The hydrophilic behavior is also exploited in humidity sensors. The dielectric properties of titanates are 
highly sensitive to the adsorbed water due to the change in polarizability and ionic conduction in the lattice. Hence, 
by simple capacitance, conductance or dielectric spectroscopy analysis, it is possible to detect water content e.g. 
in ambient air [86, 181, 182].

Another interesting approach for humidity sensing combines water adsorption and simultaneous reversible 
dimerization of methylene blue dye being immobilized on titanate nanowires. In the presence of water, the titanate 
adsorbed dye undergoes dimerization forcing it to change molecular configuration and alignment on the surface 
in respect to dry conditions. The process results in a reversible change of the methylene blue color, allowing colori-
metric humidity sensing. As the sensors can be integrated with optical fibers, the feasibility of the method is quite 
attractive for use in environmental monitoring and medical analysis [183].

Applications related to catalysis on titanates and their derivatives are associated mostly with chemical 
reactions (e.g. catalytic mitigation and oxidation of CO and organic pollutants, selective reduction of NO 
and activation of CO

2
) often carried out on titania based catalytic systems. In most of the reports, the catalyst 

metals are deposited on the support using the same methods (precipitation and impregnation techniques) 
as applied for titania particles, and also the catalytic behavior of titanate supported catalysts are typically ref-
erenced to their TiO

2
 based counterparts. Being chemically different materials, it is not a surprise that under 

identical reaction conditions, various phases of titania performance are different from those of the titanates 
and even these latter ones display rather dissimilar features due to their differences in stoichiometry, surface 
area and pore structure. As concluded in the reports, the differences in specific surface areas might correlate 
with the activity, however the major governing factor of reaction kinetics for the catalyzed reactions is actually 
the basicity of the support.
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Ru catalyst on protonated Na
2
Ti

5
O

5
  ×  H

2
O nanotubes and K

2
Ti

8
O

17
 nanowires in catalytic wet air oxidation 

of p-hydroxybenzoic acid was studied in reference to the classical P25 TiO
2
. The considerably higher initial reac-

tion rates measured on the Ru-titanate nanowires (0.29 mmol · g−1 min−1) and (0.16 mmol · g−1 · min−1) than on 
Ru-TiO

2
 nanoparticles (0.09 mmol · g−1 · min−1) correlated with the differing specific surface area of the support 

materials (285 m2 · g−1, 183 m2 · g−1 and 80 m2 · g−1, respectively).
Au, Rh [184] and their bimetallic forms [185] on titanate nanowires and nanotubes were studied in detail for 

structure, their surface adsorption (CO, CO
2
 and ethanol) and CO

2
 activation properties in high vacuum experiments 

[186]. Although the morphology of the Au, Rh and bimetallic Au-Rh core-shell cluster were found independent of 
the presence of alkali adatoms on titanate nanowires, the catalytic activity of alkali impurities in titanate and titania 
supported metal nanoparticles show differences. For instance, Pd on K

2
Ti

6
O

13
 tested for NO reduction in H

2
 showed 

lower conversion values for NO below ~160 °C than that over Pd on TiO
2
 (although similar values were measured 

above 160 °C), the selectivity of the reaction towards N
2
 was about two times higher on the titanate based catalyst than 

on the titania counterpart in the entire temperature range (with an ~80% versus ~40% maximum value at ~160 °C). 
Similar alteration of the catalytic activity in citral hydrogenation reactions was observed due to the presence of Na+ 
impurities (~3 wt.%) in the support using Pt and Pt-Sn catalyst nanoparticles deposited on calcined (600 °C) hydro-
gen titanates [187]. In this case, the alkali impurities caused higher citral conversion rates and considerably better 
selectivity for citronellal and dimethyloctanol products. A similar promoting effect of alkaline metals in reference to 
TiO

2
 was reported for Na

2
Ti

3
O

7
, K

2
Ti

6
O

13
, and Cs

2
Ti

6
O

13
 supported Ru catalyst in the ammonia decomposition reac-

tion [188]. Although the specific surface area values of titanates were about two-fold compared to the TiO
2
 support, 

which may explain their better catalytic activity, the very significant increase of reaction rates (~0.03 mol
NH3

 · −molRu
1 · 

s−1, ~0.05 mol
NH3

 · −molRu
1 · s−1 and ~0.16 mol

NH3
 · −molRu

1 · s−1) in the order of Na
2
Ti

3
O

7
  <  K

2
Ti

6
O

13
  <  Cs

2
Ti

6
O

13
 suggest 

that it is the alkalinity of the supports that plays the most important role in their catalytic properties.

5.3.  Photo(electro)catalytic activity
The well-known work of Fujishima and Honda published more than 40 years ago on photoelectrochemical water 
splitting [189] on TiO

2
 surface has initiated a global research effort to exploit photons for producing fuels. In 

terms of water splitting, the process itself has rather limited economic use even if light of solar origin is used. 
Although many papers claim water splitting on TiO

2
, which has scientific importance for sure, its overall power 

efficiency is very far from what one could get with the cheapest polymer based solar panels, not to mention 
the advanced multijunction inorganic cells with efficiency over 40%. In the case of other photocatalytic or 
photoelectrocatalytic reactions, however, the situation is different. For instance, considering the applications 
associated with self-cleaning and antimicrobial surfaces, air and water purification, selective photooxidation/
reduction of hydrocarbons and alcohols, oxidation of CO or reduction of CO

2
, among many others, the overall 

benefit can justify the use of photocatalysis even in conjunction with artificial light sources. Of course the most 
ideal source would be the Sun with its average irradiance of ~1 kW · m−2 on the Earth’s surface in a broad spectral 
range from UV up to the far-IR wavelengths.

Now, let us consider the optical properties of titania and titanates. The wide band gap of titania (~3.2 eV) [9] indi-
cates that the material is not going to be particularly photoactive in the visible and IR light due to the lack of band to 
band optical absorption above ~390 nm. Titanates have even wider band gap values as reported for K

2
Ti

6
O

13
 nanotubes 

(3.4 eV and 3.5 eV) [68, 69] as well for sheets of 2D flakes (~3.8 eV) derived from lepidicrocite (H
0.7

Ti
1.825

□
0.175

O
4
  ×  H

2
O) 

nanotubes (3.3 eV) [52] which means that the absorption edge can be quite deep in the UV. Although water splitting 
on 1D titanates has been demonstrated [190], the typical photo(electro)catalytic applications of these materials are 
oxidation and mineralization of organic compounds such as acetone [52], benzol [71], dehydrogenation (reforming) 
of alcohols [191], antibacterial flow through membranes [192], photocathodic protection of steel surfaces [193], and 
even electrodes for dye sensitized solar cells were shown as alternatives to TiO

2
 electrodes [194].

1D titanates on the other hand are suitable starting materials for the synthesis of various titania phases by 
easy to scale and relatively simple annealing processes which dehydrates and gradually recrystallizes the titanate 
into titania [195]. Depending on the number of alkaline cations in the original titanate lattice, as well as on the 
temperature and duration of the annealing step either TiO

2
-B, anatase, rutile, their heterogeneous composites or 

even some core-shell type hierarchical structures of nanowires can form [196–198]. It is important to point out 
that the band gap of titanate nanowires/nanotubes decreases and reaches that of TiO

2
 during recrystallization as 

the titanate gradually transforms to titania [199]. Therefore, such titania nanowires inherit all the advantages of 
the elongated structures from the titanate nanowires/nanotubes [66], and in addition have better optical absorp-
tion and thus more efficient electron–hole pair generation than in the original titanates.

In practice, the as-obtained titania nanowires are doped either by cations or anions, both leading to a decreased 
band gap and further improvement in the optical absorbance as new energy levels appear in the forbidden band 
giving rise to band to band transitions with lower energies. (Note: doping with F− in the anionic sites is an excep-
tion, as energy levels from the lower edge of the conduction band disappear, thus the apparent band gap increases.) 
[128, 200–202] While doping improves photogeneration by shifting the absorption edge towards the more visible 
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spectral region, it has no direct effect on the separation of electron–hole pairs, which would be vital for redox 
reactions to take place on the surface of the photocatalyst. The most frequently applied strategy for electron–hole 
separation is the formation of rectifying interfaces between the photocatalyst and a co-catalyst. The interface of 
metal nanoparticles (most common ones are Ni, Ag, Pd, Ti, Au) deposited on the surface of the semiconducting 
titanate and titania nanowires is actually a Schottky contact, which can rectify electron injection from the conduc-
tion band of the semiconductor to the Fermi level of the metal due to the presence of a barrier from the opposite 
direction. Thus the photogenerated electrons in the semiconductor will be eventually trapped in the metal and 
consumed to reduce moieties adsorbed on the surface of the metal. The metals of high work function listed above 
play another important role, which is more for the chemistry than for the physics. It is their catalytic activity in 
a common sense, known to be promoting chemical reduction [123, 203, 204] (figure 5). On the other hand, the 
holes left behind in the semiconductor will participate in oxidative processes, which can be promoted by other 
co-catalysts (e.g. CoO

x
, CaMn

x
O

y
) added onto the surface of the semiconductor.

5.4.  Bioactive surfaces and scaffolds
Ideally, bioscaffolds are porous materials that combine pores of multiple dimensions. The macropores, i.e. 
millimeter and micrometer size voids in the skeletal structures are responsible for nutrition and side-product 
transport to/from the cells as well as for the accommodation of cell colonies, while meso and micropores ensure 
optimal attachment and proliferation of cells [205]. In addition, the surfaces are expected to have a hydrophilic 
nature to allow reasonable bonding of the biological matter (H-bonding, dipole-dipole interaction) but at 
the same time, the surface should be rather inert to avoid coagulation of proteins and stress in cells. Titanate 
nanostructures directly grown on Ti or on its alloys [157, 205] with other metals are fulfilling all criteria listed 

Figure 5.  HR-TEM images of (a) pristine and (b, c) N-doped TiO
2
 nanofibers obtained after annealing acid washed sodium titanate 

nanofibers in NH
3
. Images (d)–(g) display TEM micrographs of N-doped and then Pd or Pt decorated NFs with metal loading of 

approx. 1.0 wt%. Panels (h) and (i) show hydrogen evolution from ethanol/water mixture (molar ratio 1:3) over the corresponding 
photocatalyst materials under UV-A and UV-B irradiation, respectively. Reproduced from [123]. Copyright 2011 American 
Chemical Society.
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above thus are gradually becoming competitive alternatives [206–208] of the very popular conventional (e.g. 
polystyrene, polyethyleneterephtalate) and biodegradable polymers (e.g. poly(L-lactic acid), poly(DL-lactic-co-
glycolic acid) [209–215].

Recently, titanate nanowires have been intensively studied as potential scaffolds for medical implants [205, 
207–211]. Hydroxyapatite coated 1D titanate nanostructures were found to have high osteogenic, structural integ-
rity and they show excellent mechanical performance. The main advantage of this material arises from its abil-
ity to mimic the natural extracellular matrix [207]. Besides their nanoscale structure, high specific surface area 
and chemical composition are two crucial attributes that make nanotitanates excellent candidates to be applied 
as bioscaffolds. Their ability to exchange ions (sodium or potassium to calcium) when soaked into simulated 
body fluids promotes the fast formation of biomaterials for e.g. apatite [208, 211]. 1D titanates grown inside the 
pores of the biocompatible 3D microporous Ti-based metal frames synthesized by low temperature hydrotermal 
treatment form a similar surface as the lowest levels of hierarchical organization of collagen and hydroxyapatite 
that enables cell attachment and proliferation [205]. Furthermore, due to the inherent photocatalytic behavior 
of titanates quick, easy and low cost sterilization processes could be applied to clean such implants before their 
utilization [206].

5.5.  Miscellaneous applications
Based on their unique properties, titanate nanostructures are suggested to have many additional promising 
applications in the field of high-temperature thermoelectric conversion, super-hydrophilic coatings, field 
emission, and electrorheology. Today these applications are still dominated by perovskite titanates, but preliminary 
results with layered titanate nanostructures are already available [85, 216, 217].

Titanate nanotubes, Na
2−x

H
x
Ti

3
O

7
, prepared by the alkali hydrothermal method have been shown to be promis-

ing candidates for high-temperature thermoelectric conversion owing to their high thermoelectric power (302 µV 
· K−1 in the range of 745–1032 K), ultralow thermal conductivity (0.55–0.75 W · m−1 · K−1), and high electrical 
resistivity (325–525 Ω · m) [218].

Few interesting studies based on dispersed titanate nanostructures [219, 220] have been reported in the field 
of electrorheology (ER) that could find use in for e.g. the automotive industry. Suspension of titanate nanotubes 
(TNTs) has shown reversible rheological changes under the exposure of an electric field. Recently, He et al demon-
strated that, owing to their higher specific surface area and large aspect ratio, TNT-based ER fluids show a higher 
storage modulus compared to P25. In addition, having an arranged structure, titanate nanotube arrays could be 
also applied as self-cleaning or anti-fogging surfaces due to their super-hydrophlic properties and high optical 
transparency [221].

6.  Summary

Layered titanate nanostructures are promising materials for the nanotechnology industry because they can be 
synthesized in commercial amounts by a scalable, environmentally benign and relatively cheap process. Moreover, 
they offer several chemical modification options through morphology-conserving phase transformations, ion 
exchange, doping, nanoparticle decoration and covalent functionalization. Their biggest drawbacks are the limited 
shelf life and the sensitivity of the fine structural details to the humidity of their surroundings. Although their 
current major fields of application are in ion exchange and photocatalysis, it is expected that energy storage 
applications will emerge soon.
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