
Università degli Studi di Cagliari
Dottorato di Ricerca in Ingegneria Biomedica

Ciclo XXVII

Enabling Data-Intensive Biomedical Studies

Presentata da: Simone Leo
Coordinatore dottorato: Prof. Giacomo Cao
Tutor: Prof. Riccardo Scateni
Relatore: Dr. Gianluigi Zanetti

Settore scientifico-disciplinare di afferenza: ING-INF/06
Esame finale anno accademico 2013–2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UniCA Eprints

https://core.ac.uk/display/35316096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The constantly increasing size and complexity of datasets involved in biomed-
ical projects is deeply transforming approaches to their solution. Large scale
studies require specifically designed computational frameworks that are capa-
ble of fulfilling many diverse requirements, the most important of which can
be summarized in the fundamental properties of scalability, reproducibility
and traceability. Although in recent years several new technologies have
emerged that help deal with the issues raised by data-intensive research
projects, applying them to the construction of a computational solution for
the specific problem at hand is far from trivial, as no one-size-fits-all recipe
exists for such a task. This work describes a methodology for approaching
this new class of studies through several examples of solutions applied to
concrete research problems.

1

Contents

1 Introduction 3
1.1 Big Data in the Life Sciences 4
1.2 MapReduce and Hadoop . 7
1.3 The Galaxy Bioinformatics Platform 11
1.4 OMERO and OMERO.biobank 13
1.5 Enabling Data-Intensive Biomedical Studies 17

2 Enabling Scalability in Biomedical Applications 19
2.1 Scalable Genotype Calling . 19

2.1.1 Background . 20
2.1.2 MapReduce Implementation 22
2.1.3 Evaluation . 26

2.2 Scalable Viral IS Analysis . 29
2.2.1 Pipeline Structure . 30
2.2.2 Distributed Alignment and Filtering 33
2.2.3 Evaluation . 34

3 Enabling Reproducibility in Biomedical Applications 37
3.1 Reproducible Viral IS Analysis 37
3.2 Automated Interaction with Galaxy 42

3.2.1 Usage . 44
3.2.2 Implementation . 45

4 Enabling Traceability in Biomedical Applications 48
4.1 Integrating Galaxy and OMERO.biobank 49
4.2 Integrating Hadoop and OMERO 52

5 Conclusion 60

2

Chapter 1

Introduction

In the recent past, the exponential growth of data produced in numerous
industries and scientific disciplines has led to a whole new class of challenges
related to their storage, processing, sharing, visualization and protection.
Buzzwords that have attempted to capture this phenomenon include data
deluge, data revolution and — more recently — big data.

Despite being quite general and loosely defined, all these terms apply to
problems where datasets reach a critical size, above which traditional pro-
cessing methods such as desktop applications and relational database man-
agement systems (RDBMS) cease to be effective. Spurred by the rapid dif-
fusion of data gathering devices, which has been accompanied by a constant
decrease in storage media costs, data-intensive applications require specific
technologies (most notably distributed computing), infrastructure (data cen-
ters, multi-node clusters, networking) and professional background. The ex-
act size that makes data “big” is, of course, highly dependent on the specific
field and organization, and varies with time.

Although the data revolution is often associated with large web services
such as social networks and e-commerce platforms, a consistent part of the
transformation concerns science and its methods. Indeed, data-intensive sci-
entific discovery is regarded by some authors as a “fourth paradigm” that
follows empirical, theoretical and computational science [25]. This scenario
is marked not only by the introduction of radically new computational tools
that are capable of dealing with the immense amounts of data being gener-
ated, but also by an equally fundamental change in the way scientific research
and communication is conducted [64]. Scientific papers and technical reports
typically present their results in a highly condensed form, often just the tip of
the iceberg of the vast amount of data involved in the analysis process. This
intermediate data is usually discarded after publishing the manuscript or
when the supporting grant ends, together with the accompanying metadata

3

— experimental set-up, software version and parameters, data provenance
and interdependence — provided it has been recorded at all. This loss of in-
formation can be due to several reasons, including insufficient storage space,
lack of community standards, inadequate data management tools or even
natural disasters [36]. A recent survey [62] of data sharing practices among
scientists indicates insufficient time and funding as the main reasons for not
making data electronically available, while over half of the respondents re-
ported that they did not use any metadata standards. Whatever the cause
for this failure to properly preserve and share experimental data, the end re-
sult is a missed opportunity for reuse, which can easily lead to new findings
comparable to — or more significant than — the original ones [37, 64].

As research projects become more data driven, their requirements in
terms of computational literacy and infrastructure progressively increase, to
the point that it’s hardly possible to do good research without good soft-
ware [21]. In some cases, low quality software can even lead to disastrous
errors, capable of fundamentally compromising the main results [41]. In data-
intensive research, however, ensuring correctness is only part of the problem:
issues like efficiency, scalability and reproducibility are of equal importance,
and must be tackled with specifically designed computational solutions.

1.1 Big Data in the Life Sciences
While some scientific fields, such as high-energy physics and astronomy, have
been dealing with large collections of data for a long period, life sciences are
relatively new to the game. Since the advent of high-throughput genomics,
the amount of data being managed by major bioinformatics institutions has
been growing exponentially, and is currently in the order of the petabytes [37].
In little more than a decade, next-generation sequencing (NGS) platforms
have deeply transformed genome analysis and its applications to variation
detection, RNA sequencing (RNA-seq), whole genome genotyping, de novo
assembly and more, greatly increasing data generation throughput — the
current order of magnitude is of several gigabases (Gb) per day — while
lowering costs [48, 57]. High-density genotyping microarrays [29], with their
ability to test for millions of genetic variants in parallel, are yet another
example of devices capable of turning labs into big data producers, especially
when used for genome-wide association studies (GWAS) [13], where large
sample sizes are required for statistical power.

An equally disruptive transformation is underway in health care with
the ongoing development of what has been called P4 medicine (predictive,
preventive, personalized and participatory) [20]. The overall goal is to inte-

4

grate data from multiple sources such as whole genome sequencing, electronic
health records (EHR) and wearable sensors to build predictive models usable
for prevention, so that disease-inducing patterns may be detected via machine
learning and corrected before symptoms appear. Due to the high incidence
of health-associated costs in major economies, systematic use of big data
analytics in medicine is expected to generate huge savings [43].

Genomics and medicine, however, are not the only life sciences where re-
searchers have to deal with large amounts of data. Neuroscience has joined
the revolution as well, bringing in specific issues of extreme heterogeneity,
multiple organisms, high dimensionality and lack of horizontal integration
[56]. In botany, scientists are rapidly moving towards multi-omics approaches
as the number of new plant genomes sequenced per year is getting close to
one hundred [11], thus intensifying the need for standardization techniques
that support automated aggregation and retrieval [66]. In environmental
science, efforts aimed at systematically managing heterogeneous, multi-scale
and geographically distributed information have led to the development of
DataONE [40], a cyberinfrastructure that offers services such as data preser-
vation, replication, access and visualization.

Data-driven research projects stemming from the above scenarios present
peculiar challenges that must be met with specifically designed technology.
In life sciences, however, data analysis is often still performed with the same
simple, traditional instruments that were adequate up to a few years ago,
such as quick-and-dirty R scripts for biostatistics processing, spreadsheets
for collecting and organizing metadata, or even handwritten notes with no
digital counterpart. This started to change in the recent past due to the
introduction of several technologies that, being capable of addressing one or
more big-data-related issues, can be used as the building blocks of compu-
tational frameworks capable of driving the latest generation of large scale
research projects.

Galaxy [22], a web platform for biomedical data analysis, provides a stan-
dard mechanism to wrap computational tools and datasets in a graphical user
interface (GUI), allowing to keep track of parameter choices and execution
history. The software has been specifically designed to ensure accessibility
and reproducibility, and to facilitate the sharing of analysis workflows and
experimental results (see Sec. 1.3).

One problem that Galaxy does not solve, however, is the efficient appli-
cation of computationally intensive procedures (such as sequence alignment)
to large datasets, where the running time can easily become a bottleneck for
the whole study. Up to roughly ten years ago, microprocessor speed grew
fast enough to keep up with the increasing demands of most applications,
but this trend reached saturation as physical limits forced manufacturers to

5

add more CPU cores rather than increase clock frequency [60]. While faster
processors provide an automatic performance gain to any (compute-bound)
software program, to reap the benefits of multi-core architectures develop-
ers must substantially rewrite their applications in order to provide suitable
parallel implementations. Moreover, for data-intensive analysis, the number
of computing cores available on a single machine may be insufficient. In this
case, to bring execution times down to acceptable levels, the workload must
be distributed across a network of computing nodes, usually in the form of a
Beowulf cluster [59]. Distributed computing, however, presents specific chal-
lenges — such as data distribution, load balancing, machine failure handling
and inter-machine communication — that have long prevented its adoption
by non-experts. The MapReduce[17] programming model and infrastruc-
ture, originally designed at Google and popularized by its implementation
in the open source Hadoop platform1, has played a major part in making
distributed computing accessible to a wider audience, allowing programmers
to concentrate on the core algorithm while the framework takes care of most
lower level details (see Sec. 1.2). Due to its cost-effectiveness and suitability
for batch processing, Hadoop is widely used in the bioinformatics community,
especially for the analysis of NGS data [44, 61, 69].

Although Galaxy provides a standard way to keep track of computa-
tional flows, traceability in biomedical applications needs to be managed
at all stages, including data acquisition, storage, aggregation, querying and
transformation. OME Remote Objects (OMERO) [4], originally developed
for microscopy images, allows to manage both data and metadata under a
common middleware and application program interface (API), providing ac-
cess control, annotation, indexing, rendering and processing regardless of file
format and programming environment. OMERO.biobank2 is a traceability
framework for data-intensive life sciences built upon OMERO’s core services,
currently under active development at CRS43. OMERO.biobank allows to
manage biological samples, instrumental acquisitions and analysis results in
the context of large scale experiments, modeling data generation processes as
chains of entities and transforming actions. OMERO and OMERO.biobank
are described in more detail in Sec. 1.4.

1http://hadoop.apache.org
2https://github.com/crs4/omero.biobank
3http://www.crs4.it

6

http://hadoop.apache.org
https://github.com/crs4/omero.biobank
http://www.crs4.it

map map map

reduce reduce

the quick brown
fox ate the lazy

green fox

the,1 the,1fox,1 fox,1quick,1

brown,1 ate,1 green,1

ate,1
brown,1
fox,2
quick,1

green,1
lazy,1
the,2

lazy,1

Figure 1.1 – Schematic diagram of a MapReduce application that counts
the occurrence of each word in a text dataset. The framework groups and
sorts intermediate pairs by key, and sends pairs with the same key to the same
reducer.

1.2 MapReduce and Hadoop
MapReduce is a programming paradigm and execution model for large scale,
distributed data analysis. Initially developed and internally used by Google
for web indexing and monitoring applications, the framework started to gain
popularity after its initial publication [16] and subsequent open source im-
plementation in what would later become Hadoop [68].

Designed for data-driven applications — where algorithms are often rel-
atively simple, but the overall task is complicated by the size of the input
dataset —MapReduce provides an abstraction layer that hides parallelization-
related details such as workload distribution and interprocess communication
(IPC) in a library, allowing the programmer to express the computation as
a pair of functions: map and reduce. The map function receives an input
key/value pair and must emit an intermediate key/value pair back to the
framework; the latter groups and sorts intermediate pairs by key (this is
called the shuffle and sort phase in Hadoop), sending pairs with the same
key to the same reduce task; the reduce function combines the set of values
corresponding to each intermediate key and emits an output key/value pair.

7

Algorithm 1 MapReduce word count
function map(key, value)

for word← value do
emit(word, 1)

function reduce(key, values)
count← 0
for v ← values do

count← count+ v

emit(key, count)

Fig. 1.1 schematically shows the key/value pair flow in the original MapRe-
duce example [16], a typical data-driven application where the computation
— counting the occurrence of each word in a given amount of text — is
straightforward, but executing it efficiently on a very large dataset (e.g., in
the order of the petabytes) is far from trivial. The MapReduce framework
breaks down the input data into subsets (called input splits in Hadoop) and
feeds each one to a separate map task, repeatedly calling the user’s map
function (see Alg. 1) with a line of text as the input value (the input key is
not used in this case). The map function splits each input line into words,
then emits the word itself and the number 1 as the intermediate key/value
pair. The framework collects all pairs emitted by the map tasks, performs the
aforementioned grouping and sorting, and passes them to the reduce tasks.
The user’s reduce function receives an intermediate key and an iterator over
all corresponding values (all equal to 1 in this case), which are summed to
get the occurrence. Finally, the framework collects output key/value pairs
and writes them out.

In principle, the MapReduce model can be implemented regardless of the
file system being used. In practice, to achieve high scalability, the framework
is backed up by a high-performance distributed file system: the Google File
System (GFS) [19] in the original version and the Hadoop Distributed File
System (HDFS) — an open source implementation of GFS — in Hadoop.
GFS/HDFS is optimized for reading data in large batches. To reduce the
number of client requests and thus network overhead, files are split into very
large blocks — four orders of magnitude larger than those of traditional,
generic purpose file systems — which are distributed across the whole cluster
(with replication, to ensure fault tolerance).

In the following, the DFS acronym will be used to denote a generic GFS-
like distributed file system. One of the main reasons for MapReduce’s high
efficiency is the data locality mechanism: by querying the DFS master (called

8

mapper mapper mapper

reducer reducer

local
write

remote
read

Figure 1.2 – The MapReduce execution model. Input data is read from and
output data is written to the distributed file system, while intermediate data
is written to the local disks by mappers and remotely read by reducers.

name node in Hadoop) about the locations of the blocks stored in the slaves
(data nodes), the framework is able to schedule the computation for each split
closest to where the corresponding blocks physically reside, thus minimizing
data movement across the network. Fig. 1.2 shows a simplified version of
the execution model. If not already present, input data is first saved to one
or more files in the DFS. When the MapReduce job starts, the framework
logically divides input files into splits, schedules an appropriate number of
map tasks (usually related to the total number of CPU cores) and assigns a
split to each task, which reads from the DFS and writes intermediate data
to the local disk. Reduce tasks read intermediate key/value pairs across the
network (the set of values corresponding to a given key is scattered among
several cluster nodes), apply the reduce function and write the final output
back to the DFS. If a task fails, it is automatically rescheduled on a different
node, thus providing transparent fault tolerance.

In the ten years after its inception, the Hadoop project has evolved into
a whole ecosystem of big data analysis tools that complement and enhance
HDFS and MapReduce, including high-level querying and execution engines,
distributed databases and many more4. Hadoop itself, since version 2, has
undergone consistent improvement: HDFS now supports multiple, federated
name nodes, and the MapReduce engine has become a specific use case of a
more general computing resource manager (called YARN).

4http://hadoopecosystemtable.github.io

9

http://hadoopecosystemtable.github.io

Figure 1.3 – Galaxy’s main GUI. The left panel contains the list of available
tools, the right one shows the current history.

Despite having its roots in web data processing, Hadoop is sufficiently
flexible to be used for a wide range of problems, including scientific data
analysis. Bioinformatics applications, where datasets are often processed in
large batches and do not need to be frequently updated, are particularly well-
suited to MapReduce implementations [44, 61, 69]. Scientific data analysis
is simplified by any tool that allows easy access to large, well-established
scientific libraries, such as NumPy/SciPy [45]. However, Hadoop’s native
API is in Java, and the built-in library for foreign language programming5

imposes several limitations on the available features. Pydoop6, co-developed
by the author, is a Python API for MapReduce programming and HDFS
access designed to overcome most of the above limitations while allowing
access to the full set of built-in and third-party Python modules [34]. Pydoop
has been used to enable scalable biological data analysis in recent projects
[49] and in the work presented in the following chapters.

10

Figure 1.4 – Galaxy GUI component for a tool that extracts sub-regions from
genes in BED format. The drop-down menu that allows to choose the region
type is automatically generated from a select element in the corresponding
XML wrapper.

1.3 The Galaxy Bioinformatics Platform
Galaxy7 is an open source, web-based bioinformatics platform designed to
provide easy access to a wide array of software tools, ensure reproducibility
and facilitate the communication of experimental data and metadata [22].
Fig. 1.3 shows Galaxy’s main user interface: the left panel displays the list
of available tools while the right one shows the current history (see below).
The role of the center panel is context-dependent: in this case, it shows (part
of) the contents of a tabular dataset.

Galaxy simplifies access to bioinformatics applications by means of XML
wrappers that provide standard abstract descriptions of input and output
datasets and parameters, allowing the framework to automatically generate
a GUI component for each program. The following code shows a Galaxy
wrapper for a Python tool that extracts sub-regions (e.g., exons, introns)
from genomic data in BED8 format.

<tool id="gene2exon1" name="Gene BED To Exon/Intron/Codon BED">

<command interpreter="python">

ucsc_gene_bed_to_exon_bed.py

--input=$input1 --output=$out_file1 --region=$region "--exons"

</command>

5http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/
hadoop-mapreduce-client-core/HadoopStreaming.html

6http://crs4.github.io/pydoop
7http://galaxyproject.org
8http://genome.ucsc.edu/FAQ/FAQformat.html#format1

11

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/HadoopStreaming.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/HadoopStreaming.html
http://crs4.github.io/pydoop
http://galaxyproject.org
http://genome.ucsc.edu/FAQ/FAQformat.html#format1

<inputs>

<param name="region" type="select">

<label>Extract</label>

<option value="transcribed">Coding Exons + UTR Exons</option>

<option value="coding">Coding Exons only</option>

<option value="utr5">5’-UTR Exons</option>

<option value="utr3">3’-UTR Exons</option>

<option value="intron">Introns</option>

<option value="codon">Codons</option>

</param>

<param name="input1" type="data" format="bed" label="from"

help="this history item must contain a 12 field BED (see below)"/>

</inputs>

<outputs>

<data name="out_file1" format="bed"/>

</outputs>

</tool>

Command line parameters are converted into graphical elements such as
text boxes, buttons, etc. The --region option, for instance, is converted
into a drop-down menu that contains all possible values (see Fig. 1.4). This
model allows developers to easily extend Galaxy by writing wrappers for new
tools, while the tool shed repository9 provides a simple way of sharing them
with the community.

In the Galaxy abstraction, a computational analysis step is performed
by applying a tool to an input dataset, obtaining an output dataset. Input
datasets can be created by uploading the corresponding files to the server,
by importing them from established public repositories such as the UCSC
Genome Browser [53], or by FTP transfer. Additionally, data can be im-
ported from Galaxy libraries, server-side repositories set up by the adminis-
trator. To help the correct assignment of datasets to tool input slots, Galaxy
associates a data type (e.g., tabular, FASTA) to each newly created dataset.
Data types can be set by the user, although in many cases they are auto-
matically inferred. Galaxy tools and datasets hide the low-level details of
compute and storage management, thus mitigating the need for specialized
informatics expertise when performing many common types of analysis.

Reproducibility is achieved by recording all relevant metadata about an
analysis process — input and output datasets, tools and parameters — in
a history that users can access via the right panel of the main GUI (see

9https://toolshed.g2.bx.psu.edu

12

https://toolshed.g2.bx.psu.edu

Figure 1.5 – A variant selection workflow in the Galaxy workflow edi-
tor. Example taken from the Orione repository (https://orione.crs4.it/
workflow/list_published).

Fig. 1.3). Histories can be copied, annotated, shared and used to create
workflows, analysis templates where several tools are chained together to
produce the final output. The other main way of creating a new workflow is
via Galaxy’s visual editor, where tools are represented by boxes with inter-
connected input and output slots (see Fig. 1.5).

In this work, Galaxy is used as an accessibility layer for scalable computa-
tional tools. Moreover, annotated workflows and histories are used to ensure
the reproducibility of multi-step computational transformations that lead to
the creation of tracked data objects in OMERO.biobank (see Sec. 1.4).

1.4 OMERO and OMERO.biobank
The Open Microscopy Environment (OME)10 is an open source project for
biological image informatics with a focus on interoperability and traceability.
The project’s foundation is the OME Data Model [23], an ontology of the
data types and relationships occurring in an imaging experiment that acts
as a common specification for the exchange of image data and metadata.
OME models images as five-dimensional (5D) structures containing multiple
2D planes with dimensions x and y, while the other dimensions represent the
focal position z, the spectral channel c and the time point t. Crucially, an
image stored according to the model also includes metadata such as details
of the acquisition system, the experimental setup, and the person performing
the experiment. This allows to keep the whole chain of connections between

10http://www.openmicroscopy.org/

13

https://orione.crs4.it/workflow/list_published
https://orione.crs4.it/workflow/list_published
http://www.openmicroscopy.org/

Experimenter

Project

Dataset

Experiment

Plate

Screen

Experimenter
Group

Structured
Annotations

Instrument

Image

ROI

Pixels

Channel

Plane

[...] [...]

Figure 1.6 – A schematic representation of the OME Data Model. Only the
top level and part of the expansion of the image element is shown.

the original image data and the final analysis results, which often exists only
in the form of lab notes, provided it is recorded at all.

The data model is distributed as a set of XML schemas, while images are
stored either as OME-XML or OME-TIFF. In the former case, one or more
5D pixel data arrays are included — compressed and encoded in base64
[27] — in an XML file that contains the metadata. OME-TIFF, on the
other hand, can be seen as the dual of OME-XML: image data is stored
in the widely supported TIFF format, with the metadata embedded in the
file header(s). The latter solution has the advantage of making pixel data
readable by any TIFF-supporting software, even though it cannot understand
the metadata.

Fig. 1.6 schematically represents the top level of the current OME Data
Model11, as well as part of the expansion of the image element. Some en-
tities act as containers: for instance, images are grouped in datasets and
datasets in projects. An important feature of the data model is its exten-
sibility, achieved via structured annotations (SAs). SAs allows individual
users and organizations to add custom metadata that does not follow the
core model.

11http://www.openmicroscopy.org/site/support/ome-model/developers/
model-overview.html

14

http://www.openmicroscopy.org/site/support/ome-model/developers/model-overview.html
http://www.openmicroscopy.org/site/support/ome-model/developers/model-overview.html

Clients

Relational
Database

Binary
Repository

Ice

OMERO.server

Client APIs

Storage HDF5 Tables

Hibernate PyTables

Java
API

Python
API

C++
API

Java
APIOMERO.insight OMERO.web

Middleware

OMERO.fs

Figure 1.7 – Simplified OMERO architecture. The core server component
provides access to storage and indexing resources to the client APIs via several
middleware technologies.

The OME Data Model and associated file format specifications are the
basis of OMERO (OME Remote Objects) [4], a software platform for bio-
logical data management that concretely provides the interoperability and
provenance tracking enabled by the model itself. OMERO acts as a cen-
tral repository that allows to import, archive, annotate, visualize and export
images, and supports the execution of analysis scripts written in Python.

Fig. 1.7 shows a simplified diagram of OMERO’s architecture. A core
server application, OMERO.server, connects a series of data repositories to
the clients via several middleware components: OMERO.fs manages access
to the binary repository, where actual image data is stored; Hibernate [46] is
used to mediate interactions with the RDBMS that stores metadata; PyTa-
bles12 allows to manipulate HDF5 [18] tabular data; Ice13 provides a uni-
fied, multi-language API for clients, either the ones included in the OMERO
distribution or third-party ones. Interoperability between the different file
formats is achieved via Bio-Formats [35], a Java library that extracts both
data and metadata from a large number of image formats and converts them
to OME-TIFF.

OMERO.biobank14, co-developed by the author, is a software platform for
data-intensive biomedical research based upon the core services of OMERO.
Fig.1.8 schematically shows OMERO.biobank’s architecture. The core com-

12https://pytables.github.io
13https://zeroc.com
14http://www.openmicroscopy.org/site/support/partner/omero.biobank

15

https://pytables.github.io
https://zeroc.com
http://www.openmicroscopy.org/site/support/partner/omero.biobank

Modified
OMERO.server

Message Queue Graph DB

Python API

Graph Updater

Custom
Data
Model

OMERO Backend

Figure 1.8 – Simplified OMERO.biobank architecture. The core component
is a modified version of OMERO.server that uses custom models tailored to
data-intensive genomics.

ponent is a modified version of OMERO.server, based on a custom data
model that defines entities — such as laboratory samples, genomics datasets
and analysis results — connected by actions that keep track of provenance
information. To speed up the management of the complex chains of con-
nections between objects, entities are mapped to nodes and actions to edges
in a graph database (currently built on Neo4j15). Synchronization between
OMERO objects and the graph DB is ensured by a message queuing system
(currently implemented with RabbitMQ16) that propagates relevant trans-
actions to an update service. The storage backend and related middleware,
summarized as “OMERO backend” in the diagram, has the same architec-
ture as in the original OMERO. The RDBMS structure, however, is different,
since it is generated from the custom models; the same holds for the HDF5
tables, which are OMERO.biobank-specific and store genomic data and an-
notations.

Fig. 1.9 shows a small, simplified section of the custom data model. The
study object, representing an entire research project, is the root object that
provides a common context under which other objects are defined. All in-
dividuals participating in a study are linked to it via an enrollment, and to
other individuals via kinship relationships. An action is an abstraction for
any process, either physical or computational, that links an entity to the
one that generated it. Walking back the chain of actions and entities that
generate them allows to reconstruct provenance information; in practice, for
efficiency reasons, this is done on the graph DB mapping discussed above.

15http://neo4j.com
16https://www.rabbitmq.com

16

http://neo4j.com
https://www.rabbitmq.com

Individual

gender
father
mother

father
mother

Enrollment

individual
study

studyCode

Study

label
startDate
endDate

individual study

Action

setup
device
context

ActionOnIndividual

target

target

context

Figure 1.9 – A simplified section of the OMERO.biobank data model. Boxes
represent entities, with attributes listed in white. The line ending with the
empty arrowhead represents inheritance, while the other ones indicate rela-
tionships.

Actions are carried out by devices, generic actors that can create new enti-
ties. A device can be a physical object, such as an acquisition machine, a
software program (e.g., a bioinformatics tool that produces analysis results
from an input dataset, or an import utility that creates a new dataset from
outside the system) or even a whole analysis pipeline. An example of the lat-
ter representation is given by Galaxy workflows (see Sec. 1.3), which can be
exported from a Galaxy instance as a JavaScript Object Notation (JSON)17

record, stored as metadata in an OMERO.biobank device and re-imported
to launch a set of computations on a given data object.

1.5 Enabling Data-Intensive Biomedical
Studies

Current large-scale biomedical research projects are often characterized by
one or more of the complex issues discussed above, mostly related to the
size and heterogeneity of the datasets involved. In contrast with what hap-
pened in the past, such projects cannot be carried forward with the sole aid
of lab notebooks and off-the-shelf software, but require ad-hoc computing
infrastructure capable of providing adequate scalability, reproducibility and
traceability. This work presents a methodology — based upon the state-
of-the-art technologies described in the above sections — to build such an
infrastructure, through several examples of computational solutions that have

17http://json.org

17

http://json.org

been employed to tackle specific research problems.
The following papers have been published as a result of the work presented

here:

• Simone Leo, Luca Pireddu, and Gianluigi Zanetti. “SNP genotype
calling with MapReduce”. In: Proceedings of the Third International
Workshop on MapReduce and Its Applications. 2012, pp. 49–56. doi:
10.1145/2287016.2287026 (chapter 2);

• Andrea Calabria, Simone Leo, Fabrizio Benedicenti, et al. “VISPA: a
computational pipeline for the identification and analysis of genomic
vector integration sites”. Genome Medicine 6 (9), 2014. doi: 10.1186/
s13073-014-0067-5 (chapter 2, chapter 3; Calabria and Leo are equal
contributors);

• Simone Leo, Luca Pireddu, Gianmauro Cuccuru, et al. “BioBlend.objects:
metacomputing with Galaxy”. Bioinformatics 30 (19), 2014, pp. 2816–
2817. doi: 10.1093/bioinformatics/btu386 (chapter 3).

In addition, the work published in Calabria, Leo et al. has been used to
enable viral integration site analysis in the context of the study published in
the following paper:

• Alessandra Biffi, Eugenio Montini, Laura Lorioli, et al. “Lentiviral
hematopoietic stem cell gene therapy benefits metachromatic leukodys-
trophy”. Science 341 (6148), 2013. doi: 10.1126/science.1233158
(Calabria and Leo are co-authors).

18

http://dx.doi.org/10.1145/2287016.2287026
http://dx.doi.org/10.1186/s13073-014-0067-5
http://dx.doi.org/10.1186/s13073-014-0067-5
http://dx.doi.org/10.1093/bioinformatics/btu386
http://dx.doi.org/10.1126/science.1233158

Chapter 2

Enabling Scalability in
Biomedical Applications

2.1 Scalable Genotype Calling
DNA sequence variations are widely studied to identify their influence on
phenotypic traits such as height, longevity and susceptibility to specific dis-
eases. In the simplest case, a disorder is due to a mutation in a single gene
(monogenic disease); often, however, it is the result of numerous variants
acting in concert (polygenic or complex disease). In order to uncover the ge-
netic basis of complex disorders, a large number of variants must be studied
simultaneously.

The availability of high-density genotyping microarrays [29] has paved
the way for genome-wide association studies (GWAS) [13], where hundreds of
thousands of variants are measured simultaneously across the genome to iden-
tify risk factors for diseases. For instance, the Affymetrix Genome-Wide Hu-
man SNP Array 6.0 [39], one of the most widely used genotyping platforms,
simultaneously measures over 900,000 variants across the human genome.

The estimation of genetic variants from the raw data gathered via geno-
typing arrays is known as genotype calling (GC). GC on GWAS data col-
lected with Affymetrix platforms involves the analysis of a large number of
samples, with results depending on the overall statistics, the quality of each
sample, and the number of samples processed concurrently. The latter fac-
tor is particularly important, since processing data in small batches leads to
well-known adverse effects [31, 50]. In the case of an ethnically homogeneous
population, the batch size required to counteract these effects can be as large
as the total number of available samples.

The reference GC algorithm for Affymetrix data analysis, Birdseed [28],

19

is implemented by the apt-probeset-genotype program in the Affymetrix
Power Tools (APT)1. For a large-scale GWAS, where the number of samples
can be in the order of thousands or more, apt-probeset-genotype faces
serious scalability issues, such that completing the GC analysis would take
months even on a fast computational node. This makes one-shot analysis
barely feasible, and systematic studies on how the results depend on the
statistics of the samples in the dataset virtually impossible. Although the
program allows a certain degree of load distribution — achieved by processing
a subset of the variants at a time — this approach is inefficient, because the
initial normalization procedure on which it depends must be re-executed for
every subset. For this reason, the application is typically run on relatively
small batches of samples, leading to the adverse effects discussed earlier.

This section describes a MapReduce (see Sec. 1.2) implementation of GC
analysis for Affymetrix arrays that overcomes the aforementioned scalability
limitations by distributing the workload across many computing nodes in a
cluster. The application reproduces the core functionality of the APT version
while enabling the concurrent analysis of thousands of samples in the same
batch, thus avoiding the adverse effects described above.

2.1.1 Background

Single nucleotide polymorphisms (SNPs) are variations at a single genomic
position. Usually, a SNP consists of two possible variants (alleles), conven-
tionally denoted by the letters A and B. Thus, diploid organisms (including
humans) can have one of three possible genotypes at each SNP site: AA,
AB and BB. In GWAS, a large number of SNPs distributed across the
whole genome are tested for correlation with qualitative (e.g., a disease) or
quantitative (e.g., body mass index) phenotypic traits.

Although several different techniques have been developed for measur-
ing genotypes, this section concentrates on high-throughput genotyping with
SNP microarrays such as the aforementioned Affymetrix 6.0. Genotyping ar-
rays are based on the biochemical binding of complementary nucleotides: A
to T and C to G. The array surface is covered with probes, each complemen-
tary to a DNA sequence harboring a particular SNP. Probes are included for
each variant (A or B) and are grouped in redundant collections called probe-
sets. In a genotyping run, DNA is fragmented, amplified via polymerase chain
reaction (PCR), labeled with a fluorescent dye and hybridized to the probes.
The intensity of the fluorescence at each probe location is then measured,

1http://www.affymetrix.com/partners_programs/programs/developer/tools/
powertools.affx

20

http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx
http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx

0 200 400 600 800 1000 1200 1400 1600
allele A intensity

0

200

400

600

800

1000

1200

1400

1600

al
le

le
B

in
te

ns
ity

AA
AB
BB

Figure 2.1 – Fluorescence intensities of a probeset in 5,722 samples. Birdseed
classifies each sample as homozygous for the A allele (AA cluster), homozygous
for the B allele (BB cluster) or heterozygous (AB cluster).

and its value is stored in an Affymetrix CEL file.
As mentioned earlier, the standard processing pipeline for Affymetrix

microarrays is apt-probeset-genotype: raw probe intensities from CEL
files are normalized and summarized (i.e., converted to per-probeset val-
ues), then GC is performed by fitting a two-dimensional Gaussian mixture
model (GMM) to the resulting dataset, where the two dimensions repre-
sent the summarized intensities for allele A and B. The fitting is done by
expectation-maximization initialized with prior expected statistics obtained
from HapMap [63] data. For each probeset, the model determines the AA,
AB and BB clusters (Fig. 2.1) and assigns each sample to one of the three
corresponding classes, while the distance from the cluster’s centroid provides
a measure of the level of confidence associated with the call. A limit may be
placed on the confidence level, beyond which the SNP is classified as a no
call.

Since SNPs on the X and Y chromosomes must be treated differently
according to the gender of the sample, and a-priori gender information can
often be unknown or unreliable, APT includes a tool for estimating it from

21

the probe intensities (gender calling). This estimation can be done using ei-
ther one of two methods, one based on the relative intensities of probe signals
on the Y and X chromosome, and the other on an expectation-maximization
algorithm.

The normalization step is a key performance-influencing factor, since
data from all input samples must be processed at the same time. The
apt-probeset-genotype tool employs a quantile normalization [9] proce-
dure that equalizes the distribution of probe intensities across samples. Let
m be the number of probes, n the number of samples, and A the m × n
matrix whose columns represent the probe intensity vectors:

Aij = i(pj, sk) (j = 1, . . . ,m, k = 1, . . . , n)

where i(pj, sk) is the intensity of probe j in sample k. Quantile normalization
acts as follows:

1. each column in A is sorted;

2. in each row, all elements are replaced by the row mean;

3. each column is rearranged to have the same ordering as the original A.

In large-scale GWAS, conventional single-core implementations fail to per-
form the above computation efficiently, since the normalization matrix be-
comes too large to be kept in memory, hence the motivation to develop a
distributed version of the algorithm.

2.1.2 MapReduce Implementation

The main difficulty in implementing a distributed version of the GC workflow
stems from the fact that the dataset has to be traversed along either the sam-
ples or the probes dimension according to the specific step being performed
(note that this is trivial in a single-processor implementation, where all data
can be kept in the same array). Due to this requirement, the procedure has
been implemented as a chain of Pydoop (see Sec. 1.2) jobs, transposing the
ideal sample-probeset matrix as needed and storing intermediate results to
HDFS after serializing them with protocol buffers2. Although most of the
code has been written from the ground up in Python, it includes two exten-
sions modules built as Boost.Python [1] wrappers for sections of the APT
code: algo, which contains gender calling and GMM fitting, and io, which
wraps routines for reading CEL and chip layout files. Individual steps are de-
scribed in the following paragraphs, while the overall workflow is schematized
in Fig. 2.2.

2https://developers.google.com/protocol-buffers

22

https://developers.google.com/protocol-buffers

s1 s2 s3

Call
Gender

Find
Ref
Dist

Normalize

s1

Get PAs

s2
s3

p1 p1

Summarize-Map

Summarize-Reduce

s1 s2 s3GC
Results

s1 s2 s3

PAs

NPAs

GC-Map

GC-Reduce

CEL
Files

Figure 2.2 – The MapReduce GC workflow. Initial data from the microarray
assays is stored by sample in Affymetrix CEL files. “Get PAs” and “Normalize”
are map-only applications that process data by sample, while “Summarize” and
“GC” use the full MapReduce paradigm to transpose data according to the
required processing direction. “Call Gender” and “Find Reference Distribution”
store auxiliary data needed by subsequent steps to HDFS.

23

Get Probe Arrays

This is a map-only stage that, for each CEL file stored in HDFS, extracts
probe intensities and stores them in a “probe array” (PA) object. Each PA is
then serialized and written back to HDFS. Since multiple subsequent steps
take their input from probe intensities, storing PAs allows to execute the
data extraction process only once for the entire workflow.

Call Gender

This map-only step deserializes PAs read from HDFS and performs gen-
der calling as described above. The local wrapper script that launches the
Hadoop job collects gender estimations for all samples in a tab-separated
HDFS file for later usage by the GC step.

Find Reference Distribution

This stage computes the mean quantile distribution of probe intensity vec-
tors. As described in Sec. 2.1.1, this is achieved by taking the row averages
of the matrix whose columns are the sorted intensity vectors. To implement
this procedure in MapReduce, the mapper, for each PA, emits a key/value
pair structured as follows: the key is the host name of the cluster node where
the map task is running, while the value is a structure consisting of the sorted
intensity vector and a sample counter set to 1. The reducer sums all vectors
and counters and emits them using the same structure used by the mapper.
Finally, a local script (in practice the same one that launches the Hadoop
job) computes the overall vector sum and divides by the counter to get the
average intensity vector, which is written to HDFS for subsequent usage by
the normalization step.

Using the host name as the intermediate key allows to distribute the
workload by host so that the final sum, which involves at most a number of
vectors equal to the size of the cluster, can easily be handled by a local script.
A more fine-grained distribution could be achieved by having each mapper
sort the PAs and emit key/value pairs consisting of row numbers and the
corresponding intensity values. In this case, the reducers would sum all the
values for each row index and emit the index itself and the sum as the output
key/value pair, leaving it to the local script to reconstruct the final vector
from the single elements and indices. This arrangement would allow the
computation to scale with respect to the number of probes in a microarray.
In practice, however, since current machines can easily hold a single probe
intensity vector in memory, this is not necessary and would actually lead to
worse performance due to the much higher number of intermediate values

24

transmitted over the network. At the other extreme, a solution where PA
vectors are emitted to a single reducer would eliminate the need to post-
process partial sums with a local script, but also introduce a bottleneck that
would greatly reduce scalability, hence the adopted hybrid solution.

Normalize

This map-only step converts PAs to normalized PAs (NPAs) using the refer-
ence distribution computed in the previous stage. As described in Sec. 2.1.1,
each probe intensity value is replaced by the corresponding one in the refer-
ence distribution.

Summarize

This stage summarizes NPAs, yielding per-probeset intensity values. Up to
this point, data has been processed by sample: each HDFS file stored a
serialized data structure holding all probe intensities for a specific sample.
In order to perform the clustering described above, however, the subsequent
GC step needs to process data by probeset. For this reason, this step uses
the MapReduce framework to transpose the dataset while performing the
summarization. For each probeset, the mapper stores all intensities of probes
belonging to that set in a vector, and emits a key/value pair with the probeset
ID as the key and the vector itself as the value. The reducer, via the algo
extension, uses the PLIER routine from the APT libraries to summarize each
vector to a per-probeset scalar value. Since there is one such value for each
input sample, the end result is again a series of vectors, which are serialized
and stored to HDFS as in previous steps.

Genotype Call (GC)

This is the final stage, where actual SNP calling is performed. The mapper
reads summarized data from the previous step and applies the clustering
algorithm (made available via the algo extension) to call genotypes for each
probeset. Since final results must be regrouped by sample, the mapper emits
call outputs using the sample ID as the intermediate key, so that the reducer
can write one output file per sample.

25

2.1.3 Evaluation

Accuracy

The accuracy of the MapReduce workflow has been evaluated by comparing
its results with those obtained by the APT version for a 6863 samples dataset
analyzed in the course of a previous study [65]. The MapReduce version
achieved a slightly lower average no call rate (5.017× 10−2 vs 5.206× 10−2,
using the default confidence threshold of 0.1), so that approximately twelve
million additional genotypes were called over all samples. The average allelic
discordance rate (i.e., the fraction of single allele mismatches between the two
implementations) was 3.6× 10−4 with a standard deviation of 10−4, which is
lower than the genotyping chip’s intrinsic error rate of 3 × 10−3 (measured
as discordance with respect to the HapMap genotypes3).

Scalability

The performance of the MapReduce workflow has been evaluated both by
comparison with that of apt-probeset-genotype and by measuring its scal-
ability with respect to the number of samples and the size of the cluster. Tests
have been executed on a cluster of machines running CentOS Linux version
5.2 and configured as follows: two quad-core, 2.8GHz CPUs; 16GB of RAM;
two 250GB hard disks, only one of which used for HDFS storage (the other
one being exclusively used by the operating system); 1Gb Ethernet network
interface. Machine sets used to run Hadoop have been configured with two
nodes dedicated, respectively, to the HDFS and MapReduce master, while
the other ones hosted an HDFS and a MapReduce slave each. The test
dataset consisted of 7292 CEL files produced in the course of a study on
autoimmune diseases [54].

In the discussion that follows, scalability will be evaluated with respect
to the normalized throughput, defined as the number of samples processed
per time unit by each computing node (on average). Let N be the number of
cluster nodes, S that of input samples and ∆t the total running time. The
normalized throughput is then given by:

T =
S

N∆t

In the ideal case (linear speedup), as the number of nodes increases, the
throughput S/∆t increases by the same amount, so that T remains constant.
In practice, speedup is often sub-linear due to several factors, most notably

3http://www.affymetrix.com/support/technical/datasheets/genomewide_
snp6_datasheet.pdf

26

http://www.affymetrix.com/support/technical/datasheets/genomewide_snp6_datasheet.pdf
http://www.affymetrix.com/support/technical/datasheets/genomewide_snp6_datasheet.pdf

5 10 15 20 25 30
cluster size (n. nodes)

0

5

10

15

20

25

30
n.

sa
m

pl
es

pr
oc

es
se

d
pe

r
ho

ur
pe

r
no

de

Figure 2.3 – Normalized throughput of the MapReduce workflow on a 1823
samples dataset. The dashed line represents the linear least squares fitting.

the presence of non-distributed sections (in this case, the local scripts de-
scribed above) and network communication overhead (more pronounced in
full MapReduce applications than in map-only ones).

Fig. 2.3 shows the normalized throughput of the MapReduce implemen-
tation, run on a 1823 samples dataset, for varying cluster sizes. Data points
are mean values (the corresponding error bars are shown in black) computed
over three iterations of the same run, while the dashed line represents the
linear least squares fitting. In this size interval, the application maintains
good scalability, with only a slight deviation from the ideal flat line.

Fig. 2.4 shows the normalized throughput of the MapReduce implementa-
tion, run on a 30-node Hadoop cluster, for varying dataset sizes. In this case,
since the independent variable is the input size, the ideal behavior depends
on the computational complexity of the various components, including those
controlled by the Hadoop framework. In particular, since all stages that in-
clude a reduce phase give rise to a comparison-based sort, the complexity is
at least linearithmic. In addition, even though their job is mostly limited to
data collection, local scripts take more time as the number of objects they
have to manipulate increases.

27

916 1823 2736 3646 4558 5469 6381 7292
input size (n. samples)

0

5

10

15

20

25

30

n.
sa

m
pl

es
pr

oc
es

se
d

pe
r

ho
ur

pe
r

no
de

Figure 2.4 – Normalized throughput of the MapReduce workflow on a 30-
node cluster. The dashed line represents the linear least squares fitting.

Fig. 2.5 shows the total running time for the APT baseline and the
MapReduce implementation running on a 30-node Hadoop cluster. The for-
mer, due to its non-distributed nature, is characterized by a rapidly growing
running time, which reaches the order of several days even for relatively mod-
est dataset sizes; the latter, on the other hand, requires less than one day
even when the full test dataset is used.

In a previous attempt at distributing the workload without changing the
implementation, Valentini et al. [65] partitioned the data along the probe-
set dimension and ran a separate apt-probeset-genotype instance for each
partition. However, since the normalization matrix must be recomputed for
each input partition, this strategy does not scale well: GC on 6836 samples
was completed in 15 days on 18 nodes (T = 1.1). In the same work, the au-
thors were able to achieve performance comparable to that of the MapReduce
version (T = 20.4) by partitioning the data by sample into seven batches. In
this case, however, each batch is normalized separately, leading to the adverse
effects discussed earlier. To minimize such effects, batches were carefully bal-
anced with respect to variables such as the ratio of cases and controls and
plate and laboratory representation, a lengthy procedure that counterbal-

28

458916 1823 2736 3646 4558 5469 6381 7292
input size (n. samples)

0

20

40

60

80

to
ta

lr
un

ni
ng

ti
m

e
(h

ou
rs

)

Baseline
MapReduce

Figure 2.5 – Total running time as a function of the number of samples, for
the APT baseline and the MapReduce workflow running on 30 nodes.

ances the speed gain obtained in the subsequent computation. Moreover,
even after balancing, results were different from those of the by-probeset
partition case (where all samples are used for normalization), with an aver-
age allelic discordance rate of 3.4 × 10−3. In addition, this strategy is both
time-consuming and error-prone, not only due to the aforementioned group
balancing, but also because each individual job must be manually launched,
monitored and rerun in case of failure, whereas in the Hadoop version these
aspects are taken care of by the framework.

2.2 Scalable Viral IS Analysis
Gene therapy (GT) involves the delivery of a therapeutic DNA sequence
into diseased cells by means of appropriate vectors. Viruses, due to their
ability to integrate their genome into a host cell, are commonly used for this
purpose. In particular, γ-retroviral (γ-RV) and lentiviral (LV) vectors have
been successfully used in hematopoietic stem cell GT (HSC-GT) [2, 3, 7, 10].

A major concern with HSC-GT is the potential harmful alteration of gene
expression in the neighborhood of the vector’s integration site (IS), known

29

as insertional mutagenesis (IM) [12, 24, 47, 51]. Consequently, analyzing the
genomic distribution of ISs in the cells of GT patients is of critical impor-
tance to assess the safety of the therapy. Moreover, IS datasets can be used
to quantify clonal diversity, allowing to assess the efficacy of hematopoietic
reconstitution [7].

Viral IS analysis starts with the amplification, via polymerase chain re-
action (PCR), of the region where the cellular genome flanks the provirus,
followed by sequencing and bioinformatics processing. In the recent past, the
wet lab part of this procedure has seen consistent advances, mostly due to
the availability of NGS machines and to the introduction of new cell types
and time points. The computational part, on the other hand, still poses sev-
eral major challenges, most notably the efficient analysis of the huge amount
of data produced by NGS platforms — the most intensive step being the
alignment of sequencing reads to the host’s reference genome.

This section describes a bioinformatics pipeline for IS analysis that uses
Hadoop to distribute the sequence alignment workload across a cluster of
computing nodes. The focus here is on scalable sequence alignment, while
accessibility and reproducibility will be discussed in the next chapter. The
pipeline has been successfully employed in clinical studies on metachromatic
leukodystrophy (MLD) [7], Wiskott–Aldrich syndrome (WAS) [2] and globoid
cell leukodystrophy (GLD) [30]. The software has been published as open
source and is available at https://github.com/crs4/vispa.

2.2.1 Pipeline Structure

The bioinformatics pipeline targets DNA reads generated by sequencing
vector-genomic junctions that have undergone linear amplification-mediated
PCR (LAM-PCR) [55]. In these sequences, genomic fragments are flanked by
the viral long terminal repeat (LTR) and a linker cassette (LC) [42]. Often,
to achieve the full utilization of the sequencer’s capacity, multiple DNA sam-
ples are pooled together and processed in the same run, a technique known as
multiplexing. To enable the subsequent identification of individual samples
from the output reads, a specific barcode sequence is added to each sample
before pooling. All these non-genomic sequence fragments must be removed
from the reads before the alignment phase.

The rest of this subsection outlines the pipeline structure to provide the
context required for discussing the distributed sequence alignment and filter-
ing application. Additional information on the various tools is provided in
the next chapter.

30

https://github.com/crs4/vispa

Format Conversion

Subsequent steps expect data in the ubiquitous FASTA format4. NGS data,
however, comes in several different formats according to the specific tech-
nology used. The first step in the pipeline is therefore a format conversion
utility. Currently, it supports the standard flowgram format5 (SFF) used by
454 sequencers6.

Demultiplexing

This step reads the stream of FASTA sequences output by the previous one,
assigns each sequence to a sample according to the leading barcode and writes
an output file for each sample. The tool, implemented in Python, takes the
list of known barcodes as additional input, and discard all reads for which
no match is found.

Trimming

In this step, the LTR and the LC are removed from the reads to isolate
the genomic portion. The application employs a Boost.Python [1] wrapper
for the NCBI C++ Toolkit7 (https://github.com/crs4/blast-python) to
search for the last 63 nucleotides of the LTR. If found, the LTR is trimmed
out and the resulting sequence is kept for further analysis; otherwise, since
the absence of the LTR is a sign of an aspecific amplification product, the
read is discarded. The same is done for the LC, with the difference that
non-matching reads are not discarded.

Alignment and Filtering

In this stage, trimmed reads are aligned to a reference genome as a first step
to determine the viral IS. Since the latter is defined as the junction between
the integrated vector and the host genome, the sequence fragment adjacent
to the LTR has to be identified as accurately as possible. For this reason,
sequence mapping is followed by the application of a series of filters aimed
at improving the quality of alignment hits [6, 67]:

1. the match must begin within 3 bp of the LTR end (although 3 is the
recommended choice, the parameter is configurable by the user);

4http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml
5http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?view=doc_formats
6http://www.454.com
7http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC

31

https://github.com/crs4/blast-python
http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml
http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?view=doc_formats
http://www.454.com
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC

2. the identity score (percentage of matches between the read and the
genome) must be higher than a specified threshold;

3. the alignment must be unambiguous (i.e., the read must not map to
multiple genomic regions with hits of comparable quality).

The latter condition is satisfied as follows. For every mapping m of a
given read i, consider the following definition of homology score:

him = 100
|qs − qe|im

li

where qs, qe are, respectively, the starting and ending position of the input
read in the alignment (reported as “query start” and “query end” by BLAST)
and l is the length of the read itself. A read is classified as unambiguously
mapped if both its alignment score s (as reported by BLAST) and its ho-
mology score h (as defined above) are significantly better than those of the
second best hit:

1. sort all mappings for a given read by decreasing alignment score:

s(1), s(2), . . .

2. classify the read as unambiguously aligned if:

|s(2) − s(1)| > st ∧ |h(2) − h(1)| > ht

where st, ht are predefined thresholds.

In the course of the studies cited above, after a parameter tuning process
performed on a controlled dataset, st and ht were set, respectively, to 15 and
20 (these parameters are also configurable in the implementation).

Sequence alignment is a computationally intensive operation that can
take a very long time if executed on a single machine. In the course of the
clinical trials cited above, for which the pipeline was developed, the input
dataset consisted of nearly fourteen million reads, and the time required to
align them on a single processor was estimated to be in the order of the years.
For this reason, this step is implemented as a distributed sequence alignment
and filtering application (see Sec. 2.2.2), based on a Pydoop wrapper for
BLAST [5].

32

IS Merging

Due to technical biases, the position of a given IS can lie in a 3 bp interval
around the start of the alignment. This step takes this variability into account
by merging together all ISs that lie in the same 3 bp window, effectively
considering them as manifestations of the same integration event.

IS Annotation

Finally, ISs are annotated by listing nearby genomic features (e.g., genes,
miRNAs). Besides the list of merged ISs determined earlier, the program
takes as input an annotation file containing a list of known features (such as
the ones available from the UCSC Genome Browser8) and, for each IS, finds
the closest ones.

2.2.2 Distributed Alignment and Filtering

Fig. 2.6 schematizes the architecture of the distributed sequence alignment
and filtering application. Implemented as a map-only Pydoop (see Sec. 1.2)
job, the tool parallelizes execution by query sequence: each map task re-
ceives a subset of the input reads, calls BLAST in a subprocess and classifies
alignments as described in Sec. 2.2.1. In practice, this is done by adding
an appropriate tag to each sequence ID in the MapReduce output; a local
collector script subsequently partitions alignments into different output files
according to their tag. Matching sequences are classified as unambiguously
aligned if they meet the above requirements; otherwise they are classified as
repeats. In addition, non-matching sequences are tagged as such, leading to
three output files written by the collector.

Since FASTA files are characterized by multi-line records, Hadoop’s stan-
dard input format, which treats each input line as a record, cannot be used
(a FASTA entry might be split among two different map task, leading to
parsing errors or wrong sequences). For this reason, the application uses
a custom record reader that splits FASTA files into individual entries. In
practice, to decouple record reading and alignment, the former is performed
by a separate map-only job that converts records to a tab-separated format
suitable for processing by the default Hadoop reader.

8http://genome.ucsc.edu

33

http://genome.ucsc.edu

query sequences

BLAST

classify
alignments

collector

unambiguous

BLAST

classify
alignments

[...]

repeatno-match

FASTA
to tab

FASTA
to tab

[...]

Figure 2.6 – Schematic representation of the distributed sequence alignment
and filtering application, implemented as a map-only Pydoop job. Each map-
per runs a Python wrapper for the BLAST executable and filters results as
described above. Finally, a local script collects individual outputs and writes
the final results to a file.

2.2.3 Evaluation

The pipeline’s accuracy has been evaluated both by comparison with other IS
analysis software on an in silico dataset, and by analyzing real-world datasets
from [7] and [2]. Details of this evaluation, mainly performed by co-authors
A. Calabria and G. Spinozzi, are available from the VISPA paper [14], while
this subsection concentrates on the scalability of the distributed part.

Fig. 2.7 shows the normalized throughput (see Sec. 2.1.3) of the dis-
tributed alignment and filtering application on a synthetic dataset of 2048
64-base sequences, for varying cluster sizes. Deviations from the ideal flat
line can be ascribed to several factors, mostly connected to the fact that the
test dataset has been kept relatively small to allow for multiple iterations.

Hadoop distributes the workload by assigning the same number of input

34

4 8 16 32
cluster size (n. nodes)

0

500

1000

1500

2000

n.
se

qs
pr

oc
es

se
d

pe
r

ho
ur

pe
r

no
de

Figure 2.7 – Normalized throughput of the distributed alignment and filtering
application on a synthetic dataset of 2048 64-base sequences. The dashed line
represents the linear least squares fitting.

lines (and thus of input sequences, due to the tabular format used) to each
map task. This simple and usually very effective strategy does not lead to
optimal results in this case, even though all reads have been generated with
the same length. The main reason for this is that the time required to process
a query sequence depends on the number of matches with the database (the
reference genome, in this case). BLAST starts its search with a seeding
phase, looking for high-scoring (according to an appropriate substitution
matrix) word pairs between the query and the target sequence (a word is a
short subsequence of fixed length). Only word pairs whose score exceeds a
predefined threshold are kept for the subsequent extension phase, where the
initial seed is stretched to yield the full alignment. Query sequences with
more high-scoring pairs (HSPs) give rise to more extensions and thus longer
execution time.

The variable processing time of input records leads to imperfect load
balancing and thus to suboptimal scalability. Since the difference is tied
to the degree of similarity between the query sequence and the database,
which is part of what the algorithm itself has to find, devising a custom

35

Hadoop input format capable of obtaining a better load balance is far from
trivial. If the number of sequences processed by each map task is sufficiently
large, however, it is more likely that they will have a similar processing
time. Consequently, a small dataset has a greater chance of leading to bad
scalability.

36

Chapter 3

Enabling Reproducibility in
Biomedical Applications

3.1 Reproducible Viral IS Analysis
Sec. 2.2.1 describes a pipeline for viral IS analysis that consists of multiple
interconnected steps, each characterized by different data types and param-
eters. Although all developed tools can be manually installed and used via
their command line interfaces (CLIs), this mode of operation is typically
only adequate for users with a computer science background. Moreover, due
to the pipeline’s complexity, the reproducibility of analysis results must be
ensured by an automated mechanism.

As discussed in Sec. 1.3, Galaxy provides a common framework that al-
lows to make computational tools accessible to life science personnel with
various degrees of technical knowledge, while taking care of reproducibility
via the history mechanism. All tools introduced in Sec. 2.2.1 have been in-
tegrated into Galaxy as described below. Fig. 3.1 shows the custom Galaxy
instance used for IS analysis in the course of the clinical trials [2, 7, 30]. The
expansion of the VISPA sub-menu is shown at the top of the left panel, while
the center one displays the first format conversion tool.

Format Conversion

This tool has been implemented as a wrapper for sff_extract1 (later merged
into seq_crumbs2). This tool takes a 454 SFF file as input (selectable via the
drop-down menu shown in Fig. 3.1) and produces four output files containing,

1http://bioinf.comav.upv.es/sff_extract
2http://bioinf.comav.upv.es/seq_crumbs

37

http://bioinf.comav.upv.es/sff_extract
http://bioinf.comav.upv.es/seq_crumbs

Figure 3.1 – Galaxy interface for the IS analysis pipeline (VISPA), with the
center panel displaying the format conversion tool.

respectively, the sequences in FASTA format, the base qualities, an XML
report and a log file. The following is the code of the XML wrapper:

<tool id="extract_sff" name="Extract SFF" version="0.9.0">

<command interpreter="python">

extract_sff.py ’$sfffile ’ --logfile ${log_file}

-s ’$fasta_track ’ -q ’$qual_track ’ -x ’$xml_track ’

</command>

<inputs>

<param name="sfffile" type="data" format="sff"

label="454 SFF File"></param>

</inputs>

<outputs>

<data name="fasta_track" format="fasta" label="Fasta Track"/>

<data name="qual_track" format="qual" label="Qual Track"/>

<data name="xml_track" format="xml" label="Xml report"/>

<data name="log_file" format="txt" label="Log File"/>

</outputs>

</tool>

Note that the input dataset has its format set to “sff”. Besides being part
of the metadata stored as a result of the tool being run, this information
is used by the framework to filter out non-sff datasets from the drop-down
menu, thus reducing the chance of errors. The tool wrapper also sets output

38

Figure 3.2 – Galaxy interface for the demultiplex tool. Known barcodes are
read from an additional input dataset.

dataset types, so that the same checks can be performed in the following
steps.

Demultiplexing

This tool, implemented in Python, splits input sequences into several output
files according to the leading barcode (sequence that do not contain any
known barcode are discarded).

The list of known barcodes is given by an additional input dataset (see
Fig. 3.2). Since in this case the number of output datasets cannot be known
in advance, the tool writes a three-column HTML table where each row
contains a barcode, the number of corresponding matches and a link to the
actual output file.

Trimming

This tool reads a FASTA dataset containing the sequences to be trimmed.
The LTR and LC are given as additional parameters in text boxes.

Alignment and Filtering

Fig.3.3 shows the Galaxy GUI for the distributed alignment and filtering step.
Besides the list of input reads, the tool takes as input a BLAST database
containing the reference genome. Due to their size, the time required to gen-
erate them and the fact that the possible choices are limited, these databases
are stored in the Galaxy server (so that the user does not have to upload
them) and made accessible via a drop-down menu. This is achieved in two
steps: a tab-separated file where each row contains the option value (for
the executable program), the name (for the GUI menu) and the path to the
database is stored in the tool-data space of the Galaxy server:

39

Figure 3.3 – Top-level Galaxy interface for the distributed alignment and
filtering tool. Additional configuration sections appear if “advanced” is selected
instead of “default” in the drop-down menus.

hg19 Human Feb. 2009 (hg19) /path/to/hg19.tar
hg18 Human Mar. 2006 (hg18) /path/to/hg18.tar
mm9 Mouse Jul. 2007 (mm9) /path/to/mm9.tar

The drop-down menu is then automatically populated from the above file
by adding the following code to the inputs section of the XML wrapper:

<param name="db" type="select" label="BLAST database">

<options from_file="vispa_blastdb.loc">

<column name="value" index="0"/>

<column name="name" index="1"/>

<column name="path" index="2"/>

</options>

</param>

The Galaxy wrapper runs a Python driver script that launches the FASTA-
to-tabular converter and the alignment and filtering Pydoop jobs in sequence,
then collects classification results and writes the output files (see Sec. 2.2.2).
The tool includes many configuration parameters, grouped into three cat-
egories: BLAST options, such as the expectation value and the word size;
filtering options, such as the threshold values for the BLAST score and the
homology score; Hadoop parameters (number of mappers for the two MapRe-
duce jobs). To avoid cluttering the GUI, the wrapper uses a standard Galaxy

40

Figure 3.4 – Expansion of the BLAST options section in the alignment and
filtering tool GUI.

mechanism where a configuration section is opened only if the user selects
the “advanced” option from the corresponding drop-down menu (see Fig. 3.4).
The following code fragment shows how this is implemented in the wrapper.

<conditional name="blast_conf">

<param name="level" type="select" label="BLAST configuration">

<option value="default" selected="true">Default</option>

<option value="advanced">Advanced</option>

</param>

<when value="advanced">

<param name="prog" size="10" type="text" value="blastn"

label="BLAST program (e.g., blastn, blastp, ...)"/>

<param name="evalue" size="10" type="float" value="1.0"

label="Expectation value"/>

<param name="gap_cost" size="10" type="integer" value="1"

label="Gap opening cost"/>

<param name="word_size" size="10" type="integer" value="20"

label="Word size"/>

<param name="filters" type="boolean" falsevalue=""

truevalue="--blast-filters" label="BLAST filters"/>

</when>

</conditional>

41

IS Merging

This step, implemented in Python, takes as input the unambiguous align-
ments list from the previous one and an optional window size for merging,
and writes a tabular file containing the merged ISs.

IS Annotation

The annotation tool reads the merged ISs from the previous step and an
annotation dataset in BED3 format, and writes a tabular dataset containing
the following information:

• The genomic position as a (chromosome, offset) pair, which identi-
fies the IS;

• The feature’s name and strand (+/−) as they appear in the annotation
file;

• The feature’s starting and ending offset;

• The distance between the IS and the feature’s transcription start site
(TSS);

• The relative position of the IS with respect to the feature (upstream,
downstream or in-gene);

• The integration percentage, expressed as the ratio between the distance
from the TSS and the total length of the feature.

3.2 Automated Interaction with Galaxy
Providing Galaxy wrappers for bioinformatics tools helps both accessibility
and reproducibility: programs are easily manipulated under a common GUI,
and execution histories keep track of datasets, computations and configura-
tion parameters. In many cases, however, analysis tools must be accessed in
a programmatic way, so that they can be used as components by external
systems. For instance, consider a SNP discovery pipeline based on NGS se-
quence alignment. The results of this kind of analysis are never definitive:
external events such as the release of a new reference genome, the availabil-
ity of an improved version of the aligner, or the discovery of more accurate
parameter settings are all capable of rendering said results outdated. In this

3http://genome.ucsc.edu/FAQ/FAQformat.html#format1

42

http://genome.ucsc.edu/FAQ/FAQformat.html#format1

case, all existing output datasets must be recomputed from scratch. An-
other example of a situation where an analysis workflow must be re-executed
programmatically is the fine-tuning of one or more parameters that have a
statistical impact on the final results, after which the optimal value can be
used for production runs.

Actions that can be described as — for instance — “repeat analysis work-
flow w three times, assigning the values v1, v2, v3 to parameter k” are effec-
tively metacomputing operations where iterations, compositions and so on
are performed on programs or program sequences that act at the computing
level, where the actual scientific analysis is performed. If metacomputing is
performed on a regular basis, it requires the usage of specifically designed
metacomputing engines. Otherwise, issues stemming from the lack of au-
tomation, some of which have been discussed in the introduction, are simply
moved from the computing to the metacomputing level.

Building a metacomputing engine requires support from the computa-
tional frameworks being used, in the form of reliable ways to automate oper-
ations, perform bulk data processing and annotate analysis steps. However,
having been designed for human interaction, graphical interfaces are hard to
access programmatically. For this reason, Galaxy exposes its internals via
a RESTful [52] API, allowing automated control by an external program.
This interface is, however, fairly low-level: users must manually build and
execute HTTP requests, explicitly handle error cases and perform JSON se-
rialization and deserialization. This motivated the development of BioBlend
[58], a Python library that takes care of HTTP communication, basic error
handling and (de)serialization, allowing to interact with Galaxy entities such
as histories, libraries and workflows via a dictionary-based interface.

Despite its significant improvements over the basic Galaxy API, the origi-
nal BioBlend package missed several important features: the direct mapping
of Python dictionaries to REST resources offered no explicit modeling of
Galaxy entities and their relationships; the interface did not isolate client
code from changes in the underlying Galaxy API; it lacked “rich” function-
ality capable of capturing higher-level abstractions, such as automatically
retrieving all datasets for a given history or library.

This section describes BioBlend.objects, a Python object-oriented API
for Galaxy interaction implemented as a higher-level layer above the original
BioBlend. BioBlend.objects addresses the issues discussed above with two
main features: an object-oriented programming model that simplifies devel-
opment and decouples client code from changes in the underlying REST API;
a high-level component that better supports metacomputing on Galaxy enti-

43

bioblend

galaxycloudman ...

libraries objects ...

wrappers client galaxy_instance

Figure 3.5 – BioBlend.objects modules as part of BioBlend’s main structure.
New modules are shown with their name in yellow on a darker background.

ties. BioBlend.objects has been included in the official BioBlend distribution4

under bioblend/galaxy/objects (see Fig. 3.5).

3.2.1 Usage

The following code shows how to run a simple workflow that merges together
the columns of two tabular files:

from bioblend.galaxy.objects import GalaxyInstance

gi = GalaxyInstance("URL", "API_KEY")

wf = gi.workflows.list()[0]

hist = gi.histories.list()[0]

inputs = hist.get_datasets()[:2]

input_map = dict(zip(wf.input_labels , inputs))

params = {"Paste1": {"delimiter": "U"}}

wf.run(input_map , "wf_output", params=params)

With the original BioBlend, the same task is accomplished with the fol-
lowing code:

from bioblend.galaxy import GalaxyInstance

gi = GalaxyInstance("URL", "API_KEY")

summaries = gi.workflows.get_workflows()

4https://github.com/galaxyproject/bioblend

44

https://github.com/galaxyproject/bioblend

wf_id = summaries[0]["id"]

wf_info = gi.workflows.show_workflow(wf_id)

hist_infos = gi.histories.get_histories()

hist_id = hist_infos[0]["id"]

hist_dict = gi.histories.show_history(hist_id)

content_info = gi.histories.show_history(hist_id, contents=True)

datasets = [gi.histories.show_dataset(hist_id, _["id"])

for _ in content_info]

inputs = datasets[:2]

input_slots = wf_info["inputs"].keys()

input_map = {

input_slots[0]: {"id": inputs[0]["id"], "src": "hda"},

input_slots[1]: {"id": inputs[1]["id"], "src": "hda"}

}

params = {"Paste1": {"delimiter": "U"}}

gi.workflows.run_workflow(wf_id, input_map ,

history_name="wf_output", params=params)

Even with this very simple example, where a workflow is retrieved from
the Galaxy repository and executed after setting a parameter, the new API
allows for much more compact code that is easier both to read and write.

3.2.2 Implementation

BioBlend.objects consists of three main components (see Fig. 3.5). The
wrappers module defines the objects that represent Galaxy entities. All ob-
ject classes derive from an abstract Wrapper that, conceptually (the actual
code contains several additional optimizations and features), is structured as
follows:

import abc

class Wrapper(object):

__metaclass__ = abc.ABCMeta

BASE_ATTRS = ("id", "name")

@abc.abstractmethod

def __init__(self, wrapped):

self.wrapped = wrapped

for k in self.BASE_ATTRS:

setattr(self, k, self.wrapped.get(k))

45

Wrapper objects wrap the JSON-decoded dictionaries returned from the
lower-level BioBlend interface, automatically defining attributes correspond-
ing to each key. The BASE_ATTRS class attribute defines the “stable” interface,
i.e., the set of attributes that are guaranteed to be available for each specific
entity (id and name are common to all entities). This mechanism contributes
to the isolation of client code from the dictionaries obtained from the Galaxy
server.

The client module provides a high-level interface to a Galaxy instance
based on the objects defined in wrappers. The module consists of three
main classes that encapsulate interactions with the most important Galaxy
entities: histories, workflows and libraries. These classes derive from a com-
mon ObjClient that, among other things, provides the core error handling
functionality. Part of the code is shown in the following listing:

class ObjClient(object):

def _error(self, msg, err_type=RuntimeError):

self.log.error(msg)

raise err_type(msg)

def _get_dict(self, meth_name , reply):

if reply is None:

self._error("%s: no reply" % meth_name)

elif isinstance(reply, collections.Mapping):

return reply

try:

return reply[0]

except (TypeError , IndexError):

self._error("%s: unexpected reply: %r" %

(meth_name , reply))

Finally, the galaxy_instance module unifies the three clients into a
GalaxyInstance object, which provides a single entry point for manipulating
Galaxy entities:

import client

class GalaxyInstance(object):

def __init__(self, url, api_key=None, email=None, password=None):

self.gi = bioblend.galaxy.GalaxyInstance(

url, api_key, email, password)

46

self.histories = client.ObjHistoryClient(self)

self.libraries = client.ObjLibraryClient(self)

self.workflows = client.ObjWorkflowClient(self)

BioBlend.objects is used in OMERO.biobank (Sec. 1.4) as a workflow
driver for the traceable (re)computation of genomics datasets (see Sec. 4.1).

47

Chapter 4

Enabling Traceability in
Biomedical Applications

Sec. 1.4 introduced OMERO.biobank, a traceability framework for data-
intensive biomedical research based upon a modified version of OMERO.
The framework keeps track of provenance information by means of actions
that link together the various entities. Actions are performed by devices,
which represent transforming actors such as physical machines or software
applications.

Fig. 4.1 shows a short example of entity-action chain: a flow cell [26]
(which, in turn, contains biological samples, not shown in the diagram) is
processed by a device consisting of an NGS machine (e.g., an Illumina HiSeq),
which provides results in the form of a digital sequencer output. The latter
is processed by a second device, this time a Galaxy (see Sec. 1.3) workflow
(e.g., for format conversion and demultiplexing), generating one or more
sequencing data samples.

In the graph database (see Fig.1.8), the FlowCell, SequencerOutput and
SeqDataSample entities are represented by nodes, while actions are modeled
as edges (shown as dashed arrows in Fig. 4.1). This mapping allows to quickly
answer queries such as finding all sequencing data samples related to a given
individual. The reason why such a query would be inefficient if performed
directly on the backend is that in the object model the provenance chain flows
in the opposite direction (solid arrows): each entity holds a reference to the
action that produced it, which, in turn, refers to its target (the object it has
been applied to). Since an action can lead to the production of an arbitrary
number of objects, this convention allows to normalize the underlying one-
to-many relationship.

48

FlowCell

[Workflow]
target

[Sequencing]
target

SequencerOutput
action

SeqDataSample
action

produces

produces

SeqDataSample
action

...

produces

Figure 4.1 – An example of provenance chain in OMERO.biobank. Dashed
arrows represent the direct mapping used in the graph DB, where an action is
modeled as an edge between the producer and the product; solid arrows show
how entities and actions are linked in the object model.

4.1 Integrating Galaxy and OMERO.biobank
OMERO.biobank’s main goal is to support metacomputing at the provenance
graph level. As discussed in Sec. 3.2, metacomputing refers to operations on
entities which are themselves computing units, such as the iteration of a given
analysis workflow with varying values of one or more parameters. In bioin-
formatics, in particular, three major classes of events, governed by different
time scales, lead to the re-execution of whole analysis pipelines: the evolution
of acquisition technology (e.g., the release of a new NGS machine), algorith-
mic improvements (such as the availability of a new read alignment software)
and updates in the reference data (e.g., a new reference genome). To support
metacomputing, the provenance information captured by the system must be
machine-parsable, so that tasks like the recomputation of datasets produced
by a complex pipeline can be automated. In OMERO.biobank, Galaxy work-
flows have been adopted as the standard mechanism for describing sequences
of data transformations in a computable way. Although this is currently
tied to a specific — albeit popular — execution engine, in the future it will
be possible to describe workflows in a more portable way thanks to ongoing
projects such as the Common Workflow Language (CWL)1.

The Workflow entity derives from SoftwareProgram, in turn a special-
ization of Device (Fig. 4.2). The “body” attribute stores the JSON represen-
tation of the workflow as exported from Galaxy. This representation can be

1https://github.com/common-workflow-language/common-workflow-language

49

https://github.com/common-workflow-language/common-workflow-language

Device
label
maker
model
release

SoftwareProgram

Workflow
body
inputs
outputs

Figure 4.2 – The workflow entity in OMERO.biobank. Empty-headed arrows
denote inheritance.

imported back into Galaxy (either in the same instance or in a distinct one),
allowing the workflow to be re-executed. The “input” and “output” attributes
store JSON-serialized annotations that provide the information required to
map OMERO.biobank data collections to the input and output slots of the
Galaxy workflow. A data collection (see Fig. 4.3) is a set of data samples,
i.e., abstract representations of digital datasets. A data sample represents a
dataset independently of how or where it is stored; such details are captured
by data objects (derived from OMERO’s OriginalFile), by means of at-
tributes such as the path and the data type. Additionally, data samples can
have different roles in the data collection. As discussed below, roles are used
to correctly map datasets to input and output slots when driving external
applications.

The following is an example of input annotation for a scaffolding workflow
based upon SSPACE [8]:

{

"contigs": {"name": "contigs", "mimetype": "x-vl/fasta"},

"reads": {"name": "reads", "mimetype": "x-vl/fastq"},

"mates": {"name": "mates", "mimetype": "x-vl/fastq"}

}

The top-level dictionary keys correspond to the role of each sample in the

50

OriginalFile
path
size

mimetype
...

DataObject
sample

DataSample
label
status
...

DataCollection
label
...

DataCollectionItem
dataSample

dataCollection
...

TaggedDataCollectionItem
role

Figure 4.3 – DataCollection and related entities in OMERO.biobank. Since
the relationship between data samples and collections is many-to-many, it is
mediated by DataCollectionItem.

data collection. The name attribute contains the name of the corresponding
slot in the Galaxy workflow, while mimetype specifies which of the collection’s
data objects can be mapped to the slot. Conversely, in the output annotation,
type information allows to create output data objects that can be imported
back into OMERO.biobank.

The following code fragment shows a simplified version of the workflow-
driving section of the Galaxy adapter used in OMERO.biobank, implemented
using BioBlend.objects (see Sec. 3.2).

import json

class GalaxyHelper(object):

def run_workflow(self, workflow , input_dc , ∗∗kwargs):
input_annot = json.loads(workflow.inputs)

galaxy_wf = self.gi.workflows.import_new(workflow.body)

input_map = self.__build_input_map(input_annot , input_dc)

out_hist_name = make_random_str()

return galaxy_wf.run(input_map , out_hist_name , ∗∗kwargs)

The run_workflow method takes as input an OMERO.biobank work-
flow and a data collection where data sample roles must match keys in the
workflow’s input annotation. The body of the workflow is imported into

51

IRandomAccess

FileHandleAbstractNIOHandle StreamHandle

ByteArrayHandle NIOFileHandle *Zip*Handle URLHandle

DFSHandle

DataInput DataOutput

java.io

loci.common

Figure 4.4 – DFSHandle location among Bio-Formats’s I/O classes. Solid
arrows denote inheritance, while dashed ones represent interface implementa-
tion.

Galaxy (self.gi is a reference to a BioBlend.objects GalaxyInstance), and
run after mapping each data collection item to an input slot via the input
annotation.

4.2 Integrating Hadoop and OMERO
In data-intensive projects, traceability and scalability are seldom standalone
goals. Usually, applications must be able to efficiently scale with the input
size and available resources while keeping track of all metadata required to
reconstruct the provenance chain. While OMERO has been built right from
the start with traceability as one of its main design goals, it currently lacks
tight integration with high-performance distributed computing frameworks
such as Hadoop (Sec. 1.2). This section describes preliminary work aimed at
bridging the gap between the two technologies, allowing OMERO-based sys-
tems to use Hadoop as a server-side storage resource and computing engine.

As discussed in Sec. 1.4, OMERO uses Bio-Formats to access image data
and metadata. Fig. 4.4 shows the main components of Bio-Formats’s I/O
structure: the root component, IRandomAccess, unifies Java’s DataInput
and DataOutput into a common interface for reading from and writing to
a binary stream; in addition, it includes methods for setting and getting
the current offset and byte order. Implementations of this interface include
handles for regular files, byte arrays, URLs, etc.

52

The DFSHandle class2 is a new implementation of IRandomAccess that
wraps Hadoop’s FSDataInputStream and FSDataOutputStream to provide
an HDFS-aware backend for Bio-Formats. The following code fragment
shows a simplified version of part of the Java implementation:

public class DFSHandle implements IRandomAccess {

/∗ . . . ∗/
protected FSDataInputStream stream;

protected FSDataOutputStream outStream;

/∗ . . . ∗/
public DFSHandle(String name, String mode, int bufferSize) {

Configuration conf = new Configuration();

fs = FileSystem.get(URI.create(name), conf);

path = new Path(name);

if (mode.equals("r")) {

stream = (bufferSize < 0) ? fs.open(path) : fs.open(path,

bufferSize);

}

else if (mode.equals("w")) {

if (bufferSize < 0) {

outStream = fs.create(path);

}

else {

boolean overwrite = true;

outStream = fs.create(path, overwrite , bufferSize);

}

}

order = ByteOrder.BIG_ENDIAN;

}

/∗ . . . ∗/
public long getFilePointer() {

if (stream != null) return stream.getPos();

else return outStream.getPos();

}

/∗ . . . ∗/
}

The DFSHandle object holds a reference to an HDFS input or output
stream according to the opening mode. Most methods are implemented by

2https://github.com/simleo/bioformats/blob/hdfs/components/
formats-common/src/loci/common/DFSHandle.java

53

https://github.com/simleo/bioformats/blob/hdfs/components/formats-common/src/loci/common/DFSHandle.java
https://github.com/simleo/bioformats/blob/hdfs/components/formats-common/src/loci/common/DFSHandle.java

InputFormat<K,V>

BioImgInputFormat

FileInputFormat<K,V>

TextInputFormat

LineRecordReader

RecordReader<K,V>

<LongWritable,
Text>

BioImgRecordReader

<NullWritable,
IndexedRecord>

<LongWritable,
Text>

<NullWritable,
IndexedRecord>

Figure 4.5 – Bio-Formats-specific classes (dark background) and their rela-
tionships with other input formats and record readers in Hadoop. Solid arrows
denote extension, while dashed ones represent use (e.g., LineRecordReader is
the type of the object returned by TextInputFormat’s createRecordReader)

delegating the required action to the wrapped stream, performing pre- and/or
post-processing as required.

The new handle allows to read and process Bio-Formats-compatible data
stored on HDFS; in particular, it enables OMERO import directly from
Hadoop. Writing, however, is currently not possible in the general case,
since FSDataOutputStream does not support the seek operation required by
some formats.

Enabling HDFS read is only part of the work required to use image data
as an input source for MapReduce applications. Hadoop’s default input
format, TextInputFormat, expects plain text files as input, and breaks them
down into individual lines for consumption by the mapper (each text line is
emitted as an input value, while the key is set to the line’s byte offset in the
file). Processing arbitrary binary files, however, requires the development of
a custom input format. In practice, this is done by extending3 InputFormat:

public abstract class InputFormat <K,V> {

public abstract List<InputSplit > getSplits(JobContext context);

public abstract RecordReader <K,V> createRecordReader(

InputSplit split, TaskAttemptContext context);

}

The main task of an input format is to define how input data should be
partitioned into subsets called input splits, each of which will be assigned

3In earlier versions of Hadoop, InputFormat was defined as an interface, so the required
action was implementation rather than extension.

54

to a separate map task by the framework. This is done by implementing
the getSplits method. The component that breaks down input splits into
records is the record reader, which is also defined by subclassing a common
abstract class:

public abstract class RecordReader <K,V> {

public abstract void initialize(

InputSplit split, TaskAttemptContext context);

public abstract boolean nextKeyValue();

public abstract K getCurrentKey();

public abstract V getCurrentValue();

public abstract void getProgress();

public abstract void close();

}

The most important method in a record reader is nextKeyValue, which
advances the reader’s progress by one record. The method reads the next key
and value and stores them so that they can be accessed by getCurrentKey
and getCurrentValue. Since the record reader is usually tightly related to
the input format, the latter provides the former via the createRecordReader
method.

Fig. 4.5 shows how the new BioImgInputFormat relates to classes in the
Hadoop MapReduce library. Most of Hadoop’s built-in input formats, in-
cluding TextInputFormat, derive from a common abstract FileInputFormat
where input splits correspond to file chunks, identified by a path, a starting
offset and a length (by default, each split corresponds to an HDFS block).
BioImgInputFormat, in contrast, takes advantage of Bio-Formats’s logical
subdivision of image files into series (each series corresponds to a separate
5-dimensional pixel data structure) to create an input split for each series.
BioImgInputFormat uses a specialized BioImgRecordReader that emits a
serialized image plane as the value and no key (technically this is modeled
as a NullWritable object that holds no data).

Hadoop provides a simple built-in serialization mechanism (formalized
in the Writable interface) that covers commonly used data structures like
primitive types, arrays, maps etc. However, this framework is not easily ex-
tended and, more importantly, not language-neutral. The latter property is
particularly desirable in a scientific context, where analysis libraries are often
written in languages other than Java. For this reason, in BioImgInputFormat
data planes are serialized with Avro4. Avro data structures are expressed via

4https://avro.apache.org

55

https://avro.apache.org

0

1

3

2

0 1 2 3 4

shape: [4,5]
offsets: [2,1]
deltas: [2,3]

Figure 4.6 – A two-dimensional array slice (highlighted area).

schemas written in JSON, a data interchange format widely supported by
modern programming languages. Avro is becoming increasingly popular in
the bioinformatics community due to its adoption in the ADAM project [38].
Since authoring Avro schemas directly can be cumbersome, Avro supports a
higher-level interface description language (IDL) that allows for more com-
pact data structure definitions. The following listing shows the IDL descrip-
tions used by BioImgRecordReader:

protocol DataBlock {

enum DType {

INT8, UINT8, INT16, UINT16, INT32, UINT32, FLOAT32, FLOAT64

}

record ArraySlice {

DType dtype;

boolean little_endian = true;

array<int> shape;

array<int> offsets;

array<int> deltas;

bytes data;

}

}

protocol BioImg {

record BioImgPlane {

string name;

string dimension_order;

ArraySlice pixel_data;

}

}

The ArraySlice structure models a generic, multidimensional array sub-
section. The shape, offsets and deltas attributes are monodimensional

56

arrays with one element for each dimension in the array slice and contain,
respectively, the total length, starting index and slice length for each dimen-
sion (a two-dimensional example is shown in Fig 4.6). The data attribute is
a monodimensional byte array that stores actual data (the value correspond-
ing to a given n-dimensional index can be determined based on the shape
and data type DType). The BioImg structure is defined by a name (e.g.,
the file name with its extension stripped), a dimension order (e.g., "XYZCT")
and a data block of type ArraySlice. In practice, in the current version of
OMERO and Bio-Formats, data blocks are always 5-dimensional, although
this is expected to change in the future5. Full source code, including Avro
definitions, is available at https://github.com/simleo/pydoop-features.

actual
reader

avro
record

bridge
reader

Text

Pipes

mapper

actual
input format

bridge
input format

(1)

(2)

(3)

Figure 4.7 – Pydoop’s Avro input bridge. The bridge input format reads the
class name of the actual input format from the Hadoop configuration and cre-
ates an instance using reflection (1); the actual format is used to get the actual
reader via createRecordReader (2); the actual reader is passed as a parame-
ter to the bridge reader (3). The bridge reader repeatedly calls nextKeyValue
on the actual reader, converts records and communicates them to the user’s
mapper over the Pipes protocol.

Due to its high popularity in the scientific community, interoperability
with the Python language is particularly desirable. Although the Avro dis-
tribution includes, among others, a Python API, only the Java one provides
support for MapReduce applications. The remainder of this section describes

5http://www.openmicroscopy.org/site/support/ome-model/developers/
6d-7d-and-8d-storage.html

57

https://github.com/simleo/pydoop-features
http://www.openmicroscopy.org/site/support/ome-model/developers/6d-7d-and-8d-storage.html
http://www.openmicroscopy.org/site/support/ome-model/developers/6d-7d-and-8d-storage.html

an interface that allows to use Avro for MapReduce development with Py-
doop (see Sec. 1.2).

Pydoop enables MapReduce development by providing a Python client for
the Hadoop Pipes protocol, which supports the implementation of mappers,
reducers and other components in external, foreign-language user processes.
Avro support has been added6 to Pydoop via special bridge classes that
perform on-the-fly conversion of Avro records to byte sequences that can be
handled by the Pipes protocol.

Fig. 4.7 shows the logical structure of the Avro input bridge (the output
case is similar, with roles reversed). Avro input mode is triggered when the
user sets a specific parameter on the Pipes job submitter. In this case, the
submitter configures the job to use the bridge input format instead of the
actual one (which is expected to emit Avro records), whose class name is
stored in a configuration parameter. The bridge input format reads the class
name from the configuration and uses it to instantiate the actual format via
Java reflection:

public abstract class PydoopAvroInputBridgeBase <K, V>

extends InputFormat <K, V> {

protected InputFormat actualFormat;

protected Class<? extends InputFormat > defaultActualFormat;

protected InputFormat getActualFormat(Configuration conf) {

if (actualFormat == null) {

actualFormat = ReflectionUtils.newInstance(

conf.getClass(

Submitter.INPUT_FORMAT ,

defaultActualFormat ,

InputFormat.class), conf);

}

return actualFormat;

}

}

The bridge calls createRecordReader on the actual input format to get
the actual record reader which, in turn, is passed as a parameter to the bridge
reader’s constructor:

6https://github.com/crs4/pydoop/pull/98

58

https://github.com/crs4/pydoop/pull/98

public class PydoopAvroInputValueBridge

extends PydoopAvroInputBridgeBase <NullWritable ,Text> {

public PydoopAvroInputValueBridge() {

defaultActualFormat = PydoopAvroValueInputFormat.class;

}

public RecordReader <NullWritable ,Text> createRecordReader(

InputSplit split, TaskAttemptContext context) {

Configuration conf = context.getConfiguration();

return new PydoopAvroBridgeValueReader(

getActualFormat(conf).createRecordReader(split, context));

}

}

Note that the above class is a specialized version of the base input bridge
that expects Avro records to be exchanged over MapReduce values. Anal-
ogous subclasses handle the other two cases where records are exchanged,
respectively, over keys and over both keys and values.

The bridge reader uses the actual reader passed to the constructor to
fetch Avro records from the input source, converts them on the fly to byte
arrays and wraps them in Text (a subtype of Writable) objects, which can
be directly manipulated by the rest of the Pipes code and transmitted to the
client. On the Python side, a specialized AvroContext object automatically
deserializes records before passing them to the mapper, effectively hiding the
entire serialization process from the user. Full source code is available at
http://crs4.github.io/pydoop.

59

http://crs4.github.io/pydoop

Chapter 5

Conclusion

Data-intensive biomedical studies have reached a level of complexity that
makes them intractable with traditional, off-the-shelf computational tools.
Although at the present time several specific technologies exist to tackle
big data problems, combining them into a viable solution for the particular
problem at hand is far from trivial, especially since the majority of projects
require ad-hoc analysis, not covered by previously available software [15].

Scalability, or the ability to adapt to growing dataset sizes, has become an
ubiquitous issue as more scientific fields are hit by the data deluge. Biomed-
ical applications, due to the constantly increasing throughput capacity of
wet-lab acquisition devices, are at the forefront of this revolution. Sec. 2.1
discussed a typical example of a readily available, state-of-the-art software
tool that is perfectly adequate as long as the input size stays below a certain
threshold (essentially dictated by the resources available on a single ma-
chine), but becomes very hard to use when that threshold is surpassed. The
presented solution, in contrast, can take advantage of additional commod-
ity hardware to automatically adapt to increasing dataset sizes, allowing to
perform genotype calling at the genome-wide scale (millions of loci) on thou-
sands of individuals at the same time. The alignment and filtering stage of
the pipeline for viral integration site analysis, presented in Sec. 2.2, provides
another example of scalable computational solution in a biomedical setting.
Although in this case, as previously discussed, perfectly linear scalability is
hard to achieve, the distributed implementation allowed to obtain an execu-
tion time compatible with the clinical studies the pipeline was designed for,
enabling the discovery of novel therapeutic strategies for rare diseases [2, 7].

Reproducibility is another critical issue in computational biomedicine, as
it enables experimental data to be shared and reused as the building blocks
of new discoveries. Sec. 3.1 discussed the integration of the above bioinfor-
matics pipeline into Galaxy, showing how the development of appropriate

60

tools and wrappers can bring the computation inside the boundaries of a
reproducibility-aware framework, providing the basic features required for
the automatic replication of analysis workflows. The BioBlend.objects soft-
ware library, presented in Sec. 3.2, builds upon such features to provide a
compact, high-level programming interface that enables programmatic inter-
action with Galaxy resources, greatly simplifying the development of meta-
computing routines.

Another highly desirable property of software systems for data-intensive
science is traceability, i.e., the availability of provenance information for all
entities stored in the system. To be actually usable in a programmatic way,
thus enabling metacomputing, such information must be structured and com-
putable, or machine-readable, as opposed to a simple disorganized collection
of natural language notes. Sec. 4.1 introduced OMERO.biobank, a software
framework for traceability management in biomedical applications, and dis-
cussed its integration with Galaxy. By modeling a workflow as a software de-
vice, and the analysis it performs as a transforming action that links the input
and final output entities, provenance information can not only be retrieved,
but also automatically interpreted to allow re-execution, parametrized iter-
ation, composition and other metacomputing operations. To enable the in-
clusion of scalable components in such workflows, the traceability framework
needs to provide an adequate level of integration with one or more distributed
computing technologies. Sec. 4.2 described a Hadoop-aware I/O handler
and input format for OMERO-based systems (such as OMERO.biobank),
which together allow MapReduce applications to be scheduled directly from
an OMERO backend, as well as an Avro adapter that allows to exchange
complex, structured objects — such as those involved in most bioinformat-
ics applications — between different programming languages in MapReduce
jobs.

The work described here could be extended in several ways. To improve
interoperability with other systems, call data produced by the genotype call-
ing application could be written in one of the formats supported by ADAM
(see Sec. 4.2). Additionally, Galaxy wrappers could be developed for the var-
ious steps involved in the process, allowing its integration as a workflow into
OMERO.biobank. The workflow could then be used as a (re)computation en-
gine for the traceable production of genotyping data samples from Affymetrix
CEL datasets. Although the section of the Galaxy API covered by the cur-
rent version of BioBlend.objects is sufficient for most applications, the object-
oriented interface is not complete and could be strengthened by the inclusion
of additional modules. Further investigation on the structure of biological
image formats could lead to the development of a write-enabled Bio-Formats
handle for HDFS files. More generally, any step towards a tighter integra-

61

tion of the various components would lead to a more robust, efficient and
feature-rich framework for data-intensive biomedical analysis.

62

Bibliography

[1] David Abrahams and Ralf W. Grosse-Kunstleve. “Building hybrid sys-
tems with Boost.Python”. C/C++ Users Journal 21 (7), 2003, pp. 29–
36.

[2] Alessandro Aiuti, Luca Biasco, Samantha Scaramuzza, et al. “Lentivi-
ral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-
Aldrich Syndrome”. Science 341 (6148), 2013. doi: 10.1126/science.
1233151.

[3] Alessandro Aiuti, Shimon Slavin, Memet Aker, et al. “Correction of
ADA-SCID by stem cell gene therapy combined with nonmyeloablative
conditioning”. Science 296 (5577), 2002, pp. 2410–2413. doi: 10.1126/
science.1070104.

[4] Chris Allan, Jean-Marie Burel, Josh Moore, et al. “OMERO: flexi-
ble, model-driven data management for experimental biology”. Nature
Methods 9 (3), 2012, pp. 245–253. doi: 10.1038/nmeth.1896.

[5] Stephen F. Altschul, Warren Gish, Webb Miller, et al. “Basic local
alignment search tool”. Journal of Molecular Biology 215 (3), 1990,
pp. 403–410. doi: 10.1016/S0022-2836(05)80360-2.

[6] Stephen D. Barr, Angela Ciuffi, Jeremy Leipzig, et al. “HIV integra-
tion site selection: targeting in macrophages and the effects of different
routes of viral entry”. Molecular Therapy 14 (2), 2006, pp. 218–225.
doi: 10.1016/j.ymthe.2006.03.012.

[7] Alessandra Biffi, Eugenio Montini, Laura Lorioli, et al. “Lentiviral
hematopoietic stem cell gene therapy benefits metachromatic leukodys-
trophy”. Science 341 (6148), 2013. doi: 10.1126/science.1233158.

[8] Marten Boetzer, Christiaan V. Henkel, Hans J. Jansen, et al. “Scaffold-
ing pre-assembled contigs using SSPACE”. Bioinformatics 27 (4), 2011,
pp. 578–579. doi: 10.1093/bioinformatics/btq683.

63

http://dx.doi.org/10.1126/science.1233151
http://dx.doi.org/10.1126/science.1233151
http://dx.doi.org/10.1126/science.1070104
http://dx.doi.org/10.1126/science.1070104
http://dx.doi.org/10.1038/nmeth.1896
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1016/j.ymthe.2006.03.012
http://dx.doi.org/10.1126/science.1233158
http://dx.doi.org/10.1093/bioinformatics/btq683

[9] B.M. Bolstad, R.A Irizarry, M. Åstrand, et al. “A comparison of nor-
malization methods for high density oligonucleotide array data based
on variance and bias”. Bioinformatics 19 (2), 2003, pp. 185–193. doi:
10.1093/bioinformatics/19.2.185.

[10] Kaan Boztug, Manfred Schmidt, Adrian Schwarzer, et al. “Stem-cell
gene therapy for the Wiskott–Aldrich syndrome”. New England Journal
of Medicine 363 (20), 2010, pp. 1918–1927. doi: 10.1056/NEJMoa1003548.

[11] Elizabeth Brauer, Dharmendra Singh, and Sorina Popescu. “Next-generation
plant science: putting big data to work”. Genome Biology 15 (1), 2014,
p. 301. doi: 10.1186/gb4149.

[12] Christian Jörg Braun, Kaan Boztug, Anna Paruzynski, et al. “Gene
therapy for Wiskott-Aldrich syndrome — long-term efficacy and geno-
toxicity”. Science Translational Medicine 6 (227), 2014, 227ra33. doi:
10.1126/scitranslmed.3007280.

[13] William S. Bush and Jason H. Moore. “Chapter 11: Genome-Wide As-
sociation Studies”. PLoS Computational Biology 8 (12), 2012, e1002822.
doi: 10.1371/journal.pcbi.1002822.

[14] Andrea Calabria, Simone Leo, Fabrizio Benedicenti, et al. “VISPA: a
computational pipeline for the identification and analysis of genomic
vector integration sites”. Genome Medicine 6 (9), 2014. doi: 10.1186/
s13073-014-0067-5.

[15] Jeffrey Chang. “Core services: reward bioinformaticians”. Nature 520,
7546 2015. doi: 10.1038/520151a.

[16] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters”. In: Proceedings of the 6th Symposium on
Operating Systems Design & Implementation. USENIX, 2004.

[17] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters”. Communications of the ACM 51 (1), 2008,
pp. 107–113. doi: 10.1145/1327452.1327492.

[18] Mike Folk, Gerd Heber, Quincey Koziol, et al. “An overview of the
HDF5 technology suite and its applications”. In: Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases. 2011, pp. 36–47.
doi: 10.1145/1966895.1966900.

[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google
file system”. SIGOPS Operating Systems Review 37 (5), 2003, pp. 29–
43. doi: 10.1145/1165389.945450.

64

http://dx.doi.org/10.1093/bioinformatics/19.2.185
http://dx.doi.org/10.1056/NEJMoa1003548
http://dx.doi.org/10.1186/gb4149
http://dx.doi.org/10.1126/scitranslmed.3007280
http://dx.doi.org/10.1371/journal.pcbi.1002822
http://dx.doi.org/10.1186/s13073-014-0067-5
http://dx.doi.org/10.1186/s13073-014-0067-5
http://dx.doi.org/10.1038/520151a
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1966895.1966900
http://dx.doi.org/10.1145/1165389.945450

[20] W.Wayt Gibbs. “Medicine gets up close and personal”. Nature 506 (7487),
2014, pp. 144–145. doi: 10.1038/506144a.

[21] Carole Goble. “Better software, better research”. IEEE Internet Com-
puting 18 (5), 2014, pp. 4–8. doi: 10.1109/MIC.2014.88.

[22] Jeremy Goecks, Anton Nekrutenko, James Taylor, et al. “Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences”. Genome Biol-
ogy 11 (8), 2010, R86. doi: 10.1186/gb-2010-11-8-r86.

[23] Ilya Goldberg, Chris Allan, Jean-Marie Burel, et al. “The Open Mi-
croscopy Environment (OME) Data Model and XML file: open tools for
informatics and quantitative analysis in biological imaging”. Genome
Biology 6 (5), 2005, R47. doi: 10.1186/gb-2005-6-5-r47.

[24] Salima Hacein-Bey-Abina, Alexandrine Garrigue, Gary P. Wang, et al.
“Insertional oncogenesis in 4 patients after retrovirus-mediated gene
therapy of SCID-X1”. The Journal of Clinical Investigation 118 (9),
2008, pp. 3132–3142. doi: 10.1172/JCI35700.

[25] Anthony J. G. Hey, D. Stewart W. Tansley, and Kristin M. Tolle,
eds. The fourth paradigm: data-intensive scientific discovery. Microsoft
Research, 2009.

[26] Robert A. Holt and Steven J.M. Jones. “The new paradigm of flow
cell sequencing”. Genome Research 18 (6), 2008, pp. 839–846. doi: 10.
1101/gr.073262.107.

[27] S. Josefsson. The base16, base32, and base64 data encodings. RFC 4648.
2006. url: http://www.rfc-editor.org/info/rfc4648.

[28] Joshua M. Korn, Finny G. Kuruvilla, Steven A. McCarroll, et al. “In-
tegrated genotype calling and association analysis of SNPs, common
copy number polymorphisms and rare CNVs”. Nature Genetics 40 (10),
2008, pp. 1253–1260. doi: 10.1038/ng.237.

[29] Thomas LaFramboise. “Single nucleotide polymorphism arrays: a decade
of biological, computational and technological advances”. Nucleic Acids
Research 37 (13), 2009, pp. 4181–4193. doi: 10.1093/nar/gkp552.

[30] Annalisa Lattanzi, Camilla Salvagno, Claudio Maderna, et al. “Thera-
peutic benefit of lentiviral-mediated neonatal intracerebral gene ther-
apy in a mouse model of globoid cell leukodystrophy”. Human Molecu-
lar Genetics 23 (12), 2014, pp. 3250–3268. doi: 10.1093/hmg/ddu034.

65

http://dx.doi.org/10.1038/506144a
http://dx.doi.org/10.1109/MIC.2014.88
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1186/gb-2005-6-5-r47
http://dx.doi.org/10.1172/JCI35700
http://dx.doi.org/10.1101/gr.073262.107
http://dx.doi.org/10.1101/gr.073262.107
http://www.rfc-editor.org/info/rfc4648
http://dx.doi.org/10.1038/ng.237
http://dx.doi.org/10.1093/nar/gkp552
http://dx.doi.org/10.1093/hmg/ddu034

[31] Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, et al. “Tack-
ling the widespread and critical impact of batch effects in high-throughput
data”. Nature Reviews Genetics 11 (10), 2010, pp. 733–739. doi: 10.
1038/nrg2825.

[32] Simone Leo, Luca Pireddu, Gianmauro Cuccuru, et al. “BioBlend.objects:
metacomputing with Galaxy”. Bioinformatics 30 (19), 2014, pp. 2816–
2817. doi: 10.1093/bioinformatics/btu386.

[33] Simone Leo, Luca Pireddu, and Gianluigi Zanetti. “SNP genotype call-
ing with MapReduce”. In: Proceedings of the Third International Work-
shop on MapReduce and Its Applications. 2012, pp. 49–56. doi: 10.
1145/2287016.2287026.

[34] Simone Leo and Gianluigi Zanetti. “Pydoop: a Python MapReduce and
HDFS API for Hadoop”. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing. ACM, 2010,
pp. 819–825. doi: 10.1145/1851476.1851594.

[35] Melissa Linkert, Curtis T. Rueden, Chris Allan, et al. “Metadata mat-
ters: access to image data in the real world”. The Journal of Cell Biology
189 (5), 2010, pp. 777–782. doi: 10.1083/jcb.201004104.

[36] Clifford Lynch. “Big data: How do your data grow?” Nature 455 (7209),
2008, pp. 28–29. doi: 10.1038/455028a.

[37] Vivien Marx. “Biology: the big challenges of big data”. Nature 498,
7453 2013. doi: 10.1038/498255a.

[38] Matt Massie, Frank Nothaft, Christopher Hartl, et al. ADAM: ge-
nomics formats and processing patterns for cloud scale computing. Tech.
rep. UCB/EECS-2013-207. EECS Department, University of Califor-
nia, Berkeley, 2013. url: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2013/EECS-2013-207.html.

[39] Steven A. McCarroll, Finny G. Kuruvilla, Joshua M. Korn, et al. “In-
tegrated detection and population-genetic analysis of SNPs and copy
number variation”. Nature Genetics 40 (10), 2008, pp. 1166–1174. doi:
10.1038/ng.238.

[40] William K. Michener, Suzie Allard, Amber Budden, et al. “Participa-
tory design of DataONE—Enabling cyberinfrastructure for the biologi-
cal and environmental sciences”. Ecological Informatics 11, 2012, pp. 5–
15. doi: 10.1016/j.ecoinf.2011.08.007.

[41] Greg Miller. “A scientist’s nightmare: software problem leads to five
retractions”. Science 314, 5807 2006, p. 314.

66

http://dx.doi.org/10.1038/nrg2825
http://dx.doi.org/10.1038/nrg2825
http://dx.doi.org/10.1093/bioinformatics/btu386
http://dx.doi.org/10.1145/2287016.2287026
http://dx.doi.org/10.1145/2287016.2287026
http://dx.doi.org/10.1145/1851476.1851594
http://dx.doi.org/10.1083/jcb.201004104
http://dx.doi.org/10.1038/455028a
http://dx.doi.org/10.1038/498255a
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html
http://dx.doi.org/10.1038/ng.238
http://dx.doi.org/10.1016/j.ecoinf.2011.08.007

[42] Paul R. Mueller and Barbara Wold. “In vivo footprinting of a muscle
specific enhancer by ligation mediated PCR”. Science 246 (4931), 1989,
pp. 780–786. doi: 10.1126/science.2814500.

[43] Raghunath Nambiar, Ruchie Bhardwaj, Adhiraaj Sethi, et al. “A look
at challenges and opportunities of big data analytics in healthcare”. In:
Proceedings of the 2013 IEEE International Conference on Big Data.
2013, pp. 17–22. doi: 10.1109/BigData.2013.6691753.

[44] Aisling O’Driscoll, Jurate Daugelaite, and Roy D. Sleator. “‘Big data’,
Hadoop and cloud computing in genomics”. Journal of Biomedical In-
formatics 46 (5), 2013, pp. 774–781. doi: 10.1016/j.jbi.2013.07.
001.

[45] Travis E. Oliphant. “Python for scientific computing”. Computing in
Science Engineering 9 (3), 2007, pp. 10–20. doi: 10.1109/MCSE.2007.
58.

[46] Elizabeth J. O’Neil. “Object/Relational Mapping 2008: Hibernate and
the Entity Data Model (EDM)”. In: Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of Data. 2008, pp. 1351–
1356. doi: 10.1145/1376616.1376773.

[47] Marion G. Ott, Manfred Schmidt, Kerstin Schwarzwaelder, et al. “Cor-
rection of X-linked chronic granulomatous disease by gene therapy, aug-
mented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1”.
Nature Medicine 12 (4), 2006, pp. 401–409. doi: 10.1038/nm1393.

[48] Chandra Shekhar Pareek, Rafal Smoczynski, and Andrzej Tretyn. “Se-
quencing technologies and genome sequencing”. Journal of applied ge-
netics 52 (4), 2011, pp. 413–35. doi: 10.1007/s13353-011-0057-x.

[49] Luca Pireddu, Simone Leo, and Gianluigi Zanetti. “SEAL: a distributed
short read mapping and duplicate removal tool”. Bioinformatics 27 (15),
2011, pp. 2159–2160. doi: 10.1093/bioinformatics/btr325.

[50] Anna Pluzhnikov, Jennifer E. Below, Anuar Konkashbaev, et al. “Spoil-
ing the whole bunch: quality control aimed at preserving the integrity
of high-throughput genotyping”. American Journal of Human Genetics
87 (1), 2010, pp. 123–128. doi: 10.1016/j.ajhg.2010.06.005.

[51] Marco Ranzani, Stefano Annunziato, David J. Adams, et al. “Cancer
gene discovery: exploiting insertional mutagenesis”. Molecular Cancer
Research 11 (10), 2013, pp. 1141–1158. doi: 10.1158/1541-7786.MCR-
13-0244.

[52] Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly
Media, 2007.

67

http://dx.doi.org/10.1126/science.2814500
http://dx.doi.org/10.1109/BigData.2013.6691753
http://dx.doi.org/10.1016/j.jbi.2013.07.001
http://dx.doi.org/10.1016/j.jbi.2013.07.001
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1145/1376616.1376773
http://dx.doi.org/10.1038/nm1393
http://dx.doi.org/10.1007/s13353-011-0057-x
http://dx.doi.org/10.1093/bioinformatics/btr325
http://dx.doi.org/10.1016/j.ajhg.2010.06.005
http://dx.doi.org/10.1158/1541-7786.MCR-13-0244
http://dx.doi.org/10.1158/1541-7786.MCR-13-0244

[53] Kate R. Rosenbloom, Joel Armstrong, Galt P. Barber, et al. “The
UCSC Genome Browser database: 2015 update”. Nucleic Acids Re-
search 43 (D1), 2015, pp. D670–D681. doi: 10.1093/nar/gku1177.

[54] Serena Sanna, Maristella Pitzalis, Magdalena Zoledziewska, et al. “Vari-
ants within the immunoregulatory CBLB gene are associated with mul-
tiple sclerosis”. Nature Genetics 42 (6), 2010, pp. 495–497. doi: 10.
1038/ng.584.

[55] Manfred Schmidt, Kerstin Schwarzwaelder, Cynthia Bartholomae, et
al. “High-resolution insertion-site analysis by linear amplification-mediated
PCR (LAM-PCR)”. Nature Methods 4 (12), 2007, pp. 1051–1057. doi:
10.1038/nmeth1103.

[56] Terrence J. Sejnowski, Patricia S. Churchland, and J. Anthony Movshon.
“Putting big data to good use in neuroscience”. Nature Neuroscience
17 (11), 2014, pp. 1440–1441. doi: 10.1038/nn.3839.

[57] Jay Shendure and Hanlee Ji. “Next-generation DNA sequencing”. Na-
ture Biotechnology 26 (10), 2008, pp. 1135–1145. doi: 10.1038/nbt1486.

[58] Clare Sloggett, Nuwan Goonasekera, and Enis Afgan. “BioBlend: au-
tomating pipeline analyses within Galaxy and CloudMan”. Bioinfor-
matics 29 (13), 2013, pp. 1685–1686. doi: 10.1093/bioinformatics/
btt199.

[59] Thomas Sterling, Donald J. Becker, Daniel Savarese, et al. “Beowulf: a
parallel workstation for scientific computation”. In: Proceedings of the
24th International Conference on Parallel Processing. 1995, pp. 11–14.

[60] Herb Sutter. “The free lunch is over: a fundamental turn toward con-
currency in software”. Dr. Dobb’s journal 30 (3), 2005, pp. 202–210.

[61] Ronald Taylor. “An overview of the Hadoop/MapReduce/HBase frame-
work and its current applications in bioinformatics”. BMC Bioinformat-
ics 11 (Suppl 12), 2010, S1. doi: 10.1186/1471-2105-11-S12-S1.

[62] Carol Tenopir, Suzie Allard, Kimberly Douglass, et al. “Data sharing by
scientists: practices and perceptions”. PLoS ONE 6 (6), 2011, e21101.
doi: 10.1371/journal.pone.0021101.

[63] Gudmundur A. Thorisson, Albert V. Smith, Lalitha Krishnan, et al.
“The international HapMap project web site”.Genome Research 15 (11),
2005, pp. 1592–1593. doi: 10.1101/gr.4413105.

68

http://dx.doi.org/10.1093/nar/gku1177
http://dx.doi.org/10.1038/ng.584
http://dx.doi.org/10.1038/ng.584
http://dx.doi.org/10.1038/nmeth1103
http://dx.doi.org/10.1038/nn.3839
http://dx.doi.org/10.1038/nbt1486
http://dx.doi.org/10.1093/bioinformatics/btt199
http://dx.doi.org/10.1093/bioinformatics/btt199
http://dx.doi.org/10.1186/1471-2105-11-S12-S1
http://dx.doi.org/10.1371/journal.pone.0021101
http://dx.doi.org/10.1101/gr.4413105

[64] Kristin M. Tolle, D. Stewart W. Tansley, and Anthony J. G. Hey.
“The fourth paradigm: data-intensive scientific discovery”. Proceedings
of the IEEE 99 (8), 2011, pp. 1334–1337. doi: 10.1109/JPROC.2011.
2155130.

[65] Maria Valentini, Ilenia Zara, and Michele Muggiri. Comparison of two
strategies for genotype calling. Poster presentation, ESHG 2011, Ams-
terdam, May 25–31. 2011.

[66] Ramona L. Walls, Balaji Athreya, Laurel Cooper, et al. “Ontologies as
integrative tools for plant science”. American Journal of Botany 99 (8),
2012, pp. 1263–1275. doi: 10.3732/ajb.1200222.

[67] Gary P. Wang, Alexandrine Garrigue, Angela Ciuffi, et al. “DNA bar
coding and pyrosequencing to analyze adverse events in therapeutic
gene transfer”. Nucleic Acids Research 36 (9), 2008, e49. doi: 10.1093/
nar/gkn125.

[68] Tom White. Hadoop: the definitive guide. 3rd ed. O’Reilly Media, 2012.

[69] Quan Zou, Xu-Bin Li, Wen-Rui Jiang, et al. “Survey of MapReduce
frame operation in bioinformatics”. Briefings in Bioinformatics 15 (4),
2014, pp. 637–647. doi: 10.1093/bib/bbs088.

69

http://dx.doi.org/10.1109/JPROC.2011.2155130
http://dx.doi.org/10.1109/JPROC.2011.2155130
http://dx.doi.org/10.3732/ajb.1200222
http://dx.doi.org/10.1093/nar/gkn125
http://dx.doi.org/10.1093/nar/gkn125
http://dx.doi.org/10.1093/bib/bbs088

	Introduction
	Big Data in the Life Sciences
	MapReduce and Hadoop
	The Galaxy Bioinformatics Platform
	OMERO and OMERO.biobank
	Enabling Data-Intensive Biomedical Studies

	Enabling Scalability in Biomedical Applications
	Scalable Genotype Calling
	Background
	MapReduce Implementation
	Evaluation

	Scalable Viral IS Analysis
	Pipeline Structure
	Distributed Alignment and Filtering
	Evaluation

	Enabling Reproducibility in Biomedical Applications
	Reproducible Viral IS Analysis
	Automated Interaction with Galaxy
	Usage
	Implementation

	Enabling Traceability in Biomedical Applications
	Integrating Galaxy and OMERO.biobank
	Integrating Hadoop and OMERO

	Conclusion

