

Università degli Studi di Cagliari

DOTTORATO DI RICERCA

Ingegneria Elettronica ed Informatica

Ciclo XXVIII

TITOLO TESI

Study of Metrics and Practices for

Improving Object Oriented Software Quality

Settore scientifico disciplinari di afferenza

ING-INF/05

Presentata da: Matteo Orrù

Coordinatore Dottorato Prof. Fabio Roli

Tutor Prof. Michele Marchesi

Esame finale anno accademico 2014 – 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UniCA Eprints

https://core.ac.uk/display/35316227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Study of Metrics and Practices
for Improving Object Oriented

Software Quality

Matteo Orrú

Advisors: Michele Marchesi and Roberto Tonelli
Curriculum: ING-INF/05 Informatica

Cycle XXVIII
2013-2015

Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Study of Metrics and Practices
for Improving Object Oriented

Software Quality

Matteo Orrú

Advisor : Michele Marchesi and Roberto Tonelli
Curriculum: ING-INF/05 Informatica

Cycle XXVIII
2013-2015

Dedicated to My Family

To the Memory of Giulio

Contents

1 Introduction 1
1.1 Thesis Overview . 3

2 Related Work 5
2.1 Complex Networks . 5
2.2 Community Structure . 6
2.3 Software Networks and Metrics 7
2.4 Refactoring . 7

3 Background 9
3.1 Bug extraction . 9
3.2 Network Metrics . 10

3.2.1 Modularity . 11
3.2.2 Community Structure Detection 11

3.3 Refactoring . 12

4 Community Structure and Quality 15
4.1 Introduction . 15
4.2 Experimental Settings . 17

4.2.1 Datasets . 17
4.2.2 Metrics . 18
4.2.3 Analysis . 19

4.3 Results . 21
4.3.1 NetBeans . 21
4.3.2 Eclipse . 23

4.4 Discussion . 30
4.4.1 NetBeans . 30
4.4.2 Eclipse . 33

4.5 Conclusion . 35

i

ii CONTENTS

5 Clustering and defects 37
5.1 Introduction . 37
5.2 Experimental setting . 38
5.3 Results . 40
5.4 Conclusions . 41

6 Metrics for Python Language 47
6.1 Introduction . 47
6.2 Related Work . 49
6.3 A Python Corpus . 51

6.3.1 Dataset Construction 51
6.3.2 Dataset Description . 52
6.3.3 Limitations . 56
6.3.4 Research Opportunities 56

6.4 Methodology . 57
6.4.1 Modelling Inheritance 57
6.4.2 Inheritance Metrics . 58

6.5 Results . 59
6.5.1 Local Metrics . 59
6.5.2 Global Metrics . 59

6.6 Discussion . 63
6.7 Threats to Validity . 65
6.8 Conclusion . 65

7 Refactoring and Complex Networks 67
7.1 Introduction . 67
7.2 Experimental Settings . 69

7.2.1 Datasets . 69
7.2.2 Analisys . 69
7.2.3 Refactored Classes vs Random Classes 70

7.3 Results . 72
7.3.1 Threats to Validity . 82

7.4 Conclusions . 84

8 Concluding Remarks 87

9 List of Publications Related to this Thesis 89

List of Figures

4.1 Number of communities vs. number of packages. 21
4.2 Number of packages vs. system size. 22
4.3 Scatterplot of the modularity vs system’s size (n. of classes)

for all subprojects . 24
4.4 Scatterplot of the defect density vs system’s size (n. of classes)

for all subprojects. 25
4.5 Scatterplot of the clustering coefficient vs system’s size (n. of

classes) for all subprojects. 25
4.6 Scatterplots reporting the number of communities (vertical

axis) and the sizes of the subprojects (in number of classes,
on the horizontal axis). It clearly shows a linear correlation
between the two measurements. 27

4.7 Scatterplot of the relationships between the studied metrics. . 28
4.8 Eclipse: cumulated log-log plots and best fitting lines of max-

imum defect density vs number of communities 28
4.9 Eclipse: cumulated log-log plots and best fitting lines of max-

imum clustering coefficient vs number of communities 29
4.10 Cumulated plots and fitting lines for the maximum defect den-

sity vs maximum clustering coefficient. 29

5.1 Plots of the mean number of clusters of CUs affected by Is-
sues (in red two scatterplots at the top) and Bugs (in red two
scatterplot at the bottom) vs the number of randomly selected
CUs (in blue in both scatterplots) for Eclipse 2.1 and 3.0. . . . 42

5.2 Plots of the mean number of clusters of CUs affected by Issues
(in red, the two scatterplots at the top) and Bugs (in red, the
two scatterplots at the bottom) vs the number of randomly
selected CUs (in blue in both scatterplots) for Eclipse 2.1 and
3.0. 43

iii

iv LIST OF FIGURES

5.3 Plot of the mean number of clusters vs the number of randomly
selected CUs (in blue) for Eclipse 3.3. The red dot at the origin
of the axes represents the distribution of the mean number of
clusters vs the number of CUs affected by the same Issue. The
panel shows a zooming of the area close to the origin of the
axes, where the comparison between the two statistics is more
evident. 44

5.4 Plot of the mean number of clusters of CUs affected by issues
vs the number of randomly selected CUs (in blue) for Net-
Beans 4.0. The red dot at the origin of the axes represents the
distribution of the mean number of clusters vs the number of
CUs affected by the same Issue. The panel shows a zooming of
the area close to the origin of the axes, where the comparison
between the two statistics is more evident. 44

5.5 Plot of the mean number of clusters of CUs affected by bugs vs
the number of randomly selected CUs (in blue) for Eclipse 3.3.
The red dot at the origin of the axes represents the distribution
of the mean number of clusters vs the number of CUs affected
by the same bug. The panel shows a zooming of the area close
to the origin of the axes, where the comparison between the
two statistics is more evident. 45

5.6 Plot of the mean number of clusters of CUs affected by bugs
vs the number of randomly selected CUs (in blue) for Net-
Beans 4.0. The red dot at the origin of the axes represents the
distribution of the mean number of clusters vs the number of
CUs affected by the same bug. The panel shows a zooming of
the area close to the origin of the axes, where the comparison
between the two statistics is more evident. 45

6.1 List of the analyzed system 53
6.2 Boxplot of number of classes per system 54
6.3 Frequency distributions of local metric measurements 60
6.4 Frequency distribution for DIT 60
6.5 Complementary cumulative frequency distributions (CCDF)

for local metrics . 61
6.6 Frequency distribution for the DUI metric 62
6.7 Frequency distribution for the IF metric 62

LIST OF FIGURES v

7.1 Comparison between the average number of clusters found by
the random selection and the number of clusters formed by
refactored classes. The average number of clusters for the
random case (empty points of different shapes) is systemat-
ically bigger than in case of refactored classes, showing that
the latter are more connected with each other. 73

7.2 Three examples of networks composed only of classes involved
in refactoring operations for Azureus 4.4.0.4 (left), JEdit (cen-
tre), Xalan 2.5.0 (right). 75

7.3 Comparison between Azureus release 4.0.0.0 (left) and 4.1.0.2
(right). For each release, we report the sets of classes affected
by the refactoring named replace method with method object.
The node corresponding to UrlFilter class has a squared
shape and it is black on the right plot. 76

7.4 Jedit refactored classes network. 80
7.5 Neighboring classes for org.gjt.sp.jedit.textarea.JEditTextArea.

The white circle represents the vertex corresponding to JEditTextArea
class, whereas the rectangle-shaped and the squared-shaped
vertices, represent the neighbors connected to JEditTextArea
by respectively in-link and both in and out-link. 82

7.6 Average values of the fraction of the refactored neighboring
classes linked by in-links for all the JEdit analyzed releseas.
Diamond-shaped point represents the mean value. 83

7.7 Average values of the fraction of the refactored neighboring
classes linked by out-links for all the JEdit analyzed releseas.
Diamond-shaped point represents the mean value. 83

vi LIST OF FIGURES

List of Tables

4.1 Main features of the analyzed releases of Eclipse: size (number
of classes), number of sub-projects (sub-networks), and total
number of defects. 17

4.2 Pearson correlation and p-values among number of communi-
ties and mean bug number for all the systems and for systems
in the range 250-1200 classes. 22

4.3 Correlation data between bugs and Clustering Coefficient (CC),
Mean Degree (MD), Average Path Length (APL) and Mod-
ularity (Mod). The last two columns contain the modularity
medians (Mod med) and the percentage of bugs above this
median. (% bugs above). 24

4.4 Fit data for the power laws between the maximum average
defect density (max ADD) versus the number of communities
and maximum clustering coefficient (max CC) versus the num-
ber of communities: correlation coefficient (r), normalized Chi
squared (χ2), and number of degrees of freedom (dof). 26

4.5 Results on the power law between maximum Clustering Co-
efficient vs Number of communities for Eclipse: exponent α,
correlation coefficient (r), value of Chi Squared (χ2) and num-
ber of degrees of freedom (dof). 27

4.6 Results on the power law between maximum defect density vs
number of communities for Eclipse: exponent α, correlation
coefficient (r) , value of chi squared (χ2) and number of degrees
of freedom (dof). 30

4.7 Fit data for the maximum defect density vs maximum clus-
tering coefficient: correlation coefficient (r), normalized Chi
squared (χ2), and number of degrees of freedom (dof). 30

5.1 Main features of the analyzed releases of Eclipse and Net-
Beans: number of CUs and number of Issues. 39

vii

viii LIST OF TABLES

6.1 Domain representation of Corpus 53
6.2 System size values . 55
6.3 Maximum values for local metrics 59
6.4 Spearman correlation between mean values of the metrics and

size (n. of classes) . 64

7.1 Ratio between the number of clusters formed by different types
of refactoring and the number of clusters formed by randomly
selected classes . 74

7.2 Average values the fractions of refactored classes in the first
neighbors network and the corresponding mean values com-
puted for randomly selected classes, for each analyzed system. 77

7.3 Fractions of refactored classes in the first neighbors network
and the corresponding values for randomly selected classes.
The values refer both to “Source” and “Target” releases, of
two releases of each system. 78

7.4 Values of the number of neighbors and the clusters size ni for
the first 7 clusters of 7 software releases, in a decreasing order
by cluster size. nref is the total number of classes involved in
refactoring operations affecting the corresponding release. . . . 79

7.5 Number of refactorings per classes affected by more than 13
refactorings. In-Ratio and Out-Ratio columns report for, re-
spectively, in-links and out-links, the fraction of neighboring
classes that, among all the neighboring classes, are also in-
volved in refactoring activities and the total number of neigh-
bors. 81

Chapter 1

Introduction

Software Engineering may be defined as the discipline that applies engineer-
ing principles, methods and practices to the production of software systems.
Certainly one of its main goals is to produce software that meets the require-
ments with an advantageous trade-off between cost and benefits. Having a
software system that does not present defects is certainly a must for both
any software company and the final user.

However, pushed by an increasingly shortened time to market, compa-
nies usually are not able to completely test their programs to check for all
the possible software defects. Software systems are then released when are
reasonably fault-free but continuously maintained after the release. This
process of continuous maintenance of software systems is needed not only
to fix post-release bugs but also to adapt released programs to new requests
coming from the users, adding new features and altering those already avail-
able to meet new requirements. In other words, software systems are ductile
and adaptable artifacts, being explicitly designed to evolve according to the
emerging needs of their users.

Modern software systems are usually large and complex, being composed
by tens of thousands, or even millions of lines of code. Moreover, they are
usually developed through a industrial process that involves dozens of people,
with different roles (i.e. software engineers, team leaders, project or product
managers) and it is influenced by several stakeholders, including final users.
The inherent complexity of software systems, along with the need of providing
new features without discarding the available product, imply that the size
of software systems usually increases along the time, and the same happens
with their complexity.

Additionally, software development is usually carried on in a distributed
environment from developers that interact with each other using systems like
Software Control Mangers (SCM) and Issue Tracking Systems (ITS). This

1

2 CHAPTER 1. INTRODUCTION

emphasizes the complexity of the entire process.
In order to develop high quality software, software engineers need to take

care of various aspects, spanning from development techniques to developers
interactions. In order to control such kind of complexity it is required a sys-
tem of measurements that can return useful information both on the product
and on the process. Software metrics, came to help in this occasion, since it
is practically impossible to control what you can not measure [33].Software
metrics are used to measure many aspects of the software development: the
product, the process, the resources, etc.

This thesis reports a collection of studies on software metrics that measure
both product properties and the impact of some specific practices on software
quality.To perform the reported research I applied a novel approach, based
on the concept of complex network [11, 77].

As a matter of fact, software systems are composed by thousands of ele-
mentary modules, whose main goal is to execute simple tasks, that interact
with each other exchanging data and sharing the computational burden, in
order to carry on complex tasks.

Due to this inherent complexity, one of the best candidate to represent
a software system is actually the complex network. In this model nodes are
associated to the elementary modules of a software system, at different levels
of granularity (i.e. functions, classes, files, etc.) whereas edges represent
the various connections between the mentioned modules (i.e. function calls,
inheritance relationships between classes, etc.)

The use of this model enables the researchers to investigate the topo-
logical properties of a software system, namely the reciprocal inter-relations
between the single components, without neglecting other aspects related to
how the single component is built. We called the metrics that exploits this
topological representation Network Metrics The reported studies are focused
mainly on some specific metrics, Community Structure and the related Mod-
ularity function, and Clustering. These metrics return an information about
how much software modules (nodes) are connected to each other, represent-
ing a proxy measure for properties like Coupling and Cohesion. The former
properties are related to the best practices and have been proven to be related
to the quality of software systems [19].

This thesis is ideally divided in three parts. In the first chapters I present
the related work and background information useful to better understand
the remaining chapters (Chapters 2 and 3). In the second part, specifically
in Chapters 4 and 5, I report the results of an analysis conducted on some
popular software system, aimed at understanding the relationship between
some network metrics and system’s quality. In the third part I illustrate
the results of a research aimed at quantify the impact of some development

1.1. THESIS OVERVIEW 3

practice on software systems. Chapter 6 presents an analysis on the use
of inheritance on Python software systems, along with the description of a
curated collection of Python programs that I built in order to perform the
mentioned research. Chapter 7 reports an investigation on the impact of
Refactoring, a widely used practice of code restructuring, on the software
topology. Finally, in Chapter 8, I draw some conclusions on the work carried
on so far and I outline some ideas to improve the present research in the
future.

1.1 Thesis Overview
The remaining of the present thesis is organized as follows:

• Chapter 2 discusses the most significant research works in the field of
complex networks, software networks and refactoring.

• Chapter 3 presents the basic information useful to understand the rest
of the thesis, including the approaches, algorithms and tools used.

• Chapter 4 presents a case study performed on a release of a popular
software system along with a longitudinal study on the evolution of the
network topology of Eclipse, with specific regard to releases’ defective-
ness.

• Chapter 5 reports and discusses the results of the analysis on the re-
lationship between the clustering property of software networks and
their defect proneness. The analysis has been performed on a number
of releases of two popular open source software systems.

• Chapter 6 contains an analysis of the use of inheritance in Python soft-
ware systems, along with a description of the analyzed curated corpus
of Python programs that I collected and publicly released to enable
researchers to perform empirical research on Python systems.

• Chapter 7 illustrates the results of a research on the impact of refac-
toring activities on the topology of a software system.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

2.1 Complex Networks
Complex networks are complex systems consisting of a large number of
elements connected together in a large number of different ways [81, 6].
The world around us is made in large extent by complex reticular systems,
whether they belong to nature (i.e metabolic networks, food chains, etc.) or
technology artifacts (i.e. computer networks, Internet, etc)[11].

A basic formal definition might be the following [42]. A complex network,
likewise a graph, G is a pair of sets (V,E), where V is a set of nodes (also
called vertices in the proceeding) and E is a subset of V 2, the latter being
the set of the unordered pairs of vertices. The elements of E are called
edges. There are many properties of graphs, that may be present or not. For
example, edges may be directed from a vertex to another. In this case we
consider a directed graph (or network).

Complex networks are characterized by several properties that emerge
along with the increase of their size. They usually present a power law
distribution of the nodes’ degree, meaning that the number of connections of
the nodes can be described by the following law:

pk ≈ k−α

This kind of networks are called scale-free. Another common property
of complex networks is the small-world effect. Discovered by Milgram [71]
and popularize as “six degree of separation”, it determines that each pair of
nodes is separated by a relative short path, namely a number of arcs that
links the first and the second node, if compared to the size of the network.

Another meaningful property is the community structure. Inside a net-
work, a community is a subgraph composed by nodes among which there

5

6 CHAPTER 2. RELATED WORK

are higher density of connections, if compared to nodes that are outside the
community. The community structure is the specific way in which commu-
nities are arranged inside a network. According to the definition provided
by Newman we can associate to a community structure a value of a benefit
function called Modularity (Q) that represents how marked the community
structure is.

Even software systems belong to the category of complex networks. The
latter, in fact, are generally formed by elementary software modules, typically
specialized and able to perform a specific task, which collaborate in different
ways with other software modules to perform more complex tasks. Software
engineering best practices prescribe to apply the dividi et impera (divide and
conquer) principle and emphasizes the design of simple specialized modules
to facilitate the reuse of code.

Software networks have been proven to be characterized by all the re-
ported the properties, small-world effect [105], scale-free distribution of node
degree [89] and community structure [104]. This thesis is partially devoted
to the study of community structure in software networks.

2.2 Community Structure

The community structure is one of the properties that recently grabbed re-
searchers’ attention. Inside a network a community is a set of vertices be-
tween which there is a high density of connections. On the contrary between
the communities connections are more sparse. The community structure of
a network is its division in subgroups or communities [80]. Elements belong-
ing to the same community are more likely to share the same behavior or
properties, or represent a functional unit. This leads to many concrete appli-
cations of community detection in different fields (from marketing research
to software development).

Community detection is traditionally addressed using techniques like hier-
archical clustering and partitional clustering [42] and it faces different prob-
lems. One of the most important is the research of algorithms that allow
network scalability up to different orders of magnitude (from thousands to
millions of vertices) to be analyzed in a reasonable amount of time. New-
man et al. proposed several algorithms for community detection [80, 79, 22]
using different approaches and dealing with the problem of the computa-
tional burden. Moreover, in [80] Newman and Girvan introduced a quality
function called modularity, to evaluate how good is a network partition in
communities.

2.3. SOFTWARE NETWORKS AND METRICS 7

2.3 Software Networks and Metrics
Being software systems often large and complex, one of the best candidate
to represent them is the complex network [41], [77], [101]. Many software
networks, like class diagrams [89, 105], collaboration graph [77], package
dependencies networks [30] have already been shown to present the typical
properties of complex networks [11], such as fractal and self-similar features
[102], scale free [18], and small world properties, and consequently power law
distributions for the node degree, for the bugs [25] and for refactored classes
[75].

Modeling a software system as a complex network has been shown to have
many applications to the study of failures and defects. In [108] it has been
shown that the knowledge of scale-free properties of software networks could
be useful to reduce the time devoted to maintenance. Other methods have
been applied to understand the relationship between number of defects and
LOC, while in Ostrand et al. a negative binomial regression model is used
to show that the majority of bugs is contained only in a fraction of the files
(20%) [86].

So far many other methods have been tried for bug prediction [32, 55],
especially using dependency graphs [82, 113], but only recently many re-
searchers focused their attention on the community structure as defined in
social network analysis, namely the division in subgroups of nodes among
which there is a high density of connections if compared to nodes that are
outside the community [80]. Being more connected, elements belonging to
the same community might represent functional units or software modules,
leading to practical applications of the community detection in the software
engineering field. Community detection is usually performed with methods
like hierarchical clustering and partitional clustering [42].

The issue of community structure and its application to software engineer-
ing has been recently addressed in a similar fashion by Šubelj and Bajek. The
authors, after analyzing different Java softwares using a community detec-
tion algorithm, find that the software systems analyzed exhibit a significant
community structure that doesn’t match the packages structure imposed by
the designer [104].

2.4 Refactoring
Refactoring was first formally described by William Opdyke in his Ph.D.
dissertation [84] but it started gaining popularity in 1999, after Fowler de-
fined his catalog containing information on when and how to do refactoring

8 CHAPTER 2. RELATED WORK

[43]. After being introduced by Fowler, the code smells were also made rec-
ognizable in a book by Wake [106], while Simon et al. presented a generic
approach for visualizing which classes need to be refactored [92]. Usually de-
velopers decide to apply refactoring by examining or changing the software
code while they are performing other operations [76], such as bug fixing, ad-
dition of functionalities, or other code changes. For this reason, refactoring
represents an important part of the software development cycle.

Previous studies claim that refactoring improves the quality of software
[43], but they do not provide quantitative evidence. However, in the liter-
ature there are some works showing some effects of refactoring on external
software quality attributes, such as changeability, maintainability and mod-
ifiability [46, 110] or on internal attributes, by exploiting the relationships
between internal and external attributes. The relationship between refactor-
ings and software metrics, such as internal quality metrics, has been studied
in different works [19, 54, 15, 93].

Other works [15, 61, 73] propose coupling and cohesion metrics to eval-
uate and measure the effect of refactoring on maintainability or reusability.
More recent works [74, 75] analyzed refactorings in the context of software
networks, presenting a relationship between refactorings and node degree.

Chapter 3

Background

3.1 Bug extraction

We considered the number of defects (bugs) as the main indicator of software
quality. Bug Tracking Systems (BTS) are commonly used to keep track of
Bugs, enhancements and features of software systems. It is possible to collect
data about the bugs of a software system by mining its associated BTS. In
both of them defects are tagged with a unique ID number. An entry in BTS is
called with the common term ’Issue’, and it usually contains no information
about classes associated to defects. We considered only issues that are labeled
as fixed in the BTS.

To keep track of the development activities developers rely on Software
Configuration Management systems (SCM) like Common Versioning Systems
(CVS) [1], Subversion (SVN) and Git, just to name a few. These operations
are recorded inside an SCM in an unstructured way; it is not possible, for
instance, to query in a simple way a SCM to know which operations were
done to fix Bugs, or to introduce a new feature, or an enhancement. All these
operations are performed on files, called Compilation Units (CUs), which may
contain one or more classes.

In order to identify Issues (Bugs) affecting given classes we had to match
the data stored in the BTS with data stored in the corresponding SCM where
all development history is recorded in the form of "commit operations" [1].
To obtain a correct mapping between Issue(s) and the related Java files, the
compilation units, we analyzed the SCM log messages, to identify commits
associated to maintenance operation where Issues are fixed.

Every positive integer number (including dates, release numbers, copy-
right updating, etc) might be a potential Issue-ID in BTS. In order to avoid
wrong mappings between a file and the corresponding Issue, we filtered out

9

10 CHAPTER 3. BACKGROUND

any number which blatantly did not refer to bug fixes.
If a maintenance operation is done on a file to address a bug, we consider

the CU as affected by this bug. We then assigned the bugs to classes in the
corresponding CUs, but since there are a few CUs containing more than one
class, we decided to assign all the bugs to the biggest class of those CUs. This
method might not completely address the problems of the mapping between
bugs and CUs [9]. In any case we checked manually 10% of CU-bug(s)
associations (randomly chosen) for each release and each CU-bug association
for 3 sub-projects without finding any error. A bias may still remain due to
lack of information on SCM [9]. The subset of Issues satisfying the conditions
as in Eaddy et al. is the Bug-metric [38]. Of course there are chances for
wrong assignments to happen for some classes, but since the average bug
number for class is very low, the number of wrong assignments in the entire
system, considering also CUs with one class, is very limited.

3.2 Network Metrics
In this Section we reported the definitions of most meaningful network met-
rics adopted in this work.

Clustering Coefficient

This metric quantifies the tendency to cluster: it is the mean probability
that if vertex A is connected to vertex B and vertex B to vertex C, then the
vertex A will also be connected to vertex C. It is defined by [81]

C = 3× number of triangles in the network
number of connected triples of vertices , (3.1)

where a triangle is a set of three vertices all connected with each other, and
the number of connected triples is the number of edges between the nearest
neighbors of a node inside a clique [6]. High values of C indicate a higher
resilience to the removal of vertices, typical of real-world networks.

The clustering coefficient for the whole graph is the average of the Ci’s:

C = 1
n

n∑
i=1

Ci, (3.2)

where n is the number of nodes in the network.

3.2. NETWORK METRICS 11

3.2.1 Modularity
Consider a network divided into c communities and define a c× c symmetric
matrix e whose element eij is the fraction of all edges in the network that link
vertices in community i to vertices in community j. Given this matrix, we
can get the fraction of edges in the network connecting vertices in the same
community by computing its trace, Tr e = ∑

i eii. The latter would give an
indication of a good community structure if it was close to 1, its maximum
value, but this would be the most trivial case. To get a good measure of
community structure, in [80] this fraction is compared with the expected
value of the same fraction in a network with the same community divisions
but random connections between the vertices. To do this, the authors define
the column sums ai = ∑

j eij, the fraction of edges that connect to vertices
inside community i. Instead, in a network with no community structure, the
edges fall between vertices uniformly at random and we would have eij =
ai aj. Comparing these quantities, we obtain the modularity defined by the
subtraction

Q =
∑
i

(eii − a2
i) = Tr eij −

∑
ij

(e2
ij). (3.3)

A good community structure is indicated by values of Q close to 1. Typical
values are found between 0.3 and 0.7 [80].

3.2.2 Community Structure Detection
The detection of the community structure is done by using the algorithm
introduced by Clauset, Moore and Newman [22], (CMN). It is an agglomer-
ative algorithm which is widely used; it performs the same optimization as
the previous algorithm introduced in [79], giving the same community struc-
ture, but it is actually faster. CMN exploits some shortcuts which allow the
computational cost to be nearly linear in time: for a sparse network with n
vertices and m edges it is O(n log2 n).
The algorithm computes the variations in modularity obtained by joining
couples of communities until only one community is left. The modularity
measure is computed using specific properties of the network: its adjacency
matrix

Avw =
{

1 if v and w are joined
0 otherwise, (3.4)

where v and w are two vertices belonging to communities cv and cw; the num-
ber of edges m = 1

2
∑
vw Avw, and the degree kv = ∑

w Avw. of a vertex, the
number of its in-links. The modularity as defined in (3.3) can be expressed
as a function of these properties: to show this, we note that the fraction of

12 CHAPTER 3. BACKGROUND

edges attached to vertices in community i to vertices in community j can be
written as follows:

eij = 1
2m

∑
vw

Avw δ(cv, i) δ(cw, j) (3.5)

and so the vector ai, the fraction of edges connecting vertices inside commu-
nity i, is given by

ai = 1
2m

∑
v

kv δ(cv, i). (3.6)

Using δ(cv, cw) = ∑
i δ(cv, i)δ(cw, i) and equations (3.5) and (3.6), the modu-

larity Q defined in (3.3) can be then written as a function of Avw and m:

Q = 1
2m

∑
vw

(
Avw −

kvkw
2m

)
δ(cv, cw). (3.7)

The algorithm starts from considering every single vertex as a community,
and at each step it joins two communities, it computes the change in modular-
ity, it extracts the maximum value, and performs the corresponding joining,
until only one community is left. So at first it initializes

eij =
{

1
2m if i and j are joined
0 otherwise, (3.8)

ai = ki
2m, and

∆Qij =
{ 1

2m −
kikj

(2m)2 if i and j are joined
0 otherwise.

(3.9)

For each pair of communities (so for each i), the algorithm computes a sparse
matrix containing ∆Qij, and keeps the vector ai and a max-heap H with the
largest element of ∆Qij and the labels i, j.
Once the maximum value of the modularity is selected, the algorithm per-
forms the corresponding joining of the two communities, incrementing Q by
∆Q, and it repeats the procedure until only one community is left.

The community structure was computed using the implementation of
CMN algorithm given by the function fastgreedy.community() of the R pack-
age igraph [44].

3.3 Refactoring
Refactorings are code changes which do not modify the external system be-
haviour [43]. Usually developers decide to apply refactoring by examining or

3.3. REFACTORING 13

changing the software code while they are performing other operations [76],
such as bug fixing, addition of functionalities, or other code changes. This
process is widely used in Agile Development, where code is maintained and
extended repeatedly in order to avoid code decay. Decay can be caused for
example by unhealthy dependencies between classes or packages, bad alloca-
tion of class responsibilities, too many responsibilities per method or class,
duplicate code, or simply confusion in the code. Changing code without
refactoring can worsen the decay process, thus refactoring can spare a lot of
time and costs in software development, by keeping the code easy to maintain
and extend. To perform our analysis, we build the software networks associ-
ated to every release of our software projects and try to identify refactored
classes and network connections among them.

The classes affected by refactoring have been retrieved with the use of
RefFinder [3], the most commonly used automatic tool for the detection
of refactoring operations. The 72 refactorings classified by Fowler [43] have
been investigated also by other researchers with the purpose of finding other
good techniques for automatic detection different from RefFinder [5], [8], [88].
Nevertheless RefFinder currently supports 65 of the 72 Fowler’s refactorings,
representing the most exhaustive coverage of all existing techniques. This
tool compares two different software releases, analyzing the changes occurred
from the first to the last, and identifies the refactoring operations according
to Fowler’s catalog. The output is the set of all refactored classes with the
associated refactorings.

14 CHAPTER 3. BACKGROUND

Chapter 4

Community Structure and
Software Quality

4.1 Introduction

Modern software systems can be very large and can be made of tens of
thousands, or even millions of lines of code. In the last decades, due to its
simplicity,the use of Object Oriented (OO) programming paradigm largely
increased and OO software systems are the majority in many applications.
For any software system built according to the object oriented approach
it is possible to easily define different kinds of networks, where the nodes
represent specific software modules and connections among nodes represent
relationships between software modules. Many software systems have been
demonstrated to exhibit the structure and to possess the properties of a
complex network [41], [77], [11], [18], [102], [104].

The investigation of complex networks received a large attention in the
last decades, where many quantities for measuring and characterizing their
complexity have been defined and used, and many algorithms and software
programs have been developed for computing these quantities, with large
impacts on the knowledge and understanding in very different fields and
disciplines.

One of the important features of complex networks is the possibility of
partitioning them into smaller sub-networks preserving complexity features.
Using the language of social networks these sub-networks are named commu-
nities, meaning that there are strongly interconnected nodes inside a single
community, while the connections with nodes of other communities are sparse
or weak [80].

From this point of view software systems are excellent candidates for

15

16 CHAPTER 4. COMMUNITY STRUCTURE AND QUALITY

complex networks with an underlying community structure, since they are
structured in a hierarchical manner, where small units cooperate with each
other. Software engineering practices emphasize the decomposition of com-
plex tasks in smaller ones, to encourage code reuse and agile development
[26], and software systems are designed to be highly evolvable [77]. Nev-
ertheless in the field of software, while the concept of software network is
now largely used, there are very few researches investigating the community
structure of software networks, finding that the software systems analyzed
exhibit a significant community structure that doesn’t match the packages
structure imposed by the designer [66], [104].

Software modularization is acknowledged as a good programming prac-
tice [87, 10, 91] and a certain emphasis is put on the prescription that design
software with low coupling and high cohesion would increase its quality [19].
We present a study on the relationships between software systems quality
and their modular structure. To perform this study we used an approach
based on the concept of complex network.
Due to the fact that that software systems are inherently complex, the best
model to represent them is by retrieving their associated networks and the
related topological properties [77, 104, 109, 94, 113]. In other words, in a
software network nodes are associated to software modules (e.g. classes) and
edges are associated to connection between software modules (e.g. inheri-
tance, collaboration relationships).
We investigated the software modular structure - and its impact on soft-
ware quality - by studying specific network properties: community structure,
modularity and clustering coefficient. A community inside a network is a
subnetwork of densely connected nodes when compared to nodes outside the
community [48]. Modularity is a function that measures how marked is a
community structure (namely the way the nodes are arranged in communi-
ties) [80]. The clustering coefficient is a measure of connectedness among the
nodes of a network [81].

In this Chapter we are presenting two studies. The first one is a case
study on a release of a popular software system written in Java, NetBeans.
Our aims was to investigate if some metrics which have been proved useful
for characterizing the community structure can be of help for characterizing
the properties of the related software network.

In the second one, we studied several releases of a large software system,
Eclipse, performing a longitudinal analysis on the relationship between com-
munity structure, clustering coefficient and software quality. Our aim is to
figure out if the studied metrics can be used to better understand software
quality evolution and to predict software quality of future releases.

4.2. EXPERIMENTAL SETTINGS 17

In this work we use one of the algorithms proposed by Newman et al. to
understand if such division can be related to software modularity as defined
in software engineering and, eventually, if the community metrics may be
useful to predict bugs in systems future releases.

In the first part of this Chapter we are presenting a case study on the
relationship of the community structure and software defectiveness performed
on a release of a popular IDE, NebBeans.

4.2 Experimental Settings
In this Section we present the structure of our research. For sake of clarity we
we will report separately the experimental settings for the two studies. We
will refer to the two studies with the name of the studied software systems.

4.2.1 Datasets
NetBeans

The reported case study regards a large software system, Netbeans, release
6.0. It is formed by 56 sub-projects, that are almost independent from each
other and contain a total number of around 44000 classes. We retrieved the
software network of each subproject by parsing the source code, looking for
inter-class dependency like inheritance, composition, etc.

Eclipse

We analyzed 5 releases of Eclipse, whose main feature are presented in Table
4.1. Each release is structured in almost independent sub-projects. The total

Release 2.1 3.0 3.1 3.2 3.3
Size 8257 11406 13413 16013 17517
Sub-Projects n. 49 66 70 86 104
N. of defects 47788 59804 69900 80149 95337

Table 4.1: Main features of the analyzed releases of Eclipse: size (number of
classes), number of sub-projects (sub-networks), and total number of defects.

number of sub-projects analyzed amounts at 375, with more than 60000 nodes
(classes) and more than 350000 defects.

Both the studied software systems are popular IDE (Integrated Devel-
opment Environment) written in Java and widely used by the practitioners

18 CHAPTER 4. COMMUNITY STRUCTURE AND QUALITY

community. The data we used belong to a wider set of networks data col-
lected by some of the authors and analyzed in previous works [27]

4.2.2 Metrics
NetBeans

Many of these metrics where already thoroughly defined in Section 3.2. For
sake of clarity we are reporting also the definitions in this paragraph. We
distinguish System Metrics from Network Metrics.
System metrics, computed both at system and at class level, are the following:

• System Size: the number of classes of the software system.

• Number of Packages (NOP): the number of different subdirectories used
by the developers to insert the classes.

• Bug Number (BN): the number of bugs found in the class.

• Average Bug Number (ABN): the number of bugs found into a system
divided by the number of classes.

Network Metrics are the following:

• Modularity (Q), which measures the quality of a community structure,
defined as in Section 3.2.1.

• Number of Communities (NOC): the number of disjoint communities
in which the network is partitioned according to the CMN algorithm
described in the next Section.

• Mean Degree (MD) of the complex network, the mean number of edges
connected to a vertex.

• Average Shortest Path (ASP), the mean geodesic distance among net-
works nodes.

• Clustering Coefficient (CC), also known as transitivity, whose definition
is reported in Section 3.2, for each of the communities detected.

4.2. EXPERIMENTAL SETTINGS 19

Eclipse

We computed the following metrics:

• System size: the number of classes of the software system.

• Average Bug Number (ABN): bug density, namely the number of defects
found into a system divided by the number of classes.

• Modularity: a measure of the strength of the obtained community struc-
ture, as defined in Section 3.2.1.

• Number of Communities (NOC): the number of disjoint communities
in which the network is partitioned.

• Clustering Coefficient (CC): as in the previous paragraph, it is defined
in Section 3.2.

We detected the modularity and its associated community structure for each
subproject of each release using the community detection algorithm devised
by Clauset et al. [22]. This is an agglomerative clustering algorithm that
performs a greedy optimization of the modularity. The community structure
retrieved corresponds to the maximum value of the modularity. The commu-
nity structure of the networks analyzed in this paper was computed using the
implementation of Clauset-Moore-Newman (CMN) algorithm, with the im-
plementation is given by the function fastgreedy.community of the R package
igraph [44].

4.2.3 Analysis
In order to build the software networks we parsed the Java source code to find
the dependencies between different classes. We considered classes as graph
nodes, and relationships among them as links. The relationships, computed
at the source code level, can be inheritance, composition and dependence.
After having analyzed the source code for building the corresponding software
graph, we computed different software metrics - reported in the previous
paragraph. Then we extracted bugs affecting classes from bug repository
and we associated them to the corresponding classes.

NetBeans

We applied the community analysis to the obtained software networks and
computed four community metrics, in order to understand if they can pro-
vide indications about the fault proneness of the system. Using the CMN

20 CHAPTER 4. COMMUNITY STRUCTURE AND QUALITY

algorithm presented in Clauset et al. [22], we analyzed the community struc-
ture of the networks considered as independent systems and measured some
of the most common community metrics, such as modularity, clustering co-
efficient, mean distance between nodes and mean node degree. We found
that, among the community metrics, modularity and clustering coefficient
show interesting correlations to software quality and defectiveness. We also
performed an analysis at a global level, focusing on the relationship between
the number of communities and the number of packages. We found that
the number of packages is systematically larger than the number of com-
munities, showing that the division given by developers is different from the
community structure computed by the algorithm, a result which is proba-
bly related to some design choices. Finally we investigated the correlation
between the number of communities and software faultness, finding that the
mean bug number increases with the number of communities for medium
size systems. To accomplish this comparison we use the research questions
approach, formulating three questions:

• RQ1: Are there correlations between the community structure and soft-
ware defectiveness?

• RQ2: Are there correlations between the community metrics and soft-
ware defectiveness?

• RQ3: Do the software networks analyzed present a community struc-
ture that matches the package structure devised by developers?

The answers to these research questions will be discussed after the analysis
of the results.

Eclipse

We performed a correlation analysis among the network metrics and the
software metrics considering each release on its own and the entire dataset,
in order to have a better relevant statistical bases. To study the system
evolution we used the following approach. We first carried out the analysis
for each release, and then we assembled together different releases, according
to its temporal evolution, taking into account the different releases. More
precisely, for the 5 releases of our dataset, we studied the evolution of the
system by cumulating the first and the second releases in a single set, then
adding the third release to this first set to obtain a second set and so on.
This way we were able to make predictions about the next release starting
from those cumulated in the previous assembly.

4.3. RESULTS 21

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

45

50
C

o
m

m
u
n
it
ie

s

Packages

Figure 4.1: Number of communities vs. number of packages.

4.3 Results

4.3.1 NetBeans
In this section we analyze the results of our case study. Figure 4.1 reports the
plot of the number of communities versus the number of packages for the 56
subprojects. The scatter plot shows a good correlation among the variables,
and a sublinear dependence of the number of communities on the number of
packages, excluding the case of very small projects. Their correlation and
the level of significance are respectively 0.9018 and the level of significance
(p-value) is almost zero.

Next we consider the average bug number of the systems, which is a size
independent metric, but is a direct indicator of system quality. In general, the
overall correlation of the mean bug number with the number of communities
in each subproject is quite poor. But when we restrict the analysis to medium
size systems, namely for systems in the range 250-1200 classes, there is a net
increase of the correlation with the number of communities. Such correlation
means, in terms of software quality, that the larger is the number of detected
communities the poorer is the system quality.

Tab. 4.2 shows the correlations and p-values among mean bug number
and number of communities for all the 56 systems and for the systems in the
range 250-1200 classes.

22 CHAPTER 4. COMMUNITY STRUCTURE AND QUALITY

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

350

400

Classes

P
a

c
k
a

g
e

s

Figure 4.2: Number of packages vs. system size.

Correlation Coefficient P-value
all systems 0.1088 0.4200

medium size systems 0.6598 0.0040

Table 4.2: Pearson correlation and p-values among number of communities
and mean bug number for all the systems and for systems in the range 250-
1200 classes.

4.3. RESULTS 23

Next we consider variability inside the single systems. In this case the
data variability is reduced, since there are small systems which are parti-
tioned in too few communities to be analyzed with a statistical approach.
Each system is divided into communities according to the CMN algorithm.
We collected, for each community and for each system the bug number, the
size, the clustering coefficient, the modularity, the average shortest path and
the mean degree.

The results show a systematic high correlation among the number of bugs
and the size of the communities, as we would expect. What is interesting
to note is that, while the linear (Pearson) correlation is not high, there are
systematic general relationships among the bug number and modularity, and
among the bug number and the clustering coefficient. Namely, higher metric
values correspond to higher bug numbers.

In order to measure and quantify these features we computed the Spear-
man correlation coefficients and p-values for the correlation among number
of bugs inside a community and modularity, clustering coefficient, average
shortest path and mean node degree. The Spearman correlation coefficient
is able to identify threshold effects, since it accounts for a monotonic, while
non linear, increase of one variable versus another variable. Tab. 4.3 re-
ports the results. In the same Table we also computed the medians of the
modularities for the 13 systems, and the percentage of bugs belonging to the
communities above the median, in order to estimate the threshold effects.

4.3.2 Eclipse
The application of the CMN algorithm confirms that software networks
present a meaningful community structure [94, 29]. Our results show a gen-
eral tendency for certain metrics to converge to a narrow range of values
when the number of classes increases. Figures 4.3, 4.4 and 4.5 show the re-
lationship between systems’ size (number of classes) and, respectively, mod-
ularity, defect density and clustering coefficient. All the metrics display
more or less the same behavior. For relatively small systems, where the
number of classes is roughly below 100, the metrics assume values in a large
range. Specifically, the defect density ranges from 0 up to 25, the cluster-
ing coefficient and the modularity, whose maximum value may be 1, range
from 0 to 0.6-0.7. For system’s size between 100 and 500 roughly, all the
oscillation ranges decrease: the defect density lays between 2 and 12, the
clustering coefficient lays between 0.05 and 0.2, and the modularity between
0.3 and 0.6. Finally, for fairly large systems, where the number of classes
is above 500 or more, the metrics stabilize, showing small oscillations and
eventually converging asymptotically to precise values. On the contrary, the

24 CHAPTER 4. COMMUNITY STRUCTURE AND QUALITY

Network CC MD APL Mod Mod med % bug above
cnd 0.513 0.744 0.645 0.566 0.311 99.3
core -0.420 0.804 0.634 0.628 0.453 74.3
editor 0.304 0.776 0.742 0.740 0.300 96.8
enterprise 0.072 0.708 0.603 0.541 0.303 97.2
j2ee 0.488 0.793 0.770 0.746 0.255 92.0
mobility -0.104 0.834 0.761 0.756 0.208 98.6
ruby 0.659 0.688 0.560 0.489 0.300 89.9
serverplugins 0.489 0.821 0.809 0.770 0.212 94.4
uml 0.548 0.724 0.678 0.663 0.178 94.0
visualweb 0.064 0.646 0.469 0.460 0.304 93.3
web 0.537 0.550 0.571 0.625 0.349 78.9
websvc 0.560 0.753 0.677 0.718 0.365 95.6
xml 0.611 0.726 0.633 0.640 0.317 93.8

Table 4.3: Correlation data between bugs and Clustering Coefficient (CC),
Mean Degree (MD), Average Path Length (APL) and Modularity (Mod).
The last two columns contain the modularity medians (Mod med) and the
percentage of bugs above this median. (% bugs above).

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

Eclipse

m
o

d
u

la
ri
ty

n. classes

Figure 4.3: Scatterplot of the modularity vs system’s size (n. of classes) for
all subprojects

4.3. RESULTS 25

0 1000 2000 3000
0

5

10

15

20

25

d
e

fe
c
t

d
e

n
s
it
y

n. classes

Figure 4.4: Scatterplot of the defect density vs system’s size (n. of classes)
for all subprojects.

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

c
lu

s
te

ri
n

g
 c

o
e

ff
ic

ie
n

t

n. classes

Figure 4.5: Scatterplot of the clustering coefficient vs system’s size (n. of
classes) for all subprojects.

26 CHAPTER 4. COMMUNITY STRUCTURE AND QUALITY

Eclipse max ADD vs NOC max CC vs NOC
dof 13 13

χ2 / dof 0.361 1.005

Table 4.4: Fit data for the power laws between the maximum average de-
fect density (max ADD) versus the number of communities and maximum
clustering coefficient (max CC) versus the number of communities: correla-
tion coefficient (r), normalized Chi squared (χ2), and number of degrees of
freedom (dof).

NOC metric shows a monotonic increase with system’s size, where after a
first nonlinear behavior the curve aligns along a straight line, as reported in
Figure 4.6. We also found a significant correlation between the number of
communities (NOC) and both ABN and CC. It is worth to point out that
for other network metrics such as mean degree or average path length, these
correlations are not significant. Fig. 4.7 shows that the number of communi-
ties in a system increases, the maximum values of average bug number and
clustering coefficient of the system tend to decay in a super-linear fashion.
In particular, Figures 4.7a and 4.7b show the distributions of ABN (Figure
4.7a) and of CC (Figure 4.7b) with respect to the number of communities
(NOC) for all the subprojects of all the releases. Starting from this result,
we found that there is a power law relating the maximum values of defect
density and the maximum values of clustering coefficient in systems having
the same number of communities to the number of communities itself. This
led us to hypothesize that there might be a linear relationship between NOC
and ABN and we investigated if we can exploit this relationship in order to
predict the defectiveness of a future release of a software, knowing the history
of the previous releases. Figures 4.8 and 4.9 show, in a log-log scatterplot,
the relationships between NOC and ABN for the former and between NOC
and CC respectively for the latter. Each color correspond to each set com-
posed by a number of releases, collected according to the chronological order
of the releases. For each distribution we reported the corresponding fitting
line. Tab. 4.5 and Tab. 4.6 report, among the others, the values of the
exponent for the power-law, namely the coefficient of the fitting line. They
refer to different “cumulated” releases for the relationship between NOC and
CC and ABN respectively. The latter Figures confirm that the power-law
like relationship appears in every analyzed release and is a regular behavior
throughout software evolution.

4.3. RESULTS 27

Figure 4.6: Scatterplots reporting the number of communities (vertical axis)
and the sizes of the subprojects (in number of classes, on the horizontal axis).
It clearly shows a linear correlation between the two measurements.

Releases α r χ2 dof

2.1 - 3-0 -1.010 -0.654 0.075 16
2.1 - 3.1 - 0.917 -0.667 0.057 17
2.1 - 3.2 -0.977 -0.715 0.087 20
2.1 - 3.3 -0.986 -0.712 0.119 21

Table 4.5: Results on the power law between maximum Clustering Coefficient
vs Number of communities for Eclipse: exponent α, correlation coefficient (r),
value of Chi Squared (χ2) and number of degrees of freedom (dof).

28 CHAPTER 4. COMMUNITY STRUCTURE AND QUALITY

5 15 25

5
1

0
1

5
2

0
2

5

n. com

a
v
 b

u
g

 n
.

(a) Average Bug Number vs. Number
of Communities

5 15 25

0
.1

0
.3

0
.5

n. comm

m
a

x
 c

c

(b) Clustering Coefficient vs. Num-
ber of Communities

Figure 4.7: Scatterplot of the relationships between the studied metrics.

0.5 1 1.5 2 2.5 3 3.5 4

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

log(n.comm)

lo
g

(m
a

x
 a

v
g

 b
u

g
 n

.)

releases 2.1 − 3.0

releases 2.1 − 3.1

releases 2.1 − 3.2

releases 2.1 − 3.3

Figure 4.8: Eclipse: cumulated log-log plots and best fitting lines of maxi-
mum defect density vs number of communities

4.3. RESULTS 29

0.5 1 1.5 2 2.5 3 3.5 4
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(n.comm)

lo
g

(m
a

x
 c

c
)

releases 2.1 − 3.0

releases 2.1 − 3.1

releases 2.1 − 3.2

releases 2.1 − 3.3

Figure 4.9: Eclipse: cumulated log-log plots and best fitting lines of maxi-
mum clustering coefficient vs number of communities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

6

8

10

12

14

16

18

max cc

m
a
x
 d

e
fe

c
t
d
e
n
s
it
y

releases 2.1 − 3.0

releases 2.1 − 3.1

releases 2.1 − 3.2

releases 2.1 − 3.3

Figure 4.10: Cumulated plots and fitting lines for the maximum defect den-
sity vs maximum clustering coefficient.

30 CHAPTER 4. COMMUNITY STRUCTURE AND QUALITY

Releases α r χ2 dof

2.1 - 3-0 -0.436 -0.920 0.065 16
2.1 - 3.1 -0.393 -0.934 0.059 17
2.1 - 3.2 -0.4302 -0.911 0.056 20
2.1 - 3.3 -0.404 -0.921 0.052 21

Table 4.6: Results on the power law between maximum defect density vs
number of communities for Eclipse: exponent α, correlation coefficient (r) ,
value of chi squared (χ2) and number of degrees of freedom (dof).

Releases r χ2 dof

2.1 - 3-0 0.565 0.633 16
2.1 - 3.1 0.576 0.651 17
2.1 - 3.2 0.677 0.523 20
2.1 - 3.3 0.687 0.547 21

Table 4.7: Fit data for the maximum defect density vs maximum clustering
coefficient: correlation coefficient (r), normalized Chi squared (χ2), and
number of degrees of freedom (dof).

4.4 Discussion

4.4.1 NetBeans
As reported, looking at Figure 4.1 we found a linear correlation between the
number of communities and the number of packages. Correlation is 0.9018
while p-value is almost zero

This correlation value is what we would expect, since both variables are
related to system size, but the sublinear dependence shows that the partition
in packages established by developers is finer than the partition in commu-
nities obtained with the CMN algorithm, which depends on the links among
nodes. Namely, while developers insert classes with the same purposes and
functionalities in Netbeans packages, the community detection suggests in-
stead that there are many interdependencies among such packages, since they
are not seen as separated communities on the base of their connections. This
result is not true for relatively small systems (with less than 100 classes),
where instead the number of packages can be larger than the number of
communities, meaning that single packages are partitioned in communities.

It is interesting to compare our results with the dependence of the number
of packages on the number of classes, which is almost perfectly linear (Fig.
4.2) with linear (Pearson) correlation ρ = 0.9549 and p-value almost zero.

4.4. DISCUSSION 31

This means that developers tend to create packages with roughly the same
number of classes, since the mean number of classes per package remains
constant (around ten, in this case). This is not true for the number of
communities, where the mean number of classes per community increases
with system size.

These empirical data show that the larger the system, the more dense are
the connections among nodes. From the software architecture perspective,
this means that the larger the system, the larger are the groups of classes
directly linked or dependent from each other.

Tab. 4.2 reports the correlations and p-values between mean bug number
and number of communities for both all and for the systems in the range 250-
1200 classes. These different situations should find an explanation from the
point of view of the software development. In fact, the difference appears
when dealing with medium size systems, and is not present for small and
large systems. In the case of small systems the statistics are too low. In fact
systems with less than a few hundreds of classes are hardly divided into many
communities. Thus any relationship existing for the number of communities
is biased by a lower cut-off.

In the case of large systems instead, the statistics are large enough, and
some other mechanism may apply. One possible explanation is the follow-
ing. The partition in many communities implies that classes are arranged
in many relatively small networks, where they are much more coupled than
with the remaining classes of the system. Thus, to obtain a large number
of communities, coupling among classes must be locally high and globally
low. This means that on average classes will tend to have a larger value of
CBO, and this has already been demonstrated to be a bad and fault prone
programming practice [54]. On the other hand, when the system is large,
the complexity increases and developers tend to loose the plain control of
the software graph structure. The global coupling increases and the number
of communities increases as well in a random fashion. Thus the correlation
among mean bug number and number of communities disappears.

The reported results show that, apart from the clustering coefficient, the
Spearman correlation among bug number and community metrics is between
0.5 and 0.8, with p-values below 10−2 (not reported in Tab. 4.3). Fur-
thermore, for almost all systems the percentage of bugs belonging to the
communities with modularity above the median is more than 80%. The me-
dians of modularity of the communities are very close for all the systems,
ranging from about 0.2 to 0.3, with one system presenting 0.45. Thus if one
chooses 0.3 as threshold value for all the systems, the percentage of bugs into
communities above this threshold is close to 80-90%.

Since the bug number in each community increases with community size,

32 CHAPTER 4. COMMUNITY STRUCTURE AND QUALITY

one should ask if the high values for the correlations among bug number
and metrics are due to a trivial correlation between community size and
modularity, average path length and mean degree. To check for a possible
size influence on these correlations, we performed some tests on different
networks. In particular we checked if modularity increases according to the
network size. We first computed the modularity for some networks we built
from scratch whose sizes differ by some orders of magnitude, but sharing the
same community structure.

Next we computed the modularity for a set of networks generated ac-
cording to the Girvan-Newman benchmark [80], using the implementation
provided by Lancichinetti, Fortunato and Radicchi described in [65]. We
found that the modularity computed for these networks does not change sig-
nificantly as the network size increases. This is a counterexample showing
that modularity and the other community metrics are not in general corre-
lated with the size of a network.

In software networks, bugs and size are usually correlated, but our tests
show that community metrics are not always bigger for the communities
containing more classes. For our case study we can conjecture that the high
correlations between bugs and community metrics are not an effect of the size,
but they could depend on the topology of the communities detected by the
CMN algorithm for the given software networks, namely by the way classes
depend on each other. For such networks the CMN algorithm aggregates
classes into clusters which are bigger and with more bugs whenever the three
discussed metrics are larger. Now we can answer to the research questions.

• RQ1: Are there correlations between the community structure and soft-
ware defectiveness?
The answer to this research question is partially positive. In fact, con-
sidering all the 56 systems analyzed there is not net correlation among
the mean bug number and the number of communities. But if one re-
stricts the analysis to medium size systems, a net correlation appears.
We tried to provide a possible explanation for this behavior in the text,
but our hypotheses need to be verified carefully on different systems.

• RQ2: Are there correlations between the community metrics and soft-
ware defectiveness?
The answer is positive for three out of four of the metrics analyzed. We
found very high Spearman correlations for all the 13 systems analyzed
for the modularity, the mean degree and the average path length. We
did not find a systematic high correlation for the clustering coefficient.
We also checked that these correlations were not trivially determined

4.4. DISCUSSION 33

by a size effect. We found that there is a threshold effect so that most
of the bugs, roughly 80%, belong to the communities with modularity
values above the median, which is roughly 0.3 for every subproject.

• RQ3: Do the software networks analyzed present a community struc-
ture that matches the package structure devised by developers?
The answer is in general negative. The CMN algorithm aggregates
classes in communities which do not respect the design devised by de-
velopers, and do not match with the packages. In general the number
of packages is much larger than the number of communities detected.
Furthermore, while the number of classes in packages is roughly the
same, the number of classes in communities increases with system size.
This means that the larger the software systems, the larger are the
groups of classes directly linked or dependent on each other.

4.4.2 Eclipse
We analyzed a large software project using complex network theory with the
aim of achieving a better understanding of software properties by mean of the
associated software network. The results show the existence of meaningful
relationships between software quality, represented by the average bug num-
ber (ABN), and community metrics, in particular the number of communities
(NOC) and clustering coefficient (CC).

The presence of a strong community structure in a software system re-
flects a strong organization of classes in groups where the number of depen-
dencies among classes belonging to the same community (inter-dependences)
is higher with respect to the number of dependences among classes belonging
to different communities (external-dependences). From a software engineer-
ing perspective this goal might be achieved by adopting good programming
practices, where class responsabilities are well defined, classes are strongly
interconnected in groups, and coupling among groups is kept low. Within
this perspective the network modularity can be seen as a proxy for software
modularity.

Figure 4.3 shows that, with the exception of sub-projects with less than
500 classes, the modularity does not increase along with the size, converging
to values that range from 0.6 to 0.7. As reported in Section 3.2.1, these
values indicate that the community structure is significant and well defined.
At the same time Figure 4.6 shows that there is a linear relationship between
the number of communities and the number of classes. Such relationship is
not trivial: the modularity and the number of communities are theoretically
independent by the size [49] and, in general, the number of communities

34 CHAPTER 4. COMMUNITY STRUCTURE AND QUALITY

does not increase with network’s size. Moreover, by and large, there may
be large networks divided in a small number of communities, depending on
the network’s topology. As a consequence our findings suggest that, in the
examined case, it is possible to partition the software networks into a set of
communities, where the number of communities is correlated with system’s
size.

Figures 4.4 and 4.5 report, respectively, the relationship of ABN and CC
with the number of communities. Both metrics have a similar trend, with
values converging to a range between 4 and 12 for ABN and between 0.2 and
0.6 for CC. This means that when the system’s sizes increases the number
of defects stabilizes and the same happens to the clustering coefficient. We
already mentioned the significant increment of the number of communities
with system’s size. Since the increment of NOC is not trivial, this led us to
assume that there might be a relationship among the topology of software
networks, that determines the number of communities, and the other metrics.

In order to investigate this relationship we collected the projects with
the same number of communities into various sets. Any set includes all the
sub-projects that have the same number of communities, which we denote
by k, being k a number in the range from 1 to the maximum number of
communities detected, denoted by kmax. We computed the maximum defect
density and the maximum clustering coefficient of all the projects in the
same set. The results of this analysis are shown in Figures 4.7a and 4.7b
that show the occurrence of the same kind of relationship of CC and ABN
with the number of communities. Moreover, this relationship seems to follow
a power-law trend in the maximum values of both the average number of
bugs (ABN) and the CC associated to each community.

The power law relating the NOC and the maximum values of ABN indi-
cates that the community metrics, specifically the number of communities,
can be exploited in order to evaluate the evolution of the defectiveness of a
software system. In other words, once the relationship between NOC and the
maximum values for ABN is known one can evaluate approximately the max-
imum ABN in a future release of the same system, by computing the number
of communities for that release. This way, we might assume that systems
with the same number of communities should have a number of defects per
class lower than a given value.

The same argument applies to the clustering coefficient of systems having
the same number of communities. The relationship between CC and NOC is
againg a power law. This implies that if the NOC of an initial release (or of
a set of releases) is known, one can in principle predict that in the following
releases the clustering coefficient will not be greater than a certain value.
These results might help developers to estimate the expected maximum ABN

4.5. CONCLUSION 35

for software systems with a known community partition.
Since a power laws relates the maximum values of both CC and ABN to

NOC there must be a relationship between the first two metrics. In order
to investigate the predictive power of the mentioned network metrics, we
performed the following analysis. Specifically, we evaluated if, with a starting
dataset of N releases, the best fitting curve for the cumulated N − 1 releases
could also be a good fit for the Nth release. Figures 4.7a and 4.7b show,
in a log-log scale, the relationship of NOC with ABN and of NOC with
CC, respectively. Tables 4.5 and 4.6 report the power law exponents, the
correlation coefficients, the χ2s and the degrees of freedom (dof) for the best
fitting in log-log scale. These tables show that the power laws parameters
do not change significantly from one cumulated release to another. This
suggests the existence of a progressively more stable behavior during software
evolution, where the fitting with a power law becomes more accurate and
tends to a fixed value as new releases are added in the cumulated dataset.

The scatterplots portraied in Fig. 4.7 show the relationship between
the maximum defect density and the maximum clustering coefficient, for all
the cumulated releases, along with the best fitting straight line. Table 4.7
reports the results for the best fitting for the relationship between CC and
ABN showing that the reported linear correlation is not very high. However,
the χ2 test returns an high level of significance. Table 4.4 reports the results
of the analysis on the forecast for software quality. We computed the ratio
between the χ2 and the degrees of freedom. According to the results reported
on Table 4.5, on the right, the χ2 values are close to 1, meaning that for the
given degrees of freedom the fits are good.

These results can be explained by noting that the larger the clustering
coefficient, the higher is the number of classes linked to each other and the
higher the probability of diffusion of defects among them. The topology of
a software network is characterized by hubs, and the clustering coefficient in
the area of the graph around any hub is higher by definition. If one hub is
affected by one or more defects, it is more likely that these defects will spread
among the classes connected to the hub, increasing the defect density in the
area around it. This would explain the correlation among defect density and
clustering coefficient.

4.5 Conclusion
In this Chapter we reported two studies on the relationship between network
metrics and software quality. The first research is an analysis of a release of
NetBeans, specifically Netbeans 6.0, which is an OO software system written

36 CHAPTER 4. COMMUNITY STRUCTURE AND QUALITY

in Java, consisting of more than 44000 classes and of 56 subprojects. The
second study presented is a longitudinal analysis on the evolution of a large
software system, Eclipse, with a focus on software defectiveness. In both the
studies we built the software networks corresponding to all the subprojects,
and analyzed their structure as complex networks.

We computed several network metrics, including, mean degree, average
shortest path and clustering coefficient, not to mention modularity and num-
ber of communities of the network community structure, using the CMN
algorithm. We extracted the number of bugs from the Issuezilla (for Net-
Beans) and BugZilla (for Eclipse) bug repository, and associate the number
of bugs to the networks nodes representing software classes. In the following
we separately report the results.

NetBeans

Our findings show that, at least for the analyzed release of NetBeans, medium
size sub-projects hold a different community structure, which appears related
to the mean bug number for class. Thus, for these systems, the partition in a
large number of strongly aggregate clusters of classes can carry an enhanced
defectiveness.
We also found that the clustering coefficient and the modularity, when com-
puted for the communities inside a single system, appear to be good indica-
tors for software bugs. We chose the median of the specified networks metrics
(modularity or clustering coefficient) as an appropriate threshold value that
discriminates between highly defective communities and the others. We be-
lieve that this could be a method to select communities when looking for
fault proneness modules, for example during test or maintenance activities.

Eclipse

As well as in the first study, after having retrieved the number of defects and
associated them to the software network classes, we performed a topological
analysis of the system defectiveness. We found a power law relationship
between the maximum values of the clustering coefficient, the average bug
number and the division in communities of the software network. This led to
a linear relationship between the maximum values of the clustering coefficient
and of the average bug number. We showed that such relationship can in
principle be used as a predictor for the maximum value of the average bug
number in future releases.

Chapter 5

Clustering and defects

5.1 Introduction

Software systems are subject to evolution and changes during their develop-
ment and maintenance, but also to code decay. From one release to the next
the system evolves and changes, because new functionalities may be imple-
mented, defects need to be fixed, software needs to be maintained, software
quality must be improved, and so on. In particular, software quality needs to
be monitored during maintenance and development, in order to keep times
and costs as low as possible. This can be done for example by fixing defects,
or addressing in general the Issues reported in Bug Tracking Systems (BTS).
It is well known in fact that software quality is closely related to bugs and
minor fixes, and that it can be kept high by controlling the density of defects
and issues.

The study illustrated in the present Chapter aims at understanding whether
we can determine, starting from a class or a file that has been subject to a
maintenance activity, which other classes or files are good candidates for
corrective or maintenance activities, such as bug fixing or similar. The pur-
pose of this investigation is extremely practical, since this information is very
valuable to developers who start bug fixing on a file, and must then proceed
finding and examining which other classes or files need to be modified as
well, according to the performed activity.

This problem can be easily tackled when the software system is inter-
preted as a network, where classes or files are linked to each other through
software relationships, like dependencies, inheritance and so on. Many soft-
ware systems have been demonstrated to exhibit the structure and to possess
the properties of a complex network [77], [11], [18], [102], [104], [66] and sev-
eral researchers has recently produced meaningful results by applying a com-

37

38 CHAPTER 5. CLUSTERING AND DEFECTS

plex network approach to software systems [107, 12, 48, 68, 89, 77, 64, 104].
From the statistical analysis of software defectiveness it is possible to de-

velop useful models of bug prediction. Many authors have faced this problem
[51, 58], and recently it was shown that the number of bugs in a software
system follows the Pareto law [40, 7, 112]. In particular, in [112] is shown
that the distribution of bugs in software modules can be described by an Al-
berg diagram [83], while in [25] these distributions are fitted very well with
a Yule-Simon distribution, which can also be a valid generative theoretical
model to explain the recurrence of bugs over time in a software system.

In this Chapter we present some results showing that classes or files which
have been subject to a fixing procedure form connected subnetworks or clus-
ters, thus displaying higher coupling inside software network systems. We
compared the number of clusters formed by files affected by different issues,
with the number of clusters formed by a random selection of files. Our results
show that any intervention on the code which can be associated to an issue
“id” inside software repositories is done on classes or files which are intercon-
nected and form clusters, rather than being disconnected and independent.
The analysis reveals a significant tendency of files hit by issues to be linked
to each other. More precisely, files affected by issues present, on average, a
higher density of connections, i.e, higher coupling. This information can be
used to better understand and investigate the quality of a software system
by looking at the topology of its corresponding network, since defects and
issues are more likely to spread among connected classes.

5.2 Experimental setting
We analyzed a total of 7 releases of two large Open Source (OS) Object Ori-
ented (OO) software system written in Java. These are two Integrated De-
velopment Environments (IDE), Eclipse and Netbeans, quite popular among
Java practitioners. They are composed of source files with .java extension,
named Compilation Units (CU): the information about bugs and issues, ex-
tracted from the commit logs, is associated to these files. In Table 5.1 we
review the main features of the analyzed systems.

We built the software network associated to every system, where the
nodes may be classes or files and the edges are relationships among classes,
like dependencies, inheritance, composition and the like. We recovered the
classes and files associated to each code change, namely to each "id" inside
software repositories, by crosschecking information from Bug Tracking Sys-
tems (BTS) and Software Configuration Managers (SCM). Then we analyzed
the classes or files associated to every issue "id" by identifying their positions

5.2. EXPERIMENTAL SETTING 39

Systems n. CUs n. Issues
Eclipse 2.1 7545 55537
Eclipse 3.0 10288 75824
Eclipse 3.3 15439 97093
NetBeans 3.2 3346 25098
NetBeans 3.3 4383 30995
NetBeans 3.4 6264 37080
NetBeans 4.0 9317 47128

Table 5.1: Main features of the analyzed releases of Eclipse and NetBeans:
number of CUs and number of Issues.

and connections inside the software network.
Since the present analysis is aimed at understanding how and to which

extent software defects can spread inside a software systems, and whether we
can find relationships among defective modules, where by modules we refer
to the Java CUs, we checked the tendency of these modules to form clusters.
To verify if there is a net tendency of CUs to form clusters, we carried out
a comparison between the number of clusters formed by CUs reporting any
Issue and the average number of clusters formed by selecting randomly a
number of CUs equivalent to the number of defective ones. We built the
software network of each subsystem by associating the nodes to each CU and
the links to relationships among them.

Then we detected the clusters formed by CUs affected by the same Issue.
We define a cluster of nodes at distance d, inside the software network, as a
set of nodes such that there is at least one path of length d between each pair
of nodes in the set. In this preliminary analysis, we considered the case when
d = 1, which means that the cluster is a connected subgraph, i.e, every node
inside the cluster is connected with at least another node in the same cluster.
Therefore, given a set of n nodes, the number of clusters formed inside this
set can be univocally determined. This number varies from 1, when all the
nodes are connected, to n when all the nodes are isolated. It has to be
pointed out that the links between CUs are considered as undirected, since
clusters do not depend on the direction of edges.

We computed the number of clusters formed by sets of CUs affected by
the same Issue, then we computed the average number of clusters for all the
obtained cases. We then compared this number with the number of clusters
obtained by a random selection of CUs. We selected random sets of n CUs,
with n going from 2 to the total number of CUs in the system, and for each
of these sets we computed the number of clusters at distance 1. We repeated

40 CHAPTER 5. CLUSTERING AND DEFECTS

this process 1000 times for each n in order to get relevant statistics, and
computed the average number of clusters for each random sampling. In this
first step all system CUs were involved, regardless if they were affected by
some Issue or not.

5.3 Results
In Figures 5.1 and 5.2 we report the scatterplots with the results of this
analysis. For each system the plots at the top are relative to the issues,
whereas those at the bottom are relative to the bugs. The blue dotted line
represents the mean number of CUs for the random case and the red dotted
line refers to the real case, namely it refers to the CUs that are affected by
the same Issues. The random selection always results in a linear growth of
the average number of clusters, since the latter is proportional to the number
of selected CUs. The average number of clusters formed by CUs affected by
the same Issue is systematically lower than the random case and it does not
increase considerably as the number of CUs increases. This implies that CUs
affected by the same Issue tend to be connected to each other.

In order to better explain this result we will now focus on two specific
releases of the two systems, NetBeans 4.0 and Eclipse 3.3, considering both
the cases of Issues and Bugs. The plot of the average number of clusters vs
the number of CUs for Eclipse 3.3 is reported in Fig. 5.3, both for randomly
selected CUs and for CUs affected by Issues. The plot for randomly selected
CU can be split in three parts as n increases: the initial linear growth suggests
that for relatively low values of n, around 4% of system size, the CUs are
mainly disconnected since the number of clusters and the number of CUs are
nearly the same. When n increases, CUs start to be more connected and
the plot bends, then the number of clusters decreases after the maximum.
This is due to the fact that after each random selection of CUs, we pick
some of them which are already connected with CUs belonging to clusters
extracted in the previous step. The tail of the distribution can also give
some interesting information on the type of network. The number of clusters
corresponding to the total number of CUs in the system is different from 1,
meaning that there is not one single giant component, namely there are some
isolated CUs or groups of CUs.

In the plot of Fig. 5.3 we report the behavior for CUs affected by Issues
in comparison with the random plot, but since the scale of the former phe-
nomenon is lower than that of the latter, we need to zoom the area around
the origin of the axes. In the case of CUs affected by issues, the number of
clusters is always below a threshold, which is very low compared to the linear

5.4. CONCLUSIONS 41

trend of randomly selected CUs. This threshold is around 5 clusters, showing
that also large sets presenting the same Issues tend to form a small number
of clusters. In Fig. 5.4 we report the same plot for the system Netbeans 4.0:
the behaviour is similar to the previous case, but for the randomly chosen
CUs the plot does not decrease linearly after reaching the maximum. For
NetBeans the number of clusters formed by all the CUs in the system is close
to the maximum, around 800. This shows that Netbeans has more isolated or
disconnected CUs than Eclipse. In the zoom panel we again note that while
the random plot is linear, the clusters formed by defective CUs are below a
threshold which is around 5. Thus, for both systems, CUs affected by Issues
tend to be strongly connected, forming clusters inside the global software
network. Since software defectiveness is related to bugs, we also performed
the same analysis on a subset of the Issues which can be classified as bugs,
as explained in 5.2. The behavior is similar to that of the issues. We report
our results on bugs in plots 5.6 and 5.5.

5.4 Conclusions
We have presented an original approach to understand if Java CUs affected
by Issues are more connected with each other compared to randomly chosen
classes or files inside the systems. This approach relies on extracting Issue
Ids, containing information about bug fixes, enhancements and the like, from
repositories such as SCM and BTS, where developers record all changes to
the code. We analyzed several releases of two popular OO software systems,
NetBeans and Eclipse. We performed a statistical analysis for both the
software systems by comparing clusters formed by randomly selected CUs
with those formed by CUs affected by the same Issue. We found that the
latter CUs typically form a small number of clusters if compared to the
number of clusters formed by randomly selected CUs, meaning that they are
strongly linked to each other. The same result has been obtained also for
CUs affected by bugs.

We believe that our results can help developers to distinguish and decide
which other classes or files are good candidates for corrective or maintenance
operations, once a class or a file has been chosen for the same purpose.
Moreover, since bug fixes generally improve software quality, the clustering
properties of buggy or defective files could be also related to software quality.
Additionally, it is worth to point out that software defects of different systems
have different tendency to form clusters. This tendency could be an helpful
indicator while investigating the defects capability of a software system.

Our analysis is preliminary and could be extended to detect more pre-

42 CHAPTER 5. CLUSTERING AND DEFECTS

0
20

40
60

n. CU

m
ea

n
cl

us
te

rs
 n

um
be

r

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 32 34 40

Eclipse 2.1

Random
issues

0
20

40
60

80

n. CU

m
ea

n
cl

us
te

rs
 n

um
be

r

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 36 38 41 42 45 56

Eclipse 3.0

Random
issues

0
5

10
15

20

n. CU

m
ea

n
cl

us
te

rs
 n

um
be

r

2 3 4 5 6 7 8 9 10 12 13 15 16

Eclipse 2.1

Random
bugs

0
5

10
20

n. CU

m
ea

n
cl

us
te

rs
 n

um
be

r

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Eclipse 3.0

Random
bugs

Figure 5.1: Plots of the mean number of clusters of CUs affected by Issues (in
red two scatterplots at the top) and Bugs (in red two scatterplot at the bot-
tom) vs the number of randomly selected CUs (in blue in both scatterplots)
for Eclipse 2.1 and 3.0.

5.4. CONCLUSIONS 43
0

10
20

30
40

50

n. CU

m
ea

n
cl

us
te

rs
 n

um
be

r

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 25 28 35

NetBeans 3.2

Random
issues

0
10

20
30

40
50

n. CU

m
ea

n
cl

us
te

rs
 n

um
be

r

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 26 33 35

NetBeans 3.3

Random
issues

0
10

20
30

40
50

n. CU

m
ea

n
cl

us
te

rs
 n

um
be

r

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 25 26 32 34 39

NetBeans 3.4

Random
issues

0
10

20
30

40
50

n. CU

m
ea

n
cl

us
te

rs
 n

um
be

r

2 3 4 5 6 7 8 11 16 17 22 35

NetBeans 3.2

Random
bugs

0
5

10
15

20

n. CU

m
ea

n
cl

us
te

rs
 n

um
be

r

2 3 4 5 6 7 8 9 12 15 16

NetBeans 3.3

Random
bugs

0
2

4
6

8
10

12

n. CU

m
ea

n
cl

us
te

rs
 n

um
be

r

2 3 4 5 6 7 8

NetBeans 3.4

Random
bugs

Figure 5.2: Plots of the mean number of clusters of CUs affected by Issues (in
red, the two scatterplots at the top) and Bugs (in red, the two scatterplots
at the bottom) vs the number of randomly selected CUs (in blue in both
scatterplots) for Eclipse 2.1 and 3.0.

44 CHAPTER 5. CLUSTERING AND DEFECTS

0 5000 10000 15000
0

200

400

600

800

1000

1200

N. CU

A
v
g

 N
.

c
lu

s
te

rs

random
issues

0 10 20
0

5

10

15

20

N. CU

A
v
g
 N

.
c
lu

s
te

rs

Figure 5.3: Plot of the mean number of clusters vs the number of randomly
selected CUs (in blue) for Eclipse 3.3. The red dot at the origin of the axes
represents the distribution of the mean number of clusters vs the number of
CUs affected by the same Issue. The panel shows a zooming of the area close
to the origin of the axes, where the comparison between the two statistics is
more evident.

0 5000 10000 15000
0

200

400

600

800

1000

1200

1400

1600

1800

N. CU

A
v
g

 N
.

c
lu

s
te

rs

random

issues

0 10 20
0

5

10

15

20

N. CU

A
v
g
 N

.
c
lu

s
te

rs

Figure 5.4: Plot of the mean number of clusters of CUs affected by issues vs
the number of randomly selected CUs (in blue) for NetBeans 4.0. The red
dot at the origin of the axes represents the distribution of the mean number
of clusters vs the number of CUs affected by the same Issue. The panel shows
a zooming of the area close to the origin of the axes, where the comparison
between the two statistics is more evident.

5.4. CONCLUSIONS 45

Figure 5.5: Plot of the mean number of clusters of CUs affected by bugs vs
the number of randomly selected CUs (in blue) for Eclipse 3.3. The red dot
at the origin of the axes represents the distribution of the mean number of
clusters vs the number of CUs affected by the same bug. The panel shows
a zooming of the area close to the origin of the axes, where the comparison
between the two statistics is more evident.

Figure 5.6: Plot of the mean number of clusters of CUs affected by bugs vs
the number of randomly selected CUs (in blue) for NetBeans 4.0. The red
dot at the origin of the axes represents the distribution of the mean number
of clusters vs the number of CUs affected by the same bug. The panel shows
a zooming of the area close to the origin of the axes, where the comparison
between the two statistics is more evident.

46 CHAPTER 5. CLUSTERING AND DEFECTS

cisely the defective or buggy CUs among those affected by Issues in order
to distinguish which files among those affected by a specific Issue are more
inclined to form clusters. We could also verify whether corrective activities
change the cluster structure of a software network. If this hypothesis could
be verified, it could be possible to make a prediction about which classes need
bug fixing operations, or understand if some classes were fixed, by looking at
the cluster structure in the proximity of the involved classes.

Chapter 6

Inheritance in Python Software
Systems

6.1 Introduction

Inheritance is one of the major features offered by Object Oriented (OO)
programming with respect to other programming paradigms. While it is
visible in many ways, for example appearing in many design patterns [45],
there are also warnings on its misuse or overuse. Being so widely employed
it seems likely that software design is strongly influenced by the extent and
the ways inheritance is adopted by software developers. Different program-
ming languages provide inheritance in different ways and so any investigation
about the use of inheritance must consider that the results can be strongly
influenced by which programming language is involved.

So far there have been several studies on the effects of inheritance on
software maintenance and defectiveness [31, 17, 57, 95, 24, 21, 13, 16, 63].
In this paper, we are interested in the patterns of use of inheritance — what
decisions programmers make with respect to whether they use inheritance,
and how they use it. This question has already been answered to some extent
for Java by Tempero et al. [98], but not for other languages.

In particular, there has been little study of Python, despite the fact that
it is becoming more and more popular among software developers and it
is largely adopted both in the academia and in industry [34, 52, 67]. For
example, TIOBE index1 and Popularity of Language Index (PYPL)2 provide

1http://www.tiobe.com
2http://pypl.github.io/PYPL.html

47

48 CHAPTER 6. METRICS FOR PYTHON LANGUAGE

a measure of Python’s large popularity. StackOverflow3 and GitHub4 shows
how developers largely use Python. OpenHub5, a popular public directory
of Free and Open Source Software, at the moment reports around 68.000
Python projects, confirming the interest toward this language, from the open
source community. In the academic field, Scopus6, one of the most important
bibliographic databases, shows an increasing number of scientific works using
Python language for performing scientific computing or presenting software
developed in Python.

The present Chapter illustrates a research aimed at answering the fol-
lowing question: “How do Python programs use inheritance?”. The answer
naturally depends on how Python supports inheritance, but also on how
effectively developers make use of inheritance in practice. Our study is de-
scriptive, meaning that we are interested in the way Python programs are
structured in the real world.
One major difficulty in performing such kind of empirical research, including
an investigation on the practical use of inheritance, and on the interpretation
of results is due to inaccuracies, ambiguities and uncertainties on the data
sets retrieved by researchers in empirical software engineering which espe-
cially affect reproducibility of the studies. By and large, empirical research
in software engineering often lacks of reproducibility and presents ambigu-
ity of results due mainly to inaccuracies and uncertainties on the empirical
data set used for the analysis. As a consequence, the usefulness of empiri-
cal research conducted on such data, both for scholars and practitioners, is
largely reduced because it is difficult to compare the findings based on dif-
ferent datasets. The research efforts can be significantly improved by using
a representative collection of software systems taken from real world as a
benchmark, in order to enable reproducibility and comparison of the results.
Presently, there exists a curated collection of software, the Qualitas Corpus
[96], but it is limited to Java software systems. With regards to Python
systems, there is nothing to support the research this way, albeit Python is a
programming language of wide adoption both in academia and industry [34].

In order to perform such analysis and in order to guarantee reproducibility
of results, we created and collected a curated corpus of well-known widely-
used Python programs following the guidelines of the Java Qualitas Corpus
(JQC) [96]. As with the JQC, such a curated collection of Python software
systems taken from real world can be used as a benchmark in order to enable

3http://stackoverflow.com
4https://github.com
5https://www.openhub.net
6http://www.scopus.com

6.2. RELATED WORK 49

reproducibility and comparison of the results. It provides a representative
sample of 51 popular Python software systems. After having downloaded all
the systems, we computed several metrics. Additionally we investigated the
internal structure of each system and collected meta-data in order to provide
additional information to allow reproducibility of the results. Our final goal
is to create a curated corpus of Python software similar to the Java Qualitas
Corpus (JQC) [96]. In the meantime we are releasing the dataset of metrics
associated to the software collected so far and we are confident that this
dataset might be useful for researchers interested in conducting empirical
studies on Python systems. This dataset and its documentation is available
on the Promise Repository [4] at the following url:

http://openscience.us/repo/code-analysis/python.html

as are details for acquiring the corpus.
We then performed a complete analysis of the practical use of inheritance

in Python systems, using the metrics suite proposed in [98], investigating
some important features of the accepted practice about inheritance in Python
and the related metrics.

6.2 Related Work
The first work reporting measurements on inheritance is that of Chidamber
and Kemerer [20] using their metrics Number of Children (NOC) and Depth
of Inheritance (DIT). The measurements came from two system written in
C++ and Smalltalk respectively. Several authors tried to assess the validity
of the Chidamber and Kemerer’s study. Daly et al. [31] and Harrison [57]
came to the conclusion that deep inheritance may have a negative impact
on maintenance activities. Two large studies were conducted on different
languages. Succi et al. [95] conducted a study on two large datasets of
100 Java and 100 C++ software systems and Collberg at al. worked on
1132 Java systems [24]. Several studies have been also conducted on Python
code [35, 78]. Some researchers focused their attention on the relationship
between inheritance metrics and system defectiveness (Basili et al. [13] and
Briand et. al [16]). Tempero et al. performed studies on the JQC in order
to understand how much inheritance is used in practice [98] and with which
purpose [99]. The work presented here is a replication of the former, but on
Python. In the earlier work, a number of different metrics were presented.
Many were variations of Chidamber and Kemerer’s original NOC and DIT
metrics. They noted that the NOC and DIT metrics (and variants) provide
measurements only for single types, and so provide only a local view of how

50 CHAPTER 6. METRICS FOR PYTHON LANGUAGE

inheritance is used. They proposed metrics that measure some aspect of how
much inheritance is used in the full system, and in doing so provide a global
view of the use of inheritance. They applied the different metrics to 93 open
source Java applications and presented some of the results. A key finding
was that around three quarters of Java types use some form of inheritance.

An issue with some studies involving analysis of software is the difficulty in
replicating it due to insufficient information being provided on what exactly
was analyzed. Crucial information, such as the version of the system that was
analyzed, or which source files were included in the analysis, are often not
available. On the other hand, reproducibility, reliability and applicability
of results or findings can be significantly improved by the use of datasets
of software systems. For example, some of the works already cited were
performed on dataset of software written in Java (Succi et al. [95], Collberg
at al.) or C++ (Succi et al. [95]). However, the datasets used for these
studies are often not publicly available, and for this reason it is difficult to
reproduce the results. A solution to this is to provide a curated corpus of
software and the associated datasets, including meta-data.

One example of this is the Java Qualitas Corpus (JQC) [96]. JQC’s main
aim is to enable reliable and reproducible empirical studies of Java software.
It provides, as well as the code, metadata describing the contents of the cor-
pus and the criteria for inclusion. A similar project is the Qualitas.class [100]
whose main goal is to enable the research on compiled Java of systems hosted
on JQC. Another repository of Java Software systems for empirical studies
is the Helix Data set [90]. Presently it includes more than 1000 releases of 40
systems and includes also meta-data and data about software defectiveness.
In general, there are actually many available datasets. The Mining Soft-
ware Repositories conference (MSR), since 2013 [114], hosts a data-showcase
session where researchers are called to illustrate and share their datasets.
Additionally, many datasets of the Mining Challenge presented in the MSR
conference are available, for example in the Promise Repository website [4, 70]
where a number of software engineering research datasets are hosted. More-
over, there are also some infrastructures for empirical studies on software
engineering. The DaCapo benchmark [14] and the New Zealand Digital Li-
brary project [111] collect open source Java software. The Software-artifact
Infrastructure Repository (SIR) [37] contains software systems written in
different languages (Java, C, C++, and C#).

However, with the exclusion of the first three reported cases, the cited
datasets can not be described as curated, neither they report metrics for the
collected systems. Additionally, excluding few exceptions such as the work of
Farah et al. [39] and the GHTorrent dataset [50], there is little data available
for Python systems.

6.3. A PYTHON CORPUS 51

6.3 A Python Corpus
This section reports a description of the Python Corpus we built in order to
extend the JQC by including a curated collection of Python software systems.

6.3.1 Dataset Construction
The main goal of this work is to provide a dataset of metrics computed on a
curated corpus of software written in Python, in order to enable researchers
to perform empirical studies on Python systems. To collect the systems we
followed the guidelines adopted for the JQC [96] relying also on our knowl-
edge of the Python community. In general, we considered systems written
in Python that are publicly available in order to allow researchers the ac-
cess to their code. Moreover, we considered systems whose repositories are
hosted on GitHub, to exploit some GitHub features for further studies. For
each system of the corpus, we downloaded the latest available release from
its official repository. In order to have a representative base of code, we con-
sidered systems with more than 50 Python files. Moreover, these files had
to represent more than 50% of the system files. We faced two main issues
when retrieving data for our corpus. The first one is related to the fact that
the source code retrieved from repositories usually contains “infrastructure
code”, i.e., code that is related to the development, management, installation
and test. Some of this code is sometimes included in the official release (e.g,
examples, demo, etc.) whereas some other usually is not (e.g. test code, etc).
This code is not a part of the system, but it is provided to help the user to
get the most out of it. Consequently, taking into account this code while
computing the metrics could bias the results. For this reason, we decided
not to consider test code, examples, code associated to documentation and
the like. The second issue is related to the fact that some systems were not
written only in Python, but presented a significant part of the code written
in another language. In order to deal with this not-Python code we made
a distinction between not executable (Xml, Html, Css, etc.) and executable
code (e.g. C, Javascript, etc.).
• When we found that a project had a significant part of its code that

is not executable, unless this amounts to the majority of the available
code, we included it in the corpus.

• In case we found that a significant part of the executable code was
written in languages different from Python, we discarded the system.

There is a third case, where we found that a significant part of the executable
code is written in a language other than Python, but that code is somehow

52 CHAPTER 6. METRICS FOR PYTHON LANGUAGE

mandatory for the domain of the application. It is the case of scientific
libraries like matplotlib that delegate some computations to most efficient
C language functions. In this case we included the system in our corpus,
unless the not-Python code was the vast majority of the available code.

6.3.2 Dataset Description
The present corpus is composed by 51 popular Python software systems,
whose names 7 are reported in the frame on Fig. 6.1. Table 6.1 illustrates
the representativeness of the dataset, reporting the different domains along
with the number of systems belonging to each domain. The corpus includes
open-source public available systems, in order to allow researchers to access
to the code. We focus mostly on systems hosted on GitHub to exploit some
GitHub features in future work.

The corpus includes the latest available release of each system downloaded
from its official repository. We analyzed the source code in order to remove
the “infrastructure code”, namely the code used during the development and
for management, test and installation purposes, that sometimes is included
in source code available on the repositories. Including this code would have
biased the metrics’ computation, since this code is not actually a part of the
system, but it is included to support the user to better and easier use it.

Additionally, while building the corpus, we found that a significant part
of some systems is written in languages other than Python. In these cases, we
included only systems that contain a significant part of non executable code
(XML, HTML, CSS, etc.), considering those that contain a meaningful part
of executable code (e.g. C, javascript, etc.) just when it was mandatory for
the Python system to properly work. The latter is the case of some scientific
libraries like matplotlib that rely on code written in C to perform some
computations more efficiently. The corpus includes also several code metrics
computed with Understand [103], and it is available with its documentation
on the Promise Repository [4] as are details for acquiring it8.

To provide an understanding of the representativeness of the corpus, we
provide some summary statistics. Systems’ size spans a large range, from
48 to 5587 classes and from 2626 to 687058 lines of code, as it is shown in
Tab. 6.2. Figure 6.2 displays also the boxplot of the number of classes per
system, showing a non uniform distribution with a large fraction of small
systems and fewer large systems, and five outliers (two overlap each other)

7Names include the systems’ release number or the release tag taken from their respec-
tive repositories.

8http://openscience.us/repo/code-analysis/python.html

6.3. A PYTHON CORPUS 53

Table 6.1: Domain representation of Corpus

Domain No
Additional Development Package 5
Applications 21
Graphic framework 2
Math library 4
Scientific package 9
UI framework 2
Web Application 1
Web Framework 7

“Astropy v1.0rc1” “Biopython biopython-165” “BuildBot v0.9.0-pre”
“Calibre v2.23.0” “CherryPy 3.5.0” “Cinder 2015.1.0b3” “Django 1.7a2”
“Emesene v2.12.9” “EventGhost v0.4.1.r1640” “Exaile 3.4.4” “Glob-
aLeaks v2.60.63” “Gramps gramps-2.90.0-beta” “Getting Things Gnome!
0.3.1” “OpenStack - heat 2015.1.0rc1” “IPython rel-3.0.0” “Kivy 1.9.0”
“OpenStack - magnum 2015.1.0b2” “GNU Mailman 0.6c9” “Open-
Stack - manila 2015.1.0b3” “Matplotlib v1.4.3” “Miro v6.0” “NetworkX
networkx-1.9.1” “OpenStack - neutron 2015.1.0b3” “Nova 2015.1.0b3”
“NumPy 1346-g3c5409e” “Pathomx v3.0.0a” “Python Imaging Library
2.8.1” “Pip 6.1.1” “Plotly 1.6.12” “Portage v2.2.18” “Pygame 1.9.1” “Py-
ObjC 3.0.4” “Pyramid 1.5” “PYthon Remote Objects 4.35” “Quod Libet
3.0.1” “SABnzbd 0.7.11” “Sage 6.5” “scikit-image v0.11.0” “scikit-learn
0.16-branching” “SymPy sympy-0.7.6” “TurboGears2 tg2.3.4” “Tornado
v4.1.0” “Trac 1.0“ “Tryton 3.4.0” “Twisted 15.0.0“ “Veusz veusz-1.22”
“VisTrails v2.2-pre” “VPython 1.5” “web2py R-2.10.3” “wxPython 1.5”
“Zope 2.13.22”

Figure 6.1: List of the analyzed system

54 CHAPTER 6. METRICS FOR PYTHON LANGUAGE

0 1000 2000 3000 4000 5000

Number of Classes per System

N. of classes

Figure 6.2: Boxplot of number of classes per system

with more than 3000 classes, namely Calibre, EventGhost, Sage, VisTrails
and WxPython.

The largest systems are Sage (maximum number of files) and WxPython
(maximum number of classes), which are respectively a library for scientific
computing and a cross-platform GUI library. The smallest systems are Pyro4
(minimum number of files), a library for remote object management and
plot.ly (minimum number of classes), a library for creating browser-based
graphs. Sage and Pyro4 are respectively the largest and the smallest system
even if one considers the Lines of Code (LOC) and Non-Comment Lines of
Code (NCLOC) metrics.

The presented dataset contains metrics associated to a corpus of 51
Python systems, belonging to different application domains as reported in
Table 6.1. Along with several metrics, for each system we report meta-data
to provide information about the systems. The meta-data are the following:

System: a unique identifier for the system.

Description: a description of the system.

Sysver: a unique identifier for the system version

6.3. A PYTHON CORPUS 55

Metric Min Max Mean Median
N. Files 22.0 1590.0 357.4 249.0
N. Classes 48.0 5587.0 904.0 506.0
LOC 2626 687058 67838 32471
NCLOC 2425 657523 63816 30717

Table 6.2: System size values

Fullname: the full name of the system.

Domain: the application domain for the system.

Python Software Library Version (PSLv): which version of the Python
Standard Library the system is compliant.

License: license under which the system was released.

LOC: number of line of code for the entire system.

NCLOC: number of line of code (excluding comments).

N_Files: number of files.

N_Classes: number of classes.

Url: url of the official site.

Repo_url: url of the official repository.

Download_date: date of the download from the repository.

All this data are reported in a comma separated values (CSV) file. We
considered three different kind of metrics:

• Size/Volume metrics;

• Complexity metrics;

• Object-Oriented metrics.

Depending on which kind of metrics is considered, it is possible to obtain
information about the dimension of a software system, its complexity (e.g.
McCabe Cyclomatic Complexity) and about object oriented properties (e.g.
Chidamber and Kemerer metrics). For, example, we computed 13 size met-
rics - including Line of Code (LOC) and Comment Line of Code (CLOC). To

56 CHAPTER 6. METRICS FOR PYTHON LANGUAGE

calculate these metrics we used Understand 3.1 (build 766) [103]. For each
system, we provided metrics for 3 different levels of granularity: system, file
and class level. Metrics are contained in files named following the pattern:
<system_name>-<entity_name>-<metrics_kind>_metrics.csv.
<system_name> is self explanatory whereas <entity_name> corresponds to
the level of granularity analyzed and could be File or Class. On the other
hand, <metrics_kind> corresponds to a category of metrics (volume, com-
plexity and object oriented). For example, the object oriented metrics asso-
ciated to the files of Zope are reported in a file called
Zope_file_oo_metrics.csv. Global metrics at class and file level are re-
ported in two files called respectively
class.metrics.global.selected.csv and
file.metrics.global.selected.csv. System meta data are reported all
at once in a file named system.meta.data.csv.

6.3.3 Limitations
In this paper we presented a dataset of metrics associated to the first release
of a curated collection of Python systems that could be used to perform em-
pirical research. Being the first release of an ongoing work (that is meant
to be maintained along the years in the future as it happens for the Java
Qualitas Corpus [96]), there are several limitations. The most important is
that at the moment the dataset contains only the last version of the col-
lected systems. A second limitation is that the systems have been retrieved
from repositories, and we have not yet performed a thorough analysis of the
internal dependencies with third party libraries hosted in repositories or re-
leased along with the source code. Thus, there is the possibility that the
code base might differ from that available from other sources (i.e. Python
Package Index [2]). At the moment, there are some application domains that
are under-represented (e.g. Web Application): as future work we plan to put
effort in order to increase the number of systems in these categories and,
in general, enhance the corpus representativeness. Despite the mentioned
limitations, we are confident that the provided data can be an interesting
source of information for researchers interested in investigating Python sys-
tems properties and development.

6.3.4 Research Opportunities
Even if Python is a widespread programming language both in academia and
in industry, there are few empirical studies on Python software compared to
other languages, i.e., Java. For this reason there are many research oppor-

6.4. METHODOLOGY 57

tunities for scholars, starting from replication studies that can be performed
on Python systems, in order to assess if the already found results apply also
to Python. The kind of studies that might be supported by this dataset
are mainly those that involve a static analysis of Python code. In this per-
spective there are many specific features of Python language that are not
available for Java software (e.g. dynamic binding, multiple inheritance, etc.)
that could be investigated to understand how they are used by developers.
A comparison of the usage of some Python features in a specific application
domain with their counterpart on Java could lead to interesting results. The
provided metrics can be compared with other measurements of different na-
ture [28] taken from the associated repositories (e.g., social metrics) or the
corresponding Issue Tracking Systems (e.g. number of issues, etc.), or for
patterns detection [36, 47]. Since we provided a categorization for the soft-
ware systems in the corpus, software metrics can be also used to investigate
specific differences among systems, depending on the application domain.
Additionally, it could be interesting to investigate if and how metrics change
among different components of the same system. It could also be interest-
ing to study different properties of systems that share the same application
domain but are written in different languages.

6.4 Methodology

6.4.1 Modelling Inheritance

Wemodel inheritance in Python by adapting the model proposed by Tempero
et al. [98]. They used a Directed Acyclic Graph (DAG) where types are
vertices and edges indicate some form of inheritance relationship between
the types directed from the child type to the parent type. As Python does
not have the Java equivalent of interface, our model only has one kind of
vertex (class) and one kind of edge. As Python allows multiple inheritance,
the result is still a DAG (not a tree). We exclude the __builtin__.object
class and all the exception classes, as developers have no choice but to use
inheritance with these. Only edges that are incident on at least one system
class are included, that is, there are no edges between Standard Library
(SL) classes. In order to retrieve the DAG we parsed the source code using
Understand [103], a well-known software for code analysis.

58 CHAPTER 6. METRICS FOR PYTHON LANGUAGE

6.4.2 Inheritance Metrics

We distinguish between local and global inheritance metrics. Local metrics
provide measurements for a single class whereas the global metrics provide
measurements on the overall system. We use the subset of the metrics pro-
posed by Tempero et al. appropriate to Python, as described below.

Local metrics

• NOC : Number of Children — the number of classes inheriting directly
from the class, that is, the number of vertices with an edge leading to
the vertex representing the class.

• NOD : Number of Descendants — the number of classes inheriting
transitively from the class, that is, the number of vertices with a path
leading to the vertex representing the class.

• NOP : Number of Parents — the number of classes the given class
inherits directly from, that is, the number of vertices reachable via an
edge from the vertex representing the class.

• NOA : Number of Ancestors — the number of classes the given class
inherits transitively from, that is, the number of vertices reachable via
a path from the vertex representing the class.

• DIT : Depth of Inheritance Tree — the longest path from a class to all
its ancestors

Global metrics

• DUI : Defined Using Inheritance — the percentage of classes using
inheritance, namely the fraction of children classes, that is, the per-
centage of vertices that have an outgoing edge.

• IF : Inherited From — the percentage of classes inherited from other
classes, namely the fraction of parent classes, that is, the percentage
of vertices representing system classes (not SL or third-party classes)
that have an incoming edge.

6.5. RESULTS 59

Metric Max Metric Value System
NOA 419 wxPython
NOP 317 wxPython
NOC 376 VisTrails
NOD 1829 wxPython
DIT 11 buildbot

Table 6.3: Maximum values for local metrics

6.5 Results

6.5.1 Local Metrics
Table 6.3 shows the maximum values for the local metrics. Figure 6.3 reports
the frequency distributions of NOA, NOP, NOC and NOD metrics for all the
classes in the entire dataset. The top two plots report the metrics from a
bottom-up perspective (NOP and NOA), namely for classes inheriting from
others, whereas the bottom ones report the metrics from a top-down perspec-
tive (NOC and NOD), for classes inherited by other classes. All distributions
consistently show a large number of classes with low values of the metrics,
and a decreasing trend, roughly linear in a log-log scale, where the number
of classes decreases when the metric values increase. But there is also a scat-
tered right tail for large values of the metrics, suggesting a complex pattern.

In order to check for the existence of some power-law relationship among
the metrics and the number of classes we performed a best fitting analysis
according to the method proposed by Clauset et al. [23]. The results are
displayed in Fig. 6.5 where the values for the Kolmogorov-Smirnov test (KS)
are also reported, in order to evaluate the best fitting quality. Considering
a level of confidence of 0.10, the KS value for each fitting is quite low (sig-
nificantly under the chosen value) meaning that none of the distributions of
local metrics are following a power-law. All figures indicate cut-off values on
the right tail, where the distribution suddenly changes shape.

Figure 6.4 reports the distribution of DIT values over the entire dataset.
The max DIT is 11, and the distribution is strongly skewed with very few
classes having DIT larger than 7-8.

6.5.2 Global Metrics
Figures 6.6 and 6.7 report the histograms for the distributions of the DUI
and IF metrics for all the systems. DUI values are spread along all the

60 CHAPTER 6. METRICS FOR PYTHON LANGUAGE

1 2 5 10 20 50 100 200 500

1
10

10
0

10
00

NOA values

N
. o

f c
la

ss
es

NOA

1 2 5 10 20 50 100 200

1
10

10
0

10
00

NOP values

N
. o

f c
la

ss
es

NOP

1 2 5 10 20 50 100 200

1
10

10
0

10
00

NOC values

N
. o

f c
la

ss
es

NOC

1 5 10 50 100 500

1
10

10
0

10
00

NOD values

N
. o

f c
la

ss
es

NOD

Figure 6.3: Frequency distributions of local metric measurements

1 2 5 10

5
10

50
50

0
50

00

DIT

N
. o

f C
la

ss
es

Figure 6.4: Frequency distribution for DIT

6.5. RESULTS 61

●

●
●

●
●●●●●

●●
●●●●● ●●●●●●● ●●●●

●●●●●●●●●●●●●●●
●
●
●

●

1 2 5 10 50 200

1e
−

04
1e

−
02

1e
+

00

NOA

P
r(

X
 >

=
 x

)

(KS,a)= (0.033 , 1.987)

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●● ●

●
●
●

●

●

1 2 5 10 20 50 200

1e
−

04
1e

−
02

1e
+

00

NOP

P
r(

X
 >

=
 x

)

(KS,a)= (0.0207 , 3.2412)

●

●
●

●
●●●

●
●●●●●●●●●●●●

●●●
●

●
●●●●●● ●●

●
●
●

●

1 2 5 10 50 200

1e
−

04
1e

−
02

1e
+

00

NOC

P
r(

X
 >

=
 x

)

(KS,a)= (0.0706 , 2)

●
●

● ●●●

●●

●●●●●
●●●●●●●●● ●

●
●

●

1 5 50 500

1e
−

04
1e

−
02

1e
+

00

NOD

P
r(

X
 >

=
 x

)

(KS,a)= (0.0492 , 1.6126)

Figure 6.5: Complementary cumulative frequency distributions (CCDF) for
local metrics

62 CHAPTER 6. METRICS FOR PYTHON LANGUAGE

Defined Using Inheritance (DUI)

DUI measurements

n.
 o

f a
pp

lic
at

io
ns

0
2

4
6

8

0 10 20 30 40 50 60 70 80 90 10
0

Figure 6.6: Frequency distribution for the DUI metric

Inherited From (IF)

IF measurements

n.
 o

f a
pp

lic
at

io
ns

0
5

10
15

0 10 20 30 40 50 60 70 80 90 10
0

Figure 6.7: Frequency distribution for the IF metric

6.6. DISCUSSION 63

possible range, from 15% to 95%, meaning that the fraction of classes defined
using inheritance can vary largely from one system to another. Although the
distribution of values for DUI is somewhat irregular, the majority of systems
have values that are in the high part of the range. The median is 55%. This
means that a significant number of the classes are defined using inheritance.

On the contrary the range for the IF distribution histogram is much
narrower ranging from 5% to 40% and with a peaked shape around 20%,
meaning that the fraction of classes inherited from other classes is roughly
the same for all the examined systems. The median is 22%. This suggests
that, even if we have a lot of classes defined using inheritance, the inherited
classes are a small percentage of the available classes.

6.6 Discussion
In comparison to the study of Java, we see broadly similar results but some
differences in detail. As with Java, the Python local metric measurements
have distributions that are somewhat similar to power-law distributions. In
particular, measurements for relationships that are from a top-down per-
spective (NOC and NOD) are much closer to a power-law (straight line on
a log-log scale) than those from a bottom up perspective. Unlike the Java
results, the Python measurements show clear departures from a power-law
or anything like it. Figure 6.5 shows power-law fits performed on the com-
plementary cumulative distribution with the method presented by Clauset et
al. [23]. The results indicate that the distribution does not fit a power law
distribution. The reported values of KS are in fact quite low.

The similarity between the two languages suggests that such distributions
might be expected in other languages. We should note that such distributions
were also hinted at in early empirical data [20]. The differences need to be
understood. It could be that they are an artifact of the corpora used (in
particular, the Python corpus is smaller), or it could be an indication of
something different in how inheritance is used in the respective languages.

Multiple inheritance does not seem to play a marginal role in Python. As
we can see in the complementary cumulative frequency plot in Fig. 6.5, about
10% of the classes have 2 or more parents. Again looking at Fig. 6.5, there is a
point where there is a noticeable drop in the values. This could be due to the
presence of some outliers, but there might be also another explanation. The
graph of the systems formed by the inheritance relationships among classes
is widely unconnected, with a relevant part of it formed by smaller directed
graphs and a few larger graphs that do not constitutes a giant component.
Being the maximum connected component for these graphs relatively small,

64 CHAPTER 6. METRICS FOR PYTHON LANGUAGE

Table 6.4: Spearman correlation between mean values of the metrics and size
(n. of classes)

size mean.NOC mean.NOD mean.NOP mean.NOA
size 1.000 0.676 0.678 0.730 0.715
mean.NOC 0.676 1.000 0.881 0.774 0.800
mean.NOD 0.678 0.881 1.000 0.715 0.944
mean.NOP 0.730 0.774 0.715 1.000 0.795
mean.NOA 0.715 0.800 0.944 0.795 1.000

for each system there is no chance to find a number of children over a certain
threshold, that fixes an upper bound for our distribution in correspondence
of the the cut-off values.

As we can see from Table 6.4, the very high value of the correlation among
the NOA and the NOD metrics suggests a sort of symmetry in the usage of
inheritance between classes inheriting from and classes inherited by. In fact
such very strong correlation, which is computed on the averaged values of
NOA and NOD for the entire systems, means that when the average NOD
is low so is the average NOA and vice-versa.

Considering the role the multiple inheritance mechanism provided by
Python, we have devised two extreme situations. In the first, the system
DAG is slim and tall, for example a linear direct graph. In this case the sit-
uation is completely symmetric between ancestors and descendants, and the
addition of one more child involves also the addition of one more parent. But
the limited values of DIT suggest that this mechanism must stop after a few
steps. Nevertheless, as already reported, examining the inheritance graphs
we found many unconnected subgraphs corresponding to one system. This
justifies the presence of a large number of smaller graphs structured in the
way described above, which may account for the symmetry. In the opposite
situation the graph is fat and shallow in both directions, namely the bottom-
up, going from children to parents, and the top-down, going from parents
to children. This means that the multiple inheritance practice is relatively
diffuse among Python programmers and there are quite enough classes inher-
iting from many parents. This might be supported by the results reported
in Fig. 6.3, where the values of NOP are not rarely larger than 10 or even
more.

The results for DUI and IF are also both similar to and different from
the Java results. Like the Java results, the distributions seem more normally
distributed. In fact, a Shapiro-Wilk test for normality does not rule out their
being normally distributed (p ≈ 0.21, 0.11 respectively). The normality of the

6.7. THREATS TO VALIDITY 65

distribution is less pronounced for the Python DUI measurements, but this
could be due to the smaller sample size. The Python medians differ from the
Java medians for both DUI and IF reported by Tempero et al. (74% and 17%
respectively). According to a Mann-Whitney test the differences between
Java and Python for both DUI and IF was significant at the 0.01 level. This
suggests that on average fewer classes are defined using inheritance in Python
than in Java, but more are used in inheritance relationships. One possible
explanation is that the fan-out (NOC) for Python is lower than for Java.
This is not supported by the NOC measurements. Another explanation is
that fan-in (NOP) is higher for Python. This is consistent with the use of
multiple inheritance we noted above.

6.7 Threats to Validity
The present work suffers from some threats to validity, that we are reporting
in the following. There are some construction threats, related to the adopted
dataset. The systems have been retrieved from repositories, and even though
we have discarded the classes evidently part of the infrastructure code (such
as test classes, or examples) we have not performed a thorough analysis of
the internal dependencies with third party libraries. Sometimes it happens
that developers host also third party libraries. Moreover, it could also be
the case that the code base might differ from that released in the official
websites (i.e. Python Package Index [2]). Nevertheless, because of the way
the corpus was developed [85] we are confident that the effects of such issues
is likely to be quite small. Additionally, there are some domains that are not
well represented in our corpus, which may consequently influence the results
of our analysis. However this would only be the case if there are significant
differences in how inheritance is used in different domains. In our manual
investigation of members of the corpus we saw nothing to suggest that this
is the case, and the fact that no one system dominates the maximum values
(Table 6.3) supports this.

6.8 Conclusion
In this chapter we presented an empirical study on the use of inheritance
in Python systems, replicating a previous study of Java by Tempero et al.
[98] We chose the metrics from that work, we applied them and gathered
measurements for these metrics from 51 Python systems that came in a
variety of sizes and from a number of different domains.

66 CHAPTER 6. METRICS FOR PYTHON LANGUAGE

We firstly described the curated collection of Python systems we built,
along with the associated dataset of metrics. We illustrated the motivation
that led us to build the corpus, the main issues involved in creating it, pro-
viding a description of the dataset and its limitations. We also reported some
suggestions about the use of this dataset for empirical studies of Python sys-
tems. The main goal of this corpus is to provide a benchmark for empirical
studies of Python systems that allows reproducibility of results and lowers
the cost of experiments. This corpus is intended to be a constant work in
progress [59].

In the future we plan not only to increase the number of systems available
in the corpus, but also to include different versions of the same system to
promote longitudinal studies. We are also considering to add information
about the development process taken from the official repositories, along
with information from issue tracking systems.

The second part of the present Chapter presents a study on the use of
inheritance in Python software system. The study was conducted on the
Python Corpus. We found that overall small measurements from (local)
metrics for individual classes tended to be the majority with a roughly pro-
portional reduction in number of classes as measurements increased. Our
results suggest that multiple inheritance is quite common in Python soft-
ware systems. However, unlike in other similar studies, we could not confirm
that the measurements followed a power-law distribution. The complemen-
tary cumulative distributions confirm that there is not a power-law trend and
display a cut-off for values over a metric-dependent threshold. We believe
this behavior could be related to the presence of outliers as well as to the
topology of the direct graph of the inheritance relationships among classes.
Measurements for the (global) metrics that measure overall use of inheri-
tance in a system were normally distributed. These indicated that for more
than half the systems, more than half (DUI median of 55%) the classes in
the systems relied on inheritance for their definition. Also, about one fifth
(IF median 22%) of classes are parents of other classes. Of particular inter-
est is that the global results are different to those for Java, with the DUI
measurements for Python being on average smaller than for Java, but the IF
measurements being larger. This supports the use of inheritance being higher
in Python than in Java. This provides clear evidence indicating that inheri-
tance is used differently in different languages. Our study provides another
data point to help us understand how inheritance is used. Many more data
points are needed to complete our understanding. This include replications
of this study for other languages, and more in-depth studies of the purpose
for which programmers use inheritance.

Chapter 7

Refactoring and Complex
Networks

7.1 Introduction

Software systems evolve to meet new needs and often new features are added
over time. It could happen that after several months and new versions,
the code needs to be rewritten or abandoned or, eventually, if nothing is
done on it, it will go through code decay. Software maintenance has the
purpose of avoiding this by performing activities such as the addition of
functionalities, but it requires lots of efforts and time. With good design and
advance planning, refactoring can help in software maintenance.

According to Fowler’s definition [43], refactoring consists in rearranging
the internal structure of a piece of software without altering its external be-
havior, in order to improve code functionality and readability. It has the
advantage of requiring short-term time and low work costs and allows to
get long-term benefits. Refactoring is different from other activities such as
rewriting or debugging code, or adding features or bug fixing. It is aimed
at improving software design by making it more extensible, flexible, under-
standable, and at improving performance.

Since refactoring can be applied to classes which are strongly connected
with each other, its impact can extend over the single class to involve other
related classes. This phenomenon is studied in this Chapter using a soft-
ware network approach [64, 108, 66, 77, 89], where classes are represented by
network nodes and relationships among classes (such as inheritance, compo-
sition, etc.) are represented by network links.

This perspective allows to study software elements in the context of their
reciprocal relationships, without neglecting the aspects that could be mea-

67

68 CHAPTER 7. REFACTORING AND COMPLEX NETWORKS

sured with the traditional metrics [19, 69].
Our goal is to perform a software network analysis of refactorings to

understand if they are related to the network structure, in order to retrieve
information which can be useful when planning refactoring activities, or to
make predictions on future refactorings. To our knowledge, how and to
which extent the impact of refactoring can spread over the associated software
network has not been thoroughly studied so far.

In this chapter we are presenting the results of an analysis conducted on
two datasets formed by several releases of a number of popular open source
software systems written in Java (i.e. Ant, Jtopen, etc.). We are specifically
interested to understand whether refactoring operations are applied randomly
on the nodes of the software network or if they mostly involve classes that are
linked together. In other words, we aimed at figuring out if developers apply
refactoring taking into account just the class properties, not considering their
dependency from other classes, or if they accidentally or explicitly evaluate
the impact of the performed refactoring on the neighboring classes, namely
on the network topology.

In the first case, refactoring operations should look like random interven-
tions on the nodes corresponding to classes, whereas in the second one we
expect to find connections among the different refactored classes, that we are
referring to as clustering. If refactoring shows the tendency to spread among
linked classes, this information could be helpful for developers to make pre-
dictions, to keep track of which classes need to be refactored, or to detect
other code smells.

For every system we retrieved the associated software network by parsing
the source code looking for relationships between classes (like dependency,
inheritance and collaboration). We then relied on RefFinder to recover all
the refactorings related to these systems, and associated them to the corre-
sponding nodes in the software network. RefFinder works by comparing two
different versions of the same piece code, belonging to two different releases
of the same system. It uses a template-reconstruction approach and, to the
best of our knowledge, it represents the state-of-the-art tool for refactoring
detection [62, 88, 3].

To gain information about clustering properties of refactored classes, we
compared sets of refactored nodes to randomly chosen nodes. To understand
if refactoring activities spread among connected classes, we analyzed the
neighbors of refactored classes in the software networks, looking for other
refactorings, and then performed again a comparison with classes randomly
selected. Other recent works [74, 75] analyzed refactorings in the context of
software networks, presenting a relationship between refactorings and node
degree, but not analyzing clustering properties.

7.2. EXPERIMENTAL SETTINGS 69

Our results show that refactored classes tend to be more connected than
randomly selected classes, and the analysis on the first neighbors indicates
that devising the topological structure of the software network can be of help
in identifying which classes need to be refactored. The reported results are
purely empirical and, at the present stage we have not yet found a specific
cause or explanation for these findings. Nevertheless, we consider them quite
interesting because they appear counterintuitive.

The innovative approach is to combine information gained by analyz-
ing source code differences given by RefFinder and a topological analysis on
software networks. We believe that the information retrieved by this kind of
analysis can help developers to identify a subset of classes to be involved in
refactoring activities that could be worth to consider during software devel-
opment. In fact, according to the definition of refactoring, it is mandatory
that the changes performed on source code do not alter software external be-
havior. Thus refactored classes should have on average the same connection
density as other classes. On the contrary, we found that refactored classes
are more tightly connected than average.

To perform our analysis, we build the software networks associated to
every release of our software projects and try to identify refactored classes
and network connections among them.

7.2 Experimental Settings

7.2.1 Datasets
Our investigation is structured in two consecutive experiments, performed
on two datasets of open source software system written in Java. The two
dataset significantly overlap being formed by the same system, with some
differences. The first dataset is composed by 5 systems: Ant, Azureus, Jedit,
Jena and Xalan. In total, we have analyzed 29 releases, for a dataset of tenths
of thousands of classes. The second dataset is composed by 7 systems: Ant,
Azureus, Jedit, Jena, Jtopen, Tomcat and Xalan, for a total of 66 releases
studied. The analyzed systems belong the the Java Qualitas Corpus [60],
[97] (release version 20101126e)

7.2.2 Analisys
The experimental setting is structure as it follows. It consists in:

1. Retrieving the software network.

70 CHAPTER 7. REFACTORING AND COMPLEX NETWORKS

2. Retrieving the refactoring by means of RefFinder.

3. Associating the refactoring to the corresponding classes.

4. Performing the computation (as described in the following).

We also performed several tests on some kind of toy classes that we built
from scratch in order to figure out if RefFinder is able to properly detect
refactoring operations and to associate them to the right classes. In particu-
lar, we checked if RefFinder retrieves refactoring in the correct way, avoiding
side effects on connected classes. In fact, an error in associating the refac-
torings to the proper classes would introduce a bias on the analysis of the
connectivity of the classes.

Consider, for example, the case of “rename method” refactoring. When
this refactoring is performed on a class, the renamed method is called also
in the connected classes. However, the refactoring was performed on the
first class and not on the connected ones. We would like to check whether
RefFinder associated this specific refactoring to the classes where it was per-
formed and not to its connected classes which call the renamed method.
These connected classes would undergo code changes which should not be
retrieved as refactorings. RefFinder could have introduced a bias, since in
the successive analysis we label the classes as refactored according to the
output that it provides. In order to check this out, we built a simple network
of connected classes, and performed a “rename method” refactoring on some
of them. As a result, we found that this refactoring is properly associated to
the classes where it was performed, namely the classes to which the method
belongs to, as it should be, and not to their connected classes.

7.2.3 Refactored Classes vs Random Classes
We built the undirected network corresponding to each release by associating
nodes to Java classes, and links to relationships among them, like inheritance,
composition, dependencies, aggregation, association and so on. These rela-
tionships have been obtained by parsing the source code. We extracted the
maximal connected component of the obtained software networks and per-
formed our analysis on them.

We then used RefFinder [3] to extract the information about refactor-
ing activities for each release. RefFinder analyzes the differences among
source codes of two releases, the source and the target, and identifies the
occurred refactoring operations. We analyzed only the refactorings associ-
ated by RefFinder to the source release, and we discarded the refactorings

7.2. EXPERIMENTAL SETTINGS 71

associated to the target release. Every refactoring was associated to the cor-
responding class, and so we were able to understand if classes affected by
refactoring are connected or not.

After retrieving the refactorings on a class, we associate them to the
corresponding node in the software network and looked at the links among
refactored classes in the software network, with specific regards to the clus-
tering phenomenon. With the term “clustering” we mean the tendency of
refactored classes to form subnetworks composed by connected nodes. The
most general definition of cluster we devised is the following: we consider a
set of n nodes as belonging to the same cluster if there is a path of length d
connecting each pair of nodes inside the set. In this work we limit our study
to the case of d = 1, so we consider clusters as connected subnetworks. We
analyze the clusters formed by classes involved in different refactorings and
perform a comparison with clusters formed by randomly chosen classes.

Our hypothesis is that when a refactoring is applied, the involved classes
have a higher probability of being connected with each other. To verify
the hypothesis we selected in the software network the classes affected by
a specific refactoring and denoted with n their number. Inside this set of
size n we computed the number c of independent clusters. The number
of clusters c varies from 1, when all classes are connected into one single
cluster, to n when all the selected classes are isolated. We compared c with
the corresponding number of clusters crand obtained examining a number n
of classes selected at random in the entire software network. In this last case
we performed 100 samplings and computed the average number of clusters.
If classes involved in the same refactoring are on average more connected, the
number of clusters they form must be lower than the corresponding number
obtained for randomly selected classes, on average.

Since we consider the links between classes as undirected, the clusters
do not depend on the direction of edges. We have found clusters formed by
classes affected by refactoring, and compared the number of these clusters
with the average number of clusters formed by a random selection of a number
of classes equal to the number of refactored classes.

Afterwards, we tried to understand if the knowledge of network nodes
corresponding to refactored classes may be used to infer which other classes
may be in need of refactoring. To check this conjecture we selected a random
subsample of all refactored classes to start from, about 10% of the total,
and looked for refactored classes that were close to the starting set. To
get a measure of closeness, we selected their first neighbors, namely the
classes at distance d = 1 from the refactored ones. Then we computed how
many classes among the set of first neighbors had also been refactored. We
finally compared the number of refactored neighbors with the number of first

72 CHAPTER 7. REFACTORING AND COMPLEX NETWORKS

neighbors of an equivalent set of classes selected at random. Our work thus
aims at answering to the following research questions:

• RQ1: Do refactored classes tend to be more interconnected than not
refactored ones for a given type of refactoring?

• RQ2: Is it possible to identify refactoring-prone classes from the knowl-
edge of other refactored classes?

7.3 Results
Our work is aimed at understanding if refactoring activities are related to
clustering and connectivity inside a software network. In the plot of Fig.
7.1 we show the number of clusters formed by refactored classes, and the
average number of clusters obtained by selecting at random the same number
of classes among all system classes. The plot shows that, given a fixed cluster
size, the random selection brings a higher number of clusters compared to
refactored classes. This means that refactoring mainly does not affect classes
in a random fashion, but if a class needs this operation, there is a certain
probability that also another class connected to the first will need to be
refactored. This could be of help in software development and maintenance.

We also would like to point out the nearly linear growth of the number of
clusters along with the number of classes selected, meaning that the random
selection forms a number of clusters related and almost equal to the number
of classes, as one would expect. These results confirm our previous analysis
in [29], and they are valid specifically for refactored classes. In Fig. 7.2 we
report a few examples of clusters for different refactorings in various systems.

In order to check whether refactored classes tend to be more intercon-
nected than average and to form clusters we computed the ratio among the
number of clusters formed by refactored classes and the number of clusters
formed by randomly chosen classes. While computing this ratio, in order to
reduce any fluctuation due to statistical noise, we considered only the clus-
ters with size larger than (or equal to) 10 which we set arbitrarily - any other
number could work. This choice is a trade-off between two extreme situa-
tions. In the first, considering fewer than 10 refactored classes, the chance
to find a similar number of clusters from randomly chosen classes is high. In
fact, in the hypothesis that random classes are generally disconnected, they
tend to form n clusters. Since refactored classes are not completely connected
into a single cluster, with n low the two numbers will be very similar.

7.3. RESULTS 73

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

n. classes

n
.

c
lu

s
te

rs

ant rand
ant ref
azureus rand
azureus ref
jedit rand
jedit ref
jena rand
jena ref
xalan rand
xalan ref

Figure 7.1: Comparison between the average number of clusters found by the
random selection and the number of clusters formed by refactored classes.
The average number of clusters for the random case (empty points of different
shapes) is systematically bigger than in case of refactored classes, showing
that the latter are more connected with each other.

In the second, considering only clusters with many more than 10 classes,
this would optimize the ratio between the number of clusters formed by
refactored classes and the number of clusters formed by randomly chosen
classes, but the statistics will be drastically reduced, since the number of
refactored classes per system is not very high (e.g. 45 for Ant 1.5 as reported
in Tab. 7.4). Therefore the chosen value would provide a fair ratio with
the mean square error (MSE) that increases according to

√
n along with the

number n of the samples. Tab. 7.1 reports these ratios for one release for each
analyzed project. Ratios are systematically lower than one for all refactorings
suggesting that also one specific kind of refactoring involves classes which
are more interconnected than average. Results in Tab. 7.1 provide a positive
answer to RQ1: refactored classes tend to form interconnected clusters more
than other classes on average.

In Fig. 7.3 we show an example of how refactoring activities could be
related to a change in the topology of a software network. The example we
show is a comparison between the releases 4.0.0.0 and 4.1.0.2 of the system
Azureus. The figure shows the two sets of classes affected by the refactoring
replace method with method object. After the refactoring operation, the con-
nectivity among classes has changed, since the cluster grows by the addition
of new classes. In particular, we can see that in the previous release, 4.0.0.0,
the classes involved by this refactoring are 15, while in release 4.1.0.2 there

74 CHAPTER 7. REFACTORING AND COMPLEX NETWORKS

A
nt

1.8.0
A
zureus

4.4.0.4
JEdit

3.2
Jena

2.1
Jtopen

5.0
Tom

cat
5.5.3.1

X
alan

2.5.0
A
dd

Param
eter

-
-

-
-

0.206
-

-
C
ons.

C
ond.

Expression
-

-
-

-
0.091

-
-

C
ons.

D
up.

C
ond.

Fragm
ents

-
0.215

0.126
0.142

-
-

-
Extract

Interface
0.5

0.037
-

-
-

-
-

Introduce
LocalExtension

-
-

-
-

-
0.503

-
Introduce

N
ullO

bject
-

-
-

-
-

0.405
-

Inline
Tem

p.
0.503

-
0.021

-
-

-
-

M
ove

Fields
-

0.056
0.168

-
-

-
0.119

R
em

ove
A
ss.

to
Param

.
-

-
0.084

-
-

-
-

R
em

ove
C
ontrolFlag

-
-

-
-

-
-

0.079
R
ep.M

agic
N
.w

ith
C
onst.

-
-

0.021
0.142

0.251
-

-

Table
7.1:R

atio
between

the
num

berofclustersform
ed

by
differenttypesofrefactoring

and
the

num
berofclusters

form
ed

by
random

ly
selected

classes

7.3. RESULTS 75

Azureus 4.4.0.4 Jedit 3.1 Xalan 2.5.0

Figure 7.2: Three examples of networks composed only of classes involved in
refactoring operations for Azureus 4.4.0.4 (left), JEdit (centre), Xalan 2.5.0
(right).

is a bigger cluster, composed of 20 classes, among which there are also the
classes which were subject to the same refactoring, but nearly isolated in
release 4.0.0.0, such as classes n. 1046 and n.7. We can consider for example
the node n. 318 that corresponds to the class PlatformConfigMessenger
in release 4.0.0.0. This class contains methods called urlCanRPC(String
url) and urlCanRPC(String url, boolean showDebug). In the next re-
lease, 4.1.0.2, these are found inside UrlFilter class, not present in the
previous release, that it is exactly the method object. The clustering coeffi-
cient changes from 0.2 to 0.3 and this is coherent with the kind of refactoring
applied. The analysis of cluster changes can thus be used to infer the kind
of refactoring applied.

We now show the results of the analysis on the classes directly connected
to refactored classes. We select at random a subset of refactored classes, Sref ,
of size nSref

, which is about 10% of all refactored classes, and examine the
set of classes directly connected to this subset. We denote the set of "first
neighbor" classes with SNref . We repeat the procedure selecting at random
subsets of classes regardless of refactoring, namely randomly chosen, of the
same size nSref

, and examine the corresponding set of "first neighbor" classes,
SNrand. For both neighbor sets, SNref and SNrand, we compute the fraction
of classes affected by refactoring operations, Fref and Frand respectively, and
compare the two results.

These fractions represent the probability of finding a class in need to be
refactored when starting from a set of refactored classes or starting from a
set of random classes respectively. We averaged these fractions over 1000
cases where the set of refactored classes and that of random classes were
repeatedly selected at random. Tables 7.2 and 7.3 report these results. Tab.

76 CHAPTER 7. REFACTORING AND COMPLEX NETWORKS

7

284

318

721

782

783

895

899

1033

1045

1046

1084

1103

1205

1267

7

284

318

721

782

783

899

895

10451033

1046

1084

11031205

1267

Figure 7.3: Comparison between Azureus release 4.0.0.0 (left) and 4.1.0.2
(right). For each release, we report the sets of classes affected by the refac-
toring named replace method with method object. The node corresponding to
UrlFilter class has a squared shape and it is black on the right plot.

7.2 shows the fractions Fref and Frand mediated over the releases for each
of the 7 projects, giving a general overview of the results, while in Tab. 7.3
we report some selected examples for both releases “Source” and “Target”,
where the Source is the release before refactoring and the Target is the release
after the application of refactorings.

The interpretation of this result is straightforward. Fref provides the
empirical probability of finding a class in need to be refactored when picking
up classes among the neighbors of a small set of refactored classes. Frand
provides instead the same probability when choosing the classes at random
inside the entire set. Thus, when looking for classes in need to be refactored,
it is more convenient to examine first a set of classes directly linked to already
refactored classes in the software network. This provides developers with an
empirical practice to use when checking for classes to refactor. The ratio
among the two fractions can be considered as an empirical index related to
the "convenience" of looking in the first neighbors of a refactored set.

In Tab. 7.4 we present some representative cases taken from our dataset
(one release for each system) that show the clusters formed by refactored
classes (up to 7, due to space constraints), together with their size, the
size of the set of first neighbors relative to each cluster, indicated by ni,
and the size of the set of first neighbor classes relative to the entire set of
refactored classes, indicated by nall. This analysis confirms the convenience of

7.3. RESULTS 77

System Fref Sources Fref Targets Frand Sources Frand Targets
Ant 0.218 0.196 0.062 0.057
Azureus 0.151 0.163 0.052 0.053
Jedit 0.458 0.448 0.281 0.271
Jena 0.094 0.085 0.024 0.024
Jtopen 0.107 0.11 0.038 0.04
Tomcat 0.25 0.249 0.166 0.163
Xalan 0.293 0.294 0.032 0.034

Table 7.2: Average values the fractions of refactored classes in the first neigh-
bors network and the corresponding mean values computed for randomly
selected classes, for each analyzed system.

examining refactored first neighbor classes when looking for possible classes
in need to be refactored. In fact the more common situation is the presence
of a large cluster of refactored classes (which we name cluster C from now
on) along with a set of smaller clusters, many of them containing just one
class. Considering the largest cluster C, and observing the set of its first
neighbor classes, its size nC is close to the size nall of all refactored classes
and the number nref of all refactored classes. Consider now a developer with
a set of already refactored classes and in search for more classes to refactor,
adopting the strategy of examining linked classes.

1. The probability that among the set of classes already refactored there
will be at least one belonging to the larger cluster is very high.

2. Examining neighbor classes the entire cluster will be explored.

3. Examining all neighbor classes, there is an upper limit to the number
of classes to check, given by call, which is a small fraction of system’s
size.

4. This upper limit will almost be reached starting from classes into cluster
C, and thus the probability of reaching it is very high.

5. If all the classes selected at first belong to isolated refactorings, most
of the classes in need to be refactored will not be reached, but at the
same time the effort is minimal, since ∑i ni for i 6= C is small.

At the same time one can work jointly with other strategies devised for
detecting classes to refactor, like code smells detection, [56, 92] in order
to reduce the number of neighbor classes to examine. Since the fraction of

78 CHAPTER 7. REFACTORING AND COMPLEX NETWORKS

Source
R
elease

T
arget

R
elease

F
r
ef

Source
F
r
ef

T
arget

F
r
a
n
d
Source

F
r
a
n
d
T
arget

A
nt

1.5
A
nt

1.6.0
0.137

0.111
0.072

0.063
A
nt

1.6.0
A
nt

1.7.0
0.106

0.105
0.069

0.065
A
nt

1.7.0
A
nt

1.8.0
0.130

0.130
0.062

0.063
A
zureus

4.0.0.0
A
zureus

4.1.0.2
0.175

0.195
0.084

0.085
A
zureus

4.1.0.2
A
zureus

4.2.0.2
0.048

0.054
0.019

0.019
Jedit

3.0
Jedit

3.1
0.419

0.400
0.218

0.213
Jedit

3.1
Jedit

3.2
0.481

0.493
0.347

0.357
Jena

2.0
Jena

2.1
0.124

0.163
0.014

0.015
Jena

2.1
Jena

2.2
0.092

0.146
0.028

0,030
Jtopen

3.3
Jtopen

4.0
0.254

0.303
0.074

0.091
Jtopen

4.0
Jtopen

4.1
0.204

0.217
0.121

0.129
Tom

cat
4.1.4.0

Tom
cat

5.0.0
0.154

0.14
0.052

0.046
Tom

cat
5.0.0

Tom
cat

6.0.0
0.206

0.205
0.067

0.059
X
alan

2.5.0
X
alan

2.6.0
0.331

0.334
0.034

0.038
X
alan

2.6.0
X
alan

2.7.0
0.175

0.21
0.037

0.04

Table
7.3:

Fractions
ofrefactored

classes
in

the
first

neighbors
network

and
the

corresponding
values

for
random

ly
selected

classes.
T
he

values
refer

both
to

“Source”
and

“Target”
releases,oftwo

releases
ofeach

system
.

7.3. RESULTS 79

C
lu
s.

1
C
lu
s.

2
C
lu
s.

3
C
lu
s.

4
C
lu
s.

5
C
lu
s.

6
C
lu
s.

7
Sy

st
em

N
am

e
n
r
ef

n
a
ll

siz
e

n
1

siz
e

n
2

siz
e

n
3

siz
e

n
4

siz
e

n
5

siz
e

n
6

siz
e

n
7

A
pa

ch
e
A
nt

1.
5

45
40
1

24
35
7

6
14

2
60

2
2

1
1

1
3

1
1

A
zu
re
us

4.
2.
0.
2

21
6

16
03

19
1

15
51

7
52

1
28

1
22

1
21

1
16

1
13

JE
di
t
4.
1

14
1

33
8

13
8

33
1

2
2

1
12

-
-

-
-

-
-

-
-

Je
na

2.
3

5
26
8

1
24
9

1
11

1
5

1
2

1
1

-
-

-
-

Jt
op

en
4.
1

46
63
2

43
62
9

1
3

1
3

1
2

-
-

-
-

-
-

To
m
ca
t
6.
0.
0

15
7

53
0

13
4

44
7

2
28

2
19

4
12

1
8

1
7

1
6

X
al
an

2.
4.
0

14
14
6

8
12
6

2
17

2
8

1
14

1
1

-
-

-
-

Ta
bl
e
7.
4:

Va
lu
es

of
th
e
nu

m
be

r
of

ne
ig
hb

or
s
an

d
th
e
cl
us
te
rs

siz
e
n
i
fo
r
th
e
fir
st

7
cl
us
te
rs

of
7
so
ftw

ar
e
re
le
as
es
,

in
a
de
cr
ea
sin

g
or
de
r
by

cl
us
te
r
siz

e.
n
r
ef

is
th
e
to
ta
ln

um
be

r
of

cl
as
se
s
in
vo

lv
ed

in
re
fa
ct
or
in
g
op

er
at
io
ns

aff
ec
tin

g
th
e
co
rr
es
po

nd
in
g
re
le
as
e.

80 CHAPTER 7. REFACTORING AND COMPLEX NETWORKS

Figure 7.4: Jedit refactored classes network.

refactored classes is usually not too high, a fixed number of classes to refactor
can be programmed in advance, and once this number is reached, the search
among the first neighbors can stop and the classes in need to be refactored
eventually missing will be very few.

Next we discuss, as an example, the case of Jedit 1.4. We are going to
suggest how our empirical results can be used, together with other methodolo-
gies, to find refactor-prone classes. Fig. 7.4 reports the network of refactored
classes for this case study. In this specific case the above mentioned strategy
could be applied starting from one of these classes, and proceeding by in-
specting the neighboring classes looking for refactoring opportunities. JEdit
1.4 is characterized by a total of 974 refactorings distributed over 46 classes,
that represents the 7% of the entire system and they mainly belong to a
cluster whose dimension are close to the totality of the refactored classes, as
reported in Tab. 7.4. Refactored classes are reported in decreasing order of
number of refactoring into Tab. 7.5. We consider one of the most refactored
classes, namely org.gjt.sp.jedit.textarea.JEditTextArea.

In Fig. 7.5 the network of first neighbors for this class is represented.
Tab. 7.5 reports, along with the number of refactorings per class, also the

7.3. RESULTS 81

Class Name N. Ref. In-Ratio Out-Ratio
bsh.ParserTokenManager 83 1 0.25
org.gjt.sp.jedit.syntax.ParserRule 72 1 0.6
org.gjt.sp.jedit.textarea.JEditTextArea 40 0.5 0.71
bsh.Parser 35 1 0.45
org.gjt.sp.jedit.Buffer 29 0.4 0.64
org.gjt.sp.jedit.jEdit 27 0.39 0.69
org.gjt.sp.jedit.browser.VFSBrowser 26 0.3 0.72
bsh.NameSpace 25 0.65 0.6
bsh.Interpreter 21 0.84 0.75
org.gjt.sp.jedit.syntax.DisplayTokenHandler 19 1 0.6
org.gjt.sp.jedit.browser.BrowserView 15 0.22 0.75
org.gjt.sp.jedit.gui.DockableWindowManager 15 0.26 0.55
bsh.Reflect 14 0.75 0.62
org.gjt.sp.jedit.search.SearchAndReplace 14 0.45 0.79

Table 7.5: Number of refactorings per classes affected by more than 13 refac-
torings. In-Ratio and Out-Ratio columns report for, respectively, in-links
and out-links, the fraction of neighboring classes that, among all the neigh-
boring classes, are also involved in refactoring activities and the total number
of neighbors.

ratio between the neighboring classes affected by refactorings and the total
number of neighbors. As reported in Tab. 7.5 for this specific class, the
fraction of neighboring classes that, among all the neighboring classes, are
also involved in refactoring activities is 0.5 if they are connected by in-links
(In-Ratio) and 0.71 if they are connected by out-links (Out-Ratio). It is
worth to report that some neighbors are connected with both in-links and
out-links.

So we consider now the scenario of a developer that is carrying out some
refactoring operations and is working on JEditTextArea. We already know
that, according to RefFinder, the neighboring classes were involved in refac-
toring operations. If he is looking for refactoring opportunities, even selecting
at a random a class belonging to the set of neighboring classes, he has from
50% to 71% of chance to find a refactor-prone class, depending on which kind
of connection he is looking at - in-links or out-links. The mean value of the
fraction of refactored classes reported in Tab. 7.5 is 0.63 and 0.62 for neigh-
boring classes connected respectively with in and out-links. Fig. 7.6 and 7.7
report a series of box plots representing in-links and out-links distributions
and statistics for each analyzed release, showing that often the ratio is higher
than 0.5. It is worth to underline that the suggested strategy is not expected
to work alone and in any circumstance, but it could be useful when the soft-

82 CHAPTER 7. REFACTORING AND COMPLEX NETWORKS

Neighbors network of
 org.gjt.sp.jedit.textarea.JEditTextArea

Figure 7.5: Neighboring classes for org.gjt.sp.jedit.textarea.JEditTextArea.
The white circle represents the vertex corresponding to JEditTextArea class,
whereas the rectangle-shaped and the squared-shaped vertices, represent the
neighbors connected to JEditTextArea by respectively in-link and both in
and out-link.

ware network present a specific topology. For this reason our proposal is not
to use clustering information alone, but in cooperation with other topological
analysis and integrated by other strategies as those described in [72].

7.3.1 Threats to Validity
The present study is affected by some threats to validity. All these threats
are to be taken into account while replicating the study. In this section
we present them according to the usual division in threats to the internal,
external and construction validity.

Internal validity. We empirically found a significant relationship between
classes involved in refactoring activity and network topology. How-
ever, the tendency of refactored classes to be more connected than
others could be due to some undetected factors that we did not yet
thoroughly investigate. For example we did not consider class com-
plexity, and the fact that refactored classes could belong to the same
package. Moreover, we studied refactoring activities without making
distinctions among different refactorings. Our empirical results could

7.3. RESULTS 83

JEdit 3.0 JEdit 3.1 JEdit 3.2 JEdit 4.0 JEdit 4.1 JEdit 4.2 JEdit 4.3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Refactoring ratio (in-links)

Figure 7.6: Average values of the fraction of the refactored neighboring classes
linked by in-links for all the JEdit analyzed releseas. Diamond-shaped point
represents the mean value.

JEdit 3.0 JEdit 3.1 JEdit 3.2 JEdit 4.0 JEdit 4.1 JEdit 4.2 JEdit 4.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Refactoring ratio (out-links)

Figure 7.7: Average values of the fraction of the refactored neighboring classes
linked by out-links for all the JEdit analyzed releseas. Diamond-shaped point
represents the mean value.

84 CHAPTER 7. REFACTORING AND COMPLEX NETWORKS

be determined only by part of them. We considered all refactorings
together in order to enhance our statistics and we did not have enough
data for investigating each single refactoring separately.

External validity. We considered a certain number of software systems be-
longing to different categories, and performed different tasks. We made
this choice in order to analyze a representative set of Java software sys-
tem, that encompasses different kind of software, in order to avoid any
influence of the specific domain on the results. Nevertheless, our sam-
ple is certainly limited. We analyzed only open source software, since
it gave us the opportunity to freely parse the source code. We can not
exclude the fact that different dynamics taking place in proprietary
development environment could influence refactored classes topology.
Additionally, all the analyzed software is written in Java (RefFinder
parse only Java code) and all the software is written using the ob-
ject oriented paradigm. Refactoring activities carried out on different
languages, or in software designed according to different programming
approaches, could lead to different results.

Construction validity. Refactorings retrieved using RefFinder depend on
the reliability of this software. Despite being an acknowledged soft-
ware for this kind of task, RefFinder cannot always retrieve all the
refactorings. In addition, it cannot retrieve all the refactorings in the
original Fowler’s catalog and it is possible that results might change
while studying these not covered refactorings.

7.4 Conclusions
In this Chapter we presented a study on the clustering of the classes interested
by refactoring activities performed during software evolution. We analyzed
several Open Source Object Oriented Java software systems using a complex
network approach.

After retrieving the source code and building the software network for
each release of the analyzed systems, we extracted the refactoring operations
using RefFinder. We then analyzed every release of the software systems to
understand if classes are more connected with each other after undergoing
a refactoring operation. We compared the number of clusters formed by
refactored classes to the average number of clusters formed by a random
selection of classes, where the size of the sample was set equal to the number
of refactored classes. Our results seem to support the initial hypothesis
that refactored classes tend to form clusters. This suggests that randomly

7.4. CONCLUSIONS 85

selected classes are poorly coupled with respect to refactored classes, thus
confirming our hypothesis. In order to deepen our understanding on the
relationship between refactoring activities and node connectivity, we studied
the subnetworks composed by the first neighbors of refactored clusters. We
showed that not only the refactored classes form clusters according to the
provided definition, but also a significant fraction of their first neighbors
are interested by refactoring activities, providing a comparison with a null
model represented by randomly sampled classes. These results suggest some
practical applications in the field of software engineering, since it could allow
developers to find out other classes to refactor while carrying out refactoring
activities.

Indentifying the presence of clusters among refactored classes can help
developers to distinguish and decide which other classes are good candidates
for being refactored, once a class or a file has been chosen to be refactored.
In fact, since refactored classes or files tend to form clusters, one should look
at the nearest neighbours of the refactored ones. Moreover, since we have
shown an example where refactoring activities change the cluster structure of
a software network, one can in principle understand something about these
activities by simply analyzing the cluster structure of subsequent releases of
a software system. For example, it could be possible to make a prediction
about which classes need to be refactored, or understand if some classes were
refactored, by looking at the cluster structure in the proximity of the involved
classes.

These preliminar results could be extended in order to understand if it
is possible to make such predictions. Since refactoring generally affects soft-
ware quality by improving coupling an cohesion, the clustering properties of
refactoring activities could be also related to this feature, and then to soft-
ware quality. For example, we could analyze the topology of such clusters
along software evolution to understand if they are related to an improvement
of software quality.

These preliminary analysis involved only Java systems from the Qualitas
Corpus, but it could be extended to other systems in order to have a bigger
statistics and to better distinguish also among different types of refactoring.
Indeed, this analysis can be extended also to the other types of refactorings
from Fowler’s catalogue, to understand also if some types of refactorings tend
to form clusters more than others. Our analysis involves different releases
over time, and so it can be also viewed as a study of software evolution for
what concerns refactoring activities.

86 CHAPTER 7. REFACTORING AND COMPLEX NETWORKS

Chapter 8

Concluding Remarks

This thesis reports the most meaningful outcomes of a research work con-
ducted during the three years of the author’s Ph.D., in collaboration with
Professors and colleagues of the Agile Group at the Department of Electrical
and Electronic Engineering (DIEE) of the University of Cagliari.

This research is devoted to shedding some light on how software systems
are structured and evolve, in order to acquire useful insights that can help
software engineers to develop programs of better quality with an advanta-
geous trade-off between costs and benefits.

The author’s research interests involve both product metrics - particularly
new metrics derived from the concept of complex networks, and software en-
gineering practices. I focused specific attention on the assessment of software
quality and the impact of development practices on software systems.

With regards to the product, my efforts were addressed to figure out if
novel metrics might be of any help to detect or forecast software defectiveness
during software development. I found a meaningful correlation between some
network metrics and software defectiveness.

As for the development practices, I investigated some aspects of soft-
ware development, concerning to the use of inheritance in the development
of Python systems and the use of refactoring in Java software systems. Even
if I did not adopt explicitly process metrics, I derived some interesting infor-
mation from the topological property of software networks.

Throughout this dissertation, I mainly adopted a novel approach to assess
software quality and, in general, to measure software properties, based on the
concept of complex network. I illustrated how and to which extent software
systems can be represented as complex networks, presenting the advantages
of this approach.

In Chapters 4 and 5, I analyzed some software systems performing both
a case study and a longitudinal study. The results reported in Chapter 4,

87

88 CHAPTER 8. CONCLUDING REMARKS

show the relationship between some network metrics (number of communi-
ties, modularity, and clustering) and software defectiveness. If used in the
context of predictive analysis, this relationship supports the use of network
metrics to forecast the extremal values of defectiveness in future releases.

In Chapter 5 I illustrated the results of an analysis performed on some
releases of two software systems, showing that classes affected by Issues have
a clear tendency to be connected with each other. This preliminary result
may lead to interesting practical application, being possible to exploit this
property to enable developers to find most bug-prone classes.

The sixth Chapter reports a study on the use of inheritance in Python
development. I described the Python corpus, namely the curated collection
of Python programs that I collected in order to perform this and future
empirical studies on Python systems. Then I presented the results of our
analysis, using classic and new metrics. Being a replication study one of the
outcomes is represented by the comparison of the same analysis previously
conducted on Java programs. I found some meaningful differences and pro-
vided an interpretation of the results. This study represents the first step of
a wider research aimed at understanding if and to which extent developers
use properly the best programming practices.

Chapter 7 present a study on the use of refactoring on Java software
systems. I analyzed the impact of refactoring activities on software topol-
ogy, showing that classes involved in refactoring activities tend to be more
connected than other classes and form clusters. Also, this result might have
significant implication in future research and practical applications, since it
could be used, in co-operation with other techniques, in the design of recom-
mender systems for refactoring.

Chapter 9

List of Publications Related to
this Thesis

1. A study of the community structure of a complex software network,
Concas, G.; Monni, C.; Orrú, M.; Tonelli, R. in Emerging Trends in
Software Metrics (WETSoM), 2013 4th International Workshop on,
vol., no., pp.14-20, 21-21 May 2013
doi: 10.1109/WETSoM.2013.6619331

2. Two Case Studies on Clusterization of Refactored Classes G. Concas,
M. Marchesi, C. Monni, M. Orrú, R. Tonelli - International Workshop
on Refactoring & Testing (RefTest) 2013

3. Are Refactoring Practices Related to Clusters in Java Software? Giulio
Concas, Cristina Monni, Matteo Orrú, and Roberto Tonelli - 15th Inter-
national Conference on Agile Software Development - May 26th - 30th -
Rome Agile Processes in Software Engineering and Extreme Program-
ming Volume 179 of the series Lecture Notes in Business Information
Processing pp 269-276

4. Refactoring Clustering in Java Software Networks G. Concas, C. Monni,
M. Orrú, M. Ortu, and R. Tonelli - International Workshop on Refac-
toring & Testing (RefTest) - May 2014, Rome, Italy

5. Giulio Concas, Cristina Monni, Matteo Orrú, and Roberto Tonelli.
2014. Clustering of defects in Java software systems. In Proceedings
of the 5th International Workshop on Emerging Trends in Software
Metrics (WETSoM 2014). ACM, New York, NY, USA, 59-65.
DOI=http://dx.doi.org/10.1145/2593868.2593879

89

90CHAPTER 9. LIST OF PUBLICATIONS RELATED TO THIS THESIS

6. Could Micro Patterns Be Used as Software Stability Indicator? Marco
Ortu, Giuseppe Destefanis, Matteo Orrú, Roberto Tonelli, Michele L.
Marchesi - Patterns Promotion and Anti-patterns Prevention (PPAP)

7. The Evolution of Knowledge in the Refactoring Research Field Matteo
Orrú, Simone Porru, Michele Marchesi, Roberto Tonelli - 16th Inter-
national Conference on Agile Software Development (XP2015)

8. Predicting Software Quality through Network Analysis Matteo Orrú,
Cristina Monni, Michele Marchesi, Giulio Concas, Roberto Tonelli -
8th Seminar on Advanced Techniques and Tools for Software Evolution
(SATToSE 2015)

9. Matteo Orrú, Ewan Tempero, Michele Marchesi, Roberto Tonelli, and
Giuseppe Destefanis. 2015. A Curated Benchmark Collection of Python
Systems for Empirical Studies on Software Engineering. In Proceedings
of the 11th International Conference on Predictive Models and Data
Analytics in Software Engineering (PROMISE ’15). ACM, New York,
NY, USA, , Article 2 , 4 pages.
DOI=http://dx.doi.org/10.1145/2810146.2810148

10. A Complex Network Approach for Museum Services - A Model for
Digital Content Management Filippo Eros Pani , Simone Porru , Mat-
teo Orrú, Simona Ibba - 7th International Conference on Knowledge
Management and Information Sharing

11. Hashtag of Instagram: From Folksonomy to Complex Network Simona
Ibba , Matteo Orrú , Filippo Eros Pani, Simone Porru - 7th Interna-
tional Conference on Knowledge Engineering and Ontology Develop-
ment

12. A Preliminary Study on Mobile Apps Call Graphs through a Com-
plex Network Approach Matteo Orrú, Simone Porru, Roberto Tonelli,
Michele Marchesi - COMPLEX NETWORKS 2015 - The 4th Interna-
tional Workshop on Complex Networks and their Applications. Novem-
ber 23-27, 2015 Bangkok, Thailand Collocated with: The 11th Interna-
tional Conference on Signal Image Technology & Internet Based Sys-
tems SITIS 2

13. How Do Python Programs Use Inheritance? A Replication Study Mat-
teo Orrú, Ewan Tempero, Michele Marchesi and Roberto Tonelli -
ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC2015)

91

New Delhi, India - 1st December (Tuesday) â 4th December (Friday)
2015

92CHAPTER 9. LIST OF PUBLICATIONS RELATED TO THIS THESIS

Bibliography

[1] In Cvs. http://www.nongnu.org/cvs/. [cited at p. 9]

[2] Python Package Index: https://pypi.python.org/pypi. [cited at p. 56, 65]

[3] Reffinder. https://webspace.utexas.edu/kp9746/www/reffinder/.
[cited at p. 13, 68, 70]

[4] The Promise Repository of Empirical Software Engineering data:
http://openscience.us/repo, 2015. [cited at p. 49, 50, 52]

[5] Deepak Advani, Youssef Hassoun, and Steve Counsell. Extracting
refactoring trends from open-source software and a possible solution
to the ’related refactoring’ conundrum. In Proceedings of the 2006
ACM symposium on Applied computing, SAC ’06, pages 1713–1720,
New York, NY, USA, 2006. ACM. [cited at p. 13]

[6] R. Albert and A.-L. Barabási. Statistical mechanics of complex net-
works. Reviews of Modern Physics, 74:47–97, January 2002. [cited at p. 5,

10]

[7] C. Andersson and P. Runeson. A replicated quantitative analysis of
fault distributions in complex software systems. IEEE Trans. Softw.
Eng., 33(5):273–286, May 2007. [cited at p. 38]

[8] Mahir Arzoky, Stephen Swift, Allan Tucker, and James Cain. Munch:
An efficient modularisation strategy to assess the degree of refactoring
on sequential source code checkings. In Proceedings of the 2011 IEEE
Fourth International Conference on Software Testing, Verification and
Validation Workshops, ICSTW ’11, pages 422–429, Washington, DC,
USA, 2011. IEEE Computer Society. [cited at p. 13]

[9] K. Ayari, P. Meshkinfam, G. Antoniol, and M. Di Penta. Threats on
building models from cvs and bugzilla repositories: the mozilla case
study. In Proceedings of the 2007 conference of the center for advanced

93

94 BIBLIOGRAPHY

studies on Collaborative research, CASCON ’07, pages 215–228, New
York, NY, USA, 2007. ACM. [cited at p. 10]

[10] C. Y. Baldwin and K. B. Clark. Design Rules: The Power of Modularity
Volume 1. MIT Press, Cambridge, MA, USA, 1999. [cited at p. 16]

[11] A. Barabasi, R. Albert, and H. Jeong. Scale-free characteristics of
random networks: the topology of the world wide web. Phys. A, 281:69–
77, 2000. [cited at p. 2, 5, 7, 15, 37]

[12] A.-L Barabasi and R. Albert. Emergence of scaling in random networks.
Science, 286:509–512, 1999. [cited at p. 38]

[13] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A validation
of object-oriented design metrics as quality indicators. IEEE Trans.
Softw. Eng., 22(10):751–761, October 1996. [cited at p. 47, 49]

[14] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.
Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. The DaCapo Benchmarks: Java benchmarking develop-
ment and analysis. SIGPLAN Not., 41(10):169–190, October 2006.
[cited at p. 50]

[15] Bart Du Bois and Tom Mens. Describing the impact of refactoring on
internal program quality. pages 37–48, Vrije Universiteit Brussel, 2003.
[cited at p. 8]

[16] Lionel C. Briand, John W. Daly, Victor Porter, and JÃ1
4rgen WÃ1

4st.
A comprehensive empirical validation of product measures for object-
oriented systems, 1998. [cited at p. 47, 49]

[17] Michelle Cartwright and Martin Shepperd. An empirical view of inher-
itance, 1998. [cited at p. 47]

[18] HernÃ¡n A. Makse Chaoming Song, Shlomo Havlin. Self-similarity of
complex networks. Nature, 433(4):392–395, January 2005. [cited at p. 7,

15, 37]

[19] S. Chidamber and C. Kemerer. A metrics suite for object-oriented de-
sign. IEEE Trans. Software Eng., 20(6):476–493, June 1994. [cited at p. 2,

8, 16, 68]

BIBLIOGRAPHY 95

[20] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Trans. Softw. Eng., 20(6):476–493, June 1994. [cited at p. 49,

63]

[21] Shyam R. Chidamber, David P. Darcy, and Chris F. Kemerer. Manage-
rial use of metrics for object-oriented software: An exploratory analysis.
IEEE Trans. Softw. Eng., 24(8):629–639, August 1998. [cited at p. 47]

[22] A. Clauset, M. E. J. Newman, and C. Moore. Finding community
structure in very large networks. Phys. Rev. E, 70(6):066111, December
2004. [cited at p. 6, 11, 19, 20]

[23] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-
law distributions in empirical data. SIAM Rev., 51(4):661–703, Novem-
ber 2009. [cited at p. 59, 63]

[24] Christian Collberg, Ginger Myles, and Michael Stepp. An empirical
study of Java bytecode programs. Softw. Pract. Exper., 37(6):581–641,
May 2007. [cited at p. 47, 49]

[25] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, and I. Turnu. On
the distribution of bugs in the eclipse system. IEEE Transactions on
Software Engineering, 37(6):872–877, November 2011. [cited at p. 7, 38]

[26] Giulio Concas, Michele Marchesi, Giuseppe Destefanis, and Roberto
Tonelli. An empirical study of software metrics for assessing the phases
of an agile project. Int. J. Soft. Eng. Knowl. Eng, 22:525, 2012.
[cited at p. 16]

[27] Giulio Concas, Michele Marchesi, Alessandro Murgia, and Roberto
Tonelli. An empirical study of social networks metrics in object-
oriented software. Adv. Soft. Eng., 2010:4:1–4:21, January 2010.
[cited at p. 18]

[28] Giulio Concas, Cristina Monni, Matteo Orrù, and Roberto Tonelli. A
study of the community structure of a complex software network. In
4th International Workshop on Emerging Trends in Software Metrics,
WETSoM 2013, San Francisco, CA, USA, May 21, 2013, pages 14–20,
2013. [cited at p. 57]

[29] Giulio Concas, Cristina Monni, Matteo Orrù, and Roberto Tonelli.
Two case studies on clusterization of refactored classes. In Interna-
tional Workshop on Refactoring and Testing (RefTest), XP2013, 2013.
[cited at p. 23, 72]

96 BIBLIOGRAPHY

[30] A. Lombardoni D. Cahllet. Bug propagation and debugging in asym-
metric software structures. Phys. Rev E, 70, 2004. [cited at p. 7]

[31] John W. Daly, Andrew Brooks, James Miller, Marc Roper, and Murray
Wood. Evaluating inheritance depth on the maintainability of object-
oriented software. Empirical Software Engineering, 1(2):109–132, 1996.
[cited at p. 47, 49]

[32] Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive
comparison of bug prediction approaches. In Mining Software Repos-
itories (MSR), 2010 7th IEEE Working Conference on, pages 31–41.
IEEE, 2010. [cited at p. 7]

[33] Tom DeMarco. Controlling software projects : management, measure-
ment and estimation. Yourdon Press, New York, NY, 1982. [cited at p. 2]

[34] Giuseppe Destefanis. Technical report: Which programming language
should a company use? a twitter-based analysis. CRIM - Technical
Report, 2014. [cited at p. 47, 48]

[35] Giuseppe Destefanis, Steve Counsell, Giulio Concas, and Roberto
Tonelli. Software metrics in agile software: An empirical study. In
Agile Processes in Software Engineering and Extreme Programming,
pages 157–170. Springer, 2014. [cited at p. 49]

[36] Giuseppe Destefanis, Roberto Tonelli, Ewan Tempero, Giulio Concas,
and Michele Marchesi. Micro pattern fault-proneness. In Software Engi-
neering and Advanced Applications (SEAA), 2012 38th EUROMICRO
Conference on, pages 302–306. IEEE, 2012. [cited at p. 57]

[37] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Softw. Engg., 10(4):405–435, Oc-
tober 2005. [cited at p. 50]

[38] M. Eaddy, T. Zimmermann, K.D. Sherwood, V. Garg, G.C. Murphy,
and et al. Do crosscutting concerns cause defects? IEEE Transactions
on Software Engineering, 34(4):497–515, November 2008. [cited at p. 10]

[39] Gabriel Farah, Juan Sebastian Tejada, and Dario Correal. Openhub:
A scalable architecture for the analysis of software quality attributes.
In Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pages 420–423, New York, NY, USA, 2014.
ACM. [cited at p. 50]

BIBLIOGRAPHY 97

[40] Norman E. Fenton and Niclas Ohlsson. Quantitative analysis of faults
and failures in a complex software system. IEEE Trans. Softw. Eng.,
26(8):797–814, August 2000. [cited at p. 38]

[41] Sergio Focardi, Michele Marchesi, and Giancarlo Succi. A stochastic
model of software maintenance and its implications on extreme pro-
gramming processes, pages 191–206. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2001. [cited at p. 7, 15]

[42] S. Fortunato. Community detection in graphs. Physics Report, 486:75–
174, February 2010. [cited at p. 5, 6, 7]

[43] Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999. [cited at p. 8, 12, 13, 67]

[44] T. Nepusz G. Csardi. The igraph software package for complex net-
work research. InterJournal of Complex Systems, page 1695, 2006.
[cited at p. 12, 19]

[45] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995. [cited at p. 47]

[46] Birgit Geppert, Audris Mockus, and Frank RÃ¶Ãler. Refactoring for
changeability: A way to go? In IEEE METRICS, page 13. IEEE
Computer Society, 2005. [cited at p. 8]

[47] Joseph Yossi Gil and Itay Maman. Micro patterns in Java code. In ACM
SIGPLAN Notices, volume 40, pages 97–116. ACM, 2005. [cited at p. 57]

[48] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Science,
99:7821–7826, June 2002. [cited at p. 16, 38]

[49] B. H. Good, Y. A. De Montjoye, and A. Clauset. Performance of
modularity maximization in practical contexts. Physical Review E,
81(4):046106, 2010. [cited at p. 33]

[50] Georgios Gousios. The GHTorrent dataset and tool suite. In Proceed-
ings of the 10th Working Conference on Mining Software Repositories,
MSR ’13, pages 233–236, Piscataway, NJ, USA, 2013. IEEE Press.
[cited at p. 50]

98 BIBLIOGRAPHY

[51] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. Predicting
fault incidence using software change history. IEEE Trans. Softw. Eng.,
26(7):653–661, July 2000. [cited at p. 38]

[52] Philip Guo. Python is now the most popular introductory teaching
language at top us universities. BLOG@ CACM, July, 2014. [cited at p. 47]

[53] R. Siket I. Gyimothy, T. Ferenc. Empirical validation of object-oriented
metrics on open source software for fault prediction. IEEE Transactions
on Software Engineering, 31, 2005. [cited at p. -]

[54] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE
Transactions on Software Engineering, 31(10):897–910, Oct. 2005.
[cited at p. 8, 31]

[55] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve
Counsell. A systematic literature review on fault prediction perfor-
mance in software engineering. Software Engineering, IEEE Transac-
tions on, 38(6):1276–1304, 2012. [cited at p. 7]

[56] H. Hamza, S. Counsell, T. Hall, and G. Loizou. Code smell erad-
ication and associated refactoring. In Proceedings of the 2Nd Con-
ference on European Computing Conference, ECC’08, pages 102–107,
Stevens Point, Wisconsin, USA, 2008. World Scientific and Engineering
Academy and Society (WSEAS). [cited at p. 77]

[57] R. Harrison, S. Counsell, and R. Nithi. Experimental assessment of the
effect of inheritance on the maintainability of object-oriented systems.
J. Syst. Softw., 52(2-3):173–179, June 2000. [cited at p. 47, 49]

[58] Ahmed E. Hassan and Richard C. Holt. The top ten list: Dynamic fault
prediction. In Proceedings of the 21st IEEE International Conference
on Software Maintenance, ICSM ’05, pages 263–272, Washington, DC,
USA, 2005. IEEE Computer Society. [cited at p. 38]

[59] Susan Hunston. Corpora in applied linguistics. Cambridge University
Press, 2006. [cited at p. 66]

[60] Java Qualitas Corpus. http://qualitascorpus.com/. [cited at p. 69]

[61] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evalu-
ation of maintainability enhancement by refactoring. Software Mainte-
nance, 2002. Proceedings. International Conference on, pages 576–585,
2002. [cited at p. 8]

BIBLIOGRAPHY 99

[62] Miryung Kim, Matthew Gee, Alex Loh, and Napol Rachatasumrit.
Ref-finder: A refactoring reconstruction tool based on logic query tem-
plates. In Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’10, pages
371–372, New York, NY, USA, 2010. ACM. [cited at p. 68]

[63] Barbara Kitchenham, Shari Lawrence Pfleeger, and Norman Fenton.
Towards a framework for software measurement validation. IEEE
Trans. Softw. Eng., 21(12):929–944, December 1995. [cited at p. 47]

[64] G. A. Kohring. Complex dependencies in large software systems. Ad-
vances in Complex Systems (ACS), 12(06):565–581, 2009. [cited at p. 38,

67]

[65] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Bench-
mark graphs for testing community detection algorithms. Physical Re-
view E, (4):046110. [cited at p. 32]

[66] Deyi Li, Yanni Han, and Jun Hu. Complex network thinking in software
engineering. In Proceedings of the 2008 International Conference on
Computer Science and Software Engineering - Volume 01, CSSE ’08,
pages 264–268, Washington, DC, USA, 2008. IEEE Computer Society.
[cited at p. 16, 37, 67]

[67] Johnny Wei-Bing Lin. Why Python is the next wave in earth sci-
ences computing. Bulletin of the American Meteorological Society,
93(12):1823–1824, 2012. [cited at p. 47]

[68] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Con-
trollability of complex networks. Nature, 473(7346):167–173, 2011.
[cited at p. 38]

[69] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: A Prac-
tical Approach. Prentice Hall, 1994. [cited at p. 68]

[70] Tim Menzies, Bora Caglayan, Ekrem Kocaguneli, Joe Krall, Fayola
Peters, and Burak Turhan. The PROMISE Repository of empirical
software engineering data, June 2012. [cited at p. 50]

[71] S. Milgram. The small world problem. Psych. Today, 2:60–67, 1967.
[cited at p. 5]

100 BIBLIOGRAPHY

[72] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-
Francoise Le Meur. Decor: A method for the specification and detec-
tion of code and design smells. IEEE Trans. Softw. Eng., 36(1):20–36,
January 2010. [cited at p. 82]

[73] Raimund Moser, Alberto Sillitti, Pekka Abrahamsson, and Giancarlo
Succi. Does refactoring improve reusability? In Maurizio Morisio,
editor, ICSR, volume 4039 of Lecture Notes in Computer Science, pages
287–297. Springer, 2006. [cited at p. 8]

[74] A. Murgia, M. Marchesi, G. Concas, R. Tonelli, and S. Counsell.
Parameter-based refactoring and the relationship with fan-in/fan-out
coupling. In Proceedings of the 2011 IEEE Fourth International Con-
ference on Software Testing, Verification and Validation Workshops,
ICSTW ’11, pages 430–436, Washington, DC, USA, 2011. IEEE Com-
puter Society. [cited at p. 8, 68]

[75] A. Murgia, R. Tonelli, M. Marchesi, G. Concas, S. Counsell, J. McFall,
and S. Swift. Refactoring and its relationship with fan-in and fan-
out: An empirical study. In Proceedings of Software Maintenance and
Reengineering (CSMR), 2012 16th European Conference on, CSMR
’12, pages 63–72, 2012. [cited at p. 7, 8, 68]

[76] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How we
refactor, and how we know it. IEEE Transactions on Software Engi-
neering, 38(1):5–18, 2012. [cited at p. 8, 13]

[77] Christopher R. Myers. Software systems as complex networks: Struc-
ture, function, and evolvability of software collaboration graphs. Phys.
Rev. E, 68(4):046116, Oct 2003. [cited at p. 2, 7, 15, 16, 37, 38, 67]

[78] Sebastian Nanz and Carlo A. Furia. A Comparative Study of Pro-
gramming Languages in Rosetta Code. CoRR, abs/1409.0252, 2014.
[cited at p. 49]

[79] M. E. Newman. Fast algorithm for detecting community structure in
networks. Phys. Rev E, 69(6):066133, June 2004. [cited at p. 6, 11]

[80] M. E. Newman and M. Girvan. Finding and evaluating community
structure in networks. Phys. Rev. E, 69(2):026113, February 2004.
[cited at p. 6, 7, 11, 15, 16, 32]

[81] M. E. J. Newman. The structure and function of complex networks.
SIAM REVIEW, 45:167–256, 2003. [cited at p. 5, 10, 16]

BIBLIOGRAPHY 101

[82] Thanh H. D. Nguyen, Bram Adams, and Ahmed E. Hassan. A case
study of bias in bug-fix datasets. In Proceedings of the 2010 17th Work-
ing Conference on Reverse Engineering, WCRE ’10, pages 259–268,
Washington, DC, USA, 2010. IEEE Computer Society. [cited at p. 7]

[83] Niclas Ohlsson and Hans Alberg. Predicting fault-prone software mod-
ules in telephone switches. IEEE Trans. Softw. Eng., 22(12):886–894,
December 1996. [cited at p. 38]

[84] William F. Opdyke. Refactoring object-oriented frameworks. Technical
report, 1992. [cited at p. 7]

[85] Matteo Orrú, Ewan Tempero, Michele Marchesi, Roberto Tonelli, and
Giuseppe Destefanis. A curated benchmark collection of Python sys-
tems for empirical studies on software engineering. In Proceedings of
the 11th International Conference on Predictive Models and Data An-
alytics in Software Engineering, PROMISE ’15, pages 2:1–2:4, New
York, NY, USA, 2015. ACM. [cited at p. 65]

[86] Thomas J Ostrand, Elaine J Weyuker, and Robert M Bell. Predicting
the location and number of faults in large software systems. Software
Engineering, IEEE Transactions on, 31(4):340–355, 2005. [cited at p. 7]

[87] D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Commun. ACM, 15(12):1053–1058, December 1972.
[cited at p. 16]

[88] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and Miryung Kim.
Template-based reconstruction of complex refactorings. In Proceedings
of the 2010 IEEE International Conference on Software Maintenance,
ICSM ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer
Society. [cited at p. 13, 68]

[89] Valverde S. Cancho R. and V. Sole. Scale free networks from optimal
design. Europhysics Letters, 60, 2002. [cited at p. 6, 7, 38, 67]

[90] Markus Lumpe Rajesh Vasa and Allan Jones. Helix - Software Evolu-
tion Data Set. [cited at p. 50]

[91] R. Sanchez and J. T. Mahoney. Modularity, flexibility, and knowledge
management in product and organization design. Strategic Manage-
ment Journal, 17:pp. 63–76, 1996. [cited at p. 16]

102 BIBLIOGRAPHY

[92] Frank Simon, Frank Steinbr"uckner, and Claus Lewerentz. Metrics
based refactoring. In In Proc. 5th European Conference on Software
Maintenance and Reengineering, pages 30–38, 2001. [cited at p. 8, 77]

[93] Konstantinos Stroggylos and Diomidis Spinellis. Refactoring–does it
improve software quality? In Proceedings of the 5th International
Workshop on Software Quality, WoSQ ’07, pages 10–, Washington, DC,
USA, 2007. IEEE Computer Society. [cited at p. 8]

[94] LOVRO SUBELJ, SLAVKO ZITNIK, NELI BLAGUS, and MARKO
BAJEC. Node mixing and group structure of complex software net-
works. Advances in Complex Systems, 0(0):1450022, 0. [cited at p. 16, 23]

[95] Giancarlo Succi, Witold Pedrycz, Snezana Djokic, Paolo Zuliani, and
Barbara Russo. An empirical exploration of the distributions of the
Chidamber and Kemerer Object-Oriented Metrics Suite. Empirical
Softw. Engg., 10(1):81–104, January 2005. [cited at p. 47, 49, 50]

[96] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. Qualitas corpus: A curated
collection of Java code for empirical studies. In 2010 Asia Pacific Soft-
ware Engineering Conference (APSEC2010), pages 336–345, December
2010. [cited at p. 48, 49, 50, 51, 56]

[97] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. Qualitas corpus: A curated
collection of java code for empirical studies. In 2010 Asia Pacific Soft-
ware Engineering Conference (APSEC2010), pages 336–345, December
2010. [cited at p. 69]

[98] Ewan Tempero, James Noble, and Hayden Melton. How do Java pro-
grams use inheritance? An empirical study of inheritance in Java
software. In Proceedings of the 22Nd European Conference on Object-
Oriented Programming, ECOOP ’08, pages 667–691, Berlin, Heidel-
berg, 2008. Springer-Verlag. [cited at p. 47, 49, 57, 65]

[99] Ewan Tempero, Hong Yul Yang, and James Noble. What programmers
do with inheritance in Java. In Proceedings of the 27th European Con-
ference on Object-Oriented Programming, ECOOP’13, pages 577–601,
Berlin, Heidelberg, 2013. Springer-Verlag. [cited at p. 49]

[100] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and
Roberto S. Bigonha. Qualitas.class Corpus: A compiled version of

BIBLIOGRAPHY 103

the Qualitas Corpus. Software Engineering Notes, 38(5):1–4, 2013.
[cited at p. 50]

[101] Ivana Turnu, Giulio Concas, Michele Marchesi, Sandro Pinna, and
Roberto Tonelli. A modified yule process to model the evolution of some
object-oriented system properties. Information Sciences, 181:883–902,
2011. [cited at p. 7]

[102] Ivana Turnu, Michele Marchesi, and Roberto Tonelli. Entropy of the
degree distribution and object-oriented software quality. In Proceedings
of the 2012 ICSE Workshop on Emerging Trends in Software Metrics,
WETSoM ’12, pages 77–82, 2012. [cited at p. 7, 15, 37]

[103] Understand. Scitools.com: https://scitools.com. [cited at p. 52, 56, 57]

[104] L. Šubelj and M. Bajec. Community structure of complex software
systems: Analysis and applications. Physica A Statistical Mechanics
and its Applications, 390:2968–2975, August 2011. [cited at p. 6, 7, 15, 16, 37,

38]

[105] Sergi Valverde and Ricard V. Sole. Hierarchical small worlds in software
architecture. arXiv:cond-mat/0307278v2, 2003. [cited at p. 6, 7]

[106] William C. Wake. Refactoring Workbook. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1 edition, 2003. [cited at p. 8]

[107] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-
world’ networks. Nature, 393(6684):440–442, June 1998. [cited at p. 38]

[108] Lian Wen, Diana Kirk, and R. G. Dromey. Software systems as complex
networks. In Proceedings of the 6th IEEE International Conference on
Cognitive Informatics, COGINF ’07, pages 106–115, Washington, DC,
USA, 2007. IEEE Computer Society. [cited at p. 7, 67]

[109] Lian Wen, Diana Kirk, and R. Geoff Dromey. Software systems as
complex networks. In Du Zhang, Yingxu Wang, and Witold Kinsner,
editors, IEEE ICCI, pages 106–115. IEEE, 2007. [cited at p. 16]

[110] Dirk Wilking, Umar Farooq Kahn, and Stefan Kowalewski. An em-
pirical evaluation of refactoring. e-Informatica, 1(1):27–42, 2007.
[cited at p. 8]

[111] Ian H. Witten, Sally Jo Cunningham, and Mark D. Apperley. The
New Zealand digital library project. New Zealand Libraries, 48:146–
152, 1996. [cited at p. 50]

104 BIBLIOGRAPHY

[112] Hongyu Zhang. On the distribution of software faults. IEEE Transac-
tions on Software Engineering, 34(2):301–302, 2008. [cited at p. 38]

[113] Thomas Zimmermann and Nachiappan Nagappan. Predicting de-
fects using network analysis on dependency graphs. In Proceedings
of the 30th International Conference on Software Engineering, ICSE
’08, pages 531–540, New York, NY, USA, 2008. ACM. [cited at p. 7, 16]

[114] Thomas Zimmermann, Massimiliano Di Penta, and Sunghun Kim, ed-
itors. Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013.
IEEE Computer Society, 2013. [cited at p. 50]

