Volume 2 Namor 3, Oktober 2006

Pemilihan Tanaman Pangan Unggulan Kotamadya Cilegon Menggunakan *Analytical Hierarchy Process* (AHP)

Welda

STMIK MDP Palembang

welda@stmik-mdp.net

Abstrak: Melakukan pengambilan keputusan menggunakan matriks Analytical Hierarchy Process (AHP) merupakan salah satu model pengambilan keputusan yang selain menggunakan perhitungan-perhitungan, juga menghasilkan keputusan berdasarkan penilaian-penilaian dari pengambil keputusan. AHP dapat digunakan untuk berbagai permasalahan dan hasil keputusan menggunakan AHP memiliki tingkat konsistensi yang dapat diandalkan sehingga dalam kasus pemilihan tanaman pangan unggulan untuk Kotamadya Cilegon dapat membantu menentukan jenis tanaman apa yang paling cocok untuk ditanami di lahan-lahan di kota Cilegon. Pada contoh kasus ini, dari hasil penilaian penulis dan perhitungan matriks AHP, didapat bahwa tanaman Padi memiliki nilai paling tinggi sehingga paling cocok untuk dijadikan tanaman pangan unggulan di Cilegon.

Kata Kunci: Analytical Hierarchy Process (AHP), pemilihan keputusan, tanaman pangan, matriks.

1 PENDAHULUAN

Kotamadya Cilegon memiliki potensi baik dari segi sumber daya alam maupun manusia-nya untuk memajukan sektor pertanian. Karena daerah ini semakin lama semakin dipadati dengan pembangunan di bidang industri menyebabkan sektor pertanian kurang mendapatkan perhatian, sehingga lahan yang tersedia harus dimanfaatkan seefisien dan seefektif mungkin. Karena semakin terbatasnya lahan, maka keputusan jenis tanaman yang akan ditanam menjadi sangat penting bagi para pemilik lahan dan biasanya lahan-lahan pertanian di kota Cilegon ditanami dengan tanaman-tanaman pangan. Analythic Hierarchy Process (AHP) merupakan salah satu metode pengambilan keputusan yang cukup populer, maka pembahasan ini ditujukan untuk memberikan gambaran penggunaan AHP untuk membantu memilih jenis tanaman yang akan ditanam di Kotamadya Cilegon dan untuk mengetahui peran Sistem Pendukung Keputusan dalam membantu perkembangan pertanian di Cilegon.

2 SISTEM PENDUKUNG KEPUTUSAN

Sistem Pendukung Keputusan adalah sebuah sistem dibawah kendali satu atau lebih

pembuat keputusan yang bekerja untuk membuat keputusan dengan menyediakan dan mengatur seperangkat peralatan yang diharapkan untuk menanamkan struktur dalam situasi membuat keputusan dan untuk menghasilkan keputusan yang efektif.(Marakas, 1999, p5). SPK dapat digunakan untuk membantu menyelesaikan berbagai jenis permasalahan termasuk dalam bidang agrikultur seperti memilih tanaman pangan yang paling cocok untuk ditanami di area Kotamadya Cilegon.

3 ANALYTICAL HIERARCHY PROCESS (AHP)

Analytic Hierarchy Process adalah suatu model yang luwes yang memberikan kesempatan bagi perseorangan atau kelompok untuk membangun gagasan-gagasan dan mendefinisikan persoalan dengan cara membuat asumsi mereka masing-masing dan memperoleh pemecahan yang diinginkan darinya. (Saaty,1991, p23). AHP merupakan salah satu model yg digunakan dalam SPK untuk pengambilan keputusan. Model ini mengambil keputusan dengan melakukan perbandingan-perbandingan tiap alternatif dan kriteria ke dalam bentuk matriks. Perbandingan-perbandingan tersebut juga didapatkan dari

pengambil keputusan yang akan memberikan penilaian-penilaiannya berdasarkan data dan fakta yang telah ada.

3.1 Pengumpulan Data

Untuk memilih jenis tanaman pangan yang paling cocok ditanami di Cilegon, maka harus dilakukan pengumpulan data dan perbandingan antar **Alternatif** dan antar **Kriteria**.

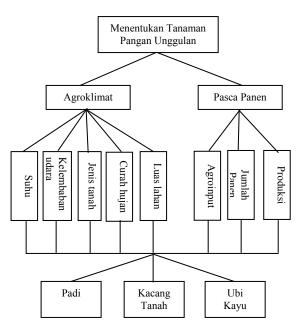
Berdasarkan data-data yang sudah dikumpulkan melalui BPS dan Dinas Pertanian dan Perindustrian Kotamadya Cilegon, maka kriteriakriteria pemilihan tanaman pangan unggulan ditentukan berdasarkan hal-hal berikut:

- 1. **Agroklimat**, yang terdiri dari sub-sub kriteria:
 - Suhu
 - Kelembaban Udara
 - Jenis Tanah
 - Curah Hujan
 - Luas Lahan

2. Pasca Panen, terdiri dari:

- Agroinput
- Jumlah Panen
- Produksi

Tabel 1: Data perkembangan tanaman


Jenis	Target	Target	Realisasi
Tanaman	Tanaman	Panen	Produk
a. Padi	2.713 Ha	2.408 Ha	15.758 Ton GKG
b. Jagung	500 Ha	503 Ha	400 Ton Pipilan
c. Kacang	2.725 Ha	1.660 Ha	4.761 Ton
Tanah			Brangkasan
 d. Kacang Hijau 	230 Ha	217 Ha	958 on Biji
e. Ubi Kayu	525 Ha	217 Ha	2.184 Ton Ubi
			Basah
f. Ubi Jalar	500 Ha	234 Ha	958 Ton Ubi
			Basah
g. Sayuran			
- Cabe Merah	58 Ha	78 Ha	78 Ton
- Kacang	150 Ha	274 Ha	476 Ton
Panjang			
- Terung	55 Ha	126 Ha	163 Ton
- Timun	112 Ha	268 Ha	909 Ton
- Tomat	35 Ha	82 Ha	189 Ton
 Kangkung 	8 Ha	114 Ha	155 Ton

Sementara data-data tentang jenis-jenis tanaman di Cilegon dan perkembangan-nya seperti pada tabel 1 diatas.

Berdasarkan data tersebut, Padi memiliki realisasi produk tertinggi disusul Kacang Tanah dan Ubi Kayu. Maka ketiga jenis tanaman tersebut dapat menjadi alternatif tanaman yang paling sesuai untuk di tanam di Cilegon.

3.2 Hierarki Keputusan

Dengan menggunakan AHP, permasalahan dapat dirumuskan dalam sebuah hierarki :

Gambar 1: Hierarki Keputusan

3.3 Perhitungan Matriks

Dari hirarki tersebut dibuat perhitungan menggunakan AHP, yaitu dengan memasukkan kriteria-kriteria dan alternatif-alternatif yang ada untuk diperbandingkan satu dengan yang lainnya. Perbandingan-perbandingan dilakukan menggunakan matriks dengan 3 tahapan yaitu:

- 1. Perbandingan Berpasangan
- 2. Normalisasi Kriteria
- 3. Prioritas Global

A. Perbandingan Berpasangan

Pada matriks ini akan dilakukan perbandingan antar-sub kriteria dengan memasukkan angkaangka penilaian berdasarkan data-data yang ada, dimana dua sub kriteria yang sama pentingnya diberi nilai 1 seperti pada Tabel 2.

Kemudian dilanjutkan dengan menghitung normalisasi bobot dari masing-masing subkriteria dengan membagi nilai masing-masing sel pada matriks terhadap jumlah totalnya seperti pada Tabel 3.

Berikut perbandingan sub-sub kriteria Agroklimat:

Tabel 2: Perbandingan Berpasangan Kriteria Agroklimat

Perbandingan					
Berpasangan	A1	A2	A3	A4	A5
A1 Luas Lahan	1.000	0.333	0.200	0.200	0.143
A2 Curah Hujan	3.000	1.000	1.000	0.333	0.200
A3 Jenis Tanah	5.000	1.000	1.000	0.200	1.000
A4 Kelembaban	5.000	3.000	5.000	1.000	1.000
A5 Suhu	7.000	5.000	1.000	1.000	1.000
Total	21.000	10.333	8.200	2.733	3.343

Tabel 3: Normalisasi Bobot Kriteria Agroklimat

	Normalisasi Bobot	A1	A2	A3	A4	A5	Bobot
	Dooot						
A1	Luas Lahan	0.048	0.032	0.024	0.073	0.043	0.044
A2	Curah Hujan	0.143	0.097	0.122	0.122	0.060	0.109
A3	Jenis Tanah	0.238	0.097	0.122	0.073	0.299	0.166
A4	Kelembaban	0.238	0.290	0.610	0.366	0.299	0.361
A5	Suhu	0.333	0.484	0.122	0.366	0.299	0.321
	Total	1.000	1.000	1.000	1.000	1.000	1.000

Perbandingan Berpasangan sub-subkriteria Pasca Panen:

Tabel 4: Normalisasi Kriteria Pasca Panen

_				
	Perbandingan			
	Berpasangan	B1	B2	В3
B1	Produksi	1.000	0.200	0.143
B2	Jumlah Panen	5.000	1.000	0.333
В3	Agroinput	7.000	3.000	1.000
	Total	13.000	4.200	1.476

Tabel 5: Normalisasi Bobot kriteria Pasca Panen

	Normalisasi Bobot	B1	В2	В3	Bobot
B1	Produksi	0.077	0.048	0.097	0.074
В2	Jumlah Panen	0.385	0.238	0.226	0.283
В3	Agroinput	0.538	0.714	0.677	0.643
	Total	1.000	1.000	1.000	1.000

Untuk memastikan konsistensi dari angka yang dimasukkan ke dalam matriks, dapat digunakan rumus :

$$\lambda \text{ maks} = \frac{(\lambda 1 + \lambda 2 + \dots \lambda n)}{n}$$

$$CI = \frac{\lambda \text{ maks} - n}{n-1}$$

$$CR = \frac{CI}{RI}$$

- 1. Nilai λ diperoleh dari jumlah entri dibagi dengan bobot , dimana nilai bobot diinput berdasarkan garis simetris matriks normalisasi kriteria agroklimat.
- 2. CI = Consistency Index.
- 3. CR = Consistency Ratio.
- 4. RI = $Ratio\ Index$.

Nilai untuk RI telah ditetapkan yaitu :

Tabel 6: Nilai RI

n	1	2	3	4	5
RI	0	0	0.58	0.90	1.12
n	6	7	8	9	10
RI	1.24	1.32	1.41	1.45	1.49

B. Normalisasi Kriteria

Pada tahap ini dibuat matriks perbandingan beserta matriks normalisasi bobotnya seperti pada tahapan Perbandingan Berpasangan, tetapi pada tahapan ini yang diperbandingkan adalah alternatifalternatif tanaman pilihan berdasarkan tiap sub kriteria yang ada. Karena terdapat 8 sub kriteria, maka akan dilakukan 8 kali perbandingan. Untuk lebih jelasnya terlihat dalam Tabel 7 sampai dengan Tabel 22 berikut:

- 1. Normalisasi Kriteria Agroklimat
- a. Berdasarkan subkriteria Luas Lahan

Tabel 7: Normalisasi Sub Kriteria Luas Lahan

Perbandingan			
Berpasangan	X	Y	Z
X Ubi Kayu	1.000	0.333	0.143
Y Kacang Tanah	3.000	1.000	0.200
Z Padi	7.000	5.000	1.000
Total	11.000	6.333	1.343

Tabel 8: Normalisasi Bobot Sub Kriteria Luas Lahan

	Normalisasi Bobot	X	Y	Z	Bobot
X	Ubi Kayu	0.091	0.053	0.106	0.083
Y	Kacang Tanah	0.273	0.158	0.149	0.193
Z	Padi	0.636	0.789	0.745	0.724
	Total	1.000	1.000	1.000	1.000

b. Berdasarkan subkriteria Curah Hujan

Tabel 9: Normalisasi Sub Kriteria Curah Hujan

	Perbandingan Berpasangan	X	Y	Z
X	Ubi Kayu	1.000	0.333	0.200
Y	Kacang Tanah	3.000	1.000	0.333
Z	Padi	5.000	3.000	1.000
	Total	9.000	4.333	1.533

Tabel 10: Normalisasi Bobot Sub Kriteria Curah Hujan

	Normalisasi Bobot	X	Y	Z	Bobot
X	Ubi Kayu	0.111	0.077	0.130	0.106
Y	Kacang Tanah	0.333	0.231	0.217	0.260
Z	Padi	0.556	0.692	0.652	0.633
	Total	1.000	1.000	1.000	1.000

c. Berdasarkan subkriteria Jenis Tanah

Tabel 11: Normalisasi Sub Kriteria Jenis Tanah

	Perbandingan			
	Berpasangan	X	Y	Z
X	Ubi Kayu	1.000	0.333	0.143
Y	Kacang Tanah	3.000	1.000	0.200
Z	Padi	7.000	5.000	1.000
	Total	11.000	6.333	1.343

Tabel 12: Normalisasi Bobot Sub Kriteria Jenis Tanah

			I dildii			
		Normalisasi Bobot	X	Y	Z	Bobot
	X	Ubi Kayu	0.091	0.053	0.106	0.083
	Y	Kacang Tanah	0.273	0.158	0.149	0.193
Ī	Z	Padi	0.636	0.789	0.745	0.724
Ī		Total	1.000	1.000	1.000	1.000

d. Berdasarkan subkriteria Kelembaban Udara

Tabel 13: Normalisasi Sub Kriteria Kelembaban Udara

	Perbandingan			
	Berpasangan	X	Y	Z
X	Ubi Kayu	1.000	0.333	0.143
Y	Kacang Tanah	3.000	1.000	0.250
Z	Padi	7.000	4.000	1.000
	Total	11.000	5.333	1.393

Tabel 14: Normalisasi Bobot Sub Kriteria Kelembaban Udara

	Refembaban Caara							
	Normalisasi Bobot	X	Y	Z	Bobot			
X	Ubi Kayu	0.091	0.063	0.103	0.085			
Y	Kacang Tanah	0.273	0.188	0.179	0.213			
Z	Padi	0.636	0.750	0.718	0.701			
Total		1.000	1.000	1.000	1.000			

e. Berdasarkan subkriteria suhu

Tabel 15: Normalisasi Sub Kriteria Suhu

	Perbandingan Berpasangan	X	Y	Z
X	Ubi Kayu	1.000	0.333	0.200
Y	Kacang Tanah	3.000	1.000	0.333
Z	Padi	5.000	3.000	1.000
	Total	9.000	4.333	1.533

Tabel 16: Normalisasi Bobot Sub Kriteria Suhu

	Normalisasi Bobot	X	Y	Z	Bobot
X	Ubi Kayu	1.000	0.077	0.130	0.106
Y	Kacang Tanah	3.000	0.231	0.217	0.260
Z	Padi	5.000	0.692	0.652	0.633
	Total	1.000	1.000	1.000	1.000

- 2. Normalisasi Kriteria Pasca Panen
- a. Berdasarkan subkriteria Produksi

Tabel 17: Normalisasi Sub Kriteria Produksi

	Perbadingan			
	Berpasangan	X	Y	Z
X	Ubi Kayu	1.000	0.200	0.125
Y	Kacang Tanah	5.000	1.000	0.500
Z	Padi	8.000	2.000	1.000
	Total	14.000	3.200	1.625

Tabel 18: Normalisasi Bobot Sub Kriteria Produksi

	Normalisasi				
	Bobot	X	Y	Z	Bobot
X	Ubi Kayu	0.071	0.063	0.077	0.070
Y	Kacang Tanah	0.357	0.313	0.308	0.326
Z	Padi	0.571	0.625	0.615	0.604
	Total	1.000	1.000	1.000	1.000

b. Berdasarkan subkriteria Jumlah Panen

Tabel 19: Normalisasi Sub Kriteria Jumlah Panen

	Perbadingan Berpasangan	X	Y	Z
X	Ubi Kayu	1.000	0.200	0.143
Y	Kacang Tanah	5.000	1.000	0.333
Z	Padi	7.000	3.000	1.000
	Total	13.000	4.200	1.476

Tabel 20: Normalisasi Bobot Sub Kriteria Jumlah Panen

	Normalisasi				
	Bobot	X	Y	Z	Bobot
X	Ubi Kayu	0.077	0.048	0.097	0.074
Y	Kacang Tanah	0.385	0.238	0.226	0.283
Z	Padi	0.538	0.714	0.677	0.643
	Total	1.000	1.000	1.000	1.000

c. Berdasarkan subkriteria Agroinput

Tabel 21: Normalisasi Sub Kriteria Agroinput

	Perbadingan			
	Berpasangan	X	Y	Z
X	Ubi Kayu	1.000	0.200	0.125
Y	Kacang Tanah	5.000	1.000	0.333
Z	Padi	8.000	3.000	1.000
	Total	13.000	4.200	1.476

Tabel 22: Normalisasi Bobot Sub Kriteria Agroinput

	Normalisasi				
	Bobot	X	Y	Z	Bobot
X	Ubi Kayu	0.071	0.048	0.086	0.068
Y	Kacang Tanah	0.357	0.238	0.228	0.275
Z	Padi	0.571	0.714	0.686	0.657
	Total	1.000	1.000	1.000	1.000

C. Prioritas Global

Setelah semua matriks perbandingan untuk level tiga selesai diisi dan diolah maka didapatkan bobot semua prioritas lokal. Langkah berikutnya adalah melakukan operasi perkalian antara matriks

yang memuat prioritas lokal tersebut sehingga akhirnya akan menghasilkan suatu prioritas global.

Matriks Prioritas Lokal dan Global berisi bobot-bobot dari tiap sub kriteria yang didapat dari matriks Normalisasi Bobot pada tahapan Perbandingan Berpasangan. Selain bobot tiap sub kriteria, matriks Prioritas Lokal dan Global juga berisi bobot-bobot dari tiap alternatif terhadap tiap sub kriteria, yang diperoleh dari matriks Normalisasi Kriteria pada tahapan kedua (tahapan Normalisasi Kriteria). Untuk lebih jelasnya dapat dilihat pada Tabel 23 dan Tabel 25.

Setelah memasukkan bobot ke dalam matriks, selanjutnya kembali dibuat matriks Normalisasi Bobot untuk Prioritas Lokal dan Global tiap kriteria. Normalisasi Bobot ini didapat dengan melakukan perhitungan perkalian kepada tiap sel alternatif pilihan terhadap bobot nya masing2 berdasarkan bobot tiap sub kriteria. Kemudian bobot tiap alternatif dijumlahkan seperti pada Tabel 24 dan Tabel 26.

Prioritas-prioritas lokal dan prioritas global dari masalah pemilihan tanaman pangan unggulan ditunjukkan dengan tabel-tabel berikut :

Tabel 23: Prioritas Lokal dan Global Agroklimat

	Kriteria	A1	A2	A3	A4	A5
	Bobot	0.044	0.108	0.165	0.360	0.320
X	Ubi Kayu	0.083	0.106	0.083	0.085	0.106
Y	Kacang Tanah	0.193	0.260	0.193	0.213	0.260
Z	Padi	0.724	0.633	0.724	0.701	0.634
	Total	1.000	1.000	1.000	1.000	1.000

Tabel 24: Normalisasi Bobot Prioritas Lokal dan Global Agroklimat

	Normalisasi Bobot	A1	A2	A3	A4	A5	Bobot
X	Ubi Kayu	0.003	0.011	0.014	0.030	0.034	0.094
Y	Kacang Tanah	0.008	0.028	0.032	0.076	0.083	0.229
Z	Padi	0.031	0.068	0.119	0.252	0.203	0.676
	Total	0.044	0.108	0.166	0.360	0.320	1.000

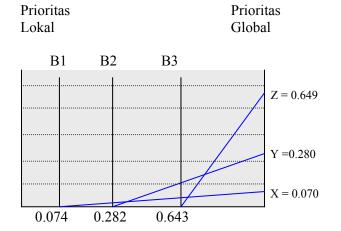
Tabel 25: Prioritas Lokal dan Global Pasca Panen

	Kriteria	B1	B2	В3
	Bobot	0.074	0.282	0.643
X	Ubi Kayu	0.070	0.074	0.068
Y	Kacang Tanah	0.325	0.283	0.274
Z	Padi	0.603	0.643	0.657
	Total	1.000	1.000	1.000

Tabel 26: Normalisasi Bobot Prioritas Lokal dan Global Pasca Panen

		Normalisasi Bobot	B1	В2	В3	Bobot
	X	Ubi Kayu	0.005	0.021	0.044	0.070
	Y	Kacang Tanah	0.024	0.080	0.176	0.280
	Z	Padi	0.044	0.181	0.422	0.649
	•	Total	0.074	0.282	0.643	1.000

Setelah membuat matriks Prioritas Lokal dan Global, selanjutnya nilai-nilai bobot dari matriks tersebut di kumpulkan dan dijumlahkan, sehingga akan didapat nilai akhir untuk tiap alternatif.


Penjumlahan nilai-nilai bobot tersebut dibuat ke dalam matriks yang akan menunjukkan nilai akhir dari penggunaan matriks AHP untuk memecahkan permasalahan pemilihan tanaman pangan unggulan di Kotamadya Cilegon. Berikut matriks hasil akhir :

Tabel 27: Hasil Akhir Tanaman Pangan Unggulan

	Kriteria	Ubi Kayu	Kacang Tanah	Padi
A	Agroklimat	0.094	0.229	0.676
P	Pasca Panen	0.070	0.280	0.649
	Total	0.164	0.509	1.325

Matriks diatas menunjukkan bahwa padi merupakan tanaman pangan unggulan dengan memperoleh nilai sebesar 1.325, disusul dengan kacang tanah menempati urutan kedua dengan nilai sebesar 0.509 dan ubi kayu menempati urutan ketiga dengan mendapat nilai sebesar 0.164.

Gambar 2: Grafik Hasil Keputusan Matriks AHP

- [4] Saaty, Thomas L. 1991. Pengambilan Keputusan Bagi Para Pemimpin. Terjemahan Liana Setiono. PT.Pustaka Binaman Pressindo, Jakarta.
- [5] Turban, Efraim and Aronson, Jay. 2001. Decision Support System and Intelligent Systems. Prentice Hall, Inc., New Jersey.

4 KESIMPULAN

AHP merupakan suatu model pengambil keputusan yang bersifat dinamis, artinya AHP bisa digunakan untuk memecahkan berbagai macam permasalahan, baik dalam organisasi yang berbentuk perusahaan maupun organisasi-organisasi non-perusahaan, seperti Dinas Pertanian dan Perindustrian Kotamadya Cilegon. Perhitungan AHP memiliki keunggulan pada keakuratan dan konsistensi penilaian yang dibuat, hasil yang didapat juga fleksibel, berdasarkan penilaian dari si pengambil keputusan. Selain itu untuk memudahkan penggunaan AHP dapat dibuat dalam bentuk matriks tanpa harus menggunakan bermacam-macam rumus.

DAFTAR PUSTAKA

- [1] Badan Pusat Statistik. 2000. Cilegon Dalam Angka Tahun 2000.
- [2] Marakas, George, M. 1999. *Decision Supports Systems in The 21*st *Century*.International Edition. Prentice-Hall, Inc., New Jersey.
- [3] Pemerintah Kota Cilegon Dinas Koperasi dan Pertanian. 2002. Seksi Tanaman Pangan dan Perkebunan Tahun 2002.