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Abstract

The dramatic progress in DNA sequencing technology over the last decade,
with the revolutionary introduction of next-generation sequencing, has brought
with it opportunities and di�culties. Indeed, the opportunity to study the
genomes of any species at an unprecedented level of detail has come accom-
panied by the di�culty in scaling analysis to handle the tremendous data
generation rates of the sequencing machinery and scaling operational proce-
dures to handle the increasing sample sizes in ever larger sequencing studies.
This dissertation presents work that strives to address both these problems.
The �rst contribution, inspired by the success of data-driven industry, is the
Seal suite of tools which harnesses the scalability of the Hadoop framework
to accelerate the analysis of sequencing data and keep up with the sustained
throughput of the sequencing machines. The second contribution, address-
ing the second problem, is a system is developed to automate the standard
analysis procedures at a typical sequencing center. Additional work is pre-
sented to make the �rst two contributions compatible with each other, as to
provide a complete solution for a sequencing operation and to simplify their
use. Finally, the work presented here has been integrated into the production
operations at the CRS4 Sequencing Lab, helping it scale its operation while
reducing personnel requirements.
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Chapter 1

Introduction

The past decade has yielded dramatic progress in the technologies for DNA
sequencing, beginning with the introduction of next-generation sequencing
(NGS) [87]. Previous to this technological breakthrough, DNA sequences
were generally acquired through Sanger sequencing [78] which, though quite
accurate, is not a high-throughput technique. In fact, compared to the pre-
vious state-of-the-art, the development of next-generation sequencing � also
known as high-throughput sequencing � caused an exponential decrease in
the data acquisition costs, along with an inversely proportional increase in
data generation rates. The progress has been so rapid that from 2008 to
2016 the throughput of NGS machines and the cost of sequencing a human-
sized genome have improved by four orders of magnitude! As it became
more economically accessible, DNA sequencing opened up to a myriad of
new applications that were previously technologically or economically unfea-
sible [86]. High-throughput sequencing can now be used for research into
understanding human genetic diseases [66] and population-wide studies to
better understand human phylogeny [25]. There are also obvious applica-
tions in oncology to study and identify tumours [9], and even at the level
of personalized diagnostic applications [13]. Moreover, the same technology
can be used to study plant and animal genomes [28, 61].

Nevertheless, the data produced by the NGS process is not directly in-
terpretable from a biological point of view. Instead, the product of a high-
throughput next-generation sequencing run is billions of short DNA frag-
ments, called reads, which need to be analyzed computationally to under-
stand the structure of the original whole DNA sequence from which they
came. While the speci�c analyses to be performed will vary depending on
the application, they are all irremediably data intensive due to the sheer data
production rate of the NGS process. Unfortunately, the dramatic progress
in the data acquisition technology has not been directly followed by compa-
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Figure 1.1 � The progression of the cost of sequencing a human-sized genome.
The impact of NGS technology can be clearly seen starting on January 2008.
Note that the graph uses a logarithmic scale. For comparison, the dotted white
line depicts Moore's Law [59] which � loosely speaking � describes the trend
of computing power to double every year. The sequencing costs considered
include direct and indirect costs of producing the data, but not the cost to
analyze it. This graph is graciously provided by the American National Human
Genome Research Institute (NHGRI) [36].

rable progress in the computational techniques and infrastructure that sup-
port the analysis. The result has been a shift of the bottleneck in sequenc-
ing studies from data acquisition to data processing and analysis [79] (see
Fig. 1.2). Moreover, many of the applications of sequencing become interest-
ing as the number of samples grow � consider, for instance, population-wide
genetic studies with thousands of samples. However, increasing the number
of samples, in addition to multiplying data size, also multiplies the number
of datasets, thus introducing new logistical and data management problems
that must be handled appropriately to ensure scalability, reproducibility and
to curtail the probability of errors.
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Figure 1.2 � Illustration (from Sboner et al. [79]) of the relative costs in three
di�erent time periods of a typical sequencing-based study, which consists of four
main components: (i) sample collection, (ii) data acquisition (sequencing), (iii)
data reduction management and (iv) data analysis. While in the pre-NGS era
the data acquisition phase was the most expensive part of the study, NGS is
shifting those costs to data analysis.
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1.1 Motivation

1.1.1 Next-Generation Sequencing

Next-generation sequencing actually refers to a number of di�erent tech-
niques that emerged around the same time (around 2005). These are perhaps
better described as �second-generation DNA sequencing� (after 10 years one
might be justi�ed in arguing that these are no longer the �next� generation!).
In this work we will be mostly concerned with the technology used in Illu-
mina's sequencers [10]. For a brief but complete review of all the main NGS
methods the reader may refer to the work by Shendure and Ji [87].

The NGS method is a shotgun technique, where the DNA to be acquired
is broken up into random fragments that are all read simultaneously in the
sequencing process. This ��aring� of small simultaneous observations over the
entire genomic sequence is what gives the technique its name. On Illumina
sequencers, each individual fragment results in one or two reads : one from
one end of the fragment and, optionally, one from the opposite end (see
Fig. 1.3). Two reads resulting from the same fragment are said to be paired.
The reads usually do not cover the entire fragment, leaving an unsequenced
portion of DNA between the pair.

ACCTCTTGATCAGCAGTGATCTTACCCTACCTTGAAGTC

read 1 read 2

gap

Figure 1.3 � A DNA fragment is sequenced from its two opposite ends, re-
sulting in two paired reads.

The most common sequencing scenario � and the one that concerns us
in this work � is the one where there is a reference genome available for the
sample being sequenced. This type of operation is known as resequencing.
When resequencing, we use the reference sequence as a guide to reconstruct
the genome of the sample. Further analysis then highlights the variations be-
tween the sample and the reference genome � information which can form the
basis for further studies, such as identifying associations between variations
and phenotypes.

The resequencing process is ideal to leverage the type of data produced
by shotgun sequencing. However, it entails a multi-step analysis phase that
requires signi�cant amounts of computational resources � both in terms of
processing power and input/output (I/O) throughput.
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Figure 1.4 � A detail of a screenshot of the Integrative Genome Viewer
(IGV) [74, 92] showing an area of the reference with a number of overlap-
ping reads (horizontal gray bars). The vertical gray bars indicate coverage �
i.e., the number of times that speci�c position of the reference was sequenced.

1.1.2 Large sets of large datasets

Next-generation sequencing activity quickly results in a lot of data. Con-
sider that a modern high-throughput sequencer like the Illumina HiSeq 4000
can produce 1500 Gigabases, which equate to about 4 Terabytes of uncom-
pressed sequencing data, in just 3.5 days [31]. That much data is su�cient
to reconstruct only up to 12 human-sized genomes (3 Gigabases in length)
due to the oversampling required to reconstruct the genomes from the short
reads generated by the sequencing machine. With some quick arithmetic it
is easy to conclude that a single sample of this type equates to a bit over
300 GB of uncompressed data. Of course, the data from each sample needs
to be computationally processed and digitally stored. Such datasets quickly
become too big to process on a single computer, giving rise to Big Data-type
problems where sophisticated computational techniques need to be applied
to achieve results in a reasonable time.

Moreover, in the context of a study or a sequencing center, this hefty per-
sample data size is typically multiplied by a signi�cant number of samples.
Consider that for sequencing-based studies large numbers of samples need
to be treated to achieve high analysis sensitivity or to get population-wide
statistics. The population-wide study by Orrù et al. [66] provides an exam-
ple of this situation. For that study, 2870 whole genomes were sequenced,
resulting in approximately one petabyte of sequencing data to be analyzed
and stored. Processing such a large quantity of data in less time than the se-
quencing machines require to generate them requires a substantial computing
infrastructure and the scalable computational software to leverage it.
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Sequencer Read length Time Gigabases Gigabytes Rate
(days) (GB) (GB/day)

HiSeq 2000 2 x 100 8 400 1000 125
HiSeq 2500 2 x 125 6 1000 2500 417
HiSeq 4000 2 x 150 3.5 1500 3750 1071

Table 1.1 � Maximum sequencing capacities for a number of Illumina high-
throughput sequencers. Note that the machines can be con�gured to run in
several modes trading o� the amount of bases sequenced with the duration
of the sequencing run or the read length. Here we report the con�guration
that maximizes the former and uses two �ow cells. The size of the output in
gigabytes is intended for uncompressed reads with base qualities and id strings,
considering a constant total size of 2.5 bytes/base. Although the actual size of
the sequencer's output directory is larger, this size serves well to quantify the
amount of data to be processed. Source: Illumina speci�cation sheets [31�33].

In addition to the sheer data size, executing the large studies that are
so well suited to NGS technology presents di�culties related to making the
processing and analysis operation scale with respect to the number of sam-
ples. For each sample, at least one computation analysis procedure needs to
be executed, and it will produce a number of datasets spread over an even
larger number of �les. Moreover, every step presents a possibility of error
which must be kept in check, since the presence of errors in the project will
scale superlinearly1 with respect to the number of samples.

Finally, as with all science, it is of paramount importance to ensure the
reproducibility of such large-scale sequencing studies by documenting the
provenance of all results. This can be a rather di�cult task because of
the sheer number of parameters involved in the generation and analysis of
sequencing data. While the reproducibility of the sequencing run is assured
by the fact that the sequencing apparatus documents all its parameters, the
onus falls on the user to document the details of the analysis procedure. It is
necessary to document the analysis steps performed, the software used and
the version of said software � lest its behaviour change in newer or older
versions � the software parameters, as well as any model data used (e.g., a
reference genome) and its version as well. Providing such detailed tracing of
operations at scale would be a daunting task without the implementation of
proper automation and support tools.

1This stems from the fact that in addition to the errors strictly related to processing the

sample at hand, one must also consider the errors originating from desired or accidental

interactions with the analysis procedures of other samples
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1.2 Contributions

This dissertation makes three main research contributions that work towards
addressing the issues described in the previous section. They are summarized
below.

Scalable sequence processing software. A suite of scalable distributed software
tools for processing sequencing data, called Seal, has been implemented and
released as an open source project. The software is currently used at the
CRS4 NGS Lab (Chapter 3).

Automation of primary processing. A system to automate the standard pri-
mary processing that needs to be performed on raw sequencing data. The
system fully traces all the operations performed on the data and it is currently
in use at the CRS4 NGS Lab (Chapters 4 and 5).

Scalable scripting for sequence analysis. A specialization of a scripting lan-
guage to work on sequencing data. With this system, a user that is not an
expert in distributed computing can write programs that manipulate and
analyze sequencing data using the full power of a computing cluster (Chap-
ter 6).

The remaining chapters of this dissertation provide background and dis-
cuss the details of these contributions.

1.3 Achievements

The research work presented in this dissertation resulted in the publication
of the following articles over the course the Ph. D. program.

� G. Cuccuru,. . . , L. Pireddu, et al. �An automated infrastructure to sup-
port high-throughput bioinformatics�. In: High Performance Comput-
ing & Simulation (HPCS), 2014 International Conference on. IEEE.
2014, pp. 600�607.

� L. Pireddu, S. Leo, et al. �A Hadoop-Galaxy adapter for user-friendly
and scalable data-intensive bioinformatics in Galaxy�. In: Proceedings
of the 5th ACM Conference on Bioinformatics, Computational Biology,
and Health Informatics. ACM. 2014, pp. 184�191.

� A. Schumacher, L. Pireddu, et al. �SeqPig: simple and scalable script-
ing for large sequencing data sets in Hadoop�. Bioinformatics 30 (1),
2014, pp. 119�120.
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In addition, the methods presented in this work were used to analyze most
of the sequencing data within the context of this population-wide genome-
wide association study:

V. Orrù,. . . , L. Pireddu, et al. �Genetic variants regulating immune
cell levels in health and disease.� Cell 155 (1), Sept. 2013, pp. 242�56.

Finally, the experiences in computationally processing large quantities of
sequencing data gathered over the course of this doctoral program, along
with with those of other colleagues working in other research institutions,
were published in the article:

O. Spjuth,. . . , L. Pireddu, et al. �Experiences with work�ows for au-
tomating data-intensive bioinformatics�. Biology Direct 10 (1), 2015,
pp. 1�12.
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Chapter 2

Background

2.1 The CRS4 NGS Lab

CRS41 is a non-pro�t public multidisciplinary research organization in Italy.
It hosts a high-throughput sequencing facility that is directly interconnected
to its computational resources (3000 cores, 4.5 PB of storage). With three
Illumina HiSeq 2500 sequencers, it is the largest NGS platform in Italy, with
a production capacity of up to about 1.25TB of raw sequencing data per
day. Among its most important projects the lab counts large-scale studies
on the genetics of autoimmune diseases [66] and longevity [25].

The CRS4 NGS Lab is relevant to this dissertation because over the
course of this work it served as a testbed and early adopter for the proposed
solutions, not to mention steady source of new challenges and ideas.

2.2 Best-practice sequence processing

As already mentioned in Chapter 1, the raw data produced by the sequencers
needs to be processed to infer information about the genome from which the
fragments were generated. Depending on the sequencing application at hand,
there are standard processing work�ows that are accepted by the community
as being �best practice.� For the purpose of this work, we are mainly con-
cerned with experiments performing resequencing (see Section 1.1.1) for the
purpose of variant calling � the procedure to identify the speci�c variations
of the sample's genome with respect to the reference; in particular, the tools
presented in Chapter 3 are used for the primary processing phase. Note
that this does not imply that these contributions of this dissertation are not

1http://www.crs4.it
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applicable in other circumstances.

Within the context of resequencing for variant calling, van der Auwera
et al. from the Broad Institute2 and Wellcome Trust3 published the gold-
standard procedure in 2013 [8]. However, the tools and procedures used in
sequence processing evolve very quickly, so the most up-to-date recommenda-
tions are published directly on the Broad Institute's web site [34]. Although
the Broad's recommendations are well accepted, they are centered around
their own tool suite � the Genome Analysis Toolkit (GATK). Nevertheless,
their useful advice can be easily interpreted and applied with alternative
tools.

Once the sample's reads are available, the primary analysis part of the
best practice work�ow for DNA consists of the following steps.

1. Map to reference. As mentioned in Sec. 1.1.1, next-generation shotgun se-
quencing produces a shattered view of the genome in the form of many small
unordered DNA reads. To reconstruct the genome of the sample being rese-
quenced one takes the reads generated by the sequencer and uses specialized
mapping or alignment software, which uses approximate string matching al-
gorithms to �nd the position in the reference sequence from which the reads
were most likely acquired. In this manner, we use the reference sequence
as a guide and as a coordinate system to reconstruct the sample's genome.
The mapping algorithms are designed to be robust to sequencing errors and
the small genetic variations that characterize the sample. Moreover, when
sequenced the genome is typically oversampled many times; for instance, for
whole-genome sequencing 30 times oversampling � also known as 30X cover-
age is common. The oversampling results in reads that overlap, which will be
essential in later phases to detect heterozygosity and to distinguish genomic
variants speci�c to the sample from mere sequencing errors. In addition to
the reference position, the mapping process also calculates the di�erences
between the sample's read and reference sequence at the mapped position.
This di�erence is expressed as a sequence of string editing operations: match,
insert, delete.

2. Mark duplicates. The sequencing process generates a number of duplicate
reads � meaning that from one original genome fragment the process produces
two or more reads. The duplicates can originate from the ampli�cation pro-
cess used while preparing the material for sequencing or from optical e�ects
in the sequencing apparatus itself. Either way, these duplicates are a form of
error that can skew statistics and need to be identi�ed and properly handled.

2https://www.broadinstitute.org
3http://www.wellcome.ac.uk/
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3. Realign indels. When mapping reads to a reference, the alignment al-
gorithm works on one read at a time. While mapping the ends of the read
the aligner is at a higher risk of committing the error of accepting a substi-
tution error instead of inserting a sequence insertion or deletion (which, in
general, are less likely). However, this situation can be more easily detected
when analysing together all the reads mapped at the location in question.
In short, the end of the read in question may coincide with the middle of
a number reads � where the alignment is more accurate � or with a known
variant location. This step looks at these high-error situations and ��xes�
the original read mapping when appropriate.

4. Recalibrate base qualities. The sequencer provides a probability of error
for each base it produces based on its own internal error model. However, it
has been observed that the probability of error on the bases is more accurate
if calculated empirically by assuming that the read bases that match the ref-
erence sequence are correct and all the others are wrong � except at locations
that are known to vary. Based on this rule, base qualities are recalculated
by a likelyhood estimation conditioned on the following factors: the cycle in
the sequencing process, the base preceding the current one, and the original
probability of error estimated by the sequencer.

2.3 MapReduce and Hadoop

Hadoop [30, 77] is a platform for large-scale data processing. Although with
its rising popularity the Hadoop ecosystem has been growing with numer-
ous tools and variations, the crux of the system � and the only parts rele-
vant to this work � are its open source implementation of the MapReduce
paradigm [22] and the Hadoop Distributed File System (HDFS). In the past
few years Hadoop has established itself as the de facto standard for large
scale data processing, allowing both commercial and academic institutions
to deal with projects of unprecedented size [29].

The Hadoop MapReduce implementation provides a framework into which
an application can install appropriatemap and reduce functions that, in com-
bination, compute a desired result. These functions operate exclusively on
data in the form of key-value pairs. The map function performs a trans-
formation on the data, mapping each input tuple to one or more output
tuples. On the other hand, at each invocation the reduce function simul-
taneously receives all the values associated to the same key, and therefore
has the opportunity to perform aggregation-type operations. Both functions
output key-value pairs exclusively through the framework. By following this
programming model, procedure side-e�ects and unstructured interactions be-
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tween processes are eliminated, which makes it possible to create a framework
that automatically execute multiple instances of map and reduce functions
in parallel and even on di�erent computers. It can even re-execute the func-
tions on the same input data � for instance, in the case of stragglers or to
recuperate dead tasks � by adopting appropriate measures to ensure idempo-
tency and safe concurrency. Among these measures we �nd that each work
task executed by the framework writes to its own output �le. As such, when
processing data with Hadoop MapReduce datasets are typically kept in di-
rectories, which may contain any number of �les, each of which contains a
part of the entire dataset. Perhaps the most important consequence of fol-
lowing this rigid model is that the application-speci�c logic in the map and
reduce functions is completely separated from the framework's, so that the
latter can be packaged into a well-tuned and reusable distributed computing
framework � exactly like Hadoop.

As an example, Algorithm 1 illustrates how to count word frequency with
an algorithm that follows the MapReduce model. The map function splits
the text into words and emits tuples (word, 1). Then, for each di�erent word,
the reducer is invoked with all the '1's that were emitted by the maps � one
for each occurrence of the word. By summing all the values, the observed
frequency of the word is computed.

Algorithm 1 A MapReduce word count algorithm

function map(key, text)
for word ∈ text do

emit(word, 1)
end for

end function
function reduce(word, values)

count← 0
for v ∈ values do

count← count+ v
end for
emit(word, count)

end function

2.3.1 HDFS

The Hadoop Distributed File System (HDFS) is a �le system designed to
store large quantities of large �les by spreading them over the local disks of
all the nodes in the computing cluster. HDFS splits �les into large blocks
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Figure 2.1 � Schematic diagram of the execution of the word count algorithm
shown in Alg. 1 (Image courtesy of Simone Leo).

(i.e., usually 128 MB) and sends the various blocks to di�erent nodes. To
ensure robustness, each block is replicated a number of times. By storing
data directly on the computing nodes, HDFS creates the opportunity to
bring the computation to the data � i.e., executing the computation directly
on the node containing the data block to be processed, thus avoiding data
transfer and reducing network I/O. Another corollary to its architecture is
that HDFS makes its total bandwidth scale with the number of nodes in
the cluster. In addition to these performance advantages, by using regular
disks HDFS relies on cheap hardware, and so is able to provide cost-e�ective
storage solution.

2.4 Galaxy

Galaxy [27] is a user-friendly bioinformatics work�ow management system.
Through its web interface it allows users to graphically describe work�ows by
drawing pipes to connect tools. Once a work�ow is launched, the system can
then automatically manage its execution, running steps in an appropriate
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order and, when dependencies allow, executing them concurrently. The plat-
form is extensible, allowing users to integrate new tools which can then be
included in new work�ows. In fact, there exists a large community-managed
library of tools that are already integrated and thus are ready to use or easily
added after installation.

To support managing work�ows in this automated and extensible manner,
Galaxy imposes a model on the tools that are integrated and the datasets
that they process and generate � this is relevant for the work in Chapter 5.
Speci�cally, tools are invoked by command line, where Galaxy provides them
with input and output dataset paths and user-selected options. In the Galaxy
model, tools that are invoked in succession in a work�ow �communicate� �
as in passing datasets from one to the next � by sharing �le system space.
So, Galaxy is con�gured to use a directory as a workspace, where it creates
paths for the various datasets that are generated during its operation. It
is important to note that Galaxy needs to be able to access and read these
dataset �les and thus the workspace needs to be on a �le system mounted
on the system where the platform is running.
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Figure 2.2 � Screenshots of the Galaxy web application. The �rst one shows
a simple work�ow open in Galaxy's work�ow editor. The second one shows
a list of �histories�, each one recording the steps executed in a data analysis
procedure � be it de�ned by a work�ow or interactive.
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Chapter 3

Scalable, distributed processing of

sequencing data

The data-intensive revolution [54, 93] in the life sciences has next-generation
sequencing (NGS) machines among its most prominent o�cers. One of the
main challenges brought forth by this phenomenon is to develop scalable
computing tools that can keep up with such a massive data generation
throughput. To date, it appears that most sequencing centers have opted
to implement processing systems based on conventional software running on
High-Performance Computing (HPC) infrastructure [89] � a set of computing
nodes accessed through a batch queuing system and equipped with a par-
allel shared storage system. While with enough e�ort and equipment this
solution can certainly be made to work, it presents some issues that need
to be addressed. Two important ones are that developers need to imple-
ment a general way to divide the work of a single job among all computing
nodes and, since the probability of node failures increases with the number of
nodes, they also need to make the system robust to transient or permanent
hardware failures, recovering automatically and bringing the job to success-
ful completion. Nevertheless, even with these measures, the architecture of
the HPC cluster limits the maximum throughput of the system because it is
centered around a single shared storage volume, which tends to become the
bottleneck as the number of computing nodes increases � and this is espe-
cially true for sequence processing which tends to perform a lot of I/O with
respect to processing activity.

This chapter presents specialized software suite, called Seal, that adopts a
completely di�erent strategy by processing sequencing data using the Hadoop
framework (see Sec. 2.3). It has been updated and extended since the initial
versions that were published in previous literature [69, 70]. The following
sections motivate the decision to use this framework and present the tools
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that have been developed.

3.1 Hadoop for processing sequencing data

The Hadoop framework has been designed from the ground up to scale com-
puting throughput up to very high levels while containing costs. Indeed, its
origins lie in data companies such as Yahoo! and Google that process much
more data than any modern sequencing center. Because of this, its devel-
opers have already addressed many of the di�culties that arise when trying
to scale computational throughput. Therefore, by adopting this framework,
the software that uses it automatically bene�ts from their experience, rather
than repeating the work by developing new ad hoc solutions.

Hadoop addresses the aforementioned issues that can limit the scalability
of processing systems on a HPC cluster. It automatically splits input data
among all the computing nodes available, thus distributing the work over
the cluster. It is robust to hardware failures, automatically taking care to
restart tasks that do not complete because of a broken node � without any
user intervention. Perhaps most importantly, it implements its own storage
system that distributes data over the disks on the computing nodes them-
selves. As a result, the data can be usually processed directly on the node
where it is stored, drastically reducing the amount of data that has to travel
over the network. Further, since with this architecture the computing and
storage resources increase hand-in-hand, the capacities of both systems scale
together with the number of nodes in the cluster, thus raising the level of
I/O activity at which storage becomes the process' bottleneck. What is
more, it does so while containing the cost per unit of storage volume with
respect to the typical costs of a shared parallel �le system. Another point
worth mentioning is that by adopting Hadoop, one also acquires access to
Hadoop-based Platform-as-a-Service (PaaS) o�erings � for example, Amazon
Elastic MapReduce (EMR) [4] � which entails having access to scalable cloud
computing infrastructure without incurring any initial investment cost.

On the other hand, the Hadoop framework also has a number of disad-
vantages. For one, it is not well suited for the typical HPC cluster, which
is implemented around a batch-queuing system. In the HPC scenario, the
computing nodes are temporarily assigned to a user upon request and, once
the job is �nished, then they are supposed to be immediately cleaned of
all temporary data and returned to the system, which will consider them
available to other users. On the contrary, Hadoop assumes that it has com-
plete and permanent control of its computing nodes. In addition, nodes in
an HPC cluster are usually equipped with limited amounts of local storage
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space, which limits the usefulness of the HDFS. However, the most signi�-
cant disadvantage is probably the fact that Hadoop is not compatible with
conventional software. Therefore, to adopt this framework in a sequencing
operation and reap the bene�ts it o�ers, one has to �nd or implement new
Hadoop-compatible software to perform the processing steps required by the
sequence processing work�ow: that is the problem that the work presented
here is addressing.

Of course, there exist other approaches to scale the throughput of se-
quence data processing. The Message Passing Interface (MPI) [24] is a widely
used set of interfaces and supporting libraries that provide primitives to im-
plement distributed applications. However, this tool works at a much lower
level than the Hadoop framework so its functionality does not include features
such as robustness to hardware failure, automatic splitting of input data, or a
distributed �le system; to create an application with an equivalent feature set
a developer would have to address those issues from scratch. Another viable
way to speed up computation is to take advantage of hardware �accelerators�
such as Graphical Processor Units (GPUs) [42, 53] or Field-Programmable
Gate Arrays (FPGAs) [14, 85, 94]. These types of devices are able to achieve
extremely high speeds by simultaneously performing many operations in par-
allel. However, while these accelerators address the problem of computing
speed, but do not help to scale I/O throughput. Therefore, they should be
seen as complementary to a distributed computing solution such as Hadoop.
Indeed, it would be totally reasonable to implement a Hadoop-based software
that used hardware accelerators to speed up computing tasks within its map
and/or reduce tasks.

3.2 The Seal toolbox

This chapter presents the Seal suite of Hadoop-based tools for the primary
analysis of sequencing data. These tools are scalable alternatives to con-
ventional software tools. The tools implement the functionality necessary to
interpret the raw data from Illumina sequencing runs, execute most of the
primary analysis steps in the �best practice� variant calling work�ow (see
Sec. 2.2), and provide the functionality necessary to convert the data from
Seal's storage format to the conventional SAM format so that the output can
be fed to conventional tools downstream. Therefore, by using Seal one can
run a signi�cant part of the variant calling work�ow on a Hadoop-based in-
frastructure. The following Sections describe in more detail the various com-
ponents of the tool suite. While the tools described in Sections 3.3 and 3.4
are speci�cally designed for Illumina-based sequencing, the other tools are
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generic and can be used with data from any sequencing machine.
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Figure 3.1 � The part of the primary analysis that can be implemented with
Seal. The suite includes a distributed tool to directly process an Illumina
sequencer's binary output (BCL base call �les), separate the sequences by
sample id (demultiplex), align and mark duplicates. The last tool orders the
sequences by position and produces a BAM �le that can be used to continue
processing with conventional tools.

3.3 Seal: Decoding Data in BCL Format

The �rst tool of the Seal suite is used to decode the data written by the
sequence to generate standard reads: nucleotide sequences, with associated
probability of error values for each base and a sequence id. As the sequencer is
running, at each cycle it acquires a single base from all the reads by snapping
a picture of the �ow cell where a chemiluminescent reaction is taking place.
Each color detected corresponds to a speci�c base � Adenine, Cytosine,
Guanine, or Thymine. At each step, the software on the controlling work-
station perform base calling from the image data. Performing the base calls
on-line, while the sequencer is running, allows the procedure to discard the
images almost immediately, saving signi�cant amounts of temporary stor-
age space. Since each image, and corresponding base calls �le (BCL), only
contains the bases that were acquired from all the reads in that speci�c se-
quencing cycle, the individual DNA fragments are actually split over n �les,
where n is the number cycles in the sequencing run � and therefore n is also
equal to the length of the reads.

Thus, the �rst step to be performed after sequencing is to reconstruct the
actual base pair sequence of the DNA fragments. The procedure is illustrated
in Fig. 3.2. Seal includes the bcl2qseq tool which performs this operation
by distributing the work to the entire Hadoop cluster on which it runs. The
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tool is implemented as a map-only Hadoop job that parallelizes the work on
the tiles of the �ow cell (one tile per map task). Internally, the program
includes a �launcher� component that examines the details of the sequencing
run and creates a plan for the work to be done � i.e., number of cycles to
decode, location of the �les, etc. Finally, the launcher starts the Hadoop job
and thus the worker tasks; these drive the bclToQseq program provided by
Illumina, directing it at the appropriate location and capturing the output so
that it can be redirected into the Hadoop framework. The data is written in
qseq format [84], which is a simple text-based tabular format that is easy to
read and process. The code is implemented in Python by taking advantage
of the Pydoop library [49] which provides a Python interface for Hadoop.
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Figure 3.2 � Recomposing nucleotide sequences from the raw data in Illumina
BCL �les. The operation requires reading data simultaneously from a number
of �les equal to the number of cycles in the sequencing run � each �le contains
one base from each read. Once all the bases of a read are acquired, the read
can be composed and emitted; then processing can advance to the next one.

3.4 Seal: Demultiplexing

Often, for reasons of e�ciency, the DNA fragments from individual samples
are tagged with a short identifying nucleotide sequence and then mixed and
sequenced with other samples in a single batch. This procedure is known as
multiplexed sequencing. In this way, the sequencing capacity of the run is
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divided among more biological samples than would be possible if it was nec-
essary to keep them physically separated. This technique is especially useful
for applications that do not require the acquisition of a very high number of
bases � exome sequencing is an example. Being that the genetic material of
multiple samples is in the same biological solution, the sequencer will acquire
their fragments of DNA indiscriminately and they will be output in the same
dataset � though the barcode sequence will be decoded as an additional read,
so that paired multiplexed sequencing will generate 3 reads per DNA frag-
ment. Separating them requires processing the reads to identify the original
sample based on the read's �ow cell lane and the nucleotide barcode that
was attached in preparation � a procedure known as demultiplexing.

Seal includes demux, a distributed tool to perform read demultiplexing
in a scalable fashion. Demux is implemented as a MapReduce application
running on the Hadoop platform. The demux algorithm works by grouping all
the reads deriving from the same DNA fragment, including the barcode read,
into the same reducer instance. Consequently, the reducer is in a position
to perform a look-up on the barcode to �nd the sample to which the reads
belong and then write them all to the appropriate dataset.

In more detail, the map phase of the algorithm � which emits key-value
pairs � computes a key for each read that is itself a pair formed by: 1) the
location on the �ow cell from where the read was sequenced, identi�ed by a
tuple (lane, tile, x position, y position); 2) the read number. On
the other hand, the value of the emitted pair is the read itself along with all
its complementary data. While it is true that such a key is unique for any
given �ow cell, demux overrides the default framework behaviour to group
only on the location � i.e., the same biological fragment � while ignoring the
read number in the key. Further, the key ordering behaviour is also modi�ed
as to give precedence to read two � the barcode read. In this way, the reducer
receives all a given fragment's reads in this order: 1) barcode read; 2) read 1;
3) if present, read 2. The ordering makes the implementation of the reducer
straightforward, since it can decipher where all the reads need to go as soon
as it receives the �rst read in the list. Alternatively, had the ordering not
been customized, it would have to cache reads in memory until it found the
barcode read.

3.5 Seal: Align Reads and Mark Duplicates

The reference mapping step � also known as alignment � is critical to the
quality of the results of a resequencing analysis, since it e�ectively recon-
structs, as best as it can, the original genome from the fragments produced
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by shotgun sequencing. In the �best practice� variant calling work�ow (see
Sec. 2.2) mapping is immediately followed by duplicate identi�cation. Seal in-
cludes a single MapReduce-based tool, called seqal, that perform both these
operations in a single iteration over the data. The two steps are implemented
as a single tool because they �t well in a single MapReduce iteration. The
bulk of the tool is implemented in Python, taking advantage of the Pydoop
library.

The alignment step is implemented in seqal's Map phase. Rather than
implementing a new aligner from scratch, seqal currently indirectly integrates
the BWA-MEM aligner through the RAPI read aligner API (developed as
part of this project; see Subs. 3.5.3). To integrate BWA-MEM, its C source
code was signi�cantly modi�ed to repackage it as a software library, so that
its functions and data structures could be called by seqal. Indeed, currently
seqal is, to the best of the author's knowledge, the only Hadoop-based read
mapping program that directly integrates the aligner core into its code; other
options choose to execute conventional read alignment programs in their
unmodi�ed form [39, 44, 45] as a separate child process. The technique
adopted by seqal, while being more di�cult to implement, provides improved
e�ciency and �exibility.

In addition to transforming BWA-MEM into a software library, the origi-
nal code was also modi�ed to use memory-mapped I/O to read the reference
sequence and its index, instead of simply writing the index components into
malloc'd memory blocks. This improvement provides two signi�cant advan-
tages over BWA-MEM's original technique. The �rst is that by using mmap

all instances of the software using the same reference on the same computer
will share the same data in memory, thereby saving signi�cant amounts of
memory space. This feature is especially important to seqal's use case since
it can, through the Hadoop framework, end up running multiple map tasks
on the same computing node and thus risks exhausting the available mem-
ory. The second advantage is that after its use the reference is automatically
cached in memory for a period of time, so that subsequent invocations of the
aligner with the same reference will save the time required to load it from
storage (a signi�cant amount of time for large references such as for Homo
sapiens). While unused, the reference is cached until the memory it occupies
is needed for other purposes. Since the BWA-MEM project is open source,
these improvements were sent to the author of the original program to be
considered for integration into the main line of development.

After alignment, seqal also performs duplicate identi�cation (this is an
optional step; seqal can also be used in align-only mode). To identify dupli-
cate reads, seqal uses the same criterion that is used by the popular Picard
tool [35]. Duplicate reads are likely to map to the same reference coordi-
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nates. This observation can be exploited to identify them. The speci�c
criterion used de�nes two pairs as duplicates if their alignment coordinates
are identical, both for their �rst and second reads. Likewise, lone reads are
considered duplicates if they are aligned to the same position. When a set
of duplicate pairs is found, all but the one with the highest average base
quality are marked as duplicates. The behaviour is analogous when running
in unpaired read mode.

3.5.1 MapReduce algorithm for duplicate identi�cation

To implement duplicate identi�cation criteria used by seqal within the MapRe-
duce paradigm, the following algorithm was designed.

1) First, the mapper aligns the read pair (or single read) that it received.

2) Keys are crafted for each aligned read as the triple

(chromosome, position, orientation)

where the orientation refers to the forward or reverse genomic strand; this
is the information required to de�ne the exact position of alignment. In the
key, the chromosome is always represented by its numerical id, through in
the output it can be named for the sake of making the alignment data easier
to read. The key is then formed by �xed-size �elds that are delimited by a
colon (':'); the values are left-padded with zeros to reach the required size.
See Fig. 3.3 some examples. This design results in keys whose alphabetical
ordering is equivalent to their numerical ordering � which is important since
Hadoop by default uses alphabetical ordering.

3) The keys generated in step 2 are ordered. Only the �smaller� key is emit-
ted, along with the entire read pair and accompanying alignment information
(the value). If working with unpaired reads, then a single key will be emitted
with the single read.

4) The reducer, for a given key (alignment position), collects all the read
pairs and computes their left- and right-most position � i.e., the start and
end positions at which the entire fragment from which the reads were se-
quenced would align to the reference. Pairs that have the same start and
end coordinates are considered equivalent. Therefore, all except the one
with the highest average base quality are marked as duplicates. The reads
are �nally output to the �nal result. Again, for unpaired reads the behaviour
is analogous.
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Chr Pos F/R Key
2 113423446 F → 0002:000113423446:F
13 69112518 R → 0013:000069112518:R

Figure 3.3 � Examples of keys formed for MapReduce-based duplicate read
identi�cation. The headings stand for Chromosome (or, more generally, con-
tig), Position, Forward/Reverse (as in which strand of the genome). Although
the chromosome (or contig) can be named in the alignments �le, when building
the key it is always represented by a numerical id. The keys are formed by
�xed-size �elds; the �elds are left-padded with zeros to reach the required size.
This way, the alphabetical and numerical ordering of the keys is equivalent.

Algorithm 2 Seqal's Map algorithm

procedure Map(mode, read_pair)
aligned_pair ← align(read_pair)
if mode = aln-only then

emit(�, aligned_pair)
else . mode is aln+markdups

keys ← [ makeKey(a) | a ∈ aligned_pair ]
ordered_keys ← sort(keys)
emit(ordered_keys[0], aligned_pair)

end if
end procedure

Algorithm 3 Reducer algorithm to identify duplicates

procedure Reduce(pos, aligned_pairs) . All pairs are at same position
if |aligned_pairs| > 1 then

aln_with_score ← [ (a, mean(a.qualities)) | a ∈ aligned_pairs ]
ordered ← sort(aln_with_score, by=tuple→tuple[1])
for tuple ∈ ordered[1:] do . All but the �rst

emit(mark_dup(tuple[0]))
end for
aligned_pairs ← ordered[0:1]

end if
emit(aligned_pairs[0])

end procedure
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CPUs dual quad-core Intel Xeon CPUs @ 2.83GHz
RAM 16GB
Disks one 250-GB SATA hard disk
Network single 1-Gbit Ethernet connection

Table 3.1 � Hardware con�guration of the nodes used to evaluate Seal seqal's
performance.

3.5.2 Speed and Scalability

To evaluate seqal's scalability, the tool was tested with datasets of varying
input size (DS data sets from Table 3.2) and various cluster sizes (16, 32,
64, and 96 computing nodes). For each cluster size, a Hadoop cluster was
set up, including a Hadoop Distributed File System using the nodes' local
disk. Before starting the experiments, the input data and a tarball with the
indexed reference sequence were copied onto the con�gured cluster's HDFS.
The seqal application was run on all the DS data sets in both align-only
and align+mark duplicates modes. The runs were repeated 3 times, with
the exception of DS8 which was only run once. The runtime was measured
and the throughput computed. The averages of the results are reported in
Fig. 3.4.

Looking at Fig. 3.4 we see that seqal is generally capable of through-
put/node levels comparable to single-node operation � that is to say that
the application and Hadoop keep the distribution overhead to a minimum.
As the cluster size increases we would ideally see a constant throughput per
node, giving a linear increase in overall throughput. In practice, when the
input is too small with respect to the computational capacity, nodes are often
underutilized. Therefore, the throughput per node with DS1 at 96 nodes is
much lower than the other con�gurations. On the other hand, we see that
seqal is capable of utilizing available resources e�ciently when more data is
available, although while scaling up from 64 to 96 nodes, the system achieved
better throughput on the small DS3 data set as opposed to the larger DS8.
This e�ect might be due to network congestion, which could be alleviated
choosing a better-organized network topology.

3.5.3 The RAPI Read Aligner API

In work related to NGS data, read aligners are one of the most fundamen-
tal pieces of analysis software, so read alignment is an operation that has
been intensely studied [52, 76], resulting in a number of e�ective algorithms
and implementations. Furthermore, many of the aligners are continuously
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Data set No. lanes No. pairs Size (GB) Read length
5M 0 5.0 · 106 2.3 91
DS1 1 1.2 · 108 51 100
DS3 3 3.3 · 108 147 100
DS8 8 9.2 · 108 406 100

Table 3.2 � Seal seqal evaluation: input data sets. The 5M data set consists
of the �rst 5M pairs from run id ERR020229 of the 1000 Genomes Project [23].
The three DS data sets are from a production sequencing run on an Illumina
HiSeq 2000.

Figure 3.4 � Throughput per node of Seal seqal computing alignments and
marking duplicate reads. An ideal system would produce a �at line, scaling
perfectly as the cluster size grows. The 3 data sets used are described in
Table 3.2. By comparison, a single-node baseline test � performing the same
work as Seal seqal but using the standard multi-threaded BWA and Picard
programs, on the same hardware � reaches a throughput of approximately
1100 pairs/sec on the 5M data set.
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Data set BWA time Seqal time Speed-up
(h, 1 node) (h, 32 nodes)

5M 0.49 0.04 12.25x
DS1 11.26* 0.63 17.87x
DS3 32.39* 1.72 18.83x
DS8 89.35* 4.78 18.69x

Table 3.3 � Comparison of running time in hours between BWA on a single
node with 8 cores and Seal seqal running on 32 nodes in align-only mode.
*) Time is predicted as a linear extrapolation of the throughput observed on
the 5M data set.

evolving, as the authors work to improve the quality and the performance of
their software. However, while the alignment machinery receives continuous
attention, much less is payed to the external interface of the implementations.

Aligners are typically packaged as command-line programs that expect to
receive three main arguments: the path to the indexed reference sequence, the
path to the input read �le in Fastq format, and the path to the output �le in
SAM or BAM format. This simple interface makes a number of assumptions:
that all the required data �les (reference, input and output) are accessible on
locally mounted �le systems; that the data are in the formats that the aligner
supports; and that the use case supports executing a new process each time
an alignment is required. Although these assumptions may appear to be
reasonable, they are actually extremely limiting to work aimed at exploring
novel programmatic ways to use aligners � in particular, seeking to advance
the standard sequencing pipeline's data �ow architecture by, for instance,
using distributed computing to improve scalability.

A more �exible approach would be to have read aligners de�ne an ap-
plication programming interface (API) and package their functionality as
a library, potentially in addition to the standard command line interface.
The experience mentioned in the previous section, patching the BWA-MEM
aligner, teaches that this approach is very time-consuming and di�cult to
execute correctly (the code that needs to be modi�ed may not be suitably
structured or documented). More importantly, such work is rapidly obsoleted
by the rapidly evolving nature of popular aligners.

As a more general solution, the development of Seal has resulted in the
de�nition of a read aligner API that can be implemented with any under-
lying read mapping technology: the Read Aligner Application Programming
Interface (RAPI). For maximum compatibility the RAPI is de�ned in C. It
includes generic functions and data structures to support typical alignment
operations: index a reference sequence, load and unload the reference, map
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reads to the reference, interpret the results. Further, RAPI includes Python
bindings, making it simple to load an aligner as a Python module and use
it in unconventional ways � e.g., for scripting or in an interactive session.
The project includes a reference aligner interface implementation that wraps
the BWA-MEM [50] aligner. This aligner plug-in is used in the Seal project
to compute sequence alignments on the Hadoop distributed computing plat-
form. The fact that RAPI does not make any assumptions about the source
or destination of the data makes it possible to easily integrate unconventional
scalable computing and data storage technology, such as the Hadoop, into an
alignment work�ow. It makes it equally feasible to transparently implement
aligner plug-ins based on GPGPU or FPGA accelerators. Also, since RAPI
does not make any assumptions about the data formats, it also facilitates
research into alternative data structures for persistent storage. Finally, since
RAPI standardizes the aligner interface, one could parametrize the aligner
to use within a RAPI-based pipeline, swapping aligner without changing any
of the code.

RAPI is being proposed to the community as an option to standardize
the read aligner interface. A standard interface would open up new use cases,
reducing maintenance for existing applications, and make it simple and safe
to harness aligner plug-ins to prototype and create novel functionality. The
interface has been released under an open source license1.

3.6 Data storage formats

Seal can use several �le formats to read and store data, depending on the
user's preference. It can work with both text or binary formats. The text for-
mats are the standard ones used in conventional bioinformatics: qseq [84] and
fastq [18] for unaligned data and SAM [51] for aligned data. For the former
two, Seal relies on implementations from the Hadoop-BAM project [60]; for
the latter, it Seal includes its own implementation. Further, Seal can trans-
parently compress or decompress these data formats with standard codecs.

On the other hand, the binary formats available in Seal use the Apache
Parquet [7] columnar storage format that has emerged from work at data-
intensive companies [58]. Unlike more conventional �le formats, which store
data record-wise, Parquet groups the data by �eld � i.e., it writes all values
for field1, then all the values for field2, etc. This strategy is especially
advantageous for analyses that do not require all the �elds (since the unneces-
sary �elds do not have to be read from disk) and in terms of data compression
(storing multiple values of the same �eld results in lower entropy and thus

1https://github.com/ilveroluca/rapi
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better compression rates). Incidentally, the binary data formats supported
by Seal are also compatible with ADAM [55], ensuring that the tools from
the two projects can be used together.

3.7 Related work

Usage of �BigData� tools for bioinformatics applications started in late 2008
with work on Hadoop [26, 56] and has since continued to increase [91]. Al-
though the model has been successfully applied to a number of �classic� ap-
plications, such as BLAST and GSEA [48, 56], the area of most advancement
is deep sequencing data analysis, where many Hadoop-based tools have been
developed [63]; tools such as Crossbow [44] for SNP discovery, and Myrna [45]
for RNA-Seq [95] di�erential expression analysis were pioneers in this area.

Several Hadoop-based sequencing alignment tools have already been pub-
lished. Crossbow [44] (based on the Bowtie [43] aligner, which it executes
internally) and Cloudburst [81] were two of the �rst. The alignment algo-
rithms used by these programs has been superseded by others, including the
BWA-MEM algorithm [50] which is used by Seal. Another Hadoop-based
program integrating BWA-MEM has recently been published [1]; its authors
even claim that it is slightly faster than Seal's aligner. Alas, it only aligns
sequences and does not provide any other functionality to help scale up a
sequence processing work�ow � unlike Seal which o�ers a suite of tools.

There are also other Hadoop-based tools for the analysis of sequencing
data. For instance, Quake [41] is a tool to detect and correct sequencing
errors; SAMQA [75] is a tool for quality assurance of sequencing data; Con-
trail [80] runs on Hadoop to perform de novo assembly. However, to the
best of the author's knowledge there are no Hadoop-based tools for duplicate
sequence identi�cation; the state of the art are conventional tools such as
Samtools [51] and Picard [35].

Also, there is a MapReduce-based tool that does not run on Hadoop.
The Genome Analysis Toolkit (GATK) [57] is a MapReduce-like program-
ming framework that provides a set of data access patterns commonly used by
sequencing data analysis programs. GATK de�nes a programming contract
where components are organized into data producers, or traversals, and data
consumers, or walkers (i.e., analysis modules). It also includes a set of tools
that are built upon its own framework � many of which are useful to imple-
ment the �best practice� variant calling work�ow (see Sec. 2.2). However, it
uses MapReduce only as a programming design pattern, not as a distributed
computing model. While it does include it's own custom module to perform
distributed computing, it is not compatible with the Hadoop ecosystem.
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Finally, it is worth mentioning that there is a promising project called
ADAM [55] that is developing tools for the analysis of sequencing data based
on �Big Data� technology. ADAM runs on the Spark framework [99] rather
than Hadoop MapReduce. However, Spark and MapReduce are compatible,
meaning that they can run on the same cluster and access data on the same
HDFS volume (Spark is part of the Hadoop �ecosystem�). Since ADAM is fo-
cussing on later steps in the variant calling work�ow than the tools included
in Seal, the two projects currently complement each other and together come
close to implementing an entire variant calling work�ow on the Hadoop plat-
form.

3.8 Conclusion

This chapter has described the problem encountered by medium- and large-
sized sequencing facilities in ensuring their analysis procedures can sustain
a throughput su�cient to keep up with the data generation rates of their
sequencing machines. The Hadoop platform provides an ideal foundation for
software that needs to scale to quickly process large quantities of data � its
success in data-based companies such as Twitter, Facebook and Amazon is
a testament to this [29]. The Seal suite of tools leverages the scalability of
the Hadoop platform to bring its advantages to the analysis of sequencing
data. Its tools can be used to process the raw output of Illumina sequencers
and perform most of the primary processing in the �best practices� variant
calling algorithm. To integrate with conventional bioinformatics tools, the
last step in a Seal-based analysis procedure can use the Hadoop cluster itself
to reformat the data into a �le that is compatible with legacy software.
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Chapter 4

Automated and traceble

processing of sequencing data

While the scalable computing techniques described in Chapter 3 strive to
address the issue of analyzing the data at an equal of faster rate than it
is generated, they do not help to address the problem of handling the ever
larger study sizes � in terms of number of samples � that are enabled by
NGS [54, 93]. In this Chapter, presents a strategy to confront this issue by
automating all routine processing and adopting advanced data management
techniques.

The work in this Chapter has been recently included another publica-
tion [20]; for the reader of this dissertation, the contents of that article are
presented in the following sections after being distilled to include only the
contributions to which the author contributed directly and in a signi�cant
manner.

4.1 Introduction

The data-intensive revolution [54, 93] in the life sciences is being driven by
the increasing di�usion of massively parallel data acquisition system, next-
generation sequencing (NGS) machines [67] being among the most cited ex-
amples. One of the main challenges brought forth by this phenomenon is to
develop scalable computing tools that can keep up with such a massive data
generation throughput [44, 70, 71]. However, e�cient data processing is only
part of the problem: additional issues include dealing with highly structured
data where individual components are connected by multiple relationships,
keeping track of data provenance, managing complex processing work�ows,
minimizing operational costs and providing simple access interfaces to non-
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technical users.
This Chapter describes the author's experience in contributing to the

development of a fully automated infrastructure for the analysis of DNA
sequencing data produced by the CRS4 NGS facility � currently the largest
in Italy by throughput, number of samples processed and amount of data
generated (see Sec. 2.1. The system, which was introduced to the production
pipeline in July 2013, has reduced the amount of human resources required
to process the data from four to one full-time individual. The infrastructure
has been built by composing open source tools � many written at CRS4 �
with new purpose-built software which will also be contributed to the open
source community.

The remainder of this Chapter is structured as follows. In Section 4.2, it
gives an overview of the system architecture and its components, following
with a discussion on overall system performance in Section 4.3. Section 4.4
delineates the related work in this area, after which we conclude and describe
future work in Section 4.5.

4.2 General System Architecture

The data production rate of the NGS laboratory presents a signi�cant chal-
lenge with respect to operator e�ort, data management complexity and pro-
cessing throughput. The system developed at CRS4 can e�ciently and au-
tonomously perform the standard primary processing of the data produced
by the NGS lab, thus preparing it for further ad-hoc analysis by bioinfor-
maticians or for shipping to external collaborators. The system achieves
scalability via three main features. The �rst is the automatic execution and
monitoring of standard operations, which reduces the human e�ort required
to process the data, thus lowering the occurrence of errors and allowing the
analysis to scale to large numbers of datasets. The second is the handling
of provenance information on all datasets, which allows to reconstruct their
history up to the original raw data: this is crucial to e�ectively manage large
data collections, allowing to quickly query data interdependencies and facili-
tate integration between multiple studies. Finally, the system is designed for
high processing throughput, which is a strict requirement given the growing
volumes of data produced by modern data-intensive acquisition technologies.

Fig. 4.1 summarizes the overall system architecture: computational en-
gines are the core analysis tools that process raw data to yield the �nal
results; OMERO.biobank handles metadata storage and provenance track-
ing; iRODS [37, 73] acts as a single point of access for all datasets; the
work�ow manager takes care of composing and executing the various steps
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OMERO.biobank

iRODS

Workflow manager

Compute Engines

Sample submission

Figure 4.1 � Overall architecture of the automation and processing system
used at CRS4. The Automator is programmed to orchestrate operations and
control the other components, which have speci�c duties pertaining to data
processing, storage, metadata maintenance and interaction with the users.

that make up each analysis pipeline; the sample submission system allows
researchers to provide detailed speci�cations on input samples and request
speci�c processing; �nally, the automator performs global orchestration of
other components in order to minimize human intervention and increase reli-
ability. The components relevant to the author's work are described in more
detail in dedicated subsections.

4.2.1 Automator

The automator performs standard processing on data produced by the lab-
oratory, including format conversion, demultiplexing, quality control and
preparation for archival or shipment. When appropriate, further sample-
speci�c work�ows are also run. The system is based on a reactive, event-
driven design. For example, the activity diagram in Fig. 4.2 shows what
happens when a sequencing run is completed: an event announces that the
run is �nished; the automator reacts by executing the appropriate handler,
which registers the new datasets with the iRODS [73] catalogue and with
OMERO.biobank (see Sec. 4.2.2). The system's kernel is implemented by
an event queue built with RabbitMQ [72]; clients can add new events to the
queue to notify the system that something has occurred: for instance, a peri-
odic check adds an event when new data is ready for processing; one or more
daemons monitor the queue and execute appropriate actions for each event.
The design allows multiple instances of the automator to run concurrently,
thus making the system more robust to node failures and other technical
problems.

39



run_
finished

Execute handler

Automator

Register data 
with irods

Create meta 
dataset in OMERO

Emit 
new_run_registered

Run finished
Event Handler

biobank

n
e
w
_
r
u
n
_

r
e
g
i
s
t
e
r
e
d

Figure 4.2 � Activity diagram illustrating the registration process for a new
sequencing run.

In addition to the event-dispatching kernel, the automator consists of a
number of purpose-built event handlers that are speci�c to the process imple-
mented at CRS4, and a software library to communicate programmatically
with the other components. In fact, the automator does not execute opera-
tions directly on the data; instead, these are grouped into work�ows that are
de�ned and executed through the work�ow manager (see Sec. 4.2.3). The au-
tomator monitors the execution of these work�ows and, when they complete,
registers new datasets in OMERO.biobank along with a detailed description
of the operations that generated them, thus ensuring reproducibility. The
automator's role in the overall architecture is therefore that of a middleware
layer that serves to drive the automation, integrate the various components
and execute specialized site-speci�c operations.

4.2.2 OMERO.biobank

OMERO.biobank is a robust, extensible and scalable traceability framework
developed to support large-scale experiments in data-intensive biology. The
data management system is built on top of the core services of OME Remote
Objects (OMERO) [2], an open source software platform that includes a
number of storage mechanisms, remoting middleware, an API and client
applications.
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At its core, OMERO.biobank's data model (see Fig. 4.3) consists of enti-
ties (e.g., biological samples, analysis results) connected by actions that keep
track of provenance information. The system is designed to avoid strong
bindings with respect to static data �ow patterns: each entity is only aware
of the action from which it derives, and vice versa. Additional information
is provided by devices, which are linked to actions and hold all the details
required to describe hardware components (e.g., an NGS machine), software
programs or whole pipelines involved in the data generation process. An
example of pipelines mapped as devices is given by Galaxy work�ows, which
can be easily manipulated with the BioBlend.objects package [47].

OMERO.biobank's kernel is complemented by an indexing system that
maintains a persistent version of the traceability structure by mapping enti-
ties to nodes and actions to edges in a graph database. The system is able
to manage a large number of items: at CRS4, the latest sampling counted
over 130000 entities linked by over 190000 actions.

4.2.3 Work�ow Manager

The continuously increasing size of the data produced in the life sciences
has led to a progressive intensi�cation of the e�ort required for their anal-
ysis. Large and diverse datasets must be processed by work�ows consisting
of many steps, each with its own con�guration parameters. In addition, the
entire analysis process should be transparent and reproducible, and the anal-
ysis frameworks usable and cost-e�ective for biomedical researchers. Since
keeping track of all information associated with complex pipelines can be
very time consuming and error prone, easy-to-use data processing platforms
that can automate at least part of the process are highly sought-after.

Our work�ow management system has been speci�cally designed to ad-
dress the above challenges. It is based on Galaxy [27], an open platform for
biomedical data analysis that provides a standard way to encapsulate com-
putational tools and datasets in a graphical user interface (GUI), together
with a mechanism to keep track of execution history. The BioBlend.objects
API is used to programmatically interact with the Galaxy service.

4.2.4 iRODS

NGS platforms generate a signi�cant amount of data split over a large number
of �les and datasets. In addition, frequent collaborations among geographi-
cally dispersed entities introduce a requirement for fast and controlled remote
data access. To simplify this process, CRS4 adopted iRODS as a front-end to
its large-scale heterogeneous storage system (about 4.5PB distributed over
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Figure 4.3 � Traceability graph for an exome processing work�ow stored
within OMERO.biobank. Rectangles represent entities, while circles represent
actions.
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various volumes). The service stores and maintains sequencing datasets in a
way that allows users to safely access and manage them through a variety
of clients, such as web browsers and command line interfaces. It relies on
general-purpose �le systems to store data and on SQL databases for meta-
data. Designed to scale to millions of �les and petabytes of data, iRODS is
a key component of our infrastructure, providing a single point of access to
datasets that may be distributed across a number of disjoint storage systems.

4.2.5 Compute Engines

For its computational requirements, the operation maily relies on the Seal
suite of tools described in Chapter 3. It is the central tool for the analysis of
high-throughput sequencing data at CRS4. Seal's main goal is to remove the
processing bottlenecks presented by conventional tools by providing a suite
of scalable, distributed applications to perform common time-consuming se-
quence processing operations.

To simplify their use and incorporate them into the process automation
mechanisms, the Seal tools have been integrated into Galaxy, thus allowing
their usage as work�ow components; the integration mechanism is described
in Chapter 5. Incidentally, the toolbox has also been independently inte-
grated into other high-level work�ow tools such as Cloudgene [82].

Of course, other conventional tools are used as well. Moreover, for ad
hoc analysis of large quantities of sequencing data the tool of choice is often
SeqPig (see Ch. 6).

4.2.6 Hadoocca

While the Hadoop platform is a strong vector for computational scalabil-
ity [97], it imposes some requirements on the underlying computational in-
frastructure that are not compatible with the established resource allocation
patterns used on HPC clusters, like the one at CRS4. Namely, Hadoop has
its own mechanisms for job submission, queueing, and scheduling that con-
�ict with HPC batch scheduling systems. In addition, Hadoop needs to run
daemons and store data locally on the nodes it uses, essentially assuming
their exclusive and long-term allocation.

Thus, to support Hadoop at CRS4, a strategy was devised to make both
scheduling paradigms co-exist in an e�cient and manageable manner. The
work entailed the creation of a dynamic Hadoop-node allocation system that
seamlessly integrates with the existing HPC infrastructure (based on Open
Grid Scheduler). The system occupies resources on-demand (see Fig. 4.4),
improving node utilization over static allocation approaches without breaking
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Figure 4.4 � Progression of CPU core assignment by Hadoocca during the
execution of a work�ow. The assigned core count varies adapting to load and
all machines are automatically released once the analysis is concluded.

existing scheduling policies. Therefore, it provides a low-cost and low-risk
path to testing and adopting Hadoop which e�ectively allowed our HPC
center to set up a Hadoop cluster with minimal investment, albeit with some
trade-o�s. Speci�cally, CRS4's set up � a�ectionately named Hadoocca �
foregoes the Hadoop Distributed File System (HDFS) and instead relies on
the cluster's shared parallel �le system. Thus, though the approach does not
bene�t from the advantages of HDFS [77], it allows to run HPC and Hadoop
jobs at the same time in the same computing environment. The system is
being used in production at CRS4 to run computational biology pipelines
and other workloads on a 3200-core HPC cluster that is shared with other
jobs.

4.3 Production Capabilities

With the introduction of the framework described in this Chapter, CRS4
has been able to scale its operations while containing research costs. Specif-
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Figure 4.5 � Weekly throughput of operations at the CRS4 sequencing facility.
For the period from the last week of July 2013 to the �rst week of February
2014, the graph shows the number of samples processed each week and the
corresponding volume of gzip-compressed sequence data generated.

ically, the number of full-time individuals required to operate the processing
went down from approximately three to less than one, freeing resources for
downstream, research-speci�c analysis. Its adoption has also enforced com-
plete digital tracking of all analysis operations and datasets. In addition
to ensuring reproducibility, this feature provides an important source of in-
formation for the quantitative monitoring, evaluation and management of
the facility. In addition, the automation system, together with the high-
throughput distributed computing applications, has allowed the center to
reach its throughput targets. Fig. 4.5 shows the number of samples processed
and the corresponding amount of gzip-compressed sequence data generated
week-by-week for the extended period after the framework went into produc-
tion. The system has coped with peak loads of over 200 samples per week
and about 2TB of compressed data (approx. six �ow cells, or 20TB of raw
input data) per week. This rate is already su�cient to handle the capacity
of CRS4's sequencing facility, but the system could probably scale to higher
numbers. Fig. 4.6 shows the rate of data production since system start-up.
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Figure 4.6 � Growth of compressed output data accumulated at the CRS4
sequencing facility since July 2013, when the automated system fully entered
production use, to February 2014.
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4.4 Related Work

The development of a comprehensive data infrastructure for the management
and analysis of NGS data has been pursued extensively in di�erent contexts
and with varying goals in mind. However, automatically piloting and moni-
toring standard operations as well as ensuring reproducibility and traceability
of analysis are issues that have been less comprehensively addressed.

Previous work has been carried out at The Genome Analysis Centre
(TGAC), an institute in the UK that conducts research in genomics and
bioinformatics. Their work [46] is primarily focused on the initial analysis of
sequencing data and provides a number of tools, packages and pipelines to as-
certain, store, and expose quality metrics. The computed quality metrics and
contamination screening analyses are stored using a �exible MySQL database
and API � useful for storing any run metric or metadata. Furthermore, an
iRODS layer is provided, through which data can be annotated with de-
scriptive metadata enabling consolidated searching and discovery of grouped
datasets. In principle, the combination of these tools o�ers the potential to
provide richer contexts for downstream analysis. There are, however, a num-
ber of issues that have not been addressed. For example, there is no support
for automated selection of the processing pipeline based on the nature of the
sequencing project. Furthermore, the lack of integration with an analysis
platform such as Galaxy hinders the possibility of automatically and rapidly
exposing sequence data for downstream analysis.

Since 2010, iRODS has been running as a production data management
system at the Wellcome Trust Sanger Institute (WTSI), one of the world's
major sequencing centres. The WTSI uses iRODS as an archive system [17].
Currently, WTSI users are mainly using iRODS for managing and accessing
sequencing Binary Alignment/Map (BAM) �les for further analysis and re-
search. Moreover, the WTSI uses iRODS to manage user-de�ned metadata
related to BAM �les, whereas more advanced uses (e.g., metadata queries,
and management of experimental output for further analysis) are currently
under investigation on various internal testbeds. In addition to the WTSI,
iRODS has also been used in several other large-scale biological and biomed-
ical initiatives and institutes, including the Broad Institute, the Genome
Biology Unit at the University of Helsinki, and the National Center for Mi-
croscopy and Imaging Research (NCMIR) at UCSD.

iPlant is a collaborative 5-year, NSF-funded e�ort to develop a cyber-
infrastructure to address a series of grand challenges in plant science based
on iRODS. Interestingly, the iPlant data infrastructure [38] is designed to
support preservation of the experimental provenance of data and of the com-
putational transformations applied to them, providing support for rerunning
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a work�ow using the same data from reference databases or for reproducing
experiments and the processing done on resulting experimental data.

The UPPNEX initiative provides high-performance computing resources
and large-scale storage together with a software infrastructure for NGS re-
search in Sweden [21]. Currently managing about 300 projects concurrently,
UPPNEX is being used by three sequencing platforms, each with their own
data delivery work�ow; research groups may then analyze their data using
the installed software or with custom pipelines. UPPNEX uses iRODS to fa-
cilitate moving data between di�erent types of storage resources and to share
resources with other domains. Currently, most of the installed software at
UPPNEX is only available via command line interface, and limited support
is provided for work�ow management systems such as Galaxy. In addition
to that, there is no evidence on how provenance information is treated and
if support for reproducibility and traceability is o�ered to the users.

4.5 Conclusions

This chapter has described a fully automated infrastructure to support the
analysis of the data produced by the NGS facility at CRS4. The system, in
production since July 2013, integrates open source tools � either internally
developed or publicly available � into a framework that can autonomously
handle the primary analysis process and support downstream analysis. The
automation middleware, which is built around a distributed event queue,
drives a work�ow manager and executes custom housekeeping tasks. The
system has successfully handled peak weekly data production periods of over
200 samples and 2TB of compressed sequence data. As reusable components
become available, they will be released to the community as open source
software.
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Chapter 5

Integrating Hadoop-based

processing with Galaxy

The work described in Chapters 3 and 4, respectively on scalable software
and automation, while both contributing important solutions they were ac-
tually born incompatible with each other for technical reasons. This issue
is important since on their own neither contribution provides a complete
solution for a center processing sequencing data.

The work presented in this Chapter solves this incompatibility through a
special Galaxy data type and adapter program. The solution was published
in an article [68] which is summarized in this Chapter for the reader of this
dissertation.

5.1 Introduction

Rapid progress in biological and biomedical data acquisition technologies is
turning modern biology into a data-intensive science [54, 93]. This can be
mostly attributed to the increasing di�usion of massively parallel data acqui-
sition systems, next-generation sequencing (NGS) machines [67] being among
the most cited examples. The introduction of NGS has allowed researchers
to explore important, but previously inaccessible, biological questions and
has paved the way to a host of signi�cant new techniques and protocols that
have a wide range of important applications in biology and medicine [88].
However, to use NGS data one has to surmount two main, interrelated, dif-
�culties: processing complexity and dataset size. In fact, the extraction of
biologically signi�cant information from the raw sequencing data requires
complex, multi-step, computationally intensive processing work�ows. In its
bare form, this processing is not trivial and requires specialized comput-
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ing skills, such as familiarity with shell programming and high-performance
computing (HPC), and knowledge about the layout of the local storage in-
frastructure. These issues are typically not of high interest to biologists,
since they are system-level obstacles that only need to be defeated in order
to achieve the �nal objectives of their work.

The desire to simplify such analyses from the user's point of view has
historically motivated the creation of a number of graphical bioinformatics
platforms � some examples are Galaxy [27], Taverna [64] and Chipster [40]
� which allow the system-level details tied to implementing such processing
work�ows to be hidden below a high-level graphical interface. This type of
simpli�cation is particularly bene�cial for Hadoop-based programs since, be-
ing �unconventional�, may be perceived to be di�cult to use by users not
accustomed to its model of operation. In this manner, the biologists can
express the work�ow they would like to run by graphically connecting oper-
ations. Galaxy in particular has been garnering a growing level of popularity
among biologists in recent years, as can been seen by the growing number of
related papers and of public installations1. Indeed, CRS4 has also adopted
Galaxy for their DNA and RNA sequence processing operations.

This high-level graphical user interface isolates the users from the tech-
nical details required to execute the computation. For instance, it allows
system administrators to con�gure the system to transparently use compu-
tational resources and methods appropriate for the tasks at hand. More
speci�cally, such installations can be con�gured to run jobs through stan-
dard HPC batch-queue systems, thus accessing available computing cluster
nodes transparently, where they may also have access to high-performance
or particularly large parallel shared storage systems.

For many types of biology-related computation this arrangement is suf-
�cient. However, NGS poses particularly challenging data throughput re-
quirements. Consider that a modern sequencing machine can generate about
8TB of raw data per week which needs to be processed and stored, so even
medium-size sequencing operations can face signi�cant operational and in-
frastructural challenges. The need for scalable computing solutions in this
sector has prompted work in applying �BigData� technologies, especially
Hadoop [30, 77], to sequencing-related operations [63, 70, 82, 83]. These
new Hadoop-based tools are designed to be scalable both in the amount of
data to be processed and in the use of available computing resources, mean-
ing that in general one can simply add more computing nodes to achieve
higher throughput. Unfortunately, these new Hadoop-based tools are not di-

1For an up-to-date list of public Galaxy installations and related publications see

https://wiki.galaxyproject.org/PublicGalaxyServers
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rectly compatible with Galaxy and thus cannot be natively used through its
user-friendly interface for reasons discussed in more detail in Section 5.2.1.

This work addresses the incompatibilities between these two systems to
provide a functional and extensible integration layer, allowing users to mix
and match Hadoop-based and conventional tools in their Galaxy work�ows.
The solution is simple to use, but requires the work�ow designer to keep in
mind when the data is being processed in the �conventional space� and when
in the �Hadoop space� � something which is done through explicit operations
that are inserted in the work�ow. This Hadoop-Galaxy adapter has been
released as open source software2.

The rest of this Chapter is structured as follows. Section 5.2.1 describes
the incompatibilities between these two systems and thus explains why this
Hadoop-Galaxy adaptor is required; the rest of Section 5.2 describes how
the adaptor works and how to use it. Section 5.3 then explains how to use
the Hadoop-Galaxy adaptor to integrate new Hadoop-based tools with any
Galaxy installation, while Section 5.4 follows with the details of a concrete
use case developed at CRS4. The Chapter then describes related work in
Section 5.5 and �nally concludes. For background information, the reader
can refer to Chapter 2.

5.2 Galaxy-Hadoop Integration

5.2.1 Incompatibilities

The execution models used by Galaxy and Hadoop are incompatible, meaning
that even Hadoop-based tools that are invoked from the command-line can-
not be easily integrated into a Galaxy work�ow. There are two main issues
that keep this integration from working, both pertaining to the two platforms'
view of datasets. The �rst is that the two systems store datasets di�erently.
Speci�cally, Galaxy assumes that a dataset is entirely contained in a single
�le, while Hadoop MapReduce purposefully splits datasets into multiple �les
� possibly bundled into a single directory � to be more amenable to process-
ing in multiple parallel tasks. Because of this incompatibility, one cannot
present the output of a Hadoop job to Galaxy as a single dataset. Though
at the time of this writing work is being done by the Galaxy developers to
resolve this limitation, in the way of multi-�le datasets, it is still in the early
stages of development (see Pull Request #386 in the galaxy-central reposi-

2Hadoop-Galaxy is available at https://github.com/crs4/hadoop-galaxy/ and in

the Galaxy Tool Shed: http://toolshed.g2.bx.psu.edu/view/crs4/hadoop_galaxy.
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tory for a complete description: http://goo.gl/UVuRq73). The second issue
relates to the �le system where the data is stored and the fact that Galaxy
expects to be able to access it directly. This issue is a problem since Galaxy
can only access conventional �le systems that are mounted on the machine
where the server runs. On the other hand, Hadoop clusters are typically
con�gured to use the HDFS for storage, which cannot be readily accessed
by Galaxy. In fact, HDFS was not designed to be mounted on a system and
is instead accessed through its own client application programming interface
(API) or web service. Although some methods exist to mount HDFS like a
conventional �le system � e.g., NFS gateway to HDFS or mounting HDFS
through Linux Filesystem in Userspace (FUSE) � using them would entail
putting the entire Galaxy workspace on HDFS and these solutions would not
be suitable to handle intense �le system activity. A similar argument can
be made for Amazon S3 storage, which is also accessible transparently to
Hadoop programs but not Galaxy.

5.2.2 Solution by Indirection: Pathsets

Due to the incompatibilities between Hadoop's and Galaxy's tool models,
Galaxy cannot use Hadoop-based tools directly. However, as David Wheeler
once said, "All problems in computer science can be solved by another level
of indirection" [98]. Following his advice, this work introduces the pathset
data type. In brief, a pathset is a list of one or more complete paths that
de�ne a single dataset. Concretely, it is an ordered list of uniform resource
identi�ers (URIs), each identifying one or more �les or directories, augmented
by the ability to use the shell-like wildcards. The dataset de�ned by the
pathset can be materialized by concatenating the contents of all the �les
spanned by the pathset: therefore, the order in which the URIs are listed is
important. When a URI references a directory the �les in the entire directory
hierarchy are included in the pathset as if by recursive traversal. When
selecting paths through patterns or recursion, the elements are included in
alphabetical order. In addition to the paths themselves, the pathset includes
some minimal metadata, such as the format of the data being referenced.

The pathset is implemented as a Python class which, in addition to basic
operations such as adding, removing and iterating over URIs, implements a
text-based serialization. An example of the serialization format is shown in
Fig. 5.1). Such a �le can be readily handled as a dataset by Galaxy, for which
a pathset data type is de�ned to ensure that only pathset-compatible tools

3https://bitbucket.org/galaxy/galaxy-central/pull-request/386/

dataset-collections-initial-models-api/
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can be connected to each other.
By executing Hadoop-based tools in Galaxy through an adapter, we are

able to use the pathsets � which are single-�le entities � to reference the real
data which may be located on �le systems that can be referenced through a
URI and split between any number of �les and directories.

# Pathset Version:0.0 DataType:Unknown

hdfs://hdfs.crs4.int:9000/data/sample-cs3813-fastq-r1

hdfs://hdfs.crs4.int:9000/data/sample-cs3813-fastq-r2

Figure 5.1 � Example of a pathset �le. The header begins with a sequence
to identify the �le type, the version of the pathset format, and then contains
metadata describing the format of the referenced data.

5.2.3 Hadoop-Galaxy Adapter

Although the pathset datatype provides a way to indirectly reference data
that is too large to be easily placed in Galaxy's workspace or that is located
on �le systems that cannot be mounted, on its own it is insu�cient to allow
Galaxy to use Hadoop-based tools in its work�ows. To complete the solution,
Hadoop-Galaxy includes an adapter program � the Hadoop-Galaxy adapter
� that can �dereference� the input and output pathsets and pass the contents
to the Hadoop-based program that needs to run.

The Hadoop-Galaxy adapter can work as an executable or as a Python
function called by another program. To use it, one speci�es: the input
pathset, referencing the input data; the output pathset, which will reference
the output data after execution; a location where the Hadoop program can
write its output data, typically on HDFS; �nally, the name or path of the
executable of the Hadoop-based tool and any additional arguments it needs
to operate. The adapter will stage the data output directories as needed and
write their path to the output pathset. It will then read the input paths from
the input pathset and then call the executable, passing the real data input
and output paths as arguments.

A con�guration �le can be provided either by command-line argument or,
more conveniently for Galaxy-related applications, by setting an environment
variable which could be used to simultaneously a�ect all Hadoop-based tools
integrated through our adapter. Through this con�guration �le the user
can vary several operational aspects, including which Hadoop cluster to use
and the environment variables to set when the Hadoop-based tools are run.
The job's output data path is decided autonomously by the adapter based
on the con�guration provided by the user. This setting is quite important
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when operating at scale because this integration technique, at the moment,
does not provide garbage collection for the data referenced by the pathsets.
Indeed, a notable shortcoming of this system in its current form is that when
a pathset dataset is deleted by Galaxy, the data it referenced remains in
existence and occupies disk space. To alleviate this situation, the user can
con�gure a directory where all Hadoop-based tools write, knowing they can
schedule occasional clean-up sessions to delete old intermediate data. This
strategy is being successfully used at CRS4 for its production sequencing
pipeline, which uses Galaxy and Hadoop for many of its processing stages.

5.2.4 Utility Programs

In addition to the adapter itself, Hadoop-Galaxy provides a number of utility
tools to facilitate the integration of Hadoop-based and regular tools in the
same work�ow. They are brie�y described in the following paragraphs.

make_pathset: a tool to create a new pathset that references �les or directo-
ries provided as input. The input can be provided by connecting the output
of another Galaxy tool, thus providing a bridge to take a �regular� Galaxy
dataset and pass it to a Hadoop-based tool. Alternatively, the input can be
given as a direct parameter, which can be useful, for instance, for creating
work�ows where the user speci�es the input path as an argument or when
performing ad hoc analysis with Galaxy.

cat_paths: a tool to take the list of part �les that make up a Hadoop dataset
and concatenate them into a single �le. This tool is e�ectively the inverse
operation of make_pathset: while make_pathset creates a level of indirec-
tion by writing a new pathset that references data �les, cat_paths copies
the referenced data into a single �le. The new destination �le exists within
Galaxy's workspace and can therefore be used by other standard Galaxy
tools. Thus, with the combination of make_pathset and cat_paths, a single
Galaxy work�ow can mix processing with standard tools and Hadoop-based
operations.

However, since Hadoop-based processing can generate a lot of data, copy-
ing it to the Galaxy workspace one chunk at a time in a serial process can
be very time-consuming. To ameliorate this issue, cat_paths provides a dis-
tributed mode that uses the entire Hadoop cluster to copy data chunks to the
same �le in parallel. For this feature to work, the Galaxy workspace must be
on a parallel shared �le system accessible by all the Hadoop nodes. When
applicable, its e�ects can be signi�cant: with datasets on CRS4's computing
cluster speed-ups of up to 40x have been observed.

put_dataset: a tool to copy data from the Galaxy workspace to Hadoop
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storage. It is possible that in some con�gurations the Galaxy workspace may
be stored on a volume that is directly accessible by the Hadoop cluster. In
this case, before feeding the data as input to a Hadoop-based program it is
necessary to copy it from Galaxy's storage to the Hadoop-accessible storage.
For this task Hadoop-Galaxy provides the put_dataset tool, which works in
a way analogous to the command

hadoop dfs -put <local file> <remote file>

The put_dataset operation receives a pathset as input and creates a new
one as output, where for each input path element there is a corresponding
output path for the �le at its new location. It is important to keep in mind
that this copy operation is serial in nature, as it needs to run directly on the
server that has access to the Galaxy workspace. As such, it provides limited
bandwidth and can be time-consuming for large �les. If large �les need to
be passed between the Galaxy and Hadoop workspaces, it is a much faster
solution to have the Galaxy workspace on a parallel shared �le system that
can be accessed directly by the Hadoop cluster, thus eliminating the need for
put_dataset.

split_pathset: a tool that can be used in a Galaxy work�ow to split a
pathset into two parts based on path or �lename. It allows the user to de�ne
a regular expression as a test: the path elements are then accordingly placed
in the �match� or �mismatch� output pathset. This type of tool is handy
in cases when the Hadoop tool associates a meaning to the output �le. For
instance, some tools in the Seal suite for processing sequencing data [70] can
separate DNA fragments based on whether they were produced in the �rst
or second sequencing phase (i.e., read 1 or read 2) putting them each under
a separate directory. This tool allows a work�ow to split the Galaxy dataset
into two sets according to this criteria.

dist_text_zipper: a tool for parallel (Hadoop-based) compression of text
�les. Although this tool is not required for the use of Hadoop-Galaxy in user
work�ows, it is a generally useful utility that doubles as an example illus-
trating how to integrate Hadoop-based tools with Galaxy using our adapter.

5.3 Integrating new tools

The components of the Hadoop-Galaxy project are designed to simplify the
integration of Hadoop-based tools with Galaxy. The dist_text_zipper util-
ity, distributed with Hadoop-Galaxy, provides a clear example. The Hadoop-
based program has a regular command-line interface, receiving input path(s)
and an output path � both of which must be accessible by the Hadoop nodes
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cat_paths

Figure 5.2 � A Galaxy work�ow that fetches a dataset (DNA sequences)
in text format, using a standard Galaxy tool (Fetch Sequences → Extract Ge-
nomic DNA), and uses Hadoop-Galaxy to compress them using a Hadoop clus-
ter. The dist_text_zipper program (run over the Hadoop-Galaxy adapter) is
used to compress the data, while the make_pathset and cat_paths utilities are
used to provide the appropriate data bridge between the Galaxy workspace and
the Hadoop �le system. The optional put_dataset component is only needed
if the Hadoop cluster cannot access the Galaxy workspace directly.

and may be on an unconventional �le system such as HDFS. To use the
program through Galaxy, it is su�cient to write a normal tool de�nition in
XML; but, rather than invoking the program directly, it should be called
through the hadoop_galaxy adapter (illustrated in Fig. 5.3). No modi�ca-
tions to the program are necessary. Also, passing additional arguments to
the tool is simple since the adapter forwards any arguments that it does not
recognize. In its standard form, the adapter assumes that the slave program
can be called in the form:

cmd_name [options] input output

To accommodate programs with a di�erent interface (for instance, a com-
mon case may be programs that identify the desired output path with a -o

option) the Hadoop-Galaxy adapter supports user-provided pluggable com-
mand runners that can implement the required interface, though they need
to be written in Python.
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<tool id="hg_dtz" name="Dist TextZipper">

<description>Compress lots of text</description>

<command>

hadoop_galaxy

--input $input

--output $output

--executable dist_text_zipper

</command>

<inputs>

<param name="input" type="data" format="pathset"/>

</inputs>

<outputs>

<data name="output" format="pathset" />

</outputs>

<stdio>

<exit_code range="1:" level="fatal" />

</stdio>

</tool>

Figure 5.3 � Example of a Hadoop-based tool (dist_text_zipper) integrated
as a Galaxy tool. Notice how the tool is called through the hadoop_galaxy

adapter, rather than being invoked directly.

For additional examples showing how to use Hadoop-Galaxy to integrate
Hadoop-based tools with Galaxy, developers can look at the adaptors for the
Seal suite of tools for processing DNA sequencing data (https://github.
com/crs4/seal-galaxy). These tools and wrappers are used to process
the data produced by CRS4's three Illumina HiSeq 2000 high-throughput
sequencers.

5.4 Sample use case

Recently at CRS4 Hadoop-Galaxy was used to develop a custom bioinfor-
matics work�ow for the analysis of viral vector integration sites (ISs) to
assess the safety of a novel hematopoietic stem cell gene therapy (HSC-GT)
treatment for metachromatic leukodystrophy (MLD) [11]. The patient is
infused with HSCs modi�ed by viral vectors, enabling them to express a par-
ticular enzyme whose absence leads to the condition. However, despite its
e�cacy in treating the disease, GT can cause serious side e�ects: changes
in the genomic area close to the vector's IS can trigger the expression of
harmful genes, a phenomenon known as insertional mutagenesis. Thus, the
ability to predict and monitor the genomic distribution of viral vectors is
crucial to the safety of the procedure. IS identi�cation starts in the wet
lab, where host DNA is ampli�ed via polymerase chain reaction (PCR) and
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then sequenced, which produces a considerable amount of plain text data
(sequencing reads). The rest of the analysis is done in silico: bioinformatics
tools are needed to remove viral and arti�cial fragments from the reads, align
them to a reference genome, apply a series of �lters to ensure unambiguous
mapping, merge equivalent ISs and annotate them with nearby genomic fea-
tures (e.g., genes). The custom pipeline developed at CRS4, called VISPA
(https://github.com/crs4/vispa) takes care of the computational part of
the analysis, from raw sequencing data to annotated ISs.

While most of the analysis steps could be implemented e�ciently as or-
dinary single-core programs, the alignment and �ltering step proved to be
signi�cantly more challenging. During the experiments carried out in the
course of the MLD study, nearly 14 million sequences had to be aligned to
the human reference genome with BLAST [3]: on a single processor, such
a task can take more than a year to complete, an amount of time which is
incompatible with the turnaround requirements of clinical trials. Although
BLAST can optionally use multiple CPUs, in practice this leads to minor
performance increases, since only a small part of the code is multi-threaded.
Thus, to achieve signi�cant speedups, the set of input sequences needs to be
split into multiple �les, each of which must be fed to a separate BLAST pro-
cess. Since Hadoop already provides this functionality in a manner suitable
for scaling up to a large number of CPU cores distributed across di�erent
machines, it provides the ideal framework on which to reimplemented the
alignment and �ltering steps. Figure 5.5 compares the time required to align
and �lter 2048 64-base long sequences to the human genome (hg19 assembly)
for varying Hadoop cluster sizes. Input sequences were randomly generated
as sub-samples of chromosome 22, with a mismatch rate of one base every
two sequences. As shown in the �gure, the running time can be reduced by
adding more nodes to the cluster: in this case, due to the small size of the
test dataset, saturation is approached rather quickly as the overhead intro-
duced by the framework becomes comparable with the core computation; in
real-world applications, substantial gains can be obtained up to much larger
cluster sizes.

Despite the obvious advantages of the distributed implementation, its ex-
ecution model does not allow its immediate integration into the main Galaxy
work�ow because of the incompatibilities described in Sec. 5.2.1. Figure 5.4
depicts how the Hadoop-Galaxy adapter was used to integrate the tools with-
out modifying the MapReduce code of the program.

The left �ow corresponds to a �standard� Galaxy implementation: trimmed
sequences output by the previous step are passed to the BLAST tool [19],
while a subsequent �ltering step classi�es them as unambiguously aligned, not
mapped or repeats (i.e., with multiple high-score mappings) and writes them
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Figure 5.4 � The BLAST and �lter section of VISPA's Galaxy work�ow,
implemented with ordinary single-core tools (left �ow) and with MapReduce
applications (right �ow). Hadoop-Galaxy adapters and tools allow to integrate
the latter into the Galaxy work�ow unchanged.
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Figure 5.5 � Time required to align and �lter 2048 64-base sequences, for
di�erent cluster sizes, with our distributed version of BLAST (average over
three repeated runs; used BLAST version 2.2.21). Four CPU cores were used
on each node. The suboptimal speedup is related to implementation details of
the MapReduce application and is not tied to the use of the Hadoop-Galaxy
adapter.
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to three separate �les. Unambiguously aligned sequences are then passed to
the IS merging step, while the other two sets are kept for statistical purposes.
Note that the �ltering step needs the trimmed sequences to compute their
length.

The right �ow shows the MapReduce implementation of the BLAST and
�ltering steps, as well as their integration into Galaxy. Since a one-record-
per-line format greatly simpli�es Hadoop I/O, it is useful to have a separate
normalization step do the conversion from FASTA to a tabular format which
can subsequently be used by multiple sequence processing application; on
the other hand, since the �ltering step performs the same operations on the
hits corresponding to each sequence, it is more e�cient to merge it with
the alignment step, so that it can take advantage of the already distributed
workload. Since Hadoop writes a separate output �le for each concurrent
task, classi�cation is done by adding a tag to each hit, so that it can easily
be dispatched to the correct output �le by a subsequent selector step; due to
its relatively light workload, the latter does not need to be parallelized.

The �rst step to integrate the MapReduce tools into Galaxy consists of
adding a make_pathset tool after the trimmer, which builds a pathset con-
taining the path of the trimmed sequences �le; the fasta-to-tabular converter
and the alignment and �ltering tools are wrapped via the hadoop_galaxy

adapter (see Fig. 5.3), so that they can operate on pathsets; �nally, cat_paths
concatenates all �les output by the alignment and �ltering step, producing
an ordinary dataset that can be passed as input to the selector.

5.5 Related work

The integration of Hadoop computational back-ends in Galaxy is a recurring
theme in the Galaxy mailing lists. However, at the best of our knowledge, the
only published work on the subject is a paper of Chen et al. [15] on a cloud-
based image processing toolbox obtained by integrating Galaxy, Hadoop and
their proprietary image processing tools. Their motivation was to provide
users with a toolbox that would simplify the design and execution of com-
plex image processing tasks using scalable cloud computation capacity. The
solution proposed, based on the wrapping of their image processing pro-
grams as galaxy programs, is, however, very specialized to their application
and does not consider the general problem of integrating Hadoop-based tools
in standard Galaxy work�ows.
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5.6 Conclusions and Future Work

This chapter has presented a strategy and a functional package for easily in-
tegrating Hadoop-based applications within the Galaxy bioinformatics plat-
form. The integration is based on the idea of introducing a layer of indirection
which is handled through an adapter program, and it has been shown to work
through the description of a concrete use case where a signi�cant work�ow
speed-up was obtained without sacri�cing user-friendliness.

Though the Hadoop-Galaxy integration presented in this work is already
functional, there are several ways in which it could be improved. The path-
set data type needs to be integrated with the Galaxy garbage collector, thus
eliminating the problem of having to manually delete data when it is no
longer useful. Other improvements will go in the direction of a tighter func-
tional integration with Galaxy, which will require a richer implementation of
the pathset datatype within Galaxy and will provide new features such as
support for viewing excerpts of the data directly from within Galaxy (the
user currently sees excerpts of the serialized pathset �le) and tighter type
checking, thus only allowing work�ow connections between operations and
pathsets that reference compatible data formats.

The Hadoop-Galaxy source code is available at https://github.com/

crs4/hadoop-galaxy. The software is also available through the Galaxy
Tool Shed [12], so it can be easily added to a custom Galaxy installation.
Once installed, the new �pathset� datatype and Hadoop-Galaxy tools are
available allowing the user to build work�ows integrating both regular and
Hadoop-based tools.
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Chapter 6

Simple, scalable, interactive

processing

When presenting scalable applications, such as ones based on Hadoop, the
focus is usually on improving scalability and speed; rarely is any atten-
tion payed to the users of these systems, whose work is often complicated
by the need to use more sophisticated software and computing infrastruc-
ture. This chapter describes a tool whose goal is to make writing and run-
ning Hadoop-based tools for bioinformatics simpler for users by integrating
bioinforamtics-speci�c operations with a Hadoop-based scripting language
called Pig Latin [65]. This work is a result of a collaboration with Dr. An-
dré Schumacher, with whom an article has been already published [83]. This
chapter summarizes its text.

6.1 Introduction

Novel computational approaches are required to cope with the increasing
data volumes of large-scale sequencing projects, since the growth in process-
ing power and storage access speed is unable to keep pace with them [54, 90].
Several innovative tools and technologies have been proposed to tackle these
challenges [60, 62, 70, 75, 82]. Some are based on Hadoop MapReduce [22],
which is a distributed computing paradigm that has been designed for pro-
cessing collections of relatively independent data items and is therefore well
suited for processing sequencing data. It is based on the idea of splitting
input data into chunks which can be processed largely independently (via a
Map function). Subresults can later be merged after grouping related subre-
sults (by a Reduce function). By projecting the work exclusively into these
two phases, MapReduce eliminates unstructured interactions between pro-
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cesses and permits automatic parallelization and scalable data distribution
across many computing nodes. In addition, processes have a single, well de-
�ned way to emit output. Since the output can be controlled, it becomes
simple to automatically restart processes in case of failures. Finally, and
perhaps most importantly, the model creates a clear separation between the
application's data-processing logic and the code required to distribute the
computation. The latter can then be packaged into a well-tuned, general,
reusable distributed computation framework. The most popular implemen-
tation available as open source software is Apache Hadoop [30], which also
comes with its own scalable distributed �lesystem. The validity of Hadoop as
a general data processing platform is demonstrated by the level of adoption
in major data-intensive companies � e.g., Twitter, Facebook and Amazon.

Motivated by the potential scalability and throughput o�ered by Hadoop,
there are an increasing number of Hadoop-based tools for processing sequenc-
ing data [63, 91]. These range from quality control [75] and alignment [70,
81] to SNP calling [44] and variant detection [62, 96], including also general
purpose work�ow management [82].

While Hadoop does simplify writing scalable, distributed software, it does
not make it trivial. Such a task still requires a specialized skill set and a sig-
ni�cant amount of work, particularly if the solution involves sequences of
MapReduce jobs, multiplying the implementation e�ort required to achieve
scalability and introducing a level of complexity in tying these jobs together
into a reliable work�ow. To alleviate these problems, Apache Pig was intro-
duced [65]. Pig implements an SQL-like scripting language � called Pig Latin
� which is automatically translated into a sequence of Hadoop MapReduce
jobs. Given its �exibility and simplicity, it is not surprising that a large
fraction of the computing jobs in contemporary Hadoop cluster deployments
originate from Apache Pig or similar high-level tools [16].

SeqPig brings the bene�ts provided by Apache Pig to sequencing data
analysis by extending Pig with a number of specialized features and func-
tionalities. Speci�cally, it provides: 1) data input and output components, 2)
functions to access �elds and to transform data and 3) a collection of scripts
for frequent tasks (e.g., pile-up, QC statistics).

6.2 Background

Pig Latin de�nes relational operators much like the ones provided by SQL
(e.g., JOIN, GROUP, ORDER BY) and built-in aggregation and transfor-
mation functions (e.g., numeric functions such as AVG, COUNT, MIN, MAX,
and string functions like INDEXOF, LOWER, REPLACE, REGEX_EXTRACT,
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etc). Its basic data types are relations, bags, tuples and �elds. Pig Latin
statements operate on relations, which are so-called outer bags that are not
contained in any other bag. Each bag is essentially a set of tuples. Typically,
it is not safe to assume any order of the tuples that are contained in the
bag, although an order can be enforced by operations such as ORDER BY.
A tuple is an ordered set of �elds, which are elementary data types such as
integers, strings, etc. Finally, a relation is a bag that is not contained in any
other bag. Upon execution, Pig Latin scripts are automatically translated
into a sequence of Hadoop MapReduce jobs by the Pig interpreter; the jobs
are then executed to compute the results.

6.3 Implementation

Apache Pig provides an extension mechanism through the de�nition of new
library functions, implemented in one of several supported programming lan-
guages (Java, Python, Ruby, JavaScript); these functions can then be called
from Pig scripts. SeqPig uses this feature to augment the set of operators
provided by plain Pig with a number of custom sequencing-speci�c functions.

SeqPig supports ad hoc (scripted and interactive) distributed manipula-
tion and analysis of large sequencing datasets so that processing speed scales
with the number of available computing nodes. It provides import and export
functions for �le formats commonly used for sequencing data: Fastq, Qseq,
FASTA, SAM and BAM. These components, implemented with the help
of Hadoop-BAM [60], allow the user to load and export sequencing data in
the Pig environment. All available �elds, such as BAM/SAM optional read
attributes for example, can then be accessed and modi�ed from within Pig.
Also, read metadata is appropriately recognized so it can then be directly
used in operations � for instance, to employ a Hadoop cluster to calculate
the mean insert size of a data set. The Illumina-extended Fastq format is
supported, so that reads from both Fastq and Qseq �les are loaded with their
associated �ow cell coordinates, index reads, base quality scores and so on.

SeqPig also includes functions to access SAM �ags, split reads by base (for
computing base-level statistics), reverse-complement reads, calculate read
reference positions in a mapping (for pileups, extracting SNP positions), and
more. It comes packaged with scripts that calculate various statistics and
manipulations on read data, which also serve as examples. The growing
library of functions and scripts is documented in the SeqPig manual.

The following Figures show a number of example scripts.
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reads = LOAD 'in.qseq' USING QseqLoader();

STORE reads INTO 'out.fq' USING FastqStorer();

Figure 6.1 � Converting Qseq into Fastq; the data set is simply read and then
written using the appropriate load/store functions. Notably, these two lines of
code result in a Hadoop job that takes advantage of all available computing
nodes in the cluster.

F = load 'in.fastq' using FastqLoader();

top = FILTER F BY tile >= 1000 AND tile < 2000;

sp = FOREACH top GENERATE UnalignedReadSplit(sequence, quality);

bases = FOREACH sp GENERATE FLATTEN($0);

first_10 = FILTER bases BY pos <= 10;

grpd_by_pos = GROUP first_10 BY pos;

result = FOREACH grpd_by_pos GENERATE group AS pos, AVG($1.basequal);

sorted_cycle_avg = ORDER result BY pos;

DUMP sorted_cycle_avg

Figure 6.2 � Calculating per-cycle average base quality for the �rst 10 bases
for reads on top surface of an Illumina �owcell. The operation �lters by tile to
select the desired set of reads. The remaining reads are then split into (base,
quality, position) tuples. All positions greater than 10 are eliminated; the
remaining tuples are grouped by position and their base qualities aggregated
into an average. The result is �nally ordered by position and stored.

reads = LOAD 'in.fq' USING FastqLoader();

read_bases = FOREACH reads GENERATE UnalignedReadSplit(sequence, quality);

read_gc = FOREACH read_bases {

only_gc = FILTER $0 BY readbase == 'G' OR readbase == 'C';

GENERATE COUNT(only_gc) AS count;

}

gc_counts = FOREACH (GROUP read_gc BY count) GENERATE group AS gc_cnt,

COUNT($1) AS cnt;

DUMP gc_counts;

Figure 6.3 � Script to calculate a frequency table for the GC content of the
input reads. The reads split into bases, which are then �ltered to keep only the
`G' and `C' nucleotides. Then, for each read these left-over bases are counted
and, �nally, the counts are grouped. Finally, the GC-count and the size of each
group (i.e., the frequency) is emitted.
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6.4 Evaluation

To evaluate SeqPig, a script was written which calculates most of the read
quality statistics that are collected by the popular FastQC tool [5]. We ran a
set of experiments which measured the speed-up gained by using SeqPig on
Hadoop clusters of di�erent sizes compared to using a single-node FastQC
run. We used a set of Illumina reads as input (read length: 101 bases; �le
size: 61.4 GB; format: Fastq). Software versions were as follows: FastQC
0.10.1; Hadoop 1.0.4; Pig 0.11.1. All tests were run on nodes equipped with
dual quad-core Intel Xeon CPUs @ 2.83GHz, 16GB of RAM and one 250GB
SATA disk available to Hadoop. Nodes are connected via Gigabit Ethernet.
FastQC reads its data from a high-performance shared parallel �le system
by DDN. SeqPig used the Hadoop Distributed File System (HDFS) which
uses each node's local disk drive.

We �rst ran �ve di�erent SeqPig read statistics for a di�erent number of
computing nodes: the sample distribution of a) the average base quality of the
reads; b) the length of reads; c) bases by position inside the reads; d) the GC
contents of reads. Finally, we combined them into a single script. Each of the
executions results in a single MapReduce job and thus a single scan through
the data. All runs were repeated three times and averaged (deviation from
average < 7%). From Figure 6.4 one can see that it is possible to achieve a
signi�cant speed-up by exploiting the parallelism in read and base statistics
computation using Hadoop. Further, the total runtime of the script that
computes all statistics is mostly determined by the slowest of the individual
ones, since the complete script is compiled into a single Map-only job. A
di�erent observation is that for most of the statistics computed we are able
to achieve a close to linear speedup compared to FastQC until 48 nodes. We
assume that the levelling o� is due to the Hadoop job overhead eventually
dominating over speedup due to parallelization, depending on input �le size.

6.5 Conclusion

SeqPig enables simple and scalable manipulation and analysis of sequencing
data on the Hadoop platform. At CRS4 SeqPig is used routinely for ad hoc
investigations into data quality issues, comparison of alignment tools, and
reformatting and packaging data. SeqPig has also been tested on Amazon's
Elastic MapReduce service [4], where users may rent computing time on the
cloud to run their SeqPig scripts and even share their S3 storage buckets with
other cloud-enabled software. The experiments show that it scales well with
many operations, and thus provides an accessible way for bioinformaticians
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to take advantage of the Hadoop framework's scalability.
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Chapter 7

Conclusion

7.1 Future work

7.1.1 Seal

While the Seal tool suite is certainly useful in its current state, there are many
improvements that should be implemented. The work that would have the
most impact would be the completion of a full, Hadoop-based, variant calling
pipeline. The birth of the ADAM project can help with this target. Thus,
an important goal to set for the future of this project is to try explore the
potential synergies between Seal and ADAM to arrive at a full Hadoop-based
variant calling pipeline.

Also, the Apache Flink [6] and Apache Spark frameworks are have devel-
oped into valid alternatives to Hadoop MapReduce. On modern computing
hardware, these newer frameworks can better exploit the increased amount
of system RAM to improve performance on some types of problems. It would
be worthwhile to explore the potential advantages that Flink and Spark could
bring to Seal, as well as examine the feasibility of porting the existing soft-
ware to these new platforms.

7.1.2 Automation

The automation system described in this dissertation could bene�t from a
number of improvements. The event-driven design of the automator service is
simple and robust. In fact, the automator exhibits an �emergent behaviour�,
where the system's complex behaviour emerges from the combination of a
number of simple event handlers. However, these bene�ts come at the ex-
pense of not having an explicit state in the system, which would greatly
improve usability and provide the ability to easily track the progress of sam-
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ples through the system. Future versions of the automator should consider
addressing this issue, perhaps sacri�cing some the system's robustness in
favour of the improved usability derived by an explicit state.

Further, the system would greatly bene�t from a uni�ed interface. The
system is comprised by a number of independent components that work to-
gether. Each of these sub-systems has its own interface, in the form of
command-line tools or software modules. As a result, commanding the en-
tire system can be a complex ordeal left only to those that have mastered
the use of all the components. To address this issue, the system should be
equipped with a single façade implementing the typical high-level function-
ality that is required by the users � especially the queries required to extract
information from the system.

7.1.3 Hadoop-Galaxy

As mentioned in its chapter, the Hadoop-Galaxy adapter has a notable short-
coming that needs to be addressed: the lack of a garbage collection mech-
anism for the pathset data type. Once this feature is complete, then the
adapter can be used as easily as any other Galaxy feature.

7.1.4 SeqPig

The SeqPig language, and especially its function library, could bene�t from
additional special-purpose functions. The generic functions currently in-
cluded in the library, when appropriately assembled, can be used to im-
plement a variety of analyses. However, specialized functions can be used to
accelerate the same analyses and make them easier to run. This strategy was
used to accelerate some of the quality control features used in the evaluation,
and should be analogously applied to other functionality.

7.2 Summary

Throughout the chapters of this dissertation we have explored some of the
problems faced by medium- and large-scale sequencing centers. The root
cause of the issues lies in the revolutionary introduction of next-generation
sequencing technology, which greatly increased the amount of sequencing
data that can be produced and � consequently � the number of samples that
are sequenced. Thus, this technology has introduced two types of scalability
problems: the �rst is scaling analysis with respect to the data size; the
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second is scaling the entire sequencing operation with respect to the number
of samples to be treated.

To address the �rst problem, this dissertation has presented Seal, a suite
of scalable software tools that are designed to fully exploit a suitable comput-
ing infrastructure to scale data processing rates on par with the sequencing
machines' data production rates. On the other hand, to help operations
scale in the numbers of samples they handle, an automation strategy was
presented, complete with the means to ensure reproducible science by stor-
ing, along with each analysis result, the sequence of computing operations
that were performed to generate it. Signi�cant work was also done to inte-
grate these two systems, so that the automation system could use the scalable
analysis tools.

Finally, these software tools, while helping sequencing operations scale,
they admittedly hinder the simplicity of the system from the user's perspec-
tive. Especially in an environment where many users are not computing
specialists, to encourage the uptake and the acceptance of new systems it
is important to ensure that the systems are not exceedingly di�cult to use.
This dissertation presented two contributions to improve the usability of the
scalable computing solutions proposed. The �rst is the integration of Seal
and Galaxy through the Hadoop-Galaxy adapter. The Galaxy bioinformat-
ics platform provides a simple interface that is easy to use and quite popular
popular among biologists and bioinformaticians. By making the Seal tools
usable through Galaxy a lot of the complexities connected to the underlying
Hadoop framework are hidden from the user, making the tools much simpler
to use. The second contribution along these lines is the Hadoop-based script-
ing language called SeqPig. This SQL-like scripting language allows the user
to be expressive in his analysis, while enjoying the bene�ts of scalable com-
puting through the automatic compilation of SeqPig scripts into distributed
Hadoop jobs.

The e�ectiveness of these tools has been demonstrated by the fact that
they are currently in production use at the CRS4 Next-Generation Sequenc-
ing Laboratory and by the various scalability experiments presented in this
work. Thanks to these contributions, the CRS4 NGS Lab has reduced the
number of full-time individuals required to run its analyses from three to
just one, freeing resources for downstream, research-speci�c tasks � a very
encouraging result.
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