22nd International Scientific-Expert Conference of Agriculture and Food Industry – Sarajevo 2011

Proceedings

Sarajevo
September 28 – October 1, 2011
22nd International Scientific-Expert Conference of Agriculture and Food Industry – Sarajevo 2011
organized by
Faculty of Agriculture and Food Sciences, University of Sarajevo, Bosnia and Herzegovina
and
Faculty of Agriculture, Ege University Izmir, Turkey

Organizing Committee
Prof. dr Hamid Ćustović, President of the Organizing Committee, Faculty of Agriculture and Food Sciences, University of Sarajevo; Prof. dr Akin Olgun, Deputy President of the Organizing Committee, Faculty of Agriculture, Ege University Izmir, Dr Emir Suljagić, Minister of education and science, Sarajevo Canton; Prof. dr Mirsad Kurtović, Dean of the Faculty of Agriculture and Food Sciences, University of Sarajevo; Mr Hanefija Topuz, Federal Ministry of Agriculture, Water Management and Forestry; Doc. dr Mehmed Cero, Federal Ministry of Ecology and Tourism; Ramiz Lejo, Federal Ministry of Education and Science; Ass. Prof. Mustafa Boğa, Faculty of Agriculture, Ege University Izmir; Ass. Prof. Harun Yalçın, Faculty of Agriculture, Ege University Izmir; Prof. dr Sabahudin Bajramović, Faculty of Agriculture and Food Sciences, University of Sarajevo; Prof. dr Zlatan Sarić, Faculty of Agriculture and Food Sciences, University of Sarajevo; Prof. dr Vjekoslav Selak, Faculty of Agriculture and Food Sciences, University of Sarajevo; Prof. dr Sonja Bijeljac, Faculty of Agriculture and Food Sciences, University of Sarajevo; Doc. dr Drena Gadažo, Faculty of Agriculture and Food Sciences, University of Sarajevo; Doc. dr Muhamed Brka, Faculty of Agriculture and Food Sciences, University of Sarajevo.

Scientific Committee
Prof. dr Milenko Blesić, President of the Scientific Committee, Faculty of Agriculture and Food Sciences, University of Sarajevo, Prof. dr Emine Bayram Deputy President of the Scientific Committee, Faculty of Agriculture, Ege University Izmir, Prof. dr Hatice Özaktan, Faculty of Agriculture, Ege University Izmir; Prof. dr Şüle İşin, Faculty of Agriculture, Ege University, Izmir; Prof. dr Elmas Özker, Faculty of Agriculture, Ege University, Izmir; Prof. dr Yavuz Akbaş, Faculty of Agriculture, Ege University, Izmir; Prof. dr Emil Erjavec, Biotechnical Faculty; University of Ljubljana, Slovenia; Prof. dr Cosmin Salasan, Banát’s University of Agricultural Sciences and Veterinary Medicine, Timișoara, Romania; Prof. dr Vlado Guherac, Faculty of Agriculture, University "J. J. Strossmayer", Osijek, Croatia; Prof. dr Natalija Bogdanov, Faculty of Agriculture, University of Belgrade; Serbia; Prof. dr Nenad Georgiev, University "St. Cyril and Methodius", Skopje, Macedonia; Doc. dr Emir Džomba, Faculty of Agriculture and Food Sciences, University of Sarajevo, Doc. dr Dragana Ognjenović, Faculty of Agriculture and Food Sciences, University of Sarajevo, Doc. dr Pakeza Drkenda, Faculty of Agriculture and Food Sciences, University of Sarajevo, Doc. dr Nermina Spaho, Faculty of Agriculture and Food Sciences, University of Sarajevo.

Communications presented at the Conference and positively reviewed are published in the Proceedings. Authors are fully responsible for contents, contact information and correctness of English.
The Proceedings has been indexed with CAB Publishing – UK (CAB Abstracts and Nutrition and Food Sciences Database) since 2010.

Publisher:
Faculty of Agriculture and Food Sciences, University of Sarajevo – Poljoprivredno-prehrambeni fakultet Univerziteta u Sarajevu
Editor: Prof. dr Milenko Blesić
Technical design: Prof. dr Milenko Blesić, Belma Dučić
Year of publishing: 2011; Year of printing: 2012
Printed by: Print Delivery and Service d.o.o., Ilidža – Sarajevo

CIP – Katalizacija u publikaciji Nacionalna i univerzitetska biblioteka Bosne i Hercegovine, Sarajevo 631/635:664(082)
INTERNATIONAL Scientific-Expert Conference of Agriculture and Food Industry (22nd; 2011; Sarajevo)
Proceedings / 22nd International Scientific-Expert Conference of Agriculture and Food Industry – Sarajevo 2011, Sarajevo, September 28–October 1, 2011. – Sarajevo : Faculty of Agriculture and Food Sciences – Poljoprivredno-prehrambeni fakultet ; Izmir : Ege University, Faculty of Agriculture, 2012. – 381 str. : graf. prikazi ; 30 cm
Bibliografija uz svaki rad.
COBIS.BH-ID 19395590
Aljicevic M., Rebic V., Bektas S., Beslagic E.
Aflatoxins in plant foods which are present in market.. 273

Asimovic Z., Velic M., Jesenkovic L., Djapo M.
Spectrophotometric determination of quinine in tonic water and bitter lemon......................... 276

Barac M., Cabralo S., Stanjevic S., Pesic M., Zilic S., Kostic A.
The effect of processing and limited proteolysis on protease inhibitor and lyopoxigenase activity of pea protein isolate... 279

Effect of genotype and maceration on the content of bioactive compounds of sour cherry nectar... 282

Brkic I., Silajdzic E., Cakar J., Lasic L., Tolic U., Bajrovic K., Durmic-Pasic A.
PCR based analysis of GMO content in canned pates offered on the market of B&H.......................... 286

Corbo S., Djordjevic Dj.
Antioxidant activity determination of some natural antioxidants present in extra virgin olive oil derived from Oblica variety... 290

Djapo M., Jesenkovic L., Velagic-Habul E., Omanovic-Miklicanin E.
HPLC determination of caffeine content in coffee samples.. 293

Djapo M., Asimovic Z.
The influence of different ways processing of spinach for chlorophyll content... 296

Djulancic N., Srbinska M., Radijicic V.
Influence of expanded material contents on physical-chemical characteristics of the blend and physical characteristics of cigarettes... 299

Faljic A., Saric Z., Dizdaravic T., Bijeljac S.
Defining of Travnik cheese sensory characteristics related to type of milk... 303

Hadzic A., Hadzic I.
Usage of raw materials in producing food in the sector of wild organic production in Bosnia and Herzegovina... 307

Hasimbegovic K.
HACCP system and its impact on quality and hygienic soundness of dairy products.......................... 310

Haveric A., Haveric S., Rahmanovic A., Ibrulj S.
Turmeric effects on genetic material in human cell cultures.. 314

Hodzic I., Smajic A., Gojak R.
Risk factors influencing overweight and obesity among adolescents in Sarajevo.......................... 317

Jesenkovic L., Djapo M., Omanovic-Miklicanin E., Velagic-Habul E.
Determination of caffeine content in non-alcoholic beverages using HPLC method.......................... 320

Kis D., Maric S., Juric T., Guherac V., Loncaric Z.
Soybean biomass as fuel and fertilizer... 323

Makic H., Veladzic M., Jalic S., Hodzic E., Koricic A., Bolic E., Bektasevic M.
Prediction methodology of malt level using artificial neural networks.. 326

Miocinovic J., Miloradovic Z., Radulovic Z., Paunovic D., Trpkovic G., Radovanovic M., Pudja P.
The composition and properties of kajmak from different producers... 329

Miocinovic J., Radulovic Z., Pavlovic V., Miloradovic Z., Trpkovic G., Radovanovic M., Pudja P.
The influence of commercial and potential probiotic bacteria on the properties of low fat fuf cheese.. 332

Odalovic A., Prencic R., Jovancevic M., Ivanovic B., Mrdak M.
The productions of processed fruit in Montenegro... 335

Orucevic S., Gadzo D., Latifie A., Sabanovic S., Semic A.
Possibilities for production of spelt wheat (Triticum spelta L.) bread and pasta.......................... 337

Pajovic R., Popovic T., Mijovic S., Vukosavljevic V.
Economic, technological and polyphenol characteristics of Vranac, Kratošija and Merlot grape varieties and wines in Montenegro and Macedonia... 341

Radulovic Z., Miocinovic J., Petrusic M., Mirkovic N., Paunovic D., Petrovic T., Obradovic D.
Application of autochtonus potential probiotic in the soft goat cheese production.......................... 345

Radulovic Z., Miocinovic J., Mirkovic N., Petrusic M., Petrovic T., Bogovic Matijasic B., Nedovic V.
Effect of encapsulated potential and commercial probiotic bacteria on the soft goat cheese properties.. 349

Racic D., Bozinovic Z., Petkov M., Ivanova V., Boskov K., Beleski K., Maras V.
The influence of chips on polyphenolic content and sensorial properties of Vranac wine.............. 353

Rasidovic E., Saric Z., Dizdaravic T.
The research on ice cream quality properties in Sarajevo region.. 356

Rustemovic E., Pusul N., Omanovic-Miklicanin E.
Determination of pesticide residues in lettuce and carrot by gas chromatography.......................... 359

Semic A., Bauman I., Muminovic S., Orucevic S., Benkovic M.
Characteristics of flour with add-in sourdough starters.. 362
THE INFLUENCE OF CHIPS ON POLYPHENOLIC CONTENT AND SENSORIAL PROPERTIES OF VRANAC WINE

D. Raicevic, Z. Bozinovic, M. Petkov, V. Ivanova, K. Boskov, K. Beleski, V. Maras

Summary

The influence of oak chips on polyphenolic content, as well as sensorial characteristics of Vranac wines was studied. Wines were produced in a traditional way in the winery at the Biotechnical Faculty in Podgorica, Ljeskopolje area, Podgorica sub-region. 1 g/l of French oak chips was added in the wines in order to study its influence. It was found that the chips improved the extraction of polyphenols and sensorial characteristics of wines, compared to the control wine produced without chips. In addition, it was noticed that the obtained wines fermented with chips, presented a higher content of total polyphenols, anthocyanins, flavan-3-ols, better colour intensity and hue, as well as better sensorial properties of the wine. Actually, the chips influenced better colour permanence and improvement of sensorial wine profile.

Key words: Vranac, oak chips, total polyphenols, anthocyanins, flavan-3-ols.

INTRODUCTION

The quality of wine depends on many factors, including the wine-making techniques applied for wine production. Addition of oak chips also affects the wine quality. Numerous studies have been carried out in order to find the way for getting the highest content of polyphenols in wine extracted from grapes. Chips is one of the alternative means which is produced from the same wood like oak barrels (such as French, Hungarian and American oak). Oak wood is extremely enriched with organic components which could be extracted into the wine. Harmonic accordance of wood (chips) and wine initiate suitable changes as a consequence of slow acting oxidation, followed by tannin modification. In addition, the wine colour and flavor persistence increase and stabilize during the aging in bottles (Kovac et al., 2000). In our study, the French chips (Pronektar) was used, which was added before fermentation, in order to check its influence on the extraction of polyphenols from grapes into wine, sensorial characteristics, as well as, the wine quality.

MATERIALS AND METHODS

Grapes. Vranac grape variety, which is an authentic Montenegrin variety, was used for wine production with addition of oak chips.

Vinification. After the harvest at technological maturity, the grapes without stalks were processed and the obtained must was divided into three fermentation tanks (PVC tanks, 100 L) in order to get three different sets: V-1, V-2, V-3. The first set (V-1) was the control wine, containing only selected yeast (BDX, Lallemand), the second set (V-2) contained selected yeast (BDX) and enzyme (Lallzyme EX-V, Lallemand) and the third set (V-3) contained yeast, enzyme and oak chips (French, Pronektar). The grape mashses were mixed mechanically during the fermentation. After the maceration and fermentation period, the wines were collected in tanks for aging.

Analysis. Analyses of polyphenolic content and sensorial characteristics of the wines were performed three months after wine aging. Spectrophotometric methods were used for the analyses of total polyphenols, anthocyanins and flavan-3-ols in the wine (Ivanova et al., 2009). Sensorial wine properties were determined by wine testing using point rating method (max. 20 points): clarity (0-2), colour (0-2), odour (0-4) and taste (max. 12).

Statistical analysis. Statistical data processing included calculation of arithmetic mean, relative standard deviation and ANOVA (the student Newman-Klaus’s test) in order to find possible and significant differences among studied wines.
RESULTS AND DISCUSSION

In order to evaluate the influence of chips on the polyphenols in wine and consequently the wine quality, total polyphenols, anthocyanins and flavan-3-ols, color intensity and hue, were measured in the wines containing oak chips and compared with the control wine. The results are presented in Table 1.

It was noticed that the chips influenced the wine polyphenols. Thus, total polyphenols (average 149 mg/l for all three years studied) were higher in the wine containing chips, compared to the control wine (V-1). The content of anthocyanins and flavan-3-ols was also higher in the wines fermented with chips. In addition, it was found that the content of polyphenols had a low influence on the wine hue which values were not significantly different in the studied wines (p<0.05). The wine variant V-3 contained high concentration of polyphenols and its colour intensity was higher compared to the control wine, which was in accordance with other studies (Jackson (2008), Sartini et al. 2007). Comparing the results for the wines, the highest content of polyphenols, anthocyanins and colour intensity was noticed for the wine harvested in 2009, while the content of flavan-3-ols was the highest in the wines from 2010, probably as a result of the climatic and cultivation factors.

Tab. 1: Polyphenolic content of wines Vranac

<table>
<thead>
<tr>
<th>Year of harvest</th>
<th>Total polyphenols (mg/l)</th>
<th>Total anthocyanins (mg/l)</th>
<th>Total flavan-3-ols (mg/l)</th>
<th>Color intensity</th>
<th>Hue</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-1</td>
<td>1600<sup>a</sup></td>
<td>580</td>
<td>112<sup>a</sup></td>
<td>3.70</td>
<td>0.26</td>
</tr>
<tr>
<td>2008</td>
<td>1785<sup>a,b</sup></td>
<td>600</td>
<td>145<sup>a</sup></td>
<td>3.80</td>
<td>0.25</td>
</tr>
<tr>
<td>2009</td>
<td>1620<sup>a</sup></td>
<td>550</td>
<td>167<sup>a</sup></td>
<td>3.75</td>
<td>0.24</td>
</tr>
<tr>
<td>x</td>
<td>1668</td>
<td>577</td>
<td>142</td>
<td>3.75</td>
<td>0.25</td>
</tr>
<tr>
<td>CV%</td>
<td>6.08</td>
<td>4.36</td>
<td>19.86</td>
<td>1.33</td>
<td>4.0</td>
</tr>
<tr>
<td>V-2</td>
<td>1730<sup>b</sup></td>
<td>595</td>
<td>153<sup>b</sup></td>
<td>3.80</td>
<td>0.27</td>
</tr>
<tr>
<td>2008</td>
<td>1870<sup>a</sup></td>
<td>621</td>
<td>167<sup>b</sup></td>
<td>3.90</td>
<td>0.25</td>
</tr>
<tr>
<td>2009</td>
<td>1720<sup>a</sup></td>
<td>575</td>
<td>180<sup>b</sup></td>
<td>3.85</td>
<td>0.25</td>
</tr>
<tr>
<td>x</td>
<td>1773</td>
<td>597</td>
<td>167</td>
<td>3.85</td>
<td>0.26</td>
</tr>
<tr>
<td>CV%</td>
<td>4.73</td>
<td>3.86</td>
<td>8.01</td>
<td>1.29</td>
<td>4.49</td>
</tr>
<tr>
<td>V-3</td>
<td>1750<sup>b</sup></td>
<td>590</td>
<td>141</td>
<td>3.81</td>
<td>0.27</td>
</tr>
<tr>
<td>2008</td>
<td>1900<sup>b</sup></td>
<td>619</td>
<td>140</td>
<td>3.87</td>
<td>0.26</td>
</tr>
<tr>
<td>2009</td>
<td>1800</td>
<td>563</td>
<td>174</td>
<td>3.82</td>
<td>0.24</td>
</tr>
<tr>
<td>x</td>
<td>1817</td>
<td>591</td>
<td>152</td>
<td>3.83</td>
<td>0.26</td>
</tr>
<tr>
<td>CV%</td>
<td>4.20</td>
<td>4.74</td>
<td>12.76</td>
<td>0.84</td>
<td>5.95</td>
</tr>
</tbody>
</table>

*Values with the same letter(s) as a superscript within a column are not significantly different at p<0.05 analyzed by the Student–Newman–Keul’s test.

^a– average value, CV % - coefficient of variation
Results are presented as average from 3 replicates.

Sensorial properties of tested wines

The marks of accomplished wine tasting are shown in Table 2. The wines derived with chips treatment presented the best sensorial properties, obtaining highest marks, which were higher from the mark of the control wine. These wines had intensive ruby colour (which is characteristic of Vranec variety), full berry taste, soft tannins and gentle oak note. Chips enabled colour permanence and enhanced sensorial wine profile.
Tab. 2: Wine tasting marks

<table>
<thead>
<tr>
<th>Year of harvest</th>
<th>Color</th>
<th>Clarity</th>
<th>Odor</th>
<th>Taste</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>min x</td>
<td>max x</td>
<td>min x</td>
</tr>
<tr>
<td>2008</td>
<td>2</td>
<td>2</td>
<td>2.4</td>
<td>2.8</td>
<td>2.6</td>
</tr>
<tr>
<td>2009</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>2.9</td>
<td>2.7</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>2</td>
<td>2.3</td>
<td>2.9</td>
<td>2.6</td>
</tr>
<tr>
<td>x</td>
<td>2</td>
<td>2</td>
<td>2.4</td>
<td>2.9</td>
<td>2.6</td>
</tr>
<tr>
<td>2008</td>
<td>2</td>
<td>2</td>
<td>2.4</td>
<td>2.9</td>
<td>2.7</td>
</tr>
<tr>
<td>2009</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>3.0</td>
<td>2.8</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>2</td>
<td>2.4</td>
<td>2.9</td>
<td>2.7</td>
</tr>
<tr>
<td>x</td>
<td>2</td>
<td>2</td>
<td>2.4</td>
<td>2.9</td>
<td>2.7</td>
</tr>
<tr>
<td>2008</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>3.2</td>
<td>2.9</td>
</tr>
<tr>
<td>2009</td>
<td>2</td>
<td>2</td>
<td>2.6</td>
<td>3.3</td>
<td>2.9</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>2</td>
<td>2.4</td>
<td>3.1</td>
<td>2.8</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Results of the study showed that chips significantly influence on polyphenols and sensorial properties of the Vranac wines compared to the control wine.

Adding of chips during fermentation enabled better extraction of polyphenols, including higher content of polyphenols, anthocyanins, flavon-3-ols, colour intensity and hue. Furthermore, adding of chips enabled better sensorial wine properties, improved colour intensity, odour and taste of the wines.

Due to these results it can be concluded that chips played a significant role in winemaking of Vranac wines, affecting the colour, flavor, polyphenols and texture of the wine.

REFERENCES

