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Introduction

A very and natural way of introducing a logic is by using a sequent calculus, or Gentzen

system. These systems are determined by specifying a set of axioms and a set of rules.

Axioms are then starting points from which we can derive new consequences by using

the rules. Hilbert systems consist also on a set of axioms and a set of rules that are used

to deduce consequences. The main difference is that, whereas the axioms in Hilbert

systems are formulas, and the rules allow to deduce certain formulas from other sets of

formulas, in the case of Gentzen systems the axioms are sequents and the rules indicate

which sequents can be inferred from other sets of sequents. By a sequent we understand

a pair 〈Γ, Σ〉, where Γ and Σ are finite sequences of formulas. We denote the sequent

〈Γ, Σ〉 by Γ . Σ.1 The sequent Γ . Σ intends to formalize – at least in its origin – the

concept “the conjunction of all the formulas of Γ implies the disjunction of all the

formulas of Σ.”

The notion of a sequent calculus was invented by G. Gentzen in order to give ax-

iomatizations for Classical and Intuitionistic Propositional Logics. And the rules he

gave in both cases can be grouped in different categories: because of its character, the

Cut rule deserves a special category for itself; then we have the rules of introduction

and elimination of each one of the connectives, both on the left and on the right – of

the symbol . –; and finally a set of rules that do not involve any particular connective.

These are known as the structural rules, and here we have their left versions:

Γ, ∆ . Σ
Γ, α, ∆ . Σ

(Weakening)
Γ, α, α, ∆ . Σ
Γ, α, ∆ . Σ

(Contraction)

Γ, α, β, ∆ . Σ
Γ, β, α, ∆ . Σ

(Exchange)

These rules are necessary in Classical and Intuitionistic logics because in these logics

1Traditional notations for sequents are Γ ⇒ Σ and Γ ` Σ, but since both the symbols ⇒ and ` have

many other meanings, we prefer to denote sequents by using the less overloaded symbol ., which can also

be found in literature with this use.
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the order in which we are given the premises, or if we have them repeated, is irrelevant,

and we do not loose consequences if we extend the set of hypotheses. But there are other

logics that do not satisfy all these rules: for instance, relevance logics and linear logic.

At first, these logics were studied separately, and different theories were developed for

their investigation. But later on, researches arrived to the conclusion that all of them

share a common feature, which became more apparent after the work of W. Blok and

D. Pigozzi. It was discovered that (pointed) residuated lattices – or FL algebras – are

the algebraic counterpart of substructural logics.

In the XIX century, Boole noticed a close connection between “the laws of thought,”

as he put it, and algebra. After him, other mathematicians put together all the pieces

and described a sort of algebras, named Boole algebras after him, and shed light on the

connection anticipated by Boole: Boole algebras are the “natural” semantics for Clas-

sical Propositional Logic. More connections were discovered between other logics and

other sorts of algebras: for instance, Heyting algebras are the “natural” semantics for

Intuitionistic Propositional Logic, and MV algebras for Łukasievicz Multivalued Logic.

But it was not until 1989, when Blok and Pigozzi published their book Algebraizable

Logics, that for the first time the connections between these logics and classes of al-

gebras were finally described with absolute precision. According to their definitions,

these classes of algebras are the equivalent algebraic sematics of the corresponding log-

ics. That is, these classes of algebras are the algebraic counterparts of the corresponding

logics. Their ideas paved the way to a new branch of mathematics called Abstract Al-

gebraic Logic, which investigates the connections between logics and classes of algebras,

and the so-called bridge theorems: that is, theorems that establish bridges between some

property of one realm (logic or algebra) with another property of the other realm.

The core of the connection between substructural logics and residuated lattices is

that in all these logics, some theorem of the following form could always be proven:

α, β . γ is provable ⇔ β . α→ γ is provable.

Thus, we could think that the metalogical symbol ’,’ is acting as a real connective. More

precisely, we could introduce a new connective ·, called fusion, and impose the following

rule:

α · β . γ is provable ⇔ β . α→ γ is provable. (1)

Given an algebraic model with a lattice reduct, it is usually the case that the meet and

join operations serve as the interpretations of the conjunction and disjunction connec-

tives. What should be then the interpretation of the fusion? Usually, the elements of the

lattice are thought as different degrees of truth, and “α . β is provable” is interpreted
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as “for every assignment, the degree of truth of α is less than that of β.” Under this

natural interpretation, the condition (1) becomes:

a · b 6 c ⇔ b 6 a→ c.

That is, the fusion is interpreted as a residuated operation on the lattice.

Being the algebraic semantics of substructural logics and containing many interest-

ing subvarieties such as Heyting algebras, MV algebras, and lattice-ordered groups,

to name a few, the variety of residuated lattices is of utmost importance to the stud-

ies of Logic and Algebra, hence our interest. In this dissertation we carry out some

investigations on different problems concerning residuated lattices.

In what follows we give a brief description of the contents and organization of this

dissertation. Every chapter – except for the first one, which is devoted to setting the

preliminaries – starts with an introduction in which the reader will find a lengthier

explanation of the subject of the chapter, the way the material is organized, and refer-

ences. Thus, in order to avoid unnecessary repetitions, we will keep this introduction

short.

We start by compiling in Chapter 1 all the essential well-known results about resid-

uated lattices that we will need in the subsequent chapters. We present here the defi-

nitions of those concepts that are not specific to some particular chapter, but general.

We define the variety of residuated lattices, and some of its more significant subvari-

eties. We also introduce nuclei, and nucleus retracts. As it is widely known, the lattice

of normal convex subalgebras of a residuated lattice is isomorphic to its congruence

lattice, and hence its importance. But it turns out that also the lattice of convex (not

necessarily normal) subalgebras is of great significance, specially in the case of e-cyclic

residuated lattices. Many of its properties depend on the fact that it is a pseudo-com-

plemented lattice. Actually, it is a Heyting algebra. For instance, polars are special

sets usually defined in terms of a certain notion of orthogonality; in the case of e-cyclic

residuated lattices, polars are the pseudo-complements of the convex subalgebras. We

end the chapter by briefly explaining the notions of semilinearity and projectability for

residuated lattices.

In the 1960’s, P. F. Conrad and other authors set in motion a general program for the

investigation of lattice-ordered groups, aimed at elucidating some order-theoretic prop-

erties of these algebras by inquiring into the structure of their lattices of convex `-sub-

groups. This approach can be naturally extended to residuated lattices and their convex

subalgebras. We devote Chapters 2 and 3 to two different problems that can be framed

within Conrad’s program for residuated lattices. More specifically, in Chapter 2 we
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revisit the Galatos-Tsinakis categorical equivalence between integral GMV algebras and

negative cones of `-groups with a nucleus, showing that it restricts to an equivalence

of the full subcategories whose objects are the projectable members of these classes.

Afterwards, we introduce the notion of Gödel GMV algebras, which are expansions

of projectable integral GMV algebras by a binary term that realizes a positive Gödel

implication in every such algebra. We see that Gödel GMV algebras and projectable in-

tegral GMV algebras are essentially the same thing. Analogously, Gödel negative cones

are those Gödel GMV algebras whose residuated lattice reducts are negative cones of

`-groups. Thus, we turn projectable integral GMV algebras and negative cones of pro-

jectable `-groups into varieties by including this implication in their signature. We

prove that there is an adjunction between the categories whose objects are the members

of these varieties and whose morphisms are required to preserve implications.

We devote Chapter 3 to the study of certain kinds of completions of semilinear

residuated lattices. We can find in the literature different notions of completions for

residuated lattices, like for example Dedekind-McNeil completions, regular comple-

tions, complete ideal completions, . . . Very often it happens that for a certain algebra in

a variety of residuated lattices, those completions exists but do not belong to the same

variety. That is, varieties are not closed, in general, under the operations of taking these

kinds of completions. But there are other notions of completions that might have better

properties in this regard. Conrad and other authors proved the existence of lateral com-

pletions, projectable completions, and orthocompletions for representable `-groups, and

moreover, that the varieties of representable `-groups are closed under these comple-

tions. Our goal in this chapter is to prove the existence of lateral completions, (strongly)

projectable completions, and orthocompletions for semilinear e-cyclic residuated lat-

tices, as they are a natural generalization of representable `-groups. We introduce all

these concepts along the chapter, and prove first that every semilinear e-cyclic residu-

ated lattice can be densely embedded into another residuated lattice which is latterly

complete and strongly projectable. We obtain this lattice as a direct limit of a certain

family of algebras obtained from the original lattice by taking quotients and products,

so the direct limit stays in the same variety where the original algebra lives. Finally,

we prove that for semilinear GMV algebras, we can find minimal dense extensions

satisfying all the required properties.

In Chapter 4 we study the failure of the Amalgamation Property on several varieties

of residuated lattices. The Amalgamation Property is of particular interest in the study

of residuated lattices due to its relation with various syntactic interpolation properties

of substructural logics. There are no examples to date of non-commutative varieties of
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residuated lattices that satisfy the Amalgamation Property. The variety of semilinear

residuated lattices is a natural candidate for enjoying this property, since most varieties

that have a manageable representation theory and satisfy the Amalgamation Property

are semilinear. However, we prove that this is not the case, and in the process we

establish that the same happens for the variety of semilinear cancellative residuated

lattices, that is, it also lacks the Amalgamation Property. In addition, we prove that

the variety whose members have a distributive lattice reduct and satisfy the identity

x(y ∧ z)w ≈ xyw ∧ xzw also fails the Amalgamation Property.

In Chapter 5 we show how some well-known results of the theory of automata, in

particular those related to regular languages, can be viewed within a wider framework.

In order to do so, we introduce the concept of module over a residuated lattice, and

show that modules over a fixed residuated lattice – that is, partially ordered sets acted

upon by a residuated lattice – provide a suitable algebraic framework for extending

the concept of a recognizable language as defined by Kleene. More specifically, we in-

troduce the notion of a recognizable element of a residuated lattice by a finite module

and provide a characterization of such an element in the spirit of Myhill’s character-

ization of recognizable languages. Further, we investigate the structure of the set of

recognizagle elements of a residuated lattice, and also provide sufficient conditions for

a recognizable element to be recognized by a Boolean module.

We summarize in Chapter 6 the main results of this dissertation and propose some

of the problems that still remain open. We end this dissertation with an appendix

on directoids. These structures were introduced independently three times, and their

aim is to study directed ordered sets from an algebraic perspective. The structures

that we have studied in this dissertations have an underlying order, but moreover they

have a lattice reduct. That is not always the case for directed ordered sets. Hence

the importance of the study of directoids. We prove some properties of directoids and

their expansions by additional and complemented directoids. Among other results,

we provide a shorter proof of the direct decomposition theorem for bounded involute

directoids. We present a description of central elements of complemented directoids.

And finally we show that the variety of directoids, as well as its expansions mentioned

above, all have the strong amalgamation property.

I would like to end this introduction by acknowledging the collaborations that have

led to the results collected in this dissertation. The collaborators are: A. Ledda (Ch. 2,

3, and 4, and the ppendix), F. Paoli (Ch. 2 and the appendix), C. Tsinakis (Ch. 2, 3, 4,

and 5), and I. Chajda, R. Giuntini, and M. Kolařik (the appendix). I wish to express my

most deepest gratitude to all of them.





Chapter 1

Preliminaries

In this first chapter, we introduce the basic concepts that will be used and studied

in this dissertation, as well as some well-known facts about them. We have collected

here only those notions that will appear in more than one chapter, in the interests of

briefness. More advanced or specific concepts will be introduced in time, as we need

them and our study develops. We do not give proofs for the results presented here, but

we supply appropriate references for those that are not immediate. We do not intend

in this chapter to provide a thorough study of the subjects that we introduce, but to

keep in one place the material – which otherwise will be scattered over many articles

and books – and unify notation and terminology. Unless the possibility of confusion

forbids it, we will use juxtaposition to denote composition of maps, as well as other

sorts of “multiplications,” but most of the time the reader will discern the meaning by

the context.

While we start by giving the rudiments of orders and lattices, we swiftly move for-

ward to bring in the star concept of our research, namely residuated lattices, and related

notions. We will make extensive use of Universal Algebra throughout this dissertation.

We refer the reader to [18, 24, 46], where the basics and techniques of Universal Al-

gebra are exposed. As for residuated lattices, the reader will find lucid expositions

in [10, 40, 53, 72] and the references therein contained.

1.1 Partial Ordered Sets, Lattices, and Residuation

Most of the structures that we are going to consider in this dissertation are sets endowed

with a certain order of its elements. Here, we introduce the very basic concepts related

to partial ordered sets and lattices, and refer the reader to [32] for a comprehensive

exposition of the subject.
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A partial ordered set, or poset, is a pair A = (A,6) such that 6 is a binary relation

satisfying the following three properties:

1. Reflexivity: for all a ∈ A, a 6 a.

2. Antisymmetry: for all a, b ∈ A, if a 6 b and b 6 a, then a = b.

3. Transitivity: for all a, b, c ∈ A, if a 6 b and b 6 c, then a 6 c.

We say that 6 is an order on A, and if a 6 b we say that a is lesser or smaller than b and

b is greater or bigger than a.

Typical examples of partial ordered sets are the natural, integer, and real numbers

with their respective natural orders: (N,6), (Z,6), (R,6). It is well known that

these posets satisfy an additional property, namely, any two elements are comparable,

i.e. either a 6 b or b 6 a. If this is the case, we say that the order is total and the partial

ordered set is a chain or linearly ordered. Thus, the aforementioned sets of numbers with

their natural orders are chains.

Obviously, a poset need not be a chain. For instance, the divisibility relation, a | b if

and only if a divides b, is an order on the set of natural numbers, but neither 3 | 5 nor

5 | 3, for example. Thus (N, |) is a poset but not a chain.

Given a poset A = (A,6), and a set X ⊆ A, an upper (lower) bound of X is an element

a ∈ A such that b 6 a (a 6 b, respectively), for all b ∈ X. The supremum of X, if it exists,

is the smallest of its upper bounds. Analogously, the infimum of X, if it exists, is the

biggest of its lower bounds.

A poset is called a lattice if for every a, b ∈ A, the set {a, b} has a supremum and

an infimum. There is an algebraic way of presenting a lattice using precisely the exis-

tence of the supremum and infimum of every pair of elements: A lattice is an algebra

A = (A,∧,∨) of type (2,2), such that the operations ∧ and ∨, called meet and join, re-

spectively, are associative, commutative, and satisfy the absorption laws (a ∧ (a ∨ b) = a

and a∨ (a∧ b) = a). As it is well known, every algebra with such characteristics induces

an order 6 on its universe as follows: a 6 b if and only if a ∧ b = a (or equivalently

a∨ b = b). With such definitions, the meet of a and b, a∧ b, is the infimum of {a, b} and

analogously, their join is the supremum. Thus, lattices can be presented both as purely

relational and as algebraic structures.

A filter of a poset A = (A,6) is a nonempty set F ⊆ A that is closed upwards, that

is, for every a ∈ F and b ∈ A, if a 6 b then b ∈ F. Given a lattice A = (A,∧,∨),
a lattice-filter (or just a filter) of a A is a filter F of the associated poset that moreover

satisfies that for every a, b ∈ F, the meet a ∧ b ∈ F.

We say that a poset is bounded above or bounded below if there is a greatest element
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(called top), least element (called bottom), respectively, and it is bounded if it contains

both. If the lattice is presented as an algebra, we usually add two extra constants to the

language, ⊥ and >, to represent the bottom and the top, respectively. It is not difficult

to see that (N, |) is actually a lattice, which is bounded, whose bottom is 1 and top is 0.

The corresponding algebraic presentation would be (N, gcd, lcm, 1, 0), where gcd(a, b)

and lcm(a, b) are the greatest common divisor and least common multiple of a and b,

respectively.

Given a poset A = (A,6), it is easy to see that every non-empty X ⊆ A, equipped

with the restriction of 6 to X, is again a poset (X,6). (We will not make any nota-

tional distinction between the order on A and its restriction to X, unless this leads to

confusion.) We say that X inherits the order from A.

Given a poset A = (A,6), a subset D ⊆ A is said to be directed if for every a, b ∈ D,

there is a c ∈ D such that a 6 c and b 6 c. That is, if every two elements of D have a

common upper bound. An element a of a poset A = (A,6) is compact if any directed

set D ⊆ A such that the supremum of D exists and is bigger than a, contains an element

d ∈ D such that a 6 d. We denote by K(A) the set of compact elements of A. Consider

for instance the power set P(X) of a set X, that is, the set of all subsets of X. We can see

that the inclusion, ⊆, is an order on P(X). Thus, (P(X),⊆) is an ordered set and its

compact elements are the finite subsets of X.

A poset A is complete if every subset X ⊆ A has a supremum (and therefore, every

subset X has also an infimum). A poset A is algebraic if every element is the supremum

of the set of compact elements bellow it. A complete poset need not be algebraic, nor

an algebraic poset needs to be complete. (P(X),⊆) is an example of a complete poset,

which is also algebraic.

Given two posets A = (A,6) and B = (B,6′), a map f : A → B is monotone if it

respects the order, i.e. if for every a, b ∈ A, if a 6 b then f (a) 6′ f (b). We also say that

f is order-preserving. The map f is an isomorphism if it is bijective and for every a, b ∈ A,

a 6 b if and only if f (a) 6′ f (b).

A map f : A→ B is said to be residuated, with respect to A = (A,6) and B = (B,6′),

if there is another map f+ : B→ A such that for every a ∈ A and b ∈ B,

f (a) 6′ b ⇔ a 6 f+(b).

The map f+, which is called the residual of f , can be shown to be uniquely determined

by f . We also say that the pair ( f , f+) is a residuated pair. For instance, given any map

f : X → Y, the direct image map f : P(X) → P(Y) is residuated, with residual f−1

given by: f−1(Z) = {x ∈ X : f (x) ∈ Z}, for every Z ⊆ Y.
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Residuated maps are of utmost importance in Mathematics, intimately related to

Galois connections and to adjoint functors. They have many interesting properties, of

which we give a brief selection in the lemma below. We refer the reader to [12] for a

detailed proof of these facts.

Lemma 1.1. If f : A→ B is a residuated map with residual f+, then:

(i) Both f and f+ are order-preserving.

(ii) f preserves arbitrary existing joins and f+ preserves arbitrary existing meets.

(iii) γ = f+ ◦ f is a closure operator1 on A. Its associated closure system is Aγ = { f+(b) :

b ∈ B}, which inherits a partial order from A.

(iv) δ = f ◦ f+ is an interior operator2 on B. Its associated interior system is Bδ = { f (a) :

a ∈ A}, which inherits a partial order from B.

(v) f ◦ f+ ◦ f = f and f+ ◦ f ◦ f+ = f+.

(vi) The corresponding restrictions of f and f+ determine an order-isomorphism and its inverse

between Aγ and Bδ.

1.2 Residuated Lattices

In this section we briefly recall basic facts about the class of (pointed) residuated lattices

and some of its most important subclasses. We refer the reader to [10, 40, 53, 72] for

basic results in the theory of residuated lattices. Here, we only review the background

material needed in this dissertation.

A binary operation · on a partially ordered set A = (A,6) is said to be residuated3

provided there exist binary operations \ and / on A such that for all a, b, c ∈ A,

a · b 6 c if and only if a 6 c/b if and only if b 6 a\c. (Res)

We refer to the operations \ and / as the left residual and right residual of ·, respectively.

Usually, we refer to the operation · as multiplication, specially if it is represented by

the symbol ‘·’ or some other of the kind. We will encounter situations in which the

meet operation of a lattice, ∧, is residuated. Tradition prevents us from calling the meet

operation a “multiplication” in these cases, also because it often collides with another

operation, ·, present in the same structure, to which the name “multiplication” better

1See Section 1.3.
2See Section 1.3.
3Notice that this means that the operation · is residuated in “both coordinates,” i.e. for every a, b ∈ A,

the maps a · _ : A→ A and _ · b : A→ A are residuated, in the sense of Section 1.1, with residuals a\_ and

_/b, respectively. For this reason, sometimes · is said to be biresiduated.
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fits. As usual, we write xy for x · y, x2 for xx and adopt the convention that, in the

absence of parentheses, · is performed first, followed by \ and /, and finally by ∨ and

∧, if present. Sometimes we will use ∏
j6n

xj as a shorthand notation for x1 · · · xn.

The residuals may be viewed as generalized division operations. We tend to favor

\ in calculations, but any statement about residuated structures has a “mirror image”

obtained by reading terms backwards (i.e., replacing x · y by y · x and interchanging x/y

with y\x).

We are primarily interested in the situation where · is a monoid operation with unit

element e and the partial order 6 is a lattice order. In this case, we add the monoid unit

and the monoid product symbols to the similarity type and refer to the resulting struc-

ture A = (A,∧,∨, ·, \, /, e) as a residuated lattice. The class of residuated lattices forms

a variety (see e.g. [72, Proposition 4.5]) that we denote throughout this dissertation by

RL. We adopt the convention that when a class is denoted by a string of calligraphic

letters, then the members of that class will be referred to by the corresponding string of

Roman letters. Thus, for example, an RL is a residuated lattice.

The existence of residuals has the following basic consequences, which will be used

throughout this dissertation without explicit reference.

Lemma 1.2. Let L be a residuated lattice.

(1) The multiplication preserves all existing joins in each argument; i.e., if
∨

X and
∨

Y exist

for X, Y ⊆ L, then
∨

x∈X
y∈Y

xy exists and(∨
X
)(∨

Y
)
=
∨

x∈X
y∈Y

xy.

(2) The residuals preserve all existing meets in the numerator and convert existing joins to

meets in the denominator, i.e., if
∨

X and
∧

Y exist for X, Y ⊆ L, then for any z ∈ L,∧
x∈X

x\z and
∧

y∈Y
z\y exist and(∨

X
)∖

z =
∧

x∈X

x\z and z
∖(∧

Y
)
=
∧

y∈Y

z\y,

and the same for /.

(3) The following identities4 (and their mirror images) hold in L:

(a) y(y\x) 6 x;

(b) (x\y)z 6 x\yz;

(c) x\y 6 zx\zy;

(d) (x\y)(y\z) 6 x\z;

(e) xy\z = y\(x\z);

(f) x\(y/z) = (x\y)/z;

4Some of them are expressed as inequalities, but are clearly equivalent to identities.
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(g) (y/(x\y))\y = x\y;

(h) e\x = x;

(i) e 6 x\x;

(j) x(x\x) = x;

(k) (x\x)2 = x\x.

We will have the occasion to consider pointed residuated lattices. A pointed residu-

ated lattice is an algebra L = (L, ·, \, /,∨,∧, e, 0) of signature (2, 2, 2, 2, 2, 0, 0) such that

(L, ·, \, /,∨,∧, e) is a residuated lattice. In other words, a pointed residuated lattice is

simply a residuated lattice with an extra constant 0. Pointed residuated lattices are also

referred to in the literature as FL-algebras, as they provide algebraic semantics for the

Full Lambek calculus, and its subvarieties correspond to substructural logics. We also

define here a bounded residuated lattice to be a pointed residuated lattice with bottom ele-

ment 0 (and therefore also, top element 0\0), emphasizing that “bounded” implies that

the constant 0 representing the bottom element is in the signature. Residuated lattices

may be identified with pointed residuated lattices satisfying the identity e ≈ 0.

A subvariety of RL of particular interest is the variety CRL of commutative resid-

uated lattices, which satisfies the equation xy ≈ yx, and hence the equation x\y ≈ y/x.

We always think of this variety as a subvariety of RL, but we slightly abuse notation

by listing only one occurrence of the operation \ in describing their members.

Given an RL A = (A,∧,∨, ·, \, /, e), an element a ∈ A is said to be integral if

e/a = e = a\e, and A itself is said to be integral if every member of A is integral; this

is equivalent to e being its top element. We denote by IRL the variety of all integral

RLs. We call a residuated lattice e-cyclic if it satisfies the identity e/x ≈ x\e. Two im-

portant subvarieties of e-cyclics residuated lattices are the variety CRL of commutative

residuated lattices and the variety IRL of integral residuated lattices.

Another very important subvariety of e-cyclic residuated lattices is the variety of

`-groups, which occupies a very special place among the varieties of residuated lattices.

An element a ∈ A is said to be invertible if (e/a)a = e = a(a\e). This is of course true

if and only if a has a (two-sided) inverse a−1, in which case e/a = a−1 = a\e. The

RLs in which every element is invertible are precisely the `-groups. Perhaps a word

of caution is appropriate here. An `-group is usually defined in the literature as an

algebra G = (G,∧,∨, ·, −1, e) such that (G,∧,∨) is a lattice, (G, ·, −1, e) is a group,

and multiplication is order preserving (or, equivalently, it distributes over the lattice

operations, see [5], [45]). The variety of `-groups is term equivalent to the subvariety

LG of RL defined by the equations (e/x)x ≈ e ≈ x(x\e); the term equivalence is given

by x−1 = e/x, x/y = xy−1, and x\y = x−1y. Throughout this dissertation, the members

of this subvariety will be referred to as `-groups simpliciter.

If F is a non-empty subset of a residuated lattice L, we write F− for the set of negative
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elements of F, that is, F− = {x ∈ F : x 6 e}. The negative cone of L is the integral

residuated lattice L− with domain L−, monoid and lattice operations the restrictions to

L− of the corresponding operations in L, and residuals \− and /− defined by

x\−y = (x\y) ∧ e and y/−x = (y/x) ∧ e,

where \ and / denote the residuals in L.

An important variety of pointed residuated lattices is the variety of MV algebras.

The classMV is the subvariety of commutative pointed residuated lattices axiomatized

by 0 ∧ x ≈ 0 and (x\y)\y ≈ x ∨ y. They are the equivalent algebraic semantics of

Łukasievic’s infinite-valued logic (see [21] and [23]). It turns out that MV algebras

are integral. Moreover, they have a very tied relation with Abelian (i.e., commutative)

`-groups, as is proven in [73]. Dropping some of the properties of MV algebras we can

extend MV to a largest variety called GMV , which stands in a similar tied relation

with respect to all `-groups. First, we drop the constant 0 (and therefore the axiom

0 6 x). Then we drop commutativity and give up integrality, what leads us to rewriting

the axiom (x\y)\y ≈ x ∨ y as:

(y/(x ∨ y))\y ≈ x ∨ y ≈ y/((x ∨ y)\y). (GMV)

Thus, a generalized MV algebra, or GMV algebra, is a residuated lattice satisfying (GMV).

Obviously, the class LG is a subvariety of GMV . It is essential to note that GMV

algebras are e-cyclic and have distributive lattice reducts [41, Lemma 2.9]. Another class

very important for our study will be the class of integral GMV algebras, IGMV . It can

be shown that this class is actually axiomatized, relative to IRL, by the equations:

(y/x)\y ≈ x ∨ y ≈ y/(x\y). (IGMV)

It is proved in [41] that any GMV algebra is a direct sum of an `-group and an integral

GMV algebra.

To end this section, we introduce the class LG− of negative cones of `-groups, which is

the subvariety of IGMV , axiomatized relative to IGMV (see [7, Theorem 6.2]) by the

equations:

x\xy ≈ y ≈ yx/x. (LG−)

1.3 Nuclei on Residuated Lattices

A closure operator on a partial order set (P,6) is a map γ : P → P that is order-

preserving, extensive (x 6 γ(x), for all x ∈ P), and idempotent (γ ◦ γ = γ). Every
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closure operator γ has an associated closure system Pγ = {γ(x) : x ∈ P}, whose ele-

ments are called the γ-closed elements. The dual notion is that of an interior operator,

which is an order-preserving, contractive (δ(x) 6 x, for all x ∈ P), and idempotent map

δ : P→ P. The associated interior system is Pδ = {δ(x) : x ∈ P}.
A nucleus on an RL A is a closure operator γ on A satisfying the following condition:

for all a, b ∈ A,

γ(a)γ(b) 6 γ(ab),

or equivalently, for all a, b ∈ A,

γ(γ(a)γ(b)) = γ(ab).

If A = (A,∧,∨, ·, \, /, e) is an RL and γ is a nucleus on A, the image Aγ of γ can be

endowed with an RL structure as follows:

Aγ = (Aγ,∧,∨γ, ·γ, \, /, γ(e)),

where

γ(a) ∨γ γ(b) = γ(a ∨ b), and γ(a) ·γ γ(b) = γ(a · b).

Aγ is called a nucleus retract of A.

Nuclei on GMV algebras have a few special properties. In fact, if Aγ is a nucleus

retract of an (integral) GMV algebra, then ∨γ = ∨, γ(e) = e, and

Aγ = (Aγ,∧,∨, ·γ, \, /, e)

is again an (integral) GMV algebra in its own right. In particular, it follows on the

one hand that nuclei on GMV algebras are lattice homomorphisms, and on the other,

that nucleus retracts of negative cones of `-groups (qua instances of IGMV algebras) are

themselves IGMV algebras.

1.4 Convex Subalgebras of Residuated Lattices

In this section we list a few relevant properties of convex subalgebras of e-cyclic resid-

uated lattices. Their proofs and additional discussion can be found in [15].

A subset C of a poset P = (P,6) is order-convex (or simply convex) in P if for every

a, b, c ∈ P, whenever a, c ∈ C with a 6 b 6 c, then b ∈ C. For a residuated lattice L, we

write C(L) for the set of all convex subalgebras of L, partially ordered by set-inclusion.

In fact, refer to the discussion below, it can be shown that C(L) is an algebraic and

complete lattice (see Theorem 1.5).
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For any S ⊆ L, we let C[S] denote the smallest convex subalgebra of L containing S.

As is customary, we call C[S] the convex subalgebra generated by S and let C[a] = C[{a}].
We refer to C[a] as the principal convex subalgebra of L generated by the element a.

The principal convex subalgebras of C(L) are the compact members of C(L), since by

Lemma 1.4.(3) below, every finitely generated convex subalgebra of L is principal.

An important concept in the theory of `-groups is the notion of an absolute value.

This idea can be fruitfully generalized in the context of residuated lattices, see for ex-

ample [15,77]. Given a residuated lattice L and an element x ∈ L, the absolute value of x

is the element

|x| = x ∧ (e/x) ∧ e.

If X ⊆ L, we set |X| = {|x| : x ∈ X}. We note that in the case of GMV algebras,

|x| = x ∧ (e/x). The proof of the following lemma is routine:

Lemma 1.3. Let L be an e-cyclic residuated lattice, x ∈ L, and a ∈ L−. The following

conditions hold:

(1) x 6 e if and only if |x| = x;

(2) |x| 6 x 6 |x|\e;

(3) |x| = e if and only if x = e;

(4) a 6 x 6 a\e if and only if a 6 |x|; and

(5) if H ∈ C(L), then x ∈ H if and only if |x| ∈ H.

In what follows, for a subset S of a residuated lattice L, we write Ŝ for the submonoid

of L generated by S. Thus, x ∈ Ŝ if and only if there exist elements s1, . . . , sn ∈ S such

that x = s1 · · · sn.

Lemma 1.4. [15] Let L be an e-cyclic residuated lattice.

1. For S ⊆ L,

C[S] = C[|S|] =
{

x ∈ L : h 6 x 6 h\e, for some h ∈ |̂S|
}

=
{

x ∈ L : h 6 |x|, for some h ∈ |̂S|
}

.

2. For a ∈ L,

C[a] = C[|a|] = {x ∈ L : |a|n 6 x 6 |a|n\e, for some n ∈N}

= {x ∈ L : |a|n 6 |x|, for some n ∈N}.

3. For a, b ∈ L, C[a] ∩ C[b] = C[|a| ∨ |b|] and C[a] ∨ C[b] = C[|a| ∧ |b|] = C[|a||b|].
4. If H is a convex subalgebra of L, then H = C[H−].
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Lemma 1.4 yields the following results.

Theorem 1.5. [15] If L is an e-cyclic residuated lattice, then:

1. C(L) is a distributive algebraic complete lattice.

2. The poset K(C(L)) of compact elements of C(L) – consisting of the principal convex

subalgebras of L – is a sublattice of C(L).
3. The lattice C(L) can be embedded (as a complete sublattice) into the congruence lattice of

the lattice reduct of L.

1.5 Normal Convex Subalgebras of Residuated Lattices

We notice that the variety RL is both congruence permutable (witness the term (z ∨
(z/y)x) ∧ (x ∨ (x/y)z)) and 1-regular (witness the terms x\y ∧ e, and y\x ∧ e), and

recall that any variety which is congruence permutable and 1-regular is, in particular,

ideal determined: the lattice of congruence relations and the lattice of ideals (in the sense

of [47]) of any algebra in the variety are isomorphic. It is proved in [10] (see also [40])

that for any RL A, ideals of A coincide with convex normal subalgebras of A, which we

define in what follows.

Let L be a residuated lattice. Given an element u ∈ L, we define

λu(x) = (u\xu) ∧ e and ρu(x) = (ux/u) ∧ e,

for all x ∈ L. We refer to λu and ρu as left conjugation and right conjugation by u. A set

X ⊆ L is said to be normal if it is closed under conjugates. An iterated conjugation map

is a composition γ = γ1γ2 . . . γn, where each γi is a right or a left conjugation by an

element ui ∈ L. The set of all iterated conjugation maps will be denoted by Γ.

The next lemma easily follows from the definition of a normal convex subalgebra.

Lemma 1.6. [10, 53] For a convex subalgebra H of a residuated lattice L, the following state-

ments are equivalent:

(1) H is normal.

(2) H is closed under all iterated conjugation maps.

(3) For all a, b ∈ L, (a\b) ∧ e ∈ H if and only if (b/a) ∧ e ∈ H.

The set of all normal convex subalgebras of L will be denoted by NC(L). Given

a normal convex subalgebra H of L, ΘH = {〈x, y〉 ∈ L2 : (x\y) ∧ (y\x) ∧ e ∈ H} is

a congruence of L. Conversely, given a congruence Θ, the equivalence class [e]Θ is a

normal convex subalgebra.
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Lemma 1.7 ([10, 53]; see also [95] or [40]). The lattice NC(L) of normal convex subalgebras

of a residuated lattice L is isomorphic to its congruence lattice Con(L). The isomorphism is

given by the mutually inverse maps H 7→ ΘH and Θ 7→ [e]Θ.

In what follows, if H is a normal convex subalgebra of L, we write L/H for the

quotient algebra L/ΘH, and denote the equivalence class of an element x ∈ L by [x]H.

We mention that NC(L) is an algebraic distributive lattice, for any residuated lattice

L. This can be verified directly, or be derived as a consequence of the fact that L has a

lattice reduct, and hence it is congruence distributive. We also mention the trivial fact

that in a commutative residuated lattice, every convex subalgebra is normal.

The following auxiliary result will be useful:

Lemma 1.8. [10, 53] Let L be an e-cyclic residuated lattice and S ⊆ L. Consider the set

Γ[|S|] = {γ(a) : a ∈ |S|, γ ∈ Γ}. Then:

(1) The normal convex subalgebra NC[S] of L generated by S is

NC[S] = NC[|S|] =
{

x ∈ L : y 6 x 6 y\e, for some y ∈ Γ̂[|S|]
}

=
{

x ∈ L : y 6 |x|, for some y ∈ Γ̂[|S|]
}

(2) The normal convex subalgebra NC[a] of L generated by an element a ∈ L is

NC[a] = NC[|a|] =
{

x ∈ L : y 6 x 6 y\e, for some y ∈ Γ̂[|a|]
}

=
{

x ∈ L : y 6 |x|, for some y ∈ Γ̂[|a|]
}

(3) NC[|a| ∨ |b|] ⊆ NC[a] ∩NC[b] and NC[a] ∨NC[b] = NC[|a| ∧ |b|], for all a, b ∈ L.

We state the following lemma, whose proof is routine, for future reference:

Lemma 1.9. For a convex normal subalgebra H of a residuated lattice L, the following state-

ments are equivalent:

(i) [a]H = [e]H,

(ii) a ∈ H,

(iii) C[a] ⊆ H.

1.6 Pseudo-Complemented Lattices

A pseudo-complemented lattice is an algebra L = (L,∧,∨,¬,>,⊥) of signature (2, 2, 1, 0, 0)

such that (L,∧,∨,>,⊥) is a bounded lattice and for all a ∈ L, ¬a = max{x : a∧ x = ⊥}.
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We refer to ¬a as the pseudo-complement of a. The map ¬ : L → L is a self-adjoint

order-reversing map, while the map sending a to its double pseudo-complement ¬¬a

is a meet-preserving closure operator on L. By a classic result due to Glivenko, the

image of this closure operator is a Boolean algebra5 BL with least element ⊥ and largest

element >. Any existing meets in BL coincide with those in L; the complement of a in

BL is precisely ¬a, whereas, for any pair of elements a, b of BL – also referred to as

closed elements of L –,

a ∨BL b = ¬(¬a ∧ ¬b).

A Stonean lattice isa pseudo-complemented lattice L such that for all a ∈ L, ¬a ∨
¬¬a = >. It can be easily seen that L is a Stonean lattice if and only if BL is a sub-

lattice of L. Thus, in this case BL coincides with the Boolean algebra of complemented

elements of L.

A relatively pseudo-complemented lattice is an algebra A = (A,∧,∨,→,>) of signature

(2, 2, 2, 0) such that (A,∧,∨,>) is a distributive lattice with top element > and for all

a, b, c ∈ A, a ∧ b 6 c if and only if 6 b 6 a→ c. Given a, b ∈ A, thus, a→ b is the relative

pseudo-complement of a with respect to b, namely, the greatest x such that a ∧ x 6 b. A

Heyting algebra is an algebra A = (A,∧,∨,→,>,⊥) of signature (2, 2, 2, 0, 0) such that

(A,∧,∨,→,>) is a relatively pseudo-complemented lattice and ⊥ is a bottom element

with respect to the lattice ordering of A. Observe that the (∧,∨,¬,>,⊥)-term reduct of

a Heyting algebra, with ¬a = a → ⊥, is, in particular, a pseudo-complemented lattice.

A Boolean algebra is a Heyting algebra in which the equation ¬¬x ≈ x is valid.

We notice that the class of relatively pseudo-complemented lattices is a variety that

is term equivalent to the subvariety RPCL, which is axiomatized relative to IRL by

the identity xy ≈ x ∧ y. Clearly, RPCL is also a subvariety of CRL.

A Gödel algebra is a Heyting algebra satisfying the equation (x → y) ∨ (y → x) ≈ >
called prelinearity. Similarly, a positive Gödel algebra is a relatively pseudo-complemented

lattice satisfying the same equation. It is important to recall that each interval [b,>] in

a positive Gödel algebra can be made into a Stonean lattice by letting ¬b x = x → b for

all x ∈ [b,>].
Gödel algebras play a prominent role in Algebraic Logic because they are the equiv-

alent variety semantics of Gödel logic (also known as Dummett’s logic, or Dummett’s LC),

which is both an intermediate logic (i.e. an extension of intuitionistic logic) and a fuzzy

logic. As an intermediate logic, it stands out for its being sound and complete with re-

5See the definition of Boolean algebra below.
6Notice that what this equivalence is saying is that the meet operation ∧, which is commutative, is

residuated and its residual is→.
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spect to linearly ordered Kripke models, and as such it received considerable attention.

LC has been widely investigated also within the community of mathematical fuzzy

logic – it was observed early on that the variety of Gödel algebras is generated by the

algebra

([0, 1],∧,∨,→, 1, 0),

where ∧ and ∨ are the minimum t-norm and the maximum t-conorm respectively, while

→, the residual of ∧, behaves as follows: for all a, b ∈ [0, 1],

a→ b =

1 if a 6 b

b otherwise.

Observe that every bounded chain admits a unique Gödel implication, given by the

above case-splitting definition. In particular, in every linearly ordered Gödel algebra

a→ b is > if a 6 b, and is b if a > b.

Every algebraic distributive lattice L satisfies the join-infinite distributive law: for

every a ∈ L and {bi : i ∈ I} ⊆ L,

a ∧
∨
i∈I

bi =
∨
i∈I

(a ∧ bi),

and hence it is relatively pseudo-complemented. That is to say, for every a, b ∈ L, the

relative pseudo-complement of a with respect to b exists and is given by

a→ b =
∨
{x ∈ L : a ∧ x 6 b}.

As a matter of fact, L has a bottom element and so it is a Heyting algebra. Moreover,

we recall the following result.

Lemma 1.10. [8, Chapter IX, Theorem 8] If L is a Heyting algebra, every interval [b, a] in

L, with b 6 a, is pseudo-complemented and, for all c ∈ [b, a], the pseudo-complement and the

double pseudo-complement of c are respectively given by:

¬c = (c→ b) ∧ a and ¬¬c = ((c→ b)→ b) ∧ a.

Thus, every interval in an algebraic distributive lattice is pseudo-complemented.

1.7 Polars and Convex Subalgebras

As we have mentioned in Section 1.4, the lattice C(L) of convex subalgebras of an

e-cyclic residuated lattice L is an algebraic distributive lattice and hence the results of
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the previous section apply. In particular, it is relatively pseudo-complemented. For all

X, Y ∈ C(L), the relative pseudo-complement X → Y of X relative to Y is given by:

X → Y = max{Z ∈ C(L) : X ∩ Z ⊆ Y}.

The next lemma provides an element-wise description of X → Y in terms of the

absolute value, and in particular one for the pseudo-complement X⊥ = X → {e} of X.

Lemma 1.11. If L is an e-cyclic residuated lattice, then C(L) is a relatively pseudo-comple-

mented lattice. Specifically, given X, Y ∈ C(L),

X → Y = {a ∈ L : |a| ∨ |x| ∈ Y, for all x ∈ X}, (1.1)

and in particular,

X⊥ = {a ∈ L : |a| ∨ |x| = e, for all x ∈ X}. (1.2)

For any subset X ⊆ L, we define the X⊥ as in Equation (1.2). It can be easily seen

that X⊥ = C[X]⊥, so X⊥ is always a convex subalgebra. We refer to X⊥ as the polar

of X; in case X = {x}, we write x⊥ instead of {x}⊥ (or C[x]⊥) and refer to it as the

principal polar of x. Furthermore, notice that for every X ⊆ L, X⊥ = |X|⊥, by virtue of

Lemma 1.4.(1).

We state the following lemma for future reference:

Lemma 1.12. If L is an e-cyclic residuated lattice, then for every x, y ∈ L,

(|x| ∨ |y|)⊥⊥ = x⊥⊥ ∩ y⊥⊥.

Proof. By virtue of Lemma 1.4:

(|x| ∨ |y|)⊥⊥ = C[|x| ∨ |y|]⊥⊥ = (C[x] ∩ C[y|)⊥⊥ = C[x]⊥⊥ ∩ C[y]⊥⊥

= x⊥⊥ ∩ y⊥⊥.

The map ⊥ : C(L) → C(L) is a self-adjoint inclusion-reversing map, while the map

sending H ∈ C(L) to its double polar H⊥⊥ is an intersection-preserving closure oper-

ator on C(L). Therefore, a set H is a polar if and only if H = H⊥⊥. By Glivenko’s

classical result, the image of this operator is a (complete) Boolean algebra7 Pol(L) with

least element {e} and largest element L. The complement of H in Pol(L) is H⊥ and for

any family {Hi : i ∈ I} in Pol(L)∨Pol(L)

i∈I
Hi =

(∨C(L)
i∈I

Hi

)⊥⊥
=
(⋃

i∈I
Hi

)⊥⊥
.

We refer to Pol(L) as the algebra of polars of L. Thus, Pol(L) is a complete Boolean

algebra whose top and bottom elements are L and {e}, respectively.

7Following the notation of the previous section, this is the algebra BC(L).
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1.8 Semilinearity

Some prominent varieties of residuated lattices and pointed residuated lattices – in-

cluding Abelian `-groups and MV-algebras – are generated by their linearly ordered

members. We refer to such varieties as semilinear,8 and denote the variety of all semilin-

ear residuated lattices by SemRL. Thus, a residuated lattice is semilinear if and only if

it is a subdirect product of totally ordered residuated lattices.

It is well known (see [5]) that the class RepLG of representable `-groups form a

variety and, in fact, it can be axiomatized relative to LG by the equation:

(x−1yx ∨ y−1) ∧ e ≈ e.

An analogous result was shown in [10] and [53]: the class SemRL is a variety, and it

can be axiomatized, relative to RL, by either of the equations below:

λu((x ∨ y)\x) ∨ ρv((x ∨ y)\y) ≈ e, (SL1)

λu(x/(x ∨ y)) ∨ ρv(y/(x ∨ y)) ≈ e. (SL2)

The next theorem generalizes the well-known results on representable `-groups as

well as all analogous results characterizing semilinear members of some classes of resid-

uated lattices – see [35] for pseudo-MV algebras, [62] for pseudo-BL algebras, [61] for

GBL algebras (DR`-monoids), and [92] for integral residuated lattices. The statement

of the theorem refers to the following two identities, the so called left prelinearity law LP

and the right prelinearity law RP:

((x\y) ∧ e) ∨ ((y\x) ∧ e) ≈ e, (LP)

((y/x) ∧ e) ∨ ((x/y) ∧ e) ≈ e. (RP)

Theorem 1.13. [15] For a variety V of residuated lattices, the following statements are equiva-

lent:

(1) V is semilinear.

(2) V satisfies either of the equations (SL1) and (SL2).

(3) V satisfies either of the prelinearity laws and the quasi-identity

x ∨ y ≈ e ⇒ λu(x) ∨ ρv(y) ≈ e. (1.3)

If in addition V is a variety of e-cyclic residuated lattices, the preceding conditions are equivalent

to the condition:

8The more traditional, but less descriptive, name for these varieties is representable, specially for

`-groups, for which we will keep the name, subjugated by the strength of tradition.
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(4) V satisfies either of the prelinearity laws and for every L ∈ V , all (principal) polars in L are

normal.

It is well known, and easy to prove, that representable `-groups satisfy both prelin-

earity laws. Thus, in view of the preceding result, a variety of `-groups is semilinear if

and only if all polars of every algebra in the variety are normal. Normality of polars

alone is not sufficient to imply semilinearity in general. For example, the variety of

Heyting algebras satisfies the normality condition on polars, since it is a variety of com-

mutative pointed residuated lattices, but it is not semilinear. For example, the Heyting

algebra below is subdirectly irreducible but not totally ordered.

e

a

b c

0

1.9 Projectability

We say that an `-group A is the internal cardinal product of its `-subgroups B and C, in

symbols, A = B�C, if every a ∈ A can be written uniquely as a product bc, for some

b ∈ B and some c ∈ C, this product commutes, and moreover, given two decomposition

a1 = b1c1 and a2 = b2c2, we have b1c1 6A b2c2 if and only if b1 6B b2 and c1 6C c2. An

`-group A is projectable whenever for all a ∈ A,

A = a⊥ � a⊥⊥, (1.4)

where in the present context a⊥ = {b ∈ A : |a| ∧ |b| = e} and |a| = a ∨ a−1. As

proved in [88] and [89], projectable `-groups coincide with `-groups in which all closed

intervals form a Stonean lattice, and hence they admit a Gödel implication. This result

highlights that projectability is a property of `-groups that is entirely determined by

their order structure.

To get further insight into this, recall9 indeed that, given an `-group A:

(1) principal polars are convex `-subgroups of A;

(2) projectability is equivalent to the property that for all a ∈ A,

A = a⊥ ∨C(A) a⊥⊥. (1.5)

9See [90] for a lengthier discussion of these aspects.
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Thus, the projectability of an `-group A can be described by a structural property

as in (1.4) and by an order-theoretical property as in (1.5). In generalizing the notion of

projectability to arbitrary e-cyclic residauted lattices, we have two options. Since we do

not know whether both notions coincide always, and both of them lead to interesting

results, we will give names to both of them and postpone to another time and place the

discussion about which one rightfully deserves the plain name of “projectablility” – al-

though we believe we should favor the lattice-theoretical description. Thus, we say that

an e-cyclic residuated lattice L is ∨-projectable if every principal polar is a complemented

element of C(L). That is, for all a ∈ L,

L = a⊥ ∨C(L) a⊥⊥.

It is called strongly ∨-projectable if for every convex subalgebra H ∈ C(L),

L = H⊥ ∨C(L) H⊥⊥.

Equivalently, L is strongly ∨-projectable if and only if the Boolean algebra of polars

Pol(L) is a sublattice of C(L), that is C(L) is a Stonean lattice.

As for the structural description of projectability, it can also be generalized as fol-

lows. A residuated lattice L is said to be the internal cardinal product of its convex

subalgebras B and C – in symbols, L = B�C – if every a ∈ L can be written uniquely

as a product bc, for some b ∈ B and some c ∈ C, this product commutes, and moreover,

a1 = b1c1 6L b2c2 = a2 if and only if b1 6B b2 and c1 6C c2. An e-cyclic residuated

lattice is �-projectable if for every a ∈ L,

L = a⊥ � a⊥⊥.

It is called strongly �-projectable if for every convex subalgebra H ∈ C(L),

L = H⊥ � H⊥⊥.

Evidently, (strong) �-projectability implies (strong) ∨-projectability, since for every H, K ∈
C(L), H� K ⊆ H ∨C(L) K. It can be shown that, under certain hypothesis, both notions

actually coincide, as is the case for `-groups, negative cones of `-groups, integral semi-

linear residuated lattices, and IGMV algebras (see [66]), for instance.





Chapter 2

Projectable `-groups and Algebras of

Logic: Categorical and Algebraic

Connections

2.1 Introduction

In the 1960’s, P. F. Conrad launched a general program for the investigation of lattice-

ordered groups ([25], [26], [27], [28]), aimed at capturing relevant information about

these algebras by inquiring into the structure of their lattices of convex `-subgroups

(as opposed to convex normal `-subgroups, which had traditionally received greater

attention in that they bijectively correspond to congruences). The chief idea behind

this program is a working hypothesis to the effect that many significant properties

of `-groups are, in essence, either purely lattice-theoretical, or at least such that the

underlying group structure does not play a predominant role. A class of `-groups that is

known to be characterized purely in terms of its order structure is the class of projectable

`-groups – namely, `-groups in which every principal polar is a cardinal summand.1

C. Tsinakis, in fact, has established that an `-group is projectable if and only if each one

of its intervals is a Stonean lattice; as a consequence, projectability is preserved under

lattice isomorphisms. Also, the negative cone of an `-group is projectable if and only if

its lattice reduct can be endowed with a positive Gödel implication ([88], [89]).

1Projectable `-groups are first-class citizens in the theory of lattice-ordered groups: recall, for example,

that every representable `-group can be embedded into a member of this class [9, 20, 29] and that condi-

tionally σ-complete `-groups are projectable. Further examples arise in functional analysis, namely, vector

lattices with the principal projection property [68].
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While Conrad’s program led to remarkable outcomes in its original domain of ap-

plication (for a survey, see [4]), a natural continuation of such consists in extending

it to residuated lattices ([40, 72]), generalizations of `-groups that also include MV al-

gebras, Heyting algebras, and several other classes of algebras of prime importance

for mathematical logic.2 Here, the principal objects of research become the lattices of

convex subalgebras (in the integral case, the lattices of multiplicative filters). Some de-

tailed investigations along these lines have been carried out in recent years [15]. One

of the results obtained so far within this extended Conrad’s program [66] is a charac-

terization of projectability for integral and distributive residuated lattices satisfying the

quasiequation:

x ∨ y ≈ e ⇒ xy ≈ x ∧ y,

which closely matches the aforementioned description of projectable `-groups. Ledda,

Paoli, and Tsinakis have indeed shown that a member of this class is projectable if and

only if the order dual of each interval [a, e] is a Stonean lattice.

In general, for integral and distributive residuated lattices, admitting a positive

Gödel implication is a stronger condition than being projectable [66, Example 15], al-

though it is equivalent in some especially well-behaved cases. A case in point is given by

integral GMV algebras (IGMV algebras) [41], simultaneous generalizations of MV algebras

to the unbounded and noncommutative case. IGMV algebras, to within isomorphism,

can be viewed as nucleus retractions of negative cones of `-groups – actually, it was

shown in [41] that the categories of IGMV algebras and negative cones of `-groups with

a nucleus are equivalent. It is then natural to conjecture that such an equivalence re-

stricts to an equivalence of the subcategories whose objects are the projectable members

of these classes of algebras, and perhaps that we can take advantage of the previously

cited lattice-theoretical description of projectable IGMV algebras to establish this result.

The main aim of this chapter is to investigate the extent to which this conjecture is

correct.

The chapter is structured as follows. In Section 2.2, we go over some preliminary no-

tions needed in the sequel. In Section 2.3, we show that an analogue of the Galatos-Tsi-

nakis equivalence result can be reproduced in our setting:

Theorem A (See Theorem 2.14.). The categories of projectable IGMV algebras and of negative

cones of projectable `-groups with a nucleus are equivalent.

A crucial step in establishing Theorem A is showing that any projectable IGMV

algebra can be represented as a nucleus retract of the negative cone of some projectable

2See Section 1.2.
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`-group. In the same section, we also introduce Gödel GMV algebras as expansions of

projectable IGMV algebras by a binary term that realizes a positive Gödel implication

in every such algebra; in light of the above, Gödel GMV algebras and projectable IGMV

algebras amount to essentially the same thing. Similarly, Gödel negative cones are those

Gödel GMV algebras whose RL reducts are negative cones of `-groups. Including the

Gödel implication in the signature enables us to view the above-mentioned classes of

algebras as varieties in the expanded type, with all the familiar benefits that result in

similar cases. In Section 2.4, we point out the exact relationship between these notions:

Theorem B (See Theorem 2.28.). There is an adjunction between the categories whose objects

are, respectively, Gödel GMV algebras and Gödel negative cones with a retraction and a dense

nucleus on the image of the retraction.

2.2 Background

2.2.1 Compactly Stonean Lattices

Recall from Section 1.6 that a pseudo-complemented lattice L = (L,∧,∨,¬,⊥,>) is

called a Stonean lattice if for all a ∈ L, ¬a ∨ ¬¬a = >, that L is a Stonean lattice if and

only if BL is a sublattice of L, and that in this case BL coincides with the Boolean algebra

of complemented elements of L.

Also remember that positive Gödel algebras and Gödel algebras are obtained from rel-

atively pseudo-complemented lattices and Heyting algebras, respectively, by imposing

the the equation (x → y) ∨ (y → x) ≈ >, and each interval [b,>], which we will also

denote by ↑b, in a (positive) Gödel algebra can be made into a Stonean lattice by letting

¬b x = x → b for all x ∈ [b,>].
As we said before, every algebraic distributive lattice L is a Heyting algebra, in

which the relative pseudo-complement of a with respect to b is given by a → b =∨{x ∈ L : a ∧ x 6 b}, and we have the following result.

Lemma 2.1. [8, Chapter IX, Theorem 8] If L is a Heyting algebra, every interval [b, a] in

L, with b 6 a, is pseudo-complemented and, for all c ∈ [b, a], the pseudo-complement and the

double pseudo-complement of c are respectively given by:

¬c = (c→ b) ∧ a and ¬¬c = ((c→ b)→ b) ∧ a.

Thus, every interval in an algebraic distributive lattice is pseudo-complemented. In

particular, if a = > then ↑b is itself an algebraic distributive lattice and the compact
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elements in ↑b are exactly those of the form b ∨ c, for c a compact element of L. Recall

that we denote by K(L) the set of all compact3 elements of the lattice L.

An algebraic distributive lattice L is called compactly Stonean if it satisfies ¬c∨¬¬c =

>, for all c ∈ K(L). Observe that a compactly Stonean lattice need not be Stonean. In

view of Lemma 2.1, ↑b is compactly Stonean if and only if, for all c ∈ K(L),

(c→ b) ∨ ((c→ b)→ b) = >.

It is shown in [66, Proposition 19] that:

Lemma 2.2. Let L be an algebraic distributive lattice whose compact elements form a sublattice

K(L) of L. The conditions below are equivalent:

(1) for all b ∈ L, ↑b is compactly Stonean;

(2) for all b ∈ L and for all c ∈ K(L), (c→ b) ∨ ((c→ b)→ b) = >;

and imply the mutually equivalent conditions:

(3) for all c, b ∈ K(L), (c→ b) ∨ ((c→ b)→ b) = >;

(4) for all a, b ∈ K(L), with b 6 a, [b, a] ∩K(L) is a Stonean lattice.

The next result will turn out to be useful in what follows.

Proposition 2.3. Let L and M be isomorphic algebraic and distributive lattices such that K(L)
and K(M) are subuniverses of L and M, respectively. Suppose ϕ : L→ M is an isomorphism.

Then:

1. ϕ preserves pseudo-complements.

2. L is compactly Stonean if and only if M is such.

3. For a ∈ L, ¬a is complemented if and only if ϕ(¬a) = ¬ϕ(a) is complemented.

Proof.

(1) Clearly, ϕ restricts to an isomorphism between the sublattices of L and M with

respective universes K(L) and K(M). Now, let a ∈ L. Since a ∧ ¬a = ⊥L, ϕ(a) ∧
ϕ(¬a) = ⊥M, whence ϕ(¬a) 6 ¬ϕ(a). For the converse inequality, ϕ(a) ∧ ¬ϕ(a) = ⊥M

implies a∧ ϕ−1(¬ϕ(a)) = ⊥L, which means ϕ−1(¬ϕ(a)) 6 ¬a and thus ¬ϕ(a) 6 ϕ(¬a).

(2) If L is compactly Stonean, then by (1), given a ∈ K(M),

¬ϕ(a) ∨ ¬¬ϕ(a) = ϕ(¬a ∨ ¬¬a) = ϕ(>L) = >M.

(3) Immediate from the preceding items.

3See Section 1.1.
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2.2.2 Filters in Integral Residuated Lattices

Let A be a residuated lattice. A multiplicative filter F of A is a filter of its lattice reduct

that is closed under multiplication. A subset X ⊆ A (not necessarily a filter) is normal

provided that it is closed under all conjugations,4 that is for all b ∈ X and a ∈ A,

ρa(b) = (ab/a) ∧ e and λa(b) = (a\ba) ∧ e are in X. As we mentioned in Section 1.5,

RL is a 1-regular variety, and hence congruences of an RL A correspond to ideals of A,

which coincide with convex normal subalgebras of A. If A is integral, these coincide,

in turn, with normal multiplicative filters of A.

Now, let A be an IRL. If X ⊆ A, we denote by ↑AX (respectively, 〈X〉A, NA(X)) the

lattice filter (respectively multiplicative filter, normal multiplicative filter) generated in

A by X. Subscripts will only be dropped when A is understood; on the other hand,

braces will be invariably omitted if X = {a} is a singleton. LF(A), MF(A), NF(A)

will respectively refer to the lattices of lattice filters, multiplicative filters and normal

multiplicative filters (hereafter shortened to normal filters) of A. With a mild abuse of

notation, the same labels will sometimes be employed for the universes of such lattices.

We set:

F ∨L G = ↑(F ∪ G); F ∨M G = 〈F ∪ G〉; and F ∨N G = N(F ∪ G).

However, since the focus of the present chapter is on multiplicative filters, we will

often write F ∨ G for F ∨M G. LF(A), MF(A), and NF(A) are algebraic and distributive

(hence relatively pseudo-complemented) lattices; the result for MF(A) is proved in [15].

In the case of integral residuated lattices, Lemma 1.4 takes the following form:

Lemma 2.4. 〈X〉 = {a ∈ A : (b1 · · · bk)
n 6 a, for some b1, . . . , bk ∈ X and n ∈N}.

An iterated conjugation map is a composition γ = γ1 ◦ · · · ◦γn, where each γi is a right

conjugate or a left conjugate by an element ai ∈ A. If X ⊆ A, we denote by Γ the set

of all iterated conjugation maps on A, and by X̂ the submonoid of the corresponding

reduct of A generated by the set {γ(a) : a ∈ X, γ ∈ Γ}. With this notation at hand, we

notice notice that the following result follows from Lemma 1.6 in the case of integral

residuated lattices (see also [72, Proposition 4.24]):

Lemma 2.5. N(X) = {a ∈ A : b 6 a, for some b ∈ X̂}.

We now introduce a technique for defining multiplicative filters out of arbitrary

subsets of the universe of a given IRL A. Given X ⊆ A, by the integrality of A, the

4See Section 1.5.
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polar X⊥ of X is the set

{y ∈ A : x ∨ y = e for every x ∈ X}.

Again, whenever X = {a} is a singleton, we will shorten {a}⊥ to a⊥ and call the

latter set a principal polar. In case A is distributive, we have that [66, Lemma 8 and

Corollary 9]:

Lemma 2.6. For all X ⊆ A, X⊥ ∈ MF(A). Moreover, X⊥ is the pseudo-complement of ↑X in

LF(A) (respectively, the pseudo-complement of 〈X〉 in MF(A)).

On the other hand, given an arbitrary X ⊆ A, X⊥ need not be a normal filter of A; if

it is, then it is the pseudo-complement of N(X) in NF(A).

Lemma 2.7. (↑a)⊥ = 〈a〉⊥ = a⊥.

Proof. Use Lemmas 2.4 and 2.5 above.

2.2.3 Projectable Integral Residuated Lattices

Recall from Section 1.9 that there are two rightful candidates to be the generalization

of the concept of projectability for arbitrary e-cyclic residuated lattices, according to the

structural and lattice-theoretic characterizations of projectability for `-groups: We say

that an e-cyclic residuated lattice A is ∨-projectable if for every a ∈ A,

L = a⊥ ∨C(L) a⊥⊥,

where C(A) is the Heyting algebra of the convex subalgebras of A; and A is �-projectable

if for every a ∈ A,

L = a⊥ � a⊥⊥.

In [66], the equivalence between �-projectability and ∨-projectability, which holds

for the cases of `-groups and negative cones of `-groups, has been extended to the class

A of IRLs satisfying that quasi-equation:

x ∨ y ≈ e→ xy ≈ x ∧ y. (2.1)

Throughout this subsection, unless otherwise specified, we will assume that A is a

member of A. Thus, for the members of A, �-projectability coincides with ∨-projectabil-

ity – which is in general weaker – and therefore, it can be “captured” by the filter lattice

of the underlying lattice-structure.

Lemma 2.8. If A is in the class A and is �-projectable, then:
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1. a⊥ ∈ NF(A);

2. A = a⊥ ∨L a⊥⊥ = a⊥ ∨M a⊥⊥.

Lemma 2.2 can be put to good use by applying it to the lattice LF(A) of lattice filters

of our A ∈ A. In fact, if A is projectable, then the compact elements of the lattice LF(A)

of the lattice filters of A are its principal filters, whereby LF(A) is compactly Stonean.

This implies that each interval [{e}, ↑a] in the sublattice of principal lattice filters of A is

a Stonean lattice. In light of the order reversing isomorphism between the lattice reduct

of A and the sublattice of principal filters in LF(A), then, for all a ∈ H the order dual

of each interval [a, e] is a Stonean lattice. In sum:

Theorem 2.9. [66, Theorem 20] A is projectable if and only if the order dual of each interval

[a, e], for a ∈ A, is a Stonean lattice.

In particular, if A is an IGMV algebra, we get something more. Every member x of

any such interval is a fixpoint of the mapping fa(x) = a/(x\a), whence the interval is

self-dual in the order-theoretic sense. It follows that every interval [a, e], and therefore

any arbitrary interval [a, b] (see [8, [Section 8.7, Theorem 13]]), is a Stonean lattice. Thus,

following [8, Theorem 10, p. 176], (A,∧,∨) is a relative Stonean lattice and, as such, it

can be expanded to a relatively pseudo-complemented lattice, actually a positive Gödel

algebra. In conclusion,

Lemma 2.10. For an IGMV algebra A, the following are equivalent:

1. A is projectable;

2. The lattice (A,∧,∨) can be expanded to a relatively pseudo-complemented lattice, actually

a positive Gödel algebra.

2.2.4 GMV algebras

As we mentioned in Section 1.3, nucleus retracts of negative cones of `-groups are

IGMV algebras. In this section, we sketch the construction in [41, Section 3] by means

of which Galatos and Tsinakis establish the converse, namely that every IGMV algebra

is a nucleus retract of the negative cone of an `-group. This representation theorem is

subsequently lifted [41, Section 4] to a full-fledged categorical equivalence between the

categories of IGMV algebras and of negative cones of `-groups endowed with a nucleus.

This result will be briefly summarized as well.

The first part of the construction relies on an idea by Bosbach, aimed at identifying

the purely implicational subreducts of negative cones of `-groups ([14], [13]). A cone

algebra is an algebra C = (C, \, /, e), of type (2, 2, 0), that satisfies the identities
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C1 (x\y)\(x\z) ≈ (y\x)\(y\z)
C2 e\x ≈ x

C3 x\(y/z) ≈ (x\y)/z

C4 x\x ≈ e

as well as their mirror images (in the RL sense). The variety of cone algebras will be

sometimes referred to as CA. It is easily seen that the (\, /, e)-reducts of IGMV algebras

are cone algebras. Bosbach shows that the converse holds true too. More precisely:

Proposition 2.11. [13] Every cone algebra can be embedded into the (\, /, e)-reduct of an

appropriate member of LG−.

Proof. (Sketch). The target negative cone is obtained as a union of an ascending chain

{Cn : n < ω} of cone algebras, each of which is a subalgebra of its successor. Products

in the target algebra are constructed stepwise, in such a way that each Cn+1 contains

products of members of Cn, until all products are finally available in the directed union

of the Ci’s.

In greater detail, we proceed as follows. Given a cone algebra C and elements

(a, b), (c, d) in C2, let

(a, b)\\(c, d) = (b\(a\c), ((a\c)\b)\((c\a)\d)),

(d, c)//(b, a) = ((d/(a/c))/(b/(c/a)), (c/a)/b).

The rationale for this definition is given by the fact that LG− satisfies the identity

xy\zw ≈ (y\(x\z)) · (((x\z)\y)\((z\x)\w)) (2.2)

and its mirror image, whence the Cartesian product operation, so to speak, acts as an

ersatz for the RL product and \\, // can be viewed as residuals of sorts. Now, the relation

Θ = {((a, b), (c, d)) : (a, b)\\(c, d) = (e, e) = (c, d)//(a, b)}

is a congruence on C2, and

s(C) = C2/Θ

is a cone algebra containing C as a subalgebra, via the embedding ϕ(a) = [(a, e)]Θ. To

attain our target negative cone, we run this construction over and over again, letting

C0 = C and Cn+1 = s(Cn). In this way, in each Ci, (2.2) is satisfied by the elements of

Cj, for every j 6 i− 1. The directed union C =
⋃{Cn : n < ω} is a cone algebra that

still contains C as a subalgebra. Moreover, it is the (\, /, e)-reduct of the negative cone

C =
(

C,∧,∨, ·, \C, /C, eC ),
where ab = [(a, b)]Θ, a ∨ b = a/C(b\Ca) and a ∧ b = (a/Cb)b.
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We make a note of the fundamental fact that every element of C can be written

as a product of members of C, and proceed to outline the proof of the representation

theorem for IGMV algebras. Hereafter, we find convenient to use the term dense nucleus

for a nucleus on the negative cone G− whose image G−γ generates G− as a monoid.

Theorem 2.12. [41, Theorem 3.12] An IRL is a GMV algebra if and only if it is the retract of

a dense nucleus on the negative cone of some `-group.

Proof. (Sketch) We are going to prove only the forward direction. For the converse, we

refer the reader to [41, Theorem 3.4]. Let A = (A,∧A,∨A, ·A, \A, /A, eA) be an IGMV

algebra. The crucial observation, here, is that its implicative reduct (A, \A, /A, eA) is a

cone algebra, whence by Proposition 2.11 it can be embedded into the corresponding

reduct of a RL G− ∈ LG− which is generated by A as a monoid. All we need for our

claim to hold true is some nucleus γ that makes the nucleus retract G−γ isomorphic to

A. To this effect, let a = ∏G−
j6n aj ∈ G−, where each aj ∈ A, and define

γ(a) = γ

(
∏G−

j6n
aj

)
= ∏A

j6n
aj.

This map is well-defined and is actually a nucleus on G−. Clearly, the universe of

the nucleus retract G−γ coincides with A, and it can be seen that the operations in both

structures coincide with one another. In particular, a ·G−γ b = γ(a ·G− b) = a ·A b.

The preceding representation theorem can be actually viewed as just part of a more

general categorical equivalence. The categories in point are IGMV , the category whose

objects are IGMV algebras and whose morphisms are RL homomorphisms, and LG−∗ ,

the category whose objects are expansions of negative cones by a dense nucleus γ, and

whose morphisms are RL homomorphisms that preserve γ.

Theorem 2.13. The categories IGMV and LG−∗ are equivalent.

Proof. (Sketch). Let (K, γK) be an object in LG−∗ ; we let Γ(K, γK) = KγK . Moreover, if

f : (K, γK) → (L, γL) is a morphism in LG−∗ , we define Γ( f ) as the restriction of f to

KγK . We prove in turn each of the following items:

• Γ is a well-defined functor. Γ(K, γK) is an object in IGMV because nucleus retracts

of negative cones of `-groups are IGMV algebras (Theorem 2.12). It can be easily

checked that Γ( f ) is a morphism in IGMV , essentially because f commutes with

the nuclei γK, γL. It is immediate that Γ preserves composition of arrows and the

identity morphism.
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• Γ is full. Every object in IGMV is the Γ-image of an object in LG−∗ by Theo-

rem 2.12. It takes a lot more work to show that Γ is surjective on morphisms;

however, by using a variation on Cignoli and Mundici’s technique of good se-

quences [23, Chapter 2], it is possible to prove that whenever we are given objects

(K, γK), (L, γL) in LG−∗ and a homomorphism f from KγK to LγL , there exist a

unique RL homomorphism f : K→ L such that

f ◦ γK = γL ◦ f ,

whence the claim follows.

• Γ is faithful. Since γ is assumed to be dense, K = L whenever KγK = LγL and, for

f , g : (K, γK)→ (L, γL), f = g in case f �KγK = g�KγK .

This much suffices for our main claim.

2.3 Projectable IGMV Algebras and Projectable `-groups

The results in Sections 2.2.3 and 2.2.4 suggest a very natural conjecture to the effect that

suitable analogues of Theorems 2.12 and 2.13 continue to hold for projectable IGMV

algebras. More precisely, it seems plausible to surmise that such algebras – which,

by virtue of Lemma 2.10, coincide with IGMV algebras that admit a positive Gödel

implication – are nucleus retracts of negative cones of projectable `-groups, and that

the corresponding categories are equivalent to each other. In this section, we will see

that both statements actually hold, if appropriately qualified. Namely, the equivalence

between the categories of IGMV algebras and of negative cones of `-groups restricts

to an equivalence of the respective full subcategories whose objects are the projectable

members, and whose morphisms are γ-preserving RL homomorphisms.

In greater detail, let PLG−∗ be the category whose objects are negative cones of

projectable `-groups equipped with a dense nucleus γ, and whose arrows are their

γ-preserving RL homomorphisms; analogously, let PGMV will be the category whose

objects are projectable GMV algebras and whose arrows are their RL homomorphisms.

We will prove in this section that:

Theorem 2.14. PLG−∗ and PGMV are equivalent.

If we want the signature of our algebras to include the Gödel implication, and our

category morphisms to preserve it – turning projectable IGMV algebras and negative

cones of projectable `-groups into varieties, so as to profit from the well-known advan-

tages yielded by this move – the exact relationship between the resulting categories is
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not as simple as that, although we will defer to the next section a detailed investigation

of the problem.

Let M = (M,∧,∨, ·, \, /, e) be a projectable GMV algebra. The construction of The-

orem 2.12 vouches for the existence of an `-group G, and of a dense nucleus γ on its

negative cone G−, such that M is isomorphic to G−γ . The next useful Lemma shows

that, in an appropriate sense, G−γ is dense in G−.

Lemma 2.15. Let a be a member of G such that a < e. Then there exists b ∈ G−γ such that

a 6 b < e.

Proof. Since γ is dense, we know that for some x1, . . . , xn we have that a = ∏G−
j6n γ(xj).

For some k, γ(xk) < e (otherwise a = ∏G−
j6n γ(xj) = e, a contradiction). Pick such a k.

Then

a = ∏G−

j6n
γ(xj) 6 γ(xk) < e.

Lemma 2.16. Let G− be the negative cone of an `-group, and let γ be a dense nucleus on

G− with image G−γ . The lattices MF(G−) and MF(G−γ ) of multiplicative filters of G− and

G−γ , respectively, are isomorphic. The isomorphism is given by the mutually inverse maps

ϕ(F) = 〈F〉G− and ψ(H) = γ[H] = H ∩ G−γ .

Proof. Let F, H ∈ MF(G−γ ). Now, if 〈F〉G− = 〈H〉G− and a ∈ F, then a ∈ 〈F〉G− = 〈H〉G− ,

whence there exist h1, . . . , hn ∈ H such that ∏G−
j6n hj 6 a. So

∏G−γ

j6n
hj = γ

(
∏G−

j6n
hj

)
6 γ(a) = a,

and thus a ∈ H.

For surjectivity, it suffices to show that an arbitrary multiplicative filter J of G− is

such that J = 〈γ[J]〉G− . For the nontrivial direction, let a ∈ J. Since γ is dense, a =

∏G−
i6m hi, for some h1, . . . , hm ∈ G−γ ; so, for every i 6 m, a 6 hi, and hence γ(a) 6 γ(hi) =

hi. Thus, for every i 6 m, hi ∈ 〈γ[J]〉G− , and therefore a = ∏G−
i6m hi ∈ 〈γ[J]〉G− .

In the next Lemma we make a note of some interesting properties of generated

filters and of the mappings ϕ and ψ in Lemma 2.16. In the interests of readability, we

write F⊥γ in place of F
⊥G−γ , and F⊥ in place of F⊥G− . Also, we let 〈X〉γ stand for 〈X〉G−γ

and 〈X〉 for 〈X〉G− .

Lemma 2.17. Let G− be the negative cone of a projectable `-group, and let G−γ be a nucleus

retract of it, with γ a dense nucleus.

1. For any a ∈ G−, ψ(〈a〉) = 〈γ(a)〉γ;
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2. For any a ∈ G−γ , ϕ(〈a〉γ) = 〈a〉;
3. For any a ∈ G−γ , ϕ(a⊥γ) = a⊥;

4. For any a ∈ G−, ψ(a⊥) = γ(a)⊥γ ; and

5. If a ∈ G−γ , ϕ(a⊥γ) is a complemented element in MF(G−), its complement being (a⊥γ)⊥.

Proof. (1) For the nontrivial direction, let x ∈ ψ(〈a〉) = 〈a〉 ∩ G−γ . Thus x > an, for some

n ∈ N. It follows that x = γ(x) > γ(an) = γ(a) ·G−γ · · · ·G−γ γ(a), whence our claim

follows.

(2) From (1), by applying the isomorphism ϕ on both sides.

(3) By Proposition 2.3.(1) and item (2),

ϕ(a⊥γ) = ϕ(〈a〉⊥γ
γ ) = ϕ(〈a〉γ)⊥ = 〈a〉⊥ = a⊥.

(4) By Proposition 2.3.(1) and item (1),

ψ(a⊥) = ψ(〈a〉⊥) = (ψ(〈a〉))⊥γ = (〈γ(a)〉γ)⊥γ = γ(a)⊥γ .

(5) From Proposition 2.3.(1)-(3).

Lemma 2.18. An IRL M is a projectable GMV algebra if and only if it is a retract of a dense

nucleus on the negative cone G− of some projectable `-group.

Proof. In view of the previous Lemma and in virtue of Theorem 2.12 we confine our-

selves to proving the left to right direction. Let M be a projectable GMV algebra. We

use the construction in Theorem 2.12 to obtain an `-group G, and a nucleus γ on its

negative cone G−, such that M is isomorphic to G−γ . It remains to show that G is pro-

jectable. Now, by Lemma 2.10, G−γ is projectable, and this property is witnessed by its

lattice of multiplicative filters; namely, for all a ∈ G−γ ,

a⊥γ ∨ a⊥γ⊥γ = G−γ .

Now, recall that for our claim to hold, it suffices to show that G− is projectable,

namely that for all a ∈ G−,

a⊥ ∨ a⊥⊥ = G−.

This much will suffice, because the map that sends convex subalgebras of an `-group

to convex subalgebras of its negative cone is an isomorphism. Let a ∈ G−. Then

ψ(a⊥ ∨ a⊥⊥) = ψ(a⊥) ∨ ψ(a⊥⊥) ψ preserves joins

= ψ(a⊥) ∨ ψ(a⊥)⊥γ Proposition 2.3.(1)

= γ(a)⊥γ ∨ γ(a)⊥γ⊥γ = G−γ , Lemma 2.17.(4)

whence our conclusion follows given that ψ is an isomorphism.
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We now proceed to the proof of Theorem 2.14.

Proof of Theorem 2.14. Lemma 2.10 and Lemma 2.18 imply that PLG−∗ and PGMV are

full subcategories of the categories LG−∗ and IGMV , respectively. So, the functor Γ in

Theorem 2.13 restricts to a full and faithful functor from PLG−∗ to PGMV , whence our

claim follows.

Corollary 2.19. The categories of projectable MV algebras and projectable unital Abelian `-groups

are equivalent.

2.4 Introducing the Categories GLG− and GGMV

As already observed, it is natural to give an equational characterization of projectability

by including in the signature the operation symbol for the Gödel implication. If so,

our category morphisms should obviously preserve the additional operation, but the

morphisms in both PLG−∗ and PGMV fall short of this desideratum. As we shall see in

this section, however, imposing this further constraint upon our arrows will downgrade

the previous equivalence to an adjunction.

Thus, in what follows, we will deal with projectable IGMV algebras in the signature

expanded by an additional binary operation symbol →, which denotes the relative

pseudo-complement whose existence is guaranteed by Lemma 2.10. To distinguish

these algebras from their→-free counterparts we need a special label, provided via the

next definition.

Definition 2.20. A Gödel GMV algebra is an algebra M = (M,∧,∨, ·, \, /,→, e) of type

(2, 2, 2, 2, 2, 2, 0) such that:

1. (M,∧,∨, ·, \, /, e) is an IGMV algebra;

2. (M,∧,∨,→, e) is a positive Gödel algebra.

The labels GGMV and GLG− will henceforth stand for the varieties of Gödel GMV

algebras and of Gödel negative cones (Gödel GMV algebras whose RL reducts are neg-

ative cones of `-groups), respectively.

Theorem 2.21. Any Gödel GMV algebra M = (M,∧,∨, ·, \, /,→, e) is the retract of a dense

nucleus5 of some Gödel negative cone.

5Notice that by nucleus, here, we mean a nucleus on the RL reduct of A; it should be pointed out that,

by [41, Corollary 3.7], such nuclei also preserve meets.
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Proof. The claim follows from Lemma 2.18 if we can show that →M coincides with the

relative pseudo-complement in G−γ , whose existence is guaranteed by the fact that G−

is projectable. However, if a, b ∈ G−γ , a →M b is a closed element in that γ(b) = b 6

a→M b, and closed elements form a lattice filter of M. Since it is the largest x such that

a ∧ x 6 b, in particular it is the largest closed element with that property. In sum,

a→M b = max{γ(x) : a ∧ γ(x) 6 b} = a→G−γ b.

The preceding proof also yields:

Corollary 2.22. The {\, /,→, e}-reduct of any Gödel GMV algebra is a subreduct of a Gödel

negative cone.

For our purposes, the following generalization (for which see e.g. [94]) of the usual

concept of free algebra over a set of free generators will come in handy.

Definition 2.23. Let K and K′ be classes of algebras of respective signatures ν and ν′,

with ν′ ⊆ ν. The algebra K ∈ K is a K-free extension over A ∈ K′ in case:

(1) A is a ν′-subreduct of K;

(2) the subalgebra of K generated by A is K; and

(3) every homomorphism of A to the ν′-reduct of any C ∈ K can be extended to a

unique homomorphism of K to C.

K�ν′ K

A C�ν′ C

f̄
∃! f̄

f
i

To make terminology less cumbersome, we will refer to the K-free extension over A

as “the free K over A.” Thus, for example, the LG−-free extension over A ∈ CA will be

described as the free negative cone over A.

Lemma 2.24. Let M be a Gödel GMV algebra, and let A and B be its {\, /,→, e}-reduct6 and

its {\, /, e}-reduct, respectively. Then:

1. The free Gödel negative cone K over A exists.

2. The RL subreduct L generated by B in K is the free negative cone over B.

6The {\, /,→, e}-subreducts of Gödel negative cones are easily seen to be axiomatized by the axioms of

cone algebras together with the axioms for Hilbert algebras; see, for example, [33].
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Proof.

(1) Let F be the free Gödel negative cone over the set A. Further, let θ be the congruence

relation on F generated by all pairs (a\Fb, a\Ab), (a/Fb, a/Ab), and (a →F b, a →A b),

for all a, b ∈ A. Let K be the quotient algebra F/θ. Consider the {\, /,→, e}-homomor-

phism i : A → K that sends any element a ∈ A to its equivalence class [a]θ . In view

of Corollary 2.22, i is injective and hence A can be identified with its image under i. A

direct check shows that K is the free Gödel negative cone extension of A.

(2) It is a consequence of the following result of [97, Corollary 3.15]: If a cone algebra

A is a subreduct of a negative G−, then the subalgebra of G− generated by A is the free

extension of A.

Remark 2.25. Retaining the notation of the foregoing lemma, A is a subreduct of K and more-

over, by [41, Theorem 3.4.(5)], the RL reduct of M is contained in L as a lattice filter – actually,

it is the image of a dense nucleus γ on L. Note that L is a projectable GMV algebra by Theo-

rem 2.21; hence, it can be equipped with a Gödel implication→ (Theorem 2.21), which extends

→A but is not necessarily the restriction to L of→K. Therefore, A is included in the Gödel neg-

ative cone L̄ that expands L by→. Namely, we are in the situation depicted in the figure below.

Since K is the free Gödel negative cone over A, there exists a unique GLG− homomorphism

β making the diagram commutative. Actually, β is idempotent, whence L̄ is an RL retract

of K in the usual, universal algebraic sense. Therefore, any Gödel GMV algebra M uniquely

determines a pair (K, βγ), where K is the free Gödel negative cone over A, with β and γ as in

the preceding sentences.

A K

L

i

i
∃!β

We now define the categories we wish to investigate:

• GGMV is the category whose objects are Gödel GMV algebras and whose arrows

are their algebra homomorphisms.

• GLG− is the category whose objects are the pairs (K, βγ) such that K is a Gödel

negative cone, β is an idempotent endomorphism on K and γ is a dense nucleus

on its image;7 and its morphisms are mappings f : (K1, β1γ1) → (K2, β2γ2) such

that f is a GLG−-homomorphisms that satisfies f γ1β1 = γ2 f β1, as shown in the

7It should be noted here that in the definition of GLG− we do not assume that K is the free Gödel nega-

tive cone over a Gödel GMV algebra, and β, γ need not be the special mappings discussed in Remark 2.25.
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next diagram:

K1 K2

L̄1 L̄2

M1 M2

f

β1 β2

f �L̄1

γ1 γ2

f � im γ1

It is implicit in the previous definition that f [L1] ⊆ L2, although there is no as-

sumption in the diagram above that f preserves the Gödel implication in L̄1, because,

as already noted, L̄1 need not be a subalgebra of K1. The condition f γ1β1 = γ2 f β1

expresses the commutativity of the diagram below:

L̄1 L̄2

M1 M2

f �L̄1

γ1 γ2

f � im γ1

Let f : M1 → M2 be a homomorphism of Gödel GMV algebras, and let K1 and

K2 be the free Gödel negative cones over the {\, /,→, e}-reducts A1 and A2 of M1 and

M2, respectively. Observe that f , as such, restricts to a homomorphism between these

reducts. By Lemma 2.24, A1, A2 respectively embed into the appropriate reducts of the

free Gödel negative cones K1 and K2:

A1 K2

A2

K2

i

f

i◦ f ∃! f̄
i

Since K1 is the free Gödel negative cone over A1, f extends to a unique homomor-

phism f̄ : K1 → K2. We call f̄ the free extension of f .

Equipped with this notion, we introduce two assignments F : GGMV → GLG−

and G : GLG− → GGMV , with an eye to showing that they are well-defined functors

and that they form an adjoint pair between the categories GLG− and GGMV .

• Given an object M in GGMV , F (M) is the pair (K, βγ) determined as in Re-

mark 2.25, and given a morphism f : M1 → M2 in GGMV , F ( f ) is the free

extension f̄ of f .

• Given an object (K, βγ) in GLG−, G(K, βγ) is the algebra γ[β[K]], and given a

morphism f : (K1, β1γ1)→ (K2, β2γ2) in GLG−, G( f ) is f � im γ1.
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Lemma 2.26. F is a functor between the categories GGMV and GLG−.

Proof. We already noticed that F (M) is an object in GLG−. Next, take any morphism

f : M1 → M2, and let Ai, Bi (i ∈ {1, 2}) be, respectively, the (\, /,→, e)-reducts and

(\, /, e)-reducts of Mi. Observe that f restricts to a homomorphism between B1 and B2,

which in turn extends to a homomorphism f ∗ : L1 → L2, where Li (i ∈ {1, 2}) is the

free negative cone over Bi. We claim that f̄ �L1
coincides with f ∗. By [41, Theorem 11],

L1 is generated by B1 as a monoid. Therefore, for any a ∈ L1, a = ∏L1
i6m ai, with ai ∈ B1,

for any i 6 m. Thus,

f ∗(a) = f ∗
(

∏L1

i6m
ai

)
= ∏L2

i6m
f ∗(ai) = ∏L2

i6m
f (ai) = ∏K2

i6m
f (ai),

since L2 is an RL subalgebra of K2. Moreover, since f̄ extends f ,

f̄ (a) = f̄
(

e ∏K1

i6m
ai

)
= ∏K2

i6m
f̄ (ai) = ∏K2

i6m
f (ai),

whence our claim follows. Now, since β1 is onto, all we have to show is that the diagram

below is commutative.

L1 L2

M1 M2

γ1

f̄ �L1

γ2

f � im γ1

Let a ∈ L1. There exist a1, . . . , am ∈ A1 such that a = ∏L1
i6m ai. So,

f γ1(a) = f γ1

(
∏L1

i6m
ai

)
= f

(
∏M1

i6m
ai

)
= ∏M2

i6m
f (ai) = γ2

(
∏L2

i6m
f (ai)

)
= γ2 f

(
∏L1

i6m
ai

)
= γ2 f (a).

Thus indeed f � im γ1 ◦ γ1 equals γ2 ◦ f̄ �L1. Finally, it is also easy to check that F
preserves compositions. Therefore F is a functor between the categories GGMV and

GLG−.

Lemma 2.27. G is a functor from GLG− to GGMV .

Proof. By Theorem 2.21, G(K, βγ) is an object in GGMV . Moreover, by the commuta-

tivity requirement f γ1β1 = γ2 f β1, f � im γ is a GGMV -morphism and, in particular, it

preserves the Gödel implication.

Theorem 2.28. F and G are adjoint functors.
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Proof. Let M, K̃ be objects in the categories GGMV and GLG−, respectively. We

want to show that there is a bijective correspondence between GLG−(F (M), K̃) and

GGMV(M,G(K̃)), that is natural in both coordinates. As regards injectivity, let g, h be

distinct morphisms in GGMV(M,G(K̃)). If ḡ is the free extension of g, as observed in

the proof of Lemma 2.26, F (g)�M = ḡ�M = g and F (h) = h̄�M = h. Since g, h are

assumed to be distinct, F (g) 6= F (h). Now, let g ∈ GLG−(F (M), K̃). Let F (M) = K̃.

Notice that, since K̃ is free over the {/, \,→, e}-reduct of M, both β and γ are uniquely

determined up to isomorphism. By the results in [41], there exists a uniquely deter-

mined GLG−-homomorphism ḡ between the negative cone L associated to M and L′

that makes the diagram

K̃ K̃′

M M′

γ◦β

ḡ

γ′◦β′

g

commutative. Arguing as in Lemma 2.26, it is easy to see that ḡ is a morphism from K̃

to K̃′, whence F is onto.

A routine verification shows that the stablished bijection between the hom-sets

GLG−(F (M), K̃′) and GGMV(M,G(K̃′)) is natural in both M and K′. Namely, the

following diagram commutes for g ∈ GGMV(M1, M2) and f ∈ GLG−(K̃1, K̃2):

GLG−(F (M2, K̃1) GGMV(M2,G(K̃1)

GLG−(F (M1, K̃2) GGMV(M1,G(K̃2)

F (g)◦( )◦ f

ΦM2,K1

g◦( )◦G( f )

ΦM1,K2



Chapter 3

Lateral Completions, Projectable

Hulls, and Orthocompletions

3.1 Introduction

Inspired from the idea that a good deal of significant properties of lattice-ordered

groups are independent from the group structure, but are essentially lattice-theoretical,

from the 1960’s, Paul Conrad and his group started a widespread research programme.

The leitmotif of this programme was capturing relevant features of `-groups by looking

into the algebraic features of the lattices of convex `-subgroups. Conrad’s programme

produced outstanding contributions and opened to new research perspectives to the

theory of `-groups. Of particular relevance to this chapter are the results on lateral

completions of `-groups. Lateral completions were considered by Stone in [87] where

it is shown that an Archimedean `-group can be embedded in the laterally complete

`-group of almost finite continuous functions on a Stone space. In 1949, Lorenzen

proved in [67] that an `-group can be embedded as an `-subgroup in an unrestricted

cardinal sum of totally ordered groups (and, therefore, laterally complete) if and only

if it is representable. The same year, Nakano [75] considers orthogonality in the context

of vector lattices. One of the problems he discussed is that of constructing an exten-

sion of a conditionally complete vector lattice in which every orthogonal subset (of the

extension) has a supremum, and proved that, in case a vector lattice L is conditionally

complete, then it admits a unique lateral completion H. A remarkably elegant proof

of this result is due to Pinkser [81, 93]. Nakano’s ideas were generalized by Amemiya

in [3] to the case of arbitrary vector lattices. Afterwards, in 1963, Jakubik [51] showed

that H is completely determined by the lattice reduct of G. Nakano’s construction was
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extended also by P. Bernau in [9] and applied to representable `-groups in [9]. In 1968,

P. Conrad J. Harvey and C. Holland capitalized on the results above and proved in [30]

that any abelian `-group can be embedded into a laterally complete abelian `-group

of real-valued functions. As a consequence, each of the main embedding theorems for

`-groups is in fact an embedding into a laterally complete `-group. A year later, in 1969,

Conrad showed that, if an `-group is representable, then it admits a unique minimal

lateral completion [29].

Taking advantage of ideas from functional analysis, Conrad’s programme led to

major outcomes in describing lateral completions of `-groups. A natural continuation

of such consists in widening the program to the more general framework of residuated

lattices, that encompass `-groups and also include MV algebras, Heyting algebras, and

several other algebraic structures of leading importance to algebraic logic.

The leading idea in this chapter is to construct, for any given residuated lattice,

an orthocomplete extension such that the former is dense in the latter. This extension

is obtained as the direct limit of a family of residuated lattices that are constructed

using maximal partitions of the algebra of polars of the original residuated lattice. The

restriction of semilinearity (the corresponding property to representability for `-groups)

seems to be essential at this point.

The structure of the present chapter is as follows: In Section 3.2 we start by studying

the partitions of the Boolean algebra of polars of a residuated lattice – which we will

simply call partitions of a residuated lattice, with a meek abuse of terminology. We will

show that they form a join-semilattice, and thus, a directed poset. We will use them

to define a directed system of algebras in Section 3.4, provided a semilinear residuated

lattice L. In Section 3.3, we will explain a general method to obtain the direct limit

of a directed family of algebras. We will use this construction to calculate, given a

semilinear residuated lattice L, the direct limit of the direct family of algebras induced

by the directed poset of partitions of polars of L. We will prove that this limit, denoted

O(L), enjoys many interesting properties. In particular, L is densely embeddable in

O(L) (Theorem 3.14), and furtheremore it is laterally complete (Theorem 3.21). As a

consequence, we obtain one of the main results of this chapter:

Theorem A (Corollary 3.22). Every e-cyclic semilinear residuated lattice L is densely embed-

dable in a laterally complete lattice that belongs to the variety generated by L.

In Section 3.5 we continue our study of O(L). We devote this section to the proof

that O(L) is also projectable, (Theorem 3.27) and hence obtain that every semilinear

residuated lattice is densely embeddable in a projectable residuated lattice. But a further
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analysis leads to an improvement of this result: O(L) is actually strongly projectable

(Theorem 3.31), which combined with Theorems 3.14 and 3.21 gives us the following

result:

Theorem B (Corollary 3.33). Every e-cyclic semilinear residuated lattice L is densely embed-

dable in a �-orthocomplete lattice that belongs to the variety generated by L.

We also introduce in this section the lattice O<ω(L), which is contained in O(L),
but in general smaller. While O(L) is laterally complete, as we mentioned, O<ω(L)

might fail this property. Nonetheless, L is also densely embeddable in O<ω(L), which

is strongly projectable. Lastly, in Section 3.6, we look for minimal extensions, which we

call hulls, of L, containing L densely, and being laterally complete, projectable, strongly

projectable, and orthocomplete respectively. We show the existence and uniqueness of

projectable and strongly projectable hulls of semilinear residuated lattices; and in the

special cases of GMV algebras, we also prove the existence and uniqueness of laterally

complete hulls and orthocomplete hulls.

Theorem C (Theorem 3.53). Every e-cyclic semilinear residuated lattice L has a strongly

�-projectable hull and a �-projectable hull in the variety generated by L; and every semilinear

GMV algebra L has laterally complete hull and an �-orthocomplete hull in the variety generated

by L.

We end this chapter proving that O<ω(L) is actually the unique, up to isomorphims,

strongly projectable hull of L (Theorem 3.55).

3.2 Partitions

We introduce in this section the notion of a partition of a complete Boolean algebra and

study the particular case of Boolean algebras of polars of a residuated lattice, which

will be essential for this entire chapter. Recall that a partition of a set X is a nonempty

set C ⊆ P(X) such that ∅ /∈ C, for every pair of different elements A, B ∈ C, A∩ B = ∅,

and
⋃ C = X. Our notion of partition generalizes this one to arbitrary complete Boolean

algebras. Indeed, a partition of a set X is just a partition of the Boolean algebra P(X).

We say that two elements a, b of a Boolean algebra are disjoint if and only if a∧ b = ⊥.

A word of caution is in order. According to Definition 3.15, we say that two (negative)

elements x, y of an e-cyclic residuated lattices are disjoint if x ∨ y = e, which in the

particular case of IRLs, is exactly the dual notion of the one that we have just defined.

This should not lead to confusion, as the Boolean algebras in which we are interested
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are the algebras of polars of residuated lattices. So, both notions of disjointness will

be clearly separated by the context. In Lemma 3.20 we will see what is the connection

between these two homonymous concepts.

Definition 3.1. Let B = 〈B,∧,∨,¬,⊥,>〉 be a non-trivial complete Boolean algebra. A

partition of B is a maximal set of disjoint elements of B \ {⊥}, that is to say, it is a set

C ⊆ B such that

(1) ⊥ /∈ C,

(2) for every c, d ∈ C, if c 6= d then c ∧ d = ⊥, and

(3) if a ∈ B is such that a 6= ⊥, then there exists c ∈ C such that a ∧ c 6= ⊥.

The following result is an immediate consequence of the preceding definition:

Lemma 3.2. A subset C ⊆ B is a partition of B if and only if it satisfies the following conditions:

(1) ⊥ /∈ C,

(2) for every c, d ∈ C, if c 6= d then c ∧ d = ⊥, and

(3)
∨ C = >.

Further, any subset C of B that satisfies conditions (1) and (2) can be extended to a partition, for

instance C ∪ {¬(∨ C)}.
The set D of partitions of B can be ordered in the following manner: given two

partitions C and A, we say that A is a refinement of C, and write C 4 A, if for every

a ∈ A there exists a (necessarily unique) c ∈ C such that a 6 c. It is easily checked that

4 is a partial order on D. We in fact prove that 〈D,4〉 is a join semilattice, and hence

any two partitions have a least common refinement. Indeed let C,D be partitions. We

claim that

A =
{

c ∧ d 6= ⊥ : c ∈ C, d ∈ D
}

(3.1)

is their join in 〈D,4〉. Let us first verify that A is actually a partition. Observe that

⊥ /∈ A by definition. If a = c ∧ d and a′ = c′ ∧ d′ are in A, with c, c′ ∈ C and d, d′ ∈ D,

and a 6= a′, then c 6= c′ or d 6= d′, and in either case a ∧ a′ = (c ∧ c′) ∧ (d ∧ d′) = ⊥.

And finally, if a ∈ B is such that a 6= ⊥, then there exists c ∈ C such that a ∧ c 6= ⊥,

by the maximality of C, and therefore there exists d ∈ D such that (a ∧ c) ∧ d 6= ⊥, by

the maximality of D. Thus, we have found c ∈ C and d ∈ D such that c ∧ d 6= ⊥, and

therefore c ∧ d ∈ A, and a ∧ (c ∧ d) 6= ⊥, which proves the maximality of A. Lastly, A
is clearly a refinement of C and D, and any other refinement of C and D must also be a

refinement of A.
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Lemma 3.3. Let B be a complete Boolean algebra and C,A be partitions of B. Then the following

are equivalent:

1. C 4 A;

2. for every c ∈ C, {a ∈ A : a 6 c} is a partition of the Boolean algebra [⊥, c];

3. for every c ∈ C, c =
∨{a ∈ A : a 6 c}; and

4. for every c ∈ C, ¬c =
∧{¬a : a ∈ A, a 6 c}.

Proof. (1⇒ 2): Let c ∈ C and let D = {a ∈ A : a 6 c}. Obviously ⊥ /∈ D and if a, b ∈ D
and a 6= b, then a ∧ b = ⊥, since A is a partition. Now, by Lemma 3.2 all we need to

show is that c =
∨D, which is true by virtue of the distributivity law, and the facts that

C is a refinement of A and
∨A = >, by hypothesis.

(2 ⇒ 1): Consider b ∈ A. Then b 6= ⊥, and therefore b ∧ c 6= ⊥, for some c ∈ C.

Obviously b ∧ c ∈ [⊥, c], and since {a ∈ A : a 6 c} is a partition of [⊥, c], there exists

a ∈ A such that a 6 c and a ∧ b ∧ c 6= ⊥. Thus, a ∧ b 6= ⊥, and since A is a partition,

b = a 6 c. We have established that C 4 A.

(2⇔ 3): This equivalence is an immediate consequence of Lemma 3.2.

(3⇔ 4): This equivalence follows from two facts: (i) complementation in a Boolean

algebra is a dual order-automorphism; and (ii) arbitrary joins and meets in [⊥, c] coin-

cide with those in B.

Given an e-cyclic residuated lattice L, we denote by D(L) the join-semilattice of par-

titions of the Boolean algebra Pol(L) of polars of L.1 Recall that if L is semilinear then

each polar of L is a convex normal subalgebra, by Theorem 1.13. Thus the following

corollary is an immediate consequence of Lemma 3.3.

Corollary 3.4. Let L be an e-cyclic residuated lattice and C,A be partitions of Pol(L). Then

the following are equivalent:

1. C 4 A;

2. for every C ∈ C, {A ∈ A : A ⊆ C} is a partition of the Boolean algebra [{e}, C];

3. for every C ∈ C, C =
∨Pol(L){A ∈ A : A ⊆ C}; and

4. for every C ∈ C, C⊥ =
⋂{A⊥ : A ∈ A, A ⊆ C}.

If moreover L is semilinear, then the previous conditions are equivalent to

5. The homomorphism f : L/C⊥ → ∏{L/A⊥ : A ∈ A, A ⊆ C}, defined by f ([a]C⊥) =

([a]A⊥ : A ∈ A, A ⊆ C) provides a subdirect representation of L/C⊥ in terms of the

algebras {L/A⊥ : A ∈ A, A ⊆ C}.

1See Section 1.7
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Proof. The equivalence of the first four conditions follows from Lemma 3.3. Further, in

view of Theorem 1.13, all polars of L are normal. Hence, 4 and 5 are equivalent.

Let L be an e-cyclic semilinear residuated lattice. As we mentioned already, in

view of Theorem 1.13, all polars of L are normal, and hence for every C⊥ ∈ Pol(L)

one can form the quotient algebra L/C⊥. For every partition C of Pol(L), we define

the product LC = ∏C∈C L/C⊥. We will see that if C and A are two partitions such

that C 4 A then we can define an injective homomorphism φCA : LC → LA. The

family of homomorphisms of residuated lattices {φCA : LC → LA : C 4 A} satisfies a

compatibility property, namely, given three partition A 4 B 4 C, we have

φC = idC and φBC ◦ φAB = φAC .

Recall that D(L) is an join-semilattice, and in particular a directed set. Thus, we can

form the direct limit of this family and obtain a residuate lattice O(L) that will contain

all the algebras LC in a minimal way. Next section is devoted to the construction of the

direct limit of any family of compatible homomorphisms and its basic properties.

3.3 Direct Limits

The direct limit of a directed family of algebras of the same signature is usually obtained

as a suitable homomorphic image of the coproduct of this family. In this section, we

describe an alternative construction of the direct limit that is briefly discussed in [24,

(p. 114)] and [46, (Exercises 32 and 33, pp. 155-156)], and [29]. In the sequel we consider

exclusively direct limits of algebras and algebra homomorphisms.

Recall that a partially ordered set (I,6) is said to be a directed set if for any i, j ∈
I there is a k ∈ I such that i, j 6 k. Let K be a category of algebras and algebra

homomorphisms, (I,6) a directed set, and {Ai : i ∈ I} a family of objects of K. A

family { fij : Ai → Aj : i, j ∈ I, i 6 j} of homomorphisms in K is a directed system for

{Ai : i ∈ I} if for every i ∈ I, fii = idAi , and for i 6 j 6 k, f jk ◦ fij = fik, that is to say,

the diagrams

Ai Ak

Aj

fik

fij f jk

commute.2 Given a directed system { fij : Ai → Aj : i, j ∈ I, i 6 j} in K, a family of

2More formally, one can think of a directed system in a category K as a functor F : I → K, where the

directed set I = (I,6) is regarded as a category.
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homomorphisms {φi : Ai → A : i ∈ I} is said to be compatible with it provided the

equation φj ◦ fij = φi holds, for all i ∈ I. Such a family is called a direct limit of the

directed system if it is “minimal” among the families of homomorphisms compatible

with it, in the sense that it satisfies the following universal property: for any family

{ψi : Ai → B : i ∈ I} compatible with { fij : Ai → Aj : i, j ∈ I, i 6 j}, there exists a

unique ψ : A→ B rendering the following diagram commutative, for all i ∈ I:

A B

Ai

∃!ψ

φi
ψi

(3.2)

It is very easy to see that direct limits are unique up to a unique isomorphism, in

the sense that whenever {φi : Ai → A : i ∈ I} and {ψi : Ai → B : i ∈ I} are direct

limits of the same system, then there exists a unique isomorphism ψ : A→ B rendering

commutative the diagram (3.2). Very often, the common target of the homomorphisms

of the direct limit of a system is also called the direct limit of the system.

Intuitively, the elements of the direct limit are determined by “approximations,”

which are elements in the algebras of the system. Thanks to the compatibility law of

the system and the property of being directed, those approximations can be chosen in

algebras with arbitrarily large index. Thus, we intend to represent the elements of the

limit by sequences of elements in the algebras such that, from one index on, they respect

the compatibility law of the system. The behavior of the sequences “before” this index

is irrelevant. Thus, two sequences such that from one index on are identical should be

considered the same element in the limit. Formally, let { fij : Ai → Aj : i, j ∈ I, i 6 j} be

a directed system in a class K of algebras of the same signature, and consider the set T

of threads in ∏i∈I Ai:

T =
{

a ∈ ∏i∈I Ai : ∃k∀j > k, aj = fkj(ak)
}

. (3.3)

In the definition of T, and in the sequel, we write ai instead of a(i), for a ∈ ∏i∈I Ai and

i ∈ I. We define the following binary relation ∼ on T, for all a, b ∈ T:

a ∼ b ⇔ ∃k∀j > k, aj = bj. (3.4)

It can be readily proven the following result.

Lemma 3.5. The set T is the universe of a subalgebra T of ∏i∈I Ai, and moreover ∼ is a

congruence of T.
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Given a directed system { fij : Ai → Aj : i, j ∈ I, i 6 j} and the set T of threads

as defined in (3.3), we call i ∈ I a witness of a ∈ T, or just a witness for a, if for every

k > i, ak = fik(ai). By the very definition of T, every thread has a witness and the set of

witnesses of a thread is closed upwards.

Now we fix an arbitrary element u ∈ ∏i∈I Ai, and define the map φi : Ai → T as

follows for all a ∈ Ai:

φi(a)j =

 fij(a) if i 6 j;

uj otherwise.
(3.5)

One can easily verify that for each a ∈ T, and each witness i for a, a ∼ φi(ai). The

map φi defined in (3.5) induces a map φi : Ai → T/∼ defined, for all a ∈ Ai, by:

φi(a) = [φi(a)]∼. (3.6)

In what follows, we denote by A the quotient T/∼. The next result shows that {φi :

Ai → A : i ∈ I} is the direct limit of the directed system { fij : Ai → Aj : i, j ∈ I, i 6 j}.
We sketch its proof for the convenience of the reader.

Proposition 3.6. Given a directed system { fij : Ai → Aj : i, j ∈ I, i 6 j}, the family of

homomorphisms {φi : Ai → A : i ∈ I} just defined above is the direct limit of { fij : Ai → Aj :

i, j ∈ I, i 6 j}. That is, A has the universal property:

Ai Aj

A

B

fij

φi

ψi

φj

ψj∃!ψ

for any family {ψi : Ai → B : i ∈ I} of homomorphisms compatible with { fij : Ai → Aj :

i, j ∈ I, i 6 j}, there is a unique ψ : A→ B such that, for every i ∈ I, ψ ◦ φi = ψi.

Proof. We leave the reader to verify that the system {φi : Ai → T/∼ : i ∈ I} is indeed

a family of homomorphisms compatible with the directed system { fij : Ai → Aj : i, j ∈
I, i 6 j}

Suppose that a, b ∈ T are such that a ∼ b, and let i, j be witnesses for a, b, respec-

tively, and k such that a and b agree from k on. Let’s consider any r > i, j, k, which exists

since I is a directed set. Thus, a and b agree on r and therefore

ψi(ai) = ψr( fir(ai)) = ψr(ar) = ψr(br) = ψr( f jr(bj)) = ψj(bj).
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Therefore, we can define the map ψ : A→ B in the following way: for every [a]∼ ∈ A,

ψ([a]∼) = ψi(ai),

where i is any witness for a.

Let σ be an n-ary operation symbol in the signature and a1, . . . , an ∈ T with common

witness k. Then, it can be easily seen that k is also a witness for σT(a1, . . . , an), and

hence:

ψ(σA([a1]∼, . . . , [an]∼)) = ψ([σT(a1, . . . , an)]∼) = ψk(σ
T(a1, . . . , an)k)

= ψk(σ
Ak(a1

k , . . . , an
k )) = σB(ψk(a1

k), . . . , ψk(an
k ))

= σB(ψ([a1]∼), . . . , ψ([an]∼)).

That ψ renders the diagram commutative is a direct consequence of the fact that, for

every i ∈ I, and every a ∈ Ai, i is a witness for φi(a). As regards the uniqueness, note

that if i is a witness of a ∈ T, then a ∼ φi(ai), and therefore if ψ′ : A → B is a map

rendering commutative the diagram, then

ψ′([a]∼) = ψ′([φi(ai)]∼) = ψ′(φi(ai)) = ψi(ai) = ψ([a]∼).

We define now a concept that will be very useful in the next section.

Definition 3.7. If { fij : Ai → Aj : i, j ∈ I, i 6 j} is a directed system, i ∈ I, and x ∈ Ai,

we call x a proxy of φi(x) at i.

Note that if [a]∼ ∈ A, and i is a witness for a, then ai is a proxy of [a]∼ at i.

Consequently, every element of the limit has a proxy at some index i, and the set of

indices where a particular element has a proxy is closed upwards. Moreover, if i 6 j,

x ∈ Ai and y = fij(x), then x is a proxy of an element s ∈ A at i if and only if y is a

proxy of s at j.

We note for future reference the following result:

Lemma 3.8. If all the homomorphisms of a directed system of algebras are embeddings, then the

homomorphisms of the direct limit are also embeddings.

Under the assumptions of the preceding lemma, whenever an element of the direct

limit A has a proxy in i ∈ I, this proxy is unique. Note also that, as a consequence of

Proposition 3.6, the direct limit of a directed system is the quotient of a subalgebra of

the product of the algebras of the system. Thus, varieties are closed under direct limits.

In fact, it can be shown that the same result holds for quasivarieties.3

3Actually, a stronger result can be proved. Namely, given a set of quasi-equations Π and a directed
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3.4 Lateral Completeness of O(L)

We devote this section to the construction of a laterally complete extension, O(L), of

an arbitrary e-cyclic residuated lattice L, provided that it is semilinear. This extension

O(L) will satisfy another very important property, namely L is densely4 embeddable

in O(L). Thus, the main result of this section, Corollary 3.22, is that every semilinear

e-cyclic residuated lattice is densely embeddable in a laterally complete one. Moreover,

we will construct O(L) as a limit of algebras that belong to the variety generated by L,

and therefore, O(L) stays in the same variety.

As we mentioned before, every semilinear residuated lattice is embeddable in a lat-

erally complete one, which belongs to the same variety. Indeed, this is a consequence of

the fact that, by definition, every semilinear residuated lattice is a subdirect product of

chains, and in a chain there are no infinite sets of disjoint elements (in fact, no set with

more that two elements can be disjoint), and therefore chains are laterally complete.

Moreover, lateral completeness is preserved by products. Thus, the dense-embeddabil-

ity of L into O(L) is a quite significant requirement. Intuitively, it is a restriction on the

size of O(L).

We will split the main result into two parts. Surprisingly enough, the proof that L is

densely embeddable in O(L), which is the statement of Theorem 3.14, is much simpler

than the proof that O(L) is laterally complete, Theorem 3.21. Thus, most of the burden

of this section will be into the proof of the lateral completeness of O(L).

Let L be an e-cyclic semilinear residuated lattice. In view of Theorem 1.13, all polars

of L are normal, and hence for every C ∈ Pol(L) one can form the quotient algebra

L/C⊥. For every partition C of Pol(L), we define the product LC = ∏C∈C L/C⊥. If C
and A are two partitions with C 4 A, we define a homomorphism φCA : LC → LA
in the following manner (see diagram below): for every A ∈ A, we chose the unique

C ∈ C such that A ⊆ C. Then, C⊥ ⊆ A⊥, whence there exists a homomorphism

fCA : L/C⊥ → L/A⊥. Composing with the canonical projection πC : LC → L/C⊥, we

obtain a homomorphism fCAπC : LC → L/A⊥. Then, by the co-universal property of

the product LA, there exists a unique homomorphism φCA : LC → LA such that for all

system of algebras indexed on I, if the set F ⊆ I of indeces of the algebras satisfying Π is cofinal in I, that

is, for every index i ∈ I there is another index j ∈ F such that i 6 j and Π valid in the algebra indexed by

j, then the direct limit also satisfies Π.
4See Definition 3.13.
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A ∈ A, πAφCA = fCAπC, where πA : LA → L/A⊥ is the canonical projection.

LC LA

L/C⊥ L/A⊥

φCA

πC πA

fCA

We can describe φCA as follows: Every element x ∈ LC is the form x = ([xC]C⊥ : C ∈
C), with xC ∈ L. Then, φCA(x) = ([yA]A⊥ : A ∈ A), where for every A ∈ A, yA = xC, for

the unique C ∈ C such that A ⊆ C. Recall that the ordered set D(L) of all partitions is

a join-semilattice, hence any two partitions have a common refinement. It can be easily

shown, by using for instance the previous description, that {φCA : LC → LA : C 4 A} is

a directed system. We denote the direct limit of this system by O(L). Our objective in

this section is to prove that O(L) is laterally complete and that L is densely embeddable

into it (refer to Definitions 3.13 and 3.15 below).

Let us specialize the discussion of the preceding section to the construction of the

direct limit of {φCA : LC → LA : C 4 A}. We start with the subalgebra T of ∏C∈D(L) LC
whose universe is the set T =

{
l ∈ ∏B∈D(L) LB : ∃C ∀A < C, lA = φCA(lC)

}
. Then

we obtain O(L) as the quotient of T by the congruence ∼ defined by: l ∼ k if there

exists a partition C such that for any refinement A of it, lA = kA. Then, the elements

of O(L) are the equivalence classes of the elements l = (lC : C ∈ D(L)) ∈ T. As we

have noted in the previous section, for every partition C, there exists a homomorphism

φC : LC → O(L). More specifically, first we fix an element of ∏B∈D(L) LB , in this

case we conveniently choose the identity element e. We then define, for every x ∈ LC ,

φC(x) = [φC(x)]∼, where φC(x) ∈ ∏C∈D(L) LC is such that

φC(x)A =

φCA(x) if C 4 A

eC otherwise.
(3.7)

Furthermore, since all the homomorphisms φCA are embeddings (see Lemma 3.12), the

same is true for the homomorphisms φC by Lemma 3.8.

Given an element x ∈ LC , x = ([xC]C⊥ : C ∈ C), it will be very important to

distinguish the polars C such that [xC]C⊥ 6= [e]C⊥ , which we will call the support of x,

from the rest. In Lemma 1.9, we gave some conditions characterizing [a]H = [e]H in the

case of a normal convex subalgebra H. If H is moreover a polar, then we can extend

this lemma as follows.

Lemma 3.9. If L is an e-cyclic residuated lattice and H ∈ Pol(L) is normal, then the following

statements are equivalent:



54 3. Lateral Completions, Projectable Hulls, and Orthocompletions

(i) [a]H = [e]H,

(ii) a ∈ H,

(iii) C[a] ⊆ H,

(iv) C[a] ∩ H⊥ = {e},
(v) a⊥⊥ ∩ H⊥ = {e}.

Sometimes we will define some concepts depending on an element x ∈ LC , x =

([xC]C⊥ : C ∈ C), by means of its representatives xC. We will need the following lemma

to prove that those definitions are actually independent of the choice of representatives.

Lemma 3.10. Let L be an e-cyclic residuated lattice, H ∈ Pol(L) be a normal convex subalge-

bra, and a, b ∈ L. If [a]H⊥ = [b]H⊥ then a⊥⊥ ∩ H = b⊥⊥ ∩ H.

Proof. Suppose that [a]H⊥ = [b]H⊥ . Then, [|a|]H⊥ = [|b|]H⊥ , and therefore by [10,

Lemma 4.11], there exists c ∈ H⊥ such that |a|c 6 b and |b|c 6 a, and hence, for

any d ∈ b⊥:

|c| = e · |c| = (|d| ∨ |b|)|c| = |d||c| ∨ |b||c| 6 |d| ∨ |b|c 6 |d| ∨ |a|.

Therefore, for any h ∈ H, e = |c| ∨ |h| 6 |d| ∨ |a| ∨ |h|, whence, |h| ∨ |d| ∈ a⊥. If

moreover h ∈ a⊥⊥, then |h| ∨ |d| ∈ a⊥⊥, and therefore |h| ∨ |d| = e. Thus, for any

h ∈ a⊥⊥ ∩ H, we have proved that h ∈ b⊥⊥, as we wanted.

The converse of the implication of the previous lemma is not true in general. In

order to provide a counterexample it suffices to consider a pair of distinct elements a, b

in an integral semilinear residuated lattice L such that a⊥⊥ = b⊥⊥ and let H = L (and

therefore H⊥ = {e}). For example, this is the case for the three-element Gödel algebra

L with a = 0 < b = 1
2 < e = 1.

Definition 3.11. Let L be an e-cyclic semilinear residuated lattice, and let O(L) be the

direct limit of {φCA : LC → LA : C 4 A}. Given a partition C of Pol(L) and an

element x = ([xC]C⊥ : C ∈ C) ∈ LC , we define the support of x at C to be the set

Supp(x) = {C ∈ C : [xC]C⊥ 6= [e]C⊥}.

It is clear from the definition that, for any x ∈ LC , x is equal to the identity element

eC of LC if and only if Supp(x) = ∅.

Lemma 3.12. Let L be an e-cyclic semilinear residuated lattice and let C,A two partitions with

C 4 A. For every C ∈ C let AC = {A ∈ A : A ⊆ C}. Then:

1. For all x ∈ LC , C ∈ Supp(x) if and only if A ∈ Supp(φCA(x)), for some A ∈ AC; and

2. φCA is injective.
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Proof. Both (1) and (2) follow directly from Corollary 3.4.(5). Indeed, let x = ([xC]C⊥ :

C ∈ C) ∈ LC and let y = ([yA]A⊥ : A ∈ A) = φCA(x) ∈ LA. As we noted above, if

C ∈ C and A ∈ AC, then we can choose yA = xC. Thus, for any C ∈ C, since L/C⊥ is

a subdirect product of the algebras in {L/A⊥ : A ∈ AC}, [xC]C⊥ 6= [e]C⊥ if and only if

[yA]A⊥ 6= [e]A⊥ for some A ∈ AC.

As noted in Lemma 3.12, φCA is injective whenever C 4 A. Whence, for the partic-

ular case of the trivial partition {L}, we have L{L} = L/L⊥ = L/{e} ∼= L. Therefore,

there exists an embedding of L into O(L), more specifically the composition of the iso-

morphism L ∼= L/{e} with the embedding φ{L}. In Theorem 3.14 below, we prove that

this embedding is dense in the sense of the next definition.

Definition 3.13. An embedding φ : L → L′ between residuated lattices is dense if for

every p ∈ L′, p < e, there exists a ∈ L such that p 6 φ(a) < e.

Recall that every element of O(L) has a proxy at some partition C. That is, given an

element p ∈ O(L) there exists a partition C and an element x ∈ LC such that φC(x) = p.

Moreover, due to the fact that the homomorphisms are embeddings, the proxies of p at

a given partition are unique, if they exist. Obviously, an element of O(L) is different

from the identity if and only if all its proxies, at the different partitions at which they

exist, are different from the identity.

Theorem 3.14. Any e-cyclic semilinear residuated lattice L can be densely embedded intoO(L).

Proof. As was noted above, the map φ : L
∼=−→ L{L}

φ{L}−−→ O(L) is an embedding of L into

O(L). For every a ∈ L, φ(a) = [a]∼, where a = (aC : C ∈ D(L)), and for every partition

C, aC = ([a]C⊥ : C ∈ C).
In order to establish the density of φ, consider p ∈ O(L) is such that p < eO(L). Let

x = ([xC]C⊥ : C ∈ C) be a proxy of p at some partition C. Then, for every C ∈ C, [xC]C⊥ 6

[e]C⊥ , and hence there is no loss of generality to assume that all the representatives xC

are negative. Since p 6= eO(L), there exists a C ∈ C such that [xC]C⊥ 6= [e]C⊥ . Therefore,

by Lemma 3.9.(v), x⊥⊥C ∩ C 6= {e} and we can choose an element b ∈ x⊥⊥C ∩ C, b < e. By

the convexity of the polars, a = xC ∨ b ∈ x⊥⊥C ∩ C. If a = e, then b ∈ x⊥C , and therefore

b = e, contradicting the hypothesis that b < e. Hence, xC 6 a < e.

Since a ∈ C, a⊥⊥ ⊆ C, and hence for every D ∈ C, C 6= D implies a⊥⊥ ∩ D = {e},
and therefore [a]D⊥ = [e]D⊥ . Thus, aC = ([a]C⊥ : C ∈ C) has only one component

different from the identity, which is [a]C⊥ , and moreover xC 6 a implies [xC]C⊥ 6 [a]C⊥ .

Hence x 6 aC < e, and then p = φC(x) 6 φC(aC) = φ(a) < eO(L).
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Definition 3.15. Two elements a, b < e of a residuated lattice L are said to be disjoint

if a ∨ b = e. An non-empty subset X ⊆ L is called disjoint provided any two distinct

elements of it are disjoint. A residuated lattice is said to be laterally complete if all disjoint

subsets of it have an infimum.

Remark 3.16. Let {xλ : λ ∈ Λ} be a nonempty family of elements of L−C , for some partition

C, which have pairwise disjoint supports: Supp(xλ) ∩ Supp(xµ) = ∅ if λ 6= µ. Then the

meet
∧LC

Λ xλ exists. Actually, it is trivial if the family has only one element, and otherwise∧LC
Λ xλ = z = ([zC]C⊥ : C ∈ C), where

zC =

(xλ)C if C ∈ Supp(xλ), for some (unique) λ ∈ Λ;

e otherwise.

In the remainder of the section we prove that, given a family of disjoint elements

S ⊆ O(L), there exists a partition E such that (i) every element of the disjoint family has

a proxy at E , (ii) the proxies of these elements have disjoint support, and (iii) their meet

is a proxy of the meet of S. We start by proving two fairly technical lemmas, which

will be used in the following proofs. The intuition behind them is that, under certain

conditions involving partitions and the supports of the elements, we can move proxies

around and choose them in a “canonical way.”

Lemma 3.17. Let L be an e-cyclic semilinear residuated lattice and let C,A be two partitions

such that C 4 A. Then, whenever y ∈ LA and Supp(y) ⊆ C, then there is a (unique) x ∈ LC
such that φCA(x) = y. Furthermore, Supp(x) = Supp(y).

Proof. Let y = ([yA]A⊥ : A ∈ A) ∈ LA such that Supp(y) ⊆ C. For every C ∈ C, we

define xC = yC if C ∈ Supp(y), and xC = e otherwise, and set x = ([xC]C⊥ : C ∈ C) ∈
LC . Then obviously Supp(x) = Supp(y).

We claim that φCA(x) = y, which will establish the statement of the lemma. Let

φCA(x) = ([tA]A⊥ : A ∈ A). Recall that for each A ∈ A, we can choose tA = xC, where

C is the unique element in C such that A ⊆ C. Consider A and C as in the preceding

sentence. If C ∈ Supp(y), which by assumption is a subset of C, then A ⊆ C ∈ A
implies A = C ∈ Supp(y). Thus, if A /∈ Supp(y), then C /∈ Supp(y) = Supp(x), and

therefore [tA]A⊥ = [eA]A⊥ = [yA]A⊥ . On the other hand, if A ∈ Supp(y), then C = A,

because A ∈ C, and therefore tA = xA = yA. Thus, we have shown that φCA(x) = y, as

required.

Given a proxy x ∈ LC of an element p ∈ O(L), exactly one of the following situations

occurs for every C ∈ C:
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(i) x⊥⊥C ∩ C = {e},
(ii) C ⊆ x⊥⊥C , or

(iii) x⊥⊥C ∩ C 6= {e} and C * x⊥⊥C .

By virtue of Lemma 3.9, (i) is equivalent to [xC]C⊥ = [e]C⊥ , that is, C ∈ Supp(x),

while (ii) implies that C 6∈ Supp(x). The next lemma shows that (iii) is avoidable in the

sense that proxies can be chosen so that their coordinates satisfy either (i) or (ii).

Definition 3.18. Let L be an e-cyclic semilinear residuated lattice and C a partition of

the Boolean algebra of polars of L. An element x ∈ LC is said to be canonical if for every

C ∈ Supp(x), C ⊆ x⊥⊥C .

Notice that canonicity is a well-defined notion, that is, it does not depend on the

representatives: if [a]C⊥ = [b]C⊥ then, by virtue of Lemma 3.10, a⊥⊥ ∩ C = b⊥⊥ ∩ C, and

therefore C ⊆ a⊥⊥ if and only if C ⊆ b⊥⊥. It is also important to note, and easy to prove,

that canonicity is preserved by refinements, in the sense that if x ∈ LC is canonical and

C 4 A, then φCA(x) is also canonical.

Lemma 3.19. Let L be an e-cyclic semilinear residuated lattice, and let O(L) be the direct limit

of the family {φCA : LC → LA : C 4 A}. Consider an arbitrary partition C and an element

p ∈ O(L). Then:

1. If x is a proxy of p at C, then there is a refinement A of C such that y = φCA(x) is

canonical.

2. If x is a proxy of p at C and B is any partition such that Supp(x) ⊆ B, then p has a

proxy z at B and Supp(z) = Supp(x). Moreover, if x is canonical, then so is z.

Proof.

1. Let x be a proxy of p at C and consider the set Ex = {x⊥⊥C ∩ C : C ∈ Supp(x)}.
Since C is a disjoint family of polars, so is Ex. Moreover {e} /∈ Ex, and therefore it

can be extended to a partition Ēx. Consider the common refinement A = C ∨ Ēx (see

Equation (3.1)) of both C and Ēx. Notice that Ex ⊆ A. Indeed, if E ∈ Ex, then there is

C ∈ C such that {e} 6= E = x⊥⊥C ∩ C, whence E = C ∩ E ∈ C ∨ Ēx.

Let y = φCA(x). As usual, we choose the representatives of y as follows: yA = xC,

where for every A ∈ A, C is the unique polar such that A ⊆ C ∈ C. In order to prove

the canonicity of y, consider an arbitrary A ∈ A. If A ∈ Ex, then there is C ∈ Supp(x)

such that A = x⊥⊥C ∩ C ⊆ x⊥⊥C = y⊥⊥A . If A /∈ Ex, let C the unique polar such that

A ⊆ C ∈ C. If C /∈ Supp(x), then y⊥⊥A ∩ A ⊆ x⊥⊥C ∩ C = {e}, whence A /∈ Supp(y). If

C ∈ Supp(x), then x⊥⊥C ∩ C and A are two distinct moments of A (since A /∈ Ex), and
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so (X⊥⊥C C) ∩ A = {e}. Hence

y⊥⊥A ∩ A = x⊥⊥C ∩ (C ∩ A) = (X⊥⊥C C) ∩ A = {e},

showing that A /∈ Supp(y). Notice that we have actually proven that Supp(y) = Ex,

and for every A ∈ Supp(y), A ⊆ y⊥⊥A .

2. Suppose now that x is a proxy of p at C and that B is a partition such that

Supp(x) ⊆ B. Consider A = B ∨ C and y = φCA(x), where we choose the representa-

tives of y as usual. Since Supp(x) ⊆ B and Supp(x) ⊆ C, then obviously Supp(x) ⊆ A,

whence it follows that Supp(y) = Supp(x). By virtue of Lemma 3.17, there is z ∈ LB
such that φB(z) = y and Supp(z) = Supp(y) = Supp(x). Moreover, if x is canonical

then y is canonical, and by the way we construct z, we deduce also the canonicity of

z.

The next lemma is the missing piece that we need to prove Theorem 3.21. We have

already seen that we can choose proxies in a canonical way and that, under certain

conditions, we can move them from one partition to another. Informally, we could say

that the “information” carried by an element lays in the coordinates of its support, and

that we can innocuously “move” it from its original partition to another, as far as the

new partition contains its support. What we prove in the next lemma is that being

disjoint is also a property that depends on the support of the elements. Namely, two

negative elements are disjoint if and only if their supports are disjoint, in the sense that

they form a disjoint set of polars.

Lemma 3.20. Let L be an e-cyclic semilinear residuated lattice, p, q < e in O(L), and x and y

canonical proxies of p and q at some partitions C and D, respectively. Then, p and q are disjoint

elements of O(L) if and only if Supp(x) ∪ Supp(y) is a disjoint set of polars of L.

Proof. Without loss of generality, we can assume that all the representatives of x and y

are negative, since p, q < e. Let A = C ∨ D, s = φCA(x) and t = φBA(y), where the

representatives of s and t are chosen in the usual way.

Suppose that C ∈ C and D ∈ D are such that A = C ∩ D 6= {e}. Notice that

(sA ∨ tA)
⊥⊥ = (xC ∨ yD)

⊥⊥ = x⊥⊥C ∩ y⊥⊥D , in virtue of Lemma 1.12. One can easily see

that the result follows from the fact that:

A ∈ Supp(s ∨ t) ⇔ C ∈ Supp(x) and D ∈ Supp(y).

The implication (⇒) can be readily obtained. From the implication (⇐) we need to use

the canonicity of x and y. Indeed, if C ∈ Supp(x) and D ∈ Supp(y), then C ⊆ x⊥⊥C and

D ⊆ y⊥⊥D , and hence {e} 6= A = C ∩ D ⊆ x⊥⊥C ∩ y⊥⊥D = (sA ∨ tA)
⊥⊥.
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We have now all the tools we need to prove that O(L) is actually laterally complete.

The idea is the following: given a disjoint set of negative elements of O(L), we can

conveniently choose canonical proxies for them, whose supports will be disjoint to one

another. Therefore, we can collect all the supports and complete this to a partition, in

which we can also find proxies of the elements of original family, whose infimum exists

and is a proxy of the infimum of the original family.

Theorem 3.21. If L is an e-cyclic semilinear residuated lattice, then O(L) is laterally complete.

Proof. Let {pλ : λ ∈ Λ} be a disjoint subset of O(L), and for every λ ∈ Λ, let xλ be a

canonical proxy of pλ at some partition Cλ. Then, by Lemma 3.20, the set
⋃

Λ Supp(xλ)

is a disjoint set of polars of L and can be extended to a partition E . Now, for every

λ ∈ Λ, E is a partition containing Supp(xλ), and then by virtue of Lemma 3.19, pλ has

a canonical proxy x′λ at E and Supp(pλ, E) = Supp(xλ). It follows that the supports of

the elements x′λ at E are all disjoint, and therefore their meet z =
∧

Λ x′λ in LE exists, by

Remark 3.16.

We complete the proof by showing that
∧

Λ pλ exists and z is its proxy at E . Since

z 6 x′λ for all λ ∈ Λ, φE (z) 6 φE (x′λ) = pλ. Suppose now that q ∈ O(L) is a lower

bound of {pλ : λ ∈ Λ}, let y be a proxy of q at some partition C, and let A be a

refinement of E and C. Set yλ = φEA(x′λ), for every λ ∈ Λ. It is not dif and only ificult

to see that
∧

Λ yλ exists in LA, and actually
∧

Λ yλ = φEA(z): Obviously, φEA(z) 6 yλ,

for every λ ∈ Λ. Suppose now that s ∈ LA and for every λ ∈ Λ, s 6 yλ. Fix A ∈ A
and let E ∈ E be the unique element in E such that A ⊆ E. Since all the supports

of the x′λ are disjoint, then there is at most one λ0 ∈ Λ such that [(x′λ0
)E]E⊥ 6= [e]E⊥ , in

which case [zE]E⊥ = [(x′λ0
)E]E⊥ , and therefore [sA]A⊥ 6 [(x′λ0

)A]A⊥ = [zA]A⊥ . Otherwise,

[zE]E⊥ = [e]E⊥ , whence [sA]A⊥ 6 [zA]A⊥ . Thus, it follows that s 6 φEA(z).

Further, for every λ ∈ Λ,

φA(φCA(y) ∧ yλ) = φC(y) ∧ φA(yλ) = q ∧ pλ = q = φA(φCA(y)).

Therefore, due to the injectivity of φA, φCA(y) ∧ yλ = φCA(y), that is to say, φCA(y) 6

yλ. This implies that φCA(y) 6
∧

Λ yλ = φEA(z), and therefore q = φA(φCA(y)) 6

φA(φEA(z)) = φE (z). This establishes the proof of φE (z) =
∧

Λ pλ.

Finally, we have the main result of the section:

Corollary 3.22. Every e-cyclic semilinear residuated lattice L is densely embeddable in a later-

ally complete lattice that belongs to the variety generated by L.
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Proof. It is an immediate consequence of Theorems 3.14 and 3.21, and the fact that O(L)
is a direct limit of products of quotients of L.

As we already mentioned, O(L) cannot be “much larger” than L, since L is dense

in O(L). We could then inquire into the minimality of O(L). That is, we can ask

whether O(L) is the smallest laterally complete residuated lattice in which L is densely

embeddable? The answer is no in general, and it is not dif and only ificult to find a

counterexample:

Example 3.23. Consider the Heyting algebra L given by the following Hasse diagram:

e

a b

c

0

It can be easily seen that L is an integral semilinear residuated lattice (Gödel al-

gebra). The Boolean algebra of polars of L is Pol(L) = {{e}, a⊥⊥, b⊥⊥, L}, with a⊥⊥ =

{e, a} and b⊥⊥ = {e, b}. Hence, the set of partitions of Pol(L) is D(L) =
{
{L},

{
a⊥⊥, b⊥⊥

}}
.

Let us denote the non trivial partition of L by C. D(L) is a directed set with a top el-

ement, namely C, and therefore the limit of the directed system
{

φ{L}C : L{L} → LC
}

is LC itself. It is not dif and only ificult to see that L/a⊥ is a chain with three elements

[0]a⊥ < [a]a⊥ < [e]a⊥ , and analogously L/b⊥. Then O(L) is the Heyting algebra:

ê

â b̂

• ĉ •

• •

0̂

where we have named the images of the embedding of L into O(L). We note that

since L, being finite, is laterally complete, the theory developed in this section does not

produce a “minimal” laterally complete extension. We devote Section 3.6 to prove the

existence of minimal such extensions in the class of GMV algebras.

Notice that the preceding algebra L is not projectable,5 while O(L) is. This is actu-

ally an instance of a general result, which will be discussed in the next section, and the

5See Definition 3.24.
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main reason why the algebra L of the precedent example cannot be O(L).

3.5 Projectablility of O(L) and O<ω(L)

As the title of the section suggests, we are going to study the projectability of the lattice

O(L), which we constructed in the last section, provided an e-cyclic residuated lattice

L. We start by showing that O(L) is projectable, and therefore every e-cyclic semilinear

residuated lattice can be densely embeddable in a projectable lattice that belongs to the

variety generated by L. We actually show that there is another projectable residuated

lattice, denoted by O<ω(L), which is also obtained as a direct limit of products of

quotients of L, densely contains L, and is in general smaller than O(L). Towards the

end of the section we are going to prove that, actually, both O(L) and O<ω(L) are

strongly projectable.

We recall first the definitions of projectability and strong projectability for arbitrary

e-cyclic residuated lattices. Remember that we have two pair of notions of projectability,

corresponding to the respective lattice-theoretical and structural characterizations of

projectability for `-groups:

Definition 3.24. An e-cyclic residuated lattice L is ∨-projectable if every principal polar

is a complemented element of C(L). That is, for all a ∈ L,

L = a⊥ ∨C(L) a⊥⊥.

It is called strongly ∨-projectable if for every convex subalgebra H ∈ C(L),

L = H⊥ ∨C(L) H⊥⊥.

An L is �-projectable if for every a ∈ L,

L = a⊥ � a⊥⊥.

It is called strongly �-projectable if for every convex subalgebra H ∈ C(L),

L = H⊥ � H⊥⊥.

Lastly, L is said to be (�-) ∨-orthocomplete if it is both laterally complete and strongly (�-)

∨-projectable.

Recall that L = B�C means that L is the internal cardinal product of the subalgebars

B and C, i.e. every a ∈ L can be written uniquely as a product bc, for some b ∈ B and

some c ∈ C, and moreover, a1 = b1c1 6L b2c2 = a2 if and only if b1 6B b2 and c1 6C c2.
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Remark 3.25. It is easy to see that (strong) �-projectability implies (strong) ∨-projectability,

since for every H, K ∈ C(L), H � K ⊆ H ∨C(L) K. Therefore, sometimes we will drop the

prefix ‘�-’ and say that L is projectable, instead of �-projectable. Also, notice that L is strongly

∨-projectable if and only if the Boolean algebra of polars Pol(L) is a sublattice of C(L), that is

C(L) is a Stonean lattice.6

In what follows, given an e-cyclic semilinear residuated lattice L and S ⊆ O(L), we

denote by S∗ the polar of S in O(L).
We start by describing the principal polars of O(L) in terms of the support of the

canonical proxies. More specifically, given two elements p, q ∈ O(L), we will character-

ize when q ∈ p∗ and when q ∈ p∗∗ in terms of the supports of suitable proxies of p and

q, what will be very useful to prove the projectability of O(L).

Lemma 3.26. Let L be an e-cyclic semilinear residuated lattice, and let p, q < e be elements of

O(L). Further, let x, y be canonical proxies of p, q at a partition C.

(i) Supp(y) ⊆ C \ Supp(x) if and only if q ∈ p∗; and

(ii) Supp(y) ⊆ Supp(x) if and only if q ∈ p∗∗.

Proof.

(i) This is an immediate consequence of Lemma 3.20. By the canonicity of x and y,

p and q are disjoint if and only if Supp(x) ∪ Supp(y) is disjoint, which is equivalent to

Supp(y) ⊆ C \ Supp(x).

(ii) Suppose that Supp(y) ⊆ Supp(x) and let r ∈ O(L) be disjoint to p, that is,

r ∈ p∗. (Without loss of generality, we can assume that r is negative.) Consider z to be

a canonical proxy of r at some partition B. We have that Supp(x) ∪ Supp(z) is disjoint

by Lemma 3.20. But then, Supp(y) ⊆ Supp(x) implies that Supp(y) ∪ Supp(z) is also

disjoint, and therefore q and r are disjoint. Since r ∈ p∗ is arbitrary, we obtain that

q ∈ p∗∗.

For the other implication, suppose that there exists C0 ∈ Supp(y) such that C0 /∈
Supp(x). We define z = ([zC]C⊥ : C ∈ C) in LC in the following manner:

zC =

yC0 if C = C0,

e otherwise,

and take r = φC(z). Clearly, z is a canonical proxy of r and furthermore q 6 r < e, and

therefore q is not disjoint to r. But, Supp(z) = {C0} ⊆ C \ Supp(x), and hence r ∈ p∗,

by (i). Therefore, q /∈ p∗∗.

6See Section 1.6.
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The idea behind the proof of the projectability of O(L) is to observe that, if x is a

canonical proxy of a generic element p at some partition C, then LC can be decomposed

as follows:

LC = ∏
C∈C\Supp(x)

L/C⊥ × ∏
C∈Supp(x)

L/C⊥.

Thus, for any element q ∈ O(L) with a proxy y in LC , we can construct two elements

y1, y2 ∈ LC , using the aforementioned decomposition of LC , in such a way that y =

y1 · y2. By construction, y1 and y2 will be proxies of elements q1, q2 ∈ O(L) such that

q1 ∈ p∗ and q2 ∈ p∗∗.

Theorem 3.27. If L is an e-cyclic semilinear residuated lattice, then O(L) is �-projectable.

Proof. Let p, q ∈ O(L) be arbitrary elements. Consider a partition C that has canonical

proxies x and y for p and q, respectively. Let us define z = ([zC]C⊥ : C ∈ C) and

t = ([tC]C⊥ : C ∈ C) in LC as follows:

zC =

e if C ∈ Supp(x),

yC otherwise
tC =

yC if C ∈ Supp(x),

e otherwise

Set q1 = φC(z) and q2 = φC(t). Then, obviously, z and t are canonical,

q = φC(y) = φC(z · t) = φC(z) · φC(t) = q1 · q2,

Supp(z) ⊆ C \ Supp(x), and Supp(t) ⊆ Supp(x). It follows, by virtue of Lemma 3.26,

that q1 ∈ p∗ and q2 ∈ p∗∗, as was to be proved.

In order to establish the uniqueness of the the decomposition of q as a product of an

element in p∗ and an element in p∗∗, suppose that we have two such decompositions:

q1 · q2 = q = q′1 · q′2.

Let C be a partition that contains canonical proxies x, y, z, t, z′, and t′ for the elements

p, q1, q2, q′1, and q′2, respectively. Hence, z · t = y = z′ · t′, because proxies are unique

at each partition. Note that, since q1, q′1 ∈ p∗, for every C ∈ Supp(x), [zC]C⊥ = [e]C⊥ =

[z′C]C⊥ , by Lemma 3.26. And analogously, for every C ∈ C \ Supp(x), [tC]C⊥ = [e]C⊥ =

[t′C]C⊥ , since q2, q′2 ∈ p∗∗, and therefore:

[zC]C⊥ = [zC]C⊥ · [e]C⊥ = [zC]C⊥ · [tC]C⊥ = [yC]C⊥ = [z′C]C⊥ · [t′C]C⊥

= [z′C]C⊥ · [e]C⊥ = [z′C]C⊥ .

Hence, z = z′. Analogously, t = t′, and therefore q1 = q′1 and q2 = q′2.
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Lastly, we have to prove that if q1 · q2 6 q′1 · q′2, with q1, q′1 ∈ p∗ and q2, q′2 ∈ p∗∗,

then q1 6 q′1 and q2 6 q′2. Arguing as and retaining the notations of the preceding

paragraph, we can show that t 6 t′ and z 6 z′ in C. Hence q1 6 q′1 and q2 6 q′2 in

O(L).

Thus, we obtain the result that we announced:

Corollary 3.28. Every e-cyclic semilinear residuated lattice L is densely embeddable in a pro-

jectable residuated lattice that belongs to the variety generated by L.

Proof. It is an immediate consequence of Theorems 3.14 and 3.27, and the fact that O(L)
is a direct limit of products of quotients of L.

Given an e-cyclic semilinear residuated lattice, we denote by D<ω(L) the set of all

finite partitions of Pol(L). If C,D ∈ D<ω(L), then the refinement of C and D is also

finite (see Equation (3.1)), and thus the set D<ω(L) is also a directed set. Let O<ω(L)

denote the direct limit of the directed system
{

φCA : LC → LA : C 4 A in D<ω(L)
}

.

Notice that, since D<ω(L) is a subposet of D(L), then O<ω(L) is embeddable in O(L).
We note that the only point in the previous section where the use of infinite par-

titions was needed was in the proof of the lateral completeness of O(L), since the set

{pλ : λ ∈ Λ} chosen at the beginning of the proof could be infinite, in which case the

partition E constructed in the proof could be infinite. Thus, all we proved for O(L)
is also true for O<ω(L), except for Theorem 3.21. Lemma 3.26 is also true if we take

p, q ∈ O<ω(L). Therefore, we also have the following result.

Theorem 3.29. If L is an e-cyclic semilinear residuated lattice, then L can be densely embedded

in O<ω(L), which is projectable and belongs to the variety generated by L.

We can actually improve Theorem 3.27. Indeed, we can prove that both O(L) and

O<ω(L) are strongly projectable. But first, we need a description of all the polars of

O(L) (and O<ω(L)) in terms of the supports of the elements. Given a set X ⊆ L, we

will abuse the notation and write X∗ for (φ(X))∗. This is harmless, since all we are

doing is identifying elements of L with their images inside O(L). (See Theorem 3.14.)

Lemma 3.30. Let L be an e-cyclic semilinear residuated lattice, A ∈ Pol(L), and p ∈ O(L).
Consider a partition C such that it is a refinement of the partition {A, A⊥} and LC contains a

canonical proxy x of p. Then:

1. p ∈ A∗ if and only if every C ∈ Supp(x) satisfies C ⊆ A⊥.

2. p ∈ A∗∗ if and only if every C ∈ Supp(x) satisfies C ⊆ A.
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Proof. Notice that, without loss of generality, we can choose p < eO(L), and also that

for every C ∈ C there are only two mutually exclusive possibilities: C ⊆ A or C ⊆ A⊥.

Consider an element a ∈ A− and its image a = φ(a) inside O(L). Thus, a has proxies

in every partition, and in particular in C: aC = ([a]C⊥ : C ∈ C). Since a ∈ A, for every

C ∈ C such that C ⊆ A⊥, we have that a⊥⊥ ∩ C = {e}, and hence [a]C⊥ = [e]C⊥ . We can

proceed now to the prove of the statements:

(i) (⇐) If for every C ∈ Supp(x), C ⊆ A⊥, then for every C ∈ C, we have:

[xC]C⊥ ∨ [a]C⊥ =

[e]C⊥ ∨ [a]C⊥ if C ⊆ A

[xC]C⊥ ∨ [e]C⊥ if C ⊆ A⊥
= [e]C⊥ .

Therefore, x and aC are disjoint, whence p and a are disjoint too. Since a ∈ A− was

arbitrary, we have proved that p ∈ A∗.

(⇒) Suppose that there is C ∈ Supp(x) such that C ⊆ A, and consider a ∈ C, a < e.

By the canonicity of x and our choice of C, we have that a⊥⊥ ⊆ C ⊆ x⊥⊥C ∩ A, and hence

(a ∨ xC)
⊥⊥ ∩ C = a⊥⊥ ∩ x⊥⊥C ∩ C = a⊥⊥ 6= {e}.

Therefore, x and aC are not disjoint, and thus p and a are not disjoint either. Since

a ∈ A, we have obtained that p /∈ A∗.

(ii) Is a consequence of (i) and the fact that A⊥∗ = A∗∗.

Now we can prove the strong projectability of O(L).

Theorem 3.31. Let L be an e-cyclic semilinear residuated lattice. Then O(L) is strongly �-pro-

jectable.

Proof. Let B ∈ Pol(O(L)) be an arbitrary polar, and A = {a ∈ L : a ∈ B}. It can be

shown that A ∈ Pol(L) and B = A∗∗. (See Proposition 3.42.) Let p ∈ O(L) and C a

partition of L such that it refines {A, A⊥} and p has a canonical proxy in LC . We define,

for every C ∈ C:

zC =

e if C ⊆ A⊥,

xC if C ⊆ A,
tC =

xC if C ⊆ A⊥,

e if C ⊆ A.

Thus, taking z = ([zC]C⊥ : C ∈ C), t = ([tC]C⊥ : C ∈ C), we can easily see that both z

and t are canonical and zt = x. Thus, if q1 = φC(z) and q2 = φC(t), we have

p = φC(x) = φC(z · t) = φC(z) · φC(t) = q1 · q2.

Moreover, in view of Lemma 3.30, q1 ∈ A∗∗ = B and q2 ∈ A∗ = B∗. The proofs

of the uniqueness and other properties of q1 and q2 go along the same lines of the

corresponding ones the proof of Theorem 3.27.
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We readily obtain the following results:

Corollary 3.32. If L is an e-cyclic semilinear residuated lattice, then O(L) is �-orthocomplete.

Proof. It is an immediate consequence of Theorems 3.21 and 3.31.

Corollary 3.33. Every e-cyclic semilinear residuated lattice L is densely embeddable in a �-or-

thocomplete lattice that belongs to the variety generated by L.

Proof. It is an immediate consequence of Theorem 3.14 and Corollary 3.32.

To end this section, we notice that in the proofs of the results leading to Theo-

rem 3.31, we need not assume at any time that the partitions had to be infinite. Thus,

the proofs work as they are even if we restricts ourselves to finite partitions. Whence,

we obtain the following improvement of Theorem 3.29:

Theorem 3.34. If L is an e-cyclic semilinear residuated lattice, then L can be densely embedded

in O<ω(L), which is strongly �-projectable and belongs to the variety generated by L.

3.6 Laterally Complete Hulls and Projectable Hulls

We have seen that every e-cyclic semilinear residuated lattice L can be densely em-

bedded in a residuated lattice that is simultaneously laterally complete and strongly

projectable. But, we cannot assure that there is an extension of L which is minimal with

respect to any of those properties, in the sense of the following definition.

Definition 3.35. A laterally complete hull of a residuated lattice L is a laterally complete

residuated lattice H containing L as subalgebra, such that (i) no proper subalgebra of

H containing L is laterally complete; and (ii) L is dense in H.

In order to obtain the existence of laterally complete hulls, we have to restrict our-

selves to the varieties of GMV algebras. Recall from section 1.2 that the variety GMV of

GMV algebras is a very important variety of residuated lattices, which includes MV al-

gebras (the equivalent algebraic semantics of Łukasievic’s infinite valued logic) as well

as `-groups. Many and very interesting properties have been shown for this variety. We

start by recalling some of them that we will need to prove our results.

Definition 3.36. A residuated lattice is a GMV algebra if it satisfies the equations:

x/((x ∨ y)\x) ≈ x ∨ y ≈ (x/(x ∨ y))\x. (GMV)

Or equivalently, the equations:

x/(y\x ∧ e) ≈ x ∨ y ≈ (x/y ∧ e)\x. (GMV’)
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The conditions of the next lemma will be used in the sequel without explicit refer-

ence.

Lemma 3.37. [41, Lemmas 2.7, 2.9 and Theorem 5.2] Every GMV algebra

1. satisfies the identities x/x ≈ e ≈ x\x;

2. is e-cyclic;

3. has a distributive lattice reduct; and

4. satisfies both prelinearity laws (LP) and (LP).7

Combining Lemma 3.37 with Theorem 1.13, we obtain:

Proposition 3.38. A variety V of GMV algebras is semilinear if and only if for every L ∈ V ,

all (principal) polars in L are normal.

We are going to prove that, given a GMV algebra L, O(L) contains a minimal subal-

gebra containing L which is laterally complete, namely, the intersection of all laterally

complete subalgebras of O(L) containing L. Of course, in each one of these subalgebas,

every set of disjoint elements will have an infimum. But, in order to show that the in-

tersection of all of them is laterally complete, we have to make sure that every disjoint

set of the intersection will have the same infimum in all of the subalgebras. This is what

we prove in the next lemma.

Lemma 3.39. Let L be a dense subalgebra of a GMV algebra H. For any subset X of L−, if∧L X exists, then so does
∧H X and they are equal.

Proof. Let a =
∧L X. Then, a is a lower bound of X in L, and therefore in H. Suppose

that b is a lower bound of X in H. Then clearly a 6 a ∨ b 6 e, since all elements of X

are negative, and therefore a = e\a 6 (a ∨ b)\a 6 a\a = e.

Suppose that (a ∨ b)\a < e. Then by the density of L in H, there exists a c ∈ L such

that

a 6 (a ∨ b)\a 6 c < e.

Hence, a/c 6 a/((a∨ b)\a) = a∨ b, and therefore a/c is a lower bound of X. Now, since

a/c ∈ L, we obtain a/c 6
∧L X = a. Whence e = a\a 6 (a/c)\a = (a/c ∧ e)\a = a ∨ c,

since a/c is negative. But a 6 c, and therefore c = a ∨ c = e, against the choice of

c < e. Therefore, (a ∨ b)\a = e, which implies b 6 a ∨ b 6 a. Since b is an arbitrary

lower bound of X in H, we deduce that
∧H X exists and

∧H X = a, as we wanted to

prove.

7See section 1.8.
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Corollary 3.40. If H is a GMV algebra and {Li : i ∈ I} is a nonempty family of subalgebras

of H that are laterally complete and dense in H, then
⋂

I Li is laterally complete.

Proof. Let L =
⋂

I Li. In order to prove that L is laterally complete, suppose that X ⊆ L−

is a disjoint subset. Then, for every i ∈ I, X ⊆ B−i , and therefore
∧Bi X exists. Since Li

is dense in H, by Lemma 3.39,
∧H X exists and

∧H X =
∧Li X ∈ Li. Thus,

∧H X is in

every Li, and hence
∧L X exists and coincides with

∧H X.

We could prove already that every GMV algebra has a laterally complete hull inside

O(L). But we also want to prove that this is unique up to isomorphism. In order to do

so, we first have to study what is the relation between the polars of L and the polars

of O(L). Indeed, we will see that the Boolean algebras of polars of L and O(L) are

isomorphic. But actually, the only property we really need to prove that is that L is

densely embeddable in O(L). So, we will prove it for any pair of algebras L and H

such that L is densely embeddable in H.

Let L, H be e-cyclic residuated lattices such that L is a subalgebra of H. Define the

order-homomorphisms µ : C(L) → C(H) and ν : C(H) → C(L) as follows: for all

A ∈ C(L) and B ∈ C(H), µ(A) = CH[A], the convex subalgebra of H generated by A,

and ν(B) = B ∩ L. We first note that (µ, ν) is an adjunction, since for all A ∈ C(L) and

every B ∈ C(H),

A ⊆ ν(B) ⇔ A ⊆ B ∩ L ⇔ A ⊆ B ⇔ CH[A] ⊆ B ⇔ µ(A) ⊆ B.

Furthermore, ν is surjective, and hence µ is injective. Indeed, let A ∈ C(L) and let

S = {h : h ∈ H, a 6 h 6 e, for some a ∈ A}. If B = CH[S], then S = B− (see

Lemma 1.4) and ν(B) = B ∩ L = A. Lastly, µ preserves finite meets since for every

A1, A2 ∈ C(L) and every x ∈ CH[A1] ∩ CH[A2], if x 6 e then there are ai ∈ Ai such

that ai 6 x, for i = 1, 2, and therefore a1 ∨ a2 6 x 6 e, whence x ∈ CH[A1 ∩ A2], and

the other inclusion is trivial. Thus, µ is an injective lattice homomorphism preserving

arbitrary joins.

When an e-cyclic residuated lattice H is an extension of L, we use ( )∗ to denote the

polars of H and ( )⊥ to denote those of L. In the event L is dense in H, we can say more

about the adjunction (µ, ν):

Lemma 3.41. Let L and H be two e-cyclic residuated lattices such that L is a dense subalgebra

of H. The following hold with respect to the adjunction (µ, ν) defined above:

(i) For every B ∈ C(H), B∗ = (µν(B))∗.

(ii) For every A ∈ C(L), ν(µ(A)∗) = (νµ(A))⊥.
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(iii) The map ν preserves pseudo-complements, that is, for every B ∈ C(H), ν(B∗) = ν(B)⊥.

Proof.

(i) Let B ∈ C(H). We need to show that B∗ = (µν(B))∗. For the left-to-right inclusion,

notice that µν(B) ∩ B∗ ⊆ B ∩ B∗ = {e}, and so B∗ ⊆ (µν(B))∗. For the other inclusion,

suppose that D ∈ C(H) is such that µν(B) ∩ D = {e}. Then,

{e} = ν(µν(B) ∩ D) = νµν(B) ∩ ν(D) = ν(B) ∩ ν(D) = ν(B ∩ D) = (B ∩ D) ∩ L.

Since L is dense in H, we have that B∩D = {e}, whence D ⊆ B∗. Therefore, (µν(B))∗ ⊆
B∗.

(ii) Let A ∈ C(L). We need to prove that ν(µ(A)∗) = (νµ(A))⊥. One inclusion is just

the observation that ν(µ(A)∗) ∩ ν(µ(A)) = ν(µ(A)∗ ∩ µ(A)) = ν({e}) = {e}, whence

ν(µ(A)∗) ⊆ (νµ(A))⊥. For the other inclusion, suppose that D ∈ C(L) is such that

νµ(A) ∩ D = {e}. Then, µ(A) ∩ µ(D) = µνµ(A) ∩ µ(D) = µ(νµ(A) ∩ D) = µ({e}) =
{e}, and hence µ(D) ⊆ µ(A)∗. Since ν is onto, we have D = νµ(D) ⊆ ν(µ(A)∗).

(iii) Let B ∈ C(H). We have in view of the preceding discussion that ν(B∗) =

ν((µν(B))∗) = (ν(µν(B)))⊥ = ν(B)⊥, as we wanted to prove.

The reason why we introduced the adjunction (µ, ν) is because we want to prove

that, provided L is dense in H, where L and H are e-cyclic semilinear residuated lattices,

the Boolean algebras of polars of L and H are isomorphic. This will allow us to define

an isomorphisms between the directed sets of partitions, which ultimately we will use

to define an embedding from O(L) into O(H), in Proposition 3.44.

Proposition 3.42. If L is a dense subalgebra of an e-cyclic residuated lattice H, then the Boolean

algebras Pol(L) and Pol(H) are isomorphic.

Proof. In light of Lemma 3.41.(ii), ν(B) ∈ Pol(L), for each B ∈ Pol(H). Let ν̂ : Pol(H)→
Pol(L) be defined by ν̂(B) = ν(B), for all B ∈ Pol(H). Note that ν̂ is surjective, since ν

is surjective and preserves pseudocomplements. We claim that µ̂ : Pol(L) → Pol(H),

defined by µ̂(A) = (µ(A⊥))∗ is the left adjoint of ν̂. Note first that if A ∈ Pol(L),

there exists C ∈ Pol(H) such that A = ν(C). Then, by invoking both conditions of

Lemma 3.41, we get µ̂(A) = (µ(A⊥))∗ = (µ(ν(C)⊥))∗ = (µν(C∗))∗ = C∗∗ = C.

Now let A ∈ Pol(L) and B ∈ Pol(H). We need to prove that µ̂(A) ⊆ B if and only

if A ⊆ ν̂(B). Suppose first that µ̂(A) ⊆ B and let C ∈ Pol(H) such that A = ν(C).

Then C ⊆ B, and so A = ν(C) ⊆ B. On the other hand, if A ⊆ B, then ν(B)⊥ ⊆ A⊥,

which, combined with Lemma 3.41.(iii), implies that µν(B∗) ⊆ µ(A⊥). Then another

application of Lemma 3.41.(ii) yields µ̂(A) = (µ(A⊥))∗ ⊆ (µν(B∗))∗ = B∗∗ = B. We
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have verified that (µ̂, ν̂) is an adjunction, and hence, in particular, that µ̂ is injective.

Lastly, µ̂ is surjective, since for B ∈ Pol(H), µ̂(ν(B)) = (µ(ν(B)⊥))∗ = B∗∗ = B (with

the equalities been direct consequences of Lemma 3.41). We have shown that µ̂ is a

lattice (and hence a Boolean) isomorphism with inverse ν̂.

Corollary 3.43. If L is a dense subalgebra of an e-cyclic residuated lattice H, the map

C 7→ C = {µ̂(C) : C ∈ C}

is an order isomorphism from the join-semilattice 〈D(L),4〉 of partitions of Pol(L) to the the

join-semilattice 〈D(H),4〉 of partitions of Pol(H).

Proof. Using the fact that µ̂ : Pol(L) → Pol(H) and ν̂ : Pol(H) → Pol(L) are isomor-

phisms, and Lemma 3.2, it is easy to see that the map is well defined, and actually a

bijection. If C 4 A, and E ∈ A, then there exists a unique A ∈ A such that µ̂(A) = E,

and a unique C ∈ C such that A ⊆ C. Therefore E = µ̂(A) ⊆ µ̂(C) ∈ C, and it is

straightforward that µ̂(C) is the only element of C containing E. That is, C 4 A.

Proposition 3.44. Let L be a dense subalgebra of an e-cyclic residuated lattice H, and let

α : L → O(L), β : H → O(H) be the canonical embeddings. Then there is an embedding

τ : O(L)→ O(H) rendering commutative the following diagram:

H O(H)

L O(L)

β

α

i τ (3.8)

Proof. By Proposition 3.42, there exists an isomorphism µ̂ : Pol(L) → Pol(H), with

inverse ν̂. If C ∈ Pol(L), then the assignment fC⊥ : L/C⊥ → H/µ̂(C)∗ – defined by

f C⊥([a]C⊥) = [a]µ̂(C)∗ , for all a ∈ L – is an injective homomorphism. Indeed, just note

that µ̂(C)∗ ∩ L = µ̂(C⊥) ∩ L = ν̂µ̂(C⊥) = C⊥. This produces the family of homomor-

phisms { fC⊥πC⊥ : LC → Hµ̂(C)∗ : C ∈ C}. Therefore, recalling that C = {µ̂(C) : C ∈ C},
the co-universal property of the product HC̄ induces a homomorphism τC : LC → HC
such that πµ̂(C)∗ τC = fC⊥πC⊥ , for all C ∈ C. Note that, for every x = ([xC]C⊥ : C ∈ C) in

LC , τC(x) = ([xC]µ̂(C)∗ : µ̂(C) ∈ C). Further, τC is an embedding, since each fC⊥ , C ∈ C,

is an embedding.

It can be readily seen that for every C 4 A in D(L), C 4 A (by Corollary 3.43), and
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the bottom square of the following diagram commutes:

O(L) O(H)

LC HC

LA HA

τ

τC

φCA

φC

φC A

φC

τA

φA φA

Therefore there exists a unique τ rendering the whole diagram commutative. Further-

more, τ is an embedding, since if p, q ∈ O(L) are such that τ(p) = τ(q), and x, y are

proxies of p, q at C, then φCτC(x) = τ(φC(x)) = τ(p) = τ(q) = τ(φC(y)) = φCτC(y).

The equality φCτC(x) = φCτC(y) shows that τC(x) and τC(y) are proxies of τ(p) in C. It

follows that τC(x) = τC(y), and hence x = y by the injectivity of τC .

Finally, taking α and β the embeddings of L and H into O(L) and O(H), respec-

tively, we readily see that the following diagram commutes, where i is the inclusion of

L into H:

H H{H} O(H)

L L{L} O(L)

∼=

β

φ{H}

∼=

α

i
φ{L}

τ{L} τ

Now we have all we need to prove one of the main results of this section, namely

that every GMV algebra possesses a laterally complete hull, which is unique up to

isomorphism.

Theorem 3.45. Any semilinear GMV algebra L has a unique, up to isomorphism, semilinear

laterally complete hull that belongs to the variety generated by L.

Proof. Let L be a semilinear GMV algebra. In view of Theorems 3.14 and 3.21, O(L) is

laterally complete and the isomorphic copy α[L] of L under the canonical embedding

α : L→ O(L) is a dense subalgebra of O(L). It is clear that any subalgebra of O(L) that

contains α[L] is a dense subalgebra. Let K be the intersection of all (necessarily dense)

subalgebras of O(L) that are laterally complete and contain α[L]. Hence, K is laterally

complete by Corollary 3.40. Further, O(L) belongs to the variety generated by L, and

so does K, being a subalgebra of O(L). Combining these facts, we conclude that L has

a laterally complete hull K that belongs to the variety generated by L. In particular, it

is a GMV algebra.
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Suppose that H is another algebra that belongs to the variety generated by L and

is a laterally complete hull of L. Hence, it is a GMV algebra and we can apply Propo-

sition 3.44 to find an embedding τ that renders Diagram (3.8) commutative. Note

that, since L is dense in H and β is a dense embedding, we have that β[L] is dense

in O(H). Hence τ[O(L)] is dense in O(H), since β[L] = τα[L] 6 τ[O(L)] 6 O(H).

Therefore, τ[O(L)] and β[H] are both laterally complete and dense in O(H), and hence

τ[O(L)] ∩ β[H] is laterally complete by Corollary 3.40. Therefore, β[H] ∩ τ[O(L)] =
β[H], since β[H] is a laterally complete hull of β[L], and β[H] ∩ τ[O(L)] is a lateral

complete subalgebra of β[H] containing β[L]. Thus, β[H] 6 τ[O(L)], and we can take

H′ = τ−1β[H] 6 O(L). Then, α[L] = τ−1β[L] 6 H′ and H′ is laterally complete, and

therefore K 6 H′. But, since H is a laterally complete hull of L, then H′ is a laterally

complete hull of α[L], and therefore H′ = K. Hence, H ∼= K.

We proceed now to prove that every polar of a laterally complete GMV algebra is

principal. The idea of the proof is the following: we prove that (i) the polar of a set of

negative elements of a GMV algebra coincides with the polar of its infimum, in case it

exits; (ii) if X is a maximal disjoint subset of a polar C, then C = X⊥⊥; and (iii) every

polar contains a maximal disjoint set. We will prove this results in a series of lemmas,

which we will use to prove finally that any laterally complete projectable GMV algebra

is strongly projectable, which is the content of Propostion 3.50.

First, we start with a characterization of the disjointness in GMV algebras:

Lemma 3.46. If A is a GMV algebra and a, b ∈ A−, then a ∨ b = e if and only if a\b ∧ e = b.

Proof. First note that a\b ∧ e = a\b ∧ b\b = (a ∨ b)\b. Therefore, if a ∨ b = e, then

a\b ∧ e = (a ∨ b)\b = e\b = b. Conversely, if a\b ∧ e = b, then a ∨ b = b/((a ∨ b)\b) =
b/((a\b) ∧ (b\b)) = b/((a\b) ∧ e) = b/b = e.

Lemma 3.47. Let A is a GMV algebra and let X ⊆ A− such that
∧

X = a exists. Then

X⊥ = a⊥.

Proof. Obviously, if |y| ∨ a = e, then for every x ∈ X, |y| ∨ x = e, since a 6 x 6 e. Thus,

by Equation (1.2), a⊥ ⊆ X⊥. In order to prove the other inclusion, let us suppose that

y ∈ X⊥. Then, again by Equation (1.2), |y| ∨ x = e, for all x ∈ X, and so, |y|\x ∧ e = x

by Lemma 3.46. Hence

|y|\a ∧ e =
(
|y|\

∧
X
)
∧ e =

(∧
x∈X

(|y|\x)
)
∧ e =

∧
x∈X

(
(|y|\x) ∧ e

)
=
∧

x∈X

x = a,

which implies, again by Lemma 3.46, that |y| ∨ a = e. Thus X⊥ ⊆ a⊥, by Equation (1.2).
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Lemma 3.48. Let L be an e-cyclic residuated lattice, C a polar of L, and X a maximal disjoint

subset of the residuated lattice C. Then C = X⊥⊥ in C(L).

Proof. Since X is a maximal disjoint subset of C, C ∩ X⊥ = {e}, and so C ⊆ X⊥⊥. Then

C⊥ ∨ X⊥⊥ = L, where the join ∨ is taken in the Boolean algebra of polars. On the other

hand, X ⊆ C implies that X⊥⊥ ⊆ C⊥⊥ = C. Thus C = X⊥⊥ as was to be shown.

Lemma 3.49. If A is an e-cyclic residuated lattice, then every polar of L contains a maximal

disjoint subset.

Proof. The proof is an standard application of the Zorn Lemma. If C is a polar of L, we

consider the poset X of all disjoint subsets of C ordered by inclusion. Then, the union

of every chain of X is obviously disjoint, and therefore, by Zorn Lemma, X possesses

a maximal element. If X is a such an element, then X⊥ ∩ C = {e}, because otherwise

there would be some a ∈ C ∩ X⊥ and a < e disjoint to all the elements of X. But then

X ∪ {a} would be in X , contradicting the maximality of X.

Proposition 3.50. If a GMV algebra is laterally complete and (�-) ∨-projectable, then it is (�-)

∨-orthocomplete.

Proof. Let L a laterally complete and projectable GMV algebra. We need to prove that L

is strongly projectable. Let C be a polar of A, and X ⊆ C a maximal disjoint subset of C.

Since A is laterally complete, the meet a =
∧A X exists, and by virtue of Lemmas 3.47

and 3.48, C = X⊥⊥ = a⊥⊥, whence the result follows.

To end this section and chapter, we prove that every e-cyclic semilinear residuated

lattice possesses minimal extensions that are �-projectable and strongly �-projectable,

respectively (not necessarily minimal with respect to (strongly) ∨-projectablility), and

every GMV algebra possesses a minimal �-orthocomplete extension, according to the

following definitions. Moreover, these extensions are are unique up to isomorphisms.

Definition 3.51. A (strongly) (�-) ∨-projectable hull of a residuated lattice L is a (strongly)

(�-) ∨-projectable residuated lattice H containing L as subalgebra, such that (i) no proper

subalgebra of H containing L is (strongly) (�-) ∨-projectable; and (ii) L is dense in H.

Analogously, we define an (�-) ∨-orthocomplete hull of a residuated lattice.

In order to prove our final results, we first show that �-projectability and strong

�-projectability are properties that are preserved under intersection of subalgebras:

Lemma 3.52. Let A be a (strongly) �-projectable e-cyclic residuated lattice, B a dense subalgebra

of A, and {Hi : i ∈ I} a family of (strongly) �-projectable subalgebras of A that contain B.

Then, H =
⋂

i∈I Hi is (strongly) �-projectable.
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Proof. To begin with, notice that since for every i ∈ I, B ⊆ Hi and B is dense in A, then

so are Hi, for every i ∈ I, and H =
⋂

i∈I Hi.

Fix an arbitrary i ∈ I. Since Hi is a dense subalgebra of A, ν̂i : Pol(A) → Pol(Hi)

determined by ν̂i(F) = F ∩ Hi is an isomorphism of Boolean algebras, by virtue of

Theorem 3.42. Obviously, if X ⊆ Hi, we have that ν̂i(X⊥
A
) = X⊥

A ∩ Hi = X⊥
Hi , even

though X is not a polar. Therefore, X⊥
A⊥A ∩ Hi = ν̂i(X⊥

A⊥A
) = ν̂i(X⊥

A
)⊥

Hi = X⊥
H
i ⊥

Hi .

We consider an arbitrary element h ∈ H and will see that H = h⊥
H
� h⊥

H⊥H
, the

case of strong �-projectability being entirely analogous. Every x ∈ H admits a unique

decomposition x = x1x2 as an element of Hi = h⊥
Hi � h⊥

Hi⊥Hi , since Hi is �-projectable.

But, h⊥
Hi = h⊥

A ∩ Hi and h⊥
Hi⊥Hi = h⊥

A⊥A ∩ Hi, as we mentioned before. Therefore,

x = x1x2 is the unique decomposition of x in A = h⊥
A
� h⊥

A⊥A
.

Since i ∈ I was arbitrarily chosen, then all the decompositions of x as an element

of Hi = h⊥
Hi � h⊥

Hi⊥Hi , for every i ∈ I, actually coincide among them, as they coincide

with the decomposition of x as an element of A = h⊥
A
� h⊥

A⊥A
, whence x1, x2 ∈ H =⋂

I Hi. Therefore, x1 ∈ h⊥
A ∩ H = h⊥

H
, and x2 ∈ h⊥

A⊥A ∩ H = h⊥
H⊥H

. It is also obvious

now that if x = x1x2 and y = y1y2 are unique decompositions of x and y as elements of

H = h⊥
H
� h⊥

H⊥H
, then x 6 y if and only if x1 6 y1 and x2 6 y2.

Theorem 3.53. Every e-cyclic semilinear residuated lattice L has a strongly �-projectable hull

and a �-projectable hull in the variety generated by L; and every semilinear GMV algebra L has

laterally complete hull an �-orthocomplete hull in the variety generated by L.

Proof. By Theorem 3.29, if L is an e-cyclic semilinear residuated lattice, then it can be

densely embedded in the strongly �-projectable residuated lattice O<ω(L). Therefore,

by Lemma 3.52, L has a �-projectable hull and a strongly �-projectable hull, which are

the intersection of all the (strongly) �-projectable subalgebras of O<ω(L) containing L.

If moreover L is a GMV algebra, then in view of Corollary 3.33 L is densely embed-

dable in an �-orthocompete GMV algebra, namely O(L). Therefore, by Corollary 3.40

and Lemma 3.52, L has an �-orthocomplete hull, which is the intersection of all the

�-orthocomplte subalgebras of O(L) containing L.

An argument similar to the one in the proof of Theorem 3.45 shows that these hulls

are unique up to isomorphism.

To end this section, and the chapter, we provide a description of the strongly �-pro-

jectable hull of an e-cyclic semilinear residuated lattice L. Indeed, we can show that it

is nothing else but O<ω(L) ! Notice that this also proves that the strongly �-projectable

hull of L is unique, up to isomorphisms. We prove a technical lemma first.
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Lemma 3.54. If C = {C1, . . . , Cn} is a partition of a �-projectable residuated lattice H, and

ai ∈ Ci, for i = 1, . . . , n, are such that a1 · · · an = e, then for all i, ai = e.

Proof. We proceed by induction in n. If n = 1, there is nothing to prove. Suppose then

that n > 1. Since C is a partition and ai ∈ Ci, we have that for every i 6= j, ai ∈ C⊥j .

Therefore,

e = a1 · · · an = a1 · (a2 · · · an) ∈ C1� C⊥1 ,

whence we obtain that a1 = e and a2 · · · an = e. By the induction hypothesis, a2 = · · · =
an = e, as was to be proved.

Theorem 3.55. Let L be an e-cyclic semilinear residuated lattice. Then O<ω(L) is the strongly

�-projectable hull of L.

Proof. We only have to show that if L is densely embeddable in a strongly �-projectable

residuated lattice H (without loss of generality, we can assume that L is a subalgebra of

H), then O<ω(L) is also embeddable in H.

In order to do so, we start by defining for every C ∈ Pol(L) a homomorphism

fC : L → H, using the decomposition H = C∗ � C∗∗: for every x ∈ L, fC(x) = x1 is

the unique element of C∗ such that there is x2 ∈ C∗∗ such that x = x1 · x2. The map fC

is well defined and a homomorphism. We notice that if x ∈ C, then fC(x) = eH, and

hence C ⊆ ker fC, whence we obtain a homomorphism f̃C : L/C → H.

Consider now a partition C of L, and the map ψC : LC → H determined by:

ψC([x1]C⊥1
, . . . , [xn]C⊥n ) = f̃C⊥1

([x1]) · · · f̃C⊥n ([xn]).

ψC is trivially a homomorphism and moreover, it is injective by virtue of Lemma 3.54.

This defines a family {ψC : LC → H : C ∈ D<ω(L)} of injective homomorphisms, which

moreover is compatible with the system {φCA : C 4 A, C,A ∈ D<ω(L)}, in the sense

that for every C 4 A in D<ω(L), ψAφCA = ψC . Thus, there is a unique homomorphism

ψ : O<ω(L)→ L rendering commutative the diagram:

O<ω(L) H

LC

ψ

φC ψC

Since all the involved homomorphisms are injective, we have that ψC is an embedding

of O<ω(L) into H, as we wanted to prove.





Chapter 4

The Failure of the Amalgamation

Property

4.1 Introduction

The word “amalgamation” refers to the process of combining a pair of algebras in such

a way as to preserve a common subalgebra. This is made precise in the following

definitions. Let K be a class of algebras of the same signature. A V-formation in K
is a quintuple (A, B, C, i, j) where A, B, C ∈ K and i, j are embeddings of A into B, C,

respectively. Given a V-formation (A, B, C, i, j) in K, (D, h, k) is said to be an amalgam

of (A, B, C, i, j) in K if D ∈ K and h, k are embeddings of B, C, respectively, into D such

that the compositions hi and kj coincide:

C

A D

B

kj

i h

K has the amalgamation property (AP) if each V-formation in K has an amalgam in K.

Amalgamations were first considered for groups by Schreier [86] in the form of

amalgamated free products. The general form of the AP was first formulated by

Fraïsse [37], and the significance of this property to the study of algebraic systems was

further demonstrated in Jónsson’s pioneering work on the topic [54–58]. The added

interest in the AP for algebras of logic is due to its relationship with various syntac-

tic interpolation properties. We refer the reader to [71] for relevant references and an

extensive discussion of these relationships; see also [72] and [69].
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There are no results to date of non-commutative varieties of residuated lattices en-

joying the AP. The variety SemRL of semilinear1 residuated lattices, i.e., the variety

generated by all totally ordered residuated lattices, seems like a natural candidate for

enjoying this property, since most varieties that have a manageable representation the-

ory and satisfy the AP are semilinear. An indication that this may not be the case comes

from the fact that the variety RepLG of representable lattice-ordered groups fails the

AP.

Indeed, we devote this chapter to the study of the AP in the varieties SemRL and

SemCanRL of semilinear and cancellative semilinear residuated lattices, respectively.

One of the main results of this study is the following theorem:

Theorem A (See Theorem 4.8.). The varieties SemRL and SemCanRL fail the AP.

In addition, we prove that the much larger variety U of residuated lattices with

distributive lattice reduct and satisfying the identity x(y ∧ z)w ≈ xyw ∧ xzw also fails

the AP. In fact, we show that any subvariety of this variety fails the AP, as log as its

intersection with the variety of `-groups fails the AP.

Theorem B (See Theorem 4.7). Let V be a variety of residuated lattices satisfying the following

equations:

(1) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ w),

(2) x(y ∧ z)w ≈ xyw ∧ xzw.

If V ∩ LG fails the AP, then so does V .

There are two key ingredients in the proofs of these results. First, the fact that the

specific V-formations that demonstrate the failure of the AP for the variety RepLG of

representable lattice-ordered groups ([82], [11]; see Theorem 4.4 and [11, Theorem B])

also demonstrate its failure for SemRL and SemCanRL. The second key element in

the proofs is the fact that each algebra in these varieties has a representation in terms

of residuated maps of a chain ([78], [6]; see Lemma 4.5). In Section 4.3 we present parts

of the original proof of the failure of the AP for RepLG, while in Section 4.4 we prove

the main results of this chapter.

4.2 Basic Notions

In this section we briefly recall basic facts about the varieties of residuated lattices that

we will need throughout this chapter.

1Also referred as representable residuated lattices in the literature.
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As we mention in Section 1.2, an element a ∈ L is said to be invertible if (e/a)a =

e = a(a\e). This is of course true if and only if a has a (two-sided) inverse a−1, in which

case e/a = a−1 = a\e. The residuated lattices in which every element is invertible are

therefore precisely the `-groups.

The negative cone of a residuated lattice L is the residuated lattice whose universe is

the set L− = {x ∈ L : x 6 e}, and whose operations are the corresponding restrictions

of those of L, except for the residuals, which are given by:

x\−y = (x\y) ∧ e and y/−x = (y/x) ∧ e

where \ and / denote the residuals in L.

Given a class V of residuated lattices, we denote the class of the negative cones of

algebras of V by V−. We state the following result from [7, Theorem 7.1] for future

reference:

Lemma 4.1. If V is a variety of `-groups, then V− is a variety of residuated lattices. Moreover,

V and V− are isomorphic as categories.

Recall that the varieties of representable `-groups and semilinear residuated lattices,

denoted by RepLG and SemRL, respectively are the varieties generated by the totally

ordered structures. They can be axiomatized relative to LG and RL by either of the

equations:

λu((x ∨ y)\x) ∨ ρv((x ∨ y)\y) ≈ e, (SL1)

λu(x/(x ∨ y)) ∨ ρv(y/(x ∨ y)) ≈ e, (SL2)

which in the case of `-groups simplify to the single equation (x−1yx ∨ y−1) ∧ e ≈ e.

A residuated lattice L is cancellative if multiplication is cancellative, in the sense that

L satisfies the quasi-equations:

xz ≈ yz⇒ x ≈ y and zx ≈ zy⇒ x ≈ y.

Although defined by quasi-equations, the class CanRL of calculative residuated lattices

is actually a variety, as it is shown in [7] that a residuated lattice is cancellative if and

only if it satisfies the equations:

xy/y ≈ x ≈ y\yx. (Can)

Finally, recall the definition of a residuated map that we will need in Section 4.4.

Given two partially ordered sets P and Q, a map f : P → Q is residuated if there exists

a map f ∗ : Q → P such that for any a ∈ P and any b ∈ Q, f (a) 6Q b iff a 6P f ∗(b). In

this case, we say that f and f ∗ form a residuated pair, and that f ∗ is a residual of f . Recall

from Lemma 1.1 of Section 1.1 the basic properties of residuated maps.
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4.3 Failure of the AP for Representable `-groups

Our proof of the failure of the AP for SemRL extends the techniques used in [82] to

establish the failure of the AP in RepLG. We therefore start with a review of the latter.

Let us first note that, for every positive integer n, any representable `-group satisfies

the quasi-equation

xn = yn ⇒ x = y. (?)

The plan is to construct a V-formation (A, B, C, i, j) in RepLG, with A, B, C totally

ordered and i, j inclusions. For a given positive integer n, the `-groups A, B, and C

will contain elements a, b, c, respectively, such that bn = cn ∈ A, but ab = bab−1 and

ac = cac−1 are distinct elements of A. Therefore, the V-formation (A, B, C, i, j) cannot be

amalgamable in RepLG, since otherwise the amalgam would contain distinct elements

b and c such that bn = cn, falsifying (?).

To construct the V-formation in question, let us first consider a totally ordered

group A, its group of order-automorphisms of the underlying total order of A, and

α ∈ Aut(A) such that α 6= id. The cyclic extension of A by α is the totally ordered group

A(α) whose universe is

{(a, αn) : a ∈ A and n ∈ Z}

with operations defined by

(a, αm)(b, αn) = (aαm(b), αm+n),

and order2 defined by

(a, αn) 6 (b, αm) ⇔ n < m or n = m and a 6 b.

Notice that (a, αm)(α−m(a−1), α−m) = (aαm(α−m(a−1)), αm−m) = (1, id), and therefore

(a, αm)−1 = (α−m(a−1), α−m).

It is convenient to regard A as a subalgebra A(α) by identifying a with (a, id), as

given a, b ∈ A, (a, id)(b, id) = (a id(b), id) = (ab, id) and (a, id)−1 = (a−1, id). We

also identify (1, α) with α, and notice that for ever n ∈ Z, (1, α)n = (1, αn). With

2Note that since α 6= id, there is x ∈ A such that x < α(x) or α(x) < x. In the first case, we would have

the chain α−n(x) < · · · < x < · · · < αn(x) < αn+1(x), for every n > 1, and the reverse chain in the second

case. Thus, either way, the unique n ∈ N such that αn = id is n = 0, and therefore the order in A(α) is

well defined.
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this identifications, we could obtain a simple expression for the conjugate aα in A(α).

Indeed, aα = α(a), since

aα = (1, α)(a, id)(1, α)−1 = (1α(a), α)(1, α−1) = (α(a)α(1), α1−1) = (α(a), id).

Let now α, β, γ be order-automorphisms of the totally ordered group A such that,

for a positive integer n, α = βn = γn, but β 6= γ. Note that A(α) is a subalgebra of both

A(β) and A(γ). Note further that for all a ∈ A, aβ = β(a) in A(β) and aγ = γ(a) in

A(γ), and, of therefore aβ and aγ are elements of A.

We claim that any subvariety of RepLG that contains A(β) and A(γ) fails the AP.

More specifically, the V-formation (A(α), A(β), A(γ), i, j) – with i, j inclusions – does

not have an amalgam inRepLG. Indeed, in any `-group G that contains A(α) and A(β)

as `-subgroups, the equality βn = γn is satisfied. On the other hand, there is a ∈ A such

that β(a) 6= γ(a), and hence there is a ∈ A such that aγ and aβ are distinct elements of

A and hence of G. This shows that β 6= γ ∈ G, and so G cannot be representable.

Thus, we have the following result from [82] (see also [44]):

Lemma 4.2. Let A be a totally ordered group, and let α, β, γ be distinct order automorphisms

of the lattice-reduct of A such that α = βn = γn, for some integer n > 2. Then any subvariety

of RepLG that contains A(β) and A(γ) fails the AP.

There is a natural way of constructing totally ordered groups such as A(α), A(β)

and A(γ). Let us look at the case n = 2. Set I = Z
←−×Z, ordered anti-lexicogaphically,

and define β̄, γ̄ ∈ Aut(I) by:

β̄(x, y) =

(x + 1, y + 1), if y is even;

(x, y + 1), otherwise.

γ̄(x, y) =

(x, y + 1), if y is even;

(x + 1, y + 1), otherwise.

The following lemma follows straightforwardly from the definitions.

Lemma 4.3. Let I, β̄, γ̄ as above. Then:

(i) β̄ 6= γ̄;

(ii) β̄2 = γ̄2 = ᾱ;

(iii) for all a ∈ I, ᾱ(a) > a.

Set A to be
←⊕

i∈IZi the direct sum of copies of the integers, anti-lexicogaphically

ordered, indexed by I. That is, (xi)i∈I < (yi)i∈I if there is i ∈ I such that xi < yi and for



82 4. The Failure of the Amalgamation Property

every j ∈ I, if j > i then xj = yj. Let us remark that each order automorphism δ̄ of I

determines an automorphism δ on A defined by

δ((xi)i∈I) =
(
xδ̄(i)

)
i∈I .

As a consequence, both β̄, γ̄ induce distinct order-automorphisms β, γ of the underlying

chain of A such that β2 = γ2. In light of the preceding discussion, any subvariety of

RepLG that contains A(β) and A(γ) fails the AP.

The careful analysis in [82] shows much more than the failure of the AP for RepLG.

It can be proved – refer to [82] for details – that the totally ordered groups constructed

in the preceding paragraph actually belong to M, the variety3 of `-groups generated

by the wreath product Z wr Z, where Z denotes the `-group of integers. This leads to

the following result of [82].

Theorem 4.4. If V is a subvariety of RepLG containingM, then V fails the AP.

It should be noted that, by results in [36], the interval [M,RepLG] is uncountable.

Thus, in light of Theorem 4.4, there are uncountably many subvarieties of RepLG that

fail the AP.

4.4 Failure of the AP for Semilinear Residuated Lattices

In this section, we prove the main results of this chapter. Namely, we show that the

variety SemRL of semilinear residuated lattices and the variety SemCanRL of semi-

linear cancellative residuated lattices fail the AP. In addition, we prove that the variety

U consisting of all residuated lattices that have a distributive lattice reduct and satisfy

the identity x(y ∧ z)w ≈ xyw ∧ xzw also fails the AP.

We start with the definition of an `-monoid. An `-monoid is an algebra L = (L,∧,∨, ·, e)

of type (2, 2, 2, 0) such that

(i) (L,∧,∨) is a lattice;

(ii) (L, ·, e) is a monoid; and

(iii) L satisfies the following equations:

x (y ∨ z)w ≈ xyw ∨ xzw and x (y ∧ z)w ≈ xyw ∧ xzw.

Homomorphisms of `-monoids are referred to as `-homomorphisms, and, in the pre-

ceding equations and in what follows, we use plain juxtaposition “xy” in place of “x · y”

as usual.

3M is a cover of the variety of Abelian `-groups [70].
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Now, given any chain Ω, the set Res(Ω) of all residuated maps on Ω is (the uni-

verse of) a monoid with respect to function composition, and a lattice with respect to

pointwise join and meet; moreover, it is easily checked that Res(Ω) is the universe of

an `-monoid whose lattice reduct is distributive. By abuse of notation, we denote such

an `-monoid by the same label Res(Ω). Also Aut(Ω), the set of all order-automorphisms

of Ω, is the universe of an `-monoid which is actually an `-group. We make use of the

following result in [78] (see also [6]), which generalizes Holland’s Embedding Theorem

([48]).

Theorem 4.5. A residuated lattice A embedded as an `-monoid into Res(Ω), for some chain

Ω, if and only if it satisfies the equations

(1) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ w); and

(2) x(y ∧ z)w ≈ xyw ∧ xzw.

This representation afforded by the preceding result will play a key role in the proofs

of the results below.

Lemma 4.6. If D is a residuated lattice that satisfies the equations

(1) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ w); and

(2) x(y ∧ z)w ≈ xyw ∧ xzw,

then the set Inv(D) of invertible elements of D is the universe of a subalgebra – which we denote

by the same symbol – of D. Moreover, Inv(D) is an `-group.

Proof. Let Inv(D) be the set of invertible elements of D. We have to prove that it is

closed under the operations of D. It is obvious that Inv(D) is closed under products

and contains e. Further, it is easy to see that if a, b ∈ Inv(D), then a\b = a−1b and

a/b = ab−1. Let us just verify the equality a\b = a−1b, as the other is analogous. It

suffices noticing that for every c ∈ D,

c 6 a\b ⇔ ac 6 b ⇔ a−1ac 6 a−1b ⇔ c 6 a−1b.

As for the lattice operations, we note first that in virtue of Theorem 4.5 there exists

a chain Ω such that D is an `-submonoid of Res(Ω). Since Ω is a chain, Res(Ω) is

distributive and the product distributes over joins and meets. Moreover, the invertible

elements of Res(Ω) are the order automorphisms of Ω, and given an order automor-

phism a : Ω → Ω, it is easy to see that a ∧ a−1 6 e 6 a ∨ a−1. Therefore, for every
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pair of invertible elements g, h ∈ Res(Ω), g−1h ∧ h−1g 6 e 6 g−1h ∨ h−1g. Thus, if

g, h ∈ Inv(D), then

(g−1 ∨ h−1)(g ∧ h) = g−1(g ∧ h) ∨ h−1(g ∧ h)

= (g−1g ∧ g−1h) ∨ (h−1g ∧ h−1h)

= (e ∧ g−1h) ∨ (h−1g ∧ e)

= e ∧ (g−1h ∨ h−1g) = e,

and analogously, (g−1 ∧ h−1)(g ∨ h) = e, which shows that (g ∧ h) and (g ∨ h) are

invertible, as we wanted to prove. Therefore, Inv(D) is the universe of a subalgebra of

D, and obviously every element in Inv(D) has an inverse, and hence it is an `-group.

It is already known (see [79], [11] or [83]) that the variety of all `-groups fails the

AP. We remark that [83] contains an improved presentation of the original proof in [79],

while the recent paper [11] shows that the `-groups Z
←−×Z and Zn, for n > 3, are not

an amalgamation base of LG. This means that there exist V-formations (A, B, C, i, j) –

with A = Z
←−×Z or Zn, n > 3 – that do not have an amalgam in LG.

We can use these results to prove that any variety of residuated lattices satisfying

equations (1) and (2) of the previous lemma and containing the variety of `-groups fails

the AP. More generally, we have:

Theorem 4.7. Let V be a variety of residuated lattices satisfying the following equations:

(1) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ w),

(2) x(y ∧ z)w ≈ xyw ∧ xzw.

If V ∩ LG fails the AP, then so does V .

Proof. Let B, C in V ∩ LG, and A a common subalgebra. Suppose that a V-formation

(A, B, C, i, j) has an amalgam (h, k, D) in V . We may assume that all maps i, j, h and k are

inclusions. Then, by Lemma 4.6, Inv(D) is a subalgebra of D, which obviously contains

B and C, because every element of B ∪ C is invertible in D. Furthermore Inv(D) is an

`-group which is also in V . Hence, Inv(D) would be an amalgam in V ∩ LG of the

V-formation, which does not exist in general.

As a consequence of this theorem and Theorem 4.4, we obtain the last two results of

this chapter:

Theorem 4.8. The varieties SemRL and SemCanRL fail the AP.
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Proof. The variety LG ∩ SemRL is the variety RepLG, which we know by Theorem 4.4

that fails the AP. Likewise for SemCanRL.

Corollary 4.9. The varieties LG− and RepLG− fail the AP.

Proof. As was noted above, the varieties LG and RepLG fail the AP. Thus, the result

follows from Lemma 4.1.

Another way of proving the failure of the AP for RepLG− directly is the following:

Let us first note that Condition (?) holds in RepLG−. Suppose that there exists a D

in RepLG− amalgamating the negative cones of A(α), A(β), A(γ). Consider the ele-

ments ((0), β−1), ((0), γ−1), defined as above. Clearly, ((0), β−1), ((0), γ−1), ((0), α−1)

are in the negative cone. Moreover, ((0), β−1)2 = ((0), γ−1)2 = ((0), α−1). However,

((0), β−1) 6= ((0), γ−1). This contradicts Condition (?), which is impossible.





Chapter 5

Recognizable Elements of

Residuated Lattices

5.1 Introduction.

The notions of a language, a finite state device, and a grammar, which are fundamental

in Computer Science, have proved to be very closely related. If we try to determine

which words belong to a language over an alphabet Σ, it might be possible to do it

in some of the following ways. If there is a finite mechanical device, which is usu-

ally formalized as a finite state automaton, discerning the words that belong to the

language from those that do not, we say that the language is recognizable. If there is a

regular expression, which is an expression recursively defined in a specific way describ-

ing the language, we say that the language is regular. This concept was introduced by

Kleene [60] during his investigations on the electronic models of the nervous systems.

More specifically, the set of regular languages over an alphabet Σ is the smallest set that

contains the full language Σ∗ and the singletons {w}, for every word w ∈ Σ∗, and is

closed under finite intersections and unions, complementation, complex multiplication

of subsets of Σ∗, and the ‘closure operation’ ( )∗. Kleene proved that the regular lan-

guages are exactly the recognizable languages. Another way of describing a language

is by using some grammar, which roughly speaking is a mechanical way of obtaining

all the words of the language by using a set of some specific rules for rewriting words.

Further results from Chomsky and Miller [22] show the link between finite automata

and grammars, namely the languages recognized by finite state automata are the same

as the languages given by grammars of type 3, also called regular grammars.

Myhill [74] (see also [76]) proved an intrinsic characterization of regular languages in
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terms of the finiteness index of a certain syntactic equivalence relation between words.

The main result of this chapter can be seen precisely as a generalization of this result,

and it is proven in Section 5.4.

In Section 5.2 we start revising the notions of an automaton and a language recog-

nized by an automaton. We note that a language L on an alphabet Σ is recognized by

a finite state automaton if and only if there is a surjective monoid homomorphism

ϕ : Σ∗ → M onto some finite monoid M containing some set T ⊆ M such that

L = ϕ−1(T), which is the content of Theorem 5.5. We notice that the direct image

map ϕ : P(Σ∗) → P(M) is residuated, with residual ϕ−1. And furthermore, P(Σ∗)
has a natural structure of residuated lattice, the action of Σ∗ on M induced by ϕ can be

extended to an action of P(Σ∗) on P(S), that is, to a P(Σ∗)-module, and the fact that L

is recognizable can be then expressed in terms of the residuation.

This motivates the notion of a recognizable element of a residuated lattice, which

we investigate in Section 5.4, but first in Section 5.3 we develop the basics of the theory

of modules over residuated lattices. Previous researchers have explored the concept of

a module over a quantale, which essentially is an action of a quantale on a complete

lattice. Such structures provide a suitable algebraic framework for extending the con-

cept of a recognizable language (see [64]), and also for the study of some fundamental

aspects of Algebraic Logic (see [42]). Here we consider the possibility of extending

these ideas by letting the scalars come from an arbitrary residuated lattice and replac-

ing the complete lattice by any partially ordered set. Indeed, the present chapter is a

natural sequel of Hoseung Lee’s Ph.D. dissertation [64], which includes a number of

joint results with C. Tsinakis.

We notice that given a residuated lattice R = 〈R,∧,∨, ·, e, \, /〉, it acts over itself by

left multiplication, giving rise to an R-module that we denote by R = 〈R, ·〉. We define

for every element a of a residuated lattice R a special closure operator γa on R, and

describe its basic properties in Proposition 5.25. This closure operator turns out to be

crucial in deciding whether the element a is recognizable.

In Section 5.4, as we mentioned before, we introduce the notion of a recognizable

element of a residuated lattice. We then prove that this is the correct abstraction of the

notion of a recognizable language to the context of residuated lattices, by showing that

a language over an alphabet Σ is recognizable by a finite state automaton if and only if it

is recognizable as an element of the residuated lattice P(Σ∗), see Proposition 5.29. Next

we prove Theorem 5.31, which is the main result of the section and of this chapter. It

is a characterization of the recognizable elements of residuated lattices in the following

terms:
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Theorem A (Theorem 5.31). Let R be a residuated lattice and a ∈ R. The following are

equivalent:

(i) The element a is recognizable.

(ii) There exists a structural closure operator γ on R with finite image such that γ(a) = a.

(iii) The image {x\a : x ∈ R} of the closure operator γa is finite.

(iv) The set {a/x : x ∈ R} is finite.

Finally we devote Section 5.5 to two interesting problems. Our results shed light

on them and could lead to their eventual resolution. We look for a Kleene’s-like char-

acterization of the recognizable elements of a residuated lattice. According to Kleene’s

Theorem, regular languages are exactly the languages recognized by a finite state au-

tomata. Therefore, in order to provide an appropriate generalization of this result for an

arbitrary residuated lattice R, we have to study the structure of the set of recognizable

elements inside R. We find that, whenever R has a top element, and only in this case,

the set of recognizable elements is nonempty, contains the top element, and it is closed

under (finite) meets and residuation. We also find that in the case R = P(M), for some

monoid M, it is also closed under complementation and (finite) unions, although it may

not contain all the singletons in general.

The second and last problem that we study in this section is the following: we

notice that every recognizable language is recognized by a module whose poset reduct

is indeed a Boolean algebra. This is not the general case for recognizable elements of

residuated lattices. We provide conditions under which we can assure that a particular

element can be recognized by a Boolean module, that is to say, a module whose poset

reduct is a Boolean algebra.

5.2 Background and Motivation

One of the goals of this chapter is to define the concept of a recognizable element in an

arbitrary residuated lattice. Since we are borrowing this term from the area of logic

and computation, it will be helpful to give here a brief overview of the notion of a

recognizable language, which also will provide us with the motivating example for our

work. The reader is directed to [49] and [50] for a more detailed treatment of the subject.

Let Σ be any set. We shall refer to Σ as an alphabet and the elements of Σ as letters. We

use the symbol Σ∗ to denote the collection of all finite sequences (including the empty

sequence) of letters from Σ. The members of Σ∗ are called words and we normally write

a word as a string of adjacent letters. Thus, if a, b, and c are letters, the word 〈abbca〉
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will more often be written abbca. The empty sequence, also called the empty word, is

denoted by ε. Clearly, Σ∗ forms a monoid – in fact the free monoid over Σ – under the

operation of concatenation with ε in the role of the identity (for words w, v ∈ Σ∗, we

write wv for the concatenation of w followed by v).

As with natural human languages, we often consider most random strings of letters

to be gibberish and only a selected subset of Σ∗ will form a language. In examples com-

ing from the realm of mathematics, languages are usually constituted by the so-called

well-formed expressions. For instance, this is the case of the language of the formulas

of classical logic, that are normally taken to be the well-formed expressions over the

language Σ = V ∪ {∧,∨,→,¬,>,⊥} ∪ { ), ( }, where V is a set of variables. But, there

are also other examples that appeal for a more general definition of a language. For

instance, we could identify the set Z[X] of polynomials in one variable and integer co-

efficients with a language over the set of symbols Σ = Z, using the uniqueness of the

expression of a polynomial as a sum of monomials. Indeed, under this identification,

Z[X] = Z∗.

Definition 5.1. A language over the alphabet Σ is a subset L ⊆ Σ∗. The full language over

Σ is Σ∗.

Now, this definition of a language might seem too general, as we have the intuition

that languages are usually generated following some mechanical rules. Suppose that L

is a language over some alphabet Σ. One wonders if it is possible to decide, in finitely

many steps of some automated process, whether a given word w ∈ Σ∗ is, or is not, a

member of L. For example, such a task is carried out by compilers when parsing code

written in some programming language. In our context, this leads to the idea of a finite

state automaton.

Definition 5.2. A finite state automaton is a triple 〈S, Σ, ?, i, F〉 consisting of the following

five components:

• a finite set S, called the set of states,

• a finite1 set Σ, the alphabet,

• an action of Σ∗ on S, that is, a binary map ? : Σ∗× S→ S satisfying the properties:

– (associativity) for all w, v ∈ Σ∗ and s ∈ S, w ? (v ? s) = (wv) ? s, and

– (identity) for all s ∈ S, ε ? s = s.

1Usually, the alphabet is taken to be finite, because of the applications of automata to Computer Science,

but none of the results that we mention here depend on the finiteness of the alphabet.
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• a state i ∈ S, called the initial state, and

• a set F ⊆ S, called the set of final states.

If one thinks of S as actual states of some mechanical device and Σ∗ as potential

instructions supplied to that device, then we think of the action as carrying out the

instructions by transforming the device from one state into another; we are attempting

to capture the internal workings of a computer in an algebraic setting. As an example,

consider the finite state automaton 〈S, Σ, ?, 1, {3}〉 where S = {1, 2, 3}, Σ = {a, b}, and

? : Σ∗ × S→ S is the map implicitly defined by the table:

? 1 2 3

a 2 2 3

b 1 3 3

It is clear that any function Σ× S→ S extends uniquely to an action of Σ∗ over S. One

can depict this action as shown in Diagram (5.1), and thus this diagram can be used to

represent the automaton, just by marking the initial state and set of final states in some

way. If w = aabb and v = baab, for example, then w ? 1 = 2 and v ? 1 = 3.

1 2 3a

b a

b a

b

(5.1)

Definition 5.3. Given a finite state automaton 〈S, Σ, ?, i, F〉, we say that a language

L ⊆ Σ∗ is recognized by this automaton if for any word w ∈ Σ∗, w ∈ L if and only if

w ? i ∈ F. A language L is recognizable if there exists some finite state automaton that

recognizes L.

Example 5.4. Letting L = {wbav : w, v ∈ Σ∗}, one can easily see that L is recognized by

the automaton of our previous example, if we set i = 1 and F = {3}, and therefore, L

is recognizable.

It is well known that there is a bijective correspondence between actions of a monoid

M on a set S and monoid homomorphisms from M to the monoid End(S) of endomaps

of S. Thus, we obtain the following characterization of recognizable languages, which

can be found in [80].

Theorem 5.5. A language L is recognizable if and only if there exist a finite monoid M, a

(surjective) monoid homomorphism ϕ : Σ∗ → M, and a subset T ⊆ M such that L = ϕ−1(T).
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Proof. If L is recognizable by 〈S, Σ, ?, i, F〉, then consider the monoid M ⊆ End(S) with

M = {λw : w ∈ Σ∗}, where λw(s) = w ? s, for every s ∈ S. Since S is finite, hence M

is finite and the map λ : Σ∗ → M determined by λ : w 7→ λw is a surjective monoid

homomorphism. Now consider the set T = λ[L] = {λw : w ∈ L}, and let see that

L = λ−1(T). It is clear that L ⊆ λ−1(T). In order to see the other inclusion, suppose

that v ∈ λ−1(T). Hence, there exists w ∈ L such that λv = λw, whence we have

v ? i = λv(i) = λw(i) = w ? i ∈ T, and therefore v ∈ L.

For the other implication, suppose that there is a monoidal homomorphism ϕ :

Σ∗ → M, and a subset T ⊆ M such that L = ϕ−1(T). Hence, we can define an action ?

of Σ∗ on M by w ? x = ϕ(w) · x. Thus, if M is finite, then 〈M, Σ, ?, eM, T〉 is a finite state

automaton, and moreover

w ∈ L ⇔ w ∈ ϕ−1(T) ⇔ ϕ(w) ∈ T ⇔ ϕ(w) · eM ∈ T ⇔ w ? eM ∈ T.

Therefore L is recognized by 〈M, Σ, ?, eM, T〉.

The previous discussion implies, in particular, that ϕ(L) = ϕ(ϕ−1(T)) and L =

ϕ−1(T) = ϕ−1(ϕ(L)), where ϕ and ϕ−1 are the direct and inverse images maps between

the lattices P(Σ∗) and P(M). Notice that ϕ is a residuated map and ϕ−1 is its residual.

Pursuing this line of thought leads to the following observations:

• We can extend the action ? of Σ∗ over S to an action of P(Σ∗) on P(S) by:

A ∗ X = {w ? s : w ∈ Σ∗, s ∈ X}.

• This extended action ∗ : P(Σ∗)×P(S)→ P(S) is residuated in both coordinates.

• L = ϕ−1(T) translates in terms of the residuals of ∗.

This indicates that we can capture the concept of recognizability of languages in

terms of residuation. We explain in more details these concepts in the next section.

5.3 Residuation, Residuated Lattices, and Modules over Resid-

uated Lattices

Recall from Section 1.1 that given two partially ordered sets P and Q, a map f : P→ Q

is residuated if there exists another map g : Q→ P, called the residual of f , so that for all

p ∈ P and q ∈ Q,

f (p) 6 q ⇔ p 6 g(q).

Residuals are uniquely determined. We say that ( f , g) is a residuated pairs.

These are the very basic properties of residuated pairs:
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Remark 5.6. If f : P→ Q is a residuated map with residual g, then among the many well-un-

derstood properties of f and g there are the following:

(i) Both f and g are order-preserving.

(ii) f preserves arbitrary existing joins and g preserves arbitrary existing meets.

(iii) γ = g ◦ f is a closure operator on P with associated closure system Pγ = {g(x) : x ∈ Q}.
(iv) δ = f ◦ g is an interior operator on Q with associated interior system given by Qδ =

{g(x) : x ∈ Q}.
(v) f ◦ g ◦ f = f and g ◦ f ◦ g = g.

(vi) The corresponding restrictions of f and g determine an order-isomorphism and its inverse

between Pγ and Qδ.

Recall also that a residuated lattice is a structure R = 〈R,∧,∨, ·, \, /, e〉 comprising

monoidal and lattice structures over the same underlying set R, and such that the prod-

uct · is residuated in both coordinates with residuals \ and /. This means that for every

a, b, c ∈ R,

a · b 6 c ⇔ b 6 a\c ⇔ a 6 c/b.

The following properties of residuated lattices – which essentially are the only ones

that we are going to need for this chapter – can be readily proven.

Remark 5.7. If R is a residuated lattice, then the following hold for every a, b, c ∈ R:

(i) (a/b) · b 6 a and b · (b\a) 6 a.

(ii) e 6 a/a and e 6 a\a.

(iii) a/e = a = e\a.

(iv) (a/b)/c = a/(cb) and c\(b\a) = (bc)\a.

(v) The operation · is order-preserving in both coordinates, while / and \ are order-preserving

in their numerators and order-reversing in their denominators.

Example 5.8. One of the prototypical examples of a residuated lattice is a frame. A

frame is a complete lattice F in which the meet operation ∧ distributes over arbitrary

joins. Therefore, ∧ is residuated in both coordinates, and since it is commutative, left

and right residuals coincide, and are often denoted by→. This operation is determined

by b→ c =
∨{x ∈ F : b ∧ x 6 c}. Thus, in a frame,

a ∧ b 6 c ⇔ a 6 b→ c.

The induced residuated lattice is F = 〈F,∧,∨,∧,→,←,>〉. But, we will in practice

omit the operation ← because, as we noted, both residuals coincide. We can do that

whenever the product is commutative.
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Example 5.9. Another standard example of a residuated lattice is the following: Given

any monoid M, we can define a residuated lattice P(M) as follows:

P(M) = 〈P(M),∩,∪, ·, \, /, {eM}〉

is the residuated lattice with the so-called complex multiplication, that is, for every A, B ∈
P(M), A · B = {a · b : a ∈ A, b ∈ B}. This product is residuated in both coordinates,

and the residuals are determined by:

A\C = {b ∈ M : ab ∈ C, for all a ∈ A} and C/A = {b ∈ M : ba ∈ C, for all a ∈ A}.

Those two examples are particular cases of quantales, which can be just seen as

complete residuated lattices. Actually, residuals do not form part of the structure of

the quantale, and therefore they are not residuated lattices, strictly speaking. But, since

the residuals are uniquely determined by the order and the product, the identification

of quantales with complete lattices is innocuous. The main difference is not on the

structure itself, but on the morphisms, which in the case of quantales are residuated

maps respecting the monoidal structure, but not necessarily the residuals. Quantales

have arisen as partially ordered models of linear logic, which turned out to be a certain

class of quantales. The precise connection between quantales and linear logic was made

in [96]. See [84] for a detailed introduction of the theory of quantales. Abramsky and

Vickers used in [1] (see also [2]) the notion of module over a quantale to investigate a

variety of process semantics in a uniform algebraic framework. In their work, processes

are certain modules over a given quantal of actions. We extend the notion of module

over a quantale, allowing scalars to come from an arbitrary residuated lattice. Moreover,

we do not require the module to be a complete lattice, but just a partially ordered set.

Definition 5.10. A module over a residuated lattice R, or just an R-module, is a pair

P = 〈P, ∗〉 consisting of a a partially ordered set P = 〈P,6〉 and a map ∗ : R× P → P

satisfying the following three properties:

(i) e ∗ x = x, for all x ∈ P,

(ii) a ∗ (b ∗ x) = (a · b) ∗ x, for all a, b ∈ R and x ∈ P,

(iii) ∗ is residuated in both coordinates. That is, there exist two maps \∗ : R× P → P

and /∗ : P× P→ R such that, for every a ∈ R and x, y ∈ P,

a ∗ x 6 y ⇔ x 6 a\∗y ⇔ a 6 y/∗ x.

Example 5.11. Given a monoid M, we saw in Example 5.9 how to construct the residu-

ated lattice P(M). Now, given a monoid action ? : M× S → S of M on the a set S, we
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can define a P(M)-module 〈P(S), ∗〉 as follows: the set P(S) is ordered by inclusion,

and the product ∗ : P(M)×P(S) → P(S) is given by: A ∗ X = {a ? x : a ∈ A, x ∈ X}.
It is easy to see that, indeed, this is a P(M)-module, and that the residuals are given by

A\∗Y = {x ∈ S : a ? x ∈ Y, for all a ∈ A} and Y/∗X = {a ∈ M : a ? x ∈ Y, for all x ∈
X}.

Remark 5.12. Notice that if P = 〈P, ∗〉 is an R-module, then it follows immediately from

Remark 5.6 that ∗ is order-preserving in both coordinates and \∗ and /∗ are order-preserving

in their numerators and order-reversing in their denominators. Moreover, ∗, preserves existing

arbitrary joins in both coordinates, and \∗ and /∗ preserve existing arbitrary meets in their

numerators and transform existing arbitrary joins in the denominators into meets.

Definition 5.13. Let P and Q be R-modules. An R-morphism ϕ : P → Q from P to Q

is a residuated map ϕ : P → Q that preserves scalars; that is, for all a ∈ R and x ∈ P,

ϕ(a ∗P x) = a ∗Q ϕ(x). An R-module Q is a submodule of P if Q ⊆ P, and the inclusion

map is an R-morphism i : Q → P. An isomorphism is a bijective R-morphism between

two R-modules, in which case its inverse is also an R-morphism.

Remark 5.14. Note that, given an R-module P, a submodule is just an R-module Q such that

Q ⊆ P and the product of Q is the restriction of the product of P. Therefore, submodules of an

R-module are determined by their underlying sets.

In general, R-morphisms do not respect the residuals, but isomorphisms do.

Proposition 5.15. If ϕ : P → Q is an isomorphism of R-modules and a ∈ R, and x, y ∈ P,

then x/P y = ϕ(x)/Q ϕ(y), and ϕ(a\Px) = a\Q ϕ(x).

Proof. First, notice that an isomorphism of R-modules is in particular an isomorphism

of posets. Thus, if b ∈ R is an arbitrary element, then

b 6 x/P y ⇔ b ∗P y 6 x ⇔ b ∗Q ϕ(y) 6 ϕ(x) ⇔ b 6 ϕ(x)/Q ϕ(y).

Which proves that x/P y = ϕ(x)/Q ϕ(y). The other equality can be proved in a similar

fashion.

Definition 5.16. Given an R-module P and an element p ∈ P, we define 〈p〉P to be the

submodule of P with universe {a ∗ p : a ∈ R}. We say that P is cyclic if P = 〈p〉P for

some p ∈ P. In this case, p is called a generator of P.

Example 5.17. It can be readily seen that any residuated lattice R has the structure of

an R-module R = 〈R, ·〉. (Sometimes we say that R is a module over itself.) Moreover,

R is cyclic, since it is generated by e, that is, R = 〈e〉R. Thus, if F is a frame, the

corresponding F-module is F = 〈F,∧〉, and it is cyclic generated by its top element >.
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Definition 5.18. A structural closure operator on an R-module P = 〈P, ∗〉 is a closure

operator γ on P – that is, an order-preserving, extensive, and idempotent endomap of

P – such that for every a ∈ R and x ∈ P,

a ∗ γ(x) 6 γ(a ∗ x). (Str.)

The property (Str.) is called structurallity. In what follows, we often omit the adjec-

tive ‘structural’ when we speak about closure operators on an R-module. Further, we

denote by Pγ = {γ(x) : x ∈ P} the closure system associated to γ.

Remark 5.19. Closure operators on an R-module P can be ordered point-wise: γ 6 δ if and

only if for every x ∈ P, γ(x) 6 δ(x). It is not difficult to see that γ 6 δ if and only if Pδ ⊆ Pγ.

Example 5.20. Recall from Section 1.3 that a nucleus on a residuated lattice R is a closure

operator on R satisfying the inequality,

γ(a) · γ(b) 6 γ(a · b), (5.2)

for all a, b ∈ R. Obviously, every nucleus on a residuated lattice R is a closure operator

on R, but the converse need not be true. We however have:

Proposition 5.21. The nuclei on a frame are precisely the meet-preserving closure operators on

it.

As we mentioned in Remark 5.6, a natural example of a closure operator arises by

composing residuated maps with their residuals. In the case of R-modules we obtain

structural closure operators in the following way: let P be an R-module, and p ∈ P

an arbitrary element. The map γp : R → R defined by γp(a) = (a ∗ p)/∗ p is a closure

operator on R = 〈R,6〉. Actually, we can prove that γp is a closure operator on R.

Lemma 5.22. Given an R-module P and an element p ∈ P, the map γp defined above is a

closure operator on R, and Rγp = {x/∗ p : x ∈ P}.

Proof. Note that for every a, b ∈ R,

(a · γp(b)) ∗ p = a ∗ (γp(b) ∗ p) = a ∗
((
(b ∗ p)/∗ p

)
∗ p
)
= a ∗ (b ∗ p) = (ab) ∗ p,

and therefore a · γp(b) 6 ((ab) ∗ p)/∗ p = γp(ab), which shows the structurally of γp.

The equality Rγp = {x/∗ p : x ∈ P} follows from Remark 5.6.(iii), as γp is the composi-

tion of the residuated _ ∗ p and its residual _/∗ p.
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Given a closure operator γ on an R-module P, the set Pγ = {γ(x) : x ∈ P} inherits

a partial ordering from P, and one can define a scalar product ∗γ : R × P → P by

a ∗γ x = γ(a ∗ x). Moreover, for every a ∈ R and x, y ∈ Pγ, a ∗γ x 6 y if and only if

γ(a ∗ x) 6 y, which is equivalent to a ∗ x 6 y, because y ∈ Pγ and γ is expansive and

order-preserving . Therefore, a ∗γ x 6 y if and only if a 6 y/∗ x if and only if x 6 a\∗y.

That is to say, ∗γ is residuated in both coordinates with residuals the corresponding

restrictions of \∗ and /∗ . We also have that e ∗γ x = γ(e ∗ x) = γ(x) = x, and that

a ∗γ (b ∗γ x) = γ(a ∗ γ(b ∗ x)) 6 γ(γ(a ∗ (b ∗ x))) = γ(a ∗ (b ∗ x)) 6 γ(a ∗ γ(b ∗ x)) =

a ∗γ (b ∗γ x), which proves that (ab) ∗γ x = γ((ab) ∗ x) = γ(a ∗ (b ∗ x)) = a ∗γ (b ∗γ x).

Thus, Pγ = 〈Pγ, ∗γ〉 is an R-module as well.

Proposition 5.23. Given an R-module P and an element p ∈ P, the module Rγp is isomorphic

to 〈p〉P, and therefore cyclic.

Proof. Since the map _ ∗ p : R → P is residuated with residual _/∗ p : P → R, then

in virtue of Remark 5.6, the restriction ϕ : Rγp → 〈{a ∗ p : a ∈ R},6〉 of _ ∗ p is an

isomorphism of partially ordered sets. All we have to prove is that ϕ also respects the

scalars. Given a ∈ R and x ∈ Rγp , we have

ϕ(a ·γp x) = ϕ(γp(a · x)) = ϕ
(
((a · x) ∗ p)/∗ p

)
=
(
((a · x) ∗ p)/∗ p

)
∗ p = (a · x) ∗ p

= a ∗ (x ∗ p) = a ∗ ϕ(x).

We have noted that the multiplication of a residuated lattice R induces an R-module

structure R on 〈R,6〉. An R-module structure can also be defined on the dual partial

ordering R∂ = 〈R,6∂〉:

Proposition 5.24. Let R be a residuated lattice and let ·d : R× R → R be defined by a ·d x =

x/a, for all a, x ∈ R. Then the structure Rd = 〈R∂, ·d〉 is an R-module.

Proof. First note that for every x ∈ R, e ·d x = x/e = x, and that for every a, b, x ∈ R,

a ·d (b ·d x) = (x/b)/a = x/(ab) = (ab) ·d x.

Therefore, it only remains to prove that ·d : R× R∂ → R∂ is residuated in both coordi-

nates. For every a, x, y ∈ R, we have

a ·d x 6∂ y ⇔ y 6 a ·d x ⇔ y 6 x/a ⇔ y · a 6 x ⇔ a 6 y\x.

Therefore, the maps \d : R× R → R and /d : R× R → R determined by a\dy = y · a
and y/d x = y\x are the residuals of ·d, since

a ·d x 6∂ y ⇔ y · a 6 x ⇔ x 6∂ y · a ⇔ x 6∂ a\dy
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and

a ·d x 6∂ y ⇔ a 6 y\x ⇔ a 6 y/d x.

Thus, given a residuated lattice R and a particular element a ∈ R, by using the

R-module Rd, we can define a closure operator γa on R as follows:

γa(x) = (x ·d a)/d a = (a/x)\a.

Proposition 5.25. Given a residuated lattice R and an element a ∈ R, the closure operator γa

on R defined above has the following properties:

(i) Rγa = {x\a : x ∈ R}.
(ii) γa(a) = a.

(iii) If γ is a closure operator on R, then γ(a) = a if and only if γ 6 γa.

Proof. (i) By Lemma 5.22, the closure system associated to γa is Rγa = {x/d a : x ∈ R} =
{x\a : x ∈ R}.

(ii) By (i), a = e\a ∈ Rγa , that is γa(a) = a.

(iii) In virtue of Remark 5.19, it is enough to show that if γ is an operator on R, then

γ(a) = a if and only if Rγa ⊆ Rγ. Let suppose that γ(a) = a. By (i), every element

in Rγa is of the form x\a for some x ∈ R. Since by the structurallty of γ we have that

x · γ(x\a) 6 γ(x · (x\a)) 6 γ(a) = a, by the motonicity of γ and the hypothesis, hence

γ(x\a) 6 x\a 6 γ(x\a). That is, x\a ∈ Rγ. For the other implication, simply notice

that if γ 6 γa, then by (ii) and Remark 5.19, a ∈ Rγa ⊆ Rγ, and therefore γ(a) = a.

5.4 Recognizable Elements in Residuated Lattices

Going back to our discussion about recognizable languages, we recall that a language

L in the alphabet Σ is recognizable if and only if there exist a finite state automaton

〈S, Σ, ?, i, F〉 such that for every w ∈ Σ∗, w ∈ L if and only if w ∗ i ∈ F. According

to Example 5.11, we can extend the action ? of Σ∗ on S to obtain a P(Σ∗)-module

〈P(S), ∗〉. Now L, {i}, and F are in P(S). Further,

F/∗ {i} = {w ∈ Σ∗ : w ? x ∈ T, for all x ∈ {i}} = {w ∈ Σ∗ : w ? i ∈ T} = L.

Thus, the notion of recognizable language can be captured in terms of modules over

residuated lattices. We have stablished the following proposition, which also suggests

the definition of a recognizable element in a residuated lattice.
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Proposition 5.26. A language L in the alphabet Σ is recognizable by a finite state automaton

〈S, Σ, ?, i, F〉 if and only if L = F/∗ {i}, where /∗ is the residual of the P(Σ∗)-module 〈P(S), ∗〉.

Definition 5.27. An element a of a residuated lattice R is said to be recognizable provided

there exists a finite R-module P and elements i, t ∈ P such that a = t/∗ i. If the preceding

conditions are satisfied, we also say that a is recognized by P, i and t.

Remark 5.28. If an element of a residuated lattice R is recognized by P, i and t, then we can

always assume that P is cyclic and generated by i. Indeed, consider the submodule 〈i〉P of P

and let t′ = a ∗ i. Since a = t/∗ i, we have that t′ = a ∗ i 6 t, and hence a 6 (a ∗ i)/∗ i =

t′/∗ i 6 t/∗ i = a. It follows that a is recognized by 〈i〉P, i, and t′.

We prove next that the definition of a recognizable element in a residuated lattice is

the correct abstraction of the concept of a recognizable language, in the sense that the

recognizable languages in an alphabet Σ are exactly the recognizable elements of the

residuated lattice P(Σ∗).

Proposition 5.29. If L is a language in the alphabet Σ, then L is recognizable as a language if

and only if it is recognizable as an element of P(Σ∗).

Proof. (⇒) In virtue of Proposition 5.26, we have that if L is recognizable by the finite

state automaton 〈S, Σ, ?, i, F〉, then L is an element of P(Σ∗) recognized by the module

P = 〈P(S), ∗〉 and the elements {i} and F, and since S is finite, then so is P.

(⇐) If L is recognizable as an element of P(Σ∗), then there is a finite P(Σ∗)-module

P = 〈P, ∗〉 and two elements i, t ∈ P such that L = t/∗ i. We can define the map

? : Σ∗ × P → P by w ? x = {w} ∗ x, which can readily be proven to be an action of Σ∗

on P. Furthermore,

L = t/∗ i = max{A ∈ P(Σ∗) : A ∗ i 6 t} = {w ∈ Σ∗ : {w} ∗ i 6 t} = {w ∈ Σ∗ : w ? i 6 t}

= {w ∈ Σ∗ : w ? i ∈ ↓ t},

where ↓ t = {x ∈ P : x 6 t}. Hence 〈P, Σ, ?, i, ↓ t〉 is a finite state automaton and L is

recognized by it.

Recognizability of elements in a residuated lattice is a notion invariant up to R-iso-

morphisms. This is an immediate consequence of Proposition 5.15.

Corollary 5.30. If P and Q are two isomorphic R-modules, then an element a ∈ R is recognized

by P if and only if it is also recognized by Q.
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The next theorem is an intrinsic characterization of recognizable elements of a resid-

uated lattice. This result in conjunction with Proposition 5.29 indicate that, in order to

determine whether a language in an alphabet Σ is recognizable or not, we do not need

to look for finite automata or homomorphisms from Σ∗ onto finite monoids, but instead

we can do it by just analyzing the structure of P(Σ∗) as a residuated lattice. Note that,

given a residuated lattice R and an element a ∈ R, we can consider the module Rd, and

as we saw a = (a ·d a)/d a. Therefore, if 〈a〉Rd is finite, then it recognizes a. Moreover, by

Proposition 5.23, we now that there is an isomorphism between 〈a〉Rd and Rγa . There-

fore, by Corollary 5.30, if Rγa is finite, then a is recognizable. We prove that this is not

only a sufficient condition, but indeed a characterization.

Theorem 5.31. Let R be a residuated lattice and a ∈ R. The following are equivalent:

(i) The element a is recognizable.

(ii) There exists a closure operator γ on R such that γ(a) = a and Rγ is finite.

(iii) The R-module Rγa is finite. That is, the set {x\a : x ∈ R} is finite.

(iv) The R-module 〈a〉Rd is finite. That is, the set {a/x : x ∈ R} is finite.

Proof. We will show that (i) and (ii) are equivalent, that (ii) and (iii) are equivalent, and

that (iii) and (iv) are equivalent as well.

(i) ⇒ (ii): Suppose that a is recognized by P, i, and t. Without loss of generality, we

assume that P is cyclic and i is a generator of P. Consider the closure operator γi on

R. By Proposition 5.23, Rγi
∼= 〈i〉P = P, and therefore Rγi is finite. Let b ∈ R such that

b ∗ i = t. Hence, γi(b) = (b ∗ i)/∗ i = t/∗ i = a, and thus a ∈ Rγi .

(ii) ⇒ (i): Suppose that there is a closure operator γ on R such that Rγ is finite and

γ(a) = a. Hence, by Proposition 5.25, γ 6 γa, and therefore γ(e) 6 γa(e) = (a/e)\a =

a\a. Thus, a · γ(e) 6 a, and it follows that a 6 a/γ(e) 6 a/e = a, because e 6 γ(e).

Therefore, a = a/γ(e), which proves that a is recognized by Rγ, γ(e), and a. Note that

Rγ is cyclic with generator γ(e).

(ii) ⇔ (iii): In virtue of Proposition 5.25, if γ is a closure operator on R such that

γ(a) = a, then γ 6 γa, and therefore Rγa ⊆ Rγ. If furthermore Rγ is finite, then it

follows that Rγa is also finite. The other implication is obvious, since γa(a) = a, as we

saw in Proposition 5.25.

(iii) ⇔ (iv): In virtue of Proposition 5.23, there is an isomorphism between Rγa and

〈a〉Rd , and therefore a bijection between their universes. We saw in Proposition 5.25 that

Rγa = {x\a : x ∈ R}. Finally, notice that 〈a〉Rd = {x ·d a : x ∈ R} = {a/x : x ∈ R}.
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Remark 5.32. Modules over residuated lattices, as defined above, are sometimes called left-mod-

ules, since the action of the residuated lattice is on the left, and thus the notion of a recognizable

element of a residuated lattice could more accurately be called left-recognizable. Analogously,

one could define right-modules, in which the action of the residuated lattice is on the right,

and thereby obtain a notion of a right-recognizable element. However, the equivalences of the

previous theorem establish that the notions of a left-recognizable and right-recognizable element

coincide.

Last theorem is a generalization of Myhill’s Theorem [74]. Given a language L over

an alphabet Σ, we can define its syntactic congruence, which is actually the congruence

on the monoid Σ∗, by

w1 ≈L w2 ⇔ for all u, v ∈ Σ∗, (uw1v ∈ L ⇔ uw2v ∈ L).

This is the largest monoid congruence on Σ∗ that saturates L, that is, such that it does

not relate words in L with words outside L. We could also define the right-congruence

on Σ∗ by

w1 ∼L w2 ⇔ for any v ∈ Σ∗, (w1v ∈ L ⇔ w2v ∈ L).

Myhill’s Theorem characterizes the recognizable languages as those for which both ≈L

and ∼L are of finite index (see [63]).

Theorem 5.33. For a language L over an alphabet Σ, the following are equivalent:

(i) L is recognizable.

(ii) ≈L is of finite index, that is, the quotient Σ∗/≈L is finite.

(iii) ∼L is of finite index, that is, the quotient Σ∗/∼L is finite.

This can be readily proved to be a consequence of Theroem 5.31. We present now a

few examples to illustrate the previous discussion.

Example 5.34. Let R = 〈N ∪ {∞},∧,∨, ·, \, /, 1〉, where · is the usual multiplication

in the set R = N ∪ {∞} of extended natural numbers, ordered as usual, and in which

∞ · x = x ·∞ = ∞ if x 6= 0, and ∞ · 0 = 0 ·∞ = 0. One can verify that this is a residuated

lattice and for any a ∈ N, x\a ∈ {0, 1, 2, . . . , a} ∪ {∞} and x\∞ = ∞, for every x ∈ R.

Therefore, every element of R is recognizable.

Example 5.35. Let Z be the residuated lattice of all integers under the usual addition.

Then, no element of Z is recognizable. In fact, no element of any non-trivial `-group is

recognizable. This is so because a non-trivial `-group is infinite, and for a fixed element

a of an `-group G, {x\a : x ∈ G} = {x−1a : x ∈ G} = G.



102 5. Recognizable Elements of Residuated Lattices

Example 5.36. Consider2 the residuated lattice P(〈N,+, 0〉) = 〈P(N),∩,∪,+, \, /, {0}〉,
in which the monoidal operation is defined as follows: A + B = {a + b : a ∈ A, b ∈ B}
for every A, B ∈ P(N). All finite members of P(〈N,+, 0〉) are recognizable, and so are

some of its infinite members.

Let A ∈ P(N) be finite and nonempty, and X ∈ P(N) an arbitrary element. It

follows from the inequality X + (X\A) ⊆ A, that if X 6= ∅, then X\A ⊆ [0, max A],

and ∅\A = N. Therefore, {X\A : X ∈ P(N)} ⊆ P([0, max A]) ∪ {N}. This inequality

shows that {X\A : X ∈ P(N)} is finite, and hence A is recognizable. Furtheremore,

for every X ∈ P(N), X\∅ = ∅, and therefore ∅ is also recognizable.

If E and O are the sets of even and odd numbers, respectively, then {X\E : X ∈
P(N)} = {∅, E, O, N}. Therefore, E is recognizable. Notice that this also proves that

∅, O, and N are recognizable. We will see in Example 5.43 that all cofinite sets, which

are infinite, are also recognizable.

Finally, we give an example of an infinite set which is not recognizable. Let T =

{n(n + 1)/2 : n ∈ N} the set of triangular numbers. Then, for every n ∈ N, {n}\T =

{t− n : t ∈ T, t > n}. Now, one can verify that {n}\T 6= {m}\T for n 6= m (just consid-

ering the two first elements of each one of these sets), and thus T is not recognizable.

In the remainder of this section we investigate how recognizable elements are af-

fected by certain special maps between residuated lattices. Given two residuated lat-

tices, R′ and R, a residuated monoidal homomorphism ϕ : R′ → R, and an R-module

P = 〈P, ∗〉, one can define an R′-module P′ = 〈P, ∗′〉 in the following way: for every

a ∈ R′, and every x ∈ P, let a ∗′ x = ϕ(a) ∗ x. It is easy to see that for all x ∈ P, and

a, b ∈ R′ a ∗′ (b ∗′ x) = (a ·′ b) ∗′ x, and e ∗′ x = x, since ϕ preserves products and the

neutral element. To show is that ∗′ : R′ × P→ P is residuated in both coordinates, note

that if ϕ+ is the residual of ϕ, then for all a ∈ R′ and x, y ∈ P we have:

a ∗′ x 6 y ⇔ ϕ(a) ∗ x 6 y ⇔ ϕ(a) 6 y/∗ x ⇔ a 6 ϕ+(y/∗ x) ⇔ x 6 ϕ(a)\∗y.

Thus, the residuals of ∗′ are given by y/∗′ x = ϕ+(y/∗ x) and a\∗′y = ϕ(a)\∗y.

Definition 5.37. Given two residuated lattices, R′ and R, an R-module P = 〈P, ∗〉,
and a residuated monoidal homomorphism ϕ : R′ → R, we say that the R′-module

P′ = 〈P, ∗′〉 is obtained from P and ϕ by restriction of scalars.

Proposition 5.38. Let ϕ : R′ → R be a residuated monoidal homomorphism P an R-module,

let P′ the R′-module be obtained by restriction of scalars from P and ϕ, and let a′ ∈ R′, a ∈ R

2This example was suggested by N. Galatos.
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be arbitrary elements. If P recognizes a, then P′ recognizes ϕ+(a). Moreover, if ϕ is injective

and P recognizes ϕ(a′), then P′ recognizes a′; and if ϕ is surjective and P′ recognizes a′, then

P recognizes ϕ(a′).

Proof. In order to prove the first part, notice that if a ∈ R is recognized by P, and t, i ∈ P,

then a = t/∗ i and then ϕ+(a) = ϕ+(t/∗ i) = t/∗′ i. For the second part, we recall that if ϕ

is residuated and injective, then its residual ϕ+ is a left inverse, that is, ϕ+ϕ(a′) = a′, for

every a′ ∈ R′. Thus, if ϕ(a′) is recognized by P and t, i ∈ P, then ϕ(a′) = t/∗ i, whence

we obtain a′ = ϕ+ϕ(a′) = ϕ+(t/∗ i) = t/∗′ i. Analogously, if ϕ is surjective, then ϕ+ is

a right inverse, and if a′ is recognized by P′ and t, i ∈ P, then a′ = t/∗′ i = ϕ+(t/∗ i),

whence we obtain ϕ(a′) = ϕϕ+(t/∗ i) = t/∗ i.

Remark 5.39. In view of the preceding proposition, recognizability is a notion invariant under

isomorphisms of residuated lattices. That is, if ϕ is an isomorphism between R′ and R, and

a′ ∈ R, then a′ is recognizable if and only if ϕ(a′) is recognizable.

5.5 Regular Elements and Boolean-Recognizability

We will devote this section to the study of two problems, providing some interesting re-

sults that might lead to their eventual resolutions. The first one is finding a Kleene-like

characterization of the recognizable elements of a residuated lattice, while the second

seeks a characterization of those elements of a residuated lattice that are recognizable

by Boolean cyclic modules.

A celebrated result due to Kleene establishes that recognizable languages coincide

with regular languages. The set of regular languages on an alphabet Σ is the smallest

set containing the full language Σ∗, the singleton languages {w}, for every w ∈ Σ∗, and

is closed under finite intersections and unions, complex multiplication,3 complemen-

tation, and the operation ( )∗. A similar characterization for recognizable elements in

a residuated lattice would most likely require an appropriate abstraction of the corre-

sponding terms: whereas intersection, union, and complex multiplication correspond

to the meet, join, and multiplication operations of the residuated lattice, respectively, it

is not obvious what the proper abstraction of the other operations should be.

As we have already observed, not every residuated lattice has recognizable ele-

ments. We will see that Kleene’s characterization strongly depends on the fact that the

residuated lattice P(Σ∗) is of the form P(M), and even on the monoidal properties

3See Example 5.9.
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of Σ∗. Nevertheless, we can prove that whenever a residuated lattice has recognizable

elements, the set they form is closed under some operations.

Proposition 5.40. A residuated lattice R has recognizable elements if and only if it has a top

element >, in which case the set of recognizable elements of R contains >, and is closed under

(finite) meets and residuation by arbitrary elements. In other words, given two recognizable

elements a, b ∈ R and arbitrary c ∈ R, the elements a ∧ b, c\a and a/c are recognizable.

Proof. If a residuated lattice R does not have a top element, then it is easy to see that

every closure operator γ on R would have an infinite associated closed system Rγ,

because of the expansiveness of γ, and therefore for every a ∈ R, Rγa would be infinite,

and hence no element of R would be recognizable. On the other hand, if R has a top

element >, then from x · > 6 >, which is true for every x ∈ R, one could derive that

> 6 x\>, and therefore Rγ> = {>}, which shows that > is recognizable.

Note that x\(a ∧ b) = x\a ∧ x\b, and hence Rγa∧b = {x\(a ∧ b) : x ∈ R} ⊆ {s ∧ t :

s ∈ Rγa , t ∈ Rγb}. Since Rγa and Rγb are finite by hypotheses, so is Rγa∧b , and therefore

a ∧ b is recognizable.

In order to prove that c\a is recognizable, just notice that c\a ∈ Rγa , and therefore

γa(c\a) = c\a and Rγa is finite, whence in virtue of Theorem 5.31, c\a is recognizable.

Finally, in order to prove that a/c is recognizable, consider the inclusion 〈a/c〉Rd =

{(a/c)/x : x ∈ R} = {a/(xc) : x ∈ R} ⊆ {a/x : x ∈ R} = 〈a〉Rd , and since 〈a〉Rd is

finite, so is 〈a/c〉Rd , what shows that a/c is recognizable.

Remark 5.41. Proposition 5.40 gives another reason why no element of a non-trivial `-group is

recognizable (see Example 5.35), since such an algebra is unbounded.

There is a very straightforward argument why the complement of a recognizable

language L over an alphabet Σ is recognizable: if L is recognized by 〈S, Σ, ?〉 with

initial state i and set of final states F, then L is the set of all words w ∈ Σ∗ such that

w ? i ∈ F, and therefore the complement L′ of L is the set of all words w ∈ Σ∗ such

that w ? i /∈ F, that is to say, L′ is recognized by the same automaton 〈S, Σ, ?〉 with the

same initial state i and set of final states F′, the complement of F. Nevertheless, the

modules 〈P(S), ∗〉γL and 〈P(S), ∗〉γL′ might look very different. Actually, the property

that the set of recognizable elements is closed under complementation is true for every

residuated lattice that arises as in Example 5.9.

Proposition 5.42. Let M be a monoid. Then, the set of recognizable elements of the residuated

lattice P(M) is closed under complementation and under (finite) unions.
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Proof. First of all notice that, for every A ∈ P(M), ∅\A = M, and for every X 6= ∅,

X\A =
(⋃

x∈X

{x}
)
\A =

⋂
x∈X

(
{x}\A

)
.

Thus, it is clear that P(M)γA = {X\A : X ∈ P(M)} is finite if and only if
{
{x}\A : x ∈

M
}

is finite. Now, for every x ∈ M, we have:

{x}\A = {y ∈ M : xy ∈ A} = {y ∈ M : xy /∈ A}′ = {y ∈ M : xy ∈ A′}′ =
(
{x}\A′

)′
Hence, {x}\A′ =

(
{x}\A

)′, whence by Theorem 5.31 it follows that if A is recognizable,

then so is A′. Finally, we only need to notice that the empty union is ∅ = M′, which

is therefore recognizable, and that if A and B are recognizable, then A ∪ B = (A′ ∩ B′)′

which is also recognizable in virtue of Proposition 5.40.

Example 5.43. Let consider the residuated lattice P(〈N,+, 0〉) of Example 5.36. Since

we proved that its finite elements are recognizable, its cofinite elements are also recog-

nizable. As we mentioned before, the lattices P(N)γA and P(N)γA′ might look very

different. For instance, whereas (see Example 5.54 on page 109) the lattice of P(N)γ{n}

is that of Diagram (5.4), the lattice of P(N)γ{n}′ is isomorphic to the Boolean algebra

P({0, 1, . . . , n}).

The fact that singletons {w}, for w ∈ Σ∗, are recognizable languages, not only

depends (from our perspective) on the fact that the residuated lattice P(Σ∗) is of the

form P(M), but also on the monoidal properties of Σ∗.

Proposition 5.44. Let M be a monoid and a ∈ M an arbitrary element, and let consider the

residuated lattice P(M). If a has a finite number of divisors then {a} is recognizable. If M is

cancellative and {a} is recognizable, then a has a finite number of divisors.

Proof. As we showed in the proof of Proposition 5.42, for any A ∈ P(M), A is recog-

nizable if and only if
{
{x}\A : x ∈ M

}
is finite. Given a, x ∈ M, we have that

{x}\{a} = {y ∈ M : xy = a}.

Therefore, this set is empty, except when x is a divisor of a, whence it follows that if

a has a finite number of divisors, then it is recognizable. For the other implication,

observe that, given two different divisors x, x′ of an element a, there exist two elements

y, y′ such that xy = a = x′y′, and by the cancellativity of M, we obtain y 6= y′. There-

fore, the sets {x}\{a} and {x′}\{a} are different. Thus, if a has an infinite number of

divisors, {a} is not recognizable.
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Example 5.45. If M is an infinite group, then no singleton of P(M) is recognizable. On

the other hand, notice that 0 has an infinite number of divisors in 〈N, ·, 1〉, but for every

x ∈ N, {x}\{0} = {y ∈ N : xy = 0} = {0} if x 6= 0, and {0}\{0} = N. Therefore, {0}
is recognizable, and since all the positive natural numbers have only a finite number of

divisors, it follows that every singleton of P(〈N, ·, 1〉) is recognizable.

We next direct our attention to another problem that does not focus on the structure

of the set of recognizable elements of a residuated lattice, but on the structure of the

modules that recognize them. We notice that, by virtue of Theorem 5.5, given a recog-

nizable language L, there exists a surjective homomorphism of monoids ϕ : Σ∗ → M

and a set T ⊆ M such that M is finite and L = ϕ−1(T). As we mentioned before, this

map extends to a residuated map ϕ : P(Σ∗) → P(M), which is also a homomorphism

of monoids and whose residual is ϕ−1. We can consider the residuated lattice P(M) as

a module P over itself, and since it is finite (because M is finite), every of its elements

is recognizable. In particular T is recognizable by P which implies, in light of Proposi-

tion 5.38, that L = ϕ−1(T) is recognized by P′, the P(Σ∗)-module obtained by P and ϕ

by restriction of scalars. Note that since P is a cyclic P(M)-module and ϕ is surjective,

P′ is also cyclic, and moreover the lattice reduct of P′ is a Boolean algebra.

Definition 5.46. Given a residuated lattice R, we say that it is Boolean if its lattice reduct

is so. Also, given an R-module P, we say that P is Boolean4 if its lattice reduct is so.

Thus, we have stablished the following result.

Proposition 5.47. Every recognizable language on any alphabet is recognized by a Boolean

cyclic module.

The questions that follow are completely natural: are all the recognizable elements

of residuated lattices recognized by Boolean cyclic modules? If not, which elements

are? And in particular, given an element a of a residuated lattice R, when is Rγa a

Boolean module? As we will see, not every recognizable element in a residuated lattice

can be recognized by a Boolean cyclic module (see Example 5.63). However, let us

analyze a bit further the case of recognizable languages. Since ϕ is onto P(M), because

ϕ : Σ∗ → M is surjective, we have that γ = ϕ−1ϕ is a closure operator on P(Σ∗) such

that P(Σ∗)γ
∼= P(M), as lattices. We prove now that this closure operator satisfies the

4The reader may be familiar with the concept of a Boolean module as introduced by Brink in [16], but

those are not exactly the same kind of structures, as Brink’s Boolean modules are modules over relation

algebras.
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equation

γ(a ∧ γ(b)) = γ(a) ∧ γ(b), (5.3)

which has interesting consequences, as we will see.

Proposition 5.48. Given any map ϕ : X → Y, and its extension to a residuated map ϕ :

P(X)→ P(Y), for every A, B ⊆ X, we have

ϕ
(

ϕ−1ϕ(A) ∩ B
)
= ϕ(A) ∩ ϕ(B).

Moreover, the closure operator γ = ϕ−1ϕ satisfies equation (5.3).

Proof. Since ϕ = ϕϕ−1 ϕ, and ϕ(S ∩ T) ⊆ ϕ(S) ∩ ϕ(T), for any S, T ⊆ X, we get

ϕ
(

ϕ−1ϕ(A) ∩ B
)
⊆ ϕ(A) ∩ ϕ(B). Conversely, choose y ∈ ϕ(A) ∩ ϕ(B). Then there

exist a ∈ A and b ∈ B such that y = ϕ(a) = ϕ(b). Thus, b ∈ ϕ−1 ϕ(A), and therefore we

get y = ϕ(b) ∈ ϕ
(

ϕ−1 ϕ(A) ∩ B
)
. Hence, the equation holds. Finally, since ϕ−1 is the

residual of a residuated map, hence it preserves meets, and therefore we have

ϕ−1ϕ
(

ϕ−1 ϕ(A) ∩ B
)
= ϕ−1(ϕ(A) ∩ ϕ(B)

)
= ϕ−1 ϕ(A) ∩ ϕ−1 ϕ(B),

that is, γ satisfies equation (5.3).

Theorem 5.49. Let B be a Boolean algebra and γ a closure operator on B. If γ satisfies equa-

tion (5.3) for all a, b ∈ B, then Bγ is also a Boolean algebra.

Proof. Since B is a lattice, then Bγ also inherits a structure of lattice, where x ∧γ y =

x ∧ y and x ∨γ y = γ(x ∨ y). We are going to show that Bγ is actually a bounded

complemented distributive lattice.

(i) Bounds: Clearly, by the monotonicity of γ, γ(⊥) and γ(>) = > are the bottom and

top elements of Bγ.

(ii) Complements: For any element x ∈ Bγ, we will see that γ(x′) is its complement in

Bγ. Indeed, using equation (5.3):

x ∧γ γ(x′) = γ(x) ∧γ γ(x′) = γ(x) ∧ γ(x′) = γ(γ(x) ∧ x′) = γ(x ∧ x′) = γ(⊥).

We also have:

x ∨γ γ(x′) = γ(x ∨ γ(x′)) > γ(x ∨ x′) = γ(>) = >.

(iii) Distributivity: If x, y, z ∈ Bγ, then using equation (5.3) we have:

x ∧γ (y ∨γ z) = x ∧ γ(y ∨ z) = γ(x) ∧ γ(y ∨ z) = γ(γ(x) ∧ (y ∨ z)) = γ(x ∧ (y ∨ z))

= γ((x ∧ y) ∨ (x ∧ z)) = (x ∧ y) ∨γ (x ∧ z) = (x ∧γ y) ∨γ (x ∧γ z).
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Remark 5.50. Obviously, if B is a complete Boolean algebra, then Bγ is also a complete Boolean

algebra.

The converse of Theorem 5.49 is not true. That is, equation (5.3) is a sufficient but

not a necessary condition for Bγ to be a Boolean algebra. The following is an example

of such a case.

Example 5.51. Let B the Boolean algebra represented by the diagram:

>

c′ b′ a′

a b c

⊥

The map γ : B → B defined by γ(a′) = γ(b′) = γ(c′) = γ(>) = >, γ(a) = a,

γ(b) = b, γ(c) = c, γ(⊥) = ⊥, is a closure operator and has a Boolean image, but γ

fails equation (5.3), because γ(γ(a) ∧ a′) = γ(a ∧ a′) = γ(⊥) = ⊥, but γ(a) ∧ γ(a′) =

a ∧> = a.

It is easy to see that the Boolean image Bγ is not necessarily a Boolean subalgebra of

B, just because γ(⊥) may not be ⊥. But, the following proposition states that, under the

assumption of equation (5.3) for a closure operator γ on a Boolean algebra B, γ(⊥) = ⊥
is an equivalent condition to Bγ being a Boolean subalgebra of B.

Corollary 5.52. Let γ be a closure operator on a Boolean algebra B satisfying equation (5.3).

Then, the following are equivalent.

(i) Bγ is a Boolean subalgebra of B.

(ii) γ(⊥) = ⊥.

(iii) γ(a) = ⊥ if and only if a = ⊥.

Proof. (i) ⇔ (ii): If Bγ is a Boolean subalgebra of B, then clearly γ(⊥) = ⊥. For the

reverse direction, assume γ(⊥) = ⊥. It is enough to show that Bγ is closed under

complementation. If it is true, then Bγ is also closed under finite joins, because x ∨ y =

(x′ ∧ y′)′ ∈ Bγ, for any x, y ∈ Bγ. Therefore, we need to show that for any x ∈ Bγ,

γ(x′) = x′. But, by the part (ii) of the proof of Theorem 5.49, and by our hypotheses,

we know that x ∧ γ(x′) = x ∧γ γ(x′) = γ(⊥) = ⊥, and therefore γ(x′) 6 x′, because in

a Boolean algebra a ∧ b = ⊥ implies b 6 a′. It follows that γ(x′) = x′, as we wanted to

prove.

(ii) ⇔ (iii): This equivalence is trivial.



5.5. Regular Elements and Boolean-Recognizability 109

Equation (5.3) has an interesting application is the setting of frames. It is well known

that given a nucleus γ on a frame F, the image Fγ is also a frame.5 But, the following

proposition states that equation (5.3), which is satisfied by every nucleus, is sufficient

to prove this result.

Proposition 5.53. Let γ be a closure operator on a frame F satisfying equation (5.3). Then, the

image Fγ is also a frame.

Proof. We know that the image Fγ is a complete lattice and the meets in F and in Fγ

coincide. We need to show that for any x ∈ Fγ and any family {xi : i ∈ I} ⊆ Fγ,

x ∧∨Fγ

I xi =
∨Fγ

I (x ∧ xi). We have:

x ∧
∨Fγ

I
xi = x ∧ γ

(∨F

I
xi
)
= γ(x) ∧ γ

(∨F

I
xi
)
= γ

(
γ(x) ∧

∨F

I
xi
)
= γ

(
x ∧

∨F

I
xi
)

= γ
(∨F

I
(x ∧ xi)

)
=
∨Fγ

I
(x ∧ xi).

We next apply equation (5.3) to closure operators of the form γa for a recognizable

element a of a Boolean residuated lattice. As the example below shows, such operators

may not satisfy equation (5.3).

Example 5.54. Consider the residuated lattice P(〈N,+, 0〉) of Example 5.36. For any

pair of numbers n, m ∈ N, its easy to compute {n}\{m} = {m}/{n} = {m− n} if n 6

m, and otherwise {n}\{m} = {m}/{n} = ∅. Therefore γ{n}({m}) = ({n}/{m})\{n} =
{n−m}\{n} = {n− (n−m)} = {m} if m 6 n, and γ{n}({m}) = ({n}/{m})\{n} =
∅\{n} = N otherwise. Moreover, its not difficult to see that if A ⊆ N contains more

than one number, then γ{n}(A) = N. Therefore, the closure system associated to γ{n}

is:
N

{0} {1} . . . {n− 1} {n}

∅

(5.4)

which evidently is a Boolean algebra only when n = 1. Hence, by Theorem 5.49, for

every n 6= 1, the closure operator γ{n} on P(〈N,+, 0〉) fails equation (5.3).

Given a frame F, the closure operators on F of the form γa, for some a ∈ F, are

special. As we see in the following theorem (see also [39]), they produce Boolean

algebras.

5This is because if γ is a nucleus on a frame F, then γ is a closure operator on F, and therefore

Fγ = 〈Fγ,∧〉 is an F-module. In particular, ∧ is residuated on both coordinates on Fγ, and therefore it

distributes with respect to arbitrary joins.
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Theorem 5.55. Given a frame F and an arbitrary element a ∈ F, the image Fγa is a Boolean

algebra.

Proof. Since γa is a closure operator on F, γa is a nucleus on F, by virtue of Proposi-

tion 5.21. It follows that γa satisfies equation (5.3), and thus by Proposition 5.53, Fγa is

also a frame. It remains to prove that Fγa is complemented. First, notice that for every

a ∈ F, ⊥ → a = >, and since > is the neutral element of F as a residuated lattice, we

also have that > → a = a and a → a = >. Therefore the bottom and top elements of

Fγa are γ(⊥) = a and >, respectively. We prove now that for every x ∈ Fγa , x → a is the

complement of x in Fγa .

Let x ∈ Fγa be an arbitrary element. Since x ∧ (x → a) 6 a, and a is the bottom

element of Fγa and hence a 6 x ∧ (x → a), we have that x ∧ (x → a) = a. Thus

x ∨γa (x → a) = γa(x ∨ (x → a)) =
(
(x ∨ (x → a))→ a

)
→ a

=
(
(x → a) ∧ ((x → a)→ a)

)
→ a =

(
(x → a) ∧ γa(x)

)
→ a

=
(
(x → a) ∧ x

)
→ a = a→ a = >.

We have proved that every recognizable element a of a frame F, is recognized by a

Boolean cyclic module, namely Fγa . On the other hand, we have seen that it is not true

in general that for any residuated lattice R and any element a ∈ R, Rγa is a Boolean

module, even if R is Boolean. We close this chapter by providing sufficient conditions

for a recognizable element of a Boolean residuated lattice to be recognized by a Boolean

cyclic module. We first introduce some additional concepts (see [84]).

Definition 5.56. Let R be a residuated lattice and let a an arbitrary element of R.

• a is cyclic if a/x = x\a, for every x ∈ R.

• a is two-sided if a\a = a/a = >.

• a is semiprime if for every x ∈ R, x2 6 a ⇒ x 6 a.

• a is localic if it is cyclic, two-sided, and semiprime.

We center our attention on localic elements because of the following theorem (see [12]).

Theorem 5.57. Let R be a complete residuated lattice. Then, there exists a residuated map

f : R→ B of R onto a Boolean algebra B if and only if R contains a localic element.

The characterizations of the following lemma will be used extensively.

Lemma 5.58. Let R be a residuated lattice, and a ∈ R an arbitrary element.

(i) a is cyclic if and only if for every x, y ∈ R, xy 6 a ⇔ yx 6 a.
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(ii) a is two-sided if and only if for every x ∈ R, xa 6 a and ax 6 a.

(iii) if a is cyclic and two-sided, then it is semiprime if and only if for every x ∈ R, x\a = x2\a.

Proof. (i) This is an immediate consequence of residuation.

(ii) For an element a ∈ R, a\a = > is equivalent to say that for every x ∈ R, x 6 a\a,

or which is the same as for every x ∈ R, ax 6 a; and analogously for a/a = > and for

every x ∈ R, xa 6 a.

(iii) If for every x ∈ R, x\a = x2\a, then it is easy to see that it is semiprime, because if

x2 6 a, then e 6 x2\a = x\a, and therefore x 6 a. In order to see the other implication

suppose that a is cyclic, two-sided and semiprime. Thus, if y 6 x2\a, then x2y 6 a, and

therefore xyx 6 a, by the cyclicity of a, which implies that (yx)2 = (yx)(yx) 6 y(xyx) 6

ya 6 a, because a is two-sided. And therefore, yx 6 a, because it is semiprime, whence

we obtain xy 6 a, again by cyclicity, and hence y 6 x\a. Now, if y 6 x\a, then xy 6 a,

and therefore x2y = x(xy) 6 xa = a, because a is two-sided, and hence y 6 x2\a. Thus,

we have proved that y 6 x2\a if and only if y 6 x\a, which implies that x\a = x2\a.

Remark 5.59. Notice that if a is a cyclic element of a residuated lattice, then γa is a nucleus of R.

First, since γa is a structural closure operator on R, hence for every x, y ∈ R, xγa(y) 6 γa(xy).

Now, for x, y ∈ R, using the cyclicity of a we have

y(a/(xy))γa(x) = y((xy)\a)γa(x) = y(y\(x\a))γa(x) 6 (x\a)γa(x) = (a/x)γa(x) 6 a.

Thus, using again the cyclicity of a, we have (a/(xy))γa(x)y 6 a, whence it follows that

γa(x)y 6 (a/(xy))\a = γa(xy). Now, using this inequality and the structurallity of γa we

obtain:

γa(x)γa(y) 6 γa(xγa(y)) 6 γa(γa(xy)) = γa(xy).

Theorem 5.60. Let R be a complete residuated lattice. For every localic element a ∈ R, the

module Rγa is Boolean.

Proof. To begin with, we are going to show that ·γa and ∧ coincide in Rγa . Indeed

x, y ∈ Rγa . We claim that γa(x · y) = x ∧ y. Notice that since a is two-sided, we have

(a/x)(xy) = ((a/x)x)y 6 ay 6 a. Thus, xy 6 (a/x)\a = γa(x) = x. Analogously, and

using the cyclicity of a, we have (xy)(a/y) = (xy)(y\a) = x(y(y\a)) 6 xa 6 a, and

again by the cyclicity of a, it follows that (a/y)(xy) 6 a. Thus, xy 6 (a/y)\a = γa(y) =

y. Hence, xy 6 x ∧ y, whence we have γa(xy) 6 x ∧ y.

In order to prove the other inequality, suppose that t 6 x ∧ y. Since t 6 x, hence

x\a 6 t\a, and thus t(x\a) 6 a, and by the cyclicity of a, (x\a)t 6 a. Now, since t 6 y,
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hence t((xy)\a) = t(y\(x\a)) 6 y(y\(x\a)) 6 x\a. Therefore, we have(
((xy)\a)t

)2
=
(
((xy)\a)t

)(
((xy)\a)t

)
= ((xy)\a)

((
t((xy)\a)

)
t
)
6 ((xy)\a)

(
(x\a)t

)
6 ((xy)\a)a 6 a.

Since a is semiprime, ((xy)\a)t 6 a, and hence by the cyclicity of a, (a/(xy))t 6 a,

which implies t 6 (a/(xy))\a = γa(xy). Thus we have proved that, in particular,

x ∧ y 6 γa(xy), as we wanted.

Therefore we have that indeed ∧ and ·γa coincide in Rγa , and since ·γa is residuated

in both coordinates, so is ∧, which means that ∧ distributes over arbitrary joins of Rγa .

Therefore Rγa is actually a frame that contains the element a. Now, since the residuals

of ·γa are the restictions of the residuals of · , the corresponding restriction of γa is a

closure operator on Rγa , which is actually the identity. By virtue of Theorem 5.55, Rγa

is a Boolean algebra, and this completes the proof.

The following is an immediate consequence of the preceding theorem.

Corollary 5.61. Let R be a complete residuated lattice. Every recognizable localic element is

recognized by a Boolean cyclic module.

Example 5.62. Consider the residuated lattice R = 〈N,∧,∨, ·, \, /, 1〉 over the set of

natural numbers, where the order is given by division as follows: n 6 m ⇔ m | n.

This is a complete commutative residuated lattice, and therefore we can denote both

residuals by →. Notice also that the bottom and the top elements of this residuated

lattice are ⊥ = 0 and > = 1. It is easy to see that m ∨ n = gcd(m, n), the greatest

common divisor of m and n, and n → m = m
gcd(m,n) , if m or n are different from 0, and

0 → 0 = 1. Therefore, Rγ0 = {0, 1}, and Rγm is the set of the divisors of m, if m 6= 0.

Thus, every element of this complete residuated lattice is recognizable. Moreover, since

it is commutative, every element is cyclic, and given any a, x ∈ N, a | ax = xa, which

means that ax 6 a and xa 6 a, and therefore a is two-sided. Furthermore, every

square-free natural number is semiprime, and hence localic. Thus, by Corollary 5.61,

every square-free natural number is recognized by a Boolean module. For example, the

number 30 is recognized by the Boolean module Rγ30 , whose Hasse diagram is:

1

2 3 5

6 10 15

30
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The converse of Corollary 5.61 is not true in general, that is, there are elements of

complete residuated lattices that are recognized by Boolean cyclic modules, but are not

localic. As we saw in Example 5.54, {1} is recognized by a four-element Boolean cyclic

module. Nevertheless, {1} is not two-sided, since {1}\{1} = {0} 6= N, and therefore

it is not localic.

Lastly, we show with an example that not every recognizable element can be recog-

nized by a Boolean cyclic module. The question whether any element of a residuated

lattice can be recognized by a Boolean module, not necessarily cyclic, is still open.

Example 5.63. Consider the residuated lattice R = 〈N∪{∞},∧,∨, ·, 1〉 of Example 5.34.

As we saw, every element of this residuated lattice is recognizable. But the cyclic

R-modules, are all chains, because R itself is a chain and the cyclic R-modules are

always of the form Rγ for some closure operator γ on R. Given an element n ∈ R, and

a closure operator γ on R that fixes n, we have that γ 6 γn by Proposition 5.25, and

therefore Rγa ⊆ Rγ. Therefore, all we have to do is showing an element n ∈ R such that

Rγn has more that two elements. For instance, it is easy to see that Rγ5 = {0, 1, 2, 5, ∞},
and therefore there is no Boolean cyclic module that recognizes 5.





Chapter 6

Conclusions and Open Problems

We devote this final chapter to concisely summarize the principal results of this dis-

sertation, as well as presenting some of the problems that remain open. We start be

recalling that the goal of Chapter 2 was understanding the class of projectable integral

GMV algebras from a categorical point of view. We saw that they tantamount to the

class of Gödel GMV algebras, which form a variety. The two main results of Chapter 2

describing the category of projectable integral GMV algebras and the variety of Gödel

GMV algebras are the following:

Theorem A (See Theorem 2.14.). The categories of projectable IGMV algebras and of negative

cones of projectable `-groups with a nucleus are equivalent.

Theorem B (See Theorem 2.28.). There is an adjunction between the categories whose objects

are, respectively, Gödel GMV algebras and Gödel negative cones with a retraction and a dense

nucleus on the image of the retraction.

We see that Theorem B is weaker than Theorem A, in the sense that we only have

an adjunction, instead of a categorical equivalence. Thus, the first question is obvious:

Problem 1. Is there an equivalence between the categories of Gödel GMV algebras

and Gödel negative cones with a retraction and a dense nucleus on the image of the

retraction.

And if this equivalence does not exist, then we could ask the following:

Problem 2. Can we modify the structure of the Gödel negative cones with a retraction

and dense nucleus in some way in order to obtain an equivalence with the category of

Gödel GMV algebras?
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Chapter 3 is devoted to finding different kinds of hulls for semilinear residuated

lattices. We started by proving that every semilinear e-cyclic residuated lattice L is

densely embeddable in an residuated lattice O(L) (Theorem 3.14), and furtheremore

O(L) is laterally complete (Theorem 3.21). As a consequence, we obtain one of the

main results of this chapter:

Theorem C (Corollary 3.22). Every e-cyclic semilinear residuated lattice L is densely embed-

dable in a laterally complete lattice that belongs to the variety generated by L.

Later, we also proved that O(L) is strongly projectable (Theorem 3.31), which com-

bined with Theorems 3.14 and 3.21 gives us the following result:

Theorem D (Corollary 3.33). Every e-cyclic semilinear residuated lattice L is densely embed-

dable in a �-orthocomplete lattice that belongs to the variety generated by L.

We also look for minimal extensions, which we call hulls, of L, containing L densely,

and being laterally complete, projectable, strongly projectable, and orthocomplete re-

spectively. We show the existence and uniqueness of projectable and strongly pro-

jectable hulls of semilinear residuated lattices; and in the special cases of GMV algebras,

we also prove the existence and uniqueness of laterally complete hulls and orthocom-

plete hulls.

Theorem E (Theorem 3.53). Every e-cyclic semilinear residuated lattice L has a strongly

�-projectable hull and a �-projectable hull in the variety generated by L; and every semilinear

GMV algebra L has laterally complete hull and an �-orthocomplete hull in the variety generated

by L.

Lastly, we study the residuated lattice O<ω(L), which is contained in O(L), but in

general smaller. While O(L) is laterally complete, as we mentioned, O<ω(L) might fail

this property. Nonetheless, L is also densely embeddable in O<ω(L), which is strongly

projectable. We prove that actually O<ω(L) is the strongly �-projectable hull of L.

Theorem F (Theorem 3.55). Let L be an e-cyclic semilinear residuated lattice. Then O<ω(L)

is the strongly �-projectable hull of L.

There are many open questions concerning the hulls of residuated lattices. To start

with, we notice that Theorem F provides a description of the �-projectable hull of an

e-cyclic semilinear residuated lattice. We wonder if similar descriptions can be found

for other hulls.

Problem 3. Find descriptions of the lateral complete hull and the �-projectable hull of

a e-cyclic residuated lattice L in the manner of Theorem F, if they exists.
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Also, we could ask how necessary the semilinearity condition is. Surely, all our

techniques need semilinearity, but we wonder if there are other methods that do not

use it.

Problem 4. Up to which point the semilinearity condition is necessary in order to find

each one of the hulls?

Also, some of the results are proved only for GMV algebras, but we have not found

any counterexample to the general results. For instance, Theorem 3.50 is proven only for

GMV algebras, but this is because it is based in Lemma 3.47, for which the hypotheses

of being a GMV algebra seems very necessary. But maybe another way can be found.

Therefore, we do not know the answer to the following:

Problem 5. Given a semilinear e-cyclic residuated lattice which is laterally complete

and projectable, is it strongly projectable?

Finally, another very important issue is what is the relation between the two notions

of (strong) projectability, and when they coincide.

Problem 6. Characterize the largest class of e-cyclic residuated lattices in which (strong)

�-projectability is equivalent to (strong) ∨-projectability.

In Chapter 4, we prove the failure of the Amalgamation Property for many varieties

of residuated lattices. The main result of this chapter is the following:

Theorem G (See Theorem 4.7). Let V be a variety of residuated lattices satisfying the follow-

ing equations:

(1) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ w),

(2) x(y ∧ z)w ≈ xyw ∧ xzw.

If V ∩ LG fails the AP, then so does V .

And from it we can derive the following two results:

Theorem H (See Theorem 4.8.). The varieties SemRL and SemCanRL fail the AP.

Theorem I (Corollary 4.9). The varieties LG− and RepLG− fail the AP.

There are many open problems regarding the Amalgamation Property for residu-

ated lattices as the techniques of the Chapter 4 do not seem to be adequate to determine

whether the variety SemIRL of semilinear integral residuated lattices and the variety

SemCanIRL of semilinear cancellative integral residuated lattices fail the AP. Hence,

we propose the next two open problems:
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Problem 7. Does the variety SemIRL of semilinear integral residuated lattices fail the

AP ?

Problem 8. Does the variety SemCanIRL of semilinear cancellative integral residuated

lattices fail the AP ?

A substantially harder open problem, which is connected to the long-standing ques-

tion of embedding a totally ordered group into a divisible one, is the following:

Problem 9. Let A be an arbitrary (not necessarily commutative) totally ordered group.

Do all V-formations of the form (Z, Q, A, i, j) have an amalgam in RepLG ? Here, Z

and Q denote the totally ordered groups of integers and rationals, respectively.

More generally we can ask:

Problem 10. Let A, B be arbitrary totally ordered groups. Do all V-formations of the

form (Z, A, B, i, j) have an amalgam in RepLG? In other words, is Z an amalgamation

base of RepLG ?

As has already been remarked, all subvarieties of RL that are known to satisfy the

AP are commutative.

Problem 11. Is there a non-commutative variety of residuated lattices that satisfies the

AP? In particular, does the variety RL of all residuated lattices satisfy the AP ?

Three open problems that may have affirmative answers are the following:

Problem 12. Does the variety CanCRL of cancellative commutative residuated lattices

have the AP ?

Problem 13. Does the variety SemCanCRL of semilinear cancellative commutative

residuated lattices have the AP ?

Problem 14. Does the variety SemCRL of semilinear commutative residuated lattices

have the AP ?

Finally, we introduced in Chapter 5 the notion of a recognizable element of a residu-

ated lattice as an abstraction of the notion of a recognizable language by an automaton.

The main result of this chapter is the following internal characterization of recognizable

elements of residuated lattices, from which Myhill’s Theorem follows.

Theorem J (Theorem 5.31). Let R be a residuated lattice and a ∈ R. The following are

equivalent:
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(i) The element a is recognizable.

(ii) There exists a structural closure operator γ on R with finite image such that γ(a) = a.

(iii) The image {x\a : x ∈ R} of the closure operator γa is finite.

(iv) The set {a/x : x ∈ R} is finite.

We end the chapter studying two different problems, on which we make progress

but do not have solution yet.

Problem 15. Find a Kleene’s-like characterization of the recognizable elements of a

residuated lattice.

What we know about this problem is that, whenever R has a top element, and only

in this case, the set of recognizable elements is nonempty, contains the top element, and

it is closed under (finite) meets and residuation (see Proposition 5.40). We also found

that in the case R = P(M), for some monoid M, it is also closed under complementa-

tion and (finite) unions, although it may not contain all the singletons in general (see

Proposition 5.42).

The second and last problem that we study in this chapter is the following: we

notice that every recognizable language is recognized by a module whose poset reduct

is indeed a Boolean algebra. This is not the general case for recognizable elements of

residuated lattices. Therefore we propose the following problem:

Problem 16. Characterize the elements of a residuated lattice that are recognizable by

a Boolean module.

In this direction we prove the following result, but show that this is not a character-

ization.

Theorem K (Corollary 5.61). Let R be a complete residuated lattice. Every recognizable localic

element is recognized by a Boolean cyclic module.
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Appendix A

On Some Properties of Directoids

A.1 Introduction

It is superfluous to recall how important partially ordered sets, an in particular directed

posets, are for the whole of Mathematics. However, unlike other equally fundamental

mathematical structures, such as groups or Boolean algebras, posets and directed posets

are relational structures, not algebras, whence they do not lend themselves to be the ob-

jects of common algebraic constructions like quotient, products, subalgebras, and the

like. In fact, insofar as they exist at all for relational structures, these constructions

admit of several competing variants, non of which enjoys a universal acclaim, and are

generally recognized as more cumbersome and less efficient than the algebraic case. In

order to enable such algebraic constructions with ordered sets, J. Ježek and R. Quacken-

bush – and, independently, Gardner and Parmenter [43] – introduced in [52] the notion

of a directoid. To every directed poset A = 〈A,6〉 a groupoid D(A) can be associated in

such a way that for all a, b ∈ A, a 6 b if and only if at b = bt a = b. In the terminology

of Ježek and Quackenbush this groupoid is called a commutative directoid. Directoids

were investigated in detail by several authors; for a survey, see [19].

Here, we study some properties of directoids and some of their expansions by ad-

ditional signature. This appendix is structured as follows. In Section A.2, after recap-

ping some preliminary notions, we investigate involutive directoids, that correspond

to directed posets with an antitank involution, and some of their notable subclasses,

including complemented directoids. In Section A.3, we focus on some classes of di-

rectors where the binary operation t has “join-like” properties. In Section A.4, we

improve on the direct decomposition theorem for bounded involutive directoids given

in [19], by providing a shorter proof; moreover, we present a compact description of

central elements of complemented directoids. Finally, in Section A.5, we show that the
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variety of directoids, as well as its expansions mentioned above, all have the Strong

Amalgamation Property.

A.2 Involutive Directoids

Recall that a partially ordered set (or poset) A = 〈A,6〉 is said to be directed in case

any two a, b ∈ A have a common upper bound, i.e. in case the upper corner U(a, b) =

{c ∈ A : a, b 6 c} is nonempty. Of course, if A has a greatest element 1, then it is

directed. An antitone involution on a poset A is a unary operation ′ such that for any

a ∈ A, (a′)′ = a, and if a 6 b then b′ 6 a′. The element (a′)′ will be shortened to a′′

hereafter. It is evident that, whenever a poset with an antitone involution has a greatest

element 1, then it contains a smallest element too, namely, 1′. In place of 1′, we denote

such an element by 0. Furthermore, observe that if a ∨ b exists in A, then the infimum

a′ ∧ b′ = (a ∨ b)′ also exists in A.

A directoid (commutative directoid, in the usage of Ježek and Quackenbush) is a

groupoid D = 〈D,t〉 that satisfies the following axioms:

(D1) x t x ≈ x;

(D2) x t y ≈ y t x;

(D3) x t ((x t y) t z) ≈ (x t y) t z.

If D = 〈D,t〉 is a directoid, the partial order relation 6 defined for all a, b ∈ D by:

a 6 b ⇔ a t b = b

will be called the order induced by t on D, or its induced order, while the poset 〈D,6〉
will be called the induced poset of D.

Any directed poset A = (A,6) can be turned into a directoid as follows:

- if a 6 b, then we set a t b = b t a = b;

- if a and b are incomparable (denoted by a ‖ b), then a t b = b t a is an arbitrary

common upper bound of a and b.

The resulting directoid D(A) = 〈A,t〉 is such that its induced order coincides with

the partial ordering of A. In other words, the directoid fully retrieves the ordering of

the original poset. However, it may happen that two incomparable elements a, b ∈ A

have a supremum a ∨ b that does not coincide with our choice of a t b. And this is

a shortcoming under several respects. It is therefore our aim to prove that, for every

directed poset A = 〈A,6〉 that admit an antitone involution, we can get around this

difficulty.
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An involutive directoid is an algebra D = 〈D,t, ′〉 of type (2, 1) such that 〈D,t〉 is

a directoid and ′ is an antitone involution on the induced poset of D.

Proposition A.1. The class of involutive directoids is a variety.

Proof. We only have to prove that the quasi-identity x 6 y ⇒ y′ 6 x′ can be expressed

equationally. Indeed, it can be expressed by the single equation x′ t (x t y)′ ≈ x′. If

we assume the quasi-identity, then since a 6 a t b, we have (a t b)′ 6 a′, and therefore

a′ t (a t b)′ = a′. For the other implication, if the equation is valid, and a 6 b, then

a t b = b, and therefore a′ t b′ = a′ t (a t b)′ = a′. That is, b′ 6 a′, as required.

Recall from [19] that two elements a, b of a directoid D are said to be orthogonal in

case a 6 b′, or equivalently b 6 a′.

Theorem A.2. Let D = 〈D,t, ′〉 be an involutive directoid and 6 its induced order. The

following conditions are equivalent:

1. for all a, b ∈ D, if a, b are orthogonal then a t b = a ∨ b;

2. D satisfies the identity:

(((x t z) t (y t z)′)′ t (y t z)′) t z′ = z′. (D4)

Proof. First, notice that item (1) is equivalent to

if a 6 b′ and a, b 6 c then a t b 6 c. (A)

For, if a 6 b′ and a, b 6 c, then a t b = a ∨ b 6 c. The converse is obvious since, by

axiom (D3), a, b 6 a t b. Moreover, the identity (D4) is clearly equivalent to

((x t z) t (y t z)′)′ t (y t z)′ 6 z′, (B)

by the definition induced order..

Hence, to obtain our claim, it suffices to show the equivalence of (A) and (B). As-

sume (A). Set a = ((x t z) t (y t z)′)′ and b = (y t z)′. Clearly, (x t z) t (y t z)′ >

(y t z)′, i.e. b 6 a′. Hence, a 6 b′. Also, b =6 z′. Moreover, a′ > x t z > z. There-

fore, a 6 z′. Thus, by (A) ((x t z) t (y t z)′)′ t (y t z)′ 6 z′, which is (B). Conversely,

assume (B). Let x 6 y′ and x, y 6 z. Then y 6 x′ and x′, y′ > z′, i.e. y t x′ = x′,

x′ t z′ = x′, and y′ t z′ = y′. So we obtain:

x t y = x′′ t y = (x′ t y)′ t y = ((x′ t z′) t y)′ t y

= ((x′ t z′) t y′′)′ t y = ((x′ t z′) t (y′ t z′)′)′ t y

= ((x′ t z′) t (y′ t z′)′)′ t y′′ = ((x′ t z′) t (y′ t z′)′)′ t (y′ t z′)′

6 z.
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where the last inequality is obtained by (B).

The previous correspondence assumes a particularly interesting form when the

poset in questions bounded, and the type includes two constants denoting the bounds.

A case in point is given by effect algebras, which play a noteworthy role in quantum logic

(see [31] and [34]) – in fact, they can be presented as bounded posets equipped with an

antitone involution, such that the supremum a ∨ b exists for orthogonal elements a, b.

We have that:

Corollary A.3. Let A = 〈A,6, ′, 0, 1〉 be a bounded poset with antitone involution, and D =

〈D,t, ′, 0, 1〉 an algebra of type (2, 1, 0, 0). Then:

(1) If for any pair of orthogonal elements a, b ∈ A, a ∨ b exists, then D(A) satisfies (D2)-(D4)

and

x t 0 ≈ x. (D5)

(2) If D satisfies (D2)-(D5), then its associated order is a bounded poset with antitone involution

such that for any orthogonal elements a, b, the supremum a ∨ b exists.

Proof. (1) Since A is bounded, it follows that A is directed. Then, by Theorem A.2, D(A)

satisfies (D2)-(D4), and obviously it also satisfies (D5).

(2) First, let us observe that D is a directoid, since, putting y = z = 0 in (D3), we

get for any a ∈ D, a t a = a t (a t 0) = a t ((a t 0) t 0) = (a t 0) t 0 = a t 0 = a. Our

claim, then, follows from Theorem A.2.

Corollary A.3 entails that bounded involutive directoids such that a∨ b exists for or-

thogonal elements a, b, are completely characterized by equations (D2)-(D5), and there-

fore form a variety of type (2, 1, 0, 0).

Given an involutive directoid D = 〈D,t, ′〉, we define a new operation u as follows:

x u y = (x′ t y′)′.

It is not difficult to verify (see e.g. [19]) that 〈D,u, ′〉 is again an involutive directoid,

whose induced order is dual to the induced order of D. Moreover, the absorption laws

x u (x t y) ≈ x and x t (x u y) ≈ x, (A.1)

are satisfied. In fact, x 6 y ⇔ y′ 6 x′ ⇔ x′ t y′ = x′ ⇔ (x′ t y′)′ = x′′ ⇔
x u y = x. Therefore, since x 6 x t y, we have x u (x t y) = x. And since x u y 6 x, we

also have x t (x u y) = x. Thus, we obtain the following theorem ([19, Theorem 7.8]).
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Theorem A.4. The variety of involutive directoids is congruence distributive, with 2
3 majority

term

M(x, y, z) := ((x u y) t (y u z)) t (x u z).

Proof. We only prove that M(x, x, z) = x, the other conditions being just slight modifi-

cations thereof.

M(x, x, z) = ((x u x) t (x u z)) t (x u z) = (x t (x u z)) t (x u z)

= x t (x u z) = x.

In the absence of involution,Theorem A.4 fails, because semilattices (a subvariety of

directoids) satisfy no nontrivial lattice identity (see [38, Theorem 2]).

Let us call a bounded involutive directoid complemented in case it satisfies the equa-

tion x t x′ ≈ 1. If this directoid satisfies the equivalent conditions in Theorem A.2, we

get that x ∨ x′ = x t x′ = 1, because x 6 x = x′′, i.e., x and x′ are orthogonal. Now,

all the aforementioned properties are captured by means of identities. That is, the class

of complemented directoids satisfying (D4) forms a variety that includes, for example,

orthomodular lattices.

A.3 Saturated and Supremal Directoids

We have seen in the previous section that there are directoids where x t y = x ∨ y at

least for orthogonal or comparable elements. In this section we show that the classes of

directoids where x t y is minimal in the upper corner U(x, y), or where x t y = x ∨ y,

in case x ∨ y exists, have special significance. To this aim we introduce the following

notions: A directoid D = 〈D,t〉 is called saturated if x t y is minimal in U(x, y). D is

supremal if x t y = x ∨ y in case sup(x, y) exists.

Example A.5. Consider the following ordered set:

1

c d

a b

0

If we set a t b = c or a t b = d, and for {x, y} 6= {a, b} we take x t y = x ∨ y, then it

is a saturated directoid. However, upon setting a t b = 1, on the same ordered set, the

resulting directoid is no longer saturated, since 1 is not minimal in U(a, b), even though

it is still trivially supremal, because a ∨ b does not exist.
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Remark A.6. Note that every saturated directoid is supremal. In fact, if x ∨ y exists, then it is

minimal in U(x, y), whence x t y = x ∨ y. The previous example shows that the converse is

not true.

Theorem A.7. A directoid D = 〈D,t〉 is saturated if and only if it satisfies the quasiidentity:

(x t z ≈ z ≈ y t z) & (z t (x t y) ≈ x t y)⇒ z ≈ x t y. (Q)

Proof. Assume D satisfies (Q) and x, y 6 z 6 x t y. Then, x t z = z = y t z and

z t (x t y) = x t y. Hence, z = x t y. Therefore, x t y is minimal in U(x, y), i.e. D is

saturated. Conversely, if D is saturated, and x t z = z = y t z and z t (x t y) = x t y

hold, then x, y 6 z 6 x t y. Since z ∈ U(x, y) and x t y is minimal in U(x, y), then

x t y = z.

Observe that the quasi-identity (Q) is in fact equivalent to the condition:

x, y 6 z 6 x t y⇒ z ≈ x t y.

By Theorem A.7, the class of saturated directoids is a quasivariety. The next example

shows that it is not a variety, because it is not closed under quotients.

Example A.8. Let D be the directoid given by the following diagram:

1

y x z

a b

where a t b = x and p t q = p ∨ q for the remaining elements. Then D is a saturated

directoid. Consider the congruence θ(x, 1). Then, we obtain the quotient

[1]θ = [x]θ

[y]θ [z]θ

[a]θ [b]θ

where [a]θ t [b]θ is not minimal in U
(
[a]θ , [b]θ

)
.

Note that the variety of join semilattices is a nontrivial class strictly contained in

the quasivariety of saturated directoids. For the involutive directoids, we can provide a

sufficient condition for saturation formulated in the form of an identity.
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Theorem A.9. Let D = 〈D,t, ′〉 be an involutive directoid. If D satisfies((
x u ((x t y) u z)

)
t
(
y u ((x t y) u z)

))
t z ≈ z (D6)

then D is saturated.

Proof. Suppose that for a, b, c ∈ D a t c = c = b t c and c t (a t b) = a t b. Then,

c = ((au ((at b)u c))t (bu ((at b)u c)))t c = (at b)t c = at b, whence we get our

conclusion.

Observe that the variety of involutive directoids satisfying (D6) contains all the in-

volutive lattices. We can also characterize the quasivariety of supremal directoids.

Theorem A.10. A directoid is supremal if and only if it satisfies the quasi-equation

x, y 6 w & w 6 x t y & x, y, z 6 z ⇒ w = x t y.

Proof. If a directoid D satisfies the antecedent of the quasi-equation, the w is the smallest

element in U(x, y). Therefore, if it is supremal then w = xt y = x∨ y. And if the quasi-

equation itself is satisfied then it is clear that D is supremal.

Let us note that the quasi-identity of Theorem A.10 can be easily expressed as a

quasi-identity in the language of directoids.

A.4 Decomposition of Complemented Directoids

In [19, Theorem 7.28], the standard direct decomposition theorem for orthomodular

lattices (see eg. [17, Theorem 2.7]) is generalized to the effect that an appropriate version

of it is shown to hold for bounded involutive directoids. Contextually, a characterization

of central elements of bounded involutive directoids is provided. The aim of this section

is giving an alternative proof of this result, as well as a simplified description of central

elements in case the directoid is complemented. To this aim, we put to good use the

tools developed in the theory of Church algebras (see [85]).

The key observation motivating the introduction of Church algebras is that many

algebras arising in completely different fields of Mathematics – including Heyting alge-

bras, rings with unit, or combinatory algebras – have a term operation q satisfying the

fundamental properties of the if-then-else connective: q(1, x, y) ≈ x and q(0, x, y) ≈ y.

As simple as they may appear, these properties are enough to yield rather strong results.

This motivates the next definitions.
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An algebra A of type ν is a Church algebra if there are term-definable elements

0A, 1A ∈ A and a term operation qA such that for all a, b nA, qA(1A, a, b) = a and

qA(0A, a, b) = b. A variety V of type ν is a Church variety if every member of V is a

Church algebra with respect to the same term q(x, y, z) and the same constants 0, 1.

Expanding on an idea due to Vaggione (see [91]), we also say that an element e of a

Church algebra A is central if the pair (θ(e, 0), θ(e, 1)) is a pair of complementary factor

congruences on A. By Ce(A) we denote the center of A, i.e. the set of central elements

of the algebra A.

By defining x ∧ y = q(x, y, 0), x ∨ y = q(x, 1, y), and x∗ = q(x, 0, 1), we get:

Theorem A.11. [85] Let A be a Church algebra. Then Ce(A) = 〈Ce(A),∧,∨, ∗, 0, 1〉 is a

Boolean algebra with is isomorphic to the Boolean algebra of factor congruences of A.

Hereafter, it will be clear from the context when the symbols ∧,∨ will denote the

previously defined operations on Church algebras instead of defining lattice meet and

join, respectively.

If A is a Church algebra of type ν and e ∈ A is a central element, then we define

Ae = 〈Ae; ge〉g∈ν to be the ν-algebra defined as follows:

Ae = {e ∧ b : b ∈ A}; ge(e ∧ b) = e ∧ g(e ∧ b).

By [65, Theorem 4], we have that:

Theorem A.12. Let A be a Church algebra of type ν and e a central element. Then we have:

1. For every n-ary g ∈ ν and every sequence of elements b ∈ An, e ∧ g(b) = e ∧ g(e ∧ b),

so that the function h : A→ Ae, defined by h(b) = e∧ b, is a homomorphim from A onto

Ae.

2. Ae is isomorphic to A/θ(e, 1). It follows that A ∼= Ae ×Ae′ , for every central element e,

as in the Boolean case.

The if-then-else term that makes orthomodular lattices into Church algebras works,

more generally, for bounded involutive directoids:

Proposition A.13. Bounded involutive directoids form a Church algebra variety with respect

to the term q(x, y, z) = (x t z) u (x′ t y).

Proof. If A is a bounded involutive directoid, and a, b ∈ A, then qA(1, a, b) = (1 t b) u
(1′ t a) = 1u (0t a) = 1u a = a. And also, qA(0, a, b) = (0t b)u (0′ t a) = bu (1t a) =

b u 1 = b.
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In [19, Chapter 7], central elemetns (in Vaggione’s sense) of a bounded involutive

directoid D are described as the members of C(D) ∩ Is(D), namely, those elements e

that satisfy the following conditions for all a, b ∈ D:

a = (e u a) t (e′ u a) (a t b) u e = (a u e) t (b u e)

(a u b) u e = (a u e) u (b u e) (a t b) u e′ = (a u e′) t (b u e′)

(a u b) u e′ = (a u e′) u (b u e′)

However, according to [65, Proposition 3.6], the central elements of a Church algebra

can also be characterized in a completely general way, as follows.

Proposition A.14 ([65]). If A is a Church algebra of type ν and e ∈ A, the following conditions

are equivalent:

(1) e is central;

(4) for all a, b, a, b ∈ A:

(a) q(e, a, a) = a,

(b) q(e, q(e, a, b), c) = q(e, a, c) = q(e, a, q(e, b, c)),

(c) q(e, f (a), f (b)) = f (q(e, a1, b1), . . . , q(e, an, bn)), for every f ∈ ν,

(d) q(e, 1, 0) = e.

If A is a bounded involutive directoid, condition (a) says a = (e t a) u (e′ t a), for

every a ∈ A, or equivalently a = (e u a) t (e′ u a), for every a ∈ A.

The first equality of condition (b) says (e t c) u
(
e′ t ((e t b) u (e′ t a))

)
= (e t c) u

(e′ t a), for every a, b, c ∈ A. Taking c = 1, it is easy to see that this is equivalent to

e′ t ((e t b) u (e′ t a)) = e′ t a, for every a, b ∈ A. The second equality is analogous,

and boils down to e t ((e′ t b) u (e t c)) = e t c, for every b, c ∈ A.

Condition (c) is q(e, 1, 1) = 1 and q(e, 0, 0) = 0 for the constants. These equalities

are trivially satisfied for every element e ∈ A. If f is ′ then (e t b′) u (e′ t a′) =

((et b)u (e′ t a))′, that is to say, (et b′)u (e′ t a′) = (e′ u b′)t (eu a′), for every a, b ∈ A.

But this is equivalent to (e t b) u (e′ t a) = (e′ u b) t (e u a), for every a, b ∈ A. If f is t
then we have (et (b1t b2))u (e′ t (a1t a2)) = ((et b1)u (e′ t a1))t ((et b2)u (e′ t a2)).

Finally, condition (d) is trivial, since for every element q(e, 1, 0) = e is always true

for every element e ∈ A.

We will use one or the other of these two characterizations of central elements,

according to convenience.

WE now focus for a while on complemented directoids, for which we show that the

later set of conditions can be considerably streamlined. For a start, we need to prove

the following lemmas.
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Lemma A.15. If A is a bounded involutive directoid, then it satisfies:

(i) x t y ≈ x t (x t y),

(ii) x ≈ x t (x t (x′ t y))′.

If it is complemented, it also satisfies:

(iii) (x t y) t y′ ≈ 1,

Proof. (i) This is true, since x 6 x t y.

(ii) Since x′ 6 x′ t y 6 x t (x′ t y), we have (x t (x′ t y))′ 6 x, and therefore

x = x t (x t (x′ t y))′.

(iii) Substituting x by (x t y) t y′ and y by y′ in the previous item, we obtain:

(x t y) t y′ = ((x t y) t y′) t (((x t y) t y′) t (((x t y) t y′)′ t y′))′

= ((x t y) t y′) t (((x t y) t y′) t y′)′ (by (ii))

= ((x t y) t y′) t ((x t y) t y′)′ (by (i))

= 1.

Now, consider the equations:

a = (e u a) t (e′ u a), (C1)

(e t (b1 t b2)) u (e′ t (a1 t a2)) = ((e t b1) u (e′ t a1)) t ((e t b2) u (e′ t a2)). (C2)

Lemma A.16. If A is a complemented directoid and e ∈ A is satisfy equations (C1) and (C2)

for every a, b, a1, a2, b1, b2 ∈ A, then for every a, b ∈ A,

1. e t (a t b) = (e t a) t (e t b),

2. e u (a u b) = (e u a) u (e u b),

3. (a) e t a = e t (e′ u a),

(b) e u a = e u (e′ t a),

4. e t (a t (e u b)) = e t a,

5. e t (a t b) = (e t a) t b,

6. e u (a t b) = (e u a) t (e u b),

7. (e t a)′ t b = (e t (a′ t b)) u (e′ t b),

8. (e t b) u (e′ t a) = (e′ u b) t (e u a).

Proof. Taking b1 = a, b2 = b, and a1 = 1 = a2 in (C2), we obtain:

e t (a t b) = (e t (a t b)) u (e′ t (1t 1))

= ((e t a) u (e′ t 1)) t ((e t b) u (e′ t 1))

= (e t a) t (e t b).
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For (2), we only have to use the De Morgan laws and the fact that e satisfies (C1)

and (C2) if and only if e′ also satisfies them. In order to prove (3a), observe that:

e t a = e t ((e u a) t (e′ u a)) = (e t (e u a)) t (e t (e′ u a))

= e t (e t (e′ u a)) = e t (e′ u a).

(3b) is proved dually. (4) is just:

e t (a t (e u b)) = (e t a) t (e t (e u b)) = (e t a) t e = e t a.

For (5), we show that

(e t a) t b = e t (b t (e t a)) = (e t b) t (e t (e t a)) = (e t b) t (e t a)

= e t (a t b).

As regards (6), it follows from (C1) and (C2) that for any a, b ∈ A:

e u (a t b) = (e′ u 0) t (e u (a t b)) = (e t 0) u (e′ t (a t b))

= (e t (0t 0)) u (e′ t (a t b)) = ((e t 0) u (e′ t a)) t ((e t 0) u (e′ t b))

= (e u a) t (e u b),

where the last equality uses (3b). For (7), notice that:

(e t a)′ t b = (e t ((e t a)′ t b)) u (e′ t ((e t a)′ t b))

= ((e t (e t a)′) t b)) u (e′ t ((e t a)′ t b))

= ((e t a′) t b)) u (e′ t ((e′ u a′) t b))

= (e t (a′ t b)) u ((e′ t (e′ u a′)) t b)

= (e t (a′ t b)) u (e′ t b).

And finally for (8), we substitute in (7) a by a′ and b by e u b in order to obtain:

(e t a′)′ t (e u b) = (e t (a t (e u b))) u (e′ t (e u b)),

whence using (3) and (4), we obtain the result.

We are ready to obtain our characterization.

Proposition A.17. An element e of a complemented directoid A is central if and only if it

satisfies (C1) and (C2) for every a, b, a1, a2, b1, b2 ∈ A:
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Proof. In the light of the previous lemmas and of the general description of central

elements of Church algebras, discussed above, it suffices to prove that an element e ∈
A satisfying (C2) also satisfies e t a = e t ((e t a) u (e′ t b)) and e′ t a = e′ t ((e′ t
a) u (e t b)). Note that if e satisfies (C2) for every a, b, a1, a2, b1, b2 nA, then the same

equation is true replacing e by e′. Therefore it is enough to prove that (C2) implies

e t a = e t ((e t a) u (e′ t b)) for every a, b ∈ A.

Making b1 = a, b2 = e, a1 = b, a2 = e in (C2), we have

(e t (a t e)) u (e′ t (b t e)) = ((e t a) u (e′ t b)) t ((e t e) u (e′ t e)).

Using Lemma A.15, we have that e t (a t e) = e t a and that e′ t (b t e) = 1, and

therefore (e t (a t e)) u (e′ t (b t e)) = (e t a) u 1 = e t a. For the right-hand of the

equation we have, ((et a)u (e′ t b))t ((et e)u (e′ t e)) = ((et a)u (e′ t b))t (eu 1) =

((e t a) u (e′ t b)) t e, as we wanted to prove.

Example A.18. Conditions (C1) and (C2) are independent. In fact, in the complemented

directoid whose Hasse diagram is hereafter reproduced:

1

a a′ b b′

0

every element satisfies (C2), but only 0 and 1 satisfy (C1). On the other hand, every

element of the complemented directoid whose Hasse diagram is hereafter reproduced

satisfies (C1) bot only 0 and 1 satisfy (C2).

1

c′ b′ a′

a b c

0

We actually can give a more informative version of Theorem A.11 above:

Proposition A.19. If A is a bounded involutive directoid and Ce(A) is the set of the central

elements of A, then Ce(A) = 〈Ce(A),u,t, ′, 0, 1〉 is a Boolean algebra.

Proof. In virtue of Theorem A.11, 〈Ce(A),∧,∨, ∗, 0, 1〉 is a Boolean algebra, where ∧, ∨
and ∗ are defined as follows:

x ∧ y = q(x, y, 0), x ∨ y = q(x, 1, y), x∗ = q(x, 0, 1).
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The only thing we need to prove is that ∧, ∨, and ∗ coincide with t, u, and ′, respec-

tively. We note that:

x ∨ y = q(x, 1, y) = (x t y) u (x′ t 1) = (x t y) u 1 = x t y,

x∗ = q(x, 0, 1) = (x t 1) u (x′ t 0) = 1u x′ = x′.

Therefore, ∨ and ∗ coincide with t and ′ respectively. And this implies that ∧ and u
also must coincide, because: x ∧ y = (x∗ ∨ y∗)∗ = (x′ t y′)′ = x u y.

Remark A.20. It follows from the previous proposition (and actually, also directly from Propo-

sition A.17) that if A is a complemented directoid and e is a central element, then e′ is also

central.

Now, if A is a bounded involutive directoid and e is a central element of A, let

[0, e] = 〈{a : a 6 e},t, e, 0, e〉 and ae = e u a′.

In the following theorem, we freely avail ourselves of the characterization of central

elements in bounded involutive directoids given at the beginning of the section.

Theorem A.21. Let A = 〈A,t, ′, 0, 1〉 be a bounded involutive directoid, and e ∈ A a central

element. Then

A ∼= [0, e]× [0, e′].

is a complemented directoid.

Proof. By Theorem A.12 and Proposition A.13, upon observing that for all a 6 e we

have that e ∧ a = e u a, all we have to prove is the following:

(1) Ae = {a : a 6 e},
(2) for a, b 6 e, a t b = e ∧ (a t b),

(3) for a 6 e, ae = e ∧ a′.

For (1), let at e = e. Then a = au (at e) = au e = e∧ a, whence a ∈ Ae. Conversely,

if a ∈ Ae then for some b we have that a = eu (e′ t b), and so et a = et (eu (e′ t b)) = e.

Concerning (2), just notice that

a ∧ (a t b) = e u (e′ t (a t b)) = (e u e′) t (e u (a t b))

= e u (a t b) = (e u a) t (e u b) = a t b

And finally for (3), e ∧ a′ = e u (e′ t a′) = e u a′.
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Proposition A.22. Let A be a complemented directoid, e ∈ Ce(A) and c ∈ Ae. Then,

c ∈ Ce(A) ⇔ c ∈ Ce(Ae).

Moreover, if c ∈ Ce(Ae), then (Ae)c = Ac.

Proof. (⇒) It is an immediate consequence of the fact that h : A→ Ae in Theorem A.12

is an onto homomorphism such that for every a ∈ Ae, h(a) = a, and central elements

are characterized by equations, in virtue of Proposition A.17.

(⇐) Since central elements are characterized by equations, if ci is a central element

of a complemented directoid Ai, for i = 1, 2, then (c1, c2) ∈ Ce(A1 ×A2). Therefore, if

c ∈ Ae, the image of c by the isomorphism of Theorem A.12 is (c, 0). The element 0 is

always central, and c is central by hypothesis. Hence (c, 0) is central in Ae ×Ae′ . But,

this implies that c ∈ Ce(A), because A ∼= Ae ×Ae′ .

Finally, if we have c ∈ Ce(Ae), we have already proved that c ∈ Ce(A), and the

only thing we have to check is the definition of the involution c does not depend of

whether we are defining it in terms of ′ or of e. That is to say, we have to prove that

for every a 6 c, a′ u c = ae u c. Indeed, ae u c = (a′ u e) u c = (a′ u c) u (e u c) =

(a′ u c) u c = a′ u c, where we have used Lemma A.16, the fact that c 6 e, and the dual

of Lemma A.15.(i).

As we have seen, Ce(A) is a Boolean algebra, and we can consider the set of its

atomic elements, which we denote by At(A). Note that an atomic element of Ce(A)

needs not to be an atomic element of A.

Lemma A.23. If A is a complemented directoid and e is an atomic central element of A, then

At(Ae′) = At(A)− {e}.

Proof. (⊇) Since e is an atom in the Boolean algebra Ce(A), for any other atomic central

element c of A, eu c = 0, and therefore e′ t c′ = 1. Hence, c = cu 1 = cu (e′ t c′) = (cu
e′) t (c u c′) = (c u e′) t 0 = c u e′, which shows that c 6 e′. Thus, by Proposition A.22,

c ∈ Ce(Ae′). Moreover, if d is a central element of Ae′ such that d < c, then d is a central

element of A, and since we are assuming that c is atomic central of A, then d = 0.

Which shows that c is also atomic in Ae′ .

(⊆) If c ∈ At(Ae′), then in particular, by Proposition A.22, c ∈ Ce(A). If d is a

central element of A such that d < c, then we have d 6 e′, because c ∈ Ae′ , and therefore

d ∈ Ce(Ae′), again by Proposition A.22. Since by hypothesis c is atomic central in Ae′ ,

then d = 0. Which shows that c is atomic central in A. Finally, c 6 e′, and therefore

c 6= e. Otherwise, we would have e 6 e′, and hence e = e u e′ = 0, which is impossible

because e is atomic central.
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Theorem A.24. If A is a complemented directoid such that Ce(A) is an atomic Boolean algebra

with a finitely many atomic elements, then

A = ∏
e∈At(A)

Ae

is a decomposition of A as a product of directly indecomposable algebras.

Proof. In order to proceed with the proof of the theorem, we will use induction on

the number of elements of At(A). If 1 is the only atomic central element of A, then

A is directly indecomposable, and the result follows because A1 = A. If there is an

atomic central element e 6= 1, then A = Ae × Ae′ in virtue of Theorem A.21. Since

e is an atom, then Ce(Ae) = {0, e}, because if Ae had another central element, say

c, then c would be a central element of A in virtue of Proposition A.22, and such

that 0 < c < e, contradicting the fact that e is an atom. Therefore, Ae is directly

indecomposable. Now, At(Ae′) = At(A)− {e}, by Lemma A.23, and by the induction

hypothesis, Ae′ = ∏c∈At(Ae′ )
Ac, whence the result readily follows.

A.5 Strong Amalgamation Property

Recall that a V-formation is a tuple (A, B1, B2, i, j) such that A, B1, and B2 are similar

algebras, and i : A → B1 and j : AB2 are embeddings. A class K of similar algebras is

said to have the Amalgamation Property (AP) if for every V-formation with A, B1, B2 ∈ K
(and A 6= ∅) there exists an algebra D ∈ K and embeddings h : B1 → D and k : B2 → D

such that k ◦ j = h ◦ i.
B1

A D

B2

hi

j k

(A.2)

In such event, we also say that h and k amalgamate the V-formation. K is said to have

the Strong Amalgamation Property if moreover k(B2) ∩ h(B1) = kj(A) = hi(A).

Theorem A.25. The variety of directoids has the Strong Amalgamation Property.

Proof. Let us suppose that we have a V-formation like the solid part of Diagram (A.2),

and without loss of generality, we will assume that B1 ∩ B2 = A. We are going to

give an explicit construction of the amalgam of this V-formation. Let us consider D =
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B1 ∪ B2 ∪ {1}, where 1 is a new element. We proceed to define a partial order in D as

follows: x 6 1, for all x ∈ D, and if x ∈ Bi and y ∈ Bj:

x 6 y ⇔


i = j and x 6Bi y,

or

i 6= j, x, y /∈ A, and there is b ∈ A, such that x 6Bi b 6Bj y.

We show in what follows that 6 is a partial ordering of D. First, note that if x 6 y

and x, y ∈ Bi, then x 6Bi y. Now, 6 is obviously reflexive. In order to see that it

is antisymmetric, let’s suppose that x ∈ Bi, y ∈ Bj, and x 6 y and y 6 x. We will

distinguish three different cases:

(1) i = j. Then, x 6Bi y and y 6Bi x, and by the antisymmetry of 6Bi , x = y.

(2) i 6= j, x, y /∈ A. Then there are b1, b2 ∈ A such that x 6Bi b1 6Bj y and y 6Bj b2 6Bi x.

In that case, b2 6Bi x 6Bi b1 and b1 6Bj y 6Bj b2, whence b2 6A b1 and b1 6A b2,

and therefore b1 = b2. This would imply that x = b1 = b2 = y, and actually that

x, y ∈ A, which is a contradiction. So this case is impossible.

(3) The only remaining case is x 6 1 and 1 6 x. But, 1 6 x implies by definition that

x = 1.

In order to prove the transitivity of 6, let’s suppose that x, y, z ∈ D and x 6 y and

y 6 z. Obviously, if z = 1, then x 6 z and there is nothing to prove. We assume then

that z 6= 1, which implies that x, y 6= 1 as well, and distinguish three cases:

(1) If x, y, z ∈ Bi for some i = 1, 2, then x 6Bi y 6Bi z, and then obviously x 6Bi z,

which implies x 6 z.

(2) x ∈ Bi, z ∈ Bj, x, z /∈ A. We have different subcases depending of the position

of y. If y ∈ Bi and y /∈ A, then there exists b ∈ A such that y 6Bi b 6Bj z, and

therefore x 6Bi b 6Bj z, which by definition implies x 6 z. If y ∈ A, then we have

x 6Bi y 6Bj z, which again by definition implies x 6 z. If y ∈ Bj and y /∈ A, then

there exists b ∈ A such that x 6Bi b 6Bj y and therefore x 6Bi b 6Bj z, and hence

x 6 z.

(3) x, z ∈ Bi, y ∈ Bj, and y /∈ A. If x ∈ A and z /∈ A, then there is b ∈ A such that y 6Bj

b 6Bi z. But then, x 6Bj y 6Bj b, which implies x 6A b, and therefore x 6Bi b 6Bi z,

and hence x 6 z. If x /∈ A and z ∈ A, then the prove is analog. If x, z /∈ A, then

there are b1, b2 ∈ A such that x 6Bi b1 6Bj y 6Bj b2 6Bi z. Hence, b1 6Bj b2, which

is the same as b1 6A b2, and then b1 6Bi b2. Thus, x 6Bi b1 6Bi b2 6Bi z, and by the

transitivity of 6Bi , we obtain x 6 z.
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Thus, we have turn D into a poset. We can readily see that it is directed, because it is

bounded above. Then we take the directoid D = D(D,6), which is defined as follows:

x t y = y t x =


y if x 6 y,

x tBi y if x, y ∈ Bi and x ‖ y,

1 otherwise.

This operation is well defined, because if x, y ∈ B1 ∩ B2 = A, then x tB1 y = x tA

y = x tB2 y. Now, it is not difficult to prove that Bi is a subalgebra of D. Indeed, if

x, y ∈ Bi, then it could be that x 6Bi y, y 6Bi x, or x ‖ y. In any of those three cases

x t y = x tBi y. And as we saw in the first section, D retains the information relative

to the ordering of (D,6), which can be recovered by stipulating x 6 y if and only if

x t y = y. By construction, the intersection of B1 and B2 as subalgebras of D is the

algebra A. Therefore, we have proven that D is a strong amalgam of B1 and B2.

Remark A.26. Note that we needed to add a new element 1 to B1 ∪ B2 just to assure that

U(x, y) is nonempty, for every x, y ∈ D, in particular when x ∈ Bi, y ∈ Bj and x, y /∈ A. If

B1 and B2 are algebras with a common subalgebra A, in a language with the constant 1, which

is interpreted as the top element on each of these algebras, then there is no need to add a new

element 1 to B1 ∪ B2. The construction of the amalgam is otherwise entirely analog.

Theorem A.27. The varieties of bounded directoids, involutive directoids, bounded involutive

directoids, and complemented directoids have the Strong Amalgamation Property.

Proof. Essentially, the amalgam of a V-formation in each one of those varieties is found

as the amalgam of the t-reducts, although some technical but innocuous modifications

are needed in some cases. If we are in a variety of bounded directoids, we have to

identify in the amalgam the new top element 1 with the top element of A (which would

be also the top element of B1 and B2). Otherwise said, we do not need to add a new

element 1. If we are in a variety involutive lattices, then we not only have to add the

new element 1 to B1 ∪ B2, but also another new element 0, which should be defined to

be the infimum. And the involution ∗ of D should be defined to be 1∗ = 0, 0∗ = 1, and

x∗ = x′
Bi if x ∈ Bi.

As stablished in [59], the epimorphisms of the varieties enjoying the Strong Amal-

gamation Property can be characterized as the onto homormophisms. Therefore, we

have our final result.

Corollary A.28. In each one of the varieties of directoids, bounded directoids, involutive direc-

toids, bounded involutive, and complemented directoids, the epimorphisms are onto.





Bibliography

[1] S. Abramsky and S. Vickers, Quantales, observational logic and process semantics, Department of Com-

puting Report DOC90/1, Imperial College, London, 1990.

[2] , Quantales, observational logic and process semantics, Math. Structures Comput. Sci. 3 (1993),

no. 2, 161–227, DOI 10.1017/S0960129500000189. MR1224222 (94h:68125)

[3] I. Amemiya, A general spectral theory in semi-ordered linear spaces, J. Fac. Sci. Hokkaido University 1

(1953), no. 12, 111-56.

[4] M. Anderson, P. Conrad, and J. Martinez, The lattice of convex `-subgroups of a lattice-ordered group,

Lattice-Ordered Groups (A. M. W. Glass and W.C. Holland, eds.), D. Reidel, Dordrecht, 1989, pp. 105-

127.

[5] M. Anderson and T. Feil, Lattice Ordered Groups, An Introduction, D. Reidel Publishing Company, 1988.

[6] M. Anderson and C.C. Edwards, A representation theorem for distributive `-monoids, Canad. Math. Bull.

27 (1984), 238-240.

[7] P. Bahls, J. Cole, N. Galatos, P. Jipsen, and C. Tsinakis, Cancellative Residuated Lattices, Algebra Univer-

salis 50 (2003), no. 1, 83-106.

[8] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, 1974.

[9] S. J. Bernau, Orthocompletion of lattice groups, Proc. London Math. Soc. (3) 16 (1966), 107–130.

MR0188113 (32 #5554)

[10] K. Blount and C. Tsinakis, The structure of residuated lattices, International Journal of Algebra and

Computation 13 (2003), no. 4, 437–461.

[11] V. V. Bludov and A. M. W. Glass, Amalgamation bases for the class of lattice-ordered groups, preprint (2013).

[12] T. S. Blyth and M. F. Janowitz, Residuation theory, Pergamon Press, Oxford-New York-Toronto, Ont.,

1972. International Series of Monographs in Pure and Applied Mathematics, Vol. 102. MR0396359 (53

#226)

[13] B. Bosbach, Concerning cone algebras, Algebra Universalis 15 (1982), no. 1, 58–66, DOI

10.1007/BF02483708. MR663952 (83m:06021a)

[14] , Residuation groupoids, Results Math. 5 (1982), no. 2, 107–122, DOI 10.1007/BF03323308.

MR685870 (85c:20053)

[15] M. Botur, J. Kühr, L. Liu, and C. Tsinakis, The Conrad Program: From `-Groups to Algebras of Logic,

preprint (2014).

[16] C. Brink, Boolean modules, J. Algebra 71 (1981), no. 2, 291–313, DOI 10.1016/0021-8693(81)90179-4.

MR630601 (83a:06020)



142 Bibliography

[17] G. Burns and J. Harding, Algebraic aspects of orthomodular lattices, Springer, Berlin, 2000.

[18] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics,

Springer, 1981, available online.

[19] I. Chajda and H. Länger, Directoids. An Algebraic Approach to Ordered Sets, Heldermann Verlag, Lemgo,

2011.

[20] D. A. Chambless, Representation of the projectable and strongly projectable hulls of a lattice-ordered group,

Proc. Amer. Math. Soc. 34 (1972), 346–350. MR0295990 (45 #5051)

[21] C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959),

74–90.

[22] N. Chomsky and George A. Miller, Finite state languages, Information and Control 1 (1958), 91–112.

MR0108417 (21 #7133)

[23] R. Cignoli, I. D’Ottaviano, and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Trends in

Logic, Kluwer, Dordrecht, 2000.

[24] P. M. Cohn, Universal algebra, 2nd ed., Mathematics and its Applications, vol. 6, D. Reidel Publishing

Co., Dordrecht-Boston, Mass., 1981. MR620952 (82j:08001)

[25] P. Conrad, The structure of a lattice-ordered group with a finite number of disjoint elements, Michigan Math.

J 7 (1960), 171-180.

[26] , Some structure theorems for lattice-ordered groups, Trans. Amer. Math. Soc. 99 (1961), 212-240.

[27] , The lattice of all convex `-subgroups of a lattice-ordered group, Czechoslovak Math. J. 15 (1965),

101-123.

[28] , Lex-subgroups of lattice-ordered groups, Czechoslovak Math. J. 18 (1968), 86-103.

[29] , The lateral completion of a lattice-ordered group, Proc. London Math. Soc. (3) 19 (1969), 444–480.

MR0244125 (39 #5442)

[30] P. Conrad, J. Harvey, and C. Holland, The Hahn embedding theorem for lattice-ordered groups, Trans.

Amer. Math. Soc. 108 (1968), 143-69.

[31] M. L. Dalla Chiara, R. Giuntini, and R. Greechie, Reasoning in Quantum Theory, Kluwer, Dordrecht,

2004.

[32] B. A. Davey and H. A. Priestley, Introduction to lattices and order, 2nd ed., Cambridge University Press,

New York, 2002. MR1902334 (2003e:06001)

[33] A. Diego, Sur les algèbres de Hilbert, Translated from the Spanish by Luisa Iturrioz. Collection de

Logique Mathématique, Sér. A, Fasc. XXI, Gauthier-Villars, Paris; E. Nauwelaerts, Louvain, 1966

(French). MR0199086 (33 #7236)
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