A note on rational L^{p} approximation on Jordan curves*

Vilmos Totik ${ }^{\dagger}$

July 18, 2013

Abstract

The the precise asymptotics for the error of best rational approximation of meromorphic functions in integral norm is shown to be a consequence of a result of Gonchar and Rakhmanov. This reproves and extends a recent result of Baratchart, Stahl and Yattselev.

Let T be a rectifiable Jordan curve, G and O the interior and exterior domains of T, respectively, with respect to $\overline{\mathbf{C}}$. Let $A(G)$ denote the set of functions f such that

- f vanishes at infinity and admits holomorphic and single-valued continuation from infinity to an open neighborhood of \bar{O},
- f admits meromorphic, possibly multi-valued, continuation along any arc in $G \backslash E_{f}$ starting from T, where E_{f} is a finite set of points in G,
- E_{f} is non-empty, the meromorphic continuation of f from infinity has a branch point at each element of E_{f}.

Examples of such functions are algebraic functions with branch points. See the paper [1] for other examples, motivation and history.

In the recent landmark paper L. Baratchart, H. Stahl and M. Yattselev [1] have developed the theory of rational approximation of functions $f \in A(G)$ in the $L^{2}\left(s_{T}\right)$ norm on T, where s_{T} is the arc measure on T, and where the approximation is done from the set $\mathcal{R}_{n}(G)$ of rational functions p_{n-1} / q_{n} of degree $((n-1), n)$ which have all their poles in G. Let the error of best approximation

[^0]in $L^{p}\left(s_{T}\right)$ be denoted by $\rho_{n, p}(f, O)$. The theory in [1] gave, besides a lot of information on the best approximants, the $p=2$ case of the asymptotic formula
\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \rho_{n, p}^{1 / 2 n}(f, O)=\exp \left(-\frac{1}{\operatorname{cap}\left(K_{T}, T\right)}\right) \tag{1}
\end{equation*}
$$

\]

(see below for the definition of the minimal condenser capacity $\operatorname{cap}\left(K_{T}, T\right)$). For $p=\infty$ the same formula follows from a result of A. A. Gonchar and E. A. Rakhmanov [2, Theorem 1']. As a consequence, (1) has been established for all $2 \leq p \leq \infty$.

In this note we derive (1) for all $1 \leq p<\infty$ directly from the $p=\infty$ case proven in [2, Theorem 1'].

To have a basis of discussion, let $g_{G}(z, \zeta)$ denote the Green's function of G with pole at $\zeta \in G$, and if $K \subset G$ is a compact set, then consider the minimal energy

$$
I_{G}(K):=\inf _{\omega} I_{G}(\omega):=\inf _{\omega} \iint g_{G}(z, t) d \omega(z) d \omega(t),
$$

where the infimum is taken for all unit Borel-measures on K. In the case when K is not polar (has positive logarithmic capacity) there is a unique minimizing measure $\omega_{K, T}$, called the Green equilibrium measure of K (with respect to Ω). $\operatorname{cap}(K, T):=1 / I_{G}(K)$ is called the condenser capacity of the condenser (K, T).

Next, we need the notion of a set of minimal condenser capacity. We say that a compact $K \subset G$ is admissible for $f \in A(G)$ if $\overline{\mathbf{C}} \backslash K$ is connected, and f has a meromorphic and single-valued extension there. The collection of all admissible sets for f is denoted by $\mathcal{K}_{f}(G)$. A compact $K_{T} \in \mathcal{K}_{f}(G)$ is said to be a set of minimal condenser capacity for f if

- $\operatorname{cap}\left(K_{T}, T\right) \leq \operatorname{cap}(K, T)$ for any $K \in \mathcal{K}_{f}(G)$,
- $K_{T} \subseteq K$ for any $K \in \mathcal{K}_{f}(G)$ for which $\operatorname{cap}(K, T)=\operatorname{cap}\left(K_{T}, T\right)$.

See [1] for the existence and unicity of such a K_{T}. The set K_{T} of minimal condenser capacity is the complement of the "largest" (regarding capacity) domain containing O on which f is single-valued and meromorphic. It turns out (see [1, Theorem S]) that $K_{T}=E_{0} \cup E_{1} \cup\left(\cup_{j} \gamma_{j}\right)$, where $\cup \gamma_{j}$ is a finite union of open analytic arcs, $E_{0} \subset E_{f}$, each point in E_{0} is the endpoint of exactly one γ_{j}, while E_{1} consist of those finitely many points where at least three arcs γ_{j} meet.

These definitions explain the notation in (1), and with these we claim
Theorem 1 (1) holds for all $1 \leq p \leq \infty$.

Proof. The $p=\infty$ case is covered by the Gonchar-Rakhmanov theorem from [2], so it is left to show

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \rho_{n, 1}^{1 / 2 n}(f, O) \geq \exp \left(-\frac{1}{\operatorname{cap}\left(K_{T}, T\right)}\right) . \tag{2}
\end{equation*}
$$

Let $G_{1} \supset G_{2} \supset \cdots$ be a nested sequence of Jordan domains with boundaries T_{1}, T_{2}, \ldots such that $T_{j+1} \subset G_{j}$, each T_{j} lies outside \bar{G}, the maximal distance from a point of T_{j} to T is less than $1 / j$ and length $\left(T_{j}\right) \rightarrow \operatorname{length}(T)$ (say some level line of the conformal mapping of O onto the exterior of the unit disk suffices as T_{j}). Then there is a compact set $K \subset G$ and a j_{0} such that $K_{T_{j}} \subset K$ for $j \geq j_{0}$ (see Lemma 2 below), and for $z, t \in K$ we have $g_{G_{j}}(z, t) \leq g_{G}(z, t)+\eta_{j}$ where $\eta_{j} \rightarrow 0$ (see Lemma 3 below). If $r \in \mathcal{R}_{n}(G)$ is any rational function from $\mathcal{R}_{n}(G)$ and if we apply Cauchy's formula for $\left(f-r_{n}\right)(z), z \in T_{j}$, in O using integration on T, we obtain

$$
\sup _{z \in T_{j}}\left|f(z)-r_{n}(z)\right| \leq\left\|f-r_{n}\right\|_{L^{1}\left(s_{T}\right)} \frac{1}{\operatorname{dist}\left(T_{j}, T\right)}
$$

so

$$
\liminf _{n \rightarrow \infty} \rho_{n, 1}^{1 / 2 n}(f, O) \geq \liminf _{n \rightarrow \infty} \rho_{n, \infty}^{1 / 2 n}\left(f, O_{j}\right)=\exp \left(-I_{G_{j}}\left(\omega_{K_{T_{j}}, T_{j}}\right)\right)
$$

where the equality follows by the aforementioned Gonchar-Rakhmanov theorem. Here for $j \geq j_{0}$ we have

$$
I_{G_{j}}\left(\omega_{K_{T_{j}}, T_{j}}\right) \leq I_{G_{j}}\left(\omega_{K_{T_{j}}, T}\right)
$$

by the definition of the Green equilibrium measure $\omega_{K_{T_{j}}, T_{j}}$, and clearly $g_{G_{j}}(z, t) \leq$ $g_{G}(z, t)+\eta_{j}, t \in K$ and $K_{T_{j}} \subseteq K$ imply

$$
I_{G_{j}}\left(\omega_{K_{T_{j}}, T}\right) \leq I_{G}\left(\omega_{K_{T_{j}}, T}\right)+\eta_{j} .
$$

Finally, by the fact that K_{T} is the set of minimal condenser capacity for G, so it maximizes the energies $I_{G}\left(\omega_{K_{S}, T}\right)$ for all $S \subset G$, it follows that

$$
I_{G}\left(\omega_{K_{T_{j}}, T}\right) \leq I_{G}\left(\omega_{K_{T}, T}\right)
$$

Putting all these together we get

$$
\liminf _{n \rightarrow \infty} \rho_{n, 1}^{1 / 2 n}(f, O) \geq \exp \left(-I_{G}\left(\omega_{K_{T}, T}\right)\right) e^{-\eta_{j}}=\exp \left(-\frac{1}{\operatorname{cap}\left(K_{T}, T\right)}\right) e^{-\eta_{j}}
$$

which proves (2) if we let $j \rightarrow \infty$.

The proof above used the following two quite plausible facts.
Lemma 2 There is a compact set $K \subset G$ and a j_{0} such that $K_{T_{j}} \subset K$ for $j \geq j_{0}$.

Lemma 3 For $z, t \in K$ we have $g_{G_{j}}(z, t) \leq g_{G}(z, t)+\eta_{j}$ where $\eta_{j} \rightarrow 0$.

Proof of Lemma 2. Let $H_{a}=\{z \mid \Re z>a\}$, and fix a neighborhood S around T to which f has a single-valued analytic continuation.

Assume to the contrary that there is a sequence of points $P_{j} \in K_{T_{j}}, j=$ $1,2, \ldots$, such that

$$
\liminf _{j \rightarrow \infty} \operatorname{dist}\left(P_{j}, \overline{\mathbf{C}} \backslash G\right)=0
$$

We may assume that here the liminf is actually a limit and $P_{j} \rightarrow P \in T$ (select a subsequence). Select a $\tilde{P}_{j} \in T_{j}$ with $\operatorname{dist}\left(P_{j}, \tilde{P}_{j}\right) \rightarrow 0$. Fix a $z_{0} \in G$ and let $\varphi^{*}, \varphi_{j}^{*}$ be the conformal maps that map the unit disk onto G, G_{j} such that $\varphi^{*}(0)=\varphi_{j}^{*}(0)=z_{0}$ and $\left(\varphi^{*}\right)^{\prime}(0)>0,\left(\varphi_{j}^{*}\right)^{\prime}(0)>0$. It is known (see e.g. [3, Theorem 6.12 and Exercise 6.3/4]) that $\varphi_{j}^{*} \rightarrow \varphi^{*}$ uniformly on the closed unit disk, therefore $\left(\varphi_{j}^{*}\right)^{-1}\left(P_{j}\right) \rightarrow\left(\varphi^{*}\right)^{-1}(P),\left(\varphi_{j}^{*}\right)^{-1}\left(\tilde{P}_{j}\right) \rightarrow\left(\varphi^{*}\right)^{-1}(P)$. Combine these with some fixed mapping of the unit disk onto the right-half plane H_{0} to deduce the following: if φ_{j}, φ are conformal maps of G_{j}, G onto H_{0} such that $\varphi_{j}\left(z_{0}\right)=\varphi\left(z_{0}\right)=1, \varphi_{j}\left(\tilde{P}_{j}\right)=0, \varphi(P)=0$, then $\varphi_{j} \rightarrow \varphi$ uniformly on compact subsets of G and $\varphi_{j}\left(P_{j}\right) \rightarrow \varphi(P)=0$. Therefore, there is an $a>0$ such that $\varphi_{j}\left(E_{f}\right) \subset \overline{H_{a}}$ for all large j and at the same time $\varphi_{j}\left(P_{j}\right) \notin \overline{H_{a}}$. Hence, if $B_{j}:=\varphi_{j}\left(K_{T_{j}}\right)$, then

$$
\begin{equation*}
B_{j}=\varphi_{j}\left(K_{T_{j}}\right) \nsubseteq \overline{H_{a}} \quad \text { for } j \geq j_{0} \tag{3}
\end{equation*}
$$

with some j_{0}. We may also assume $a>0$ to be so small and j_{0} so large that $\varphi_{j}(G \backslash S) \subset H_{a}$ for $j \geq j_{0}$ (note that $\varphi(G \backslash S)$ is a compact subset of H_{0}). Fix a $j \geq j_{0}$, and with this j we get a contradiction as follows.

Consider the mapping

$$
z=x+i y \rightarrow z^{\prime}=\max (x, a)+i y
$$

(the projection onto $\overline{H_{a}}$) and set $B_{j}^{\prime}=\left\{z^{\prime} \mid z \in B_{j}\right\}$. Then

$$
\begin{equation*}
g_{H_{0}}(z, w)=\log \left|\frac{z+\bar{w}}{z-w}\right| \leq \log \left|\frac{z^{\prime}+\overline{w^{\prime}}}{z^{\prime}-w^{\prime}}\right|=g_{H_{0}}\left(z^{\prime}, w^{\prime}\right) \tag{4}
\end{equation*}
$$

(just note that the imaginary parts are the same, while the real parts increase resp. decrease when we go from $z+\bar{w}$ resp. $z-w$ to $z^{\prime}+\overline{w^{\prime}}$ resp. $\left.z^{\prime}-w^{\prime}\right)$.

We need
Lemma 4 There is a Borel-mapping $\Phi: B_{j}^{\prime} \rightarrow B_{j}$ such that $\Phi(x)^{\prime}=x$ for all $x \in B_{j}^{\prime}$. For every Borel-measure μ on B_{j}^{\prime} this generates a Borel-measure ν on B_{j} via $\nu(E)=\mu\left(\Phi^{-1}[E]\right)$ for all Borel-sets $E \subset B_{j}$ (here $\Phi^{-1}[E]$ is the complete inverse image of E) such that

$$
\int \log \left|\frac{z+\bar{w}}{z-w}\right| d \nu(z) d \nu(w)=\int \log \left|\frac{\Phi(u)+\overline{\Phi(v)}}{\Phi(u)-\Phi(v)}\right| d \mu(u) d \mu(v)
$$

With this lemma at hand we continue the proof of Lemma 2. We have

$$
\begin{aligned}
I_{H_{0}}(\nu) & =\int \log \left|\frac{z+\bar{w}}{z-w}\right| d \nu(z) d \nu(w)=\int \log \left|\frac{\Phi(u)+\overline{\Phi(v)}}{\Phi(u)-\Phi(v)}\right| d \mu(u) d \mu(v) \\
& \leq \int \log \left|\frac{u+\bar{v}}{u-v}\right| d \mu(u) d \mu(v)=I_{H_{0}}(\mu)
\end{aligned}
$$

where, at the second inequality, we used (4).
Let Ω_{j} be the unbounded component of $\overline{\mathbf{C}} \backslash B_{j}^{\prime}$ and $\operatorname{Pc}\left(B_{j}^{\prime}\right): \overline{\mathbf{C}} \backslash \Omega_{j}$ be the so called polynomial convex hull of B_{j}^{\prime}. Next we show that $\operatorname{Pc}\left(B_{j}^{\prime}\right)$ is an admissible set for the function $F:=f\left(\varphi_{j}^{-1}\right)$ in H_{0}. To see this let Γ be a polygonal curve in $\Omega_{j} \cap H_{0}$ starting and ending at the origin, i.e. Γ is a closed curve that lies in the right-half plane H_{0} except for the point $0 \in \Gamma$, and Γ doe not intersect $\operatorname{Pc}\left(B_{j}^{\prime}\right)$. Let F^{*} be the continuation of F along (a neighborhood of) Γ as we traverse Γ once from 0 to 0 . We need to show that after traversing Γ we get back to the same function element, i.e. $F^{*}=F$ in a neighborhood of the origin.

By assumption, F has a continuation to the strip $H_{0} \backslash \overline{H_{a}}$ which we denote by F_{0}. Also, by the assumption on $K_{T_{j}}, F$ has a single-valued continuation F_{1} to the set $\overline{\mathbf{C}} \backslash B_{j}$. Note that necessarily $F_{1}=F_{0}$ on the set $\left(H_{0} \backslash \overline{H_{a}}\right) \backslash B_{j}$. We may assume that Γ does not contain a vertical segment, and for some small $\varepsilon>0$ let Q_{1}, \ldots, Q_{m} be the points of Γ (in the order of the traverse) that lie on the line $\Re z=a-\varepsilon$. Let here $\varepsilon>0$ be so small that $\overline{H_{a-\varepsilon}} \cap \Gamma \cap B_{j}=\emptyset$ (there is such an $\varepsilon>0$ since the preceding relation is true with $\varepsilon=0)$. Then the points Q_{1}, \ldots, Q_{m} lie outside B_{j}, and let $D_{k} \subset H_{0} \backslash \overline{H_{a}}$ be a small disk around Q_{k} not intersecting B_{j}. Note that, as we have just remarked, $F_{1} \equiv F_{0}$ on all these disks. Now we can easily prove by induction that $F^{*} \equiv F_{0} \equiv F_{1}$ on each D_{k}. Indeed, for $k=1$ the equality $F^{*} \equiv F_{0}$ is true by the monodromy theorem in $H_{0} \backslash \overline{H_{a}}$. Now assume that we already know the claim for D_{k}. The portion Γ_{k} of Γ in between the points Q_{k} and Q_{k+1} either lies in $H_{a-\varepsilon}$ or in $H_{0} \backslash \overline{H_{a-\varepsilon}}$. In the former case the continuation of $F^{*} \equiv F_{1}$ along Γ_{k} is the same as F_{1} (note that Γ_{k} does not intersect B_{j}), hence on D_{k+1} we have $F^{*} \equiv F_{1} \equiv F_{0}$. On the other hand, if Γ_{k} lies in $H_{0} \backslash \overline{H_{a-\varepsilon}}$, then the continuation $F^{*} \equiv F_{0}$ along Γ_{k} is the same as F_{0} by the monodromy theorem in $H_{0} \backslash \overline{H_{a}}$, hence in this case we have again $F^{*} \equiv F_{0} \equiv F_{1}$ on D_{k+1}, by which the induction has been carried out. Another application of the monodromy theorem along the portion of Γ from Q_{m} to 0 shows that, indeed, as we get back to the origin, with F^{*} we arrive back to the same function element F_{0} that we started with.

We have thus shown that $\operatorname{Pc}\left(B_{j}^{\prime}\right)$ is an admissible set for $f\left(\varphi_{j}^{-1}\right)$ in H_{0}, hence $K_{j}^{*}:=\varphi_{j}^{-1}\left(\operatorname{Pc}\left(B_{j}^{\prime}\right)\right)$ is an admissible set for f in G_{j}, and K_{j}^{*} lies in $\varphi_{j}^{-1}\left(\overline{H_{a}}\right)$. If we define the measure μ on B_{j}^{\prime} by stipulating $\mu(E)=\omega_{K_{j}^{*}, T_{j}}\left(\varphi_{j}^{-1}(E)\right)$ for all Borel-sets $E \subset B_{j}^{\prime}, \nu$ is the associated measure via Lemma 4, and finally ω is the measure defined by $\omega(E)=\nu\left(\varphi_{j}(E)\right)$, then ω is supported on $K_{T_{j}}$, and has total mass 1 because $\omega_{K_{j}^{*}, T_{j}}$ is supported on the outer boundary of K_{j}^{*} (see
[1, Sec. 7.1.3]), and hence the interior of $\operatorname{Pc}\left(B_{j}^{\prime}\right)$ has zero μ-measure. Now we obtain from Lemma 4 and from the conformal invariance of the Green's function

$$
I_{G_{j}}(\omega)=I_{H_{0}}(\nu) \leq I_{H_{0}}(\mu)=I_{G_{j}}\left(\omega_{K_{j}^{*}, T_{j}}\right),
$$

which implies

$$
I_{G_{j}}\left(K_{T_{j}}\right) \leq I_{G_{j}}(\omega) \leq I_{G_{j}}\left(\omega_{K_{j}^{*}, T_{j}}\right)=I_{G_{j}}\left(K_{j}^{*}\right)
$$

Therefore, by the extremality of $K_{T_{j}}$ for G_{j}, we must have equality here, and then, by the definition of the set $K_{T_{j}}$ of minimal condenser capacity, we must have $K_{T_{j}} \subseteq K_{j}^{*} \subseteq \varphi_{j}^{-1}\left(\overline{H_{a}}\right)$, which contradicts (3).

This contradiction proves the claim in Lemma 3.

Proof of Lemma 4. In this proof we use the special structure of the sets $K_{T_{j}}$ described before Theorem 1.

For $z \in H_{a} \cap B_{j}^{\prime}=H_{a} \cap B_{j}$ set $\Phi(z)=z$, and for $z=a+i y \in B_{j}^{\prime} \cap\{x=a\}$ let $\Phi(z)=x(z)+i y \in B_{j}$ be the point in B_{j} with the smallest possible x-coordinate $x(z)$. In the latter case $\Phi(z) \in H_{0} \backslash H_{a}$, and clearly $\Phi(z)^{\prime}=z$ for all $z \in B_{j}^{\prime}$, so it is left to verify that Φ is a Borel-map. To this it is sufficient to show that for a dense set of $B<C$ and for a dense set of $A \in[0, a)$ the inverse image $\Phi^{-1}[R]$ is a Borel-set, where $R=[0, A] \times[B, C]$. To get this note that if the boundary of R does not contain either endpoints of an open analytic arc $\gamma \subset B_{j}$ which is not a vertical or horizontal segment, then $\partial R \cap \gamma$ is a finite set. Therefore, in this case $R \cap \gamma$ consists of a finite number of analytic arcs, and hence $(R \cap \gamma)^{\prime}$ is the union of finitely many closed segments on ∂H_{a}. Since B_{j} is the union of finitely many points and finitely many open analytic arcs, it follows that $\left(R \cap B_{j}\right)^{\prime}$ consists of a finite number of closed segments on ∂H_{a} provided ∂R does not contain any of the endpoints of these arcs. Since $\Phi^{-1}[R]=\left(R \cap B_{j}\right)^{\prime}$, we are done.

Proof of Lemma 3. Let $\varepsilon>0$ and select a Jordan curve σ separating K and T so that $g_{G}(z, \tau) \leq \varepsilon$ for all $z \in \sigma, \tau \in K$. (There is such a σ : if σ_{1} separates T and K then $g_{G}(z, t) \leq M$ for all $z \in \sigma_{1}, t \in K$ with some constant M. Map now the strip in between T and σ_{1} into a ring $R=\{1 \leq|z| \leq r\}$ by a conformal $\operatorname{map} \varphi$. Then the three-circle-theorem gives

$$
g_{G}(z, t) \leq M \frac{\log |\varphi(z)|}{\log r}
$$

so

$$
\sigma=\left\{z| | \varphi(z) \left\lvert\,=\exp \left(\varepsilon \frac{\log r}{M}\right)\right.\right\}
$$

suffices for small ε.) Now $g_{G_{j}}(z, \tau) \searrow g_{G}(z, \tau)$ for all $z \in \sigma$ and $\tau \in K$, so, by Dini's theorem, this convergence is uniform in $z \in \sigma$ for all fixed $\tau \in K$, i.e. $g_{G_{j}}(\zeta, \tau)<2 \varepsilon$ for $j \geq j_{\tau}$ and all $\zeta \in \sigma, \tau \in K$. Then $g_{G_{j_{\tau}}}(z, t)<2 \varepsilon$ is true for all $z \in \sigma$ and $t \in K$ lying sufficiently close to some $\zeta \in \sigma$ and $\tau \in K$, and by compactness of σ we get $g_{G_{j_{\tau}}}(z, t)<2 \varepsilon$ for all $z \in \sigma$ and t lying sufficiently close to τ. Then for the same values $g_{G_{j}}(z, t)<2 \varepsilon$ automatically holds for $j \geq j_{\tau}$ because the Green's function $g_{G_{j}}$ decrease. Finally, by the compactness of K there is a j_{0} such that this inequality holds for all $z \in \sigma, t \in K$ and $j \geq j_{0}$.

As a consequence, $g_{G_{j}}(z, t)-g_{G}(z, t) \leq 2 \varepsilon$ for $z \in \sigma, t \in K$ and $j \geq j_{0}$, and then, by the maximum theorem, this inequality persists for all $t \in K$ and z lying inside σ.

References

[1] L. Baratchart, H. Stahl and M. Yattselev, Weighted extremal domains and best rational approximation, Advances in Math., 229(2012), 357-407.
[2] A.A. Gonchar and E.A. Rakhmanov, Equilibrium distributions and the degree of rational approximation of analytic functions, (Russian) Mat. Sb., 134(176)(1987), 306-352; English transl. in Math. USSR Sb., 62(1989), 305-348.
[3] Ch. Pommerenke, Boundary Behavior of Conformal Mappings, Grundlehren der mathematischen Wissenschaften, 299, Springer Verlag, Berlin, Heidelberg New York, 1992.

Bolyai Institute
MTA-SZTE Analysis and Stochastics Research Group
University of Szeged
Szeged
Aradi v. tere 1, 6720, Hungary
and
Department of Mathematics and Statistics
University of South Florida
4202 E. Fowler Ave, CMC342
Tampa, FL 33620-5700, USA
totik@mail.usf.edu

[^0]: *AMS Classification: 41A20
 Key Words: rational approximation, Jordan curves, meromorphic functions, condenser capacity
 ${ }^{\dagger}$ Supported by the European Research Council Advanced Grant No. 267055

