DOI 10.1007/s10562-011-0740-x

Photolysis of HCOOH over Rh Deposited on Pure and N-Modified TiO₂

Production of Pure H₂

Gyula Halasi · Gábor Schubert · Frigyes Solymosi

Received: 30 September 2011/Accepted: 9 November 2011/Published online: 29 November 2011 © Springer Science+Business Media, LLC 2011

Abstract The photo-induced vapor-phase decomposition of formic acid was investigated on pure, N-doped and Rh-promoted TiO₂. The bandgap of TiO₂ was narrowed by 0.82–1.04 eV as a result of the incorporation N into TiO₂. Adsorption of formic acid on pure TiO₂ produced strong absorption bands due to formate species, the intensity of which decreased by illumination. The photodecomposition of formic acid on pure TiO2 at 300 K occurs to only a limited extent: on N-doped TiO₂, however, it is enhanced by a factor of 2-4. The N-modified TiO2 catalyzes the photoreaction even in the visible light, which is attributed to the prevention of electron-hole recombination. The deposition of Rh on TiO2 markedly increased the extent of photodecomposition. The conversion is complete in 200 min, while the extent of decomposition reaches only $\sim 30\%$ on pure TiO₂. The effect of Rh is explained by a better separation of charge carriers induced by illumination and by enhanced electron donation to the adsorbed formate species. On TiO2 samples both the dehydrogenation and dehydration reactions occurred, on Rh/TiO₂ only a trace amount of CO was formed. Addition of water to formic acid eliminated this CO, but exerted no other influence on the occurrence the photoreaction.

Keywords Photodecomposition of formic acid · TiO₂ photocatalyst · N-doped TiO₂ · Rh-promoted TiO₂

G. Halasi · G. Schubert · F. Solymosi (⋈) Reaction Kinetics Research Group, Chemical Research Center of the Hungarian Academy of Sciences, Department of Physical Chemistry and Materials Science, University of Szeged, P.O. Box 168, 6701 Szeged, Hungary e-mail: fsolym@chem.u-szeged.hu

1 Introduction

The production of CO-free hydrogen used for fuel cell is a great challenge for catalysis. Unfortunately the decomposition of most of the oxygenated compounds, such as methanol, ethanol, dimethyl ether, produces a large amount of CO[1-3]. The level of CO can be lowered by the subsequent water-gas shift reaction, but the complete elimination of CO can not be achieved. Surprisingly formic acid as a source of hydrogen has received attention only recently [4–8]. The catalytic effect of Pt metals, Au and Mo₂C depositing on various oxides and carbon support were tested [4-8]. CO-free H₂ was obtained only on few catalysts at 423-473 K, mainly in the presence of water [4, 5, 7, 8]. In the present paper we examine the photolysis of formic acid on pure, N-doped and Rh-promoted TiO₂ with the same approach as used in the study of the photodecomposition of ethanol [9]. The primary aim is to produce H₂ virtually free of CO at ambient temperature. Although over the past decades, a tremendous amount of work has been devoted to photocatalysis (for reviews, see [10, 11]), the photoreaction of formic acid on different solids has been the subject of only relatively few studies [12–18]. The works of Medlin et al. [16, 18] deserve special attention, who studied the effect of water on the adsorption and photoinduced decomposition of formic acid using transient reaction experiments and FTIR spectroscopy. It was found that water dramatically affected the form of adsorbed formate on TiO₂.

2 Experimental

2.1 Methods

Photocatalytic reaction was followed in the same way as described in our previous paper [9]. We used a thermostatically controllable photoreactor equipped with a 15 W germicide lamp (type GCL 307T5L/CELL, Lighttech Ltd., Hungary) as light source. This lamp emits predominantly in the wavelength range of 250-440 nm. Its maximum intensity is at 234 nm. For the visible photocatalytic experiments another type of lamp was used (Lighttech GCL 307T5L/GOLD) with 400-640 nm wavelength range and two maximum intensities at 453 and 545 nm. We note that this lamp also emits below 400 nm. The approximate light intensity at the catalyst films are 3.9 mW/cm² for the germicide lamp and 2.1 mW/cm² for the other lamp. Formic acid ($\sim 1.3\%$, 580 µmol) was introduced in the reactor through an externally heated tube avoiding condensation. The carrier gas was Ar, which was bubbled through formic acid at room temperature. The gasmixture was circulated by a pump. The reaction products were analyzed with a HP 5890 gas chromatograph.

In the determination of the bandgaps of the TiO₂ samples we applied the same procedures as described in previous papers [9, 19]. The samples were pressed pellets of a mixture of 2 g of BaSO₄ with 50 mg of the powder. The surface area of the catalysts was determined by BET method with N_2 adsorption at ~ 100 K. Data are listed in Table 1. For FTIR studies a mobile IR cell housed in a metal chamber was used. The cell can be evacuated to 10^{-5} Torr using a turbo molecular pumping system. The samples were illuminated by the full arc of a Hg lamp (LPS-220, PTI) outside the IR sample compartment. The IR range of the light was filtered by a quartz tube (10 cm length) filled with triply distilled water applied at the exit of the lamp. The filtered light passed through a high-purity CaF₂ window into the cell. The light of the lamp was focused onto the sample. The output produced by this setting was 300 mW cm⁻² at a focus of 35 cm. The maximum photon energy at the sample is ca. 5.4 eV (the onset of UV intensity from the lamp). After illumination, the IR cell was moved to its regular position in the IR beam. Infrared spectra were recorded with a Biorad (Digilab. Div. FTS 155) instrument.

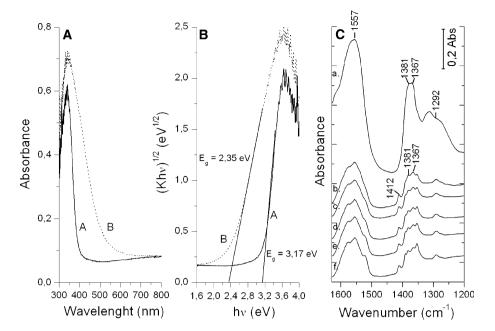
Table 1 Some characteristic data for pure and N-doped TiO₂

Sample	Surface area (m²/g)	Band gap (eV)	Notation
TiO ₂	200	3.17	Hombicat, as received
$TiO_2 + N$	96	2.35	SK, pretreatment at 673 K
TiO ₂	265	3.00	SX, pretreatment at 723 K
$TiO_2 + N$	79	1.96	SX, pretreatment at 723 K

2.2 Materials

For the preparation of N-doped TiO₂ we applied two methods. Following the description of Beranek and Kisch [19], titania powder (Hombikat, UV 100, anatase, 200 m²/g) was placed into 230 ml Schlenk tube connected via an adapter with 100 ml round bottom flask containing 1 g of urea and heated in a muffle oven for 30 min at 673 K. This sample is noted with "SK". In other cases TiO2 was treated with NH₃ following the procedure of Xu et al. [20]. Titanium tetrachloride was used as a precursor. After several steps the NH₃-treated TiO₂ slurry was vacuum dried at 353 K for 12 h, followed by calcination at 723 K in flowing air for 3 h. This sample was marked "SX". TiO₂ containing 2% Rh catalysts were prepared by impregnation of pure and N-doped titania in the solution of RhCl₃.3H₂O. The suspension was dried at 373 K and annealed at 573 K for 1 h. For photocatalytic measurements the sample (70–80 mg) was sprayed onto the outer side of the inner tube from aqueous suspension. The surface of the catalyst film was 168 cm². For IR studies the dried samples were pressed in self-supporting wafers (30 \times 10 mm \sim 10 mg/ cm²). The catalysts were oxidized at 573 K and reduced at 573 K in the IR cell or in the catalytic reactor for 1 h. XPS measurements revealed that after reduction the Rh is in metallic state. The dispersity of Rh is 30.1%. The calculated average size of Rh particles is 4.3 nm. Formic acid was the product of BDH with purity of 99.5%.

3 Results


3.1 Characterization of the Samples

In the determination of bandgap energies, $E_{\rm g}$, we followed the method and calculation procedure described by Beranek and Kisch [19]. The Kubelka-Munk function $F(R_{\infty})$ vs. wavelength curves were obtained from diffuse reflectance data (Fig. 1a), and the equation $\alpha = A(hv-E_{\sigma})^{n}/hv$ was used in the calculation, where α is the absorption coefficient, A is a constant, hv is the energy of light and n is a constant depending on the nature of the electron transition [21]. Assuming an indirect bandgap (n = 2) for TiO₂ [22] with α proportional to $F(R_{\infty})$, the bandgap energy was obtained from the plots of $[F(R_{\infty})hv]^{1/2}$ vs. hv as the intercept at $[F(R_{\infty})hv]^{1/2} = 0$ of the extrapolated linear part of the plot (Fig. 1b). The band gap for pure TiO₂ is 3.17 eV while that of N-modified TiO₂ is to 2.35 eV. In harmony with the elemental analysis of Beranek and Kisch [19] we found that beside N (14.9 wt%), C (7.2 wt%) has been also incorporated into TiO₂ treated at 673 K. Accordingly this C also contributes to the lowering of the band gap of TiO₂. The band gap of TiO₂ prepared by the

220 G. Halasi et al.

Fig. 1 Plots of Kubelka–Munk function versus wavelength of powders modified at different temperatures (a) and bandgap determination using $[F(R_{\infty})hv]^{1/2}$ versus hv plots (assuming indirect optical transition) for unmodified TiO₂ and TiO₂-N-modified at 673 K (SK) (b). Effects of illumination time on the FTIR spectra of adsorbed HCOOH on TiO₂ (c). Illumination time: **a** 0 min. **b** 15 min. **c** 30 min. **d** 45 min. **e** 60 min **f** 90 min

method of Xu et al. [20] was 3.0 eV, which decreased to 1.96 eV for N-doped TiO₂. Data are collected in Table 1.

3.2 In situ FTIR Measurements

Adsorption of HCOOH on pure TiO₂ produced intense absorption bands at 2,959, 2,889, 2,739, 1,557, 1,381, 1,367, and 1,292 cm⁻¹, which can be attributed to the different vibrations of formate species formed in the dissociative adsorption of formic acid. The assignment of the bands are presented in Table 2. Illumination of the adsorbed layer under continuous degassing caused a rapid initial attenuation of all the bands without any change in their position. The most important region of the IR spectra is presented in Fig. 1c. A new weak spectral feature developed at 1,412 cm⁻¹ already at the beginning of irradiation, its intensity remained unaltered with the prolonged illumination. This band is very likely due to dioxymethylene [23–25] formed in the photodecomposition of formate species. The same picture was obtained on N-doped TiO₂ (SX, 573 K).

Similar FTIR spectroscopic measurements were carried out with Rh/TiO₂ samples. Adsorption of formic acid on this catalyst also gave intense formate bands. In addition, absorption features appeared in the CO stretching region at 2,054 cm⁻¹ with two shoulders at 2,091 and 2,039 cm⁻¹. The 2,054 cm⁻¹ can be attributed to CO linearly bonded to Rh_x, while the two shoulders to the rhodium dicarbonyl, Rh + (CO)₂, formed as a result of the oxidative disruption of Rh cluster induced by CO [26–28]. When the illumination was carried out in the presence of HCOOH vapor, as in the photo catalytic experiments, the intensities of these CO bands slowly increased. When the adsorbed HCOOH

Table 2 Vibrational frequencies (in cm⁻¹) observed following the dissociative adsorption of HCOOH and their assignment

Assignment	TiO ₂ [present study]	TiO ₂ [18]	TiO ₂ [23]
v_a (OCO) and CH def.	2,959	2,945	2,977
v(CH)	2,889	2,867	2,872
$v_a(OCO) + \delta_a(CH)$	2,739		2,754
$v_{\rm a}({ m OCO})$	1,557	1,550	1,557
$v_{\rm s}({ m OCO})$	1,381	1,378	1,386
$v_{\rm s}({ m OCO})$	1,367	1,323	1,370
CO	1,292	1,263	

layer was illuminated the intensities of the formate bands at 1,557 and 1,381 cm⁻¹ gradually attenuated, whereas the absorption features due to CO first increased then after certain time decreased. Addition of water to formic acid ($H_2O/HCOOH \sim 1:1$) markedly diminished the development and the enhancement of CO bands in the course of continuous illumination of $H_2O-HCOOH$ vapor.

3.3 Catalytic Studies

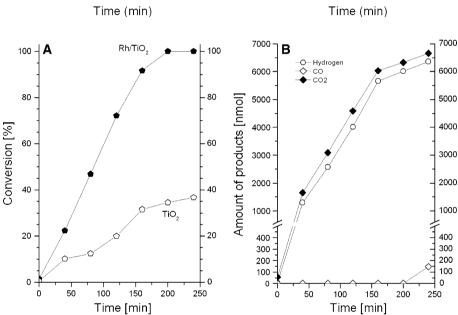

Whereas formic acid does not decompose on pure TiO₂ at 300 K, illumination induced the occurrence of the reaction. The main reaction pathway is the dehydrogenation of formic to H₂ and CO₂. CO was only the minor product. The extent of decomposition was about 15.0% in 100 min. Similar features were experienced on N-doped TiO₂ (SK). In this case CO was not produced. As the surface area of TiO₂ markedly lowered by the incorporation of N at 673 K, the data presented in Fig. 2 are related to unit surface area. Accordingly the incorporation of N into TiO₂ appreciably

Fig. 2 Effects of illumination time on the formation of CO₂ and CO on pure and N-doped TiO₂ in the photodecomposition of HCOOH. Preparation: **a** SK, 673 K. **b** SX. In this case CO was not formed. The lamp used emits in the range of 250–440 nm

1,2 1,2 В TiO₂+ N (673 K) CO 1,0 1,0 0,8 0,8 TiO,+ N CO_2 , CO ($\mathsf{nmol}^*\mathsf{g/m}^2$ CO_2 (nmol * g/m 2 0,8 0,8 0,6 0,6 TiO CO 0.6 0.6 0.4 0,4 TiO 0.2 0,2 0,2 0,2 0,0 0,0 0,0 0,0 150 200 250 250 50 100 100 150 200 Time (min) Time (min) 7000 7000 Rh/TiO 100 - A В 100

Fig. 3 Effects of illumination time on the photocatalytic decomposition of HCOOH on TiO₂ (SK) and Rh/TiO₂ (SK). **a** Conversion. **b** Formation of H₂, CO₂ and CO on Rh/TiO₂ (SK). The lamp used emits in the range of 250–440 nm

enhanced the amount of products formed in the photode-composition. It was a general observation that the amount of H_2 was much less than that of CO_2 . We experienced the same behavior in the photo-decomposition of ethanol on TiO_2 [9]. We assume that besides the reduction process a fraction of H_2 reacts with the surface species produced by the preparation of $TiO_2 + N$ samples.

In further experiments, we examined the reaction of formic acid on 2% Rh/TiO₂ (Hombikat). The deposition of Rh on TiO₂ markedly enhanced its photoactivity. The dehydrogenation reaction remained the main reaction pathway. In this case, the amount of CO₂ agreed very well with that of H₂. In Fig. 3 we displayed the conversion of formic acid and the formation of products on various catalysts as a function of illumination time. For the demonstration of the effect of Rh the conversion of formic acid measured on pure TiO₂ is also shown in Fig. 3a. The

photo-decomposition of formic acid on Rh/TiO $_2$ was complete in 200 min. Note that a very slight evaluation of H $_2$, CO $_2$, and CO also occurred even after formic acid has been completely reacted. This is very likely due to the decomposition of remaining formate species. When H $_2$ O–HCOOH vapor was photolyzed the formation of CO was not detected. This is very likely the consequence of the water gas shift reaction.

Although the catalyst sample was cooled during the photolysis, the possibility cannot be excluded that the illumination caused a temperature rise of the catalyst. In order to check this possibility, a thin thermocouple was attached to the catalyst layer. The temperature rose by only a few degrees during illumination. We also examined the thermal reaction on the Rh/TiO₂ layer used for photolysis without illumination, and detected merely very slight decomposition ($\sim 1-2\%$) at 300 K. A measurable decomposition of

222 G. Halasi et al.

formic acid (\sim 4% in 60 min) was observed only at 323 K. The results of these control experiments lead us to exclude the contribution of thermal effects to the decomposition of formic acid induced by photolysis.

As the narrowed bandgap of N-doped TiO_2 allows to absorb light at lower wavelengths [10, 11], measurements were also performed with the use of a lamp emitting in the visible range. These measurements were carried out with the TiO_2 samples (SX), which possesses better performance. Whereas pure TiO_2 exhibits little activity in the visible light, the photoactivity of N-doped sample (SX) is 3–4 times higher. Same feature was observed for the $Rh/TiO_2 + N$ catalyst (SX), which also exhibited enhanced photoactivity in the visible light compared to Rh on pure TiO_2 . This is illustrated in Fig. 4.

4 Discussion

Previous IR studies have clearly revealed that formic acid readily dissociates on TiO₂ to give formate species at room temperature [16, 18, 29, 30]:

$$HCOOH_{(g)} = HCOOH_{(a)}$$
 (1)

$$HCOOH_{(a)} = HCOO_{(a)} + H_{(a)}$$
 (2)

This process does not need illumination. Following the adsorption of HCOOH on pure TiO_2 we detected the characteristic vibration of formate bands at $\sim 1,557$ and $\sim 1,381$ cm⁻¹ (Fig. 1c; Table 2). Illumination of the sample in the presence of HCOOH vapor exerted no observable change in the IR spectra. When the sample was degassed and the adsorbed layer was illuminated at 300 K, the formate bands first rapidly then slowly attenuated. This is illustrated by showing the frequency range for the asymmetric and

2500

Fig. 4 Effects of N-doping of TiO₂ (SX) on the formation of products in the photocatalytic decomposition of HCOOH in

the visible light over Rh/TiO₂. **a** H₂. **b** CO₂. The lamp used

emits in the range of

400-640 nm

2%Rh/TiO₂ + N 2500 2000 2000 2%Rh/TiOg+N 2000 CO, [nmol/g] 1500 1500 1500 1000 1000 1000 2%Rh/TiO₂_O 500 500 500 100 200 150 50 100 Time [min] Time [min]

symmetric stretching vibrations of formate (Fig. 1c). Accordingly the photolysis of the HCOO_(a)–TiO₂ system initiated the decomposition of formate on TiO₂, very probably involving the donation of a photoelectron formed in the photo-excitation process:

$$TiO_2 + hv = h^+ + e^- \tag{3}$$

to the formate species

$$HCOO_{(a)} + e^{-} = HCOO_{(a)}^{\delta -}$$
 (4)

This step is followed by the photo-induced decomposition of formate to CO₂ and hydrogen:

$$HCOO_{(a)}^{\delta-} = CO_{2(a)}^{\delta-} + H_{(a)}$$
 (5)

$$CO_{2(a)}^{\delta-} + h^+ = CO_{2(g)}$$
 (6)

The small amount of CO in the products suggests that the dehydration of formic acid

$$HCOO_{(a)}^{\delta-} = CO_{(a)}^{\delta-} + OH_{(a)}$$

$$(7)$$

also occurs to a limited extent on TiO_2 (SK). Taking into account that the N-modified TiO_2 using two preparation methods exhibited higher photoactivity compared to that of unmodified TiO_2 , we may conclude that the extent of photolysis of formic acid on TiO_2 is markedly enhanced by the narrowing of the bandgap of TiO_2 . This can be attributed to the prevention of electron–hole recombination.

A considerably higher photoactivity was measured for Rh/TiO₂ catalyst. This is reflected in the conversion of formic acid, in the amounts of the products, H₂ and CO₂. The dramatic influence of Rh was also exhibited on N-doped TiO₂ in visible light. As concerns the explanation of the effect of Rh, it should be borne in mind that Rh/TiO₂ is a very active metal for the thermal decomposition of

3000

2500

2000

1500

1000

500

2%Rh/TiO,

150

200

3000

В

formic acid at higher temperature [29, 30]. This is attributed to facilitation of the rupture of a C-H bond in the formate species adsorbed on Rh or at Rh/TiO₂ interface.

The promoting effect of metal deposition on TiO₂ has been observed in a number of photoreactions [9–11, 16, 31–33]. This effect was explained by a better separation of charge carriers induced by illumination and by improved electronic communication between metal particles and TiO₂. We believe that the electronic interaction between the metal and n-type TiO₂ also plays an important role in the enhanced photoactivity of Rh/TiO2, as demonstrated in the hydrogenation of CO₂ [34] and in the photocatalytic reaction between H₂O and CO₂ [35]. As the work function of TiO_2 (~4.6 eV) is less than that of Rh (4.98 eV), electron transfer may occur from TiO2 to Rh, which increases the activation of CO₂ in the form of CO₂⁻. The role of such electronic interaction in the activity of a supported metal catalyst was first established in the case of the decomposition of formic acid on Ni/TiO₂, when (as far as we are aware) TiO₂ was first used as a support [36]. Variation of the electron density or the work function of TiO₂ doping with altervalent cations influenced the activation energy of the decomposition of formic acid. We assume that the illumination enhances the extent of electron transfer from TiO₂ to Rh at the interface of the two solids, leading to increased decomposition. We experienced similar features in the photodecomposition of ethanol on the same TiO₂ samples [9]. However, whereas the photodecomposition of ethanol over Rh/TiO2 gives gas mixture of H₂, CO₂, CH₄, and CO, the reforming of formic acid induced by illumination led to the formation of H₂ virtually free of CO even at room temperature.

5 Conclusions

- (i) Doping TiO₂ with N greatly increased its photoactivity in the decomposition of formic acid at 300 K.
- (ii) The deposition of Rh on pure or N-doped TiO₂ dramatically enhanced the extent of the photo-decomposition of formic acid and in the presence of water led to the production of CO-free hydrogen.
- (iii) Lowering the bandgap of TiO₂ through N incorporation facilitated the photolysis of formic acid both on TiO₂ and Rh/TiO₂ in visible light.

Acknowledgments This work was supported by the grant OTKA under Contract Number K 81517. A loan of rhodium chloride from Johnson–Matthey PLC and TiO₂ (Hombicat) from Sachtleben is gratefully acknowledged.

References

- Sandstede G, Veziroglu TN, Derive C, Pottier J (1972) (eds) Proceedings of the ninth world hydrogen energy conference, Paris, p 1745
- Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy & Fuels 19:2098
- 3. Brown LF (2001) Int J Hydrogen Energy 26:381
- 4. Ojeda M, Iglesia E (2009) Angew Chem Int Ed 48:4800
- 5. Koós Á, Solymosi F (2010) Catal Lett 138:23
- Bulushev DA, Beloshapkin S, Ross JRH (2010) Catal Today 154:7
- Gazsi A, Bánsági T, Solymosi F (2011) J Phys Chem C 115:15459
- 8. Solymosi F, Koós Á, Liliom N, Ugrai I (2011) J Catal 279:213
- 9. Halasi Gy, Ugrai I, Solymosi F (2011) J Catal 281:309
- Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69
- 11. Linsebigler A, Lu G, Yates JT Jr (1995) Chem Rev 95:735
- 12. Muggli DS, Falconer JL (1999) J Catal 187:230
- Chen T, Wu GP, Feng ZC, Hu GS, Su WG, Ying PL, Li C (2008) Chin J Catal 29:105
- 14. Zhang YJ, Zhang L (2009) Desalination 249:1017
- Arana J, González Díaz O, Miranda Saracho M, Dona Rodríguez JM, Herrera Melián JA, Pérez Pena J (2001) Appl Catal B Env 32:49
- 16. Miller KL, Falconer JL, Medlin JW (2011) J Catal 278:321
- Liao LF, Wu WC, Chen CY, Lin JL (2001) J Phys Chem B 105:7678
- Miller KL, Lee CW, Falconer JL, Medlin JW (2010) J Catal 275:294
- 19. Beranek R, Kisch H (2008) Photochem Photobiol Sci 7:40
- Xu J-H, Dai W-L, Li J, Cao Y, Li H, He H, Fan K (2008) Catal Commun 9:146
- Pankove JI (1971) Optical processes in semiconductors. Prentience-Hall, New Jersey
- Tang H, Prasad K, Sanilines R, Schmid PE, Levy F (1994) J Appl Phys 75:2042
- Chang C-C, Wu W-C, Huang M-C, Huang I-C, Lin J-L (1999)
 J Catal 185:423
- Busca G, Lamotte J, Lavalley JC, Lorenzelli V (1987) J Am Chem Soc 109:5197
- Lavalley JC, Lamotte J, Busca G, Lorenzelli V (1986) J Chem Soc Chem Commun, pp 1006
- 26. Solymosi F, Pásztor M (1986) J Phys Chem 90:5312
- 27. Basu P, Panayotov D, Yates JT Jr (1987) J Phys Chem 91:3133
- 28. Berkó A, Ménesi G, Solymosi F (1996) J Phys Chem 100:17732
- 29. Solymosi F, Erdőhelyi A (1985) J Catal 91:327
- 30. Kecskés T, Raskó J, Kiss J (2004) Appl Catal A Gen 268:9
- 31. Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Water Res 38:3001
- Hidalgo MC, Maicu M, Navío JA, Colón G (2008) Appl Catal B Env 81:49
- Hidalgo MC, Maicu M, Navío JA, Colón G (2009) J Phys Chem C 113:12840
- 34. Solymosi F, Erdőhelyi A, Bánsági T (1981) J Catal 68:371
- 35. Tombacz I, Solymosi F (1994) Catal Lett 27:61
- Szabó ZG, Solymosi F (1961) In: Proceedings of the 2nd international congress on catalysis, Technip, Paris, p 1627

