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Abstract In subset ranking, the goal is to learn a ranking function that approximates a gold
standard partial ordering of a set of objects (in our case, a set of documents retrieved for
the same query). The partial ordering is given by relevance labels representing the rele-
vance of documents with respect to the query on an absolute scale. Our approach consists
of three simple steps. First, we train standard multi-class classifiers (AdaBoost.MH and
multi-class SVM) to discriminate between the relevance labels. Second, the posteriors of
multi-class classifiers are calibrated using probabilistic and regression losses in order to es-
timate the Bayes-scoring function which optimizes the Normalized Discounted Cumulative
Gain (NDCG). In the third step, instead of selecting the best multi-class hyperparameters
and the best calibration, we mix all the learned models in a simple ensemble scheme.
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Ericsson Hungary, Könyves Kálmán krt. 11.B, 1097 Budapest, Hungary
e-mail: tamas.elteto@ericsson.com

G. Szarvas
Nuance Communications Germany GmbH, Kackertstrasse 10, 52072 Aachen, Germany
e-mail: gyorgy.szarvas@gmail.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of...

https://core.ac.uk/display/35345693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:busarobi@gmail.com
mailto:balazs.kegl@gmail.com
mailto:tamas.elteto@ericsson.com
mailto:gyorgy.szarvas@gmail.com


Mach Learn

Our extensive experimental study is itself a substantial contribution. We compare most of
the existing learning-to-rank techniques on all of the available large-scale benchmark data
sets using a standardized implementation of the NDCG score. We show that our approach
is competitive with conceptually more complex listwise and pairwise methods, and clearly
outperforms them as the data size grows. As a technical contribution, we clarify some of the
confusing results related to the ambiguities of the evaluation tools, and propose guidelines
for future studies.

Keywords Learning-to-rank · Multi-class classification · Class Probability Calibration ·
Regression Based Calibration · Ensemble methods

1 Introduction

In the past, lists of results obtained by information retrieval (IR) systems were ranked by
probabilistic models, such as the BM25 measure (Robertson and Zaragoza 2009), based on
a small number of attributes (the frequency of query terms in the document, in the collection,
etc.). The parameters of these models were usually tuned by trial and error. As the number
of useful features increased, these manually crafted models became increasingly laborious
to configure. Alternatively, one can use as many (possibly redundant) attributes as possible,
and employ machine learning (ML) techniques to induce a ranking model. This approach
alleviates the human effort needed to design the ranking function and also provides a natural
way to directly optimize the retrieval performance for any particular application and evalu-
ation metric. As a result, learning to rank has gained considerable academic interest in the
past decade.

ML-based ranking systems are traditionally classified into three categories. In the sim-
plest pointwise approach, the instances are first assigned a relevance score using classical
regression or classification techniques and then ranked by posterior scores obtained using
the trained model (Li et al. 2007). In the pairwise approach, the order of pairs of instances is
treated as a binary label and learned by a classification method (Freund et al. 2003). Finally,
in the most complex listwise approach, the fully ranked lists are learned by a tailor-made
learning method which seeks to optimize a ranking-specific evaluation metric during the
learning process (Valizadegan et al. 2009).

In web page ranking or subset ranking (Cossock and Zhang 2008) the training data is
given in the form of (query, document, relevance label) triplets. The relevance label of a
training instance indicates the usefulness of the document to its corresponding query, and
the ranking for a particular query is usually evaluated via the (normalized) Discounted Cu-
mulative Gain ((N)DCG) or the Expected Reciprocal Rank (ERR) (Chapelle et al. 2009)
measure. It is rather difficult to extend classical learning methods to directly optimize these
evaluation metrics. Nevertheless, since the DCG can be bounded by the zero-one-loss (Li
et al. 2007), traditional classification error can be regarded as a surrogate function for DCG.

Calibrating the output of a classifier is crucial in applications with quality measures
different from the zero-one-error (Niculescu-Mizil and Caruana 2005). Our approach is
based on the calibration of a multi-class classifier learned by ADABOOST.MH (Freund
and Schapire 1997) or a multi-class Support Vector Machine (Crammer and Singer 2001)
(SVM). The class labels are assumed to be random variables and the goal is to estimate
the probability distribution of the class labels given a feature vector representing the (query,
document) pair. A key novelty in our approach is that, instead of using a single calibration
technique, we apply several methods to estimate the same probability distribution and we
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Fig. 1 The schematic overview of our approach. On the first level, a multi-class method (ADABOOST.MH)
is trained using different hyperparameter settings. Then we calibrate the multi-class models in several ways
to obtain diverse scoring functions. In the last step, we aggregate the scoring functions using an exponential
weighting

combine these estimates in a final step. Our approach is motivated by the Bayesian paradigm
and the Minimum Description Length principle (Rissanen 1983), both of which suggest that
it is usually more efficient to mix different conditional distributions according to a prior than
to select one “optimal” distribution.

We use both regression-based calibration (RBC) and class-probability-based calibration
(CPC) to transform the output scores of multi-class classifiers into relevance label estimates.
In RBC the real-valued scores are obtained by regressing the relevance grades against the
output score vector, whereas in CPC the posterior probability distribution is used to approx-
imate the so-called Bayes-scoring function (Cossock and Zhang 2008), which is shown to
optimize the expected DCG in a probabilistic setup.

The proper choice of the weighting of the set of conditional distributions obtained by
the calibrated classifiers is an important decision in practice. In this paper, we use an expo-
nential scheme based on the quality of the rankings implied by the conditional distributions
(via their corresponding conditional ranking functions) which is theoretically better-founded
than the uniformly weighted aggregation used by MCRANK (Li et al. 2007).

Figure 1 offers a structural overview of our system. It is based on a set of standard tech-
niques of (i) multiclass classification, (ii) output score calibration, and (iii) an exponentially
weighted forecaster that is used to combine the various hypotheses. The computationally ex-
pensive first two steps belong to the simplest, pointwise category of learning-to-rank models,
whereas the final mixing step optimizes a listwise objective function.

Most of the learning-to-rank methods had been tested on (and tuned to) the relatively
small LETOR data sets, published by Microsoft. Recently, two larger benchmark data sets
have been published by Yahoo and Microsoft. In addition to the mandatory comparison
of our approach with the state of the art of learning to rank, we carried out rigorous and
exhaustive experiments to compare the methods with each other on these new sets. To our
knowledge, this is the first large-scale study of this kind. Reproducibility was an important
goal, so we give all the algorithmic details necessary to repeat the experiments. For the
same reason, we only tested methods that can be implemented easily (without ambiguity)
or for which an open source implementation is available. Our most important finding is that
pointwise methods are more competitive on large data sets than had been previously thought,
and that they scale better as the data sets grow.
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The paper is organized as follows. In Sect. 2, we review some approaches that are the
most similar to ours. In Sect. 3, we define the ranking problem formally and introduce our
notation. Section 4 contains theoretical results that motivated the calibration techniques de-
scribed in Sect. 5. We explain the final ensemble step in Sect. 6. Section 7 then contains
our experimental results. In Sect. 8 we draw some pertinent conclusions and briefly suggest
some ideas for future study.

2 Related work

Among the plethora of ranking algorithms, our approach is probably the closest to the
MCRANK algorithm (Li et al. 2007). We both use a multi-class classification algorithm at the
core (they use gradient boosting, whereas we apply ADABOOST.MH and multi-class SVM).
The chief novelties of our approach are that we use decision product base classifiers besides
the popular decision trees and that we apply several different calibration approaches. Both
elements add more diversity to our models that we exploit by using a final meta-ensemble
technique. In addition, MCRANK’s implementation is inefficient in the sense that the num-
ber of decision trees trained in each boosting iteration is as large as the number of different
classes in the data set.

Even though MCRANK is not regarded as a state-of-the-art method itself, its impor-
tance is unquestionable. It can be viewed as a milestone that proved the raison d’etre of
classification-based learning-to-rank methods. It attracted the attention of researchers work-
ing on learning-to-rank to classification-based ranking algorithms. The most remarkable
method motivated by MCRANK is LAMBDAMART (Wu et al. 2010), which adapts the
MART algorithm to the subset ranking problem. The winning entry of Track 1 in the Ya-
hoo! Learning-to-rank Challenge (Chapelle et al. 2011) was largely based on this method.

In the Yahoo! challenge (Chapelle et al. 2011), the general conclusion was that listwise
and pairwise methods achieved the best scores in general, but tailor-made pointwise ap-
proaches also achieved very competitive results. In particular, the approach presented here
is based on the system we devised when we participated in Yahoo! Learning-To-Rank Chal-
lenge (Busa-Fekete et al. 2011a). A preliminary version of this study appeared in a con-
ference paper (Busa-Fekete et al. 2011b), but the results we present here are more general.
The main contributions of this paper compared to Busa-Fekete et al. (2011a, 2011b) are
that (1) we evaluate our approach on all publicly available benchmark data sets and investi-
gate several issues experimentally; (2) we present a novel calibration approach, namely the
sigmoid-based class probability calibration (CPC), which is theoretically better grounded
than regression-based calibration; (3) we rigorously and exhaustively compare state-of-the-
art open source rankers with a special emphasis on reproducibility; and (4) we test multi-
class SVM as an alternative to ADABOOST.MH. As a theoretical motivation, we also pro-
vide an upper bound on the difference between the DCG value of the Bayes optimal scoring
function and the DCG value achieved by its estimate using CPC in terms of the Kullback-
Leibler divergence.

In a recent article (Kotlowski et al. 2011), it was shown that the bipartite ranking prob-
lem can be cast as a binary classification problem and that the rank regret of a classifier
can be upper bounded by its regret for exponential loss and logistic loss. This result ex-
plains why many classifiers optimizing the exponential or logistic losses also perform well
as rankers. For example, in Cortes and Mohri (2005) the authors showed experimentally that
ADABOOST works well in the bipartite ranking problem.
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3 Definition of the ranking problem

In this section we formally define the learning-to-rank problem and introduce the notation
that will be used in the rest of this paper. First, let us assume that we are given a set of query
objects D = {D(1), . . . , D(M)}. Each query object D(k) consists of a set of n(k) pairs

D(k) = {(
x(k)

1 , �
(k)

1

)
, . . . ,

(
x(k)

n(k) , �
(k)

n(k)

)}
.

The real-valued feature vectors x(k)
i represent the kth query and the ith document received

as a potential hit for the query.1 The label index �
(k)
i of the query-document pair x(k)

i is an
integer between 1 and K . We assume that we are given a set of numerical relevance grades

Z = {z1, . . . , zK}.
The relevance grade z

(k)
i = z

�
(k)
i

expresses the relevance of the ith document to the kth query

on a numerical scale. A popular choice for the numerical relevance grades is

z� = 2�−1 − 1 (1)

for all � = 1, . . . ,K .
The goal of the ranker is to output a permutation j(k) = (j1, . . . , jn(k) ) over the integers

(1, . . . , n(k)) for each query object D(k). A widely used empirical measure of the quality of
the permutation j(k) is the Discounted Cumulative Gain (DCG)

DCG
(
j(k), D(k)

) =
n(k)∑

i=1

ciz
(k)
ji

, (2)

where ci is the discount factor of the ith document in the permutation. The most common
discount factor applied is

ci = 1

log(1 + i)
. (3)

The rationale behind this formula is that a user will be increasingly happy when he/she finds
relevant documents early in the permutation. To normalize the DCG between 0 and 1, (2)
is usually divided by the DCG score of the best permutation (NDCG). It is also a common
practice to truncate the sum (2) at nmax, defining the DCGnmax and NDCGnmax scores. The
reason for this is that a user should rarely browse beyond the first page of search results
containing the first nmax hits.

We will treat the label index �
(k)
i as a random variable with a conditional discrete proba-

bility distribution

p∗(�|x(k)
i

) = P
(
�

(k)
i = �|x(k)

i

)

over the label indices � for document i of query k. The Bayes-scoring function

v∗(x(k)
i

) = E
{
z|x(k)

i

} =
K∑

�=1

z�p
∗(�|x(k)

i

)

1When there is no possible confusion, we will omit the query index and simply write xi for the ith document
of a given query.
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is the conditional expectation of the relevance grade given the (query, document) pair x(k)
i .

Then the expected DCG for any permutation j(k) is

EDCG
(
j(k), D(k)

) =
n(k)∑

i=1

ciE
{
z|x(k)

ji

} =
n(k)∑

i=1

civ
∗(x(k)

ji

)
.

Let the Bayes optimal permutation j(k)∗ = (j
(k)

1

∗
, . . . , j

(k)

n(k)

∗
) over D(k) be the one which

maximizes the expected DCG; that is,

j(k)∗ = arg max
j(k)

EDCG
(
j(k), D(k)

)
.

According to Theorem 1 stated in Cossock and Zhang (2008), j(k)∗ has the property that
if ci > ci′ , then for the Bayes-scoring function we have v∗(x

j
(k)
i

∗) > v∗(x
j
(k)

i′
∗). This means

that the optimal j(k)∗ can be easily obtained from the Bayes-optimal scoring function v∗
by ordering the query-document pairs x(k)

i according to v∗(x(k)
i ). This result justifies the

pointwise approach that estimates v∗ in a regression setup, since having a regressor function
that approximates v∗ well, one can readily obtain the Bayes optimal permutation. In this
paper, we will also use the pointwise approach in a discrete density estimation setup: our
goal is to estimate p∗(�|x(k)

j ) by pA(�|x(k)
j ), where the label A will refer to the method that

generates the probability estimates. For the scoring function generated by pA , we will use
the notation

vA(
x(k)

i

) =
K∑

�=1

z�p
A(

�|x(k)
i

)
. (4)

In the pointwise approach, the scoring function v induces the permutation jv for which

v
(
x(k)

jv
1

) ≥ · · · ≥ v
(
x(k)

jv

n(k)

)
. (5)

In Sect. 4 we will show that the excess EDCG with respect to the optimal EDCG can be up-
per bounded by the Lq distance between pA(�|x(k)

j ) and p∗(�|x(k)
j ), motivating the density-

estimation-based calibration.

4 Bounds for the excess of EDCG

The main goal of calibrating a multi-class classifier is to get more accurate class conditional
probability estimates. Even if a classifier has a good classification performance, its prob-
ability estimates can be very poor, as pointed out in Mease et al. (2007). To motivate our
approach whose backbone is calibrated multi-class classification, we will show that if the
class conditional probability distribution is estimated well in the sense that the Kullback-
Leibler divergence between the original and the estimated distribution is small, then we can
obtain a close-to-optimal expected DCG in our probabilistic setup.

The results are similar in spirit to the bounds derived in Cossock and Zhang (2008),
where the excess of the DCG is bounded in terms of the Lp error of a regressor. Our bounds
motivate the multi-class classification setup and the class-probability-based calibration tech-
niques (Sect. 5.2), whereas the results of Cossock and Zhang (2008) motivate the regression
setup and the regression-based pointwise calibration approach (Sect. 5.4).
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4.1 Excess of EDCG in terms of Lq

In (4), we described a way to obtain a scoring function v based on the estimate of the prob-
ability distribution of relevance grades. Based on the estimated scoring function v, ranking
the set of query-document pairs2 D is straightforward by using (5).

The following proposition gives an upper bound for the difference between the expected
DCG values of the Bayes optimal scoring function and its estimate in terms of the quality
of the relevance probability estimate.

Proposition 1 Let p,q ∈ [1,∞] and 1/p + 1/q = 1. Then

EDCG
(
j∗, D

) − EDCG
(
jv, D

)

≤
(

n∑

i=1

K∑

�=1

∣∣(cj̃v
i

− cj̃∗
i
)z�

∣∣p
) 1

p
(

n∑

i=1

K∑

�=1

∣∣p(�|xi ) − p∗(�|xi )
∣∣q

) 1
q

, (6)

where j̃ v
i and j̃ ∗

i are the inverse permutations of jv
i and j ∗

i . The relation between p(�|x) and
v(x) is defined in (4).

Proof Following the lines of Theorem 2 stated in Cossock and Zhang (2008),

EDCG
(
jv, D

) =
n∑

i=1

civ
∗(xjv

i
)

=
n∑

i=1

civ(xjv
i
) +

n∑

i=1

ci

(
v∗(xjv

i
) − v(xjv

i
)
)

≥
n∑

i=1

civ(xj∗
i
) +

n∑

i=1

ci

(
v∗(xjv

i
) − v(xjv

i
)
)

=
n∑

i=1

civ
∗(xj∗

i
) +

n∑

i=1

ci

(
v∗(xjv

i
) − v(xjv

i
)
) +

n∑

i=1

ci

(
v(xj∗

i
) − v∗(xj∗

i
)
)

= EDCG
(
j∗, D

) +
n∑

i=1

ci

(
v∗(xjv

i
) − v(xjv

i
)
) +

n∑

i=1

ci

(
v(xj∗

i
) − v∗(xj∗

i
)
)
.

(7)

In (7),
∑n

i=1 civ(xjv
i
) ≥ ∑n

i=1 civ(xj∗
i
), because jv is an optimal permutation for the scoring

function v, and so reordering the indices decreases the DCG value. Then, for the permuta-
tions jv

i and j ∗
i and for their respective inverse permutations j̃ v

i and j̃ ∗
i , we have

EDCG
(
j∗, D

) − EDCG
(
jv, D

)

≤
n∑

i=1

(cj̃v
i

− cj̃∗
i
)
(
v(xi ) − v∗(xi )

)

2In this section we will omit the indexing over the queries.
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=
n∑

i=1

K∑

�=1

(cj̃v
i

− cj̃∗
i
)z�

(
p(�|xi ) − p∗(�|xi )

)

≤
n∑

i=1

K∑

l=1

∣
∣((cj̃v

i
− cj̃∗

i
)zl

)(
p(�|xi ) − p∗(�|xi )

)∣∣

≤
(

n∑

i=1

K∑

l=1

∣∣(cj̃v
i

− cj̃∗
i
)zl

∣∣p
) 1

p
(

n∑

i=1

K∑

l=1

∣∣p(�|xi ) − p∗(�|xi )
∣∣q

) 1
q

, (8)

where (8) follows from Hölder’s inequality. �

Corollary 2

EDCG
(
j∗, D

) − EDCG
(
jv, D

) ≤ C1 ·
(

n∑

i=1

K∑

�=1

∣∣p(�i |xi ) − p∗(�i |xi )
∣∣q

) 1
q

,

where

C1 = max
j,j′

(
n∑

i=1

K∑

�=1

∣∣(cji − cj ′
i
)z�

∣∣p
) 1

p

, (9)

and the maximum is taken over arbitrary permutations j and j′ over 1, . . . , n.

Corollary 2 shows that as the distance between the “exact” and the estimated conditional
distributions over the relevance labels tends to 0, the difference in the expected DCG values
also tends to 0.

4.2 Bounds for excess of the expected DCG in terms of relative entropy

So far, we have shown that if the estimated class probabilities are close to the conditional
discrete probability distribution over the label indices in terms of an Lq -norm, then the
Bayes-scoring function will be estimated well. In particular, we have shown that the Lq -
norm gives an upper bound on the difference of the EDCG values of the best ranking and
the predicted ranking. We will now show that the relative entropy also gives an upper bound
on the loss of the EDCG value for predicted rankings. That is, if the entropy of the estimated
conditional distribution function is small relative to the class conditional probabilities, then
a close-to-optimal ranking is obtained. This finding motivates some of our particular cali-
bration techniques that are related to entropy minimization (Sect. 5).

To simplify the notation, in this section we will denote the class probability vectors by
pi = (pi,1, . . . , pi,K) and p∗

i = (p∗
i,1, . . . , p

∗
i,K), where pi,� = p(�|xi ) and p∗

i,� = p∗(�|xi ).

Proposition 3 Assume that all elements of p∗ and pi are positive. For all 0 < ε ≤ 1
2 there

exists a δ > 0 such that if ‖pi − p∗
i ‖2

2 < δ then

EDCG
(
j∗, D

) − EDCG
(
jv, D

) ≤ C2

n∑

i=1

DKL

(
p∗

i ‖pi

)
, (10)
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where DKL(·‖·) is the Kullback-Leibler divergence between multinomial distributions of one
trial with parameters pi = (p(1|xi ), . . . , p(K|xi )) and p∗

i = (p∗(1|xi ), . . . , p
∗(K|xi )) and

the constant C2 is

C2 = C1 max
1≤i≤n

1 + 2ε
1
2 min1≤�≤K{1/pi,�}

,

where C1 is defined in (9).

Proof First note that the relevance labels come from a multinomial distribution with param-
eter p∗

i in our setup. We know (e.g., Gruenwald 2007, pp. 120) that

DKL
(
p∗

i ‖pi

)

= 1

2

(
pi − p∗

i

)
I
(
f (ζ1, . . . , ζK ;1,pi )

)(
pi − p∗

i

)ᵀ + o
(∥∥pi − p∗

i

∥∥2

2

)
, (11)

where I(f (ζ1, . . . , ζK ;1,pi )) is the Fisher Information Matrix (FIM) of the multinomial
probability distribution f (ζ1, . . . , ζK ;1,pi ) assuming one trial. In our special case, the FIM
is diagonal with elements 1/pi,� in the diagonal, thus we have

1

2

(
pi − p∗

i

)
I
(
f (ζ1, . . . , ζK ;1,pi )

)(
pi − p∗

i

)ᵀ ≤ 1

2
max

�
{1/pi,�}

∥∥pi − p∗
i

∥∥2

2

and

1

2

(
pi − p∗

i

)
I
(
f (ζ1, . . . , ζK ;1,pi )

)(
pi − p∗

i

)ᵀ ≥ 1

2
min

�
{1/pi,�}

∥∥pi − p∗
i

∥∥2

2
.

For all ε > 0 there exists a δ > 0, such that if ‖pi − p∗
i ‖2

2 < δ, then
∣∣ o(‖pi−p∗

i
‖2

2)

‖pi−p∗
i
‖2

2

∣∣ <

ε · 1
2 min�{1/pi,�}. Now, using this constant and the lower bound of the FIM matrix, we

can rewrite (11) as

(1 − ε)
1

2
min

�
{1/pi,�}

∥∥pi − p∗
i

∥∥2

2
≤ DKL

(
p∗

i ‖pi

)
.

Using the fact that 1/(1 − ε) ≤ 1 + 2ε for 0 < ε ≤ 1
2 , we have

1

2
min

�
{1/pi,�}

∥∥pi − p∗
i

∥∥2

2
≤ (1 + 2ε)DKL

(
p∗

i ‖pi

)
.

It then follows that
∥∥pi − p∗

i

∥∥2

2
≤ 1 + 2ε

1
2 min�{1/pi,�}

DKL

(
p∗

i ‖pi

)
.

We obtain the inequality of the proposition using Corollary 2 with q = 2. �

The relevance labels are typically represented as integers and so they constitute an
ordered set. It is arguably a promising approach to exploit this ordering when learn-
ing a ranking function. This is possible both in a classification setup (via the optimiza-
tion of a customized loss that differentiates errors proportionally to the severity of the
misclassification) and naturally in an ordinal regression setting (Chu and Keerthi 2005;
Aiolli and Sperduti 2010).



Mach Learn

Our theoretical results justify using a classification based method which produces good
posterior probability estimates in terms of the KL divergence or Lp norm. At the same
time, a similar result also exists for the regression based setup where the excess of DCG is
bounded in terms of the Lp error of the regressor (Cossock and Zhang 2008), and efficient
regression-based ranking algorithms (Wu et al. 2010) also exist.

Intuitively, the main difference between the methods based on classification and regres-
sion is that in the latter case, the loss function is strictly monotonic.3 ADABOOST.MH pro-
vides a convenient way to use a strictly monotone loss function by applying an appropriate
initial weighting that encodes the loss function itself. We do not explore this promising re-
search direction in this paper, however, the instance weighting used here Appendix A also
emphasizes accuracy on highly relevant classes and therefore has a somewhat similar effect.
Another possibility, originally used in the MCRANK algorithm, is to convert the K-class
ordinal regression problem into K − 1 binary classification problem with the goal of obtain-
ing posterior probabilities for p(�i > �) for � = 1, . . . ,K − 1. We found that our multi-class
setup worked sufficiently well for obtaining state-of-the-art experimental results, neverthe-
less, trying the approach and working out the corresponding calibration methodology is
definitely an interesting avenue to explore, especially if the goal is to further diversify the
final ranking ensemble.

5 Calibration

We shall assume throughout the paper that a multi-class classification algorithm provides
vector-valued multi-class discriminant functions of the form f : X → R

K , where X is the
input space (in our case the space of query-document pairs represented by a real-valued
vector) and K is the number of classes (relevance levels). Elements of these vector-valued
discriminant functions will be denoted by f(x) = (

f1(x), . . . , fK(x)
)
. The goal of multi-class

classification is to identify the correct class (or classes in the case of multi-label classifica-
tion). For completeness, we will provide details on training multi-class ADABOOST.MH
and multi-class SVM (see Appendix A and Appendix B, respectively).

In general, multi-class large-margin classification algorithms force discrimination by
pulling the scores f�(x) away from zero. This means that direct (linear) conversion into class
probabilities usually does not produce good estimates (Mease et al. 2007). This phenomenon
is particularly pronounced in the case of ADABOOST due to the exponential loss which in-
creases sharply with negative margins (Niculescu-Mizil and Caruana 2005). At the same
time, the score vector usually represents the order of the probabilities rather well, so a simple
nonlinear function can transform the scores into good probability estimates. The process of
learning this nonlinear function from held-out data is called calibration (Platt 2000). In this
section, we will describe several calibration techniques, some of them inspired by classical
techniques tuned for squared error and cross-entropy (Niculescu-Mizil and Caruana 2005;
Wu et al. 2004), and some of them motivated directly by the NDCG measure.

3Ordinal regression postulates monotonicity of the loss L, that is, �1 � �2 � �(x) implies L(�(x), �1) ≥
L(�(x), �2), without committing itself to any numerical assumption (such as the quadratic loss) on L.
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5.1 Obtaining posterior probabilities: the naive estimator

In classical multi-class classification the elements of f(x) are treated as posterior scores
corresponding to the labels, and the predicted label is

�̂(x) = arg max
�=1,...,K

f�(x),

where f�(x) is the �th element of f(x). The scores f�(x) are usually not all positive and they
do not sum to 1. Hence, if we need to estimate the posterior class probabilities p(�|x), we
have to transform and normalize the scores. The naive calibration of a classifier f consists
of a linear rescaling followed by a normalization. First, we make the scores positive by
applying the transformation

f′(x) = 1 + f(x)

R
,

where

R = max
x∈X ,1≤�≤K

∣∣f�(x)
∣∣. (12)

Then we normalize the shifted score to obtain

pSHIFT(�|xi ) = f ′
�(xi )

∑K

�′=1 f ′
�′(xi )

.

In the case of ADABOOST.MH, the classifier has the form

f(x) =
T∑

t=1

α(t)v(t)ϕ(t)(x),

where both the elements of the vote vector v(t) and the scalar classifier ϕ(t)(x) are ±1-
valued, so R can be replaced by

∑T

t=1 α(t). In the case of multi-class SVMs there is no such
“natural” upper bound, so we fall back on the explicit maximization (12).

5.2 Class-probability-based calibration (CPC) using a sigmoidal function

The common solution (Platt 2000) to transform the scores to probability estimates is to apply
a sigmoidal function

sθ (f ) = 1

1 + exp(−a(f − b))
,

where the parameters θ = (a, b) are to be tuned. The probability estimates are then of the
form

psθ (�|x) = sθ (f�(x))
∑K

�′=1 sθ (f�′(x))
. (13)

The parameters of the sigmoid function can be tuned by minimizing a so-called target cali-
bration function (TCP) LA(θ, f), where θ is the set of parameters to be tuned, f is the score
vector, and the upper index A refers to the type of the particular TCF. LA(θ, f) is naturally
a function of the validation data set, too, (which is not necessarily the same as the training
set), but here we will omit this dependence to simplify the notation.
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Given a TCF LA and a multi-class classifier f, our goal is to find the optimal calibration
parameters

θ A,f = arg min
θ

LA(θ, f).

The output of this calibration step is a probability distribution pA,f(�|x) and a corresponding
Bayes-scoring function vA,f(x) defined in (4). From now on, we will refer to this scheme as
a class-probability-based calibration (CPC).

When several calibration functions A are used on several scores f (generated by, for
example, multi-class classifiers with different hyperparameters), the result is an ensemble of
probability distributions pA,f(�|x) indexed by A and f. To obtain a single combined score,
we mix the ensemble using a linear combination

pCPC(�|x) =
∑

A,f

π(A, f)pA,f(�|x),

where π(A, f) is an appropriately chosen weight. Then we obtain a combined Bayes-scoring
function by noticing that

vCPC(x) =
K∑

�=1

z�p
CPC(�|x)

=
K∑

�=1

z�

∑

A,f

π(A, f)pA,f(�|x)

=
∑

A,f

π(A, f)
K∑

�=1

z�p
A,f(�|x)

=
∑

A,f

π(A, f)vA,f(x). (14)

The proper selection of π(·, ·) can further increase the quality of the estimation. In Sect. 6,
we will describe a simple setup borrowed from the theory of experts.

5.3 Target calibration functions

In the simplest case, the TCF can be

LLS(θ, f) =
M∑

k=1

n(k)∑

i=1

− logpsθ
(
�

(k)
i |x(k)

i

)
. (15)

We refer to this function as the log-sigmoid TCF. The motivation for using the log-sigmoid
TCF is that the resulting probability distribution minimizes the relative entropy between the
Bayes optimal probability distribution p∗ and pLS,f. According to Proposition 3, a small
relative entropy implies that the expected DCG score of the resulting ranking is close to the
minimum expected DCG score.

In practice, distributions being less (or more) uniform over the labels might work better.
This degree of freedom can be expressed by introducing the entropy weighted version of the
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log-sigmoid TCF

LEWLS
C (θ) =

M∑

k=1

n(k)∑

i=1

− logpsθ
(
�

(k)
i |x(k)

i

) × HM

(
psθ

(
�1|x(k)

i

)
, . . . , psθ

(
�K |x(k)

i

))C
, (16)

where

HM(p1, . . . , pK) = −
K∑

�=1

p� logp�,

and C is a hyperparameter.
We also use TCFs based on the expected loss

LEL(θ) =
M∑

k=1

n(k)∑

i=1

K∑

�=1

L
(
�, �

(k)
i

)
psθ

(
�|x(k)

i

)
, (17)

where L(�, �
(k)
i ) represents the loss if � is predicted instead of the correct label �

(k)
i . We use

the standard squared loss L(�, �′) = (� − �′)2.
If the label indices have some structure (that is, they are ordinal as in our case), it is also

possible to first compute the expected label

�
(k)

i =
K∑

�=1

�psθ
(
�|x(k)

i

)

and then compute the expected label loss TCF

LELL(θ) =
M∑

k=1

n(k)∑

i=1

L
(
�

(k)

i , �
(k)
i

)
. (18)

Note that the definition of L(·, ·) might need to be redefined for LELL since the weighted
average of the label indices might not be a label index at all.

Finally, we can apply the idea of SMOOTHGRAD (Chapelle and Wu 2010) to obtain a
TCF. In SMOOTHGRAD a smooth surrogate function is used to optimize the NDCG metric.
In particular, using the normalized soft indicator (or similarity function)

hθ,σ

(
x(k)

i ,x(k)

i′
) = exp(− 1

σ
(vsθ (x(k)

i ) − vsθ (x(k)

i′ ))2)
∑n(k)

i′′=1 exp(− 1
σ
(vsθ (x(k)

i ) − vsθ (x(k)

i′′ ))2)
,

the soft NDCG TCF can be written as

LSNDCG
σ (θ) = −

M∑

k=1

n(k)∑

i=1

n(k)∑

i′=1

z
(k)
i ci′hθ,σ

(
x(k)

i ,x(k)
ji′

)
, (19)

where j = (j1, . . . , jn(k) ) is the permutation defined by the scoring function vsθ (·) (5). The pa-
rameter σ controls the smoothness of LSNDCG

σ ; that is, the higher the value of σ , the smoother
the function will be, but also the bigger the difference will be between the NDCG value and
the value of the surrogate function. If σ → 0 then LSNDCG

σ tends to the NDCG value; but, at
the same time, optimizing the surrogate function becomes harder.
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5.4 Regression-based pointwise calibration (RBC)

The CPC calibration can be naturally replaced by a regression technique in which the rel-
evance grades are predicted explicitly instead of estimating the discrete conditional prob-
ability distribution p∗(�|x). We will denote a regression function by gθ : R

K → R, where
θ ∈ R

p is the vector that parametrizes the regression function. A pointwise estimate of the
relevance grade can be obtained using

ẑ(x) = gθ

(
f(x)

)
, (20)

where f(x) ∈ R
K is the score vector output by the multi-class classifier. Optimizing the

NDCG score with respect to the regression parameters θ is computationally difficult. The
common solution to this problem is to use a surrogate function. Finding good surrogate func-
tions for hard-to-optimize IR metrics is an open research problem (Ravikumar et al. 2011;
Chapelle and Wu 2010; Cossock and Zhang 2008). The simplest choice for the surrogate
function is the square loss for which the regression model can be fitted in a standard L2

setup by minimizing

L2(θ, f) =
M∑

k=1

n(k)∑

i=1

(
z
(k)
i − gθ

(
f
(
x(k)

i

)))2
.

The problem with this choice is that the square loss is not NDCG consistent (Ravikumar
et al. 2011). In spite of this, it turns out that if the relevance grades are rescaled querywise
by the DCG scores, that is,

L′
2(θ, f) =

M∑

k=1

n(k)∑

i=1

(
z
(k)
i

DCG(j(k)∗, D(k))
− gθ

(
f
(
x(k)

i

)))2

, (21)

then the objective function becomes NDCG-consistent. Since DCG
(
j(k)∗, D(k)

)
is unknown

for a new query, it is impossible to predict the relevance grades z
(k)
i on an absolute scale.

Nevertheless, the ordering of the documents within a query is not changed by this con-
stant scaling, so the predictions gθ (f(x

(k)
i )) can be used for ranking scores without knowing

DCG(j(k)∗, D(k)).
In our experiments we applied four different regression methods; namely, logistic re-

gression, linear regression, neural network regression, and polynomial regression of degree
between 2 and 4, inclusive.

6 Ensemble of the calibrated models

Selecting the best hyperparameters for a multi-class learning algorithm and the best cali-
bration function is normally done in a validation step. This procedure would “throw away”
most of the diverse information represented by the different predictors. Instead of selecting
the best, we use all the relevance predictions vA,f(x, S) obtained by different multi-class
classifiers f using different TCFs A. Each relevance prediction can be used as a scoring
function to rank the set of documents x(k)

i according to (5). Up until now, our method is
an almost4 purely pointwise approach. To fine-tune the algorithm and to make use of the

4The SNDCG calibration (19) is listwise.
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diversity of our models, we combine the scoring functions vA,f(x, S) using an exponentially
weighted forecaster (Cesa-Bianchi and Lugosi 2006).

The weights of the models are tuned on the NDCG score, giving a slight listwise touch
to the final step of our approach. Formally, the final scoring function is obtained by using
the weights

π(A, f) = exp
(
cωA,f),

where ωA,f is the NDCG10 score of the ranking obtained by using vA,f(x). Plugging it
into (14), the combined scoring function is

vENSEMBLE(x) =
∑

A,f

exp
(
cωA,f)vA,f(x). (22)

The parameter c is also tuned on the held-out validation set. It controls the dependence of
the weights on the NDCG10 values. A large c means that we focus only on the good models,
whereas a c close to zero represents a near-uniform weighting.

Our rationale for using this particular mixing scheme is as follows. First, it is simple and
computationally efficient to tune, which is important when we have a large number of mod-
els. Our basic setup is to train the models in parallel using computationally cheap pointwise
objectives, and combine these fixed models linearly to improve a computationally expen-
sive listwise objective. Complex dynamic weighting schemes where model combination
and model training are intertwined (such as boosting) are not suitable in this setup. Among
linear schemes, we were looking for a technique that subsumes classical winner-takes-all
validation (choosing the best model) and simple equal-weight voting, and which could be
tuned with a single hyperparameter between these two extremes. Exponential weighting is
arguably the simplest of such schemes. Simplicity is also crucial to prevent model-mixing
from overfitting.

Our choice was also inspired by theoretical guarantees over the cumulative regret of a
mixture of experts on individual (model-less) sequences (Cesa-Bianchi and Lugosi 2006),
without, of course, claiming that these theoretical results apply directly to our setup. That
said, we do not assert that it is the best possible model-mixing scheme. It may be that more
sophisticated techniques would allow us to further improve the results. Our point is that
model-mixing is important, and even a simple method can be significantly better than the
classical winner-takes-all validation. This result seems to agree with the general consensus
drawn from the experiences on recent large-scale learning challenges (Bennett and Lanning
2007; Dror et al. 2009; Chapelle et al. 2011).

6.1 Guidelines for building the models

According to the results of our experiments, there does not seem to be any statistical cost of
including as many models as possible; that is, we know no instance when deleting models
before mixing improved the results, mainly since bad models were discarded anyway by the
weighting scheme. At the same time, increasing the number of models without limit does
not make much sense, but the problem is computational rather than statistical.

Within our computational limits, our objective was to have the largest number of diverse
models possible. Most of the computational time was spent on training the boosting models,
so the first step was to “cover” the hyperparameter space (number of tree leaves, number of
product terms, number of iterations, the regularization coefficient in SVM) quasi-uniformly
in a region derived from our previous experiences and from some preliminary experiments.
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Compared to training the models, calibration took almost no time, which explains why
we added as many and as diverse calibration techniques as possible. In Busa-Fekete et al.
(2011a) we conducted an empirical analysis to discover what the main source of diversity
was and we tried some other techniques to increase diversity that we did not apply in this
paper for simplifying the method. All we could conclude was that any reasonable “pertur-
bation” of the problem or of the models helps to improve the overall result.

7 Experiments

In this section, we will present our experimental results. In Sect. 7.1, we will briefly dis-
cuss some of the issues related to the available evaluation tools. Section 7.2 describes the
benchmark data sets used in the experiments. In Sect. 7.3, we summarize the state-of-the-art
techniques we compare with our approach and with each other. To assure full reproducibil-
ity of our experiments, we also provide details of the experimental setup here. Section 7.4
contains the results of the comparative experiments. We also discuss the general conclu-
sions that can be drawn from the results of our experiments. In Sect. 7.5, we investigate how
the performance of the algorithm depends on the size of the data and on the quality of the
training relevance grades. In Sect. 7.6, we assess the effect of query-wise normalization of
relevance grades proposed by Ravikumar et al. (2011). In Sect. 7.7, we examine the diversity
of the models that we mix in the ensemble step in a qualitative manner. Lastly, we will sum-
marize and discuss the official results in the Yahoo! Learning-to-Rank Challenge (Chapelle
et al. 2011) in Sect. 7.8.

7.1 Evaluation tools

Here, we will briefly describe and compare the various tools available for computing NDCG
scores. The definition (2) is unambiguous; nevertheless, the tools can differ in the definition
of the discount factor ci (3). More importantly, there may be important differences in the
way the DCG score is normalized either when there exist no relevant documents for a query
(zi = 0 for all i), or when the number of documents is less than the truncation level nmax.
Even though this seems to be a technical subtlety, it turns out that the confusion arising from
using the different tools can significantly alter the numerical scores and in some case may
even change the relative ordering of the algorithms on the data sets.

We compared six evaluation tools to compute the NDCG scores:

1. The LETOR 3.0 script implemented in Perl5

2. The LETOR 4.0 script implemented in Perl6

3. The MS script implemented in Perl7

4. The YAHOO script implemented in Python8

5. The RANKLIB package implemented in Java9

6. The TREC evaluation tool v8.1 implemented in C10

5http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR3.0/EvaluationTool.zip.
6http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Evaluation/Eval-Score-4.0.pl.txt.
7http://research.microsoft.com/en-us/projects/mslr/eval-score-mslr.pl.txt.
8https://github.com/busarobi/YAHOO_EVALTOOL/blob/master/evaluate.py.txt.
9http://www.cs.umass.edu/~vdang/ranklib.html.
10http://trec.nist.gov/trec_eval/.

http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR3.0/EvaluationTool.zip
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Evaluation/Eval-Score-4.0.pl.txt
http://research.microsoft.com/en-us/projects/mslr/eval-score-mslr.pl.txt
https://github.com/busarobi/YAHOO_EVALTOOL/blob/master/evaluate.py.txt
http://www.cs.umass.edu/~vdang/ranklib.html
http://trec.nist.gov/trec_eval/


Mach Learn

The evaluation tools can be divided into three groups. The tools of the first group compute
DCGnmax according to the definition (2) described in Sect. 3. The LETOR 3.0, RANKLIB,
and TREC tools belong to this group. All of these tools assign a zero score to a query if
it is empty; that is, zi = 0 for all i, which means that there are no relevant documents. The
TREC tool makes use of the labels of documents given in the input file as relevance grades
by default. From this point of view, this is the most flexible implementation, since arbitrary
relevance grades can be defined. For example, in the case of the MQ2008 dataset, the labels
0, 1, and 2 should be simply replaced by 0, 1, and 3, respectively, to have the commonly
used exponential grades as given in (1).

The second group is comprised of the YAHOO tool alone. It also computes the DCGnmax

according to the definition (2), but it assigns 1.0 to the empty queries. This is a minor differ-
ence that generates an additive bias between the NDCGnmax computed by YAHOO tool and
the three tools of the first group.

The third group consists of the LETOR 4.0 and MS tools. Except for a small technical
difference (the LETOR 4.0 tool can be applied for up to three relevance labels, whereas
the MS tool can handle up to five relevance labels), they compute the same score. Like the
RANKLIB and LETOR 3.0 tools, they assign a zero to a query where the ideal DCGnmax is
zero. Their rather strange feature is that they also assign a zero DCGnmax score to a query
with less than nmax documents in it, even if these documents are highly relevant. So, for-
mally, they compute the DCGnmax score as

DCGnmax

(
j(k), D(k)

) =
{∑nmax

i=1 ciz
(k)
ji

if nmax ≤ n(k)

0 otherwise.
(23)

This truncation not only distorts the test score, but it can also alter the training of such algo-
rithms that depend directly on the NDCG score. Indeed, for example, in ADARANK (Xu and
Li 2007), which optimizes the NDCG10 evaluation metric, a query containing fewer than 10
documents does not influence the computation of the coefficient of the weak ranker at all,
and the weight of such queries converge to zero over the successive boosting iterations.

To illustrate the effect of these differences, we compared the NDCGnmax scores obtained
by the YAHOO tool (Figs. 2(a) and 2(c)) with the LETOR 4.0 tool (Figs. 2(b) and 2(d)) on the
LETOR 4.0 data sets (MQ2007 and MQ2008) using five state-of-the-art rankers.11 First, note
the striking absolute differences, especially for larger nmax for which the effect of the trunca-
tion (23) is bigger.12 Worse, on the MQ2007 data set even the order of the methods is altered:
the RANKNET method is put at a serious disadvantage by the incorrectly implemented eval-
uation tool. This latter finding was the main reason why we included this technical section
in the paper.

From now on all reported NDCG scores will be computed using the YAHOO tool (with
a score of 1.0 for “empty” queries). Note that we also changed the code of RANKLIB based
on this tool. Although our main evaluation metric is the NDCG10 score, we will also report
the Expected Reciprocal Rank (ERR) scores (Chapelle et al. 2009)

ERR
(
j(k), D(k)

) =
n(k)∑

i=1

1

i

z
(k)
ji

Z

i−1∏

i′=1

(
1 − z

(k)
ji′
Z

)
, (24)

11See Sect. 7.2 and Sect. 7.3 for a detailed description of the data sets and the methods.
12There are several queries in the data that have only 7 documents, so the NDCG8−10 scores will be zero
for all of these queries according to (23). This is the reason why the LETOR scores fall rapidly for nmax ≥ 8
on the MQ2008 data set (Fig. 2(d)).
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Fig. 2 The empirical NDCGnmax scores on the Letor 4.0 test sets. The left panels ((a) and (c)) depict the
NDCGnmax scores computed by the YAHOO tool, and the right panels ((b) and (d)) show the results when
we use the official LETOR 4.0 tool. Apart from the strikingly large absolute differences, the incorrectly
implemented LETOR 4.0 tool also alters the order of the methods

where Z is the maximal relevance grade (that is, Z = 2K−1 − 1 in our case).
In summary, we propose the following guidelines for future research studies, with the

aim of making numerical results comparable across studies carried out.

1. If possible, apply the YAHOO tool.
2. Always specify which tool is used to compute the numerical results.
3. If a new tool for computing the NDCGnmax is implemented, always specify the default

value for empty queries, and avoid the bug (23) when nmax > n(k).

7.2 Data sets

We evaluated the ranking methods on the commonly used benchmark data sets summa-
rized in Table 1. We were only interested in data sets with more than two relevance lev-
els, firstly because the calibration for binary relevance labels does not make too much
sense, and secondly, because the difference between various learning algorithms can be
more pronounced in the multi-label case. Note also that the general consensus in the IR
community is that graded relevance labels are superior to the binary setup when large docu-
ment collections are involved (Järvelin and Kekäläinen 2002; Kekäläinen and Järvelin 2002;
Sakai 2007).
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Table 1 The benchmark data sets used in the experiments

#documents #queries #features #relevance
levels

avg. #docs.
per query

LETOR data sets (5-fold cuts)

OHSUMED 16140 106 45 3 152

MQ2007 69623 1692 46 3 41

MQ2008 15211 784 46 3 19

YAHOO data sets (simple cut)

YAHOO1 709877 29921 700 5 24

YAHOO2 172870 6330 700 5 27

MS data sets (5-fold cuts)

MS1 1200192 10000 136 5 120

MS2 3771125 31531 136 5 120

The features were normalized querywise in the LETOR data sets (OHSUMED, MQ2007,
MQ2008) so we did not preprocess them. In the case of YAHOO and MS data sets, we aug-
mented the feature sets. Besides the original features, we added querywise standardized
features, which means that we rescaled the feature values for each query separately so to
have zero mean and a standard deviation of one. The idea behind querywise normalization
is that features used in a learning-to-rank tasks often represent some kind of count. Some of
these quantities are not comparable in an absolute way: for example, the number of times
a query term occurs in a document is not comparable between common query terms (e.g.,
“dog”) and rare query terms (e.g., “AdaBoost”).

We used the official train/valid/test cut for each data set. We divided the official training
sets by a random 80–20 % split into training and calibration sets. The latter was used to
adjust the parameters of the different calibration methods and to tune the hyperparameter c

of the exponential weighting scheme.

7.3 Methods and experimental setup

We compared our algorithms with five state-of-the-art ranking methods and with the ranker
that used the simple best feature (described below). Here, we will briefly summarize them.

1. BESTFEATURE: As a baseline, we will report the performance of the ranker based on the
single best feature. Each feature can be used as a ranker function since values of a given
feature determine a ranking on an individual query (for example, in the early years of IR,
the BM25 feature alone was used as a ranking score). In the training phase, the ranker
chooses the feature that achieves the highest performance in terms of the evaluation met-
ric of interest on the training data. For a test query, the ranker then simply returns the
values of this single feature as a score. Since the feature values are given in our experi-
ments, there is no hyperparameter to be validated for this method. We will refer to this
simple approach as BF.{ERR,NDCG}, according to the evaluation metric used.

2. ADARANK (Xu and Li 2007) is a listwise boosting approach that seeks to optimize
an arbitrary listwise IR metric, such as the Mean Average Precision (MAP), ERR, or
NDCG. Inspired by ADABOOST, it uses a stepwise greedy optimization technique to
maximize the chosen IR metric. In every boosting iteration, ADARANK re-weights the
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queries based on their scores obtained by the evaluation metric: it up-weights the query
that has a lower score and down-weights high-scoring queries. The weak learner is cho-
sen by optimizing the listwise evaluation metric of interest, which is usually hard to
optimize except for very simple weak classifiers. This may be viewed as a handicap of
this method. According to the original implementation of ADARANK, we used the best
feature ranker (BF) described above as the base ranker taking into account the weighting
of queries. The only hyperparameter of ADARANK is the number of boosting iterations,
which we optimized by using early-stopping on the validation set. We refer to this method
as ADARANK.{MAP,ERR,NDCG}, depending on which evaluation metric is used.

3. RANKNET (Burges et al. 2005) is a neural-net-based method which employs a loss based
on pairwise cross entropy as its objective function. The neural net with one output node
is trained to optimize directly the differentiable probabilistic pairwise loss instead of the
common squared loss. We validated the number of hidden layers ranging from 1 to 3 and
the number of neurons in the hidden layers ranging from 10 to 500. For the number of
training epochs we applied early stopping.

4. RANKBOOST (Freund et al. 2003) is a pairwise boosting approach. The objective func-
tion is the rank loss (as opposed to ADABOOST, which optimizes the exponential loss).
In each boosting iteration the weak classifier is chosen by maximizing the weighted rank
loss. For the weak learner, we used decision stumps and a variant of the single decision
stump described in Freund et al. (2003), which is able to optimize the rank loss in an
efficient way.

5. RANKSVM (Joachims 2006) is a pairwise method based on SVM, which formulates the
ranking task as a binary classification. We used a linear kernel because the optimization
using non-linear kernels cannot be carried out in a reasonable time. The tolerance level
of the optimization was set to 0.001 and the regularization parameter was validated in
the interval [10−6,104] with a logarithmically increasing step size.

6. COORDINATEASCENT (CA) (Metzler and Croft 2007) is a linear listwise model, where
the scores of the query-document pairs are calculated as weighted combinations of the
feature values. The weights are tuned by using a coordinate ascent optimization method,
where the objective function is an arbitrary evaluation metric given by the user. The
coordinate ascent optimization method itself has two hyperparameters to be tuned: the
number of restarts R from random initial weights, and the number of iterations T taken
after each restart. We used R = 30 and T = 100. We did not validate these hyperparame-
ters, but using the validation set we evaluated every model obtained due to restarting the
optimization process, and we kept the one that had the highest performance score.

In our approach, we applied two multi-class learning methods whose outputs were
then used in a calibration procedure: ADABOOST.MH (Schapire and Singer 1999) and the
multi-class Support Vector Machine (MC-SVM) (Crammer and Singer 2001). To train AD-
ABOOST.MH, we used our open source implementation (Benbouzid et al. 2012b) avail-
able at http://multiboost.org. We employed decision trees with 8 and 64 leaves and decision
products with 3 and 10 terms. We calibrated and mixed all the trained boosted models. The
training was performed on the EGI grid,13 which allowed us to perform the training process
in parallel, and thus it took less than one day to get all the strong classifiers. Further details
on training ADABOOST.MH can be found in Appendix A.

To train the MC-SVM (Crammer and Singer 2001), we used a linear kernel as the train-
ing time for non-linear kernel functions was prohibitively long. The tolerance of the opti-

13http://www.egi.eu.

http://multiboost.org
http://www.egi.eu
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mization was set to 0.001. We trained MC-SVM using different trade-off parameters rang-
ing from 10−6 to 10. Further details on training MC-SVM can be found in Appendix B.

We only tuned the number of iterations T for ADABOOST.MH and the trade-off param-
eter C for SVM, and the base parameter c in the exponential weighting scheme (22) on the
validation set. In the exponential weighting combination (22) we set the weights using the
NDCG10 performance scores of the calibrated models, and c and T were selected based on
the performance score of the combined scoring function vENSEMBLE(·) in terms of NDCG10.
The hyperparameter optimization was performed using a simple grid search, where c ranged
from 0 (corresponding to a uniform weighting) to 200 and for T from 10 to 10000. On the
larger YAHOO and MS data sets, the optimal numbers of boosting iterations were between
8000 and 10000 and about 2000, respectively. Interestingly, on the LETOR data sets the
optimal T was much lower: for LETOR 3.0 the best number of iterations is T = 100 and
for both LETOR 4.0 data sets it is T = 50. The best base parameter c is larger than 100 for
all data sets. This value is relatively high considering that it is used in the exponent, but the
performances of the best models were relatively close to each other so the weight distribu-
tion of these good models was not very far from being uniform. We used fixed parameters
C = 2 in the TCN function LEWLS

C (16), and σ = 0.01 in LSNDCG
σ (19).

To demonstrate the efficiency of our ensemble scheme described in Sect. 6, we will also
present the test performance scores of the single best calibrated multi-class classifier. In this
case, the scores for a single trained and calibrated model can be obtained using (4). The best
ranker is then chosen based on its performance score on the validation set. We will refer to
this ranker based on a single calibrated multi-class classifier as {AB,SVM} + ONEBEST,
depending on which multi-class training method was used.

7.4 Comparative results

Tables 2 and 3 list the NDCG and ERR scores, respectively, for the different methods. The
results reveal some clear general trends. First, the exponentially weighted ensemble of cali-
brated ADABOOST.MH (AB+EXP) and multi-class SVM classifier (SVM+EXP) outper-
form all of the baseline methods in terms of both evaluation metrics of interest, with the
exception of the MQ2007 data set. On this single set the winner is the RANKSVM algorithm,
which achieves an excellent NDCG10 score (the ERR score, however, is lower than the
ERR score of our methods).

Second, it is interesting that the one best calibrated ADABOOST.MH model out-
performs RANKBOOST; and, similarly, the single calibrated MC-SVM outperforms the
RANKSVM in many cases. RANKBOOST can be thought of as the ranker counterpart of
ADABOOST.MH: RANKBOOST optimizes the rank loss in a stepwise fashion similar to
ADABOOST, which optimizes the exponential loss. RANKSVM can be viewed as the rank-
ing counterpart of the calibrated MC-SVM, since the core of both algorithms is a quadratic
optimization although with different loss functions. In other words, using an appropriate
calibration function, classical multi-class classifiers can have state-of-the-art ranking per-
formance. Note also that in RANKBOOST, it is not easy to design base learners that can
optimize the weighted rank loss, so we could only use an updated version of the decision
stump introduced in the original RANKBOOST paper (Freund et al. 2003). In contrast, in
ADABOOST.MH we were able to use a larger variety of standard base learners.

We also report the scores we achieved when just using the class-probability-calibrated
models (denoted by EXP.CPC) or just using the regression-based-calibration models (de-
noted by EXP.RBC) in the exponential weighted ensemble for both multi-class classifiers
applied here. Both calibrations achieve similar scores, except for the CPC multi-class SVM
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Table 2 The NDCG10 values of the methods compared on benchmark data sets. The best scores for each
data set and those within one sigma are marked in bold. Here, we used the standard deviation of the av-
erage NDCG10. Pointwise, pairwise, and listwise approaches are with red (♣), green (♠), and blue (♦)
backgrounds, respectively

Table 3 The ERR of the methods compared on benchmark data sets. The best scores for each data set and
those within one sigma are marked in bold. We used the standard deviation of the average ERR. Pointwise,
pairwise, and listwise approaches have red (♣), green (♠), and blue (♦) backgrounds, respectively

which gives below par performance scores on MQ2007 and OHSUMED. The reason for this
is that in these data sets there are many queries where all of the feature values are zeros.
In this case, an SVM-based method results in zero scores (unlike to ADABOOST.MH-based
methods). SVM-based techniques also perform quite poorly on the MS data sets because the
regularization penalty C cannot be set to its optimal value due to the excessive running time
with large C.

The final ensemble step described in Sect. 6 has a significant impact when used on
the classifiers produced by ADABOOST.MH. In the case of MC-SVM the improvement
is marginal, but the exponentially weighted ensemble on linear models is computationally
efficient both to train and to evaluate, so there is no reason why we cannot use the full
ensemble.
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The listwise algorithms (ADARANK, RANKNET and CA) perform well on the LETOR
data sets (OHSUMED, MQ2007, MQ2008).14 However, pointwise and pairwise approaches
significantly outperform the computationally expensive listwise algorithms on the YAHOO

and MS data sets and slightly outperform them on the LETOR data sets. The only exception
is the CA algorithm, which can achieve a state-of-the-art performance even on large-scale
learning-to-rank benchmark data sets.

The methods using SVM engines are horrendously slow on large-scale data sets. For
example, running RANKSVM and MC-SVM takes more than three weeks for a single fold
of the MS data sets if the regularization coefficient C is larger than 10−4. Running them with
smaller coefficients, though, produces suboptimal results, which explains why we were not
able to get state-of-the-art performance scores using these methods for MS data sets.

7.5 Learning curves

In this set of experiments we investigated how the performance scores of the methods depend
on the size of the training set and on the quality of the queries. In the first experiment, we
randomly divided the YAHOO2 training set into ten equal parts, and trained the rankers on
10 %, 20 %, . . . , 100 % of the available data. The YAHOO2 data set was better suited to this
experiment because, on the one hand, the test set consisted of almost 3800 queries, so small
differences in NDCG scores could be still significant, and on the other hand, the training
size of about 1300 queries was not prohibitively large, so all of the methods could be trained
in a reasonable time.

Figure 3(a) shows the results we got. Although it is hard to draw general conclusions
from one experiment, first, it seems that listwise methods (ADARANK, RANKNET and CA)
are more competitive on small data sets and their learning curves “flatten” as we add more
and more data. Still, pointwise and pairwise methods seem to improve steadily as the data
size grows. Second, among our two classification-based techniques, the final ensemble step
(Sect. 6) helps ADABOOST.MH in the full range of data sizes, whereas it helps MC-SVM
only for smaller sets. Lastly, among the two pairwise techniques, RANKBOOST seems to
work better for small data whereas the NDCG score of RANKSVM grows faster, which is
somewhat unfortunate as we know that RANKSVM will be hard to optimize for larger data
sets.

In a variant of this experiment we investigated how noise affects the performance of the
methods. First, using the BESTFEATURE ranker we computed the NDCG score for each
query. A low score on a query indicates that the features cannot capture the relevant non-
trivial semantics between the query and the documents. This is one of the main sources of
noise in a learning-to-rank task (besides the label noise coming from the disagreement of
the annotators). We then trained the rankers on 10 %, 20 %, . . . , 100 % of the available data
as in the previous experiment, but this time we added the queries in (decreasing or increas-
ing) order of their NDCG scores. Figures 3(b) and 3(c) show the results. As expected, the
learning curves are significantly flatter when we keep bad queries till the end. Besides the
same general trends observed in the previous experiment, it is interesting to see that list-
wise methods seem to work well only if trained using good queries, whereas pairwise and
pointwise techniques improve even when bad queries are added to the training set. It is also
noticeable that the best calibrated ADABOOST.MH model performs very well on the best

14Since we did not use the official evaluation scripts for of the reasons stated in Sect. 7.1, our scores cannot be
compared to the official LETOR scores in an absolute sense, but we could reproduce the order of the methods
available at the LETOR web site.
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Fig. 3 The dependence of NDCG10 scores on training data size. The queries were added gradually to the
YAHOO2 training data in 10 % portions. In the top panel the queries were ordered randomly, whereas in
the left and right panels they were added in decreasing and increasing order, respectively, according to their
NDCG10 scores obtained by using the BESTFEATURE ranker

10 % to 30 % of the queries, but the ensemble step helps significantly when noisy queries
start to accumulate.

7.6 Normalizing the relevance grades

We carried out some experiments to assess the effect of the query-wise normalization of
relevance grades proposed in Ravikumar et al. (2011). In the regression-based calibration
setup, we calibrated the trained multi-class classifiers in two ways: (1) using the relevance
grades as target values according to (20) and (2) using the relevance grades normalized
query-wise by the ideal DCG10 scores for each query according to (21).

We Applied ADABOOST.MH to get multi-class classifiers using the same set of base
classifiers that described in Sect. 7.3, and we ran it for 10000 iterations for the YAHOO1

and YAHOO2 data sets. Then we calibrated the classifiers using linear regression, logit re-
gression, neural network regression, and polynomial regression of degree 2. The NDCG10

scores in Fig. 4 indicate that this step did indeed improve the individual rankers.
The intuitive rationale of relevance normalization is that normalizing the relevance scores

by the ideal DCG scores will balance the contribution of the individual queries to the loss (in
this case L2) to be optimized. In particular, the normalization downweights queries having
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Fig. 4 The scatterplot of NDCG10 scores computed by using the relevance grades normalized by the ideal
DCG10 query-wise according to (21) (vertical axis) versus NDCG10 scores computed by just using the
original relevance grades (r = 2y−1 − 1) in the RBC calibration according to (20) (horizontal axis). The
rectangles show the scores of the calibrated models

Fig. 5 The p-values for
different calibrations obtained via
Fischer’s method on foldwise
p-values of the t -test, Letor
4.0/MQ2007. The class
probability based calibration was
calculated as described in
Sect. 5.2

high DCG scores. These queries can be thought of as “easy” with a large number of relevant
documents, so downweighting them means that the calibration will focus on harder queries
that may further improve the generalization performance.

7.7 The diversity of class-probability-based calibration outputs

To investigate how diverse the score values of different class probability calibrated models
are, we compared the scores obtained by the five CPC methods described in Sect. 5.2 using
the t -test. We obtained five p-values for each CPC pair. Then we applied Fischer’s method to
get one overall p-value, assuming that these five p-values came from independent statistical
tests. Here, we just used the output of boosted trees with the number of tree leaves set to 8.

The results in Fig. 5 indicate that for a subset of TCFs, the estimated probability distri-
butions were quite close to each other. Although the TCFs are rather different, it seems that
they approximate a similar distribution with only small differences. We think that one reason
for the observed efficiency of the proposed method is that these small differences within the
cluster are due to the estimation noise, so by mixing them, the level of the noise decreases.
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Table 4 The ERR and NDCG10 scores on the official Yahoo! Learning-to-Rank Challenge entries. The en-
tries are in order of their ERR scores. Scores within one sigma from the winner score are in bold. Teams with
red (♣), green (♠), and blue (♦) backgrounds used pointwise, pairwise, and listwise approaches, respectively.
We have no information on uncolored teams. The name of our team was LAL. For comparison, we also in-
cluded the results of AB+EXP and RANKSVM from Tables 2 and 3 and the results of the Gradient Boosted
Decision Tree algorithm (Friedman 2002) taken from (Chapelle and Chang 2011)

7.8 Yahoo! Learning-to-Rank Challenge

The YAHOO1 and YAHOO2 data sets were the official data sets of the Yahoo! Learning-
To-Rank Challenge.15 This open challenge attracted scores of academic researchers as well
as industrial practitioners, and drew a huge number of participants with over 300 teams
coming from both industrial and academic areas. The data sets used in the challenge can be
considered the first freely available large-scale data sets in learning-to-rank, allowing a more
reliable benchmarking tests than the earlier ones based on the LETOR sets. The challenge
revealed some important findings. (Table 4 shows the final scores achieved on the test set.)
First, ensemble methods achieved the best scores. Almost without exception, the dissemi-
nated algorithms devised by the top teams were based on ensemble techniques. Second, the
general consensus (coming mainly from benchmarks on the LETOR data sets (Cao et al.
2007; Valizadegan et al. 2009)) that pairwise and listwise techniques outperform pointwise
approaches seems to be refuted. The majority of the best teams used pointwise approaches
and they were competitive with the listwise and pointwise techniques. This finding agrees
with our experimental results on benchmark data sets: some of the pairwise and listwise
methods were on par with our approach on the LETOR data sets, but on the larger YAHOO1−2

and MS1, our pointwise technique performed significantly better than the pairwise and list-
wise methods.16

We also participated in the Yahoo! Learning-To-Rank Challenge with an earlier version
of our approach (Busa-Fekete et al. 2011a). The algorithm we used there resembles the most

15http://learningtorankchallenge.yahoo.com/.
16To be fair, the winning method on the larger YAHOO1 data set used a listwise technique (Burges et al.
2011). Unfortunately, their code is private so we could not include it in our benchmark tests on the other data
sets.

http://learningtorankchallenge.yahoo.com/
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to AB+EXP.RBC. The main difference is that we further diversified our ensemble by merg-
ing several relevance grades to create five different multi-class classification problems. This
created further diversity in the ensemble and pushed our entry into the top 6. Label-grouping
could be included in any classification-based ensemble technique. We decided to not to use
it in the benchmark tests in this paper to keep the method simple and computationally less
expensive.

8 Conclusions and future work

In this paper, we described a generic technique for learning to rank. The method consists of
three steps: (1) training several multi-class classifiers to predict the relevance labels, (2) cal-
ibrating the output score vectors to predict either the posterior probabilities of the relevance
labels or the real-valued relevance grades, and (3) combining the generated models using
a simple exponential weighting scheme. The advantages of the method are its conceptual
simplicity, its practical performance, and its computational efficiency. We also presented a
theoretical analysis where we examined the link between the Kullback-Leibler divergence
and the expected DCG. We showed that the better estimate of the conditional probability
distribution of relevance labels in terms of Kullback-Leibler divergence results in a higher
DCG score in our probabilistic setup.

In experiments we showed that our essentially pointwise approach is competitive
with more complex methods including RANKSVM, ADARANK RANKBOOST, CA, or
RANKNET on most of the available large learning-to-rank benchmark data sets. In a com-
parison of multi-class classifiers, we found that ADABOOST.MH is better suited for this task
than MC-SVM. The main bottleneck of MC-SVM is that it slows down for larger trade-off
parameters on large-scale data sets, making it difficult to achieve its optimal performance.
To alleviate this problem, as a further study, we plan to test the algorithm described in Hazan
and Kale (2011), where MC-SVM is trained in an online bandit setup.

We also investigated how the performance of different algorithms evolves as the size
of the data grows. We found that pointwise and pairwise techniques in general, and our
approach in particular, scale better for large data sets.

The results of our paper along with the findings of the Yahoo! Learning-To-Rank Chal-
lenge underscores the performance of ensemble rankers. Their applicability in practice is
mainly limited by the fact that they have to evaluate many rankers at test time, and it
is well known that the evaluation time is crucial in a real world learning-to-rank appli-
cation. This motivates the development of a framework in which a controller can select
the rankers to be evaluated based on the characteristics of individual queries (Cambazoglu
et al. 2010). Our future goal here is to model the problem as a Markov decision process,
and solve it using standard reinforcement learning techniques (Dulac-Arnold et al. 2011;
Benbouzid et al. 2011, 2012a).
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useful comments. This work was supported by the ANR-2010-COSI-002 grant of the French National Re-
search Agency.

Appendix A: Training ADABOOST.MH

Running a full search in each boosting iteration of ADABOOST.MH is prohibitively expen-
sive, so we decided to run an accelerated version based on a multi-armed bandit (MAB)
setup (Busa-Fekete and Kégl 2010). In this section we shall describe the algorithmic details.
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ADABOOST.MH.BA(X,Y,W(1), BASE(·, ·, ·, ·), T , G = {H1, . . . , HM}, BANDITALGO)

1 for t ↔ 1 to T

2 j ↔ BANDITALGO.getArm()

3 h(t)(·) ↔ α(t)v(t)ϕ(t)(·) ↔ BASE(X,Y,W(t), Hj )

4 γ
(t)

Hj
↔

n∑

i=1

w
(t)
i h(t)(xi )yi � edge = 1 − 2 × error

5 r
(t)
j = − log

√
1 − γ

(t)
Hj

2 � calculate reward based on edge

6 BANDITALGO.receiveReward(j, r
(t)
j )

7 for i ↔ 1 to n for � ↔ 1 to K

8 w
(t+1)

i,� ↔ w
(t)

i,�

exp(−h
(t)
� (xi )yi,�)

n∑

i′=1

K∑

�′=1

w
(t)

i′,�′e
−h

(t)

�′ (xi′ )yi′,�′

9 return f(T )(·) = ∑T

t=1 h(t)(·)
Fig. 6 The pseudocode of the bandit-accelerated version of ADABOOST.MH.BA algorithm. X is the ob-
servation matrix, Y is the label matrix, W(1) is the initial weight matrix, BASE(·, ·, ·, ·) is the base learner
algorithm, and T is the number of iterations, BANDITALGO is the bandit algorithm. α(t) is the base coeffi-
cient, v(t) is the vote vector, ϕ(t)(·) is the scalar base classifier, h(t)(·) is the vector-valued base classifier, and
f(T )(·) is the final (strong) classifier

For the formal description, let X = (x1, . . . ,xn) be the n × d observation matrix, where
x

(j)

i are the elements of the d-dimensional observation vectors xi ∈ R
d . We are also given

a label matrix Y = (y1, . . . ,yn) of dimension n × K , where yi ∈ {+1,−1}K . In multi-class
classification one and only one of the elements of yi is set to +1. We will denote the index
of the correct class by �(xi ) or simply �i .

The general idea of accelerating the base learner is to partition the base classifier space H
into (not necessarily disjunct) subsets G = {

H1, . . . , HM

}
and use MABs to learn the useful-

ness of the subsets. Each arm represents a subset, so, in each iteration, the bandit algorithm
selects a subset. The base learner then finds the best base classifier in the subset (instead
of searching through the whole space H), and returns a reward based on this optimal base
learner. Based on the rewards, the MAB algorithm gradually learns the quality or usefulness
of the subsets. We used an adversarial bandit algorithm (EXP3G (Auer et al. 2002)) because
our earlier experiments showed that using this bandit algorithm, the strong learner obtained
via ADABOOST.MH.BA has a slight but consistently superior accuracy, while training is
also faster than when using stochastic bandit algorithms, such as UCB (Auer et al. 1995)
and UCBV (Audibert et al. 2009). The schematic overview of ADABOOST.MH.BA can be
seen in Fig. 6.

We used two well-boostable base learners, i.e. decision trees and decision products (Kégl
and Busa-Fekete 2009). Our decision tree implementation is very similar to Quinlan’s C4.5
algorithm (Quinlan 1993), except that we use the edge improvement (instead of Quinlan’s
entropy-based criterion) to select the next node and the threshold to split. The decision tree
has one hyperparameter, the number of leaves N , which also appears as a linear factor in
the running time. The second base learner we used is decision products. The goal of this
learner is to optimize products h(·) = α

∏m

j=1 vjϕj (·) of simple base classifiers vjϕj (·),
where the vote vectors vj are multiplied element-wise. This base learner has also only one
hyperparameter; namely, the number of terms m.
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The idea behind ADABOOST.MH.BA cannot be applied directly with decision trees or
decision products, since it is hard to determine an eligible partitioning of the space of deci-
sion trees or decision products, due to the enormous size of this space. Thus, we followed
the setup proposed in Busa-Fekete and Kégl (2009) in which trees and products are modeled
as sequences of decisions over the smaller and manageable partitioning used for stumps. For
simple decision stumps, the most natural partitioning is to assign a subset to each feature:
Hj = {ϕj,b(x) : b ∈ R}, where j is the index of the selected feature and b is the decision
threshold, and the base classifier is of the form

ϕj,b(x) =
{

1 if x(j) ≥ b,

−1 otherwise.
(25)

Motivated by a one-against-all scheme for multi-class classification, the standard way to
weight the �th label of the ith instance in ADABOOST.MH is

w
(1)
i,� =

{
1/(2n) if �i = �,

1/(2n(K − 1)) otherwise,

where �i is the correct label of the ith query-document pair, n is the number of training
instances, and K is the number of classes.17 Instead of this setup, we further up-weighted
relevant instances exponentially proportionally to their relevance, so, for example, an in-
stance xi with relevance �i = 4 was twice as important in the global training cost as an
instance with relevance �i = 3, and four times as important than an instance with relevance
�i = 2. Formally, the initial (unnormalized) weight of �th label of the ith instance is

w
(1)
i,� =

{
2�i if �i = �,

2�i /(K − 1) otherwise.

The weights are then normalized to sum to 1. This weighting scheme was motivated by the
evaluation metric: the weight of an instance in the NDCG score is exponentially propor-
tional to the relevance label of the instance itself.

We used our open source implementation (Benbouzid et al. 2012b) available at http://
multiboost.org, in which this bandit-based approach is implemented along with the base
learners mentioned above. In addition, our package allows the user to apply arbitrary initial
weightings.

Appendix B: Multi-class Support Vector Machine

The Multi-Class Support Vector Machine (MC-SVM) was originally presented by Crammer
and Singer (2001). We use only linear classifiers in our experiments because the kernel-
ized version is computationally prohibitively expensive. Using the notation of the previous
section, the linear MC-SVM classifier can be written as

�̂M(x) = arg max
1≤�≤K

mᵀ
� x,

17For a thorough explanation, see (2) in Kégl and Busa-Fekete (2009), Sect. 7.2 in Schapire and Singer
(1999), or Sect. A.1 in the documentation at http://www.multiboost.org/download/documentation.pdf.

http://multiboost.org
http://multiboost.org
http://www.multiboost.org/download/documentation.pdf
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where M = (m1, . . . ,mK) is a d × K real matrix. For a given matrix M, the output scores
can be calculated as fM(x) = (mᵀ

1 x, . . . ,mᵀ
Kx). To bound the empirical multi-class error

R(M) = 1

n

n∑

i=1

I{yi,�̂M(x) < 0}

from above, the multi-class hinge loss is defined as

Q(M,x, �) = max
1≤�′≤K

(
mᵀ

�′xi + 1 − δ�,�′
) − m�x,

where � is the label index of the instance x, and δp,q is Kronecker delta.18 The multi-class
hinge loss Q(M,xi , �i) is zero if the score of the correct class mᵀ

�i
x beats the score of the

second best class by a margin of at least one; otherwise it grows linearly with the difference
between the highest score of the non-correct classes and the score of the correct class. Thus,
it is not hard to see that

R(M) ≤ 1

n

n∑

i=1

Q(M,xi , �i).

Introducing the slack variables ξi to deal with training points with a margin of less than one,
the optimization task is

min
M

1

2
‖M‖2

2 + C

n

n∑

i=1

ξi

subject to mᵀ
�i

xi + δ�i ,� − mᵀ
� xi ≥ 1 − ξi, for all 1 ≤ i ≤ n, 1 ≤ � ≤ K,

where the parameter C controls the trade-off between the margin and the training error. In
our experiments C was the only parameter to be tuned. We used an open source implemen-
tation of MC-SVM available at http://svmlight.joachims.org/svm_multiclass.html.
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