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Abstract

The the precise asymptotics for the error of best rational approxima-
tion of meromorphic functions in integral norm is shown to be a conse-
quence of a result of Gonchar and Rakhmanov. This reproves and extends
a recent result of Baratchart, Stahl and Yattselev.

Let T be a rectifiable Jordan curve, G and O the interior and exterior do-
mains of T , respectively, with respect to C. Let A(G) denote the set of functions
f such that

• f vanishes at infinity and admits holomorphic and single-valued continu-
ation from infinity to an open neighborhood of O,

• f admits meromorphic, possibly multi-valued, continuation along any arc
in G \ Ef starting from T , where Ef is a finite set of points in G,

• Ef is non-empty, the meromorphic continuation of f from infinity has a
branch point at each element of Ef .

Examples of such functions are algebraic functions with branch points. See
the paper [1] for other examples, motivation and history.

In the recent landmark paper L. Baratchart, H. Stahl and M. Yattselev [1]
have developed the theory of rational approximation of functions f ∈ A(G) in
the L2(sT ) norm on T , where sT is the arc measure on T , and where the ap-
proximation is done from the set Rn(G) of rational functions pn−1/qn of degree
((n− 1), n) which have all their poles in G. Let the error of best approximation
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in Lp(sT ) be denoted by ρn,p(f,O). The theory in [1] gave, besides a lot of
information on the best approximants, the p = 2 case of the asymptotic formula

lim
n→∞

ρ1/2nn,p (f,O) = exp

(
− 1

cap(KT , T )

)
(1)

(see below for the definition of the minimal condenser capacity cap(KT , T )).
For p = ∞ the same formula follows from a result of A. A. Gonchar and E. A.
Rakhmanov [2, Theorem 1’]. As a consequence, (1) has been established for all
2 ≤ p ≤ ∞.

In this note we derive (1) for all 1 ≤ p < ∞ directly from the p = ∞ case
proven in [2, Theorem 1’].

To have a basis of discussion, let gG(z, ζ) denote the Green’s function of G
with pole at ζ ∈ G, and if K ⊂ G is a compact set, then consider the minimal
energy

IG(K) := inf
ω

IG(ω) := inf
ω

∫ ∫
gG(z, t)dω(z)dω(t),

where the infimum is taken for all unit Borel-measures on K. In the case when
K is not polar (has positive logarithmic capacity) there is a unique minimizing
measure ωK,T , called the Green equilibrium measure of K (with respect to Ω).
cap(K,T ) := 1/IG(K) is called the condenser capacity of the condenser (K,T ).

Next, we need the notion of a set of minimal condenser capacity. We say
that a compact K ⊂ G is admissible for f ∈ A(G) if C \K is connected, and
f has a meromorphic and single-valued extension there. The collection of all
admissible sets for f is denoted by Kf (G). A compact KT ∈ Kf (G) is said to
be a set of minimal condenser capacity for f if

• cap(KT , T ) ≤ cap(K,T ) for any K ∈ Kf (G),

• KT ⊆ K for any K ∈ Kf (G) for which cap(K,T ) = cap(KT , T ).

See [1] for the existence and unicity of such a KT . The set KT of minimal con-
denser capacity is the complement of the “largest” (regarding capacity) domain
containing O on which f is single-valued and meromorphic. It turns out (see [1,
Theorem S]) that KT = E0 ∪ E1 ∪ (∪jγj), where ∪γj is a finite union of open
analytic arcs, E0 ⊂ Ef , each point in E0 is the endpoint of exactly one γj , while
E1 consist of those finitely many points where at least three arcs γj meet.

These definitions explain the notation in (1), and with these we claim

Theorem 1 (1) holds for all 1 ≤ p ≤ ∞.

Proof. The p = ∞ case is covered by the Gonchar-Rakhmanov theorem from
[2], so it is left to show

lim inf
n→∞

ρ
1/2n
n,1 (f,O) ≥ exp

(
− 1

cap(KT , T )

)
. (2)
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Let G1 ⊃ G2 ⊃ · · · be a nested sequence of Jordan domains with boundaries
T1, T2, . . . such that Tj+1 ⊂ Gj , each Tj lies outside G, the maximal distance
from a point of Tj to T is less than 1/j and length(Tj) → length(T ) (say some
level line of the conformal mapping of O onto the exterior of the unit disk suffices
as Tj). Then there is a compact set K ⊂ G and a j0 such that KTj ⊂ K for
j ≥ j0 (see Lemma 2 below), and for z, t ∈ K we have gGj (z, t) ≤ gG(z, t) + ηj
where ηj → 0 (see Lemma 3 below). If r ∈ Rn(G) is any rational function from
Rn(G) and if we apply Cauchy’s formula for (f − rn)(z), z ∈ Tj , in O using
integration on T , we obtain

sup
z∈Tj

|f(z)− rn(z)| ≤ ∥f − rn∥L1(sT )
1

dist(Tj , T )
,

so
lim inf
n→∞

ρ
1/2n
n,1 (f,O) ≥ lim inf

n→∞
ρ1/2nn,∞ (f,Oj) = exp

(
−IGj (ωKTj

,Tj )
)
,

where the equality follows by the aforementioned Gonchar-Rakhmanov theorem.
Here for j ≥ j0 we have

IGj (ωKTj
,Tj ) ≤ IGj (ωKTj

,T )

by the definition of the Green equilibrium measure ωKTj
,Tj , and clearly gGj (z, t) ≤

gG(z, t) + ηj , t ∈ K and KTj
⊆ K imply

IGj (ωKTj
,T ) ≤ IG(ωKTj

,T ) + ηj .

Finally, by the fact that KT is the set of minimal condenser capacity for G, so
it maximizes the energies IG(ωKS ,T ) for all S ⊂ G, it follows that

IG(ωKTj
,T ) ≤ IG(ωKT ,T ).

Putting all these together we get

lim inf
n→∞

ρ
1/2n
n,1 (f,O) ≥ exp (−IG(ωKT ,T )) e

−ηj = exp

(
− 1

cap(KT , T )

)
e−ηj ,

which proves (2) if we let j → ∞.

The proof above used the following two quite plausible facts.

Lemma 2 There is a compact set K ⊂ G and a j0 such that KTj ⊂ K for
j ≥ j0.

Lemma 3 For z, t ∈ K we have gGj
(z, t) ≤ gG(z, t) + ηj where ηj → 0.

3



Proof of Lemma 2. Let Ha = {z ℜz > a}, and fix a neighborhood S around
T to which f has a single-valued analytic continuation.

Assume to the contrary that there is a sequence of points Pj ∈ KTj , j =
1, 2, . . ., such that

lim inf
j→∞

dist(Pj ,C \G) = 0.

We may assume that here the liminf is actually a limit and Pj → P ∈ T (select

a subsequence). Select a P̃j ∈ Tj with dist(Pj , P̃j) → 0. Fix a z0 ∈ G and let
φ∗, φ∗

j be the conformal maps that map the unit disk onto G, Gj such that
φ∗(0) = φ∗

j (0) = z0 and (φ∗)′(0) > 0, (φ∗
j )

′(0) > 0. It is known (see e.g. [3,
Theorem 6.12 and Exercise 6.3/4]) that φ∗

j → φ∗ uniformly on the closed unit

disk, therefore (φ∗
j )

−1(Pj) → (φ∗)−1(P ), (φ∗
j )

−1(P̃j) → (φ∗)−1(P ). Combine
these with some fixed mapping of the unit disk onto the right-half plane H0 to
deduce the following: if φj , φ are conformal maps of Gj , G onto H0 such that

φj(z0) = φ(z0) = 1, φj(P̃j) = 0, φ(P ) = 0, then φj → φ uniformly on compact
subsets of G and φj(Pj) → φ(P ) = 0. Therefore, there is an a > 0 such that
φj(Ef ) ⊂ Ha for all large j and at the same time φj(Pj) ̸∈ Ha. Hence, if
Bj := φj(KTj ), then

Bj = φj(KTj ) ̸⊆ Ha for j ≥ j0 (3)

with some j0. We may also assume a > 0 to be so small and j0 so large that
φj(G \ S) ⊂ Ha for j ≥ j0 (note that φ(G \ S) is a compact subset of H0). Fix
a j ≥ j0, and with this j we get a contradiction as follows.

Consider the mapping

z = x+ iy → z′ = max(x, a) + iy

(the projection onto Ha) and set B′
j = {z′ z ∈ Bj}. Then

gH0(z, w) = log

∣∣∣∣z + w

z − w

∣∣∣∣ ≤ log

∣∣∣∣z′ + w′

z′ − w′

∣∣∣∣ = gH0(z
′, w′) (4)

(just note that the imaginary parts are the same, while the real parts increase
resp. decrease when we go from z + w resp. z − w to z′ + w′ resp. z′ − w′).

We need

Lemma 4 There is a Borel-mapping Φ : B′
j → Bj such that Φ(x)′ = x for

all x ∈ B′
j. For every Borel-measure µ on B′

j this generates a Borel-measure

ν on Bj via ν(E) = µ(Φ−1[E]) for all Borel-sets E ⊂ Bj (here Φ−1[E] is the
complete inverse image of E) such that∫

log

∣∣∣∣z + w

z − w

∣∣∣∣ dν(z)dν(w) = ∫
log

∣∣∣∣∣Φ(u) + Φ(v)

Φ(u)− Φ(v)

∣∣∣∣∣ dµ(u)dµ(v).
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With this lemma at hand we continue the proof of Lemma 2. We have

IH0(ν) =

∫
log

∣∣∣∣z + w

z − w

∣∣∣∣ dν(z)dν(w) = ∫
log

∣∣∣∣∣Φ(u) + Φ(v)

Φ(u)− Φ(v)

∣∣∣∣∣ dµ(u)dµ(v)
≤

∫
log

∣∣∣∣u+ v

u− v

∣∣∣∣ dµ(u)dµ(v) = IH0(µ),

where, at the second inequality, we used (4).
Let Ωj be the unbounded component of C\B′

j and Pc(B′
j) : C\Ωj be the so

called polynomial convex hull of B′
j . Next we show that Pc(B′

j) is an admissible

set for the function F := f(φ−1
j ) in H0. To see this let Γ be a polygonal curve

in Ωj ∩ H0 starting and ending at the origin, i.e. Γ is a closed curve that lies
in the right-half plane H0 except for the point 0 ∈ Γ, and Γ doe not intersect
Pc(B′

j). Let F ∗ be the continuation of F along (a neighborhood of) Γ as we
traverse Γ once from 0 to 0. We need to show that after traversing Γ we get
back to the same function element, i.e. F ∗ = F in a neighborhood of the origin.

By assumption, F has a continuation to the strip H0 \Ha which we denote
by F0. Also, by the assumption on KTj , F has a single-valued continuation F1

to the set C \ Bj . Note that necessarily F1 = F0 on the set (H0 \ Ha) \ Bj .
We may assume that Γ does not contain a vertical segment, and for some small
ε > 0 let Q1, . . . , Qm be the points of Γ (in the order of the traverse) that lie on
the line ℜz = a− ε. Let here ε > 0 be so small that Ha−ε ∩Γ∩Bj = ∅ (there is
such an ε > 0 since the preceding relation is true with ε = 0). Then the points
Q1, . . . , Qm lie outside Bj , and let Dk ⊂ H0 \ Ha be a small disk around Qk

not intersecting Bj . Note that, as we have just remarked, F1 ≡ F0 on all these
disks. Now we can easily prove by induction that F ∗ ≡ F0 ≡ F1 on each Dk.
Indeed, for k = 1 the equality F ∗ ≡ F0 is true by the monodromy theorem in
H0 \Ha. Now assume that we already know the claim for Dk. The portion Γk

of Γ in between the points Qk and Qk+1 either lies in Ha−ε or in H0 \Ha−ε. In
the former case the continuation of F ∗ ≡ F1 along Γk is the same as F1 (note
that Γk does not intersect Bj), hence on Dk+1 we have F ∗ ≡ F1 ≡ F0. On the
other hand, if Γk lies in H0 \Ha−ε, then the continuation F ∗ ≡ F0 along Γk is
the same as F0 by the monodromy theorem in H0 \Ha, hence in this case we
have again F ∗ ≡ F0 ≡ F1 on Dk+1, by which the induction has been carried
out. Another application of the monodromy theorem along the portion of Γ
from Qm to 0 shows that, indeed, as we get back to the origin, with F ∗ we
arrive back to the same function element F0 that we started with.

We have thus shown that Pc(B′
j) is an admissible set for f(φ−1

j ) in H0, hence

K∗
j := φ−1

j (Pc(B′
j)) is an admissible set for f in Gj , and K∗

j lies in φ−1
j (Ha).

If we define the measure µ on B′
j by stipulating µ(E) = ωK∗

j
,Tj (φ

−1
j (E)) for

all Borel-sets E ⊂ B′
j , ν is the associated measure via Lemma 4, and finally ω

is the measure defined by ω(E) = ν(φj(E)), then ω is supported on KTj , and
has total mass 1 because ωK∗

j
,Tj is supported on the outer boundary of K∗

j (see
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[1, Sec. 7.1.3]), and hence the interior of Pc(B′
j) has zero µ-measure. Now we

obtain from Lemma 4 and from the conformal invariance of the Green’s function

IGj (ω) = IH0(ν) ≤ IH0(µ) = IGj (ωK∗
j
,Tj ),

which implies

IGj (KTj ) ≤ IGj (ω) ≤ IGj (ωK∗
j
,Tj ) = IGj (K

∗
j ).

Therefore, by the extremality of KTj for Gj , we must have equality here, and
then, by the definition of the set KTj of minimal condenser capacity, we must

have KTj ⊆ K∗
j ⊆ φ−1

j (Ha), which contradicts (3).
This contradiction proves the claim in Lemma 3.

Proof of Lemma 4. In this proof we use the special structure of the sets KTj

described before Theorem 1.
For z ∈ Ha∩B′

j = Ha∩Bj set Φ(z) = z, and for z = a+iy ∈ B′
j∩{x = a} let

Φ(z) = x(z)+iy ∈ Bj be the point in Bj with the smallest possible x-coordinate
x(z). In the latter case Φ(z) ∈ H0 \Ha, and clearly Φ(z)′ = z for all z ∈ B′

j , so
it is left to verify that Φ is a Borel-map. To this it is sufficient to show that for a
dense set of B < C and for a dense set of A ∈ [0, a) the inverse image Φ−1[R] is
a Borel-set, where R = [0, A]×[B,C]. To get this note that if the boundary of R
does not contain either endpoints of an open analytic arc γ ⊂ Bjwhich is not a
vertical or horizontal segment, then ∂R∩γ is a finite set. Therefore, in this case
R∩γ consists of a finite number of analytic arcs, and hence (R∩γ)′ is the union
of finitely many closed segments on ∂Ha. Since Bj is the union of finitely many
points and finitely many open analytic arcs, it follows that (R∩Bj)

′ consists of
a finite number of closed segments on ∂Ha provided ∂R does not contain any
of the endpoints of these arcs. Since Φ−1[R] = (R ∩Bj)

′, we are done.

Proof of Lemma 3. Let ε > 0 and select a Jordan curve σ separating K and
T so that gG(z, τ) ≤ ε for all z ∈ σ, τ ∈ K. (There is such a σ: if σ1 separates
T and K then gG(z, t) ≤ M for all z ∈ σ1, t ∈ K with some constant M . Map
now the strip in between T and σ1 into a ring R = {1 ≤ |z| ≤ r} by a conformal
map φ. Then the three-circle-theorem gives

gG(z, t) ≤ M
log |φ(z)|

log r
,

so

σ =

{
z |φ(z)| = exp

(
ε
log r

M

)}

6



suffices for small ε.) Now gGj (z, τ) ↘ gG(z, τ) for all z ∈ σ and τ ∈ K, so, by
Dini’s theorem, this convergence is uniform in z ∈ σ for all fixed τ ∈ K, i.e.
gGj (ζ, τ) < 2ε for j ≥ jτ and all ζ ∈ σ, τ ∈ K. Then gGjτ

(z, t) < 2ε is true for
all z ∈ σ and t ∈ K lying sufficiently close to some ζ ∈ σ and τ ∈ K, and by
compactness of σ we get gGjτ

(z, t) < 2ε for all z ∈ σ and t lying sufficiently close
to τ . Then for the same values gGj (z, t) < 2ε automatically holds for j ≥ jτ
because the Green’s function gGj

decrease. Finally, by the compactness of K
there is a j0 such that this inequality holds for all z ∈ σ, t ∈ K and j ≥ j0.

As a consequence, gGj
(z, t) − gG(z, t) ≤ 2ε for z ∈ σ, t ∈ K and j ≥ j0,

and then, by the maximum theorem, this inequality persists for all t ∈ K and
z lying inside σ.

References

[1] L. Baratchart, H. Stahl and M. Yattselev, Weighted extremal domains and
best rational approximation, Advances in Math., 229(2012), 357-407.

[2] A.A. Gonchar and E.A. Rakhmanov, Equilibrium distributions and the de-
gree of rational approximation of analytic functions, (Russian) Mat. Sb.,
134(176)(1987), 306-352; English transl. in Math. USSR Sb., 62(1989),
305-348.

[3] Ch. Pommerenke, Boundary Behavior of Conformal Mappings, Grundlehren
der mathematischen Wissenschaften, 299, Springer Verlag, Berlin, Heidel-
berg New York, 1992.

Bolyai Institute
MTA-SZTE Analysis and Stochastics Research Group
University of Szeged
Szeged
Aradi v. tere 1, 6720, Hungary

and

Department of Mathematics and Statistics
University of South Florida
4202 E. Fowler Ave, CMC342
Tampa, FL 33620-5700, USA

totik@mail.usf.edu

7


