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Introduction 

In the field of biomedicine, important issues to address are the early-stage diagnosis and targeted 

therapies. Since the last two decades, magnetic nanoparticles have been proposed as potentially powerful due 

to their unique chemical-physical properties. Magnetic nanoparticles can be applied in a wide variety of 

biomedical fields from the magnetic separation and Magnetic Resonance Imaging (MRI) to drug delivery and 

Magnetic Fluid Hyperthermia (MFH).(Krishnan, 2010) In particular, MFH is based on the heat released by 

magnetic nanoparticles subjected to an alternate external magnetic field. Among the different material features 

affecting the hyperthermic efficiency, the magnetic properties are clearly the most important. Therefore, the 

optimisation of the magnetic properties, aimed to increase the heating ability and to reduce the magnetic 

material dose to be inserted in the human body, is still an active research field. In 2013 alone, 682 works have 

been published in the literature on the topic of magnetic hyperthermia.(Wildeboer et al., 2014) 

Despite cobalt toxicity, cobalt-containing materials and especially cobalt ferrite nanoparticles have been 

proposed as promising heat mediators due to its high anisotropy.(Alphandéry et al., 2011; Baaziz et al., 2014; 

Fantechi et al., 2015; Joshi et al., 2009; Kim et al., 2008; Kita et al., 2010; Mazarío et al., 2012; Nappini et 

al., 2015; Pichon et al., 2011; Torres et al., 2010; Veverka et al., 2010) 

In this thesis, the results obtained on two different systems, designed with the idea of studying the effect on 

the hyperthermic properties of proper tuning of the magnetic properties, are presented. Both the sets of samples 

are based on cobalt ferrite nanoparticles. The first strategy consists on the substitution of cobalt ions with zinc 

ones with the aim of tuning the magnetic properties of the system and, at the same time, decrease the toxicity 

of the material. The second way is on the contrary represented by the coating of cobalt ferrite cores by means 

of biocompatible or less toxic isostructural phases (i.e. magnetite/maghemite or manganese ferrite). 

The thesis is divided within five chapters. The introduction session is divided in three different chapters. 

Chapter 1 gives a general overview about nanomaterials and their chemical-physical properties. Chapter 2 is 

fully dedicated to Magnetic Fluid Hyperthermia (MFH). In Chapter 3, the structural and magnetic properties of 

spinel ferrites are briefly outlined. The experimental session is given in two different chapters. The first one 

(Chapter 4) deals with the study of the magnetic properties and the heating abilities of ZnxCo1-xFe2O4 

nanoparticles, synthesised with different zinc content (0<x<0.6) but with all the other properties unchanged (i.e. 

with similar crystallite size, particle size and  polydispersity index, same capping agent amount and type). The 

second chapter (Chapter 5) is dedicated to the synthesis, microstructural and hyperthermic properties of cobalt 

ferrite-based core@shell structures, CoFe2O4@MIIFe2O4, with a shell MIIFe2O4 of magnetite/maghemite or 

manganese ferrite. Finally, general conclusions are given. 
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1 Nanoparticles and their properties 

Abstract 

In this chapter, a general discussion about nanomaterials and the chemical-physical properties that arise 

from scaling-down the matter to the nanoscale is given. Particular attention is paid on the description of magnetic 

nanoparticles and their properties. 

1.1 Nanomaterials 

The prefix “nano” is derived from a Greek word that means dwarf so that the term nanomaterials refers to 

materials with at least one dimension ranging between the atomic level (0.2 nm) and 100 nm (1 nanometre = 

10-9 metres). This class of materials is the bridge between the atoms and the bulk-solids. For this reason, 

nanomaterials can show different and novel properties in comparison with their bulk-counterparts due to two 

effects: the higher surface/volume (S/V) ratio and the occurrence of quantum effects. The first effect deals with 

the chemical reactivity that increases with increasing number of surface atoms, i.e. with increasing S/V (Fig. 

1.1.1). 

Fig. 1.1.1 Surface/volume (S/V) ratio for a bulk material (1) and a nanoparticle (2). 

The second one is particularly important for materials approaching the lower bound of the nanoscale (tens 

of nanometres) and affects their physical (optical, magnetic, electrical) properties (Fig. 1.1.2). 

Fig. 1.1.2 (a) Silver ingots (bulk material) and (b) colloidal dispersions of silver nanoparticles of different sizes.(Dalu, 

2014) 

 

(a) (b)  

http://www.google.it/url?sa=i&rct=j&q=silver&source=images&cd=&cad=rja&docid=o840q42gcjFp9M&tbnid=VTVVJs-4lStbgM:&ved=0CAUQjRw&url=http://canadiansilverdollarssite.com/&ei=23mXUYX8G8vFPaj1gbgP&psig=AFQjCNFfjq0nb7XjDO1SgVYhSLGKxyI5OQ&ust=1368968023544601
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The comprehension of these phenomena is the subject matter of nanoscience.(Dowling et al., 2004) 

Depending on how many dimensions are nanosized, nanomaterials can be classified as nanocrystals or 

nanoparticles (3-D nanoscaled), nanowires and nanotubes (2-D nanoscaled), surfaces and thin films (1-D 

nanoscaled).(Dowling et al., 2004; Rao and Cheetham, 2001)  In addition, two dimensional or three dimensional 

(superlattices) arrays of nano-objects are considered nanomaterials too.(Rao and Cheetham, 2001)  

In 1959, Richard Feynman with his lecture titled “There’s plenty of room at the bottom” first suggested the 

idea of “manipulating and controlling things on a small scale”, i.e. the nanoscale.(Feynman, 1959) This moment is 

considered as the beginning of nanotechnology which concerns with the design, characterisation, production and 

application of materials by controlling shape and size at the nanoscale.(Dowling et al., 2004) However, 

nanotechnology is actually older than 50 years. A good example dates back to the fourth century AD with the 

Lycurgus cup, a Roman cup made of a dichroic glass containing silver-gold alloy nanoparticles homogeneously 

dispersed in the glassy matrix which are responsible for the different colours, green or red, shown when the 

visible light is reflected or transmitted, respectively.(Barber and Freestone, 1990; Freestone et al., 2007) Gold 

and silver nanoparticles have been further used in the Middle ages to build the stained glass windows of Gothic 

cathedrals. Another example concerns the extraordinary mechanical properties of Damascus blades (300-1700 

AD) which are ascribed to the presence of cementite elongated nanoparticles and nanowires.(Reibold et al., 

2009) It is worth noting that all these craftsmen were not narrowly nanotechnologists because they create their 

nanomaterials by a trial and error approach being unaware of controlling the material properties at the 

nanoscale. 

Finally, nature itself is responsible for different nanostructured materials such as the magnetic nanoparticles 

produced by magnetotactic bacteria(Bellini, 1963a, 1963b; Blakemore, 1975), the nanofibers in the gecko's 

feet that allow it to hang upside down or on inclined surfaces(Autumn et al., 2002) and the hair-like 

nanostructures found in the lotus leaves responsible for self-cleaning mechanisms.(Cheng et al., 2006) 

1.2 Magnetic nanoparticles 

As mentioned in the paragraph 1.1, the magnetic properties are among those physical properties that 

dramatically change within the nanoscale. Indeed, when the size of a ferromagnetic material is scaled down to 

create a nanoparticle (i.e. a 3D nanoscaled object), peculiar magnetic phenomena emerge. Pierre Weiss in 

1907 first described the magnetic structure of a bulk-ferromagnet by the presence of sub-domains consisting 

of aligned moments inside each domain but unaligned moments among different domains (Weiss, 1907). In this 

view, these magnetic domains are clearly separated by highly disordered regions called domain walls. This 

multi-domain structure is favoured as long as the magnetostatic energy is higher than the domain wall energy. 

Being the magnetostatic and the domain wall energy proportional to the volume and the surface of the material, 

respectively, the relative extent of these two energy contributions depends on the S/V ratio. In particular, when 

the particle size drops down to a critical value called “radius for single domain” (rsd), a multi-domain magnetic 

structure is no longer energetically convenient due to the high wall domain energy. To minimise it, a single-

domain magnetic structure is instead established, i.e. each particle is composed by a unique uniformly 
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magnetised region and is characterised by a magnetic moment m ≈ 103-105 μB (μB is the Bohr magneton defined 

as μ𝐵 = 𝑒ℏ 2𝑚𝑒⁄  and equal to 9.274·10-24 Am2), thus leading to the label “superspins”. 

This critical radius, rsd, depends on the properties of the material, such as anisotropy constants (A, Ku) and 

saturation magnetisation (Ms) according to the equation: 

Eq. 1.2.1 

For this reason, this property can be considered specific for each material. 

Another critical radius called “radius for superparamagnetism” is the size under which a ferromagnetic 

materials exhibits a zero coercivity, the magnetic cooperative properties are lost and a paramagnetic 

behaviour is established (Fig. 1.2.1). All these critical sizes fall within the nanoscale, as shown in Tab. 1.2.1 for 

different magnetic materials. 

Fig. 1.2.1 Variation of the coercive field with nanoparticle size. 

Tab. 1.2.1 Magnetic properties of various bulk materials estimated at room temperature (Coey, 2010; Cullity and Graham, 

2009; Thuy et al., 2012). *Maghemite (γ-Fe2O3) reverts to hematite (α-Fe2O3) above 800 K. 

Materials Ku (105 erg∙cm-3) Ms (emu cm-3) Tc (K) rsd (nm) rSP (nm) 

bcc-Fe 4.8 1745.9-1714 1044 15 10 

fcc-Co 41 1460.5 1388 30 10 

hcp-Co 27 1435.9 1360 34 - 

FeCo - 1910 - 50 10 

Fe3Co - 1993 - - 10 

γ-Fe2O3 -0.5 380 985* 30 20 

Fe3O4 -1.3 415-480 840 38 15 

CoFe2O4 29 425 790 - - 

MnFe2O4 -0.3 400 575 - - 

𝑟𝑠𝑑 ≈ 9
√𝐴 ∙ 𝐾𝑢

𝜇0𝑀𝑠
2  
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Single-domain nanoparticles (NPs) act as single magnetic moments (i.e. superspins) that are able to 

reproduce in “a bigger scale” different magnetic behaviours (paramagnetism, spin-glass, ferromagnetism) as the 

atomic magnetic moments do. The occurrence of these supermagnetic behaviours (superparamagnetism, super 

spin glass, superferromagnetism) is affected by the relative strength of inter-particle interactions and thermal 

energy. Indeed, non-interacting NPs act independently and the thermal energy is sufficient to disorder the 

superspins. To be more precise, usually single-domain NPs are characterised by the existence of particular 

directions along which the magnetisation process easily occurs (easy-axes). Therefore, the parallel or antiparallel 

alignment of the magnetisation with respect to this axis represent energy minima conditions. For instance, uniaxial 

particles with an anisotropy energy equal to 𝐸 = 𝐾𝑉 sin2 𝜃, where 𝐾 is the anisotropy constant, 𝑉 is the particle 

volume and 𝜃 is the angle between the magnetisation and the easy axis, shows two minima energy for a parallel 

and an antiparallel alignment of the magnetisation with respect to the easy axis, i.e. 𝜃 = 0 and 𝜃 = 180°. 

When the energy barrier Δ𝐸 = 𝐾𝑉 is lower than the thermal energy (𝑘𝐵𝑇) and the particles do not interact 

each other, the magnetisation can fluctuate between these two energy minima, giving rise to a 

superparamagnetic behaviour (Fig. 1.2.2). When the energy barrier becomes higher than the thermal energy 

(note that Δ𝐸 increases with increasing anisotropy constant or particle volume), this spin-flip process is no more 

possible and the magnetisation will be blocked on a certain minimum. 

Fig. 1.2.2 Energy profile of a single-domain particle with uniaxial anisotropy as a function of the angle θ between the 

magnetization and the easy axis magnetization direction. 

Nevertheless, it is worth noting that the magnetisation reversal is a dynamic process with a characteristic 

time necessary to overcome the energy barrier. This time is known as the Néel-Brown relaxation time and 

exponentially depends on the ratio between the energy barrier and the thermal energy, as follows: 

Eq. 1.2.2 

Where 𝜏0 is the characteristic relaxation time. 

For a certain anisotropy constant and a certain particle volume, a system of NPs can show either a 

superparamagnetic or a blocked state according to the relative extent of the relaxation time (𝜏𝑁) and the 

 

𝜏𝑁 = 𝜏0𝑒
𝐾𝑉/𝑘𝐵𝑇 
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measurement time (𝜏𝑚). In other words, depending on the measurement timescale, a superparamagnetic state 

will be exhibited at a different temperature. The temperature at which the relaxation time is equal to the 

measurement time is called blocking temperature (TB) and such a definition implies that this quantity is not an 

intrinsic property of the material: 

Eq. 1.2.3 

Therefore, when 𝜏𝑚 ≫ 𝜏𝑁 the NPs show superparamagnetic behaviour whereas when 𝜏𝑚 ≪ 𝜏𝑁 the NPs 

appear to be blocked. 

As before-mentioned, the superparamagnetism translates into a linear magnetic field dependence of the 

magnetisation with a zero coercivity similarly to a paramagnet (Fig. 1.2.3a) and an S-shaped curve (Fig. 

1.2.3b). On the contrary, NPs in a blocked state are responsible for an hysteresis loop (Fig. 1.2.3c). 

Fig. 1.2.3 Magnetisation versus magnetic field curves (M vs H) for a paramagnet (a), a superparamagnet (b) and a 

ferro/ferrimagnet (c). 

Contrary to superparamagnetic NPs, interacting single-domain ones provides a collective responses 

because the particles affect each other’s behaviour. This happens with different extent in super spin glass systems 

and superferromagnetic ones.(Bedanta and Kleemann, 2009) 

1.3 Biomedical applications of magnetic nanoparticles 

Early diagnosis and targeted therapies are fundamental questions in the field of biomedicine. The 

development of new technologies designed to answer to these issues has strongly driven the research in this 

field. Since the last two decades, magnetic nanostructured materials have been proposed as suitable platforms 

due to their novel chemical-physical properties for in vivo and in vitro diagnostic, therapeutic and theranostic 

purposes.(Krishnan, 2010) 

The use of magnetic nanoparticles in biomedicine provides different novel functionalities: 

 Having sizes smaller or comparable to those of different biological entities (a cell (10–100 µm), 

a virus (20–450 nm), a protein (5–50 nm) or a gene (2 nm wide and 10–100 nm long)), they can 

directly interact with them;  

 Being magnetic, they can be remotely controlled by an external magnetic field; 

𝑇𝐵 ≈ 𝐾𝑉 𝑘𝐵⁄ 𝑙𝑛(𝜏𝑚/𝜏𝑁) 
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 Being magnetic, they can be responsible for an energy transfer in the tissue as a result of the 

application of an AC magnetic field.(Pankhurst et al., 2003) 

Clearly, some requirements are necessary for a magnetic material to be applied in this field: 

 non-toxicity; 

 biocompatibility; 

 biodegradability; 

 good response to the applied magnetic field; 

 negligible remnant magnetisation when the external field is turned off; 

 the smallest size as possible to increase the surface area available for the functionalisation; 

 well-defined morphological properties (particle size, size distribution); 

 good microstructural properties (crystallinity); 

 chemical stability; 

 colloidal stability; 

 ease of production; 

 low cost. 

Different specific biomedical applications of magnetic nanoparticles have been identified such as magnetic 

separation, Magnetic Resonance Imaging (MRI), drug delivery and Magnetic Fluid Hyperthermia 

(MFH).(Pankhurst et al., 2003) 

The basic principles of these applications are briefly described in the following paragraphs with the 

exception of Magnetic Fluid Hyperthermia that is discussed in detail in Chapter 2. 

1.3.1 Magnetic separation 

For numerous biological and biomedical assays and analyses, it is necessary to separate specific biological 

entities from their original environment. Magnetic separation can be applied with this aim. The biological entities 

need first to be labelled with the magnetic material by a proper surface functionalisation with molecules as 

dextran, polyvinyl alcohol (PVA) and phospholipids. Then, the fluid passes through a magnetic field gradient 

which stops the labelled entities. Nanoparticles are preferred with respect to the microparticles because their 

magnetophoretic mobility is lower and the separation can be carried out rapidly. Moreover, the reduced size 

permits a lower interference with successive tests on the separated entities.(Pankhurst et al., 2003) 

1.3.2 Magnetic Resonance Imaging (MRI) 

Among other techniques, MRI has become dominant in the non-invasive imaging of soft-tissues. It is based 

on the nuclear magnetic resonance of the protons of the water present in the body. Although the proton magnetic 

moment is small, the high proton density in the body can be exploited to get high resolution images of internal 

organs. Indeed, the available proton moments per mm3 are 2·1014, producing a net magnetisation when an 

intense static magnetic field (B0, longitudinal field) is applied due to the parallel alignment of the proton 

moments in the field direction (z-axis). More precisely, the protons moments start to spin around B0 field at a 

Larmor precession frequency (ω0 = γB0) that fall in the radiofrequency range (for B0 = 1T, ω0 = 43 MHz). 
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When the transverse field gets back to zero, relaxation processes of the longitudinal and transverse 

magnetisations occur with characteristic times called T1 and T2, respectively. The profiles of the magnetisation 

components are described by the following equations: 

Eq. 1.3.1 

Eq. 1.3.2 

The longitudinal and transverse magnetisations relax by spin-lattice dipolar interactions and spin-spin 

interactions, respectively. From these relaxation processes is possible to reconstruct the magnetic resonance 

images, which contrast strongly depends on T1 and T2.  

In T1-weighted images, water is darker than fat whereas the opposite contrast is obtained for T2-weighted 

images. However, in many tissues, the intrinsic contrast is not sufficient and external agents are used to improve 

it. Contrast agents usually shorten the relaxation times T1 (positive contrast agents) or T2 (negative contrast 

agents). Paramagnetic ions complexes of gadolinium are typical T1 contrast agents but a serious drawback in 

their use is the tendency to accumulate in the liver. Among T2 agents superparamagnetic (usually iron oxides) 

nanoparticles are used because they are able to generate a secondary magnetic field that render faster the 

relaxation process of the transverse magnetisation.(Krishnan, 2010; McNamara and Tofail, 2015; Pankhurst et 

al., 2003; Yoo et al., 2011) 

1.3.3 Drug delivery 

Magnetically targeted drug delivery is another important biomedical application of magnetic nanoparticles 

that can be used as carriers for anti-cancer drugs. A ferrofluid containing the drug/carrier system is first 

intravenously or intra-arterially injected into the patient and, once a magnetic field has conducted it to the 

target tissue, the drug is released by means of enzymatic activity or a physiological variation for instance in 

the pH or temperature. 

This therapy aims to sort out some of the main drawbacks of conventional chemotherapy, making the 

treatment more specific and effective, avoiding side effects on the healthy tissues and reducing the necessary 

dosage. These objectives can be reached by means of an appropriate functionalisation of the nanoparticles 

surface by active or passive targeting. The former is based on the conjugation with antibodies, ligands or 

aptamers that can be recognised by specific receptors present in the tissues. The latter is based on the 

preferential accumulation of nanoparticles within cancer tissues (Enhanced Permeability and Retention effect) or 

by intra-tumour injections. 

  

𝑀𝑧 = (1 − 𝑒−𝑡 𝑇1⁄ ) 

𝑀𝑥𝑦 = 𝑚𝑠𝑖𝑛(𝜔0𝑡 + 𝜙)𝑒−𝑡/𝑇2 
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2 Magnetic Fluid Hyperthermia 

Abstract 

After a brief introduction about the cancer and the conventional anti-cancer therapies, this chapter will be 

dedicated to hyperthermia, i.e. heating up of tumour tissues aimed to damage or kill cancer cells. The possibility 

of using magnetic nanoparticles (MNPs) in the form of ferrofluids as heat mediators for moderate hyperthermia 

treatments (41-46 °C), have defined the so-called Magnetic Fluid Hyperthermia (MFH). This therapy has 

potentially great advantage since it would be non-invasive due to reduced size of the heat mediators and 

selective due to the intrinsic higher thermal sensitivity of cancer cells with respect to the healthy ones. The different 

heat release mechanisms from magnetic nanoparticles will be discussed together with the description of the 

experimental method used to measure their hyperthermal ability. Finally, a paragraph will aim to summarise 

the main literature results.  

2.1 What is cancer? 

Cancer, malignant tumour, neoplasm are generic terms referring to a group of about two hundred diseases 

characterised by a rapid growth of abnormal cells through uncontrolled and anomalous mechanisms. During 

their growth, these cells start to differentiate increasingly from the healthy ones.(AIOM and AIRTUM, 2012; 

World Health Organisation, 2015) Cancer is the result of a multi-stage process from one single cell that 

transforms into a tumour one. Usually, the starting point is a pre-cancer lesion.(World Health Organisation, 

2015) It can be caused by both internal and external factors. Gene mutations, hormones, immune defence 

system functionalities are internal causes whereas the external carcinogens can be physical (radiations), chemical 

(food or drinking water contaminant, asbestos, tobacco components) or biological (infections agents).(AIOM and 

AIRTUM, 2012; World Health Organisation, 2015) Obviously ageing is another key factor. 

Although remarkable progress has been made in cancer therapy, cancer is still one of the leading causes 

of death worldwide. In 2012, 8.2 million deaths and 14 million new cases have been recorded. The most 

common tumours affect lungs (1.59 million deaths), liver (745 000 deaths), stomach (723 000 deaths), colon-

rectum (694 000 deaths), breast (521 000 deaths) and oesophagus (400 000 deaths).(World Health 

Organisation, 2015)  

Fig. 2.1.1 Worldwide most common causes of cancer death in 2012.(World Health Organisation, 2015) 
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Estimates indicate 22 million of new cases in the next two decades.(World Health Organisation, 2015) 

In Italy, malignant tumours represent one of the principal causes of death. Among them, the trachea, bronchi, 

lung tumours have caused 33 538 deaths in 2012, being the fourth cause of death overall and the second one 

for males.(Anno 2012 Le principali cause di morte in italia, 2014) 

2.2 How to treat cancer? 

Among the various oncological therapies, surgery is the oldest one. It is also used as a diagnostic tool to 

determine the stage, the extent and amount of disease. Surgery can be classified as: 

 Diagnostic surgery with the aim of getting a tissue sample to be tested; 

 Staging surgery with the aim of detecting the disease stage; 

 Prophylactic surgery with the aim of removing a tissue that is not malignant but which may become 

malignant; 

 Curative surgery with the aim of removing a tumour tissue; 

 Palliative surgery with the aim of treating complications and/or pain. 

Surgery is often carried out in combination with other therapies, such aschemotherapy or radiotherapy. 

Radiotherapy uses high-energy radiations as X-rays or γ-rays to destroy cancer cells by stopping their 

dividing process. A drawback of this therapy is that it also affects other rapidly dividing cells as mouth, hair 

and blood cells (white cells, red cells). Radiotherapy is usually administered over an extended period of time 

(e.g. every weekday for 6 weeks) by either external focusing of the beam in the targeted tissue (external 

radiotherapy) or internal radioactive materials (brachytherapy). 

The use of specific drugs to treat cancer is called chemotherapy and, as radiotherapy does, it stops the cell 

division. Chemotherapeutic agents can be alkylating agents, antimetabolites, and enzyme inhibitors and are 

usually given in cycles from 3 months to 3 years with some rest periods in between. 

Both radio- and chemotherapies can be used in combination with surgery, before or after it to reduce the 

tumour size (neoadiuvant) or to hinder relapses (adiuvant), respectively. 

Other therapies are hormone therapy, which slows down or inhibits the production of certain hormones that 

favour the cancer growth, biological therapies (e.g. the immunotherapy promotes and supports the body immune 

system), which act directly in the cell biological processes. Finally, other more recently developed treatments 

are antiangiogenesis, photodynamic and gene therapies and bone marrow and stem cell 

transplantations.(“Associazione Italiana per la Ricerca sul Cancro (AIRC),” n.d., “Cancer Research UK,” n.d.; 

Foote, 2005) 

Unfortunately, despite the extraordinary successes achieved by Cancer research, cancer is still a global big 

issue to deal with (see paragraph 2.1 for some statistical data). In particular, problems are related to the 

ineffectiveness of the therapies in some cases as well as the extremely rapidity of cancer to become resistant 

to them. Also, it cannot be ignored that the main oncological therapies show a high number of side effects both 

temporary or long-term, from anemia to appetite loss, cognitive problems, clotting problems, constipation, 

dehydration, dental and oral health problems, diarrhoea, hair loss, skin problems, osteoporosis, nervous system 
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side effects, nausea and vomiting, pain, fatigue, etc.(“American Cancer Society,” n.d., “Associazione Italiana 

per la Ricerca sul Cancro (AIRC),” n.d.) 

2.3 Hyperthermia 

Conventional therapies (surgery, radiation, chemotherapy, immunotherapy) for treating cancer are still 

ineffective in some cases, especially for some solid tumours.(Baronzio and Hager, 2006) In addition, they are 

characterised by some serious drawbacks as invasiveness, non-selectivity and toxicity so that they are always 

accompanied by side effects, as described in the previous paragraph 2.1. Often, the tolerable toxic level of 

the patient to radiotherapy or chemotherapy restricts their applications creating a gap between the tolerance 

and the beneficial destruction.(Baronzio and Hager, 2006) Heating of tumour tissues within 41°C-46°C by 

means of external mediators, known as hyperthermia, is considered the fifth cancer therapy due to the synergistic 

effect obtained when it is provided with the traditional treatments.(Baronzio and Hager, 2006; van der Zee, 

2002) It is considered as a potential bridging therapy able to fill the gap between the tolerable toxicity and 

the desirable benefits, due to its low toxicity.(Baronzio and Hager, 2006) To be more precise, this kind of 

thermal treatment should be called moderate hyperthermia in order to be distinguished from others associated 

with lower or higher temperature reached during the treatment. The adjuvant hyperthermia is characterized by 

temperatures lower than 41°C, whilst the thermo ablation is the heating to a temperature higher than 56°C and 

implies cell death by necrosis, coagulation and carbonization of the exposed tissue.(Jordan et al., 1999) 

Hereafter, the term “hyperthermia” will be used referring to the moderate hyperthermia. 

In Europe, many trials have been carried out demonstrating the effectiveness of this therapy and the 

reduction of collateral effects. If used alone, it can destroy or damage cancer cells, being responsible for 

antineoblastic and immunological effects, whereas it renders them more sensitive to radiations or 

chemotherapeutic agents if coupled with other strategies.(Baronzio and Hager, 2006) 

The basis of the efficacy of hyperthermia in treating cancer is represented by different studies showing the 

higher heat-sensitivity of cancer cells in comparison to the healthy ones.(Cavaliere et al., 1967; Roti Roti, 2008) 

Clearly, this feature could render in principle hyperthermia more selective than other common treatments, 

keeping most normal tissues undamaged after treatment for 1 hour at a temperature up to 44 °C.(Fajardo, 

1984; van der Zee, 2002) Cancer physiology is different from the normal cells one. A disordered vasculature 

with hypoxic, acidic and energy lacking regions are typical features of solid tumours.(van der Zee, 2002) 

Concerning the vasculature, it is worth to note that, actually, the blood flows is not the same in all the tumour 

types and even in the same one, it can be locally different. Moreover, tumour tissues can be characterised by 

lower or higher blood flows than that in normal tissues. Usually, the blood flow decreases with increasing tumour 

size due to damages of the blood vessels and a rapid growth of the cancer tissues nearby them. Nevertheless, 

heating induces a deterioration of the vasculature system within tumour tissues making them less able to dissipate 

the thermal energy and reaching higher temperature, responsible for a greater damage when compared to 

normal tissues.(Song, 1984)  
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Although the exact mechanisms of cell injury is still not completely known, it seems that hyperthermia induces 

cell death by apoptosis and that the main damage is protein denaturation.(Hildebrandt et al., 2002; Lepock, 

2003) 

Commonly, cell death may occur by necrotic or apoptotic processes. Necrosis, involving cell swelling, plasma 

membrane rupture and leakage of the cell content, causes changes or losses of the cell structure and an in vivo 

inflammatory response.(Fairbairn et al., 1995; Lawen, 2003) Apoptosis is a physiological form of cell death in 

response to an environmental (physiological or pathological) stimulus without an inflammatory response and the 

cell membrane breakage. It requires metabolic energy and often causes DNA fragmentation.(Fairbairn et al., 

1995; Kerr et al., 1972; Lawen, 2003) Apoptosis dying cells are targeted by surface markers by phagocytes 

and selectively removed.(Fairbairn et al., 1995) Kerr et al. in 1972 first proposed the term “apoptosis” 

indicating the morphological changes they observed by electron microscopy.(Kerr et al., 1972) Apoptosis 

especially refers to different biochemical and physical changes of the cytoplasm, nucleus and plasma membrane 

and it does not correspond, as commonly believed, to the Programmed Cell Death which occurs during 

developments of organisms via apoptotic processes.(Kerr et al., 1972; Lawen, 2003) In addition, apoptosis can 

be detected also in untreated malignant tumours and in their regression after hyperthermia, radio- and 

chemotherapies.(Hervault and Thanh, 2014; Kerr et al., 1972) Indeed, different studies demonstrated the 

induction of apoptosis by moderate hyperthermia.(Barry et al., 1990; Fairbairn et al., 1995; Harmon et al., 

1991; Lim et al., 2006; Mack, Y. Rong, 2000; Papadimitriou and Van Bruggen, 1993; Shchepotin et al., 1997; 

Takano et al., 1991; van Bruggen et al., 1991) As already mentioned, it seems that the main involved mechanism 

is probably protein denaturation as the thermal energy at temperatures higher than 40°C is close to the energy 

needed for protein denaturation in cytoskeleton and membranes and enzyme complexes for DNA synthesis and 

repair.(Hervault and Thanh, 2014; van der Zee, 2002) Moreover, it is known the synergistic effect observed as 

a result of the close sequential application of radiotherapy or chemotherapy with hyperthermia.(Baronzio and 

Hager, 2006; van der Zee, 2002) The radiosensitisation seems to be increased by heat probably because of 

two phenomena. First, an increase of the blood flow due to heat may improve the tissue oxygenation.(Song et 

al., 2001; van der Zee, 2002) Secondly, being the cellular repair mechanisms of DNA damages seriously 

compromised by hyperthermia, radiotherapy results to be more effective.(Dikomey, H. H. Kampinga, 2001; van 

der Zee, 2002) The improved effectiveness of chemotherapy due to hyperthermia is on one hand again related 

to an increase of blood flow that permits higher concentration of anti-cancer drugs within the tumour tissue and, 

on the other hand, can be the direct effect of drugs with improved efficacy by heat, for instance caused by a 

higher intracellular uptake.(van der Zee, 2002) 

Another interesting effect of hyperthermia on tumour cells is the angiogenesis inhibition. Angiogenesis is the 

production of new vessels from pre-existing ones by which the tumour receives the necessary nutrition and 

oxygenation to progress.(Baronzio and Hager, 2006; Iyer et al., 2006) However, the neo-blood vessels have 

defective architecture, being irregular in shape, dilated, leaky or defective, and the endothelial cells are poorly 

aligned or disorga- nized with large fenestrations.(Iyer et al., 2006) Heating above 42 ˚C acts by hindering 

endothelial cell (EC) differentiation by three mechanisms: direct cytotoxicity on proliferating ECs, down-

modulation of vascular endothelial growth factor (VEGF) production by tumor cells and induction of the 

plasminogen activator inhibitor-1 (PAI-1) expression. Despite the impressive biological effects of hyperthermia, 
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the medical community appears to be somehow sceptical to it due to the not negligible technical problems 

related to deepness, focusing, reproducibility, control and personalisation.(Baronzio and Hager, 2006) 

In dependence on how extended is the part of the body to treat, hyperthermia is classified as: 

 Whole body hyperthermia, if the treatment affects the entire patient; 

 Regional hyperthermia, when a substantial region surrounding the tumour tissue is treated; 

 Local hyperthermia, if the heating is restricted to the tumour volume. 

Another classification is usually based on the kind of technology used to deliver heat, i.e. contact or 

contactless: 

1. contact with a heat mediator:  

a. superficial applicators; 

b. interstitial (needles, antennas, catheters, ferromagnetic seeds); 

c. extracorporeal circulation of hot blood in an organ; 

d. thermostatic bath (whole body hyperthermia); 

2. contactless:  

a. ultrasound waves (0.3-3 MHz); 

b. radiofrequencies (0.1-100 MHz); 

c. microwaves (100-2450 MHz). 

The interstitial mediators can be capacitive or inductive according to the main component of the 

electromagnetic field, i.e. electric or magnetic, respectively.(Fantechi, 2014)(Baronzio and Hager, 2006; 

Fantechi, 2014; Strohbehn and Douple, 1984) 

The above-cited technical limits of deepness, focusing, reproducibility, control and personalisation 

characteristic of these methods together with invasiveness (at least in some cases where a surgical implantation 

is necessary) have act as the driving force in this research field oriented towards more suitable technological 

solutions, as for instance nanostructured heat mediators as will be described in the following paragraph (2.4). 

2.4 Magnetic Fluid Hyperthermia (MFH) 

2.4.1 Basis 

The use of magnetic nanoparticles (MNPs) in the form of ferrofluids (i.e. colloidal dispersions) as heat 

mediators for moderate hyperthermia treatments, defines the so-called Magnetic Fluid Hyperthermia 

(MFH).(Krishnan, 2010; Laurent et al., 2008) The process involves two steps. The first one consists in the 

introduction of the MNPs within the tumour tissue through intratumour or intravenous injections. The second one 

corresponds to the application of an external alternate magnetic field with proper frequency 𝑓 and amplitude 

𝐻0.(Mehdaoui et al., 2011) Under this AC magnetic field, the MNPs continuously convert the electromagnetic 

energy into heat. 

The first research group dealing with the application of nanotechnology to oncology is Dr. Andreas Jordan’s 

one from Charité - University Medicine Berlin. These pioneer researchers in 1993 tested single domain ferrite 

NPs (1-10 nm) in comparison with multi-domain ones (1-300 μm) for hyperthermia, demonstrating the superiority 
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of the single domain particles.(Jordan et al., 1993) Since this publication, the company MagForce® 

Nanotechnologies GmbH have been founded in Berlin and many clinical trials have been conducted. In the 

chapter titled “Thermotherapy and Nanomedicine: Between Vision and Reality” of the book “Hyperthermia in 

Cancer Treatment: A Primer”(Baronzio and Hager, 2006), Dr. Andreas Jordan clearly describes the exclusive 

advantages of the use of NPs for MFH: 

1. High released thermal energy per applied mass; 

2. High surface that permits a proper functionalisation with targeting molecules; 

3. High depth of penetration within the tumour tissue: 

4. If properly coated, NPs can: 

a. Be late recognised by the immune system and, consequently, be able to reach the target 

tissues; 

b. Be highly uptaken by cancer cells; 

c. Be dispersed in water in the form of low-viscosity colloidal dispersions; 

d. Stay for long time in the tumour tissue. 

Therefore, potentially, MFH could be non-invasive due to reduced size of the heat mediators and selective 

due both to the intrinsic higher thermal sensitivity of cancer cells with respect to the healthy ones (see paragraph 

2.3) and to the Enhanced Permeability and Retention (EPR) effect. The latter represents a preferential 

accumulation within the tumour tissues of small systems (such as macromolecules or nanoparticles) caused by 

anatomical abnormalities of solid tumours (extensive angiogenesis, defective vascular architecture, insufficient 

lymphatic clearance, etc…).(Iyer et al., 2006) Finally, the use of ferrofluid should, in principle, allow to 

magnetically transport the MNPs in the targeted tissue by intravenous injection making possible the treatment of 

small tumours or metastasis of basically every region of the body.(Baronzio and Hager, 2006) 

To date, NanoTherm™ therapy by MagForce® Nanotechnologies GmbH is the only MFH-based therapy 

approved by European regulatory for the treatment of brain tumour. The heat mediators are made by ~15 nm 

iron oxide with an aminosilane coating, that are directly injected in the tumour. Different clinical trials are carried 

out by this company on the treatment of glioblastoma multiforme  (80 patients), prostata cancer (29 patients), 

esophageal cancer (10 patients), pancreatic cancer (7 patients) and other indications (~20 

patients).(“http://www.magforce.de/en/home.html,” n.d.) 

2.4.2 Heat Generation Mechanisms and Theoretical models 

Heat poduction by MNPs can involve either hysteresis losses or relaxation ones depending on the material 

features and on their magnetic structure. Multi-domain or blocked single-domain nanoparticles (ferromagnetic 

nanoparticles, FM), being responsible for hysteretic magnetic responses, are characterised by hysteresis losses. 

The power per unit of volume is given by the product of the frequency 𝑓 and the hysteresis loop area 𝜇
0 ∮𝐻𝑑𝑀:  

Eq. 2.4.1 

𝑃𝐹𝑀 = 𝜇0𝑓 ∮𝐻𝑑𝑀 
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For FM materials, other contributes, commonly considered negligible in the case of MFH, are low frequency 

losses as eddy-currents and high-frequency losses related to the ferromagnetic resonance.(Pankhurst et al., 

2003) Eddy-currents losses are produced in conductive material at the centimetre or larger scale where closed 

currents occur because of an alternating magnetic flux. They are irrelevant in the range of frequencies normally 

used in hyperthermia treatments and for nanoparticles(Deatsch and Evans, 2014; Jordan et al., 1993; Pankhurst 

et al., 2003), being dependent on the radius 𝑎 of the ferromagnetic seed:  

Eq. 2.4.2 

where 𝑎 is the radius and 𝐿 the length of the seed, 𝜇 is the magnetic permeability, 𝜎𝐹𝑀 is the conductivity 

of the ferromagnetic material, 𝑓 is the frequency and 𝐻0 is the amplitude of the external magnetic 

field.(Stauffer et al., 1984) Losses due to the ferromagnetic resonance are considered negligible too in the 

commonly used frequency range (below the GHz range). 𝑃𝐹𝑀 = 𝜇0𝑓 ∮𝐻𝑑𝑀 indicates that the hysteresis loop 

area do not depend on the frequency. This makes possible, in principle, to determine 𝑃𝐹𝑀 by quasi-static 

measurements (VSM or SQUID magnetometers). However, this equation suggests that the maximum thermal 

energy delivered by such systems corresponds to rectangular loops that can be obtained only by perfectly 

aligned uniaxial NPs, a utopian condition to be achieved in vivo. Indeed, for real systems only a 25 % of the 

ideal power can be obtained. Moreover, fully saturated loops are produced only at high field amplitudes, that 

cannot be used for clinical application, whereas the unsaturated loops are responsible for limited 

heating.(Pankhurst et al., 2003) 

The theoretical model known as the linear response theory (LRT) describes the heat release of colloidal 

superparamagnetic nanoparticles (SPM).(de la Presa et al., 2012)  In 2002, Rosensweig developed the 

analytical treatment, by which the heat release of SPM NPs depends on the out-of-phase χ” component of their 

magnetic susceptibility(Rosensweig, 2002): 

Eq. 2.4.3 

which physically means that the magnetic energy is positively converted into internal energy when 

magnetisation lags the magnetic field.(Pankhurst et al., 2003) 

Being 

Eq. 2.4.4 

the following equation is obtained: 

Eq. 2.4.5 
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where 𝜏 is the effective relaxation time. 

The dependence from the material’s features can be further pointed out by substituting χ0 =
𝛍𝟎𝑀𝑆

2𝑉

3𝑘𝐵𝑇
 in (Eq. 

2.4.5): 

Eq. 2.4.6 

Where 𝑀𝑠 is the saturation magnetisation and 𝑉 is the particle volume. (Hergt et al., 2010; Shliomis, 1974) 

The relaxation of SPM NPs can involve both Nèel and Brown mechanisms involving the reversal of the 

magnetisation vector inside the nanoparticle (Nèel) or through the physical rotation of the particles themselves 

(Brown), respectively. Therefore, the effective relaxation time 𝜏 depends on the relaxation times characteristic 

for the two mechanisms (𝜏𝑁, 𝜏𝐵) in agreement with the following equation: 

Eq. 2.4.7 

Where 𝜏𝑁 = 𝜏0𝑒
𝐾𝑉/𝑘𝐵𝑇 and 𝜏𝐵 =

3𝜂𝑉𝐻

𝑘𝐵𝑇
. 

In particular, this equation indicates that the shortest the relaxation time the highest the contribute is. The 

relative influence of the mechanisms depends on the size and magnetic properties of the NPs but also on the 

medium. Generally, Néel relaxation is the major contribution for small particles whereas Brownian relaxation 

dominates for big ones. 

The relationship for 𝑃𝑆𝑃𝑀 is valid only for a monodisperse system. In order to describe the heat released 

power per volume unit from a log normal distributed NPs assemble, 𝑃𝑆𝑃𝑀  should be numerically integrated 

over the size distribution, 𝑔(𝑅): 

Eq. 2.4.8 

Where 𝑔(𝑅) =
1

√2𝜋𝜎𝑅
𝑒𝑥𝑝 [

−(𝑙𝑛𝑅/𝑅0)
2

2𝜎2 ] is the log normal function.(Rosensweig, 2002) 

It is worth to note that the linear response theory is valid only for superparamagnetic nanoparticles with a 

linear-frequency dependence and a square-amplitude dependence from the applied magnetic field. 

Beside the validity fields of the hysteretic losses model and the linear response theory, real systems often 

show both types of losses, especially if they are nearby the transition region between the superparamagnetic 

regime and the ferromagnetic one. Carrey et al. have discussed this topic in a recent article, providing another 

approach for the computation of the hysteresis area of a single-domain particle and highlighting the key-role 

of the anisotropy of the synthesized MNPs to tune the magnetic hyperthermia properties.(Carrey et al., 2011) 

All the described theory models indicate, as expected, a strong dependence of the power from the 

frequency and amplitude of the applied magnetic field. However, it is known that clinical applications of MFH 
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cannot be carried out by exceeding a threshold of the product 𝑓𝐻0 that accounts for side effects in the patients 

as direct consequence of eddy currents in the tissues. This threshold has been found experimentally by Atkinson 

et al. to be equal to 4.85·108 A m-1 s-1 for a loop diameter of 30 cm and one hour of treatment.(Atkinson et al., 

1984) Then, Hergt et al. proposed to increase this threshold to the value 5·109 A m-1 s-1 taking into account that 

smaller body regions are expected to be exposed during MFH therapy.(Hergt and Dutz, 2007) Indeed, the 

heat associated with such eddy currents is proportional to the square of the product 𝑓𝐻0𝐷, where 𝐷 is the 

diameter of the induced current loop in the body.(Krishnan, 2010) Thus, this limit value is actually the common 

considered one in the literature. 

2.4.3 Specific Absorption Rate (SAR) or Specific Loss Power (SLP) 

A useful tool to estimate the power released by MNPs subjected to an alternate magnetic field is the specific 

absorption rate (SAR) or specific loss power (SLP). This quantity represents the power per unit mass, expressed 

in W/g, and can be obtained by means of the following equation: 

Eq. 2.4.9 

Where 𝑚𝑖 and 𝐶𝑖 are mass and specific heat of the i-th specie composing the sample,  𝑚𝑀𝑁𝑃𝑠 is the total 

MNPs mass and ∆𝑇 is the temperature increase in the interval ∆𝑡 during which the AC field is on.(Natividad et 

al., 2009) Note that this parameter differs from the  clinically-adopted SAR that is used to denote the power 

dissipation per gram of living human tissue, when the transfer of energy into the human body by electromagnetic 

fields needs to be defined.(Wildeboer et al., 2014) 

SAR values are commonly obtained by means of experimental set-up made of an AC magnetic field 

generator, a sample holder surrounded by an isolating material, temperature probes and a data acquisition 

system. Under adiabatic conditions, temperature linearly increases with time and the slope of the heating curve 

directly provides the SAR. On the contrary, common homemade systems work under non-adiabatic conditions 

and the determination of SAR values is less accurate due to heat transfer with the environment in comparison 

with an adiabatic system, leading to underestimated values. Indeed, a fitting curve is necessary to determine 

the SAR value. (Natividad et al., 2008; Wildeboer et al., 2014) 

Wildeboer et al. in 2014 dealt with the heat losses associated with the use of non-adiabatic systems, 

suggesting also a standardised procedure to measure and analytically determine SAR values. The heat transfers 

between the sample and the environment during non-adiabatic measurements involve different mechanisms of 

heat losses as the conduction, convection or evaporation or melting phenomena and may depend on the different 

temperature of the sample (T) and the surroundings (T0). Conduction represents the heat transfer from the sample 

to adjacent materials and depends on the temperature difference T-T0, on the thermal properties and on the 

surface area. The convection involves the motion or diffusion of a heated medium and takes place in the air 

surrounding the sample. In addition, the temperature close to the heat source may reach the boiling or melting 

point of some components of the system, causing anomalies in the heating curves. Another phenomenon, strongly 

dependent on the experimental apparatus used to measure the heating curve, is the so-called peripheral 

𝑆𝐴𝑅 = 𝑆𝐿𝑃 =
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heating that involves the heat release due to the magnetic coil itself and the eddy currents in the fluid (water 

rather than other solvents or salt solutions). 

For an adiabatic system, all the heat released by the heat source contributes to the increase of the 

temperature in agreement with the equation 

Eq. 2.4.10 

Where C is the capacity of the sample, P is the power. 

On the contrary, due to heat losses, in non-adiabatic systems the temperature do not rise linearly with time, 

as depicted in Fig. 2.4.1. 

Fig. 2.4.1 Time dependence of temperature for adiabatic and non-adiabatic SAR measuring setups. 

For this reason, the heating curve measured by non-adiabatic systems can be described by the following 

equation instead of Eq. 2.4.10: 

Eq. 2.4.11 

Where PL (T) is the power lost by the different heat losses mechanisms and which is dependent on the 

temperature. 

Other basic aspects that has to be taken into account during SAR measurements are related to the presence 

of spatial or temporal temperature gradients in the sample and time delay in the heating curve between the 

switching on of the field (t=0) and the effective time at which an increase of the temperature is 

recorded.(Wildeboer et al., 2014) 

The same authors also reviewed the various analytical models used to determine the SAR values: initial 

slope method, decay method, Box-Lucas method and steady state method. In addition, they proposed a novel 

method called “corrected slope method”(Wildeboer et al., 2014). Among these models, the most widely used 

is the initial slope method, although it has been applied with many variants. It is based on a linear curve fitting 
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in the initial region of the heating curve, when it is supposed to have negligible heat losses. It consider only this 

region of the curve as approaching the ideal adiabatic conditions. 

Due to the difficult comparison of SAR values obtained by different research groups under different 

experimental conditions (i.e. different values of field frequency and strenght), Pankhurst et al. proposed an 

additional parameter to compare the heating abilities and called it as the Intrinsic Loss Power (ILP)(Kallumadil 

et al., 2009) expressed in [nH·m2/kg] and defined as follows: 

Eq. 2.4.12 

Where SAR is expressed in W/kg, f in kHz and H0 in kA/m. This formula arises from the observation that 

SAR increases linearly with the frequency quadratically with the amplitude.(Wildeboer et al., 2014) It is valid 

under certain conditions as frequency values of up to several MHz, crystallite polydispersity of more than 0.1. 

Furthermore, a comparison among ILP values is possible only if similar environmental thermodynamic losses are 

involved.(Kallumadil et al., 2009) 

2.4.4 State of the art 

For MFH in vivo applications, the concentration of the exogenous material in the tissue should be minimised 

to avoid unwanted side effects. For instance, a maximum recommended value of 0.1 mmol/kg has been 

suggested for MRI contrast agents.(Laniado and Chachuat, 1995; Zeisberger et al., 2007) In this framework, 

much effort has been spending in this research field to optimise the hyperthermal efficiency by proposing 

different systems: from the single colloidal nanoparticles to magnetosomes, aggregates and exchange-coupled 

core@shell structures. Superparamagnetic nanoparticles (usually referred as SPIOs, i.e. superparamagnetic iron 

oxides) of magnetite, Fe3O4, and/or maghemite, γ-Fe2O3, are the most studied systems in particular due to their 

biocompatibility (safety, well-known metabolic pathway in the human body) and their successful clinical use as 

MRI contrast agents.(Blanco-Andujar et al., 2015) In 1993, Jordan et al. compared the heating abilities of multi-

domain and single-domain (1-10 nm) nanoparticles of magnetite and other ferrites, both bare and dextran 

coated, in different media (agar-embedded, water, glycerol) and field amplitudes and frequencies. By this 

study, they were able to establish the suitability of magnetic nanoparticles as hyperthermia mediators and the 

superiority of single domain nanoparticles in comparison with multi-domain ones.(Jordan et al., 1993) Some of 

the works published on SPIOs nanoparticles as single nanoparticles are reported in Tab. 2.4.1. This table clearly 

shows all the problems related to the comparison of literature data. First, a variety of field amplitudes and 

frequencies have been used to date, either above or below the threshold 𝑓𝐻0 product accounting for human 

tolerability (see paragraph 2.4.2). Secondly, sometimes the proposed materials are poorly characterised or 

with a broad size distribution (>20 %) or, moreover, they are sometimes highly agglomerated. This means that 

SAR values cannot be discussed easily in terms of material’s features and the behaviour can be rarely attributed 

univocally to a specific effect. In the case of SPIOs, also some papers refer generically to spinel-structured 

nanoparticles as “iron oxides” nanoparticles without any assignments of the crystalline phase as magnetite rather 

than maghemite. Please, also note that the ILP parameter can be used only in the validity field of the linear 

𝐼𝐿𝑃 =
𝑆𝐴𝑅 

𝑓 ∙ 𝐻0
2 
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response theory but most of the promising systems do not show actually linear-frequency and square-amplitude 

dependences so that the ILP cannot help us in the comparison (see paragraph 2.4.3). Despite all this limits, 

among the proposed SPIOs systems, recently very high SAR values have been achieved for single water-soluble 

nanocubes of sizes around 20 nm or more(Guardia et al., 2014, 2012). These systems are responsible for a 

heat release mainly by hysteretic losses in agreement with other promising results obtained for 

magnetosomes(Alphandéry et al., 2011a, 2011b; Hergt et al., 2005) or nanoflowers(Hugounenq et al., 2012) 

or other multi-core aggregates(Blanco-Andujar et al., 2015) (Tab. 2.4.2). Therefore, it is worth noting that part 

of the researchers are moving from superparamagnetic systems with sizes below 15-20 nm for 

magnetite/maghemite nanoparticles towards systems with sizes higher or in the limit between 

superparamagnetic and blocked-single domain in order to achieve better performances with SPIOs. However, 

as the magnetic interactions increase with increasing particle volume, these systems in principle may suffer of 

some biological constraints arising from possible agglomeration phenomena that in the human body may 

translate into blood vessels obstruction or low circulation times. With this respect, Guardia et al. have also 

developed a strategy to coat by a polymer each nanocube producing single water-soluble particle to prevent 

possible agglomeration phenomena.(Guardia et al., 2014) Spinel ferrites with MII alternative to FeII have been 

less studied (Tab. 2.4.3). Fantechi et al. have investigated the substitution of FeII by CoII in the magnetite structure 

of 8.5 nm particles, showing an increase of the SAR with increasing CoII content up to 0.6 per formula 

unit.(Fantechi et al., 2015) Both manganese and cobalt ferrite nanoparticles have been also investigated even 

though with a lower extent. However, the efficiency of these systems is still lower than the SPIOs one. Moreover, 

the heat delivery of metallic nanoparticles have been characterised, both as bare particles(Lacroix et al., 2011, 

2009; Mehdaoui et al., 2011, 2010; Zeisberger et al., 2007) and as core@shell systems aimed to overcome 

the limit of their poor chemical stability.(Balivada et al., 2010; Ibrahim et al., 2012; Kline et al., 2009; Lacroix 

et al., 2009; Wang et al., 2012; Zeng et al., 2007) 

Finally, other platforms for MFH have been proposed from cobalt and zinc-doped 

magnetosomes(Alphandéry et al., 2011; Céspedes et al., 2014) to exchange-coupled bimagnetic core@shell 

nanostructures(Lee et al., 2011; Noh et al., 2012). This latter strategy has been demonstrated to be powerful 

being responsible for SAR values ranging from 1000 to 4000 W/g (f=500 kHz, H0=37.3 kA/m) for 15 nm 

core@shell nanoparticles, that are one order of magnitude higher than their single-component counterparts.(Lee 

et al., 2011) In a later study, the same authors have also tuned the properties of these bimagnetic nanostructures 

by increasing the size and changing the shape and they finally reached a SAR of 10600 W/g for a 60 nm 

core@shell nanocubes. 

From this discussion, it appears clear that the best results to date in terms of highest SAR values have been 

achieved for systems with a dominant contribute of hysteretic losses. However, it should be underlined that 

smaller nanoparticles especially in the superparamagnetic regime offer a better control of their magnetic 

behaviour due to almost negligible interparticle interactions that make the systems more appealing for 

biomedical application, hindering possible undesired agglomeration or precipitation phenomena. All limits 

evidenced in this paragraph justify the great efforts and number of publications published per year in this 

research field, aimed to design and synthesise alternative magnetic heat nanomediators with improved magnetic 

and hyperthermal properties. 
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Tab. 2.4.1 Superparamagnetic nanoparticles (SPIOs, i.e. superparamagnetic iron oxides) of magnetite, Fe3O4, and/or 

maghemite, γ-Fe2O3 proposed in the literature as heat mediators for Magnetic Fluid Hyperthermia. 

Reference System Shape 
D 

(nm) 
Solvent 

f 
(kHz) 

H0 
(kA/m) 

SAR 
(W/g) 

ILP 

(Hilger et al., 2001) Fe3O4 Spherical 10 
Human 
breast 
tissue 

300 14 211 3.6 

(Fortin et al., 2007) 
Citrate-γ-

Fe2O3 
Cubic (?) 

16.5 
(DTEM) 

Water 700 24.8 1650 3.8 

(Pradhan et al., 2007) 
Lauric acid- 

Fe3O4 
Spherical 

10 
(DTEM) 

Water 300 15 120 1.8 

(Zhang et al., 2007) 
Dextran- 

Fe3O4 
- 

19 
(DXRD) 

Water-
glycerol 

55 15.9 75 5.4 

(Gonzales-Weimuller et al., 
2009) 

Pluronic 
F127- 
Fe3O4 

Spherical 
14 

(DTEM) 

Phosphate 
buffer 
solution 

400 24.5 447 1.9 

(Purushotham et al., 2009) 

Polymer- γ 
and α 

Fe2O3 

Irregular 43 Water 375 1.7 42.8 - 

(Suto et al., 2009) 
Surfactant- 

Fe3O4 
- 

14.6 
(DTEM) 

Water 600 3.2 28.3 4.6 

(Kikuchi et al., 2011) 
Polymer- 

Fe3O4 

Spherical 
or 

polyhedral 
12.5  Water 600 3.2 22.5 3.7 

(Lartigue et al., 2011) 
Rhamnose-
iron oxides 

Spherical 
16.2 
(DTEM) 

Water 168 21 185 1.2 

(Lee et al., 2011) 
Oleic acid-

Fe3O4 
Spherical 

12 
(DTEM) 

Toluene 500 37.3 349 0.5 

(de la Presa et al., 2012) 
APS-γ-
Fe2O3 

Spherical 
12.7 
(DTEM) 

Water 522.3 7.5 56 1.9 

(Guardia et al., 2012) 
Polymer-

iron oxides 
Cubic 

19 
(DTEM) 

Water 320 15 509 7.0 

(Liu et al., 2012) 
mPEG-
Fe3O4 

Spherical 
19 

(DTEM) 
Water 400 27 930 3.2 

(Song et al., 2012) 
DMSA- 
Fe3O4 

Quasi 
cubical 

9.5 
(DTEM) 

Water 100 30 35.1 0.4 

(Jadhav et al., 2013) 
Oleic acid- 

Fe3O4 
- 

7 
(DTEM) 

0.1M 
sodium 

carbonate 
265 26 45 0.2 

(Guardia et al., 2014) 
PEG-iron 
oxides 

Cubic 35 Water 320 24 1391 7.6 

(Shete et al., 2014) 
Chitosan- 

Fe3O4 
Spheroidal 

(?) 
15.1 Water 265 26.7 118.85 0.6 

(Lv et al., 2015) 

CTAB 
intercalated 

oleate-
Fe3O4 

Octahedral 
43-
98 

Agarose 358 63 
2483-
2629 

- 

(Sasikala et al., 2015) 
HEDO-
Fe3O4 

Spherical <15 Water 293 12.57 181.31 3.9 
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Tab. 2.4.2 Examples of different systems proposed in the literature as heat mediators for Magnetic Fluid Hyperthermia 

made up of chains of single nanoparticles (magnetosomes) or aggregates or exchange-coupled core@shell systems. 

Reference Shape 
f 

(kHz) 
H0 

(kA/m) 
SAR 

(W/g) 

(Hergt et al., 2005) Magnetosomes 410 10 960 

(Lee et al., 2011) 
Exchange-coupled spinel 

ferrite bimagnetic core@shell 
500 37.3 3886 

(Noh et al., 2012) 
Exchange-coupled spinel 

ferrite bimagnetic core@shell 
500 37.3 10600 

(Alphande ́ry et al., 2011a) Magnetosomes 108 70 864 

(Alphande ́ry et al., 2011b) Magnetosomes 183 31.8 380 

(Hugounenq et al., 2012) Nanoflowers 700 21.5 1992 

(Blanco-Andujar et al., 2015) Multi-core 950 10.5 430 

Tab. 2.4.3 Single nanoparticles of cobalt ferrite or cobalt-doped iron oxides proposed in the literature as heat mediators 

for Magnetic Fluid Hyperthermia. 

Reference System Shape 
D 

(nm) 
Solvent 

f 
(kHz) 

H0 
(kA/m) 

SAR 
(W/g) 

ILP 

(Pradhan et al., 2007) 
Lauric acid-
MnFe2O4 

Spherical 
10 

(DTEM) 
Water 300 15 145 2.2 

(Lee et al., 2011) MnFe2O4 Spherical 
15 

(DTEM) 
Toluene 500 37.3 411 0.59 

(Fortin et al., 2007) 
Citrate-
CoFe2O4 

Spherical 
9.7 

(DTEM) 
Water-
glycerol 

700 24.8 420 0.98 

(Pradhan et al., 2007) 
Lauric acid-

CoFe2O4 
Spherical 

10 
(DTEM) 

Water 300 15 37 0.55 

(Kim et al., 2008) 
11-MUA-
CoFe2O4 

Spherical 
5.6 

(DTEM) 
Water 266 30 - - 

(Joshi et al., 2009) CoFe2O4 Spherical 15 Water 300 - 396.1 - 

(Franchini et al., 2010) 
BSA-

CoFe2O4 
Spherical 

6.7 
(DTEM) 

Water 168 21 215 2.9 

(Kita et al., 2010) 

Silica 
coated Co-

doped 
Fe3O4 

Spherical 
13 

(DXRD) 
Water 117 51 217 0.71 

(Lee et al., 2011) CoFe2O4 Spherical 9 Toluene 500 37.3 443 0.64 

(Mazario et al., 2013) 
Citrate-
CoFe2O4 

- 28 Water 101 40 133 0.82 

(Fantechi et al., 2015) Co0.6Fe2.4O4 Spherical 
8.4 

(DTEM) 
Toluene 183 12 40.4 1.5 

(Nappini et al., 2015) 
Citrate-
CoFe2O4 

Spherical 12 Water 183 17 105 1.99 

(Nikam et al., 2014) 
PEG-Co0.5 

Zn0.5Fe2.4O4 
Spherical 

10 
(DTEM) 

Phosphate 
buffer 
solution 

267 27 193 0.99 

(Bohara et al., 2015) 
TEG-Cox 

Zn1-xFe2.4O4 
Spherical 

15 
(DTEM) 

Water 267 27 132 0.68 
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3 Cubic ferrites nanoparticles 

Abstract 

Ferrimagnetism is a kind of magnetic order due to an antiparallel alignment of magnetic moments of 

different intensities (Coey, 2010). Iron oxides of general formula MIIFe2O4 (MII=Fe2+, Co2+, Mn2+, Ni2+, etc.), 

commonly referred as cubic ferrites, are the most important ferrimagnetic materials.(Cullity and Graham, 2009) 

They are ionic compounds arranged as in the spinel structure AB2O4 (Cullity and Graham, 2009). The chemical 

composition and the cationic distribution strongly affect the magnetism of such compounds. 

In this chapter, the structural and magnetic properties of this class of materials are briefly discussed. 

3.1 Introduction 

Iron oxides of general formula MIIFe2O4 (MII=Fe2+, Co2+, Mn2+, Ni2+, etc.), commonly referred as ferrites, 

are the most important ferrimagnetic materials.(Cullity and Graham, 2009)  

The term “ferrites” refers to all oxides with formula MIIFe2O4 containing iron as major metallic component. 

In these compounds, the symbol M represents ions with ionic radius ranging between 0.6 and 1 Å. MII can be a 

transition element as Mn, Fe, Co, Ni, Cu and Zn or Mg or Cd or, moreover, it can be a combination of different 

elements. In this latter case, we can consider the oxide as a “mixed ferrite”, made of a solid solution of two 

ferrites. In addition, M can be also made of cations with an average valence of two, as in the lithium ferrite 

(Li0.5Fe2.5O4) or can be a combination of vacant lattice sites and trivalent ions as in the maghemite structure, γ-

Fe2O3, of formula 1/3Fe8/3O4. The trivalent iron cations can be replaced too by other ions, as AlIII or CrIII, but 

in this case the solid solution is between ferrites and aluminates or chromites, respectively.(Smit and Wijn, 1959) 

This class of materials has many application fields from magnetic storage media to energy, environmental 

issues and biomedicine, in particular when they are nanostructured, becoming responsible for particular 

phenomena as the superparamagnetism (see paragraph 1.2). Their magnetic properties are strongly correlated 

to their structure as described in the following paragraphs. 

3.2 Crystalline structure of spinel ferrites MIIFeIII
2O4 

Magnetic ferrites crystallise mainly into two different crystalline structures: 

1. Cubic. These have general formula MIIFe2O4, where MII is a divalent metal ion, like FeII, MnII, NiII, CoII, or 

MgII. 

2. Hexagonal. Also known as hexaferrites, the most important members of this group are barium and 

strontium ferrites, BaO·6Fe2O3 and SrO·6Fe2O3.(Cullity and Graham, 2009) 

In this paragraph, only the crystalline structure of cubic ferrites that are of close interest in this thesis is 

described. 
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Cubic ferrites crystallise in the structure of the mineral MgAl2O4, called “spinel”. The elementary cell with 

cubic symmetry of the spinel lattice contains eight formula units of MIIFe2O4. The oxygen ions are close-packed 

in a face centred cubic structure (fcc), whereas metallic ions are accommodated within two types of interstitial 

sites, associated with two different coordination of metallic ions to oxygens: tetrahedral, referred as Td sites, 

and octahedral, referred as Oh sites (Fig. 3.2.1, Fig. 3.2.2).(Smit and Wijn, 1959) Within the unit cell, 64 sites 

of 4-fold coordination and 32 sites of 6-fold coordination are available. However, only 8 tetrahedral and 16 

octahedral sites are occupied by metallic cations. 

Divalent cations in the zinc and cadmium ferrites occupy exclusively Td sites. This is referred as a direct spinel 

and is described by the formula {[MII]Td[MIII]Oh2O4}. On the other hand, other ferrites as magnetite (Fe3O4), 

maghemite (γ-Fe2O3), cobalt and nickel ferrites show an inverse spinel structure. In that case, tetrahedral sites 

are occupied by trivalent ions but both trivalent and divalent ions are accommodated in octahedral sites. The 

general formula of this type of structure is {[MIII]Td[MII, MIII]OhO4} (Cullity and Graham, 2009). In other words, if 

MII ions occupy tetrahedral sites, the spinel is direct; if they occupy octahedral sites, the spinel is inverse (Fig. 

3.2.3).(Hochepied et al., 2000) 

Actually, several partially inverse structures do exist in agreement with the following general formula: 

Eq. 3.2.1 

Where δ is a parameter related to the inversion degree (𝑖 = 1 − 𝛿) and it is equal to 1 for a normal spinel 

and 0 for an inverse one. 

Tab. 3.2.1 lists the crystallographic data for some cubic ferrites. 

Fig. 3.2.1 Direct spinel structure. 

Fig. 3.2.2 Tetrahedral and octahedral sites in a spinel structure. 

𝑀𝛿
𝐼𝐼𝐹𝑒1−𝛿

𝐼𝐼𝐼 [𝑀1−𝛿
𝐼𝐼 𝐹𝑒1+𝛿

𝐼𝐼𝐼 ]𝑂4 
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Fig. 3.2.3 Inverse spinel structure. Red spheres: oxygens, Dark blue spheres: tetrahedral sites, Light blue spheres: 

octahedral sites. 

Tab. 3.2.1 Crystallographic data for some cubic ferrites (Murad and Johnston, 1985). 

Formula Mineral 
Crystal 
system 

Structure 
type 

Unit cell 
dimensions (nm) 

Fe3O4 magnetite cubic inverse spinel a = 0.83960a 

γ-Fe2O3 maghemite 
cubic or 

tetragonal 
defect spinel 

a = 0.834 
a = 0.8338; c = 2.501 

CoFe2O4 
cobalt 
ferrite 

cubic inverse spinel a = 0.83919b 

MnFe2O4 
manganese 

ferrite 
cubic inverse spinel - 

ZnFe2O4 zinc ferrite cubic direct spinel a = 0.84411c 

a PDF card #: 19-0629; b PDF card #: 22-1086; c PDF card #: 22-1012 

3.3 Magnetic properties of bulk and nanostructured spinel ferrites (MIIFeIII
2O4) 

The interest on cubic ferrites is well justified by their ferrimagnetism, an imperfect antiferromagnetic order 

with a spontaneous magnetisation below a certain temperature called Curie temperature (Tc).(Coey, 2010; 

Cullity and Graham, 2009) 

According to Néel model, a ferrimagnetic cubic ferrite is made up by two independent magnetic sublattices 

corresponding to the interstitial sites of the crystalline structure, Td and Oh. Because the magnetisation associated 

with the two sublattices are of different intensity, a net magnetisation exists giving rise to a ferrimagnetic order.  

The magnetism of this class of materials arises not just from their crystalline structure but also from the nature 

of the cations. Indeed, spinel ferrites are ionic compounds where the metal cations (at least the FeIII) are 

responsible for a magnetic moment. Indeed, a magnetic moment is associated with the motion of electrons, both 

orbital and spin. An atom has a total magnetic moment that is the sum of all the electronic moments but only 

semi-filled shells contributes to it. Completely filled shells have a zero magnetic moment because only pairs of 

electrons are present due to the Pauli exclusion principle. Therefore, Fe3+ and Fe2+ with five and four unpaired 

electrons in the 3d level, respectively, have magnetic moment of 5 and 4 μB (Fig. 3.3.1). 
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Fig. 3.3.1 Electronic configuration of Fe2+ and Fe3+. 

The nature of the divalent ion strongly affects the magnetic order and the magnetic properties of the cubic 

ferrite. Among spinel ferrites, CoFe2O4 is the only magnetically hard with a high magnetocrystalline anisotropy, 

high coercivity due to the presence of the CoII, reasonable magnetisation, excellent chemical and thermal 

stabilities and good mechanical properties.(Cullity and Graham, 2009) It can be also easily prepared.(Cannas 

et al., 2015, 2010a, 2008, 2006, 2004) 

Different strategies have been proposed in the literature for the tuning of the magnetic properties of cubic 

ferrites NPs. 

Fig. 3.3.2 General strategies for the tuning of cubic ferrites’ magnetic properties. 

For instance, different authors have studied the variations of the magnetic properties of ferrite NPs systems 

as a function of their size (Baldi et al., 2007; Jia et al., 2008; Joshi et al., 2009; López-Ortega et al., 2015b; 

Mohapatra et al., 2013; Roca et al., 2006, 2007; Song and Zhang, 2004), their shape (Bao et al., 2009; Joshi 

et al., 2009; López-Ortega et al., 2015b; Song and Zhang, 2004; Zhen et al., 2011) or the effect of different 

capping agent (Daou et al., 2008; Mohapatra et al., 2013; Vestal and Zhang, 2003). 

The chemical composition itself affects the magnetic properties of the cubic ferrite.(Fantechi et al., 2012; 

Hu et al., 2012; Jia et al., 2008; Liu et al., 2000; Mohapatra et al., 2013; Muscas et al., 2015) 

Finally, the cationic distribution and, consequently, the inversion degree of the spinel structure, is another 

key feature for modulating the magnetic behaviour due to the strict relation existing between the spinel structure 
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and the magnetism, as mentioned before.(Mohapatra et al., 2013; Peddis et al., 2011; Sharifi and Shokrollahi, 

2012; Zi et al., 2009) 

It is worth to mention that other phenomena, such as internal or surface disorder (i.e. spin canting) may also 

affect the magnetic properties of NPs systems. 

Although many articles have been published so far in the field, due to the intrinsic inter-correlations of all these 

features (chemical composition, size, shape, surface ligands, etc.), often a single parameter cannot be tuned 

independently from the others, i. e. keeping unchanged the others, making the effect on the magnetic properties 

rarely ascribable to a unique parameter.  
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4 Zn-substituted cobalt ferrite nanoparticles (ZnxCo1-xFe2O4): study of the magnetic 

properties and heating abilities beyond the particle and crystal size  

Abstract 

The possibility of finely tuning the magnetic properties opens to design suitable nanostructured spinel ferrites 

(MIIFe2O4) for specific applications. However, the strict and complex interrelation among the chemical 

composition, size, polydispersity, shape and coating renders difficult the prediction of their effect on the 

magnetic properties. In this context, this chapter works toward the discussion of the magnetic properties and the 

heating abilities of Zn-substituted CoFe2O4 nanoparticles with different zinc content (ZnxCo1-xFe2O4 with 

0<x<0.6), specifically synthesised with similar crystallite diameter (~6 nm), particle diameter (~7 nm),  

polydispersity and capping agent amount (15%). 

All samples show high saturation magnetisation values at low temperature (> 100 emu/g). The insertion in 

the structure of zinc up to a content x of 0.46 per formula unit has resulted in an increase of the saturation 

magnetisation (Ms) at 5 K. On the other hand, both coercive field (Hc) and saturation field (Hsat) have similar 

values when x > 0, suggesting similar magnetic anisotropy for the zinc-substituted samples. The 5 K magnetic 

properties are discussed in the light of their cationic distribution. 

Both CoFe2O4 and Zn0.30Co0.70Fe2O4 samples exhibit also high and similar saturation magnetisation values 

at 300 K (90 emu/g). Being the magnetic properties of the samples appealing for Magnetic Fluid Hyperthermia, 

their heating ability has been tested. Despite the similarities among the two samples, cobalt ferrite is responsible 

for a Specific Absorption Rate (SAR) value three times higher than the Zn-substituted one. DC magnetometry 

appears not sufficient to justify these data, being the experimental conditions of SAR and static measurements 

rather different. On the contrary, the synergic combination of DC magnetometry with AC magnetometry and 

57Fe Mossbauer spectroscopy represents a powerful tool to understand the observed heating abilities and in 

prospect to get new insights for the design of suitable heat mediators. 
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4.1 Introduction 

The efficiency of MNPs as heat mediators is strictly related to their magnetic properties (saturation 

magnetisation, magnetic anisotropy and magnetic interactions). The most studied materials for MFH are 

SuperParamagnetic Iron Oxides (SPIOs), i.e. maghemite (γ-Fe2O3) and magnetite (Fe3O4), due to their 

biocompatibility (U.S. Food and Drug Administration approuved(Krishnan, 2010)) and their low-cost.(Hervault 

and Thanh, 2014) However, researchers are still working on to reduce the NPs dose to be inserted in the human 

body by optimising their magnetic properties. Co-containing materials have been proposed as promising heat 

mediators due to its high anisotropy although their potential toxicity.(Alphandéry et al., 2011; Baaziz et al., 

2014; Deatsch and Evans, 2014; Fantechi et al., 2015; Joshi et al., 2009; Kim et al., 2008; Kita et al., 2010; 

Mazarío et al., 2012; Nappini et al., 2015; Pichon et al., 2011; Thanh et al., 2015; Torres et al., 2010; Veverka 

et al., 2010) The partial substitution of Co2+ with less toxic divalent ions as Zn2+ (ZnxCo1-xFe2O4) has been also 

proposed in order to increase the saturation magnetisation, to lower the toxicity(Bohara et al., 2015; Nikam et 

al., 2014) and the Curie temperature for auto-tuning systems.(Arulmurugan et al., 2006; Jadhav et al., 2010; 

Nikam et al., 2014; Sharifi and Shokrollahi, 2012; Veverka et al., 2010) Among the several studies on the Zn-

substituted cobalt ferrites NPs only a few are devoted to the discussion of their heating ability.(Bohara et al., 

2015; Nikam et al., 2014) In these works, Pawar et al. have studied the long-term colloidal stability in different 

media only for the composition Co0.5Zn0.5Fe2O4 NPs and stated that they can be considered as potential 

candidate for effective MFH treatment for cancer cell extinction. To the best of our knowledge, a systematic 

and fundamental study of the effect on the magnetic properties and heat release based only on the composition 

for ZnxCo1-xFe2O4 NPs is still lacking. Indeed, the strict and complex interdependence among their chemical 

composition, size, polydispersity, shape, surface coating and interactions makes their correlation with the 

magnetic properties not trivial. 

In this chapter, being the nature of divalent ions together with the cationic distribution in the ferrite structure 

crucial for tuning the magnetic properties, the substitution of cobalt ions by means of diamagnetic zinc ones in 

cobalt ferrite NPs (ZnxCo1-xFe2O4) is explored as possible route to increase the saturation magnetisation and 

consequently to increase the efficiency as heat mediators. Ad-hoc Zn-substituted cobalt ferrites NPs with 

different zinc content but with the same crystallite and particle sizes, polydispersity, type and amount of capping 

agent, have been selected to systematically study their magnetic properties and heating ability exclusively on 

the basis of their different chemical composition and magnetic structure (i.e., cationic distribution and spin 

canting). 
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4.2 Synthesis 

Four samples of ZnxCo1-xFe2O4 nanoparticles with 0≤x≥0.53 were synthesised1  by the heating-up 

surfactants-assisted thermal decomposition method previously described by Sun et al.(Sun et al., 2004) This 

method has been widely used, among other chemical methods, because it allows to synthesise uniform 

nanocrystals of ferrites NPs with well-controlled features as crystalline phase and crystallinity, shape, size and 

polydispersity. This fine control of the microstructural and morphological properties can be reached by properly 

choosing the organometallic precursors, the surfactants, the high-boiling solvent and their relative amounts. In 

addition, fundamental parameters are also the reaction temperature, pressure and time. A critical drawback is 

the production of hydrophobic NPs that should be then properly post-synthesis functionalized (e.g. by exchange-

ligand or intercalation processes) to make them hydrophilic. The formation process of the NPs occurs by four 

steps: 

1. Thermal decomposition of the organometallic precursors; 

2. Formation of monomers complexes made by clusters of the atomic or molecular species formed 

during the decomposition reaction surfactants molecules; 

3. Self-assembly of monomers forming small nanocrystals (nucleation); 

4. The surfactants molecules continuously adsorb and desorb from the nuclei surface in agreement 

with the relative bond strenght, allowing other monomers to come into contact with it and react and 

making the nanoparticle to grow (growth). Another important phenomen that may occur is the 

Ostwald ripening, i.e. the dissolution of smaller NPs that produces monomers growing bigger NPs. 

La Mer and Dinegar, in their study dated back to the 1950, indicated that a single and rapid nucleation 

event and a slow growth are necessary conditions to produce monodisperse NPs with well-controlled properties 

based on the time dependence of the monomers concentration.(LaMer and Dinegar, 1950) This situation can be 

achieved by a rapid hot-injection of the organometallic precursors in the reaction mixture (solvent+surfactants) 

or by separating the nucleation and the growth steps through two thermal treatments. 

In this work, FeIII(acac)3, CoII(acac)2, ZnII(acac)2, 1,2-hexadecanediol (10 mmol), oleic acid (6 mmol), 

oleylamine (6 mmol), dibenzylether (20 ml) were added in a 250 ml three-necks round bottom flask. The 

system was heated up to 200 °C for 2 h and to 280 °C for 1 h, under magnetic stirring and a blanket of 

nitrogen. 

Particular attention was paid on the control of the temperature during the synthesis (Fig. 4.2.1) and, in order 

to render it repeatable, an auto-tuning Proportional-Integral-Derivative (PID) controller was used (Fig. 4.2.2). 

                                                 
1 The candidate Valentina Mameli synthesised and partially characterised the samples during her research activity under the 

supervision of Prof. Nguyen T. K. Thanh at the UCL Healthcare Biomagneticnd Nanomaterials Laboratories located at the Royal Institution 

of Great Britain (London). The characterisation was then completed at the University of Cagliari. 
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Fig. 4.2.1 Time profile of the temperature measured inside the flask during the syntheses of the ZnxCo1-xFe2O4 

samples. x is the actual zinc content determined by ICP-AES (see 4.3). 

Fig. 4.2.2 Heating mantle, magnetic stirrer and Proportional-Integral-Derivative (PID) temperature controller used during 

the synthesis of ZnxCo1-xFe2O4 nanoparticles. 

After the two heating steps, the system was left to cool down to room temperature. Then, 40 ml of absolute 

ethanol were added to precipitate the nanoparticles from the supernatant overnight. The supernatant was 

discarded after a centrifugation at 4500 rpm (for 15 min). The as-obtained nanoparticles were washed with 

ethanol and collected by centrifugation at 4500 rpm (for 15 min). This washing process was repeated six times 

and, then, the nanoparticles were dispersed in hexane. 

Given the critical importance of the composition, structure and morphology (e.g., crystallite size, particles 

size, particle size distribution, type and amount of coating) on the magnetic and hyperthermic properties of the 

nanoparticles, an accurate characterisation is often required to understand them. Although there are no 

generally applicable methods to determine these features of the nanoparticles, a combination of traditional 

characterisation approaches such as elemental analysis by ICP, ThermoGravimetric Analysis (TGA), Infrared 

Spectroscopy (FT-IR), X-ray Diffraction (XRD), Conventional and High Resolution Transmission Electron 

Microscopy (TEM, HR-TEM), 57Fe Mössbauer Spectroscopy with other sophisticated techniques are often needed 
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to fully elucidate the  composition, the morphology and the structure of these systems. For this reason, particular 

attention has been paid on their characterisation by repeating the measurements twice or by using different 

instruments when possible. 

4.3 Chemical composition 

The samples chemical composition was studied by means of Inductively Coupled Plasma – Atomic Emission 

Spectrometry (ICP-AES). The samples were analysed two times on different portions and the chemical formulas 

were calculated by assuming the absence of anions vacancies (Tab. 4.3.1). Hereafter, the samples are labelled 

as CoFe_Znx where x is the actual Zn content equal to 0, 0.30, 0.46, 0.53. Moreover, each sample is identified 

by a different colour: red (CoFe_Zn0), green (CoFe_Zn0.30), blue (CoFe_Zn0.46) and purple (CoFe_Zn0.53). 

Tab. 4.3.1 Chemical composition obtained by ICP-AES of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples. 

Sample Chemical formula 

CoFe_Zn0 Co0.94Fe2.04O4 

CoFe_Zn0.30 Zn0.30Co0.70Fe2.00O4 

CoFe_Zn0.46 Zn0.46Co0.54Fe2.02O4 

CoFe_Zn0.53 Zn0.53Co0.47Fe2.02O4 

4.4 Microstructure and Morphology 

4.4.1 X-Ray Diffraction (XRD) 

The four samples of ZnxCo1-xFe2O4 NPs were analysed by XRD by using two different diffractometers located 

in the laboratories of the University of Cagliari (copper X-ray source, λ (Kα) = 1.54056 Å) and the University 

College London (cobalt X-ray source, λ (Kα) = 1.78901 Å). The patterns, shown in Fig. 4.4.1, indicate the 

presence of a unique spinel cubic phase (CoFe2O4, PDF card # 221086) for all the samples with a mean 

crystallite size of 6.2±0.4 nm obtained by the copper X-ray source equipped-diffractometer and 6.1±0.4 nm 

by the cobalt one (Tab. 4.4.1). 
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Fig. 4.4.1 XRD patterns of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples recorded by powder X-ray 

diffractometers equipped with Cu X-ray source (left panel) and a Co X-ray source (right panel). 

Tab. 4.4.1 Crystallite size (diameters) of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples estimated by Scherrer’s 

equation on the patterns recorded by powder X-ray diffractometers equipped with Cu X-ray source (University of Cagliari, 

left panel) and a Co X-ray source (University College London, right panel). 

Sample 
<DXRD> (nm) 

Cu Kα 

<DXRD> (nm) 

Co Kα 

CoFe_Zn0 6.1±0.3 6.0±0.1 

CoFe_Zn0.30 5.9±0.2 5.8±0.1 

CoFe_Zn0.46 6.0±0.3 6.0±0.2 

CoFe_Zn0.53 6.7±0.4 6.6±0.2 

 

Other information can be deduced by XRD. 

For instance, the intensity of some reflections are considered to be sensitive to the cations occupancies of 

the tetrahedral sites(Ladgaonkar and Vaingankar, 1998; Varshney et al., 2011; Wolska et al., 1992) In our 

case, the intensity ratio between the (220) and the (400) reflections (Fig. 4.4.2) is found to linearly increases 

with increasing zinc content suggesting that probably the zinc ions substitute cobalt ones by occupying 

preferentially tetrahedral sites. 
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Fig. 4.4.2 Intensity ratio of the (220) and (400) XRD reflections for the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples 

with the corresponding linear curve fitting ( (𝒚 = 𝟏. 𝟏𝟓 + 𝟎. 𝟗𝟏𝒙; R2=0.99637). 

The XRD patterns were analysed by the Rietveld method. The as-obtained lattice parameters are listed in 

Tab. 4.4.2. Powder X-Ray Diffraction patterns of CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples (coloured 

spheres) and related curve fitting by Rietveld Refinement (Fig. 4.4.3). 

Fig. 4.4.3 Powder X-Ray Diffraction patterns of CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples (coloured spheres) and 

related curve fitting by Rietveld Refinement (black curve). 
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Tab. 4.4.2 Lattice parameter and cationic distributions obtained by Rietveld analysis (performed on the Cu-XRD patterns) 

for the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples. The last column lists the weighted indexes of agreement. 

Sample a (Å) Cationic distribution 
Rw 
(%) 

CoFe_Zn0 8.390(2) (Fe0.73Co0.27)[Fe1.26Co0.74]O4 5.79 

CoFe_Zn0.30 8.414(2) (Fe0.38Co0.42Zn0.20)[Fe1.62Co0.28Zn0.10]O4 6.19 

CoFe_Zn0.46 8.418(2) (Fe0.30Co0.44Zn0.26)[Fe1.70Co0.10Zn0.20]O4 6.12 

CoFe_Zn0.53 8.433(2) (Fe0.28Co0.39Zn0.33)[Fe1.72Co0.08Zn0.20]O4 6.50 

 

The lattice parameter has been found to linearly increase with increasing Zn content (Fig. 4.4.4) in 

agreement with the Vegard rule(Vegard, 1921) suggesting the insertion of the zinc in the spinel structure. 

Indeed, the lattice parameters of mixed ferrites are often a linear interpolation of the lattice constants of the 

extreme phases, i.e. CoFe2O4 (8.38 Å) and ZnFe2O4 (8.44 Å).(Smit and Wijn, 1959)  

Fig. 4.4.4 Lattice parameter as a function of the Zn content for the CoFe_Znx (with x=0 (red sphere), 0.30 (green 

sphere), 0.46 (blue sphere), 0.53 (purple sphere)) samples with the corresponding linear curve fitting (dashed line, 𝑦 =

8.39 + 0.073𝑥; R2=0.91512). 

A raw estimation of the distribution of the metallic cations in the tetrahedral and octahedral sites has been 

attempted by the Rietveld method (Fig. 4.4.3, Tab. 4.4.2) but we can consider them just as general tendencies 

because iron, cobalt and zinc are characterised by similar X-ray crossing section values. Nevertheless, these 

data suggest that the samples are characterised by partially inverse structures. In particular, the cobalt ferrite 

sample seems to have an inversion degree of about 0.70, which is a value often reported in the literature for 

cobalt ferrite NPs.(Blanco-Gutiérrez et al., 2012; Carta et al., 2009; D Carta et al., 2013; Fantechi et al., 

2012; Peddis et al., 2011) Moreover, the inversion degree further drops down when zinc ions replace cobalt 

ones within the structure. This can be explained by taking into account the general preference of Zn2+ for 

tetrahedral coordination rather than octahedral one, which probably forces Fe3+ to occupy octahedral sites. 
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4.4.2 Transmission Electron Microscopy (TEM, HR-TEM) 

The morphological features of the ZnxCo1-xFe2O4 NPs, such as the shape, size and size distribution, were 

studied by means of two different transmission electron microscopes located in the laboratories of the University 

of Cagliari (200 kV-JEM 2010 UHR, Fig. 4.4.5) and the University College London (120 kV-JEOL JEM-200 EX 

II, Fig. 4.4.6). TEM images show pseudo-spheroidal log normal-distributed NPs with similar sizes for all the 

samples. A mean diameter and a polidispersity index of 7.5±0.4 nm and 22±2 %, respectively, were obtained 

by the 200 kV microscope, (Fig. 4.4.7, left panel). These values have been confirmed by the analyses with the 

120 kV microscope resulting in a mean diameter of 7.4±0.4 nm and a polidispersity index of 20±2 % (Fig. 

4.4.7, right panel). 

Fig. 4.4.5 TEM images for the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples obtained by the microscope located at 

the University of Cagliari (200 kV-JEM 2010 UHR).  
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Fig. 4.4.6 TEM images for the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples obtained by the microscope located at 

the University College London (120 kV-JEOL JEM-200 EX II). 

Fig. 4.4.7 Particle size distributions of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples estimated by means of two 

different transmission electron microscopes located at the University of Cagliari (200 kV-JEM 2010 UHR, left panel) and 

at University College London (120 kV-JEOL JEM-200 EX II, right panel). 
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Tab. 4.4.3 Crystallite sizes, particle sizes and polydispersity indexes (σTEM) of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) 

samples obtained by different diffractometers (XRD1: Cu X-ray source, University of Cagliari; XRD2: Co X-ray source, 

University College London) and different microscopes (TEM1: 200 kV-JEM 2010 UHR, University of Cagliari; TEM2: 120 

kV-JEOL JEM-200 EX II, University College London). 

Sample 

<DXRD1> 
(nm) 

Cu Kα 

<DXRD2> 
(nm) 

Co Kα 

<DTEM1> 
(nm) 

σTEM1 

(%) 

<DTEM2> 
(nm) 

σTEM2 

(%) 

CoFe_Zn0 6.1±0.3 6.0±0.1 7.5 22 7.7 18 

CoFe_Zn0.30 5.9±0.2 5.8±0.1 7.1 19 6.9 18 

CoFe_Zn0.46 6.0±0.3 6.0±0.2 7.3 22 7.3 22 

CoFe_Zn0.53 6.7±0.4 6.6±0.2 8.0 24 7.6 21 

All the TEM images allow us to exclude the presence of aggregates suggesting that the NPs are well-capped 

and separated by organic molecules, as expected due to the stability of their colloidal dispersions in organic 

solvents. Moreover, the agreement between the crystallite (~6 nm) and particle (~7.5 nm) sizes (Tab. 4.4.3) 

suggests that highly crystalline NPs were obtained. This aspect is also confirmed by HR-TEM images (Fig. 4.4.8) 

showing continuous atomic lattice fringes all over the particle and the absence of evident structural defects. 
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Fig. 4.4.8 High Resolution TEM images of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples obtained by the 

transmission electron microscope located at the University of Cagliari (200 kV-JEM 2010 UHR). Note that two HRTEM 

images are shown for the samples CoFe_Zn0 and CoFe_Zn0.30. 
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4.5 Capping agent 

4.5.1 Fourier Transform - Infrared Spectroscopy (FT-IR)  

The presence of capping agent molecules surrounding the NPs and their characterisation was conducted by 

FT-IR analysis. Indeed, the ZnxCo1-xFe2O4 NPs where purified and separated from possible by-products by 

means of several washing steps that could in principle remove completely also the capping shell. All the FT-IR 

spectra show as principal vibrational modes the ones typical for the hydrocarbon chain (asymmetric and 

symmetric CH stretching of CH2 and CH3 groups) and the carboxylate groups (asymmetric and symmetric COO- 

stretching) (Fig. 4.5.1, Tab. 4.5.1). This suggest that the NPs are capped by oleate groups(Cannas et al., 

2010b). In addition, vibrational modes typical for the neutral amine groups (NH stretching, NH2 

bending)(Cannas et al., 2010b) have been identified, despite their low-intensity signals, indicating the presence 

of a few oleylamine molecules probably intercalated among the oleate ones. 

The M-O (M = Co, Fe, Zn) stretching modes of spinel ferrites has been studied by a second 

spectrophotometer that permits to record the spectra up to 350 cm-1. Fig. 4.5.1 shows for all the samples the 

fingerprint range 700-400 cm-1. In this spectral region two metal-oxygen stretching modes are visible. The first 

one, associated with the octahedral and tetrahedral sites, is found to move towards lower values with increasing 

zinc content, from 588 cm-1 for the CoFe2O4 to 572 cm-1 for Zn0.53Co0.47Fe2.0O4. Taking into account the values 

reported in the literature for cobalt (575 cm-1) and zinc (555 cm-1) ferrites(White and DeAngelis, 1967), this 

trend can be interpreted in the light of a gradual substitution of cobalt ions by zinc ones within the spinel 

structure. Also the second stretching mode, related only to the octahedral sites, undergoes a shift but in the 

opposite direction (i.e. higher wavenumber values with increasing zinc content) suggesting that the insertion of 

the zinc in the structure strongly affects the cationic distribution. 

Fig. 4.5.1 Infrared spectra of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples recorded in the region 

(4000-400 cm-1) (left panel). Infrared spectral region between 700 and 350 cm-1 with the typical metal-oxygen 

stretching modes (right panel). 
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Tab. 4.5.1 Assignments of the vibrational modes revealed in the FTIR spectra of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) 

samples. 

Wavenumber (cm-1) 
Vibrational mode 

CoFe_Zn0 CoFe_Zn0.30 CoFe_Zn0.46 CoFe_Zn0.53 

3433 3400 3371 3408 N-H stretching 

2952 2954 2952 2950 
C-H asymmetric stretching 

(CH3) 

2922 2924 2924 2925 
C-H asymmetric stretching 

(CH2) 

2850 2873 2852 2854 
C-H symmetric stretching 

(CH2) 

1593 1595 1593 1592 NH2 bending 

1545 1550 1548 1541 COO- asymmetric stretching 

1410 1415 1414 1415 COO- symmetric stretching 

1342 1340 1346 1340 CH3 bending 

717 719 717 - CH2 wagging 

582 577 571 569 Metal-O stretching 

4.5.2 ThermoGravimetric Analysis (TGA) 

TGA analyses (Fig. 4.5.2) have been carried out for the ZnxCo1-xFe2O4 NPs under an inert atmosphere (50 

ml/min of Ar). The curves show for all the samples two weight losses occurring between 300 and 400 °C and 

between 550 and 650 °C. The first one can be associated with the decomposition of the capping molecules 

whereas the second one to a reduction process undergone by the inorganic core under argon atmosphere as 

already observed by other authors for oleic acid-capped ferrite nanoparticles.(Ayyappan et al., 2011, 2008) 

In order to confirm this interpretation, a TGA curve has been recorded under an oxidative atmosphere (50 

ml/min of O2) on the CoFe_Zn0.53 sample (Fig. 4.5.2). In this case, the decomposition of the capping agent 

shifts towards lower temperature (between 200 and 300 °C) but produces the same weight loss as the first 

weight loss of the Ar-measurement. From the first weight loss in the Ar-TGA curves, the percentage of capping 

agent has been calculated (Tab. 4.5.2). Similar values have been obtained for all the samples with a mean 

percentage of (15±2) %. 

Fig. 4.5.2 TGA curves of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples performed under inert atmosphere (50 

ml/min of Ar) (left panel). TGA curves collected on the CoFe_Zn0.53 sample under an inert atmosphere (50 ml/min of Ar) 

and an oxidative atmosphere (50 ml/min O2) (right panel). 
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Tab. 4.5.2 Summary of the chemical composition, microstructural and morphological properties of CoFe_Znx (with x=0, 

0.30, 0.46, 0.53) samples. 

Sample 
Chemical 

composition 

<DXRD> 
(nm) 

Cu Kα 

<DXRD> 
(nm) 

Co Kα 

<DTEM1> 
(nm) 

σTEM1 

(%) 

<DTEM2> 
(nm) 

σTEM2 

(%) 

% of 
organic 
phase  

CoFe_Zn0 CoFe2O4 6.1±0.3 6.0±0.1 7.5 22 7.7 18 17 

CoFe_Zn0.30 Zn0.30Co0.70Fe2.00O4 5.9±0.2 5.8±0.1 7.1 19 6.9 18 13 

CoFe_Zn0.46 Zn0.46Co0.54Fe2.02O4 6.0±0.3 6.0±0.2 7.3 22 7.3 22 16 

CoFe_Zn0.53 Zn0.53Co0.47Fe2.02O4 6.7±0.4 6.6±0.2 8.0 24 7.6 21 13 

 

It can be easily demonstrated that this amount of capping agent corresponds to a low-dense packing of a 

monolayer of oleate molecules surrounding the surface of the nanoparticles (Fig. 4.5.3). Indeed, other authors 

have indicated that for a close-packed monolayer of oleate molecules, each molecule has 20-30 Å2 as available 

area on the particle surface.(Ayyappan et al., 2008; Gnanaprakash et al., 2007; van Ewijk et al., 1999) For 

the CoFe_Znx sample, considering a mean diameter of 7.5±0.4 nm and a spheroidal shape for the NPs, a 

surface area of 177 nm2 is obtained. A 15±2 % of organic capping corresponds to ~3.2·1020 oleate molecules. 

Taking into account the bulk-CoFe2O4 density of 5.3 g/cm3 and the volume of a single spheroidal NP with a 

diameter of 7.5 nm, an 85% of inorganic phase corresponds to a number of spinel ferrite NPs of 7.3·1017. The 

number of capping molecules per particle, obtained as the ratio between the number of oleate molecules and 

the number of NPs should, is about 440 molecules/nanoparticle. Finally, the nanoparticle surface area (177 

nm2) over the number of molecules provides a surface area occupied by each oleate molecule of 40 Å2. This 

may suggests a low-dense packing of the molecules on the NPs’ surface. The complete calculation, considering 

the dispersion on the inorganic core diameter and on the capping agent amount, is reported in Tab. 4.5.3. 

Fig. 4.5.3 Sketch based on the FTIR/TGA data of the hybrid nanostructures forming the CoFe_Znx (with x=0, 0.30, 0.46, 

0.53) samples. The inorganic core is surrounded by a monolayer of oleate molecules. 
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Tab. 4.5.3 Computation of the available area for each oleate (OA) molecule on the nanoparticle (NP) surface. The results 

are given in the last column (A per OA molecule). DTEM is the particle diameter estimated by TEM analyses. ANP is the 

particle surface area. VNP is the volume of a nanoparticle. The mass of a single nanoparticle (calculated considering a 

density of 5.3 g/cm3) is indicated as m of a single NP; the number of nanoparticles in one gram of sample, calculated from 

TGA data, is given as # NPs per g of sample; mOA per g of sample is the percentage of capping agent obtained from 

TGA;  nOA and # OA molec. per g of sample are the corresponding number of moles and number molecules of oleate, 

respectively; # OA molec. per single NP is the number of oleate molecules surrounding each nanoparticle. 

DTEM 

(nm) 
ANP 

(nm2) 
VNP 

(nm3) 

m of a 
single NP 

(g) 

# NPs per 
g of 

sample 

mOA 

per g 
of 

sample 

nOA 
(mmol) 

# OA 
molec. 
per g of 
sample 

# OA 
molec. 

per single 
NP 

A per OA 
molecule 

(Å2) 

7.5 177 221 1.17E-18 7.3E+17 0.15 0.53 3.2E+20 440 40 

7.5 177 221 1.17E-18 7.4E+17 0.13 0.46 2.8E+20 373 47 

7.5 177 221 1.17E-18 7.1E+17 0.17 0.60 3.6E+20 511 35 

7.1 158 187 9.93E-19 8.6E+17 0.15 0.53 3.2E+20 374 42 

7.9 196 258 1.37E-18 6.2E+17 0.15 0.53 3.2E+20 515 38 

 

Moreover, the first derivative of the thermogravimetric curve (DTG) points out that the weight loss is made 

up by two steps in the case of the zinc-substituted samples (Fig. 4.5.4). This can be probably related to different 

interactions between the capping molecules and the inorganic cores that occur exclusively when the zinc is 

present in the structure. For instance, it can be related to different bond strengths between the oleate group 

and the different surface metal ions. 

Fig. 4.5.4 First derivative of the TGA curves (DTG) of the CoFe_Znx (with x=0 (red sphere), 0.30 (green sphere), 0.46 

(blue sphere), 0.53 (purple sphere)) samples. 

In conclusion, the results of the FT-IR and TGA analyses indicate that all the samples are hybrid 

organic-inorganic nanostructures made of inorganic core of about 7.5 nm capped by a single layer of oleic 

acid molecules (~2 nm in length), giving raise to not-aggregated NPs with similar interparticles distances as 

observed by TEM analyses. 
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4.6 Magnetic properties and heating abilities 

The similarities, highlighted by the careful and multi-technique characterisation, on the particle size, particle 

size distribution, crystallite size and capping agent amount, establish an ideal context to discuss the magnetic 

properties and the heating abilities of these samples exclusively as a function of the chemical composition effect 

caused by different zinc content. 

4.6.1 Low temperature magnetic properties and cationic distribution. 

M vs H curves have been measured at 5 K (Fig. 4.6.1) and the values of the main magnetic quantities have 

been estimated (Tab. 4.6.1). 

Fig. 4.6.1 Field dependence of the magnetisation at 5 K for the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples. 

Tab. 4.6.1 5 K Magnetic properties of CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples. Hc, Hsat and M7T are the coercivity, 

the saturation field and the magnetisation at 7 T. Ms1 and Ms2 are saturation magnetisation values estimated by the 

equations 𝑀 = 𝑴𝒔𝟏 + 𝑏
1

𝐻
 and 𝑀 = 𝑴𝒔𝟐 ∙ (1 −

𝑎

𝐻
−

𝑏

𝐻2), respectively.(Morrish, 1965) In addition, the corresponding 

magnetic remanence values are listed in the last two columns. 

Sample 
Hc 

(kOe) 
Hsat 
(kOe) 

M7T 
(emu/g) 

Ms1 
(emu/g) 

Ms2 
(emu/g) 

Mr/Ms1 Mr/Ms2 

CoFe_Zn0 12±1 36±4 104±2 110±2 109±3 0.58±0.03 0.58±0.03 

CoFe_Zn0.30 4.6±0.5 22±2 134±3 139±3 142±3 0.46±0.02 0.45±0.02 

CoFe_Zn0.46 3.7±0.4 21±4 141±3 150±3 157±3 0.43±0.02 0.42±0.02 

CoFe_Zn0.53 4.4±0.4 17±2 120±2 131±3 140±3 0.44±0.02 0.41±0.02 

 

All the curves show a hysteretic behaviour without any anomalous shape associated with mixtures of 

hard/soft isostructural spinel phases.(Song and Zhang, 2012) This is consistent with the presence of a unique 

spinel cubic phase. In order to furtherly, verify the presence of a single spinel phase, the field dependence of 

the remanent magnetisation has been studied by means of the DCD protocol. The first derivative of the DCD 
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curve (Fig. 4.6.2) can be useful to study the distribution of the particle coercive fields, known also as the switching 

field distribution. 

Fig. 4.6.2 First derivative of the DCD curves of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples. 

A single peak is shown for all the samples, confirming the presence of a unique spinel phase.(Muscas et al., 

2015) Furthermore, the cobalt ferrite nanoparticles exhibit a field distribution centred at higher magnetic field 

(HDCD≈15.5 kOe) with respect to the zinc-substituted ones (between 5 and 6 kOe). 

The hysteresis loop for the cobalt ferrite is characterised by a high coercive field, Hc, (12±1 kOe) near the 

values previously reported for nanoparticles of similar size(Duong et al., 2006; Fantechi et al., 2012; Peddis 

et al., 2013; Song and Zhang, 2006). The coercive fields for the Zn-doped samples were found to be equal to 

4.6±0.5 kOe (x=0.30), 3.7±0.4 kOe (x=0.46) and 4.4±0.4 kOe (x=0.53). The reduced values of coercive 

field for the Zn-containing samples with respect to the unsubstituted one is probably due to a decrease of the 

magnetocrystalline anisotropy occurring when Zn2+ replaces Co2+. It is interesting to note that an increase of x 

between 0.3 and 0.53 does not change significantly the coercivity. The same trend has been recorded for the 

saturation field (Hsat), which represents the field necessary to reverse the magnetisation of all the nanoparticles. 

The saturation magnetisation (Ms) for the cobalt ferrite is about 110 emu/g, higher than the value usually 

reported for bulk-CoFe2O4 (80-90 emu/g)(Cullity and Graham, 2009; Smit and Wijn, 1959). This may suggest 

a partially inverse structure.(Peddis et al., 2011) As Zn2+ enters the structure, Ms increases up to about 150-

160 emu/g for a Zn content of 0.46 and decreases for higher Zn concentration (~130-140 emu/g). The reduced 

remnant magnetisation (Mr/Ms) has been found to be equal to 0.58 for the pure cobalt ferrite and lower than 

0.5 for the Zn-doped samples. Although the value of 0.58 is not very close to the theoretical one (being equal 

to 0.83(Walker et al., 1993)), it suggests that CoFe2O4 nanoparticles tend to cubic anisotropy whereas 

substitution by Zn2+ leads to uniaxial anisotropy nanoparticles. 

From these data, it seems that the increase of Zn2+ in the zinc-substituted samples produces a selective tuning 

of the saturation magnetisation without any changes in the anisotropy, contrarily to what already reported in 

the literature.(Singhal et al., 2010; Topkaya et al., 2012) This effect could be probably explained by taking 

into account the cationic distribution and the inversion degree (i). In particular, it can be hypothesized that the 
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samples are characterised by a partially inverse spinel structure (i.e. i<1) and that the Zn2+ ions occupy 

preferentially tetrahedral sites (Fig. 4.6.3, Fig. 4.6.4).  

Fig. 4.6.3 Theoretical saturation magnetisation (Ms) based on the Néel model (i.e. independent magnetic sublattices of 

the spinel ferrite magnetic structure) for different inversion degree values (0.4≤ i ≥0.8, different coloured curves) 

assuming that the Zn2+ occupy preferentially Td sites (upper panel) or Oh sites (bottom panel). The values have been 

calculated by means of the formula: , where 𝜇 is the total magnetic moment, 𝜇𝐵 is the Bohr magneton, 𝑁𝐴 is 

the Avogadro number and 𝑀𝑀 is the molar mass. 

Fig. 4.6.4 Theoretical anisotropy constant for ZnxCo1-xFe2O4 as a function of the zinc content and for different inversion 

degree values (0.4≤ i ≥0.8, different coloured curves). The anisotropy constant is calculated as sum of the single ion 

anisotropy of the Co2+ (Co2+ in Td sites has a K=–79·10–24 J/ion; Co2+ in Oh sites has a K= +850·10–24 J/ion). The 

curves are obtained by assuming that the Zn2+ occupy preferentially Td sites. 
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In order to confirm this hypothesised scenario, 57Fe Mössbauer Spectroscopy measurements have been carried 

out at 4.2 K in the absence (Fig. 4.6.5, Fig. 4.6.6, Tab. 4.6.2) and in the presence (Fig. 4.6.7, Fig. 4.6.8, Tab. 

4.6.3, Tab. 4.6.4) of an intense magnetic field (6 T). These measurements allow to obtain information on the 

iron occupancies and on the presence of spin-canting phenomena, i.e. internal or surface disorder. 

Fig. 4.6.5 4.2 K Mo ̈ssbauer spectra of the CoFe_Zn0 (upper panel) and CoFeZn_0.30 (bottom panel) samples recorded in 

the absence of an external magnetic field. Note that the doublet in the centre of the spectra is related to the metallic 

iron dissolved in the aluminium foil used as sample holder. 
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Fig. 4.6.6 4.2 K Mo ̈ssbauer spectra of the CoFe_Zn0.46 (upper panel) and CoFeZn_0.53 (bottom panel) samples 

recorded in the absence of an external magnetic field. Note that the doublet in the centre of the spectra is related to the 

metallic iron dissolved in the aluminium foil used as sample holder. 
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Fig. 4.6.7 4.2 K Mo ̈ssbauer spectra of the CoFe_Zn0 (upper panel) and CoFeZn_0.30 (bottom panel) samples recorded in 

the presence of an intense external magnetic field (6 T). 
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Fig. 4.6.8 4.2 K Mo ̈ssbauer spectra of the CoFe_Zn0.46 (upper panel) and CoFeZn_0.53 (bottom panel) samples 

recorded in the presence of an intense external magnetic field (6 T). 
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Tab. 4.6.2 Mössbauer parameters of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples spectra recorded at 4.2 K in the 

absence of an external magnetic field (0 T): isomer shift (δ), quadrupole splitting (ΔEQ), hyperfine field (BHf) and Full-Width 

at Half-Maximum (FWHM). Last column lists the interpretation for each subspectrum. 

Sample Subsp. 
δ 

(mm/s) 

ΔEQ 

(mm/s) 

BHf 
(T) 

FWHM 
(mm/s) 

Interpretation 

CoFe_Zn0 
1 0.42 0.02 52.6(3) 0.40 tetrahedral sites of a spinel 

2 0.56 0.00 55.2(3) 0.64 octahedral sites of a spinel 

CoFe_Zn0.30 
1 0.43 0.00 52.7(3) 0.43 tetrahedral sites of a spinel 

2 0.54 0.00 54.1(3) 0.58 octahedral sites of a spinel 

CoFe_Zn0.46 
1 0.42 0.00 52.3(3) 0.45 tetrahedral sites of a spinel 

2 0.54 0.00 53.8(3) 0.54 octahedral sites of a spinel 

CoFe_Zn0.53 
1 0.42 0.00 52.2(3) 0.43 tetrahedral sites of a spinel 

2 0.54 0.00 53.6(3) 0.56 octahedral sites of a spinel 

Tab. 4.6.3 Mo ̈ssbauer parameters of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples spectra recorded at 4.2 K under 

an intense magnetic field (6 T): isomer shift (δ), quadrupole splitting (ΔEQ), effective magnetic field (BHf), Full-Width at Half-

Maximum (FWHM) and relative area (A) of the components. Last column lists the interpretation for each subspectrum. 

Sample Subsp. 
δ 

(mm/s) 

ΔEQ 

(mm/s) 

Beff 
(T) 

FWHM 
(mm/s) 

A 
(%) 

Interpretation 

CoFe_Zn0 

1 0.42 0.02 58.7(1) 0.41 35 
FeIII in tetrahedral 
sites of a spinel 

2 0.56 0.00 49.4(1) 0.63 65 
FeIII in octahedral 
sites of a spinel 

CoFe_Zn0.30 

1 0.43 0.00 59.1(1) 0.41 25 
FeIII in tetrahedral 
sites of a spinel 

2 0.54 0.01 48.1(1) 0.61 75 
FeIII in octahedral 
sites of a spinel 

CoFe_Zn0.46 

1 0.42 -0.01 59.1(1) 0.46 23 
FeIII in tetrahedral 
sites of a spinel 

2 0.54 0.01 47.7(1) 0.57 77 
FeIII in octahedral 
sites of a spinel 

CoFe_Zn0.53 

1 0.42 0.00 58.9(1) 0.40 21 
FeIII in tetrahedral 
sites of a spinel 

2 0.54 0.05 47.8(1) 0.57 79 
FeIII in octahedral 
sites of a spinel 

Tab. 4.6.4 Cationic distribution of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples obtained by in-field low temperature 

Mo ̈ssbauer Spectroscopy. 

Sample Cationic distribution 

CoFe_Zn0 (Co0.30(1)Fe0.70(1))[Co0.70(1)Fe1.30(3)]O4 

CoFe_Zn0.30 (MII0.50(3)Fe0.50(2))[MII0.50(1)Fe1.50(3)]O4 

CoFe_Zn0.46 (MII0.54(2)Fe0.46(2))[MII0.46(1)Fe1.54(3)]O4 

CoFe_Zn0.53 (MII0.58(5)Fe0.42(3))[MII0.42(1)Fe1.58(5)]O4 

All the spectra can be fitted by two well separated sextets related to ferric ions located in the tetrahedral 

and octahedral sites of a spinel structure. The values of isomer shift have been found to be higher than the 
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values typical for ferric ions at room temperature (~0.33 mm/s). This is something expected as the isomer shift 

usually increases with decreasing temperature. The distribution of iron ions in the octahedral and tetrahedral 

sites of the spinel structure can be obtained by means of the in-field measurements carried out at low 

temperature (Tab. 4.6.4). The cationic distribution for the pure cobalt ferrite has been found to be 

(Co0.30Fe0.70)[Co0.70Fe1.30]O4 with an inversion degree of 0.70, in agreement with previous works on CoFe2O4 

nanoparticles synthesized by different methods.(Blanco-Gutiérrez et al., 2012; Carta et al., 2009; D. Carta et 

al., 2013; Fantechi et al., 2012; Peddis et al., 2011) The substitution of cobalt ions with zinc ones leads to a 

spinel structure with reduced inversion degree, which has been found equal to 0.50, 0.46, 0.42 for the samples 

CoFe_Zn0.30, CoFe_Zn0.46 and CoFe_Zn0.53, respectively. This decrease in the inversion degree can be 

justified by taking into account the affinity of Zn2+ for tetrahedral sites(Sharifi and Shokrollahi, 2012; Sickafus 

et al., 2004; Topkaya et al., 2012; Veverka et al., 2010), which probably force the Fe3+ to occupy octahedral 

ones. Moreover, the effective field values (Beff) are similar in all the samples for Td sites (about 59 T) whereas 

the Beff values for Oh sites are lower in the case of the zinc-substituted samples (48 T) with respect to the cobalt 

ferrite (49 T). This means that the hyperfine field experienced by ferric ions with octahedral coordination is 

lower, as confirmed by the analysis of the 4 K Mössbauer spectra recorded under zero field (Tab. 4.6.5). Now, 

we should take into account that the first neighbouring sites for an octahedral one are the tetrahedral interstices 

and that the exchange interactions between octahedral and tetrahedral atoms (JAB) are stronger than the ones 

between two tetrahedral atoms (JAA) or two octahedral ones (JBB). As a consequence, the effective field of the 

octahedral sublattice will be more affected than the effective field of tetrahedral sublattice when the 

diamagnetic Zn atoms will be in tetrahedral positions. Therefore, with the increasing of Zn substitution, the Beff 

values of octahedral sublattice decreases while the Beff values for tetrahedral sublattice remain almost constant. 

These data suggest again that the insertion of zinc in the structure involves preferentially 4-fold coordination 

sites in agreement with the hypothesised interpretation. 

The Mössbauer measurements on the CoFe2O4 provides the complete cationic distribution for this sample. 

The theoretical Ms value for this cationic distribution can be calculated on the basis of the Néel model which 

accounts for the existence of two magnetic sublattices in the spinel structure. This value has been found equal to 

100 emu/g, which is slightly lower than the observed experimental Ms value (~110 emu/g). The discrepancy 

between the theoretical value and the experimental one can be explained by taking into account that this model 

does not consider the orbital contribute to the magnetic moment, which is actually not-negligible in the case of 

cobalt ions-containing ferrites, or to the presence of canted spins.(Smit and Wijn, 1959) Between these two 

explanations, the second one can be excluded because the canting angle have been found to be around zero 

for all the samples (Tab. 4.6.5). 

The in-field measurements were done in a perpendicular arrangement (Fig. 4.6.9) of the external magnetic 

field with respect to the γ-beam and are useful to get information about the cationic distribution and the canting 

phenomena in the spinel structure. Generally, two arrangements are used for the in field Mössbauer 

measurements. In the parallel arrangement the magnetic field is parallel to the γ-beam whereas in the 

perpendicular one the magnetic field is applied perpendicularly to it. Effective magnetic field (𝐵𝑒𝑓𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) which 
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causes the splitting of Mössbauer spectra into sextets is sum of two vectors: the hyperfine field (𝐵𝐻𝑓
⃗⃗ ⃗⃗ ⃗⃗  ⃗) and 

external field (𝐵𝑎𝑝𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗): 

Eq. 4.6.1 

Canting angles can be directly calculated from sextets' lines area for a parallel γ-beam − 𝐵𝑎𝑝𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

arrangement because when canting angle is zero the intensity of the 2nd and 5th lines is zero. Therefore, all the 

deviations from this conditions can be easily detected. On the contrary, in the case of perpendicular γ-beam − 

𝐵𝑎𝑝𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ arrangement, the 2nd or 5th lines of Mössbauer spectra's sextets have intensity different from zero 

rendering the computation of the canting angles from the intensity not trivial. 

Nevertheless, for a perpendicular arrangement the angle θ between the magnetic moment (𝜇 ) and the 

applied magnetic field can be estimated thanks to the following cosine equation: 

Eq. 4.6.2 

Where Bhf is the hyperfine field, Beff the effective magnetic field and Bapp the external applied magnetic 

field. 

Fig. 4.6.9 Sketch of the perpendicular arrangement used in in field Mössbauer measurements. Bhf is the hyperfine field, 

Beff the effective magnetic field, Bapp the external applied magnetic field and θ is the angle between the magnetic 

moments in the structure and Bapp. 

The angle θ corresponds to the canting angle for the octahedral sites whereas for the tetrahedral ones, the 

canting angle is equal to π-θ. This is caused by the relative arrangement of the hyperfine and applied fields 

vectors that are parallel or antiparallel aligned for tetrahedral or octahedral sites, respectively. 

  

𝐵𝑒𝑓𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐵𝐻𝑓

⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐵𝑎𝑝𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝐵𝑒𝑓𝑓
2 = 𝐵ℎ𝑓

2 + 𝐵𝑎𝑝𝑝
2 − 2𝐵ℎ𝑓𝐵𝑎𝑝𝑝𝑐𝑜𝑠𝜃 
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Tab. 4.6.5 Computation of spin canting angle by means of the cosine equation (Eq. 4.6.2). Bhf is the hyperfine field, Beff 

the effective magnetic field, Bapp the external applied magnetic field and θ is the angle between the magnetic moments 

in the structure and Bapp. 

Sample Sites 
Bapp 

(T) 
BHf 
(T) 

Beff 
(T) 

BHf
2 

(T) 
Beff

2 
(T) 

Bapp
2 

(T) 
cosθ 

CoFe_Zn0 
Fe Td 6 52.6 58.7 2767 3446 36 1.02(9) 

Fe Oh 6 55.2 49.4 3047 2440 36 0.97(8) 

CoFe_Zn0.30 
Fe Td 6 52.7 59.1 2777 3493 36 1.07(9) 

Fe Oh 6 54.1 48.1 2927 2314 36 1.00(8) 

CoFe_Zn0.46 
Fe Td 6 52.3 59.1 2735 3493 36 1.15(9) 

Fe Oh 6 53.8 47.7 2894 2275 36 1.01(8) 

CoFe_Zn0.53 
Fe Td 6 52.2 58.9 2725 3469 36 1.13(9) 

Fe Oh 6 53.6 47.8 2873 2285 36 0.97(8) 

 

Néel model, which accounts for the existence of two independent magnetic sublattices in spinel ferrites, can 

be applied also to calculate the theoretical Ms values for the zinc-substituted samples by considering the cationic 

distribution obtained by the Mössbauer data and assuming that the zinc ions occupy tetrahedral sites. The 

theoretical values are 139 emu/g, 154 emu/g and 162 emu/g for zinc contents of 0.30, 0.46 and 0.53. The 

values are near the experimental ones with the exception for the sample with the highest zinc content, in which 

probably part of the zinc is in the octahedral sites. Thanks to the multitechnique approach used to characterise 

the sample, it is possible to reconstruct the cationic distribution in the CoFe_Zn0.53 sample by means of the 

experimental Ms values obtained by DC magnetometry, the iron ions occupancies found by Mössbauer 

Spectroscopy and the total content of cobalt measured by ICP-OES (Tab. 4.6.6). The obtained cationic 

distribution indicates the necessity for a 30-40% of zinc ions to occupy octahedral sites in order to justify the 

observed saturation magnetisation values. 

Tab. 4.6.6 Cationic distribution obtained for the CoFe_Zn0.53 sample by means of the experimental Ms values obtained 

by DC magnetometry, the iron ions occupancies found by Mössbauer Spectroscopy and the total content of cobalt measured 

by ICP-OES. The first raw refers to Ms1 value whereas the second raw refers to Ms2 value, obtained by means of the 

equations 𝑀 = 𝑴𝒔𝟏 + 𝑏
1

𝐻
 and 𝑀 = 𝑴𝒔𝟐 ∙ (1 −

𝑎

𝐻
−

𝑏

𝐻2), respectively.(Morrish, 1965). 

Tetrahedral sites Octahedral sites 
Ms emu/g) 

Zn Co Fe Zn Co Fe 

0.30 0.28 0.42 0.23 0.19 1.58 131 

0.36 0.22 0.42 0.17 0.25 1.58 140 

 

4.6.2 Room Temperature magnetic properties and SAR measurements. 

Since an increase of Ms with zinc substitution (within a certain zinc content range) has been observed at 5 

K, we studied the magnetic behaviour at 300 K in order to verify the suitability of these samples for biomedical 

applications, in particular for Magnetic Fluid Hyperthermia. 
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M vs H curves (Fig. 4.6.10) display a superparamagnetic behaviour at 300 K (i.e. zero remnant 

magnetisation and zero coercivity) with high Ms values for all the samples. Values near the one reported in the 

literature for bulk-CoFe2O4 (90÷80 emu/g) (Cullity and Graham, 2009; Smit and Wijn, 1959) but higher than 

the values reported in the literature for nanoparticles of similar sizes (Joshi et al., 2009; Peddis et al., 2011; 

Song and Zhang, 2004) have been obtained for the cobalt ferrite (CoFe_Zn0) and the sample with the lowest 

zinc content (CoFe_Zn0.30) (Tab. 4.6.7). This induces to believe that surface disorder phenomena (i.e spin-

canting) can be considered negligible in these samples in agreement with the Mössbauer results and as already 

observed in literature(Batlle et al., 2011; Roca et al., 2009). Higher content of zinc produces a decrease of the 

saturation magnetisation at room temperature. In the case of ordered magnetic systems, the thermal behaviour 

of the magnetization is related to the presence of low energy collective excitations (i.e. spin waves or 

magnons)(Hasegawa and Ray, 2014), depending on particle size and on the chemical composition of the 

materials(Demortière et al., 2011; Lo et al., 2011). In the samples under investigation, the increasing of 

diamagnetic ion content leads to a different temperature dependence of magnetization, justifying the different 

Ms vs zinc content at 300 K and 5 K. 

Fig. 4.6.10 Field dependence of the magnetisation at 300 K for CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples. 

Tab. 4.6.7 Room temperature properties of CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples: M7T is the value of the 

magnetisation extracted at 7 T; Ms1 and Ms2 are saturation magnetisation values estimated by the equations 𝑀 = 𝑴𝒔𝟏 +

𝑏
1

𝐻
 and 𝑀 = 𝑴𝒔𝟐 ∙ (1 −

𝑎

𝐻
−

𝑏

𝐻2), respectively.(Morrish, 1965) 

Sample 
M7T 

(emu/g) 
Ms1 

(emu/g) 
Ms2 

(emu/g) 

CoFe_Zn0 87±2 90±2 92±2 

CoFe_Zn0.30 86±2 90±2 94±2 

CoFe_Zn0.46 72±2 78±2 84±2 

CoFe_Zn0.53 55±1 63±1 70±2 

Due to the high saturation magnetisation values and also driven by the idea of a possible suitability of 

Zn-substituted cobalt ferrite as less toxic heat mediators, we tested the hyperthermal efficiency of all the 
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samples by recording heating curves (Fig. 4.6.11) under a magnetic field of 183 kHz and 17 kA/m. Indeed, 

the hydrophobic nanoparticles were converted in hydrophilic by intercalation process with 

cetyltrimethylammonium bromide (CTAB, (C16H33)N(CH3)3Br). The concentration of the colloidal dispersion was 

3.4 mg/ml for all the samples. 

Fig. 4.6.11 Heating curves obtained on water colloidal dispersions of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) 

samples at 25 °C and under a magnetic field of f=183 kHz and H0=17 kA/m. 

Only the samples CoFe_Zn0 and CoFe_Zn0.30 characterised by the highest saturation magnetisation values 

are responsible for a heat release but not in the same extent. In order to quantify the amount of heat released, 

the SAR has been calculated by the initial slope method and values equal to 19±3 and 6±2 W/gox, 

respectively, have been obtained (Tab. 4.6.8). 

Tab. 4.6.8 Specific Adsorpion Rate (SAR) and Intrinsic Loss Power (ILP) values for the samples CoFe_Zn0 and CoFe_Zn0.30 

(25 °C, 183 kHz, 17 kA/m) together with the saturation magnetisation values (Ms1, Ms2). SAR and ILP values are normalised 

for the total mass of ferrite (W/gox, nH·m2/kgox) or for the metal mass (W/gMe, nH·m2/kgox). 

Sample 
Ms1 

(emu/g) 
Ms2 

(emu/g) 
SAR 

(W/gox) 
SAR 

(W/gMe) 

ILPox 

(nH·m2/kgox) 

ILPMe 

(nH·m2/kgox) 

CoFe_Zn0 90±2 92±2 19±3 26±4 0.36±0.05 0.49±0.07 

CoFe_Zn0.30 90±2 94±2 6±2 8±2 0.11±0.03 0.15±0.05 

A comparison with the literature data is not trivial because of the different procedures adopted to measure 

the heating curves, as, for instance, different frequencies and amplitudes of the external magnetic field. With 

this regard, in order to compare heating abilities obtained by different frequencies and amplitudes, Pankhurst 

et al. proposed to use a parameter named Intrinsic Loss Power (ILP)(Kallumadil et al., 2009) expressed in 

[nH·m2/kg], defined as follows: 
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Eq. 4.6.3 

where SAR is expressed in W/kg, f in kHz and H0 in kA/m. 

The ILP value calculated for CoFe_Zn0 sample is 0.36 ± 0.05 nH·m2/kg. This value is comparable with those 

obtained by other authors for cobalt ferrite of similar particle size(Lee et al., 2011) or similar crystallite 

size(Fantechi et al., 2015). Higher ILP values have been reported in the literature for bigger particles(Lee et 

al., 2011; Mazario et al., 2013; Nappini et al., 2015), for cobalt substituted iron oxide particles(Fantechi et 

al., 2015; Kita et al., 2010) or for cobalt doped magnetosomes chains(Alphandéry et al., 2011). Unfortunately, 

ILP is not a sufficient tool to overcome all the difficulties in the comparison of SAR values obtained by different 

groups. First, its application is restricted to the linear response theory, i.e. to superparamagnetic nanoparticles, 

and the validity field is limited to frequency values of up to several MHz. Secondly, the comparison should 

concern SAR values obtained by similar experimental set-up with similar environmental thermodynamic losses. 

However, this is a quite challenging condition to achieve. Indeed, the difficulty in the comparison among the SAR 

values concerns other aspects that ILP parameter does not deal with, as differences in the experimental set-up 

adopted to measure the heating curve (adiabatic or non-adiabatic), in the solvents and in the analytical models 

adopted to determine the SAR values (initial slope method, Box-Lucas method, etc…). In addition, the 

comparison among literature data becomes even more difficult if we consider that often a complete chemical-

physical characterisation of the systems in terms of crystallite size, crystallinity degree, particle size and size 

distribution, type and amount of capping agent, etc. is lacking. 

In this context, to demonstrate the complexity of the SAR estimation, the samples have been characterised 

also by another experimental setup, the ‘MACH’ system (Resonant Circuits Ltd, UK) located at the UCL 

Healthcare Biomagnetic and Nanomaterials Laboratories. This discussion is addressed in the paragraph 4.6.3. 

The difference in the efficiency between CoFe_Zn0 and CoFe_Zn0.30 is considerable despite of the 

similarities in terms of saturation magnetisation, particle size, particle size distribution, crystallite size, and 

capping agent amount. It thus can be explained with the different anisotropy. Indeed, the 5 K magnetic 

measurements have shown for the cobalt ferrite sample higher coercivity and saturation fields than the 

Zn-substituted one. To confirm this idea further measurements have been carried out. 

To further investigate the magnetic behaviour of these two samples, the temperature dependence of the 

magnetisation has been studied by means of the Zero Field Cooled and Field Cooled protocols (ZFC-FC) (Fig. 

4.6.12). The values of 𝑇𝑚𝑎𝑥, 𝑇𝑖𝑟𝑟 and 𝑇𝑏have been calculated and are listed in The values of 𝑇𝑚𝑎𝑥, 𝑇𝑖𝑟𝑟 and 

𝑇𝑏have been calculated and are listed in Tab. 4.6.9. Both 𝑇𝑚𝑎𝑥 and 𝑇𝑏 have been found to decrease when the 

zinc ions replace the cobalt ones in the spinel structure suggesting a decrease in the anisotropy or a decrease 

in the magnetic interactions extent, being the volume of the particles similar. In addition, the energy barrier 

distributions are found to become less and less broad with increasing zinc content, suggesting a higher 

homogeneity of the nanoparticles in the sample, probably in terms of cationic distribution due to the strong 

preference of zinc for tetrahedral coordination. 

𝐼𝐿𝑃 =
𝑆𝐴𝑅 

𝑓 ∙ 𝐻0
2 
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 Tab. 4.6.9. ZFC curves exhibit a maximum at a temperature (Tmax) that, for non-interacting particles, is 

directly proportional to the average blocking temperature, with a proportionality constant of =1-2,(Gittleman 

et al., 1974) depending on the type of particle size distribution. An irreversible magnetic behavior is observed 

below a given temperature (Tirr) that is related to the blocking of the biggest particles(Peddis et al., 2013). Tirr 

was calculated by considering a 3% of difference between the MFC and the MZFC 

Fig. 4.6.12 Temperature dependence of the magnetisation obtained under 25 Oe by Zero Field Cooled – Field Cooled 

protocols for the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples. 

The difference (𝑀𝐹𝐶 − 𝑀𝑍𝐹𝐶), can be considered as a good approximation of 𝑀𝑇𝑅𝑀(R.W. Chantrell et 

al., 1991; Del Bianco et al., 2002), being 𝑀𝐼𝑅𝑀 negligible in nanoparticle systems 

Eq. 4.6.4 

The first derivative 𝑑(𝑀𝐹𝐶 − 𝑀𝑍𝐹𝐶)/𝑑𝑇 gives an estimate of the anisotropy energy barrier distribution: 

Eq. 4.6.5 

Tb is the blocking temperature calculated by means of the first derivative of the difference curve (MFC-MZFC) 

as the temperature at which the 50% of the nanoparticles are in the superparamagnetic state.(Peddis et al., 

2013, 2012) We can obtain an estimate of the blocking temperature from the distribution of the magnetic 

anisotropy energy barriers by evaluating the temperature at which 50% of the particles overcome their 

anisotropy energy barriers. 

The anisotropy energy barrier distributions for the CoFe_Znx samples are shown in Fig. 4.6.13. 
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𝑑𝑀𝑍𝐹𝐶−𝑍𝐹𝐶

𝑑𝑇
 

0 50 100 150 200 250 300

0.0

0.4

0.8

1.2

1.6

2.0

 CoFe_Zn0

 CoFe_Zn0.30

 CoFe_Zn0.46

 CoFe_Zn0.53

M
 (

e
m

u
/g

)

T (K)

25 Oe

0 50 100 150 200 250 300

0.0

0.4

0.8

1.2

1.6

2.0

 CoFe_Zn0

 CoFe_Zn0.30

M
 (

e
m

u
/g

)

T (K)

25 Oe



 

74 

Fig. 4.6.13 Anisotropy energy barrier distributions for the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples estimated by 

the first derivative 𝑑(𝑀𝐹𝐶 − 𝑀𝑍𝐹𝐶)/𝑑𝑇. 

The values of 𝑇𝑚𝑎𝑥, 𝑇𝑖𝑟𝑟 and 𝑇𝑏have been calculated and are listed in Tab. 4.6.9. Both 𝑇𝑚𝑎𝑥 and 𝑇𝑏 have 

been found to decrease when the zinc ions replace the cobalt ones in the spinel structure suggesting a decrease 

in the anisotropy or a decrease in the magnetic interactions extent, being the volume of the particles similar. In 

addition, the energy barrier distributions are found to become less and less broad with increasing zinc content, 

suggesting a higher homogeneity of the nanoparticles in the sample, probably in terms of cationic distribution 

due to the strong preference of zinc for tetrahedral coordination. 

 Tab. 4.6.9 Values of 𝑇𝑚𝑎𝑥 , 𝑇𝑖𝑟𝑟 and 𝑇𝑏 for the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples. 

Sample Tmax (K) Tirr (K) Tb (K) 

CoFe_Zn0 247±12 272±14 174±9 
CoFe_Zn0.30 197±10 219±26 120±6 
CoFe_Zn0.46 156±8 175±26 92±5 

CoFe_Zn0.53 137±7 147±27 86±4 

The results of DC magnetometry show that the samples CoFe_Zn0 and CoFe_Zn0.30 are characterised by 

different anisotropy. However, this technique appear to be not sufficient to explain the different heating ability 

of the samples. Indeed, we should consider that (i) the DC magnetometry is characterised by a time scale in the 

range 10-100 seconds; (ii) the relative extent of the measurement and relaxation time scales is critical to make 

the particles exhibit superparamagnetism rather than quasi-static properties. 

Therefore, one may hypothesise that the magnetic characterisation by techniques with other timescales, as 

57Fe Mössbauer Spectroscopy and AC magnetometry, can be useful to understand the physical reasons of the 

different hyperthermal efficiency in different samples. 

In order to confirm this idea, Mössbauer spectra at room temperature have been recorded (Fig. 4.6.14, 

Fig. 4.6.15, Tab. 4.6.10). 
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Fig. 4.6.14 Room Temperature Mo ̈ssbauer spectra of the CoFe_Zn0 (upper panel) and CoFeZn_0.30 (bottom panel) 

samples. 
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Fig. 4.6.15 Room Temperature Mo ̈ssbauer spectra of the CoFe_Zn0.46 (upper panel) and CoFeZn_0.53 (bottom panel) 

samples. 
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Tab. 4.6.10 Room Temperature Mo ̈ssbauer parameters of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) samples: isomer shift 

(δ), quadrupole splitting (ΔEQ), hyperfine field (BHf) and Full-Width at Half-Maximum (FWHM). Last column lists the 

interpretation for each subspectrum. 

Sample Subsp. 
δ 

(mm/s) 

ΔEQ 

(mm/s) 

BHf 

(T) 
FWHM 
(mm/s) 

Interpretation 

CoFe_Zn0 

1 0.36 -0.03 43.3 1.19 Fe in the blocked state 

2 0.32 0.00 47.2 0.64 Fe in the blocked state 

3 0.32 0.00 - 3.84 
Fe in the unblocked 

state 

CoFe_Zn0.30 

1 0.34 -0.56 - 1.05 
Fe in the unblocked 

state 

2 0.34 0 40.6 0.23 Fe in the blocked state 

3 0.33 - - 10.61 
Fe in the unblocked 

state 

CoFe_Zn0.46 1 0.34 0.52 - 0.66 
Fe in the unblocked 

state 

CoFe_Zn0.53 1 0.34 0.51 - 0.52 
Fe in the unblocked 

state 

 

Both the spectra of CoFe_Zn0 and CoFe_Zn0.30 can be fitted by means of a superposition of sextet and 

singlet. The isomer shift values suggest only the presence of Fe3+ (Tab. 4.6.10). The sextets account for the 

blocked spinel ferrite nanoparticles, the broad singlet (subspectrum 3 in the CoFe_Zn0 spectrum) for the particles 

characterised by a relaxation time close to the measurement time scale and the sharper singlet (e.g. subspectrum 

1 in the CoFe_Zn0.30 spectrum) for superparamagnetic nanoparticles. In agreement with the hypothesised 

scenario, the cobalt ferrite sample shows a higher area of the sextets than the Zn-substituted sample suggesting 

that it contains a higher percentage of blocked nanoparticles. 

In this view, AC magnetometry has been used to measure the temperature dependence of the in-phase (χ’) 

and out-of-phase (χ’’) components of the magnetic susceptibility at different frequencies (1-1000 Hz) for both 

the samples (Fig. 4.6.16). From these data, the Néel relaxation time, τN, has been estimated at 300 K for both 

the samples by using the Vogel-Fulcher model (Fig. 4.6.17): 

Eq. 4.6.6 

where 𝜏0 is the characteristic relaxation time, 𝐸𝑏 is the energy barrier against the magnetisation reversal, 

𝑇 is the absolute temperature and 𝑇0 is the temperature value accounting for the strength of magnetic 

interactions. Values of τN of 3.8 10-6 s and 2.8 10-9 s have been obtained for the CoFe_Zn0 and CoFe_Zn0.30 

samples, respectively (Tab. 4.6.11). 

𝜏𝑁 = 𝜏0𝑒𝑥𝑝 (
𝐸𝑏

𝑇 − 𝑇0
) 
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Fig. 4.6.16 AC susceptibility measurements. In phase (χ’) and out of phase (χ”) components  measured at 1 (red curve), 4, 

16, 63, 251 and 997 Hz (blue curve) as a function of temperature for the samples CoFe_Zn0 (upper panels) and 

CoFe_Zn0.30 (bottom panels). 

Fig. 4.6.17 Curve fitting for the estimate Néel relaxation time at 300 K, τN, by the Vogel-Fulcher model 𝜏𝑁 =

𝜏0𝑒𝑥𝑝 (
𝐸𝑏

𝑇−𝑇0
), where 𝜏0 is the characteristic relaxation time, 𝐸𝑏 is the energy barrier against the magnetisation reversal, 

𝑇 is the absolute temperature and 𝑇0 is the temperature value accounting for the strength of magnetic interactions. 
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Tab. 4.6.11 Parameters obtained from the curve fitting by the Vogel-Fulcher model 𝜏𝑁 = 𝜏0𝑒𝑥𝑝 (
𝐸𝑏

𝑇−𝑇0
), for T=300 K. 𝜏0 

is the characteristic relaxation time, 𝐸𝑏 is the energy barrier against the magnetisation reversal, 𝑇0 is the temperature 

value accounting for the strength of magnetic interactions. 

Sample 0 (s) Eb(K) T0 (K) N (s) 

CoFe_Zn0 4.8 10-13 2672.2 131.8 3.8 10-6 

CoFe_Zn0.30 4.8 10-14 2142.0 104.8 2.8 10-9 

Beside Néel relaxation, also Brownian motion may concur to the heat release of superparamagnetic 

nanoparticles. Therefore, in order to verify the aggregation extent in the conditions used to measure 

hyperthermic properties and to determine the Brown relaxation time, τB, Dynamic Light Scattering (DLS) analyses 

have been carried out on water colloidal dispersions of CoFe_Zn0 and CoFe_Zn30 at 25°C. Fig. 4.6.18 reports 

the distribution curves related to the number of entities (percentage) as a function of their diameter, expressed 

in nm. The distributions have been fitted using a Log Normal function. The two curves appear very similar, being 

almost overlapping. These results exclude the possibility that the different hyperthermal abilities of the two 

samples are related to different aggregation extent. In Tab. 4.6.12 the mean values and the standard 

deviations are listed for both samples. In both the cases, the minimum in the curve is around 15 nm, which is the 

diameter that can be associated to a single magnetic nanoparticle capped by a monolayer of oleate molecules 

intercalated with CTAB. This value is in agreement with the literature data about oleate-capped nanoparticles 

of similar size and with the theoretical value expected for nanoparticles with an inorganic core of ~7.5 nm, an 

oleate shell thickness of ~2 nm  and a second shell of CTAB intercalated among the hydrophobhic chains of the 

oleate molecules (2-3 nm) (Lim et al., 2013). The predominant species for both the samples are the ones with 

an hydrodynamic diameter of about 30 nm, which could be probably ascribed to small aggregates of 2-3 

particles. 

Fig. 4.6.18 Distribution of the hydrodynamic diameter obtained by Dynamic Light Scattering analyses for CoFe_Zn0 and 

CoFe_Zn30 water colloidal dispersions (~3.4 mg/mL) at 25°C. 
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Tab. 4.6.12 Mean <DH> values and corresponding standard deviations obtained by Dynamic Light Scattering analyses 

for CoFe_Zn0 and CoFe_Zn30 sample. 

Sample <DH> (nm) Stand. Deviation (nm) Stand. Deviation (%) 

CoFe_Zn0 29.2 7.0 24 

CoFe_Zn30 31.5 8.2 26 

The mean hydrodynamic diameters, 29.2 and 31.5 nm, result in 𝜏𝐵  values of 8.5·10-6 s and 1.1·10-5 s for 

CoFe_Zn0 and CoFe_Zn0.30 samples, respectively. It arises that 𝜏𝑁 and 𝜏𝐵 for CoFe_Zn0 are of the same 

magnitude order, suggesting that both the mechanisms contribute to the effective relaxation time (Tab. 4.6.13).  

These estimates are nicely confirmed by the behaviour of the ac susceptibility at the melting point of the solutions 

(Fig. 4.6.16) where the Brownian mechanism begins. It should be also highlighted that Hergt et al.(Hergt et al., 

2010) indicated 7 nm as the critical diameter at which 𝜏𝑁 = 𝜏𝐵 for cobalt ferrite nanoparticles dispersed in 

water, indeed a size similar to that  of the sample CoFe_Zn0 (~7.5 nm). On the contrary, in the case of 

CoFe_Zn0.30, 𝜏𝐵 is four orders of magnitude slower than 𝜏𝑁 , and thus its contribution is negligible. The maximum 

heating efficiency will be reached when the time of the faster relaxation process matches the characteristic time 

of the SAR measurement, 𝜏𝑆𝐴𝑅 = 1 2𝜋⁄ 𝑓 = 8.7 · 10 − 7 s. Therefore, cobalt ferrite nanoparticles (CoFe_Zn0), 

with 𝜏𝑒𝑓𝑓 = (1 𝜏𝑁 + 1 𝜏𝐵⁄⁄ )−1 = 2.6 · 10−6 s, must be more efficient than the Zn-substituted sample (𝜏𝑒𝑓𝑓 =

2.8 · 10−9 s). 

Tab. 4.6.13 Néel and Brown relaxation times characteristic fot the CoFe_Zn0 and CoFe_Zn0.30 samples. 

Sample 
SAR 

(W/gox) 
SAR 

(W/gMe) 
τN 

(s) 

τB 

(s) 

CoFe_Zn0 19±3 26±4 3.8 10-6 9.2·10-6 

CoFe_Zn0.30 6±2 8±2 2.8 10-9 5.3·10-6 

4.6.3 Limits in the evaluation of the heating ability 

As mentioned in the paragraph 4.6.2, the heating ability of the CoFe_Znx have been studied by a second 

experimental apparatus, the ‘MACH’ system (Resonant Circuits Ltd, UK) located at the UCL Healthcare 

Biomagnetic and Nanomaterials Laboratories in London. 

In order to point out how different experimental conditions may affect the final SAR values, the curves (Fig. 

4.6.19) have been recorded directly on hexane colloidal dispersions and under an external magnetic field of 

H0=14 kA/m and f=925 kHz. 
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Fig. 4.6.19 Heating curves obtained on hexane colloidal dispersions of the CoFe_Znx (with x=0, 0.30, 0.46, 0.53) 

samples at 25 °C and under a magnetic field of f=925 kHz and H0=14 kA/m. 

The curves qualitatively show the same trend observed by means of the LA.M.M. setup (paragraph 4.6.2): 

the samples CoFe_Zn0.46 and CoFe_Zn0.53 are not responsible for a heat release whereas the other two 

samples exhibit a certain heating ability. First, it can be noted that the samples CoFe_Zn0.46 and CoFe_Zn0.53 

as well as the blank sample of hexane are not characterised by a flat curve suggesting that the system is not 

well isolated from the environment. For the samples CoFe_Zn0 and CoFe_Zn0.30, the SAR values and the ILP 

values have been estimated by means of the initial slope method and are listed in Tab. 4.6.14 and Tab. 4.6.15, 

respectively. 

Tab. 4.6.14 Comparison of the SAR values obtained with two different experimental setups (LA.M.M, University of Florence; 

MACH Resonant Circuits Ltd, UK) on the CoFe_Zn0 and CoFe_Zn0.30 samples. 

Sample 

LA.M.M. MACH 

SAR 
(W/gox) 

SAR 
(W/gMe) 

SAR 
(W/gox) 

SAR 
(W/gMe) 

CoFe_Zn0 21±3 29±4 146±6 201±8 

CoFe_Zn0.30 6±2 9±3 57 79 

Tab. 4.6.15 Comparison of the ILP values obtained with two different experimental setups (LA.M.M, University of Florence; 

MACH Resonant Circuits Ltd, UK) on the CoFe_Zn0 and CoFe_Zn0.30 samples. 

Sample 

LA.M.M. MACH 

ILPox 

(nH·m2/kgox) 

ILPMe 

(nH·m2/kgMe) 

ILPox 

(nH·m2/kgox) 

ILPMe 

(nH·m2/kgMe) 

CoFe_Zn0 0.40±0.06 0.55±0.08 0.78±0.03 1.08±0.04 

CoFe_Zn0.30 0.12±0.04 0.16±0.05 0.39±0.02 0.21±0.01 
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SAR values obtained with the MACH system are about doubled with respect to the LA.M.M. ones. This can 

be ascribed to the very high frequency of the magnetic field but also to the lower thermal capacity of hexane 

with respect to the water used with the MACH system. 

4.7 Conclusions and perspectives 

Four Zn-substituted CoFe2O4 samples with different zinc content, the same crystallite size, particle size and 

particle size distribution, and capping agent weight percentage have been ad-hoc prepared. This ideal premise 

has allowed the discussion of the magnetic properties and the heating abilities exclusively on the basis of the 

different chemical composition, being the other material features unchanged. 

High saturation magnetisation values from 109 emu/g to 157 emu/g have been obtained at 5 K by 

increasing the Zn content up to 0.46. A further increase of the Zn content have resulted in a decrease of the 

saturation magnetisation to a value of 140 emu/g. The cationic distribution with the preferential 4-fold 

coordination of zinc ions has been found to justify the observed 5 K Ms versus Zn content trend. Two samples, 

CoFe2O4 and Zn0.30Co0.70Fe2O4, have shown also at room temperature high and similar saturation magnetisation 

values (~90 emu/g). Although the similarities of the samples, CoFe2O4 have shown a triple SAR value of 

19 W/g. This different behaviour has been justified by studying on one hand the relaxation dynamics by 

combining AC magnetometry and 57Fe Mössbauer Spectroscopy and on the other hand by investigating the 

hydrodynamic properties of the samples. It has been found that the cobalt ferrite sample has both the Néel and 

Brown relaxation times that matches the characteristic time of the hyperthermic measurement whereas 

Zn0.30Co0.70Fe2O4 has a faster effective relaxation time. This in the light of the linear response theory gives rise 

to the higher efficiency of the cobalt ferrite samples. 

The study here presented demonstrates the power of a multi-technique approach on the comprehension of 

both the magnetic properties and the heating abilities. Moreover, the fundamental condition for such an in-

depth comprehension remains the systematic study of the effect produced by only one parameter at the time 

and keeping the other parameters unchanged (in this case the chemical composition). This must be reached by 

the synthesis of ad-hoc prepared samples. Finally, this kind of studies is needed also for a proper design of the 

material based on a critical choice of the features to tune. 
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4.8 Materials and methods 

4.8.1 Chemicals 

Fe(III) acetylacetonate (97%), 1,2-hexadecanediol (90%), oleic acid (90%), dibenzylether (98%), 

absolute ethanol have been purchased by Sigma Aldrich. Co(II) acetylacetonate (99%), 

Zn(II) acetylacetonate (99%), oleylamine (80-90%) have been purchased by Acros Organics. 

4.8.2 ICP-AES 

The samples were prepared for the ICP-AES analyses as follows. NPs powders were digested by using 

aqua regia (3:1 HCl/HNO3). The digested sample solutions were heated up to ~90 °C for 1 h under magnetic 

stirring, then to ~200 °C for 10 minutes. The solutions were left to cool down, filtered and diluted by using 

1%v/v HNO3 solution. The ICP measurements were made by means of a Liberty 200 ICP Varian spectrometer 

under the following conditions: Fe line: 259.940 nm, Co line: 228.616 nm, Zn line: 213.856 nm; Fe concentration 

range: (0÷1.5) ppm, Co concentration range: (0÷2) ppm, Zn concentration range: (0÷1) ppm; Fe detection 

range: (0.015÷750) ppm, Co detection range: (0.050÷2500) ppm, Zn detection range: (0.009÷450) ppm. 

4.8.3 X-Ray Diffraction (XRD) 

X-Ray Diffraction (XRD) patterns were collected by using two different instrument setups. The first one is a 

θ-θ Bragg–Brentano focalizing geometry Seifert X 3000 diffraction system equipped with a Cu Kα source 

(λ=1.54056 Å), a graphite monochromator on the diffracted beam and a scintillation counter. Crystalline 

phases were identified by means of Analyze software. The second one is a PANalytical X’Pert PRO powder X-

ray diffraction system equipped with a Co Kα source (λ=1.78901 Å) and an X'Celerator detector. Phase 

identification was carried out by means of the X'Pert accompanying software program PANalytical High Score 

Plus. The mean crystallite size, 

< 𝐷𝑋𝑅𝐷 >, was obtained by Scherrer’s equation: 

< 𝐷𝑋𝑅𝐷 >=
𝐾 ∙ 𝜆

𝛽 ∙ 𝑐𝑜𝑠𝜃
 

where, K is a constant related both to the crystallite shape and to the definition of both  

β and < 𝐷𝑋𝑅𝐷 >, λ is the wavelength of the X-rays, β is the half-maximum line breadth of the peak occurring 

at 2𝜃. Here, K is assumed equal to 0.9, whereas β is defined by the Warren’s correction, 𝛽 = √𝛽𝑒𝑥𝑝
2 − 𝛽𝑠𝑡𝑑

2 , 

where β𝑒𝑥𝑝 is the experimental breadth of the peak and β𝑠𝑡𝑑 is the instrumental one estimated by means of 

the pattern of a standard obtained under the same experimental conditions. 

 < 𝐷𝑋𝑅𝐷 > was calculated as a mean value by fitting, through Origin Software, the most intense X-ray 

peaks ((220), (311), (400), (422), (511), (440)) with the PseudoVoigt function, by using a 1:1 gaussian:lorentzian 

ratio (𝑚𝑢 = 0.5): 

𝑦 = 𝑦0 + 𝐴 [𝑚𝑢

2

𝜋

𝑤

4(𝑥 − 𝑥𝑐)
2 + 𝑤2

+ (1 − 𝑚𝑢)
√4 𝑙𝑛 2

√𝜋𝑤
𝑒

−
4 𝑙𝑛2
𝑤2 (𝑥−𝑥𝑐)

2

] 
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Refinement of the structural parameters was performed by the Rietveld method using the MAUD 

software(Lutterotti and Scardi, 1990) adopting recommended fitting procedures(Young and Wiles, 1982). 

Structural models of the identified phases were obtained by Inorganic Crystal Structure Database (ICSD, 

Karlsruhe, Germany). 

4.8.4 Transmission Electron Microscopy (TEM) 

The samples were prepared for the TEM analysis as follows. The hexane colloidal dispersion was submitted 

to an ultrasonic bath. Then, a quote was sampled and diluted with hexane. The diluted dispersion was then 

dropped on a carbon-coated copper grid and left to dry for the TEM observations. The nanoparticles were 

observed in electron micrographs obtained with two different instruments. The first one is a TEM 

(JEOL JEM-1200 EX II) operating at 120 kV. The second microscope is a JEM 2010 UHR equipped with a Gatan 

imaging filter (GIF) with a 15 eV window and a 794 slow scan CCD camera. The mean particle size, < 𝐷𝑇𝐸𝑀 >, 

was obtained by measuring the average diameter of 350 particles using images collected in different parts of 

the grid. The polydispersity index (σTEM (%)) has been evaluated as the ratio between the standard deviation 

and the average particle size. The images were analysed by PEBBLES software(Mondini et al., 2012) in a semi-

automatic mode combined with a manual mode (in order to add, to the population, those particles not directly 

recognised by the software) and by adopting ellipsoidal shape. The nanoparticles size distribution were fitted 

through Origin Software using the LogNormal function: 

𝑦 = 𝑦0 +
𝐴

√2𝜋𝑤𝑥
𝑒

−[𝑙𝑛
𝑥
𝑥𝑐

]
2

2𝑤2  

4.8.5 Fourier Transform – Infrared Spectroscopy (FT-IR) 

FT-IR spectra were recorded in the region from 400 to 4000 cm-1 by using a Bruker Equinox 55 

spectrophotometer on KBr-dispersed sample pellets. 

4.8.6 ThermoGravimetric Analysis (TGA) 

TGA curves were obtained on powders by using a Mettler-Toledo TGA/SDTA 851 in the (25÷1000) °C 

range, with a heating rate of 10 °C/min under 50 mL/min argon flow. In addition, another TGA curve was 

recorded on the CoFe_Zn0.53 sample under 50 mL/min oxygen flow. 

4.8.7 DC magnetometry 

Magnetic properties were studied by means of a Quantum Design MPMS SQUID VSM (Hmax = 70 kOe). 

Different kind of magnetic measurements were carried out. Magnetisation versus magnetic field curves were 

measured at 5 K and 300 K between -70 kOe and +70 kOe. The saturation magnetisation (Ms) was estimated 

by using two different approaches and the corresponding values were denoted as Ms1 and Ms2. Ms1 was 

obtained by fitting the M vs 1/H curve by the equation 

𝑀 = 𝑴𝒔𝟏 + 𝑏
1

𝐻
 

for 1/H tending to 0. 
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Ms2 was obtained by the equation 

𝑀 = 𝑴𝒔𝟐 ∙ (1 −
𝑎

𝐻
−

𝑏

𝐻2
) 

for H tending to ∞.(Morrish, 1965) 

Magnetisation versus temperature measurements were performed using Zero-Field-Cooled (ZFC), Field-

Cooled (FC). ZFC and FC magnetisation measurements were carried out by cooling the sample from room 

temperature to 5 K in zero magnetic field; then, a static magnetic field of 25 Oe was applied. MZFC was 

measured during the warmup from 5 K to 300 K, whereas MFC was recorded during the subsequent cooling. 

The difference (𝑀𝐹𝐶 − 𝑀𝑍𝐹𝐶), being a good approximation of the ThermoRemanent Magnetisation 𝑀𝑇𝑅𝑀(R.W. 

Chantrell et al., 1991; Del Bianco et al., 2002) can be used to describe the energy profile on the basis of the 

relation: 

𝑓(∆𝐸𝑎) ∝
𝑑𝑀𝑇𝑅𝑀

𝑑𝑇
 

From these data, the characteristics temperatures Tmax, Tirr and Tb were obtained as follows. Tmax is the 

temperature of the maximum in the Zero Field Cooled curve. Tirr was calculated by considering a 3% of 

difference between the MFC and the MZFC. Tb is the blocking temperature, i.e. the temperature at which the 50% 

of the nanoparticles are in the superparamagnetic state and was calculated by means of the first derivative of 

the difference curve (MFC-MZFC) as the temperature at which 50% of the particles overcome their anisotropy 

energy barriers. 

4.8.8 AC magnetometry 

AC susceptibility measurements were performed on the water colloidal dispersion of the nanoparticles (used 

for the measurements of the heating curves, described in 4.8.10) by a Quantum Design MPMS SQUID dedicated 

insert, at 5 log-spaced exciting frequencies (1, 4, 16, 63, 251 and 997 Hz) and in the temperature range 10-

300K, in the absence of a static magnetic field. 

4.8.9 57Fe Mössbauer Spectroscopy 

 

The 57Fe Mössbauer spectra were measured in the transmission mode with 57Co diffused into a Rh matrix as 

the source moving with constant acceleration. The spectrometer (Wissel) was calibrated by means of a standard 

α–Fe foil and the isomer shift was expressed with respect to this standard at 293 K. The samples were measured 

at 4 K under zero magnetic field. In order to get information on the distribution of the iron ions between the 

tetrahedral and octahedral sites of the spinel structure, in field-spectra has been recorded at 4 K under 6 T in 

the perpendicular arrangement of the magnetic field vector with respect to the γ-beam. The fitting of the spectra 

was performed with the help of the NORMOS program using Lorentzian profiles. 

The 57Fe Mössbauer spectra were measured in the transmission mode with 57Co diffused into a Rh matrix as 

the source moving with constant acceleration. The spectrometer (Wissel) was calibrated by means of a standard 

α–Fe foil and the isomer shift was expressed with respect to this standard at 293 K. The samples were measured 
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at 293 K under zero magnetic field. The fitting of the spectra was performed with the help of the NORMOS 

program using Lorentzian profiles. 

4.8.10 Specific Absorption Rate (SAR) measurements 

Calorimetric measurements of Specific Absorption Rate (SAR) were performed by means of a non-adiabatic 

experimental set-up built at the LAboratorio di Magnetismo Molecolare (LA.M.M) by means of a power supply 

CELESs MP6/400 (FIVES CELES), a water-cooled heating station connected to the power supply and an induction 

coil. Heating curves were recorded under a magnetic field of 17 kA/m and 183 kHz for 300 s on water 

colloidal dispersions of the magnetic nanoparticles. Indeed, the hydrophobic nanoparticles have been converted 

in hydrophilic ones by intercalation process with cetyltrimethylammonium bromide (CTAB, (C16H33)N(CH3)3Br). 

The concentration of the colloidal dispersion was 3.5-4.0 mg/ml for all the samples. During the measurements, 

the sample was surrounded by polystyrene and hosted in a glass Dewar, equipped by an ethylene glycol 

thermostat, to ensure the proper thermal isolation. The temperature of the sample was monitored by an optical 

fiber probe (OPTOCON-FOTEMP) dipped into the solution by  whereas a second probe was used to monitor 

the temperature of the internal wall of the glass dewar. The SAR values were estimated by a linear curve fitting 

in the first 20 s (initial slope method) of at least three heating curves for each sample. 

4.8.11 Dynamic Light Scattering (DLS) 

Dynamic light scattering (DLS) measurements were performed with a Malvern Instrument Zeta Zetasizer Ver 

7.03 equipped with a He-Ne laser (= 633 nm, max 5mW) and operated at a scattering angle of 173°.  All 

measurements were realized using a value of Material RI=2.4.2 and Dispersant RI=1.330. In all analyses, 1mL 

of particle suspensions was placed in a 12 mm X 12 mm polystyrene cuvette. 
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5 CoFe2O4@MIIFe2O4 core@shell architectures: synthesis, microstructure and 

hyperthermic properties 

Abstract 

The studies of cobalt ferrite nanoparticles as heat mediators often suffer of a strong critic related to its 

toxicity. However, the source of anisotropy that the cobalt ions bring can be useful to suitably modulate the 

Néel relaxation time of the systems. Moreover, recently two papers have highlighted the possibility to improve 

the hyperthermal efficiency by exploiting the coupling phenomena between hard and soft phases. 

In this view, this chapter is dedicated to the study of CoFe2O4@MIIFe2O4 architectures, where MIIFe2O4 is 

magnetite/maghemite or manganese ferrite. In principle, these coating shells could on one hand confine the 

toxic core and on the other hand induce magnetic coupling phenomena. Two different cobalt ferrite 

nanoparticles of different sizes have been synthesised by hydrothermal hydrolysis of mixed cobalt-iron oleates. 

Two core@shell samples were produced by a seed-mediated growth process on each core. All the 

characterisation techniques used (XRD, TEM & HRTEM, FTIR, Mössbauer Spectroscopy) suggest the effective 

production of core@shell systems. The calorimetric measurements conducted to estimate the SAR revealed an 

improved efficiency for all the core@shell samples with respect to the corresponding core. Preliminary magnetic 

measurements conducted on two samples can be interpreted coherently in the light of the hypothesised scenario, 

suggesting the production of spring magnet systems, due to the high soft-phase volume fraction. 
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5.1 Introduction 

A great variety of synthetic strategies has been proposed in the literature to create magnetic inorganic 

core@shell nanoparticles. Most of them are chemical approaches, due to their greater versatility in modulating 

sizes, particle size distributions and shapes if compared with the physical ones. Among them the simplest one is 

based on a surface treatment (e.g., oxidation, reduction) of the nanoparticle (core) to induce the formation of 

a shell of a different phase, while the others are based on a seed mediated growth approach. 

This method is extremely appealing since it allows to create diverse heteroarchitectures depending of the 

composition, the structure and cell parameters of the two phases. Preformed nanoparticles are used as seeds 

for the controlled heterogeneous nucleation of the shell. In comparison with the surface treatment approach, this 

method allows a better control of the shell during the synthesis in terms of thickness, homogeneity and 

crystallinity. Co-precipitation, high temperature thermal decomposition of metallorganic precursors, 

microemulsions and sol- gel routes have been proposed in the literature to exploit the versatility of the seed-

mediated approach.   

However, some other methods that uses sonochemical and microwave irradiation processes, can also be 

found in the literature even if specific for a given system.(López-Ortega et al., 2015a) 

In this chapter, an alternative synthetic strategy based on solvothermal processes is proposed for the 

creation of spinel ferrite-spinel ferrite core-shell architectures.  Solvothermal syntheses can be commonly defined 

as all those strategies based on chemical processes performed in a closed vessel (autoclave) above ambient 

temperature and pressure.1,2 Under specific pressure (typically between 1 and 10,000 atm) and temperature 

(typically between 100 °C and 1000 °C) the interaction of precursors during the synthesis is highly facilitated.3 

If water is used as the solvent, the method is called “hydrothermal synthesis”. The nature of the reagents and 

solvents, as well as temperature and pressure, are key parameters for the synthesis of inorganic materials. For 

a long time used for bulk materials, solvothermal and hydrothermal approaches have recently become more 

and more appealing due to the possibility to synthetize nanosized materials with well-defined size and 

morphology by means of suitable surfactants in non-aqueous(D’Arienzo et al., 2011; Dinh et al., 2009; Tian et 

al., 2011) or in water-alcohol media.(Repko et al., 2013, 2011; Wang et al., 2005) The growing interest for 

these strategies derives from the lower toxicity and the lower cost of the solvents that can be employed, when 

compared to those commonly used in widely diffused surfactant-assisted non-aqueous hot injection(de Mello 

Donegá et al., 2005; Hessel et al., 2011; Kwon and Hyeon, 2008a; Murray et al., 1993; Pan et al., 2008; 

Riha et al., 2009) and heating-up processes.(Hyeon et al., 2001; Kwon and Hyeon, 2008b; Park et al., 2007, 

2000; Sun et al., 2004) Other advantages include the possibility to use moderate reaction temperatures, the 

low boiling point of the solvents and the high repeatability of the synthesis. These advantages render 

solvothermal processes promising low cost, eco-friendly and reliable strategies for the synthesis of inorganic 

nanostructures.(Cara et al., 2015) 
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5.2 Core: hydrothermal preparation of colloidal CoFe2O4 nanoparticles. 

Two samples of CoFe2O4 nanoparticles of different sizes, labelled as Co1, Co2, were prepared by 

hydrothermal hydrolysis of mixed cobalt-iron oleates in a mixture of water and organic solvents with different 

polarities. The first step of the preparation is the synthesis of metal oleates through a Liquid Solid Solution (LSS) 

process (Fig. 5.2.1).(Wang et al., 2005) 

Fig. 5.2.1 Scheme of liquid-solid-solution (LSS) phase transfer synthetic strategy.(Wang et al., 2005) 

5.2.1 First step: synthesis of MeII-FeIII oleate in 1-pentanol.  

The mixed MeII-FeIII oleates (MeII= Co2+, Mn2+) and the FeII-oleate were used as metal precursors for the 

synthesis of CoFe2O4 or MnFe2O4 and γ-Fe2O3, respectively. They were synthetized and isolated following the 

procedure set up by A. Repko et al.(Repko et al., 2015) The molar ratios among the reactants are given in Tab. 

5.2.1 for the different metal oleates. First, a pale yellow sodium oleate solution was prepared in a 250 mL 

round-bottom flask dissolving sodium hydroxide in 10 mL of distilled water and adding 20 mL of ethanol 

together with the oleic acid. Secondly, the iron(III) nitrate and Me(II) nitrate (MeII= Co2+, Mn2+) or only iron(II) 

chloride were dissolved in 10 mL of distilled water producing an orange solution and added to the sodium 

oleate one and stirred in order to obtain the MeII-FeIII oleate or the FeII-oleate. After the addition, the formation 

of the metals oleate complexes made the solution black and viscous. The successive addition of 20 mL of hexane 

led to a liquid biphasic system, the upper one is the metals oleate containing organic phase while the lower is 

the water phase. This mixture was boiled under reflux for 60 min to complete the formation of metals oleate. 

The as-described procedure was carried out under an inert atmosphere in the case of the FeII oleate synthesis. 

Then, the system was left to cool down to room temperature. The water phase was removed by Pasteur pipette, 

while 20 mL of water, 5 mL of ethanol and 5 mL of hexane were added to the organic phase and stirred in 

order to wash it from the inorganic residuals. The mixture was boiled under reflux for 30 min. This washing step 

was done twice. Finally, the water phase was completely removed and 15 mL of 1-pentanol were added to 

the flask. The mixture was heated for about 30 min to induce the complete evaporation of hexane. The obtained 

product as a viscous black liquid (MeII-FeIII oleate or FeII oleate in pentanol) was moved to a 40 mL glass vial 
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with Teflon cup with the help of 5 mL of 1-pentanol. The composition of the product, i.e. the final amount of 

pentanol and consequently the concentration of metals oleate was estimated from its weight, assuming 

quantitative yield from metals salts: 

3Na(oleate) + Fe(NO3)3  Fe(oleate)3 + 3NaNO3 

2Na(oleate) + Co(NO3)2  Co(oleate)2 + 2NaNO3 

2Na(oleate) + Mn(NO3)2  Mn(oleate)2 + 2NaNO3 

2Na(oleate) + FeCl2  Fe(oleate)2 + 2NaCl 

Tab. 5.2.1 Summary of the experimental conditions used for the synthesis of the metals-oleates. 

Metals Oleate Inorganic salts Oleic acid NaOH Ethanol Water Hexane 

CoII-FeIII 
Fe(NO3)3: 16 mmol 

65 mmol 66 mmol 20 mL 20 mL 20 mL 
Co(NO3)2: 8 mmol 

MnII-FeIII 
Fe(NO3)3: 16 mmol 

65 mmol 66 mmol 20 mL 20 mL 20 mL 
Mn(NO3)2: 8 mmol 

FeII FeCl2: 24 mmol 60 mmol 54 mmol 20 mL 20 mL 20 mL 

5.2.2 Second step: synthesis of CoFe2O4 nanoparticles (core) 

The appropriate amount of the fresh metal oleates are added to a suitable mixture of water and organic 

solvents. In hydrothermal condition (Fig. 5.2.2), water causes the hydrolysis of the oleate and the formation of 

nanoparticles takes place after nucleation and growth in the organic phase until they reach a critical diameter, 

which bring them to precipitate. (Repko et al., 2015, 2013, 2011) At the end of the treatment, in fact, a black 

precipitate is found at the bottom of the Teflon liner, while two liquid phases are present above, an aqueous 

and an organic one. The water phase is always colourless indicating, as expected, that no particles are present 

in it. On the contrary, the colour of the organic phase becomes darker with decreasing solvent polarity due to 

the presence of hydrophobic oleate-capped nanoparticles with a size below the critical diameter necessary to 

precipitate. TEM analysis indicates that the nanoparticles in the organic phase are smaller with respect to the 

precipitated ones. In addition, un-reacted metal oleates have not been detected by FTIR in both the organic 

and water phases, suggesting that metal oleates completely react to produce the spinel ferrite. 

The Co/Fe molar ratio, calculated by ICP measurements, have been found equal to 0.48 and 0.55 for Co1 

and Co2 samples, respectively. These results demonstrate the production of almost stoichiometric cobalt ferrite 

nanoparticles by means of this hydrothermal method, in agreement with previous results from Repko et al.(Repko 

et al., 2015). 
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Fig. 5.2.2 Steel autoclave and teflon liner used for hydrothermal synthesis. 

The appropriate amount of Co-Fe oleates (in a 1:2 Co:Fe ratio to produce CoFe2O4) in 1-pentanol was 

moved into a 50 mL Teflon liner and a further amount of a mixture of other solvents was added to reach a total 

volume of 20 mL, as described in Tab. 5.2.2. Then, 10 or 5 mL of water, depending on the reaction temperature, 

was added. The solvents and their relative ratios have been chosen according to the study by Repko et al.(Repko 

et al., 2015) in order to prepare particles of different sizes. The liner free space was flushed with nitrogen and 

was enclosed in a stainless steel autoclave (Berghof DAB-2), briefly shaken and put vertically into a pre-heated 

(180° or 220 °C) oven. The reaction time was 10 hours. After the heat treatment, the autoclave was left to cool 

down to room temperature, and the as-prepared magnetic nanoparticles were magnetically separated from 

the supernatant that was discarded. A purification process was conducted twice as follows. First, the particles 

were dispersed in 10 mL of hexane (with the help of sonication), then 10 mL of ethanol were used in order to 

wash and precipitate the nanoparticles that were finally separated by magnet. At the end of this step, the 

nanoparticles were dispersed in 5 mL of hexane and centrifuged at 3000 rpm for 5 min. In this case the 

supernatant, which is the desired product, was recovered and the precipitate was discarded. The nanoparticles 

concentration was estimated by sampling an aliquot of the colloidal dispersion, drying it and weighing it out. A 

summary of the synthesis conditions for each sample is reported in Tab. 5.2.2. It is worthy of note that both the 

solvent polarity (by using 1-octanol or toluene together with 1-pentanol) and the reaction temperature (180 °C 

or 220 °C) play the role in the nanoparticles growth and their final size. The hexane dispersions were stable 

for several months. 
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Tab. 5.2.2 Summary of the experimental conditions used for the synthesis of cobalt ferrite nanoparticles (Co1, Co2, Co_R) 

and manganese ferrite nanoparticles (Mn_R). The solvents are indicated by the following labels: P for 1-pentanol, O for 

1-octanol, T for toluene and W for distilled water. 

Sample 
n Oleate 
(mmol)a 

P 
(mL) 

O 
(mL) 

T 
(mL) 

W 
(mL) 

Temperature 
Reaction 

time 

Co1 6 20 - - 10 180 °C 10h 

Co2 6 10 10 - 5 220 °C 10h 

Co_R 3 10 10 - 5 220 °C 10h 

Mn_R 6 10 - 10 5 220 °C 10h 

areferred to CoII-FeIII oleates 

5.2.3 Reference sample: physical mixture. 

A reference sample (CoMn_R) made up of CoFe2O4-MnFe2O4 physical mixture (weight ratio 1:1) was 

prepared.  Both the phases were synthesised as described in the previous paragraph about the cores and the 

synthesis conditions are shown in Tab. 5.2.2. Specifically, a proper amount of hexane CoFe2O4 nanoparticles 

(Co_R) dispersion was added to the MnFe2O4 (Mn_R) suspension, dried and characterized. 

5.3 Preparation of core-shell nanoparticles. 

The Co1 and Co2 nanoparticles were used as seeds to produce core@shell nanostructures by means of a 

second hydrothermal treatment (seed-mediated growth). In particular, for both Co1 and Co2 two core@shell 

samples were prepared with a shell of maghemite/magnetite and manganese ferrite, labelled as Cox@Fe 

and Cox@Mn (where x=1, 2), respectively. 

Different attempts have been carried out in order to achieve the best experimental conditions, in terms of 

ratio seeds/shell precursor, solvent, concentration of the precursors, allowing the production of bigger 

nanoparticles with a narrow size distribution. For example, we found out that 1-octanol is not a suitable solvent 

because it leads to a high polydispersity index of the product. This can be probably ascribed to the low colloidal 

stability of the seed nanoparticles dispersion. Being toluene a good solvent to disperse nanoparticles, it has 

been chosen instead of 1-octanol. 

The amount of hexane dispersion containing the appropriate quantity of particles (seeds) was added in a 

Teflon liner. The particles were precipitated by adding ethanol in a 1:1 volume ratio with respect to the hexane 

dispersion, held by a magnet and the liquid was discharged. Then, the particles were dissolved in 10 mL of 

toluene (with the help of sonication) and 10 mL of a 1-pentanol solution of metals oleate was added. Finally, 

after the addition of 5 mL of distilled water, the liner was enclosed into the autoclave and treated at 220°C 

for 10 hours. After the heat treatment, the purification steps were the same as for the seeds. Tab. 

5.3.1summarises the synthesis conditions for the core@shell nanostructures. 
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Tab. 5.3.1 Summary of the experimental conditions used for the synthesis of core@shell (Co1@Mn, Co1@Fe, Co2@Mn, 

Co2@Fe). 

Sample 
Seeds 
(mg) 

n Oleate 

(mmol)a 
1-pentanol 

(mL) 
Toluene 

(mL) 

Distilled 
water 
(mL) 

Temperature 
Reaction 

time 

Co1@Mn 105 1.34 10 10 5 220 °C 10h 

Co1@Fe 50 2.5 10 10 5 220 °C 10h 

Co2@Mn 50 1.5 10 10 5 220 °C 10h 

Co2@Fe 50 2 10 10 5 220 °C 10h 

areferred to MnII-FeIII oleates (Co1@Mn; Co2@Mn) or FeII oleate (Co1@Fe; Co2@Fe) 

 

5.4 Composition, microstructure and morphology 

5.4.1 X-Ray Diffraction (XRD) 

XRD patterns of the cores as well as the core@shell systems (Fig. 5.4.1) show the typical reflections of a 

spinel oxide phase. 

Fig. 5.4.1 XRD patterns of the Co1 (left panel) and Co2 (right panel) samples and the corresponding core@shell systems. 

The cell parameters, a, for the Co1 and Co2 have been found equal to 8.405±0.001 Å and 8.397±0.001 

Å respectively (Tab. 5.4.1), in good agreement with the value for the CoFe2O4 (8.3919 Å, PDF Card: 022-

1086). From the profile analysis, the crystallite sizes have been estimated and are reported in Tab. 5.4.1. 

The crystallite sizes of the samples Co1 and Co2 are equal to 5.8±0.2 nm and 8.3±0.1 nm. 

A slight variation of the lattice parameter has been observed for all core@shell systems. An increase of the 

lattice parameter is observed in the case of Co1@Mn and Co2@Mn, according to the higher cell parameter 

for manganese ferrite (8.4990 Å, PDF Card: 010-0319). Inversely, a decrease of the lattice parameter is 

detected when the shell is made of maghemite (8.3515 Å, PDF Card: 391346) or magnetite (8.3960 Å, PDF 
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Card: 19-0629) that are isostructural. The core@shell samples of both Co1 and Co2 are characterised by an 

increased crystallite size (see Tab. 5.4.1), suggesting that a growth process took place. 

Tab. 5.4.1 Summary of the microstructural (lattice parameter, crystallite size) morphological (particle size) properties and 

percentage of the inorganic phase obtained by ThermoGravimetric Analysis of the Co1 and Co2 samples and the 

corresponding core@shell systems. In addition, the lattice parameters and the crystallite sizes for the samples Co_R and 

Mn_R used to prepare the physical mixture CoMn_R are listed. 

Sample a (Å) 
<DXRD> 

(nm) 
<DTEM> 

(nm) 
σTEM 

(%) 
Inorganic phase 

Co1 8.405±0.001 5.8±0.2 5.4±0.9 16.7 73% 

Co1@Mn 8.417±0.001 8.4±0.3 9.4±1.0 10.6 84% 

Co1@Fe 8.375±0.001 10.8±0.3 10.5±1.3 12.3 88% 

Co2 8.397±0.001 8.3±0.3 8.5±1.2 14.1 80% 

Co2@Mn 8.440±0.001 11.3±0.8 14.3±1.6 11.2 92% 

Co2@Fe 8.388±0.001 12.0±0.4 12.1±1.6 13.2 90% 

Co_R 8.394±0.001 8.7±0.3 - - - 

Mn_R 8.499±0.001 8.7±0.5 - - - 

CoMn_R 8.438±0.001 8.0±0.4 - - - 

 

5.4.2 Transmission Electron Microscopy (TEM, HRTEM) 

The TEM Bright Field images show well-separated spheroidal nanoparticles with particle size similar to the 

crystallite size, suggesting a high crystallinity of the particles (Tab. 5.4.1). TEM images of the core@shell 

samples, reported in Fig. 5.4.2, show spherical particles with the presence of a monomodal particle size 

distribution, with higher mean particle size values and lower polydispersity index (σTEM%) with respect to the 

original core (Fig. 5.4.3). The absence of a bimodal distribution and the occurrence of a size-regularization 

process with the increase of the crystallite and particle sizes suggest that the second ferritic phase did not grow 

up separately or along one specific face of the core but around the pre-formed seeds, forming a core-shell 

architecture. 
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Fig. 5.4.2 TEM images of the Co1 and Co2 samples and the corresponding core@shell systems. 

Fig. 5.4.3 Particle size distribution of the Co1 and Co2 samples and the corresponding core@shell systems. 

HRTEM analysis (Fig. 5.4.4) on the core-shell particles allows to confirm this picture showing for all the core-

shell systems, as for the cores, continuous atomic lattice fringes in the entire spherical particle which indicate a 

homogeneous coating of the core being the lattice parameters of the two ferrites very similar. 

No difference between the particle and crystallite sizes have been detected for both Co1@Fe and 

Co2@Fe samples whereas a discrepancy of 1 and 3 nm has been found for Co1@Mn and Co2@Mn, 

respectively. This is confirmed by the images at high resolution that show the formation of a thin disordered 

layer at the surface of the Co@Mn core-shell systems. 
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Fig. 5.4.4 HRTEM images of the Co1 and Co2 samples and the corresponding core@shell systems. 

5.4.3 Inductively Coupled Plasma – Atomic Emission Spectrometry (ICP-AES) 

ICP analyses have been carried out on both the pure cobalt ferrite nanoparticles and core@shell systems. 

The Co/Fe molar ratio for Co1 and Co2 samples have been found equal to 0.48 and 0.55, respectively, 

suggesting the formation of almost stoichiometric cobalt ferrite. 

Taking into account the Co/Fe molar ratio found in the cores, it has been possible to calculate the amount 

of iron or iron and manganese in the shell. The molar ratio between the iron in the shell and the iron in the core 

(Feshell/Fecore) is 8.91 for the sample Co1@Fe. This value corresponds to the theoretical one (8.61) calculated 

from the experimental particle size (<DTEM>) considering a shell of maghemite. In the Co2@Mn sample, the 

Feshell/Fecore molar ratio is 3.69 that matches with the theoretical one (3.61). For this coating, a ratio Mn/Fe 

equal to 0.45 has been obtained, which indicates an almost stoichiometric manganese ferrite. 

5.4.4 Fourier Transform – Infrared Spectroscopy (FT-IR) 

The capping by oleate molecules has been demonstrated by FTIR and TGA. FTIR spectra (Fig. 5.4.5) show 

the main vibrational modes associated with the oleate molecule, as the COO- vibrational modes (νas (COO-), νs 

(COO-)) and those ones related to the hydrocarbon chain. The complete assignment for all the samples is 

reported in Tab. 5.4.2. Moreover, the band at about 590 cm-1 can be ascribed to the Me-O stretching mode 

of the tetrahedral and octahedral sites of the spinel structure(Cannas et al., 2010a; White and DeAngelis, 

1967) while the one at 400 cm-1 corresponds to the Me-O stretching only in the octahedral sites. These bands 

are shifted at lower wavenumbers when cobalt ferrite nanoparticles are covered with a shell of manganese 
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ferrite or magnetite/maghemite. Indeed, as reported in table 5, Co1@Mn and Co1@Fe present the Me-O 

stretching band at 580 and 586 cm-1 respectively, whereas Co2@Mn and Co2@Fe at 573 and 585 cm-1. The 

shift is according with the theoretical values for manganese ferrite (550 cm-1) and magnetite/maghemite (580 

cm-1).(Taylor, 1974; White and DeAngelis, 1967) The samples Co1@Fe and Co2@Fe show, in the region 

between 700-350 cm-1, typical bands of maghemite, which suggest that an oxidation of FeII into FeIII occurred. 
   

Fig. 5.4.5 Infrared spectra of the Co1 and Co2 samples and the corresponding core@shell systems recorded in the 

region (4000-350 cm-1) (left panel). Infrared spectral region between 800 and 350 cm-1 (right panel). 
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Tab. 5.4.2 Assignments of the principal vibrational modes revealed in the FTIR spectra of the Co1 and Co2 samples and 

the corresponding core@shell systems. 

Wavenumber (cm-1) 
Vibration mode 

Co1 Co1@Mn Co1@Fe Co2 Co2@Mn Co2@Fe 

3006 3007 3008 3007 3006 3008 CH=CH stretching 

2954 2957 2956 2957 2958 2958 
C-H asymmetric 
stretching (CH3) 

2922 2924 2926 2924 2925 2926 
C-H asymmetric 
stretching (CH2) 

2850 2854 2854 2854 2854 2854 
C-H symmetric 
stretching (CH2) 

1550 1550 1550 1550 1545 1550 
COO- asymmetric 

stretching 

1417 1429 1427 1427 1425 1427 
COO- symmetric 

stretching 

- - 1093 - - 1095 
C-O asymmetric 
stretching (EtOH) 

- - 1049 - - 1051 
C-O symmetric 

stretching (EtOH) 

721 721 721 721 721  CH2 wagging 

- - 688 - - 730 Fe-O stretching 

- - 628 - - 627 Fe-O stretching 

596 580 586 594 573 585 
Metal-O stretching of 

Td and Oh sites 

409 401 399 404 393 395 
Metal-O stretching of 

Oh sites 

5.4.5 ThermoGravimetric Analysis (TGA) 

TGA curves, recorded under an oxygen atmosphere are shown in Fig. 5.4.6. The weight losses percentages 

obtained for the samples are reported in Tab. 5.4.1. These weight percentages correspond to a monolayer of 

oleate molecules surrounding the nanoparticle surface. Indeed, for the sample Co1, considering a particle 

diameter of 5.4 nm (DTEM) and a spheroidal shape for the NPs, a surface area of 92 nm2 is obtained. A 27 % 

of organic capping corresponds to ~5.8·1020 oleate molecules. Taking into account the bulk-CoFe2O4 density 

of 5.3 g/cm3 and the volume of a single spheroidal nanoparticle (82 nm3), a 73 % of inorganic phase 

corresponds to a number of spinel ferrite nanoparticles of 1.7·1018. The number of capping molecules per 

particle, obtained as the ratio between the number of oleate molecules and the total number of nanoparticles, 

is about 346 molecules/nanoparticle. Finally, the nanoparticle surface area (92 nm2) over the number of 

molecules provides a surface area occupied by each oleic acid molecules of 26 Å2/molecule. The same 

computation gives close values of 25 Å2 for the sample Co2 (Tab. 5.4.3). These values are also really close to 

those ones reported by other authors for oleic acid-coated spinel iron oxides nanoparticles and suggest the 

presence of a close-packed monolayer of the capping agent.(Ayyappan et al., 2008; Gnanaprakash et al., 

2007; van Ewijk et al., 1999) 
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Fig. 5.4.6 TGA curves of the Co1 and Co2 samples and the corresponding core@shell systems performed under 

oxidative atmosphere (50 ml/min of O2). 

Tab. 5.4.3 Computation of the available area for each oleate (OA) molecule on the nanoparticle (NP) surface. The results 

are given in the last column (A per OA molecule). DTEM is the particle diameter estimated by TEM analyses. ANP is the 

particle surface area. VNP is the volume of a nanoparticle. The mass of a single nanoparticle (calculated considering a 

density of 5.3 g/cm3) is indicated as m of a single NP; the number of nanoparticles in one gram of sample, calculated from 

TGA data, is given as # NPs per g of sample; mOA per g of sample is the percentage of capping agent obtained from 

TGA;  nOA and # OA molec. per g of sample are the corresponding number of moles and number molecules of oleate, 

respectively; # OA molec. per single NP is the number of oleate molecules surrounding each nanoparticle. 

DTEM 

(nm) 
ANP 

(nm2) 
VNP 

(nm3) 

m of a 
single 
NP (g) 

# NPs 
per 
g of 

sample 

mOA per 
g 
of 

sample 

nOA 
(mmol) 

# OA molec. 
per g of 
sample 

# OA 
molec. 

per single 
NP 

A per 
OA 

molec. 
(Å2) 

5.4 92 82 4.4·10-19 1.7·1018 0.27 0.96 5.8·1020 346 26 

8.5 227 322 1.7·10-18 4.7·1017 0.20 0.71 4.3·1020 912 25 

5.5 Magnetic properties and heating abilities 

Room temperature (RT) Mössbauer measurements have been carried out for all samples (Fig. 5.5.1) and 

the hyperfine parameters are shown in Tab. 5.5.1. The sample Co1, with crystallite size of 5.8 nm, shows a 

broad singlet associated with particles having a relaxation time near the Mössbauer measurement time window 

(τ M) accompanied with a sharper one related to the particles in the superparamagnetic state. The spectrum of 

the sample Co2 with a crystallite size of 8.3 nm is fitted by one sextet deriving from the overlapping at room 

temperature of the two sextets accounting for FeIII in the octahedral and tetrahedral sites of cobalt ferrite. Clear 

differences can be evidenced by the comparison of the cores with the correspondent core@shell systems: the 

appearance of two sextets in place of singlets indicating the formation of nanoparticles in the blocked state 

(Co1@Mn, Co1@Fe) and a separation of the two sextets (Co2@Mn, Co2@Fe). The two sextets can be due to 

two different spinel phases (CoFe2O4) and (MnFe2O4 or maghemite/magnetite) or to different sublattices 

(octahedral and tetrahedral sites) in a spinel phase due to the formation of a unique coherent structural domain, 

  

200 400 600 800 1000
70

75

80

85

90

95

100

 

 

Co1@Fe

Co1@Mn

Co1

W
e
ig

ht
 (

%
)

T (°C)
200 400 600 800 1000

80

85

90

95

100

 

 

Co2@Fe

Co2@Mn

Co2

W
e
ig

ht
 (

%
)

T (°C)



 

100 

as observed by HRTEM. The isomer shift values for the samples Co1@Mn, Co1@Fe and Co2@Mn) are in the 

range of FeIII (0.28-0.39 mm/s), whereas Co2@Fe presents a higher isomer shift for one sextet (IS=0.50 mm/s), 

due to the presence of FeII, suggesting the presence of magnetite. However, the presence of maghemite cannot 

be completely excluded at least at the surface, as suggested by FT-IR measurements. The different behaviour 

with respect to the Co1@Fe, in which only FeIII (maghemite) is present, is probably due to the reduced 

nanoparticle size that leads to a complete oxidation of magnetite to maghemite. The nature of the coating 

(manganese ferrite or spinel iron oxide) and the thickness of the shell (and consequently the final crystallite size) 

can affect the hyperfine field values. Specifically, Co1@Fe (<DXRD>=10.8 nm) shows higher hyperfine fields 

for both sextets than Co1@Mn ((<DXRD>=8.4 nm). As manganese ferrite and maghemite are expected to have 

anisotropy constants of the same magnitude (for bulk materials: 3·103 J/m3 and 5·103 J/m3, respectively), the 

bigger crystallite size of the particles of Co1@Fe (10.8 nm) seems to be primarily responsible for the higher 

hyperfine field values. On the contrary, Co2@Mn (<DXRD>=11.3 nm) and Co2@Fe (<DXRD>=12.0 nm) have 

similar crystallite sizes and the increase in the hyperfine field for the sample Co2@Fe can be due principally 

to the higher anisotropy constant of magnetite, that for bulk material is 1.3·104 J/m3).  

Fig. 5.5.1 Room Temperature Mo ̈ssbauer spectra of the Co1 (left panel) and Co2 (right panel) samples and the 

corresponding core@shell systems. 
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Tab. 5.5.1 Room Temperature Mo ̈ssbauer parameters of the spectra recorded on the Co1 and Co2 samples and the 

corresponding core@shell systems: isomer shift (δ), quadrupole splitting (ΔEQ), hyperfine field (BHf) and Full-Width at Half-

Maximum (FWHM). 

Sample Type Size (nm) Signal 
δ 

(mm/s) 

ΔEQ 

(mm/s) 

BHf 

(T) 
FWHM 
(mm/s) 

Co1 CoFe2O4 5.8±0.2 
Singlet 0.2(1) - - 12(1) 

Singlet 0.44(6) - - 1.1 (2) 

Co1@Mn CoFe2O4@MnFe2O4 8.4±0.3 
Sextet 0.34(2) -0.10(1) 39.7(2) 1.56(5) 

Sextet 0.32(1) 0.00(1) 45.8(1) 0.67(2) 

Co1@Fe CoFe2O4@γ- Fe2O3/Fe3O4 10.8±0.4 
Sextet 0.35(1) -0.02(1) 42.4(2) 0.64(1) 

Sextet 0.32(1) -0.01(1) 47.3(1) 0.47(1) 

Co2 CoFe2O4 8.3±0.1 Sextet 0.32(1) -0.02(1) 46.9(1) 0.87(2) 

Co2@Mn CoFe2O4@MnFe2O4 11.3±0.8 
Sextet 0.39(1) -0.02(1) 43.4(1) 0.55(1) 

Sextet 0.28(1) 0.01(1) 46.9(1) 0.28(1) 

Co2@Fe CoFe2O4@γ- Fe2O3/Fe3O4 12.0±0.4 
Sextet 0.50(1) 0.00(1) 43.9(1) 0.64(1) 

Sextet 0.29(1) -0.02(1) 47.8(1) 0.34(1) 

In order to confirm the formation of a core@shell architecture was obtained, a reference sample (CoMn_R) 

made from a physical mixture of cobalt ferrite (Co_R) and manganese ferrite (Mn_R) nanoparticles in a mass 

ratio 1:1 was prepared and characterized by Mossbaur Spectrocopy at RT. The nanoparticles were synthesised 

by the same procedure reported in the experimental part, resulting in a crystallite size of about 8.7 nm for 

both Co_R and Mn_R samples, similar to the core-shell sample Co1@Mn (8.4 nm). In the physical mixture the 

oleate molecules that surround the particles should hinder the direct contact of the two magnetic phases. Fig. 

5.5.2 shows RT Mössbauer spectra of the pure phases (Co_R, Mn_R), the physical mixture (CoMn_R) and the 

core@shell nanoparticles (Co1@Mn). Tab. 5.5.2 lists Mössbauer parameters for all these samples. The spectrum 

of the mixture (CoMn_R) is the sum of the two subspectra (one singlet and one sextet) having the same 

parameters as the pure phases. On the contrary, the spectrum of core@shell nanoparticles shows two sextets 

with values of hyperfine fields equal to 39.7 T and 45.8 T, which differ from the values found for pure cobalt 

ferrite or the physical mixture (47.3 T). 
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Fig. 5.5.2 Room Temperature Mo ̈ssbauer spectra of the Co_R (pure cobalt ferrite nanoparticles), Mn_R (pure manganese 

ferrite nanoparticles) samples and the corresponding physical mixture (CoMn_R). For comparison, the RT spectrum of the 

sample Co1@Mn is also shown. Note that all these samples have similar crystallite size. 

Tab. 5.5.2 Room Temperature Mo ̈ssbauer parameters of the spectra recorded on the Co_R (pure cobalt ferrite 

nanoparticles), Mn_R (pure manganese ferrite nanoparticles) samples and the corresponding physical mixture (CoMn_R): 

isomer shift (δ), quadrupole splitting (ΔEQ), hyperfine field (BHf) and Full-Width at Half-Maximum (FWHM). For comparison, 

the Mo ̈ssbauer parameters for the sample Co1@Mn are also listed. 

Sample Type Size (nm) Signal 
δ 

(mm/s) 

ΔEQ 

(mm/s) 

BHf 

(T) 
FWHM 
(mm/s) 

Co_R CoFe2O4 8.7±0.3 Sextet 0.32(1) -0.02(1) 47.3(1) 0.65(2) 

Mn_R MnFe2O4 8.7±0.5 
Singlet 0.32(6) - - 8(1) 

Singlet 0.38(2) - - 2.1(1) 

CoMn_R CoFe2O4 + MnFe2O4 8.0±0.5 
Singlet 0.31(3) - - 8.1(1) 

Sextet 0.30(1) -0.04(2) 47.3(1) 0.80(2) 

Co1@Mn CoFe2O4@MnFe2O4 8.4±0.3 
Sextet 0.34(2) -0.10(1) 39.7(2) 1.56(5) 

Sextet 0.32(1) 0.00(1) 45.8(1) 0.67(2) 

This comparison permits to exclude the independent formation of two phases (CoFe2O4 and MnFe2O4) with 

similar size and can be considered as an indirect proof that in the sample Co1@Mn the two magnetic phases 

are in contact. This is in agreement with TEM data that evidence the formation of a monomodal distribution of 
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the particle size with lower polydispersity than the corresponding core for both systems(Co1 and Co2) and 

HRTEM that evidence a single crystal structure (Fig. 5.5.3). 

Fig. 5.5.3 Possible events of the seed-mediated growth process. (a) Core@shell architecture. (b) Heterodimer (excluded 

by HRTEM, formation of spherical nanoparticles). (c) Two phases with different final sizes (excluded by TEM, monomodal 

particle size distribution). (d) Two phases with the same final sizes (excluded by Mössbauer data on a physical mixture 

taken as reference sample). 

Previous works(Lee et al., 2011; Noh et al., 2012) have already indicated that exchange-coupled 

bimagnetic ferrite-based core@shell structures can be heat mediators with improved heating abilities with 

respect to their single-phase counterparts. Following these promising results (although these studies were carried 

out by using extreme field parameters, i.e. f = 500 kHz, H0 = 37.3 kA/m, and testing toluene colloidal 

dispersions), both Co1 and Co2 samples and their core@shell systems have been tested to determine the 

heating abilities of their water colloidal dispersions under f=183 kHz and H0=17 kA/m. With this purpose, the 

hydrophobic nanoparticles were made hydrophilic by intercalation process with cetyltrimethylammonium 

bromide (CTAB, (C16H33)N(CH3)3Br). The concentration of the colloidal dispersion was 3.4 mg/ml for all the 

samples. 

Co1 sample, probably due to its small size, does not heat up. On the contrary, the sample Co2 is responsible 

for an increase of the temperature of about 4.5 °C in five minutes of active alternate magnetic field, leading 

to a SAR value of 33±3 W/gox (Tab. 5.5.3). This is also in agreement with the results reported in the paragraph 

4.6.2 for the CoFe2O4 (CoFe_Zn0) prepared by a high temperature decomposition of metallorganic precursors 

showing a particle size between the two values determined for Co1 and Co2 (Fig. 5.5.4). The core@shell 

systems allow to reach higher SAR values (Fig. 5.5.5). In particular, even though the Co1 is not responsible for 

a heat release, both the manganese ferrite and maghemite-coatings led to a heating up of the solution with 

SAR values of 19±2 W/gox and 45±5 W/gox. A value of 51±5 W/gox is obtained for the sample Co2@Mn. 

These improved hyperthermal efficiencies might be coherent with formation of core-shell architecture that allow 

to maximise the contact between the two phases hypothesised by the multitechniques characterisation and, in 

particular, by the Mossbauer and TEM and HRTEM measurements. 
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Fig. 5.5.4 Heating curves obtained on water colloidal dispersions of the Co1 and Co2 samples at 25 °C and under a 

magnetic field of f=183 kHz and H0=17 kA/m. For comparison, the heating curve of the sample CoFe_Zn0 (Chapter 4) 

is shown. 

Fig. 5.5.5 Heating curves obtained on water colloidal dispersions of the Co1 (left panel) and Co2 (right panel) samples 

and the corresponding core@shell systems at 25 °C and under a magnetic field of f=183 kHz and H0=17 kA/m. 
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Tab. 5.5.3 Specific Adsorpion Rate (SAR) and Intrinsic Loss Power (ILP) values for the Co1 and Co2 samples and the 

corresponding core@shell systems (25 °C, 183 kHz, 17 kA/m) together with the crystallite and particle sizes. SAR and ILP 

values are normalised for the total mass of ferrite (W/gox, nH·m2/kgox). 

Sample <DXRD> (nm) <DTEM> (nm) SAR (W/gox) 
ILP 

(W/gox) 

Co1 5.8±0.2 5.4±0.9 - - 

Co1@Mn 10.8±0.3 10.5±1.3 19±2 0.36±0.04 

Co1@Fe 8.3±0.3 8.5±1.2 45±5 0.85±0.08 

Co2 8.4±0.3 9.4±1.0 33±3 0.63±0.06 

Co2@Mn 11.3±0.8 14.3±1.6 51±5 0.97±0.09 

In order to better understand the hyperthermic properties magnetic measurements were performed on Co1 and 

the corresponding core-shell system coated with manganese ferrite Co1@Mn. The temperature dependence of 

the magnetisation for the samples Co1 and Co1@Mn have been studied by ZFC-FC protocols and are shown 

in Fig. 5.5.6. ZFC curves for both the samples show a unique maximum that can be associated with a single 

nanoparticles population. This is confirmed by the first derivative, 𝑑(𝑀𝐹𝐶 − 𝑀𝑍𝐹𝐶)/𝑑𝑇, which gives an estimate 

of the anisotropy energy barrier distribution (Fig. 5.5.6). Indeed, the difference (𝑀𝐹𝐶 − 𝑀𝑍𝐹𝐶) can be 

considered a good approximation of 𝑀𝑇𝑅𝑀(R.W. Chantrell et al., 1991). Values of 𝑇𝑚𝑎𝑥, 𝑇𝑖𝑟𝑟 and 𝑇𝑏 (Tab. 

5.5.4) have been found for the core@shell sample, as expected, higher than those of the core, in agreement 

with the higher particle size. The difference (𝑇𝑖𝑟𝑟 − 𝑇𝑚𝑎𝑥) has been found to be 40 K for the Co1 sample and 

16 K for the Co1@Mn sample, suggesting a decrease in the polydispersity of the barrier energy distribution. 

These data further support the hypothesised scenario of an homogenous growth of the Co1 cores for the creation 

a core@shell architecture. 

Fig. 5.5.6 Temperature dependence of the magnetisation obtained under 25 Oe by Zero Field Cooled – Field Cooled 

protocols (left panel) and anisotropy energy barrier distributions estimated by the first derivative 𝑑(𝑀𝐹𝐶 − 𝑀𝑍𝐹𝐶)/𝑑𝑇 

on the sample Co1 and the corresponding core@shell system (Co1@Mn).  
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Tab. 5.5.4 List of the main magnetic properties of the sample Co1 and the corresponding core@shell system (Co1@Mn). 

Sample 
DXRD 
(nm) 

DTEM 
(nm) 

Inorganic 
phase 

Tmax 
(K) 

Tirr3% 
(K) 

Tb 
(K) 

Hc 
(kOe) 

M5K (50 
kOe) 

(emu/g) 

Ms
RT 

(emu/g) 

Co1 5.8±0.2 5.4±0.9 73% 188±19 228±23 126±13 14±1 94±9 81±8 

Co1@Mn 8.4±0.3 9.4±1.0 84% 248±25 264±26 183±18 8.1±0.8 92±8 77±3 

M vs H curves at 5 K for the Co1 are characterised by a hysteresis loop that is closed only at the maximum 

applied field of 50 kOe (Fig. 5.5.7, left panel). Due to this peculiarity, it is not possible to estimate a saturation 

magnetisation for this sample but a high value of 94±9 emu/g is obtained for the magnetisation at 50 kOe 

(Tab. 5.5.4). 

Fig. 5.5.7 Field dependence of the magnetisation at 5 K (left panel) and 300 K (right panel) of the sample Co1 and the 

corresponding core@shell system (Co1@Mn). 

In-field Mössbauer measurements allowed to determine the cationic distribution and to estimate the 

corresponding theoretical saturation magnetisation for the sample Co1 (Fig. 5.5.8). 
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Fig. 5.5.8 4.2 K Mo ̈ssbauer spectra of the Co1 sample recorded in the absence (left panel) and in the presence of an 

external magnetic field (6T) (right panel). Note that the doublet in the centre of the spectra is related to the metallic iron 

dissolved in the aluminium foil used as sample holder. 

Tab. 5.5.5 Mössbauer parameters of the spectrum recorded on the Co1 sample at 4.2 K in the absence of an external 

magnetic field (0 T): isomer shift (δ), quadrupole splitting (ΔEQ) and hyperfine field (BHf). Last column lists the interpretation 

for each subspectrum. 

Sample Signal 
δ 

(mm/s) 

ΔEQ 

(mm/s) 

BHf 

(T) 
Interpretation 

Co1 
Sextet 0.43 0.01(1) 55.4(1) FeIII in the Td of spinel 

Sextet 0.56 -0.01(1) 52.5(1) FeIII in the Oh of spinel 

 

Tab. 5.5.6 Mo ̈ssbauer parameters of the spectrum recorded on the Co1 sample at 4.2 K under an intense magnetic field 

(6 T): isomer shift (δ), quadrupole splitting (ΔEQ), effective magnetic field (BHf) and relative area (A) of the components. 

Last column lists the interpretation for each subspectrum. 

Sample Signal 
δ 

(mm/s) 

ΔEQ 

(mm/s) 

Beff 

(T) 
A (%) Interpretation 

Co1 
Sextet 0.43(1) 0.01(1) 58.3(1) 34% FeIII in the Td of spinel 

Sextet 0.56(1) 0.01(1) 49.4(1) 66% FeIII in the Oh of pinel 

Whereas the sample Co1 was in superparamagnetic state at room temperature, at 4K it exhibits two 

sextets, which means that it is already in the blocked state (Tab. 5.5.5). The sample measured at 6T shows two 

well splitted sextets, and it is found that 34% of iron cations are in tetrahedral position and 66% are located 

in octahedral positions (Tab. 5.5.6). Taking into account this results the inversion degree (percentage of bivalent 

cations in octahedral position) is 0.68 and the formula will be (Co0.32 Fe0.68)[Co0.68Fe1.32]O4, in agreement with 

the values obtained for CoFe2O4 nanoparticles by other authors. (Blanco-Gutiérrez et al., 2012; Carta et al., 

2009; D. Carta et al., 2013; Fantechi et al., 2012; Peddis et al., 2011) Indeed, in the case of nanoparticles, 
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the theoretical value of 1 (inverse spinel) is never observed, and typical values in the 0.6-0.7 range are found 

due to a random distribution of cobalt and iron cations. Using the cosine equation (as described in paragraph 

4.6.1), it is also possible to calculate the canting angles. Within the experimental error, we can consider that 

the magnetic moments of both sublattices are not canted. This justifies the high magnetisation value observed at 

the maximum applied field. 

On the basis of the Néel model, which describes the ferrimagnetic behaviour of spinel ferrite as the sum of 

independent Td and Oh sublattices, it is possible to estimate the saturation magnetisation for the cationic 

distribution obtained for the sample Co1. The computation has been carried out by using the following formula: 

Eq. 5.5.1 

where 𝜇 is the total magnetic moment, 𝜇𝐵 is the Bohr magneton, 𝑁𝐴 is the Avogadro number and 𝑀𝑀 is the 

molar mass. 

The as-obtained value of saturation magnetisation is about 100 emu/g, which is quite near the experimental 

one (94±9 emu/g) recorded under a 50 kOe external field. This value is higher than that for bulk-material 

(80-90 emu/g)(Cullity and Graham, 2009; Smit and Wijn, 1959) but it can be justified by the partially inverted 

structure.(Peddis et al., 2011) A high coercive field of 14 kOe has been also obtained. This value is near the 

values reported in the literature for cobalt ferrite nanoparticles of similar size.(Duong et al., 2006; Fantechi et 

al., 2012; Peddis et al., 2013) 

It must be noted that 5K M vs H curves for the Co1@Mn do not show a single-phase-like behaviour (Fig. 

5.5.7, left panel). For bimagnetic core@shell nanostructures, the M vs H curves can be indeed one or two-stage 

loops, depending on the volume fraction of the soft phase (fsoft). When a one-stage hysteresis loop is obtained, 

the two magnetic phases are strongly coupled so that all the spins reverse at the same magnetic field value, 

called nucleation field. On the contrary, for high volume fraction of the soft phase typical two-stage hysteresis 

loops are expected. Indeed, the soft phase reverses at magnetic field values well below those of the hard 

phase.(López-Ortega et al., 2015a) These systems are referred as spring magnets. 

M vs H curves for the sample Co1@Mn seems to resemble this kind of behaviour controlled by the shell of 

the soft phase. Indeed, the volume fraction of the shell is 67% of the total volume. These data seem to support 

once again the hypothesis that a core@shell structure was formed. However, it should be note that there are 

only a few works on spinel ferrite-based bimagnetic core@shell nanostructures(Almeida et al., 2014; Anil 

Kumar et al., 2013; Dupuis et al., 2014; Gavrilov-Isaac et al., 2014; Kim et al., 2013; Kishimoto et al., 1979; 

Lee et al., 2011; Li et al., 2015; Salazar-Alvarez et al., 2007; Song and Zhang, 2012; Sudakar and Kutty, 

2004; Vichery et al., 2013, 2012) and the great majority of these papers have been published within the last 

three years. Among these studies, some papers have dealt with the magnetic properties of CoFe2O4@MnFe2O4 

nanoparticles.(Kim et al., 2013; Lee et al., 2011; Song and Zhang, 2012) Both the studies from Lee et al.(Lee 

et al., 2011) and Song & Zhang(Song and Zhang, 2012) show uniform single-stage hysteresis loops for 15 nm 

particle (with a 9 nm for the core size) and for 6.5-9 nm particles (with a 6 nm for the core size) despite a high 

 
𝑀𝑠 =

𝜇 ∙ 𝜇𝐵 ∙ 𝑁𝐴

𝑀𝑀
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volume fraction of the shell. On the contrary, Angelakeris et al.(Angelakeris et al., 2015) revealed a two-stage 

hysteresis loop, similarly to what we have observed but with substantially different ZFC-FC curves. 

Moreover, Song & Zhang(Song and Zhang, 2012) systematically compared core@shell nanostructures with 

physical and chemical mixtures. They found two-stage hysteresis loops only for physical mixtures and, in 

particular, for a physical mixture of CoFe2O4 and MnFe2O4 in a molar ratio 4.42:1 they indicated M vs H curves 

similar to the one that we have observed. However, the molar ratio in our case is less than one and, in that case, 

a physical mixture should show a complete different shape of the hysteresis loop, i.e. governed by the soft 

phase (similar to the one thay reported for the 1:3.27 CoFe2O4:MnFe2O4). Finally, our results are in agreement 

with the Mossbauer and HRTEM/TEM data. 

The magnetisation at 50 kOe of the Co1@Mn is equal to 92±8 emu/g, the same value obtained for the pure 

cobalt ferrite nanoparticles (Co1, 94±9 emu/g) (Tab. 5.5.4). On the contrary, the coercive field value for the 

core@shell sample (8.1±0.8 kOe) is lower than the Co1 one. Both these findings are indeed expected for 

CoFe2O4@MnFe2O4 nanoparticles with a high shell volume fraction. First, these phases are generally 

characterised by similar Ms values of the two phases and the coercivity is expected to be lower than the pure 

cobalt ferrite due to the coupling with the soft phase. 

Room temperature M vs H curves were also measured for Co1 and Co1@Mn (Fig. 5.5.7, right panel). Both 

the samples are superparamagnetic at room temperature with zero coercivity and zero remnant magnetisation. 

The saturation magnetisation is almost the same at 300 K, in agreement with the behaviour at 5 K. However, 

the saturation state is reached in the core@shell sample at a lower magnetic field value. This can be probably 

related to the influence that the soft phase exerts on the hard phase spins, leading to a less anisotropic response 

of the hard phase. 

5.6 Conclusions and perspectives 

A hydrothermal method based on the hydrolysis of mixed cobalt-iron oleates has been used to produce 

two different samples of cobalt ferrite nanoparticles of different sizes. CoFe2O4@MIIFe2O4 architectures, being 

MIIFe2O4 magnetite/maghemite or manganese ferrite, have been prepared by a seed-mediated growth 

carried out under hydrothermal conditions. An increase of the particles size, accompanied by a decrease of the 

polydispersity index, have been observed in all core@shell samples. Moreover, HRTEM have shown spherical 

particles with the crystalline planes extended over the whole particle with no evidences for defects. Room 

Temperature Mössbauer Spectroscopy have been also useful to study, in comparison with core@shell particles 

of similar sizes, a physical mixture ah-hoc prepared. These experiments allows to exclude the independent 

growth of the second phase and suggest the effective production of heterostructures with an intimate contact 

between the hard and the soft phases. Moreover, the effect has been clearly visualised with the SAR values, 

revealing an improved efficiency for all core@shell samples with respect to the corresponding core. Finally, 

preliminary magnetic measurements conducted on two samples could be probably coherent with the production 

of spring magnet systems but other measurements are needed to more carefully characterise the whole set of 

samples. 
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As already observed for the ZnxCo1-xFe2O4 samples, it can be difficult to explain the heating abilities of 

the samples only on the basis of static magnetic properties. Therefore, in order to justify the obtained SAR 

values and the increase recorded for core@shell samples, it would be necessary to study the dynamic properties 

of the samples by means of AC magnetometry. To the best of our knowledge, only two works test the 

hyperthermic properties of spinel ferrite core@shell systems. These previous studies(Lee et al., 2011; Noh et 

al., 2012) justified the high SAR values of such nanostructures on the basis of exchange-coupled phenomena but 

an in-depth discussion of the dynamic properties and the exchange coupling phenomena is still lacking. 

Together with the AC magnetometry, it would be also fundamental to characterise these samples in terms 

of single-particle chemical composition by Electron Energy Loss Spectroscopy (EELS) in order to verify if 

core@shell systems were effectively produced, and if a definite interface was created (i.e. a net confinement 

of the phases). 

5.7 Materials and methods 

5.7.1 Chemicals. 

Oleic acid (>99.99%), 1-pentanol (99.89%), hexane (84.67%) and toluene (99.26%) were purchased 

from Lach-Ner; 1-octanol (>99.99%) and Mn(NO3)2·4H2O (>97.0%) from Sigma-Aldrich; absolute ethanol and 

Co(NO3)2·6H2O (99.0%) from Penta; NaOH (>98.0%) from Fluka; Fe(NO3)3·9H2O (98.0%) from Lachema; 

FeCl2·4H2O (99%) from Merck. 

5.7.2 X-ray Diffraction (XRD) 

The samples were characterized by X-ray Diffraction (XRD), using a PANalytical X’Pert PRO with Cu Kα  

radiation (1.5418Å), secondary monochromator and PIXcel position sensitive detector. Calibration of peak 

position and instrumental width was done using powder LaB6 from NITS. The hexane dispersions were dried on 

a glass plate and measured in the angular range 10°-90° with step 0.039°. The analyses of the XRD patterns 

(identification of the crystalline phase, background subtraction) were done by the PANalytical X’Pert HighScore 

software. The peaks in the interval 28°-66° were fitted in Gnuplot 4.2.6 by Voigt function (convolution of 

Gaussian and Lorentzian) in reciprocal space 

Eq. 5.7.1 

The crystallite size (diameter) was obtained from full width at half maximum of q (denoted as q) by 

Eq. 5.7.2 

𝑞 =
2𝑠𝑖𝑛𝜃

𝜆
=

√ℎ2 + 𝑘2 + 𝑙2

𝑎
 

𝑑 =
1.10

𝛤𝑞
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Peaks widths (q) were constrained in groups 311-511-422-222, 440-220-531, 440. The constant in the 

denominator of Eq. 5.7.2 was obtained for the peak of Fourier-transformed solid spheres with volume-weighted 

log-normal size distribution σ= 0.18 – in this case, the peak shape almost coincides with Gauss function. 

5.7.3 Transmission Electron Microscope (TEM, HRTEM) 

TEM images were obtained by using a JEOL 200CX operating at 200 kV. A drop of the colloidal dispersion 

was dried on a carbon-coated copper grid. The particle size distribution was obtained by measuring in the 

automatic mode over 1000 particles by means of  the software Pebbles and adopting a spherical or cuboid 

shape.(Mondini et al., 2012) The mean particle diameter was calculated as the average value and the 

polydispersity index as the percent ratio between the standard deviation and the average value. 

HRTEM images were carried out using JEM 2010 UHR equipped with a Gatan imaging filter (GIF) and a 

794 slow scan CCD camera. 

5.7.4 ICP-AES 

The samples’ chemical composition was studied by Inductively Coupled Plasma - Atomic Emission 

Spectrometry (ICP-AES). The dried samples were digested by using HNO3. The digested sample solutions were 

stirred at room temperature for 1 h, then heated up to ~50 °C for 2 h. The solutions were left to cool down, 

filtered and diluted by using 1%v/v HNO3 solution. The ICP measurements were made by means of a Liberty 

200 ICP Varian spectrometer under the following conditions: Fe line: 259.940 nm, Co line: 238.892 nm, Mn line: 

257.610 nm; Fe, Co and Mn concentration range: (0.1÷1.5) ppm; Fe detection range: (0.015÷750) ppm, Co 

detection range: (0.050÷2500) ppm, Mn detection range: (0.003÷150) ppm. The analyses have been 

repeated two times on different portions of the samples. The chemical formulas were calculated by assuming 

the absence of anions vacancies. 

5.7.5 Fourier Transform - Infrared Spectroscopy (FT-IR) 

Fourier Transform - Infrared Spectroscopy (FT-IR) and ThermoGravimetric Analyses (TGA) were carried out 

in order to study the capping agent and to estimate the organic phase content. Transform Infrared Spectroscopy 

(FT-IR) spectra were recorded in the region from 350 to 4000 cm-1 by using a Bruker Vertex 70 

spectrophotometer on the colloidal dispersions by means of a Platinum ATR Unit A 225, (standard ATR crystal 

material: diamond). 

5.7.6 ThermoGravimetric Analyses (TGA) 

TGA curves were obtained on powders by using a Mettler-Toledo TGA/SDTA 851 in the 25 -1000 °C 

range, with a heating rate of 10 °C/min under 50 mL/min O2 flow. 

5.7.7 57Fe Mössbauer Spectroscopy 

Room temperature 57Fe Mössbauer spectroscopy was done on Wissel spectrometer using transmission 

arrangement and scintillating detector ND-220-M (NaI:Tl+). The 4 K spectra (under zero or 6 T external 

magnetic field) were recorded in the Joint Laboratory of Low Temperatures in Troja. A α-Fe foil was used as a 
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standard, and fitting procedure was done by NORMOS program. The in-field measurements were done in a 

perpendicular arrangement of the external magnetic field with respect to the γ-beam and are useful to get 

information about the cationic distribution and the canting phenomena in the spinel structure. Indeed, the angle 

θ  between the magnetic moment (𝜇 ) and the applied magnetic field have been estimated thanks to the 

following equation: 

𝐁𝐞𝐟𝐟
𝟐 = 𝐁𝐡𝐟

𝟐 + 𝐁𝐚𝐩𝐩
𝟐 − 𝟐𝐁𝐡𝐟𝐁𝐚𝐩𝐩𝐜𝐨𝐬𝛉 

Where Bhf is the hyperfine field, Beff the total effective magnetic field at the nucleus, Bapp the external 

applied magnetic field and α  is the angle between Beff and Bapp. 

The angle θ  corresponds to the canting angle for the octahedral sites whereas for the tetrahedral ones, 

the canting angle is equal to π- θ . This is because of the relative arrangement of the hyperfine and applied 

fields vectors that are parallel or antiparallel aligned for tetrahedral or octahedral sites, respectively. 

5.7.8 DC magnetometry 

Magnetic properties were studied by means of a Quantum Design SQUID (Hmax = 50 kOe). Different kind 

of magnetic measurements were carried out. Magnetisation versus magnetic field curves were measured at 300 

K and 5 k between -50 kOe and +50 kOe. The saturation magnetisation (Ms) was estimated if possible by 

using the equation 

𝑀 = 𝑴𝒔 ∙ (1 −
𝑎

𝐻
−

𝑏

𝐻2
) 

for H tending to ∞.(Morrish, 1965) 

Magnetisation versus temperature measurements were performed using Zero-Field-Cooled (ZFC), Field-

Cooled (FC) protocols. ZFC and FC magnetisation measurements were carried out by cooling the sample from 

room temperature to 5 K in zero magnetic field; then, a static magnetic field of 25 Oe was applied. MZFC was 

measured during the warmup from 5 K to 300 K, whereas MFC was recorded during the subsequent cooling. 

The difference (𝑀𝐹𝐶 − 𝑀𝑍𝐹𝐶), being a good approximation of 𝑀𝑇𝑅𝑀(R W Chantrell et al., 1991) has been 

used to describe the energy profile. From these curves and the ZFC-FC ones, the characteristics temperatures 

Tmax, Tirr and Tb were obtained as follows. Tmax is the temperature of the maximum in the ZFC curve. Tirr was 

calculated by considering a 3% of difference between the MFC and the MZFC. Tb is the blocking temperature 

calculated by means of the first derivative of the difference curve (𝑀𝐹𝐶 − 𝑀𝑍𝐹𝐶) as the temperature at which 

the 50% of the nanoparticles are in the superparamagnetic state. 

5.7.9 Specific Absorption Rate (SAR) measurements 

Calorimetric measurements of SAR were carried out by means of a non-adiabatic experimental set-up built 

at the LAboratorio di Magnetismo Molecolare (LA.M.M) by means of a power supply CELESs MP6/400 (FIVES 

CELES), a water-cooled heating station connected to the power supply and an induction coil. Heating curves 

were recorded under a magnetic field of 17 kA/m and 183 kHz for 300 s on water colloidal dispersions of 

the magnetic nanoparticles. Indeed, the hydrophobic nanoparticles were made hydrophilic by intercalation 

process with cetyltrimethylammonium bromide (CTAB, (C16H33)N(CH3)3Br). The concentration of the colloidal 

dispersion was 3.4 mg/ml for all the samples. The temperature of the sample was monitored by an optical fiber 
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probe (OPTOCON-FOTEMP) dipped into the solution. Samples were surrounded by polystyrene and hosted in 

a glass Dewar, equipped by an ethylene glycol thermostat, to ensure the proper thermal isolation. The Specific 

Adsorption Rate (SAR), i.e. the thermal power per mass unit, values has been estimated by a linear curve fitting 

in the first 20 s of the heating curves (initial slope method).  
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Conclusions 

In this thesis, two different strategies have been investigated for tuning the magnetic properties of cobalt 

ferrite nanoparticles in order to study its effect on their heating abilities for Magnetic Fluid Hyperthermia. 

Dealing with the intrinsic toxicity of cobalt ferrite, the two approaches are based on the decrease of the 

concentration of cobalt in the material by zinc substitution or on the confinement of cobalt ferrite in core@shell 

architectures by means of magnetite/maghemite or manganese ferrite shell, which are considered 

biocompatible or with a reduced toxicity. 

Zn-substitution samples have been prepared by the consolidated high temperature thermal decomposition 

of metalorganic precursors method (heating up) while the core@shell architectures have been achieved setting 

up a novel hydrothermal synthetic approach based on the seed-mediated growth process. 

Zn-substitution strategy has produced nanoparticles differing only for the cobalt content so that the study 

of the magnetic and hyperthermic properties has been possible beyond other parameters effects (crystallite 

diameter, particle diameter and its distribution, hydrodynamic diameter and its distribution, type and amount 

of capping agent). High saturation magnetisation values have been obtained at 5 K for all samples and at 300 

K for the cobalt ferrite sample and the substituted-one with the lowest zinc content. These latter two samples 

are capable to heat up the colloidal dispersion under the application of an alternate magnetic field but not in 

the same extent despite the same values of saturation magnetisation (~90 emu/g). These findings have 

highlighted the importance of other parameters affecting the hyperthermal efficiency. In order to better 

understand, these different behaviours AC magnetometry, Mössbauer Spectroscopy and DLS analyses were 

performed. By studying both the Néel and the Brown relaxation times, the higher SAR value obtained for cobalt 

ferrite nanoparticles have been justified by the higher magnetic anisotropy, which make the effective relaxation 

time of the particles matching the characteristic time of the SAR measurement. Although the SAR values are not 

among the most promising in the literature for Magnetic Fluid Hyperthermia, this characterisation approach can 

be considered extremely useful in order to design new heat mediators. 

The production of core@shell nanostructures CoFe2O4@MIIFe2O4 have been obtained by a seed-mediated 

growth carried out under hydrothermal conditions. Indeed, hydrothermal method has been chosen due to its 

several advantages, in particular its versatility. The characterisation by a multitechnique approach has 

suggested the formation of coupled systems: an increase of the particles size accompanied by a decrease of 

the polydispersity index (TEM), the crystalline planes extended within the entire spherical particles (HRTEM), the 

Room Temperature Mössbauer spectra not compatible with a physical mixture of the single phases, taken as 

reference sample. SAR measurements suggest the effective formation of bimagnetic core@shell nanoparticles 

with a higher efficiency of all these systems with respect to the original core. Finally, preliminary magnetic 

measurements have shown hysteretic behaviour compatible with of spring magnet systems. These 

heteroarchitectures represent promising materials for Magnetic Fluid Hyperthermia due to the homogeneous 

coating of the core with a biocompatible shell and due to the improved SAR values observed for all synthesised 

samples. However, for a deep understanding of the source of this optimisation, a further characterisation of a 

greater number of samples and also by means of AC magnetometry and Electron Energy Loss Spectroscopy 
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(EELS) would be necessary. Furthermore, it is worth to note that before any possible biomedical application 

cytotoxicity assays and cobalt release tests have to be assessed in order to verify the effective coating of the 

cobalt ferrite cores. 
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