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Abstract

Among the so-called "omics" disciplines, metabolomics has been receiving considerable at-

tention over the last few years. Metabolomics is the large-scale study of metabolites that are

small molecules within cells, biofluids and tissues, produced as a result of metabolism.

The growing interest in metabolomics has been encouraged by rapid advances in metabolic

profiling techniques and by technological developments of the diverse analytical platforms,

including proton Nucleic Magnetic Resonance (1H NMR), Gas Chromatography-Mass Spec-

trometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS), used for ex-

tracting metabolic profiles. The output generated from these experimental techniques re-

sults in the production of a huge amount of data and information.

This thesis attempts to provide an overview of the analytical technologies, the resources

and databases employed in this emerging discipline, and is mainly focused on the following

two aspects: (i) the challenges of handling the large amounts of data generated and manag-

ing the complex experimental processes needed to produce them; (ii) the techniques for the

multivariate analysis of metabolomics data, with a special emphasis on methods based on

the random forest algorithm.

To this aim, a detailed description and explanation of QTREDS, a software platform de-

signed for managing, monitoring and tracking the experimental processes and activites of

"omics" laboratories is provided.

In addition, a thorough elucidation of the software package RFmarkerDetector, available

through the Comprehensive R Archive Network (CRAN), and a description of the multivari-

ate analysis techniques it implements, is also given.
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Chapter 1

Introduction

This thesis illustrates the research activities I have conducted during the years of my PhD.

Part of the work has been performed in partnership with the Center for Advanced Studies,

Research and Development in Sardinia (CRS4) and the Department of Biomedical Sciences

of the University of Cagliari.

The thesis deals with metabolomics, the newest of the so-called "omics" disciplines, and

the multivariate data analysis strategies applied to metabolomics data. It consists of six

chapters, each focused on a specific topic related to metabolomics.

A brief review of the history of metabolomics and of its main applications is given in the

Introduction.

Chapter 2 illustrates the main databases used in metabolomics, dividing them into the

following categories:

• Comprehensive Metabolomic Databases;

• Metabolic Pathway Databases;

• Spectral Databases;

• Disease and Physiology Databases;

• Compound-Specific Databases.

QTREDS, our software platform designed for managing and tracking all the activities and

processes of an "omics" laboratory, is described in detail in Chapter 3.
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2 CHAPTER 1. INTRODUCTION

Chapter 4 provides an overview of the main spectroscopic techniques employed in metabolomics

with the aim of identifying and quantifying metabolites in different biological samples.

Chapter 5 describes the multivariate analysis strategies implemented in our software

package RFmarkerDetector and illustrates a concrete case study.

Lastly, Chapter 6 briefly summarizes the findings of the research activities.

1.1 Metabolomics or Metabonomics

In the post-genomic era, molecular biology has increasingly focused its attention on disci-

plines like Transcriptomics and Proteomics. The former refers to the determination of mul-

tiple protein expression changes in a cell or tissue, while the latter to the determination of

multiple gene-expression changes at the RNA level. Similar developments have been taking

place at metabolite small-molecule level, leading to the increasing expansion in studies now

termed Metabolomics. The main purpose of these techniques is to gather new insights and

a better understanding of the biological functioning of a cell or organism [27, 53].

The interpretation of transcriptome and proteome data is not easy, due to the problem

of relating observed gene-expression fold changes or protein-level changes to conventional

disease and pharmaceutically relevant end-points. Indeed, changes in the transcriptome

and proteome do not always result in altered biochemical phenotypes.

Metabolomics, unlike other "omics" disciplines, is a powerful approach because it can pro-

vide the most "functional" information. The metabolome is the complete set of metabolites

within a cell or biological sample at any given time point. It can be seen as the last stage

in the flow of events from genes to metabolism, and the metabolic profile is the most direct

indication of the actual biological state of an organism. Thus metabolomics best represents

the molecular phenotype.

Metabolites have a well-defined function in the life of biological systems reflecting the

surrounding environment. Thus, quantitative global analysis of endogenous metabolites

from cells, tissues, fluids, etc. is becoming an integral part of functional genomics [30] effort

as well as a tool for discovering diagnostic biomarkers [53, 75].

The terms metabonomics and metabolomics appeared for the first time at the end of the
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90’s and are often used interchangeably although their exact definitions are slightly different

[83].

The term metabolomics was coined by O. Fiehn [29] and defined as a comprehensive anal-

ysis in which all metabolites of a biological system were identified and quantified [53, 28].

The similar term metabonomics [63] was introduced earlier and is defined as the quantita-

tive measurement of the dynamic multi- parametric metabolic response of living systems

to pathophysiological stimuli or genetic modification [83]. Since, the two expressions are

often employed indifferently in practice, in the rest of the thesis it will be used the term

metabolomics.

Metabolomics is a rapidly maturing field: it is increasingly being applied to many ar-

eas of biomedical research, such as toxicology studies, nutritional effects, inborn errors of

metabolism, diabetes, cancer diagnostics, and diagnosing of neurological diseases.

The analysis of metabolites is not a completely new field; early studies on the metabolic

profiles date back to 1950, but they have been limited to relatively small numbers of target

analytes as in the study of a particular metabolic pathway.

The concept that individuals might have a "metabolic profile" that would be reflected in

the constituents of their biological fluids was first developed and tested by Roger Williams

during the late 1940s and early 1950s. Utilizing data from over 200,000 paper chromatograms,

Williams was able to show that characteristic metabolic patterns in urine and saliva were as-

sociated with diseases such as schizophrenia [35, 53]. The work of Williams and his group

and his ideas about the utility of metabolic pattern analysis, remained essentially unex-

pressed until the late 1960s, when gas chromatography-mass spectrometry (GC-MS) [81, 76]

and liquid chromatography-mass spectrometry(LC-MS) [47] were sufficiently advanced to

allow such studies to be carried out with considerably less effort. In fact, it was only through

technological advancements in the 1960s and 1970s that it became feasible to quantitatively

measure metabolic profiles. The expression "metabolic profile" to refer to qualitative and

quantitative analyses of complex mixtures of physiological origin, was coined by Horning

that with his group led the development of gas chromatography-mass spectrometry (GC-

MS) methods to monitor the metabolites present in urine through the 1970s [40].

Almost from the birth of GC, people involved in organic MS saw the potential advantage
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of separating complex mixtures into its components followed by structural analysis by MS.

It soon became evident that GC-MS was different from both GC and MS. Specifically three

issues had to be addressed:

1. the large amount of gas leaving the column (working with packed columns), while MS

separates the ions in high vacuum condition;

2. the need for rapid mass spectral acquisition;

3. the enormous amount of data collected during a GC-MS analysis.

A device named "jet separator" solved the first problem, eliminating most of the carrier gas

in a selective manner [74]. For the second issue, it can be said that when GC- MS was at its

beginning, magnetic sector mass spectrometer did not have a rapid data acquisition capabil-

ity. After the commercialisation of the first magnetic sector instrument built as a GC-MS in

the mid ’60s, the problem of rapid acquisition was rapidly solved. On the other hand this in-

strument did not deal with the third issue related to the amount of data acquired in a GC-MS

analysis. A light beam oscilloscope was used to record the mass spectra that were manually

selected for recording. Minicomputers were also developed in the mid ’60s, and in few years

the automated collection of GC-MS data became possible.

GC-MS became a routinely used technology with the introduction of quadrupolar instru-

ments. Quadrupole technology, which includes the transmission quadrupole (TQ) and the

quadrupole ion trap (QIT), was studied by Paul.

The first GC-QTMS was developed in the late ’60s and rapidly replaced the magnetic sector

based instruments [32], because of its simplicity and the continuous advancement of the

data station.

One of the major drawbacks of GC identification is the need for thermostable, volatile ana-

lytes; derivatization of the polar functional group can improve volatility, but a derivatiation

step introduces bias and it is not always possible. This limitation is overcome by LC, which is

virtually suitable for the separation of all kind of molecules. During the same period, Nuclear

Magnetic Resonance (NMR) spectroscopy was rapidly evolving. In 1974, a study conducted

by Seeley et al. demonstrated the utility of using NMR to detect metabolites in biological

samples [45].
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Nuclear magnetic resonance spectroscopy and mass spectrometry are two fundamental

analytical techniques for the identification and quantification of a large set of metabolites

present in a given biological system. Each technology shows advantages and disadvantages,

as we will see in the following chapters, but they are essentially complementary [68].

1.2 Application of Metabolomics

Metabolomics can bring enomous new insights on metabolic fluxes and a more comprehen-

sive understanding of a cell’s environment [53]. Applications of metabolomics can be seen in

many clinical or pharmaceutical areas such as drug discovery, clinical toxicology and human

diseases.

Over the past few years metabolomics has also emerged as a field of increasing interest

to food scientists.

1.2.1 Applications within Food Industry

Foods are now being analysed with more chemical detail leading to hundreds or even thou-

sands of distinct chemical identities being detected or identified.

Metabolomic applications within the food industry are diverse ranging from profiling of

plant species to studying the effects of stresses on plants [65].

Food component analysis traditionally involved the identification and the classification

of food components into broad categories such as carbohydrates, proteins, fats, vitamins.

The development of metabolomics allows the identification of hundreds of distinct molecules

being detected and or identified in certain foods with considerably more chemical detail

[65].

Future trends will involve the use of discriminative and predictive metabolomics as the

ultimate tool for quality control. The metabolite profile of products meeting minimum stan-

dards can be used as a baseline for quality acceptance.

1.2.2 Toxicity Assessment

Metabolic profiling (especially of urine or blood plasma samples) can be used to detect the

physiological changes caused by toxic insult of a chemical (or mixture of chemicals) [94].
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This can be of particular relevance to pharmaceutical companies wanting to test the tox-

icity of potential drug candidates: if a compound can be eliminated before it reaches clinical

trials on the grounds of adverse toxicity, it saves the enormous expense of the trials [94].

1.2.3 Applications in Oncology

The main current applications and challenges of metabolomics in cancer research are:

• biomarkers for diagnosis, staging and monitoring of the disease and therapeutic re-

sponse;

• protein expression profiling of tumours;

• protein microarrays;

• pharmacoproteomics

All these applications continue to benefit from further technological advances such as

high-resolution, high-speed and high-sensitivity Mass Spectrometry and advanced bioin-

formatics for data handling and interpretation [54].

1.2.4 Applications in Genetics

Metabolomics is an important "omic" science to fill the gap between genomics and pro-

teomics. It involves the determination of multiple metabolites simultaneously in biofluids,

tissues and tissue extracts and these all have some levels of genetic involvement [53].

Metabolomics can be an excellent tool for determining the phenotype caused by a ge-

netic manipulation, such as gene deletion or insertion. More interesting is the prospect of

predicting the function of unknown genes by comparison with the metabolic perturbations

caused by deletion/insertion of known genes [94].



Chapter 2

Databases and tools in

Metabolomics

2.1 Introduction

Metabolomics technologies yield many insights into basic biological research in areas such

as systems biology and metabolic modeling , pharmaceutical research, nutrition and toxicol-

ogy [42]. When combined with genomic, transcriptomic and proteomic studies, metabolomics

can also help in the interpretation and understanding of many complex biological processes.

Indeed, metabolomics is now widely recognized as being a cornerstone to all of systems bi-

ology [103].

However, to exploit the full potential of metabolomics, researchers need access to data

and knowledge to compare, contrast and make inferences from the results they obtain in

their experiments.

The metabolome refers to the total complement of small-molecule chemicals (metabo-

lites) present within a biological sample under given genetic, nutritional or environmental

conditions. Since such conditions can vary dramatically, metabolomics has to combine dif-

ferent disciplines such as molecular biology, chemistry and physiology to accurately reflect

the underlying diversity and complexity. Therefore there is a need for not just one type of

database, but a wide variety of electronic resources [103].

Currently, there are at least five types of databases used in metabolomics research. These

include:

7



8 CHAPTER 2. DATABASES AND TOOLS IN METABOLOMICS

1. comprehensive, organism- specific metabolomic databases;

2. metabolic pathway databases;

3. spectral databases;

4. disease/physiology databases

5. compound-specific databases; [103].

Far from being complete a description of some important databases and tools in metabolomics

is presented in the following pages.

2.2 Comprehensive Metabolomic Databases

2.2.1 HMDB

First introduced in 2007, the Human Metabolome Database (HMDB) is currently the world’s

largest and most comprehensive, organism-specific metabolomics database. It contains

spectroscopic, quantitative, analytic and physiological information about human metabo-

lites, their associated enzymes or trans-porters, their abundance and their disease-related

properties [102].

The HMDB combines the data-rich molecular biology content that can be found in cu-

rated sequence databases such as SwissProt and UniProt [16] with the equally rich data

found in KEGG [48] (about metabolism) and OMMBID [79] (about clinical conditions). Fur-

thermore it collects a large amount of experimental data, including NMR spectra, MS spec-

tra, solubility data and validated metabolite concentrations. [104].

The latest release of the HMDB provides detailed information on over 40 000 metabo-

lites, representing an expansion of nearly 600% over what was previously contained in the

database [102] .

A detailed content comparison between the HMDB (release 1.0 and 2.0) versus the HMDB

(release 3.0) is provided in Table 2.1.

This growth is mainly a result of the important expansion of both ’detected’ metabolites

(divided into two categories: (i) detected and quantified and (ii) detected not quantified) and



2.2. COMPREHENSIVE METABOLOMIC DATABASES 9

’expected’ metabolites (those for which biochemical pathways are known but the compound

has yet to be detected in the body).

Among the ’detected’ metabolites, the number has grown from 4413 (in version 2.0) to

20900 (in version 3.0), or roughly by 450%. While among the ’expected’ metabolites, their

numbers have grown much more significantly, from 1995 (in version 2.0) to more than 19000

(in version 3.0). This amount includes more than 450 dipeptides, over 1500 drugs and drug

metabolites, over 13000 foodderived compounds and more than 2000 other compounds

[102].

A key feature that differentiates the HMDB database from other metabolic resources is

its extensive support for higher level database searching and selecting functions. In fact, in

addition to the data viewing and sorting features provided, the HMDB also offers a chemi-

cal structure search utility, a local BLAST search [15] that supports both single and multiple

sequence queries, a boolean text search based on GLIMPSE [59], a relational data extraction

tool, an MS spectral matching tool and an NMR spectral search tool (for identifying com-

pounds via MS or NMR data from other metabolomic studies) [104].

The structure similarity search tool (ChemQuery) allows users to draw chemical struc-

tures or paste a SMILES string [101] of a compound into the ChemQuery window. Submitting

Database feature or content status
HMDB

(version 1.0)

HMDB

(version 2.0)

HMDB

(version 1.0)

Number of metabolites 2180 6408 40153

Number of unique metabolite synonyms 27700 43882 199668

Number of compounds with disease links 862 1002 3105

Number of compounds with biofluid or tissue concentration data 883 4413 5027

Number of compounds with chemical synthesis references 220 1647 1943

Number of compounds with experimental reference 1H and or 13C 385 792 1054

NMR spectra Number of compounds with reference MS/MS spectra 390 799 1249

Number of compounds with reference GC-MS reference data 0 279 1220

Number of human-specific pathway maps 26 58 442

Number of compounds in Human Metabolome Library 607 920 1031

Number of HMDB data fields 91 102 114

Number of predicted molecular properties 2 2 10

Metabolite search/browse yes yes yes

Pathway search/browse no yes yes

Disease search/browse no yes yes

Chemical class search/browse no yes yes

Biofluid browse no yes yes

Metabolite library browse no yes yes

Protein/transporter browse no no yes

Table 2.1: Comparison between the HMDB releases
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the query launches a structure similarity search tool that looks for common substructures

from the query compound that match the HMDB’s metabolite database. The ChemQuery

tool allows to quickly discover whether their compound of interest is a known metabolite or

chemically related to a known metabolite. In addition to these structure similarity searches,

the ChemQuery utility also supports compound searches on the basis of chemical formula

and molecular weight ranges.

The BLAST search (SeqSearch) allows users to search through the HMDB on the basis

of the sequence similarity. A given gene or protein sequence may be searched against the

HMDB’s sequence database of metabolically important enzymes and transporters by pasting

the FASTA formatted sequence (or sequences) into the SeqSearch query box.

The HMDB’s spectral search utilities allow both pure compounds and mixtures of com-

pounds to be identified from their MS or NMR spectra via peak matching algorithms. The

NMR spectral matching algorithm uses a simple peak matching rule with pre-defined chemi-

cal shift tolerances. Query spectra are scored on the number of peak matches to the database

spectra. The MS/MS spectral matching algorithm uses a peak matching and spectral scoring.

Perhaps the most relevant features of the HMDB from the perspective of a medical ge-

neticist or a clinical chemist are its rich content and extensive linkage to metabolic diseases,

to normal and abnormal metabolite concentration ranges (in many different biofluids), to

mutation/SNP data and to the genes, enzymes, reactions and pathways associated with

many diseases of interest [104].

2.2.2 MetaboLights

MetaboLights is the first general-purpose, open-access repository for metabolomics studies,

their raw experimental data and associated metadata, maintained by one of the major open-

access data providers in molecular biology [42]. The development of this tool was driven by

the needs to:

• provide a single point of access to worldwide data and knowledge in metabolomics;

• facilitate the development and adoption of a common data sharing format;

• ensure data traceability and reproducibility;
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Figure 2.1: HMDB user interface. A screenshot showing several of HDMB’s search and data

dispaly tools (from [102] ).
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• progressively promote interoperability across existing resources.

MetaboLights consists of two distinct layers: a repository, enabling the metabolomics

community to share findings, data and protocols for any form of metabolomics study, and

a reference layer of curated knowledge about metabolites. It is not intended to replace spe-

cialist resources but is specifically designed to build on prior art and extensively collaborate

with the existing databases to ensure that data are exchanged and that assimilation efforts

target gaps in worldwide available knowledge.

The system stores and display an extensive set of associated information which includes

submitter and author information, publication references, the study design, protocols ap-

plied, names of data files included, platform information and metabolite information. For

each metabolite it includes a description, external database identifiers, formula and inten-

sity or concentration, and where the metabolite was identified in the sample.

Essentially the MetaboLights is a web application running on an Apache Tomcat server.

Data are stored on a backend Oracle database, whose implementation is based on the ISA

framework [72].

The online search tool allows users to submit a query using free text through most of the

underlying data fields, including the study description, study title, protocols, metabolites

and authors. The search result page, as illustrated in Figure 2.2, shows general study infor-

mation like the submitter of the study, the study title, organisms, study design and platform

[42].

The MetaboLights provides users with the ability to browse the complete list of all the

public studies available which are also downloadable as ISA-Tab [72] metadata files with as-

sociated data files directly from the online study details page and from the MetaboLights

download page. For those users who are registered, there is also the possibility to get infor-

mation on additional private studies.

MetaboLights allows to submit experimental studies and data in ISA- Tab format, which

can be created by the ISAcreator editor tool (Figure 2.3). ISAcreator is a standalone Java

desktop application that enables researchers to report experimental information, associate

raw and processed data files, and submit the collated in- formation to the MetaboLights

database (Figure 2.4).
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Figure 2.2: MetaboLights user interface (from [42]).

2.2.3 BiGG

The Biochemically, Genetically and Genomically database (BiGG) is a metabolic reconstruc-

tion of human metabolism designed for systems biology simulation and metabolic flux bal-

ance modeling. Figure 2.5 illustrates its database schema.

BiGG integrates several published genome-scale metabolic networks into one resource

with standard nomenclature which allows components to be compared across different or-

ganisms. It can be used to browse model content, visualize metabolic pathway maps, and

export Systems Biology Markup Language (SBML) files of the models for further analysis by

external software packages [78].

BiGG accounts for the functions of 1496 Open Reading Frames (ORFs), 20004 proteins,

2766 metabolites, and 3311 metabolic and transport reactions. It was assembled from build
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Figure 2.3: MetaboLights ISAcreator with the Metabolite Identification Plugin (from [42]).

Figure 2.4: The ISA framework for reporting information and submitting it to the Metabo-

Lights database (from [42]).

35 of the human genome [4].
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Figure 2.5: BiGG database schema (from [78]).

2.3 Metabolic Pathway Databases

2.3.1 KEGG

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a bioinformatics resource for under-

standing higher-order functional meanings and utilities of the cell or the organism from its

genome information [48].

KEGG is an integrated database resource consisting of 15 main databases (see Table 2.2),

containing metabolic pathways (372 reference pathways) from a wide variety of organisms

(over 700) [49, 4]. Its overall architecture consists of various data objects, called KEGG ob-
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jects, which according to the developers, are a computer representation of biological sys-

tems.

Category Database Content

Systems information KEGG PATHWAY Pathway maps

KEGG BRITE Functional hierarchies

KEGG MODULE KEGG modules

KEGG DISEASE Human diseases

KEGG DRUG Drugs

KEGG ENVIRON Crude drugs, etc

Genomic information KEGG ORTHOLOGY KO groups

KEGG GENOME KEGG organisms

KEGG GENES Genes in high-quality genomes

Chemical information KEGG COMPOUNDS Metabolites and other small molecules

KEGG GLYCAN Glycans

KEGG REACTION Biochemical reactions

KEGG RPAIR Reactant pairs

KEGG RCLASS Reaction class

KEGG ENZYME Enzyme nomenclature

Table 2.2: KEGG databases.

KEGG has been developed as a reference knowledge base to assist in the process of gath-

ering knowledge from information. In particular, the KEGG pathway maps are widely used

for biological interpretation of genome sequences and other high-throughput data [50].

2.3.2 Reactome

Reactome is a manually curated open-source open-data resource of human pathways and

reactions including metabolic pathways and signaling pathways. It includes several types of

reactions in its pathway diagram collection including experimentally confirmed, manually

inferred and electronically inferred reactions [25, 4]. Reactome describes over 7000 human

proteins, participating in almost 7000 reactions based on data extracted from more than

15000 research publications with PubMed links [25].

At the cellular level, life is a network of molecular interactions that can be organized into

higher order interconnected pathways. Molecules are synthesized, degraded, undergo a be-

wildering array of temporary and permanent modifications, are transported from one lo-
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cation to another, and form complexes with other molecules [25, 10]. By annotating all of

these processes in a single, consistent reaction-pathway format, the Reactome Knowledge-

base systematically links human proteins to their molecular functions, providing a resource

that functions both as an archive of biological processes and as a tool for discovering unex-

pected functional relationships in data.

The goal of the Reactome knowledgebase is to represent human biological processes,

many of which have not been directly studied in humans. Rather, a human event has been

inferred from experiments on material from a model organism. In such cases, the model

organism reaction is annotated in Reactome, the inferred human reaction is annotated as a

separate event, and the inferential link between the two reactions is explicitly noted [10].

The Reactome data model consists of classes (frames) that describe the different con-

cepts (e.g., reaction, simple entity). Knowledge is captured as instances of these classes.

Classes have attributes (slots) which hold properties of the instances [10].

2.3.3 MetaCyc

MetaCyc is a highly curated nonredundant reference database of small-molecule metabolism,

describing metabolic pathways and enzymes from all domains of life [23]. It contains chem-

ical compounds, genes, enzymatic reactions, enzymes and metabolic pathways. The infor-

mation about enzymes includes many elements like substrate specificity, kinetic properties,

activators, inhibitors, cofactor requirements and links to sequence and structure databases

[53] . MetaCyc contains more than 2000 pathways derived from over 37000 publications.

Besides its role as a general reference on metabolic processes, MetaCyc can be employed

in conjunction with the PathoLogic component of the Pathway Tools software for the predic-

tion the metabolic network of any organism that has a sequenced and annotated genome.

2.3.4 BioCyc

BioCyc is a collection of over 3000 organism-specific Pathway/Genome Databases (PGDB),

each containing the full genome and predicted metabolic network of one organism, includ-

ing metabolites, enzymes, reactions, metabolic pathways and pathway-hole fillers [23].

The organization of the databases within the BioCyc collection is divided into tiers [1]

according to the amount of manual review and updating they have received:
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• Tier 1 have been created through intensive manual efforts, and receive continuous

updating. It includes the following databases

- EcoCyc,

- MetaCyc,

- AraCyc,

- HumanCyc,

- LeishCyc,

- YeastCyc

• Tier 2 includes 39 PGDBs computationally generated by the PathoLogic program;

• Tier 3 contains nearly 3000 PGDBs that includes computationally predicted metabolic

pathways, as well as predictions as to which genes code for missing enzymes in metabolic

pathways, and predicted operons.

The BioCyc Web site offers a variety of tools for querying and analysis of PGDBs, includ-

ing Omics Viewers and tools for comparative analysis [23].

2.4 Spectral Databases

2.4.1 Golm Metabolome Database

The Golm Metabolome Database (GMD) started as a collection of annotated and non-annotated

mass spectra from biological samples and was extended to contain, in addition, retention

index information (RI) [46], becoming soon a reference library dedicated to metabolite pro-

filing experiments.

Metabolite profiling has extensive applications in discovering the mode of action of drugs

and in explaining the effect of altered gene expression on metabolism [56]. A fundamen-

tal step in metabolite profiling is the unambiguous identification of metabolites in complex

metabolite preparations from biological samples. Collections of mass spectra, containing

frequently observed metabolites, represent one of the most effective ways to combine the

identification efforts currently performed in many laboratories around the world [56].
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Figure 2.6: GMD reference mass spectrum.

The Golm Metabolome Database provides public access to custom mass spectral libraries,

metabolite profiling experiments as well as additional information and tools. These libraries

of mass spectral and retention time indices can be used in conjunction with software tools

to identify metabolites according their spectral tags and RI’s [4].

The main goal of the GMD is to act as an exchange platform for experimental research

activities and bioinformatics to develop and improve metabolomics by a multidisciplinary

approach.

2.4.2 MassBank

MassBank is the first public repository of mass spectra of small chemical compounds (< 3000

Da) for life sciences for sharing them among scientific research community [44].

More than 13000 high precision and accurate mass spectra of biologically endogenous

and exogenous substances are available. It offers various query methods (e.g. mass spectral

search by exact mass-to-charge ratio m/z) for standard spectra obtained from Keio Univer-

sity, RIKEN PSC, and other Japanese research institutions [4, 44].

MassBank data are useful for the chemical identification and structure elucidation of

chemical compounds detected by mass spectrometry [5]. The number of accesses to the

MassBank is increasing every year as shown in Figure 2.7.
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Figure 2.7: Number of accesses to the MassBank. (from [5])

2.4.3 METLIN

METLIN is a public, web-based database developed to assist in a variety of applications

in the field of metabolomics and to simplify metabolite identification through mass anal-

ysis. The data repository has been designed for the archiving, visualization, and analysis of

metabolite data [82].

METLIN contains over 60000 high resolution MS/MS spectra and over 240000 metabo-

lites [7], providing the following information from multiple biologic sources [82]:

• Structural and physical data on known endogenous metabolites and drug metabolites;

• High-accuracy Fourier Transform Mass Spectrometry (FTMS) data from reference biofluid

samples;

• Reference tandem MS data from known metabolites and metabolite derivatives;

• LC/MS profiles from primarily human and some model organisms

Spectral data (MS/MS, LC/MS and FTMS) can be searched by peak lists, mass range, bi-

ological source or disease.
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2.5 Disease and Physiology Databases

2.5.1 OMMBID

The On-Line Metabolic and Molecular Basis to Inherited Disease (OMMBID), originally de-

veloped by Charles Scriver at McGraw-Hill, is a web-accessible resource describing the ge-

netics, metabolism, diagnosis and treatment of hundreds of metabolic disorders contributed

from hundreds of experts. It also contains detailed pathways, chemical structures, physio-

logical data and extensive reviews, that are particularly useful for clinical biochemists.

2.5.2 MetaGene and RAMEDIS

MetaGene is a repository for comprehensive information on over 400 genetic metabolic dis-

eases, including information on differential diagnoses, clinical and laboratory findings [91].

It is designed to be used as a tool to support diagnosis and treatment of patients with rare

metabolic disorders. Database entries can be searched by disease name, symptoms, patient

information and clinical study author.

The Rare Metabolic Disease Database (RAMEDIS) [90] is a manually curated resource

that collects detailed patient information on rare metabolic diseases. It was developed in

close cooperation with clinical partners to allow them to collect information on rare metabolic

diseases with extensive details (occurring symptoms, laboratory findings, therapy and molec-

ular data).

Thus far, 818 patients have been published with 93 different genetic metabolic diseases.

As a universal resource, RAMEDIS allows researchers to extract a diversity of standardized

data types, including clinical, biochemical, and molecular [9].

2.6 Compound-Specific Databases

In the category of Compound or Compund-specific databases we can surely count Pub-

Chem, ChEBI and ChemSpider.
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PubChem

PubChem is an open repository for chemical structures and their biological test results,

launched in September 2004 as part of a research program under the NIH Molecular Li-

braries Roadmap Initiative [100].

It comprises the following related databases:

• Substance;

• Compound;

• BioAssay

The Substance database contains more than 180 million records of contributed sample

descriptions provided by depositors, whereas the Compound database contains more than

63 million unique chemical structures derived from the substance depositions. The Pub-

Chem BioAssay database contains over 1 million bioactivity screens of chemical substances

described in PubChem [100, 8].

Figure 2.8: PubChem BioActivity Analysis Service. It provides a central entry point for ac-

cessing bioassay records.

The primary goal of PubChem is to give biomedical researchers access to all this infor-

mation in a very simple and straightforward way. To accomplish this goal it provides a wide
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range of web-services with tools for data retrieval, integration and comparison of biological

screening results, exploratory structure-activity analysis, and target selectivity examination.

ChEBI

Chemical Entities of Biological Interest (ChEBI) is a freely available dictionary of either nat-

ural products (metabolites) or synthetic products involved in the processes of living organ-

isms, focused on small chemical compunds [26]. Molecules directly encoded by the genome

(such as nucleic acids or proteins) are not included in ChEBI, as these are amply represented

in other databases.

Natural and synthetic products are part of the so-called "molecular entities". The term

"molecular entity" refers to any constitutionally or isotopically distinct atom, molecule, ion,

ion pair, radical, radical ion, complex, conformer identifiable as a separately recognizable

entity.

In addition to these molecular entities, ChEBI contains groups (parts of molecular enti-

ties) and classes of entities. Furthermore it includes an ontological classification, whereby

the relationships between molecular entities or classes of entities and their parents and/or

children are specified [26]. Currently it contains over 40000 fully annotated compounds.

ChEBI uses nomenclature approved by the International Union of Pure and Applied Chem-

istry (IUPAC) and the Nomenclature Committee of the International Union of Biochemistry

and Molecular Biology (NC-IUBMB). All the data in ChEBI is non-proprietary or derived

from a non-proprietary source and is therefore freely available to anyone.

ChemSpider

ChemSpider is a free chemical structure database providing fast access to over 34 million

structures, properties, and associated information linked out to almost 500 separate data

sources on the Web, owned by the Royal Society of Chemistry [69, 2].

It was designed to:

• bring together compound data on the web

• make this data accessible and reusable
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• provide a publishing platform for the addition and preservation of data

ChemSpider adopt a a crowdsourcing approach: it can be updated with user contribu-

tions including chemical structure deposition, spectra deposition and user curation. Cura-

tion, which involves ensuring the accuracy of the data in a digital database (7), is an essential

problem for any reference source. ChemSpider allows registered users to enter information

and annotate and curate the records. The requirement to register and login is to prevent

anonymous acts of vandalism [69].



Chapter 3

QTREDS for Omics data

management

Quality and TRacEability Data System (QTREDS) is a software platform for cross-omics data

management, originally developed to address the specific needs of the Sequencing and Geno-

typing Platform (SGP) at the Center for Advanced Studies, Research and Development in Sar-

dinia (CRS4) where I have conducted most of my research activities.

Tracking and monitoring all the phases of the laboratory activities can help to identify and

troubleshoot problems more quickly, reducing the risk of process failures and their related

costs. QTREDS has been designed with these goals in mind to meet the specific require-

ments of the SGP laboratory, where it has been successfully used for over a year. Thanks to

its flexibility the system can be easily adapted to meet the requirements of other omics labo-

ratories. Currently the system is undergoing an optimization process in order to adapt it for

metabolomics laboratories.

3.1 Introduction

High throughput technologies give the opportunity to study the genome, proteome and

metabolome at a global scale. This opens up new possible scenarios in desease diagno-

sis. At the same time, the rapid development of these technologies has produced two main

consequences: a large amount of data generated, new and complex laboratory procedures

[64, 86, 61].

25
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A Laboratory Management Information System (LIMS) is designed considering the need

to carry out the research in an efficient and transparent manner allowing the implementa-

tion of different quality control strategies and improving the accessibility of the instruments.

The improvement of the laboratory activities involves three primary factors: technology, in-

formation and people. In order to develop an effective LIMS all the three resources must be

recognized and a thorough study of the laboratory processes must be taken into considera-

tion.

Till the late 1970s all the activities concerning the management of laboratory samples,

associated analysis and reporting were time-consuming and error prone due to manual pro-

cesses [71]. This gave some organizations impetus to optimize data collection and labora-

tory procedures. Initially some custom in-house solutions have been developed, while some

analytical instrument manufacturers, at the same time began to develop some commercial

systems to run on their instruments.

The term LIMS entered the commercial world in the early 1980s to describe systems used

in the pharmaceutical and related industries as Quality Assurance and Quality Control tools

[71, 37].

In 1982 the first generation of LIMS was introduced in the form of single centralized mini-

computer provided with automated reporting tools. Second generation LIMS became avail-

able in 1988 and used third-party commercial relational databases to provide application-

specific solutions. Most of them relied on minicomputers [18]. Third generation LIMS began

in 1991, as personal computers became more powerful and prominent. They combined the

personal computer’s easy to use interface and standardized desktop tools with the compu-

tational power and reliability of minicomputer servers in a client/server configuration. By

1995 fourth generation LIMS came into the picture decentralizing the client/server architec-

ture further, optimizing resource sharing and network throughput by enabling process to be

performed anywhere on the network [71].

From 1996 to 2002 additional features and functionalities were included in LIMS, from

wireless networking capabilities and geo-referencing of samples, to the adoption of XML

standards [71].

In the latest generation LIMS the adoption of web oriented software technologies as-

sumes a key role [86] together with a rising interest in the Software as a Service (SaaS) dis-



3.1. INTRODUCTION 27

tribution model through which the customers can save the expense of license fees and the

costs of hardware and maintenance.

This chapter provides an introduction to QTREDS, a software platform initially born to

address the specific needs of the CRS4 sequencing laboratory. The main purpose of our in-

house solution was to set up a system that provides the researchers with a complete knowl-

edge of the laboratory processes at each step, managing and verifying the:

• workflow creation;

• samples traceability;

• diverse experimental protocol definitions;

• inventory of reagents;

• users’ roles and privileges.

Why develop a LIMS from scratch rather than buy a commercial one? A great number of

proprietary LIMS have been developed. STARLIMS [14], Exemplar LIMS [77], LABVANTAGE

SAPPHIRE citelabvan11 just to name a few, allow customers to benefit from vendors long-

established experience and valuable resources.

On the other hand, most often these commercial solutions are large, complex and feature-

rich products designed to be sold to large laboratories. Their license fees are usually pro-

hibitive and each extra feature or module they provide might come at additional costs [105].

Furthermore the laboratories have to buy also the servers, peripherals, storage devices and

other software licenses (such as databases, load balancers, etc...). Most small or medium-

sized laboratories cannot afford this expense [52].

Many commercial LIMS vendors are now offering rented, hosted and SaaS-based LIMS

solutions. The rental approach is almost identical to the purchased one, except that the lab-

oratory rents the software rather than purchasing the license. All the other purchases (hard-

ware and additional software) remain the same, as do other costs [52]. The major difference

is a staged payment for the software.

Some LIMS vendors provide hosted thin-client solutions. A thin-client LIMS is an ar-

chitecture which offers full application functionality that can be accessed through a simple

web browser. Rather than requiring the customer to purchase hardware and software, the
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customer simply uses the software running at the vendor’s site. However, hosted software

providers often do not rewrite their products to take advantage of new Internet-based tech-

nologies, but simply put a different front-end onto dated systems.

Another approach is the cloud-based model. While it bears some resemblance to the

hosted model, the cloud-based SaaS model is usually built from the ground up using a service-

oriented architecture. They are designed for multi-tenancy, where multiple customers share

the same instance of the application running on the same operating system, on the same

hardware, with the same data-storage mechanism.

These software applications are designed to virtually partition their data and configu-

rations, so that customers do not see each other’s data and work within their customized

virtual application instances. According to this model, data are stored on the servers of the

service provider and this fact can raise a number of issues if data confidentiality is critical, as

it often happens in the biomedical field [52, 17].

Many open-source LIMS are now available, but some of them had not been published

when we started the development of QTREDS in early 2011 [17, 93, 92].

Before starting the development phase, we tried some of the solutions available at the

time: we tested Open-LIMS [55] by installing it on our server but it was very unstable, in

fact it was not recommended by the developers to use it in any productive environment; we

also tried Bika Lims [19] which is one of the leading open source LIMS, with a wide range

of applications from agriculture to environmental monitoring. It offers many functionali-

ties for free, but optional modules at a cost. It is based on Python and the Plone content

management system. We programmed web services with Python Zope and Plone, and our

experience is that it is not a trivial software stack. Furthermore Plone performs better on a

dedicated server and that could represent an hidden cost. Other systems we have looked at,

but not considered because we felt they did not correspond well to our needs are: LabKey

Server [62] a very much oriented to data analysis tool. In our case, the experiments are done

"as a service", and the results are given to the researchers. The analysis are not done in the

laboratory.

SLIMS [96] a Sample-based Laboratory Information Management System with a web-

based interface to create, edit and view sample information. SLIMS is designed to store and

manage biological data in fact it features a micro-plate annotation tool and supports SDS-
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PAGE gels. It can also generate and export reports, but it does not provide any inventory

management system and its web interface does not include the latest web technologies.

GNomEX [64] a very complete platform that includes a next generation sequencing/mi-

croarray LIMS, an analysis project center, and an application for annotating and program-

matically distributing genomic data. It is much more complex than QTREDS and it was de-

signed for large research centers and clinics. Because of that it does not meet the needs of a

relatively small entity like the CSGP laboratory. We tested also other solutions, but some of

them were in a very early development stage or they were buggy and crashing and not stable

enough to run in a production environment [92, 39].

The most important factor for the development of an in-house solution, even more than

the license fees or the confidentiality issues, was the fact that the application had to be devel-

oped to meet the specific needs of the researchers of the CSGP laboratory. When we started

to develop QTREDS, the main project in our laboratory was related to the DNA sequencing

of 2100 individuals from Sardinia [80]. At the same time other projects concerning RNA and

exome sequencing of a large part of the same set were in their early stages.

While for the DNA sequencing the techniques and procedures in use were well defined

and standardized, in the case of RNA and exome sequencing, the methodologies and the

protocols had not been decided yet, so we began to develop QTREDS not only to collect

the data, trace and manage each lab activity, but also to help researchers choose the best

protocol to implement for their experiments.

We designed a system flexible and responsive enough to keep up with the speed at which

the laboratory evolves.

3.2 Implementation

3.2.1 Development methodologies

QTREDS has been developed adopting an Agile software development approach. Indeed,

we have worked closely and continuously with researchers, operators, managers and other

stakeholders involved in the project. In particular, we followed a Behavior-Driven Devel-

opment (BDD) strategy, asking questions focused on the behavior of the platform before
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and during the development stages, to avoid or at least reduce misunderstandings between

stakeholders.

Requirements were written down in the form of user stories, which described the ex-

pected use of each part of the application. User stories, a lightweight approach to use case

analysis, have been compiled and continuously refined, in nontechnical language allowing

all stakeholders to be involved in the process of creation and prioritization of the require-

ments.

Starting from a general description of the needs of the CRS4 SGP and the main functional

requirements that the system was expected to have, we created a working but incomplete

prototype, refining it constantly through a continuous interaction with the researchers and

the personnel of the laboratory until the achievement of the desired results.

3.2.2 Software architecture and design patterns

QTREDS is a web application with a client-server architecture developed in the Ruby pro-

gramming language, using the framework Rails [43].

The application, according to the architectural pattern known as Model-View-Controller

(MVC), has been organized dividing the code into three kinds of components (Figure 3.1).

Models implement business logic and are concerned with the manipulation of the data:

how to store it, to change it or move it. Typically for each type of entity managed by the

application, we have created a corresponding model that encapsulates it. Views serve as the

interface between application users and model data.

They contain information about the models with which users can interact and manage

how to display it. Controllers have the role of intermediaries between views and models in

both directions: when a user interacts with a view, a precise controller action corresponding

to that activity is invoked and it saves or updates data from the user to the model. On the

other hand, the controller makes the model data available to the view so that it can be dis-

played to the user. One important job of the Model is to persist data which requires that some

correspondence must be established between the operations on a model object in memory

and how it is manipulated in the storage tier.

Models implement the Active Record architectural pattern, providing an Object Rela-

tional Mapping (ORM) layer which supports a wide variety of Relational Database Manage-
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Figure 3.1: QTREDS architectural overview. QTREDS has been developed according to the

MVC software architecture pattern. The Protocol Parser and the internal class libraries have

a key role for the generation of the experimental workflows.
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ment System (RDBMS). For the QTREDS persistence tier we have chosen the MySQL RDBMS

[66]. Each instance of a model class corresponds to a single row in a specific table of the

MySQL database. The model object has built-in behaviors that allow to directly operate on

the tables of the storage layer of the application.

The implementation of QTREDS also relies on the use of different open-source program-

ming libraries. The web user interface has been developed combining the Ruby’s built-in

erb templating system with the Prototype JavaScript Framework [85] that enabled us to deal

with the Asynchronous JavaScript And XML (AJAX) [34] technology in a very easy and effi-

cient way.

Furthermore the use of the script.aculo.us [33] set of Javascript libraries provides us with

a visual effects engine, that we used to enhance the interactive user experience with the ap-

plication.

3.3 Functional overview

All the activities and operations allowed by the QTREDS platform can be assigned to four

different functional blocks:

• workflow management system

• sample handler

• inventory management system

• authorization system.

3.3.1 Workflow management system

The workflow management system is a key component of our application. Figure 3.2 illus-

trates the main concepts related to this functional block: it has the responsibility for defining

and verifying a protocol and to convert it into the sequence of steps and tasks that represent

a particular procedure or experiment.
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A protocol, in our system, is a formal representation of an experimental procedure, ex-

pressed in the XML language (see Listing 5.1) that has to be compiled according to a strict set

of rules that we defined and collected in an XML Schema Definition (XSD) document. This

task can be accomplished manually by an authorized member of the laboratory with basic

informatics knowledge. But writing down a protocol manually can be a very long, boring

and error-prone task that requires the observation of precise syntactic and semantic rules.

To reduce the probability of error and to allow users with no technical background to create

an experimental protocol, we have developed a user-friendly visual tool, which we describe

later in this article.

The XML protocol is interpreted and checked by the protocol parser module that pro-

cesses the document, extracting and sending information to some support classes. Coor-

dinating the activities of these classes and of the experiment-related controllers and views,

it provides the system with all the information needed to graphically represent the experi-

ment workflow as a sort of "state diagram" that guides the user step by step, enabling him to

manage and monitor the progression of his experiment.

Figure 3.2: Workflow management system - the protocol parser. The parser checks and

interprets the experimental protocols written in the XML format and with the help of the

internal class libraries provides the controllers with the information needed to generate the

experimental.
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Figure 3.3 illustrates the steps of an exome library preparation workflow of a running ex-

periment. Exome library preparation is one of the procedures performed within the exome

sequencing technology. The workflow is graphically represented as a sequence of different

color balls. Each labeled ball describes a single step of the laboratory procedure (sonica-

tion, end repair, adenilation, etc...) and its color defines its state: a green ball represents a

completed activity, an orange ball an activity ready to be executed or in progress and not

completely carried out; a red ball indicates that the corresponding activity has been termi-

nated abnormally for some reason, and that the workflow cannot be carried out. Grey balls

represent steps of the workflow not yet available that require the completion of previous ac-

tivities to be performed (Figure 3.3). When a user clicks on the ball of the step he wants to

begin - order as we said, is mandatory at the moment - he will get a web page with forms to

enter data and information related to that particular step.

If default values have been set in the protocol/workflow definition then these will be al-

ready filled in the form. The user will then only have to fill what is different from the default,

and then start the process. The complexity and level of detail of each of these web pages de-

pends on how the users have defined that step in the protocol: it can be general or describe

precisely every single phase of the process. It is up to the "workflow supervisor", i.e. the user

Figure 3.3: Experiment workflow. QTREDS represents the experiment workflow as a sort of

state diagram that guides the user step by step, enabling him to perform and monitor each

phase of the experiment.
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authorized to create workflows, to decide the level of granularity of the information and the

community standards to be used (e.g., MIBBI [89], ISA-Tab [72]).

1 <protocol xmlns=" h t t p: //www. w3schools .com"

2 xmlns:xsi=" h t t p: //www.w3. org/2001/XMLSchema−instance "

3 xsi:schemaLocation =" h t t p: //www. w3schools .com protocols . xsd" name= ’Exome Library Preparation ’

output= ’P , S ’ version= ’ 0.9 ’ input= ’U’>

4 < a c t i v i t i e s >

5 < a c t i v i t y name= ’ Sonication ’ id= ’ 1 ’>

6 <instrument name=" Covaris S−S er i es ">

7 <input name= ’ Device parameters ’ id= ’ 1.1 ’>

8 < a t t r i b u t e type= ’ decimal ’ key= ’ duty cycle ’>8</ a t t r i b u t e >

9 < a t t r i b u t e type= ’ decimal ’ key= ’ i n t en s i t y ’>3</ a t t r i b u t e >

10 < a t t r i b u t e type= ’ decimal ’ key= ’ cycles per burst ’>200</ a t t r i b u t e >

11 < a t t r i b u t e type= ’ decimal ’ key= ’ second frequency sweeping ’>60</ a t t r i b u t e >

12 < a t t r i b u t e type= ’ decimal ’ key= ’number of cycles ’>2</ a t t r i b u t e >

13 </ input>

14 </ instrument>

15

16 <input name= ’ Note ’ id= ’ 1.2 ’>

17 < a t t r i b u t e type= ’ textarea ’ key= ’ note ’ />

18 </ input>

19 <comment t i t l e = ’ A l t er n a t i v e procedure ’ />

20 </ a c t i v i t y >

21 < a c t i v i t y name= ’End repair ’ id= ’ 2 ’>

22 <input name= ’Schema Multiwell−Samples ’ id= ’ 2.1 ’>

23 < a t t r i b u t e type= ’ f i l e ’ key= ’ Path ’ />

24 </ input>

25 <instrument required= ’ true ’ name= ’ Centrifuge ’ category= ’ centri fuga ’ id= ’ 2.1 ’>

26 <input name= ’ Device parameters ’ id= ’ 2.2 ’>

27 < a t t r i b u t e unit= ’rpm ’ type= ’ decimal ’ key= ’ Cycles per minute ’>600</ a t t r i b u t e >

28 < a t t r i b u t e unit= ’ seconds , minutes ’ type= ’ decimal ’ key= ’ Duration ’>5</ a t t r i b u t e >

29 </ input>

30 </ instrument>

Listing 3.1: Excerpt of the Exome library preparation protocol

Workflows can be created directly in XML or using the Visual Tool. Plugins can be im-

plemented for the Visual Tool to check for the required information of the chosen standard.

Plugins can also be written to export the data to various formats for inclusion in submissions

to public databases. None of the laboratories we are collaborating with, is equipped with

robots that can transfer samples and reagents between machines; because of that human
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intervention is always required between different steps of the workflow. So far the workflows

that have been implemented reflect this and do not automatically activate the next step.

3.3.2 Visual Tool

Whenever an authorized user creates a new protocol he has to upload the related XML pro-

tocol description file to the system. At this point, the system checks the file for syntactical

correctness and semantic coherence and it stops when the document does not follow the

rules defined in the XSD document.

As already mentioned, the process of defining and writing down an experimental proto-

col can be very complex and annoying. In order to simplify this task, we developed a special

tool for creating protocols: it allows the user to drag-and-drop graphical objects to create

experimental protocols in the XML format (Figure 3.4). Each visual object has the aspect

of a box and can be filled up with other objects, according to the rules defined in the XSD

document. This reproduces the hierarchical structure of the XML protocols written down

manually.

Figure 3.4: Overview of the graphical user interface to design experimental protocols.. The

visual tool allows the user to drag graphical objects from the right-most floating palette and

drop them on the workbench. Combining those objects the user can create experimental

protocols and export them to XML files.
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The interface is made up of two main components: a workbench in which the user can

combine all graphical elements, and a floating palette in which he can find different ele-

ments needed to define an experimental protocol: an activity object, that represents a sin-

gle step of an experiment, an instrument object, which can identify any device or machine

present in the laboratory, a dose object to describe a particular reagent to use and so on. The

user can combine all these elements, organize them in the appropriate hierarchical order

and set all the parameters that are needed. The result of this graphical representation can

be easily exported in the XML format and used by the workflow management module of the

system. Through the visual tool the user can also import an existent XML protocol, convert

it to a graphical representation and manipulate it with the editing tools provided.

The tool has been implemented in pure HTML5 and JavaScript. HTML5 defines an event-

based mechanism and additional markup for natively supporting drag and drop operations.

This allowed us to develop a faster and more responsive tool, without the support of any

other JavaScript library or framework.

3.3.3 Sample handler

QTREDS enables the users to enter either one single sample or multiple samples at a time

using an Excel spreadsheet-based wizard. In the first case the user should fill in a web form

providing some mandatory information, for instance a unique sample identifier (sample id).

In the second case, the user loads a group of samples through an Excel file: the wizard

allows the mapping of each column of the spreadsheet to one of the attributes used by the

system to describe a sample. After a sample is entered into the system, a new record is saved

to the database with its defined set of attributes.

If the number of columns of the spreadsheet mapped exceeds the number the samples’

attributes or if the user needs to associate a sample with some extra parameters, the system

will store them in a different table. To characterize each sample, we have defined two at-

tributes, the original id that corresponds to the identifier with which a sample is submitted

to the laboratory and the lab id that is an internal parameter used by the system for the sam-

ple tracking process. Samples may be inputs of an experiment in which they are processed to

generate new samples. The output samples created, keep their relationship with the inputs,

holding the same original id value, while they change their lab id in relation to the particular
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experiment in which they were involved.

QTREDS checks for the uniqueness of the combination of the two attributes, refusing

samples with the same original id and lab id.

Depending on the experimental procedure carried out, the system internally associates

to each sample an attribute called state, which describes the current status of the sample (for

instance, a DNA sample could be processed to construct a DNA library; in this case the value

of the attribute state will change from "untreated" to "library"). The value of this attribute

is exploited by the system to identify which processing activity can be done and the class of

experiment each sample can be associated with.

3.3.4 Inventory management system

The Inventory Management module allows the tracking of all the reagents and items used by

the researchers for their experiments.

Figure 3.5: Minimum inventory level. Minimum stock levels can be handled to avoid short-

ages of essential products.

It includes four different components:

• catalog: all items (consumables, reagents, tubes, etc...) involved in some laboratory

process, are represented in QTREDS as abstract entities that we defined as categories.

A category is not a physical item that can be found inside the laboratory, but it is an

abstract description of a set of objects that share some features. The catalog collects

all these categories, allowing the basic CRUD operations on them;
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• stock: the smallest physical instance or unit of a particular category is referred to as

stock. A stock indicates an item physically present in the laboratory and it specifies its

quantity. To prevent the danger that a running experiment may be interrupted due to

shortage of reagents or other consumables, the system provides a mechanism of "real

time" assessment of stock levels, warning the researchers if some item goes below a

defined threshold (Figure 3.5);

• personal stock: before starting an experiment, QTREDS lists all reagents and consum-

ables needed to conduct it. The personal stock is a sort of "shopping cart" in which

each researcher must insert all the items required to perform his experiment. Each

experiment is represented as a sequence of consecutive steps called activities. The

system does not allow the user to begin his experiment if his personal stock does not

contain at least the reagents needed to perform the first activity;

• topology: starting from a simple YAMAL file, QTREDS builds a hierarchical map of the

laboratory modeled as a rooted tree. The root of the tree is the whole laboratory, the

subsequent nodes are the different rooms, then the freezers, going down to the gran-

ular level of the shelves, racks, etc. This representation is used by the system to track

sample location.

3.3.5 Authorization system

QTREDS is a web-based multi-user application. Many users can access the system simul-

taneously, define their own projects, experiments and manage the inventory. Within this

context, it is very important the definition of user privileges and roles.

The authorization module defines different user roles, each with a different access pro-

file; each role includes a set of features and privileges to which the assigned user have access.

So far, we have implemented six main roles: administrator, supervisor, simple user, inven-

tory manager, analyzer and viewer. Depending on the role assigned, each user is allowed to

perform different levels of operations and access different kinds of information. For example

a simple user can see only data related to his experiments or to the projects in which he is in-

volved, while the administrator has a complete view of all the activities and data processing

operations in the laboratory.
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A user can have different roles in different projects. The core of the authorization module

includes a set of database tables in which is stored all of the information about user roles and

privileges, and a centralized authorization function. This function provides access rights and

privileges to each user according to:

• user identity (user_id);

• specific action to be performed (auth_id);

• some additional parameters.

The response this function returns can be a boolean value, which tells if the user is al-

lowed or not to perform that action or a SQL query that is used by the system to extract all

the information a user can access to, according to his role.

Each user’s request to gain access to a specific resource, involves a call to the central-

ized authorization function, passing along some arguments (for example, the user_id and

the auth_id) to it. To retrieve these parameters, the system has to perform some queries on

those database tables that are related to the authorization mechanism. In order to reduce

duplicate queries and repeated function calls, we have implemented a caching strategy that

allowed us to improve the performances of the system in terms of responsiveness and reac-

tivity.

3.4 Conclusions

QTREDS has been designed to facilitate data management for multiple "omics" experiments.

It has been developed starting from the needs of the CRS4 SGP [67], where it has been used

since late 2011 to make almost one hundred DNA library preparation and sequencing exper-

iments, processing thousands of samples. We received two different kinds of reaction from

the users of the QTREDS system: the ones working in team fully adopted the tool for their

daily activities, providing us continuously feedback for the development of new features;

on the other side some of those working on individual assignments had more difficulties to

accept it.

A positive point for the users of QTREDS has been the fact that it has an iPad optimized

user interface: all users of our laboratory are equipped with tablets and can enter data into
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our system as they would with a paper notebook while moving around for the experiments.

Another point of satisfaction has been the implementation of the "personal stock" tool in

the inventory management system. It warns users about all consumables and items needed,

helping them in the smooth run of the experiments by preventing an abrupt stop due, for

example, to lack of a given reagent. When a first demo version of QTREDS was released,

some users complained the absence of simple computational tools to convert measurement

units or to calculate some common physical quantities like mass, concentration and so on.

The requests have been addressed and satisfied in a later stable release introducing new

elements and attributes in the XSD file and enriching the XML protocols with new function-

alities.

As a whole, most of the users appreciated the way QTREDS improved the management

of information especially when there was a huge increase of the number of samples being

treated.

A new version of QTREDS is currently being tested and it is going to be released. The

upcoming version is provided with an efficient Application Programming Interface (API) in

order to allow a smart and automated access to information. The API has been implemented

according to the REpresentational State Transfer (REST) architecture [31]. Using this API any

authorized user or system can retrieve resources and information via a standard Hypertext

Transfer Protocol request, appending the appropriate query parameters to the URL.

The RESTful web service, based on a dedicated web server, handles requests from clients,

processes and then returns the appropriate response as an XML document. The API can also

be used to insert data into the QTREDS database tables, creating this way, a bidirectional

communication channel between our system and any other external application or tool. The

new release will also provide a complete reporting system to visualize and export data in

different file formats.

Thanks to its flexibility the system can be easily adapted to address the issues and the

needs of other kinds of laboratories; therefore I am actively involved in the development of

an implementation of that for a research group in the field of Metabolomics with whom I am

intensely collaborating.





Chapter 4

Analytical technologies

4.1 Introduction

The metabolome is very complex entity in terms of both chemical diversity and quantities of

each metabolite. Metabolome analysis aims to the identification of all these metabolites in

a large number of small samples and possibly even to quantify the amount of each of them.

Currently it is not possible to analyze the entire range of metabolites by a single analytical

method, not even from the simplest organisms.

The main analytical techniques that are used for metabonomic studies are based on

nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The last-

mentioned technique requires a pre-separation of the metabolic components using either

gas chromatography (GC) after chemical derivatisation1, or liquid chromatography (LC),

with the newer method of ultra-high-pressure LC (UPLC) being used increasingly [57].

Other less common techniques such as Fourier transform infra-red (FTIR) spectroscopy

and arrayed electrochemical detection have been used in some cases.

To choose the most suitable analytical strategy, it is important to consider the following

aspects: (i) the kind of information needed, (ii) the kind of chemistry expected and (iii) the

analytical facilities available [99].

In general, in metabolomics we can distinguish three different strategies:

• Fingerprinting In this strategy, a metabolic "signature" or mass profile of the sample

1Derivatization is a technique used in chemistry which transforms a chemical compound into a product of

similar chemical structure, called a derivative.

43
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of interest is generated and then compared in a large sample population to screen for

differences between the samples. When signals that can significantly discriminate be-

tween samples are detected, the metabolites are identified and the biological relevance

of that compound can be elucidated [73];

• Profiling Metabolite profiling aims at the analysis of a larger set of compounds, both

identified and unknown with respect to their chemical nature. Profiling is typically

done by chromatography in combination with MS or by capillary electrophoresis (CE)

combined with MS [73, 99];

• Target Target analysis has been applied for many decades and includes the determina-

tion and quantification of a small set of known metabolites (targets) using one partic-

ular analytical technique of best performance for the compounds of interest [73].

Sometimes these strategies share some analytical approaches, but typically they are im-

plemented quite differently. Usually fingerprinting is mostly based on direct spectrometric

measurement by NMR, or mass spectrometers (MS), while profiling and target analyses re-

quire, in general, a separation of the compounds by gas or liquid chromatography (GC or LC)

prior to the spectrometric detection by UV, NMR, or MS [99].

As already stated, due to the complex nature of the metabolome, no single methodology

can detect the complete metabolome in one step.

NMR and MS approaches are highly complementary, and use of both is often necessary

for full molecular characterisation. MS can be more sensitive with lower detection limits pro-

vided the substance of interest can be ionised, but NMR spectroscopy is particularly useful

for distinguishing isomers, for obtaining molecular conformation information and for stud-

ies of molecular dynamics, and given the now increasing use of cryoprobes, it is becoming

ever more sensitive [57].

To properly select an analytical methodology, the following parameters should be taken

into account: (i) Chemistry (polarity, concentration, volatility, etc.); (ii) Concentration (trace

or massive amounts); (iii) Matrix (interference from coextracted substrate or may be from

major components in the sample) [99].

In this chapter I will provide a brief overview of the principles of these key analytical

techniques.
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4.2 NMR

High-resolution NMR spectroscopy is a non-destructive technique, widely used in chem-

istry, that provides detailed information on molecular structure, both for pure compounds

and in complex mixtures as well as information on absolute or relative concentrations [57]. It

was developed by exploiting the phenomenon of nuclear magnetic resonance for recording

the magnetic properties of atomic nuclei. The NMR phenomenon was soon later demon-

strated for protons.

Since its discovery in the 1940s, Nuclear Magnetic Resonance (NMR) Spectroscopy un-

derwent rapid technical growth. In the late 1960s Fourier transform NMR spectroscopy en-

tered the scene and next in the 1970s the implementation of superconducting magnets per-

mitted the beginning of the application of NMR spectroscopy for the metabolite profiling of

biofluids [83].

The use of 1H NMR for metabolic studies was described as early as 1977 when it was

shown that 1H signals could be observed from a range of compounds in a suspension of

red blood cells, including lactate, pyruvate, alanine and creatine. A great deal of metabolic

information can be derived from such metabolic studies and it was soon recognized that 1H

NMR of body fluids has a considerable role to play in areas of pharmacology, toxicology and

the investigations of inborn errors of metabolism [57].

Further NMR technical improvements in the 1990s, namely stronger magnetic fields and

introduction of cryo-cooled NMR probes, have led to an enormous boost in NMR sensitivity;

the signal to noise ratio has increased significantly and still improves. Today, the detection

limit of metabolite concentration is of the order of µM [83].

4.2.1 Theoretical Principles

Matter is composed of molecules built of atomic nuclei with a characteristic proton/neutron

composition. Nuclei are surrounded by electronic "clouds"[57].

Subatomic particles (electrons, protons and neutrons) can be imagined as spinning on

their axes. Besides charge and mass, a further property of these particles is an angular mo-

mentum known as spin [11].

The total spin of a nucleus depends on its nucleon content. In many atoms (such as 12C)
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these spins are paired against each other, such that the nucleus of the atom has no overall

spin, while in other atoms 1H and 13C, the nucleus does possess an overall spin.

The rules for determining the net spin of a nucleus can be summarized as follows:

• If the number of neutrons and the number of protons are both even, then the nucleus

has spin equal to zero;

• If the number of neutrons plus the number of protons is odd, then the nucleus has a

half-integer spin;

• If the number of neutrons and the number of protons are both odd, then the nucleus

has an integer spin

In the absence of an external magnetic field, these orientations are of equal energy. If a

magnetic field is applied, then the energy levels split as shown in Figure 4.2. Each level is

given a magnetic quantum number, m. When the nucleus is in a magnetic field, the initial

populations of the energy levels are determined by thermodynamics, as described by the

Boltzmann distribution. This is very important, and it means that the lower energy level

will contain slightly more nuclei than the higher level. It is possible to excite these nuclei

into the higher level with electromagnetic radiation. The frequency of radiation needed is

determined by the difference in energy between the energy levels[11].

The nucleus of an atom like 1H has a positive charge and is spinning. This generates a

small magnetic field and therefore the nucleus possesses a magnetic moment, m, which is

proportional to its spin I :

µ=
γI h

2π

γ is the gyromagnetic ratio of the atomic nucleus, while h is Planck’s constant.

The energy of each level is given by:

E =−
γh

2π
mB0

where B0 is the magnitude of the magnetic field. The transition energy (the difference in

energy between levels) is expressed by the following equation:

∆E =
γhB0

2π
(4.1)



4.2. NMR 47

This means that ∆E grows proportionally with the strength of the magnetic field B0.

To describe the interaction of the magnetic field with the nucleus, we will assume that the

nucleus acts as a charged particle in a magnetic field. If a nucleus (of spin 1/2), spinning on

its axis, is exposed to magnetic field B0, its axis of rotation will precess around the magnetic

field as shown in Figure 4.1. The frequency of precession is termed the Larmor frequency and

it is identical to the transition frequency (∆E = γB0

2π ).

The potential energy of the precessing nucleus is given by:

E =−mB0cosq

where q is the angle between the direction of the applied field and the axis of nuclear

rotation. At this point the lower energy level contains slightly more nuclei than the higher

level.

Resonant absorption by nuclear spins will occur only when electromagnetic radiation of

frequency equal to the Larmor precession rate is being applied to match the energy differ-

ence between the nuclear spin levels in a constant magnetic field of the appropriate strength.

Thsi radiation can excite nuclei in the lower energy level into the higher level.

Figure 4.1: NMR: precession of the nuclear magnetic moment.
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How do nuclei in the higher energy state return to the lower state? Emission of radiation

at radio frequencies is negligible because the probability of re-emission of photons varies

with the cube of the frequency. The main process in this case is based on thermodynamics

and is called population relaxation.

Two major relaxation processes can be distinguished:

1. Spin - lattice or longitudinal magnetic relaxation;

2. Spin - spin or transverse relaxation

The term lattice refers to the biological sample (to analyze) in which the nuclei are held.

Nuclei in the lattice are in vibrational and rotational motion, which creates a complex mag-

netic field. This field (called lattice field) has many components, some of which will be equal

in frequency and phase to the Larmor frequency of the nuclei of interest. These components

of the lattice field can interact with nuclei in the higher energy state, and cause them to lose

energy (returning to the lower state). The energy that a nucleus loses increases the amount

of vibration and rotation within the lattice resulting in a tiny rise in the temperature of the

sample.

The relaxation time, T1
2 depends on the gyromagnetic ratio of the nucleus and the mo-

bility of the lattice. As mobility increases, the vibrational and rotational frequencies increase,

making it more likely for a component of the lattice field to be able to interact with excited

nuclei. However, at extremely high mobilities, the probability of a component of the lattice

field being able to interact with excited nuclei decreases.

Spin - spin relaxation describes the interaction between neighbouring nuclei with identi-

cal precessional frequencies but differing magnetic quantum states. In this situation, the nu-

clei can exchange quantum states; a nucleus in the lower energy level will be excited, while

the excited nucleus relaxes to the lower energy state. There is no net change in the pop-

ulations of the energy states, but the average lifetime of a nucleus in the excited state will

decrease. This can result in line-broadening.

The magnetic field at the nucleus is not equal to the applied magnetic field because elec-

trons around the nucleus shield it from the applied field. Electrons, similar to the nucleus,

are also charged and rotate with a spin to produce a magnetic field opposite to the magnetic

2The average lifetime of nuclei in the higher energy state
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field produced by the nucleus. In general, this electronic shielding reduces the magnetic

field at the nucleus (which is what determines the NMR frequency). The difference between

the applied magnetic field and the field at the nucleus is termed the nuclear shielding. As

a result the energy gap is reduced, and the frequency required to achieve resonance is also

reduced. This shift in the NMR frequency due to the electronic molecular orbital coupling

to the external magnetic field is called chemical shift. NMR would not be very valuable if

all protons absorbed at the same frequency. You would see only a signal that indicates the

presence of hydrogens in your sample. What makes it useful is that different protons usually

appear at different chemical shifts. Chemical shift is a function of the nucleus and its envi-

ronment. It is measured relative to a reference compound. For 1H, the reference is usually

tetramethylsilane.

NMR signal detection

In NMR-spectroscopy, as we have seen, samples of liquid or solid material are exposed to an

external static and homogeneous magnetic field referred to as B0. The direction of this field

is usually defined along z. The magnetic moments in the sample align along B0 according

to a Boltzmann distribution [57]. Quantum mechanics shows that magnetic moments due

Figure 4.2: NMR - Splitting of nuclei spin states in an external magnetic field.
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to spin -1/2 particles can only align parallel or anti-parallel (called down) with respect to

this external field, these two states have a difference of energy given by equation 4.1. The

magnetic moment of any macroscopic sample can be described like a classical macroscopic

magnetic moment ~M .

When the sample is in a magnetic field the lower energy level will contain slightly more

nuclei than the higher level, therefore the magnetization of the sample is aligned with ~B0.

In this configuration we call the magnetization ~M0. For the detection of the NMR signal,

~M0 is flipped orthogonal to B0 by use of a high-frequency magnetic field B1 orthogonal to z,

applied for a defined time period (B1 - pulse) [57]. ~M0 now aligned along the x direction will

precess with a (resonance) frequency given by:

f0 =
γB0

2π

The sample to be analysed is positioned inside a detection coil. After short application of

a high-frequency B1 field, the precessing magnetization will induce a voltage Ui modulated

with f0. The amplitude of this voltage is directly proportional to ~M and thus with the number

of spins rotating with f0 located inside the observe volume of the apparatus. The signal

detected is called a Free Induction Decay (FID).

4.3 Mass Spectrometry

Mass spectrometry (MS) is an analytical chemistry tool that helps identify the amount and

type of chemicals present in a sample by measuring the mass-to-charge ratio and abundance

of gas-phase ions [84].

In MS experiments, a sample, which may be solid, liquid, or gas, is ionized, for example

by bombarding it with electrons. This may cause some of the sample’s molecules to break

into charged fragments. These ions are then separated according to their mass-to-charge

ratio, typically by accelerating them and subjecting them to an electric or magnetic field:

ions of the same mass-to-charge ratio will undergo the same amount of deflection [84]. The

ions are detected by a mechanism capable of detecting charged particles, such as an electron

multiplier. Results are displayed as spectra of the relative abundance of detected ions as a

function of the mass-to-charge ratio (m/z).
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Figure 4.3: Simplistic view of a mass spectrometer (from [99]).

Mass spectra can be used to determine the elemental composition of a sample, the masses

of particles and of molecules, and to elucidate the chemical structures of molecules, such as

peptides and other chemical compounds.

Like NMR, mass spectrometry is widely used in metabolic fingerprinting and metabolite

identification as well as being an important technique in the pharmaceutical industry for

identification and quantitation of drug metabolites [57].

4.3.1 Principles

The mass spectrometer is the instrument that allows to performs all the required processes

for mass spectrometric analysis starting from a sample in either a gas or a liquid phase: ion-

isation/transfer of sample to the gas phase and transfer to vacuum, separation according to

mass-to-charge ratio (m/z), detection of ions and processing, and presenting the data in a

usable format [99].

Simplistically, a mass spectrometer (Figure 4.3) consists of:

• an ion source;

• a mass analyser;

• a detector;

• a data system.
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Ion Source. Sample molecules are introduced into the ion source, where they become

ionised. Usually, before the ion source there is separating inlet device in which complex

mixtures can be separated prior to admission to the mass spectrometer.

The inlet device is normally either a capillary gas chromatography (GC) column or a

high-performance liquid chromatography (HPLC) column, although capillary electrophore-

sis and thin-layer chromatography can be interfaced with mass spectrometry [41].

The main processes in the ion source are: (i) transfer of the sample to the gas phase, (ii)

ionisation, and (iii) transfer to vacuum. The order of these processes can vary depending on

the sample type (gas or liquid) and ionisation method [99]

For metabolite analysis a number of different types of ionisation methods are available.

The most common techniques are electron impact ionisation (EI) used with gas chromatog-

raphy, and electrospray ionisation (ESI) used either with direct sample infusion or combined

with liquid chromatography.

Other relevant ionisation techniques used are atmospheric pressure chemical ion- isa-

tion (APCI), atmospheric pressure photoionisation (APPI), desorption electrospray ionisa-

tion (DESI), liquid secondary ion mass spectrometry (LSIMS), matrix-assisted laser desorp-

tion/ionisation (MALDI) and fast atom bombardment (FAB) [41].

Mass Analyser. The ions coming out from the ion source are in the gas phase. They are

separated according to their mass-to-charge ratio (m/z) in the mass analyser. The mass-to-

charge ratio is evaluated with a combination of electric and/or magnetic fields. It is impor-

tant that the ions produced in the ionisation chamber have a free run and do not collide with

uncharged molecules or with each other. For this reason the mass analysers (and often also

the ion source) are mantained in high vacuum.

There are several types of mass analyzers currently available, the better known of which

include quadrupoles , time-of-flight (TOF) analysers, magnetic sectors , and both Fourier

transform and quadrupole ion traps [13].

These mass analysers have different features:

• the m/z range covered;

• the achievable resolution;

• the mass accuracy;
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• the compatibility with different ionisation methods.

It is worth to mention the tandem (MS-MS) mass spectrometers that have more than one

analyser and so can be used for structural and sequencing studies.

Detector. The detector measures the amount of ions or their number as a function of

time. It monitors the ion current, amplifies it and the signal is then transmitted to the data

system.

Data System The data system should be considered as the fourth leg of the mass spec-

trometer and it is as important as the other parts [99]. The signal generated by the detector is

recorded in the form of mass spectra in the data system. The m/z values of the ions are plot-

ted against their intensities to show the number of components in the sample, the molecular

mass of each component, and the relative abundance of the various components in the sam-

ple [99, 13].

4.3.2 Basics of Chromatography

Chromatography is a very efficient technique for the separation of compounds or mixtures.

It involves a sample being dissolved in a mobile phase which may be a gas, a liquid or a super-

critical fluid. The mobile phase is then forced through an immobile, immiscible stationary

phase. The phases are chosen such that components of the sample have differing solubilities

in each phase. A component which is quite soluble in the stationary phase will take longer

to travel through it than a component which is not very soluble in the stationary phase but

very soluble in the mobile phase. As a result of these differences in mobilities, sample com-

ponents will become separated from each other as they travel through the stationary phase

[12].

All chromatographic techniques utilize small differences in distribution coefficient to

separate compounds in a two-phase system. HPLC. (High Performance Liquid Chromatog-

raphy) and GC (Gas Chromatography) use columns - narrow tubes packed with stationary

phase, through which the mobile phase is forced. The sample is transported through the

column by continuous addition of mobile phase. This process is called elution. The average

rate at which an analyte moves through the column is determined by the time it spends in

the mobile phase [12, 99].
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Figure 4.4: Categories of Chromatography (from [38]).

Chromatography developed dramatically between the 1960s and the 1990s mostly be-

cause of the improvements of columns, detectors, and electronics.

Metabolomics, where many small metabolites have to be separated, is almost always

based on high-performance chromatographic separation with either a gas or a liquid as the

mobile phase. [99]

4.3.3 GC-MS

The use of a mass spectrometer as the detector in gas chromatography was developed during

the 1950s. Originally the use of these devices was limited. In the 1990s rapid developments

in both the engineering of GC-MS systems and in the power and of computing systems has

helped in the simplification of the use of this instrument, as well as allowed great improve-

ments in the amount of time it takes to analyze a sample. These improvements enabled

biological laboratories to perform GC-MS analysis on a routine basis [95].
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As the name suggests, the GC-MS is composed of two major building blocks: the gas

chromatograph and the mass spectrometer. The latter utilizes a capillary column providing

an efficient and high resolution separation method. The different chemical properties of

the molecules in a mixture and their relative affinity for the stationary phase of the column

allow the separation of the molecules as the sample travels the length of the column. The

molecules are kept into the column and then come off at different times, going towards the

mass spectrometer downstream.

The mass spectrometer breaks each molecule into ionised fragments and detects them

using their mass-to-charge ratio.

In GC-MS there are essentially two kinds of ionisation: electron impact ionisation (EI)

and chemical ionisation (CI) [57].

The EI technique involves the bombardment of gas-phase sample molecules (M) with

high-energy electrons (e−), usually of 70 eV energy. This process generates [M]+ ions and

thermal energy free electrons (e−) [41]

M(g )+e− −→ M+(g )+2e− (4.2)

The molecular ions [M]+ often are unstable and split to generate more stable products:

M+(g ) −→ A+(g )+B(g ) (4.3)

Before using the EI techinque, the sample to be ionised must be in the gas phase. This

has led to the extensive development of derivatisation chemistry to allow the vaporisation of

many small biomolecules without their decomposition [41].

Chemical Ionisation differs from Electron Ionisation in that analyte ionisation is achieved

via proton attachment rather than electron ejection [41]. In chemical ionization a reagent

gas, typically methane or ammonia is introduced into the Ion Source of the mass spectrom-

eter. The reagent gas becomes ionised by EI and acts as a proton donor to the analyte:

C H4(g )+e−−→C H+
4 (g )+2e− (4.4)

C H+
4 (g )+C H4(g ) −→C H+

5 (g )+C H3(g ) (4.5)
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C H+
5 (g )+M(g ) −→ M H+(g )+C H4(g ) (4.6)

The resulting ion M H+ is an even-electron protonated molecule, which is more stable

than the equivalent odd-electron molecular ion M+ generated by EI [41]. One of the main

benefits of using chemical ionization is that a mass fragment closely corresponding to the

molecular weight of the analyte of interest is produced

CI is a lower energy process than electron ionization. The lower energy yields less frag-

mentation, and usually a simpler spectrum.

4.3.4 LC-MS

Liquid chromatography-mass spectrometry (LC-MS) is an analytical chemistry technique

that combines the physical separation features of liquid chromatography with the mass anal-

ysis capabilities of mass spectrometry. Its field of application is usually oriented towards the

separation, detection and identification of chemicals of particular masses in complex mix-

tures. While the coupling of the separation technique and the spectrometer in GC-MS has

proven to be relatively straightforward, the hyphenation of liquid chromatographic separa-

tions with mass spectrometers was technically more difficult [57]. One of the main hurdles

to overcome for LC-MS-based techniques has been the incompatibility of the liquid eluent

coming from the column and the vacuum of the mass spectrometer [99].

Initially direct liquid introduction of the solvent (at very low flow rates) into the EI source

was tried, but even very powerful vacuum pumps performed rather poorly. Also the use of

techniques based on separation of analytes from solvents did not succeed. The introduction

of atmospheric ionization techniques in the mid-1980s, especially electrospray ionization

(ESI) enabled a significant advance for LC-MS, which now has become one of the most im-

portant analytical techniques in biotechnology [99].

ESI works well with moderately polar molecules and is thus well suited to the analysis of

many metabolites. As shown in Figure 4.5 liquid samples are pumped through a metal cap-

illary maintained at 3 to 5 kV and nebulised at the tip of the capillary to form a fine spray of

charged droplets [51]. The capillary is usually orthogonal to, or off-axis from, the entrance to

the mass spectrometer in order to minimise contamination. The droplets are rapidly evap-

orated by the application of heat and dry nitrogen, and the residual electrical charge on the
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Figure 4.5: Electrospray Ionisation (from [41]).

droplets is transferred to the analytes. The ionised analytes are then transferred into the high

vacuum of the mass spectrometer via a series of small apertures and focusing voltages [70].

The ion source and subsequent ion optics can be operated to detect positive or negative

ions, and switching between these two modes within an analytical run can be performed.

Under normal conditions, ESI is considered a "soft" ionisation source, meaning that rel-

atively little energy is imparted to the analyte, and hence little fragmentation occurs. This is

in contrast to other MS ion sources, for example the electron impact source commonly used

in GC-MS, which causes extensive fragmentation.

MS using ESI and other ionisation methods can be applied to a much wider range of

biological molecules than GC-MS. LC-MS provides superior specificity and sensitivity com-

pared to direct injection methods. Another advantage of LC-MS assays is the capacity to

multiplex several analytes within a single analytical run with minimal incremental cost. This

has the potential to simplify laboratory set up (e.g. creation of test panels) and provide addi-

tional useful information (e.g. metabolite profiles) [70].





Chapter 5

RFmarkerDetector: a tool for

multivariate analysis of

metabolomics data

5.1 Introduction

Over the last decades biomedical research has undergone profound changes. The search for

single genes, transcripts, proteins, or metabolites has been replaced by the coverage of the

entire genome, transcriptome, proteome, and metabolome [60].

Metabolomics, defined as the quantitative measurement of the multiparametric metabolic

response of living systems to pathophysiological stimuli or genetic modification [58], is still

a recent discipline compared to other "omics" fields, but its particular features and the im-

provement of both analytical techniques and pattern recognition methods has contributed

greatly to its increasingly use.

Metabolites are the end product of all cellular processes and directly reflect all functional

activities, transient effects, as well as endpoints of biological processes determined by the

sum of genetic features, regulation of gene expression, protein abundance and environmen-

tal influences [87]. Thus, metabolites are more proximal to a phenotype or disease than

either genetic or proteomic information [36]. This occurs because a simple change in the

expression level of a gene or protein does not necessarily correlate directly with a variation

in the activity level of a protein, but an alteration in a metabolite only occurs through such

59
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a change [60]. Consequently, for its non-invasive nature and its close link to the phenotype,

metabolomics is an ideal tool for the pharmaceutical, preventive healthcare, and agricultural

industries, among others.

Biomarker discovery is another example where metabolomics has already enabled in-

formed decision making. In metabolomics, biomarkers are metabolites that can be used

to distinguish two groups of samples, typically a disease and control group. For example,

a metabolite reliably present in disease samples, but not in healthy individuals would be

classified as a biomarker. Samples of urine, saliva, or cerebrospinal fluid (CSF) can contain

highly informative metabolites, and can be readily analysed through metabolomics finger-

printing or profiling, for the purpose of biomarker discovery.

The analysis of metabolomic data has multiple issues and complications. In fact, every

single organism, organ or tissue is essentially unique. Therefore each sample is characterized

by an high degree of variability that makes it difficult to identify the few chemical features

against the large and complex background of metabolites that uniquely define the system.

The identification of these features is further complicated by the fact that all biological

systems are easily perturbed by various experimental or environmental factors, such as age,

diet, growth phase, pH, sex.

It is also important to consider the unavoidable fluctuations in spectral data, such as

changes in peak position or peak width that are caused by instrument instability and vari-

ability in sample conditions [60].

Herein we introduce RFmarkerDetector, a software package that provides a set of tools

to carry out a complete multivariate analysis of metabolic profiles, exploiting the strengths

of the Random Forest algorithm. RFmarkerDetector has been developed as an R package

and it is distributed through the Comprehensive R Archive Network (CRAN) under the GNU

General Public License (version 3).

5.2 Implementation

5.2.1 Datasets

We have seen in the previous chapter that the choice of the analytical method to use to carry

out a metabolomics experiment is influenced by many factors. For instance, the main ad-
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vantage of mass spectrometry (MS) is sensitivity. Coupling MS with gas chromatography

(GC) or with liquid chromatography (LC) enables the measurement of hundreds of individ-

ual species within a single sample [97]. Conversely, two of the major weaknesses of MS in

metabolomics are quantification and the time-consuming sample preparation techniques.

The major weaknesses of MS are the major strengths of NMR spectroscopy. In fact, high-

resolution 1H NMR requires limited sample preparation, is quantitative, non-destructive

and may detect compounds that are too volatile for GC [83].

Figure 5.1: Metabolomics data analysis pipeline.

All these analytical platforms generate a huge amount of data, often characterized by a

large number of variables. In Metabolomics, it is quite common to deal with data sets known

as large p small n data, since for this type of data, the number of observations (or samples) n

is much less than the number of variables p.
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Conventional statistical techniques are mainly applied to situations in which the num-

ber of observations is of the same order of magnitude or exceeds the number of variables.

Also traditional classification techniques like k-nearest neighbours, logistic regression, often

fail on this kind of data, mainly due to the fact that the condition p ≫ n leads to ill-posed

problems and thereby the inability of those methods to even have a solution. Linear regres-

sion methods for instance, are infeasible on this kind of data, as the dataset is singular (i.e.

no longer invertible) and no unique least-squares solution exists. Consequently, analysis of

metabolomics data requires the use of multivariate analysis techniques capable of dealing

with this kind of dataset often characterised by a relevant collinearity.

5.3 Data preprocessing

RFmarkerDetector provides a set of tools for the whole process of multivariate analysis of

metabolomics data (Figure 5.1) including preprocessing, exploration, visualization, calibra-

tion and validation of models and identification of potentially relevant biomarkers.

Figure 5.2: Chemical shift variability across spectra.
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Figure 5.3: Chemical shift variability mitigated through ’binning’.

Data typically come from NMR experiments and can be of two types:

• concentration matrices;

• binned NMR spectra data.

Concentration matrices represent the concentrations of the metabolites in a biofluid an-

alyzed with NMR spectroscopy, while binned data are the result of the bucketing or binning

methodology applied to NMR spectra. NMR spectra of biological samples are usually poorly

aligned due to wide changes in chemical shift arising from temperature, pH, ionic strength,

and other factors.

The binning procedure is the most widely used method of addressing this chemical shift

variability across spectra and consists in segmenting a spectrum into small areas (called

buckets or bins) and taking the area under the spectrum for each segment [106].

The size of the bins should be large enough so that a given peak remains in its bin despite

small spectral shifts across the spectra, but not so large as to include peaks belonging to

multiple compounds within a single bin.

Moreover NMR spectra contains thousands of variables. Binning can also be used to

reduce the data dimensionality [83].

The main goal of data preprocessing is to transform the data in order to ease and improve

the data analysis. To this aim, RFmarkerDetector includes several pretreatment methods
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that can be divided into three categories: (i) scaling, (ii) centering and (iii) filtering.

Scaling methods are data pretreatment approaches that divide each feature (variable) of

the dataset by a scaling factor, different for each of them. Depending on the type of scaling

factor used, we can distinguish two subclasses within scaling. The first class exploits a mea-

sure of data dispersion (such as standard deviation), while the second uses a size measure.

RFmarkerDetector scaling methods focuses on the approaches belonging to the first class.

The function autscale() uses the standard deviation of each feature as the scaling factor (for

this reason this method is also called unit variance scaling). After autoscaling, all metabolites

have a standard deviation of one. In this case data are compared on the basis of correlations.

The method paretoscale() is very similar to autoscaling. The scaling factor in this case is

represented by the square root of the standard deviation of each feature. Pareto scaling is

intermediate between centering and autoscaling and partially preserves data structure.

meanCenter() adjusts for differences between high-concentrated and low-concentrated

metabolites by converting all values to vary around zero instead of around the mean of each

variable. Centering is often combined with scaling methods.

The filtering methods rsdFilter() and lqvarFilter() allow to remove irrelevant features from

the dataset: the former removes the predictor variables with a relative standard deviation less

than a user-defined threshold, while the second eliminates those variables with a percentage

of zero-values above a tunable limit.

Table 5.1 summarizes the preprocessing methods included in the software package.

RFmarkerDetector

Method
Expression Goal Pro Cons

autoscale xi j =
xi j −x̄i

σi

Compare variables based on

correlations

All variables equally

important
Inflate baseline noise

paretoscale xi j =
xi j −x̄ j
p
σ j

Preserve data structure, reducing

the relative importance of large features

Increase the weight of

medium features without

inflating baseline noise

Sensitive to large fold

changes

meanCenter ¯xi j = xi j − x̄ j Emphasize the differences in the data Remove the offset from data Big features dominate

lqvarFilter -
Filters variables with a relevant

percentage of zero-values

Can remove irrelevant

variables from the dataset

Discriminative

features can be removed

rdsFilter r sd =
σ j

x̄ j

Remove variables with a relative

standard deviation less than or equal a defined threshold

Exclude near constant

variables
Raw filtering approach

Table 5.1: RFmarkerDetector preprocessing methods
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Figure 5.4: Scaling effect on NMR spectra: Autoscaling.

Figure 5.5: Scaling effect on NMR spectra: Pareto scaling.

5.4 Exploratory Data Analysis

RFmarkerDetector includes a set of functions to perform exploratory data analysis, a cru-

cial step that helps to analyze data sets, summarizing the main traits with the use of visual

methods.

Exploratory Data Analysis (EDA) is an approach based on a variety of techniques mainly
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aimed to:

• identify significant variables;

• reveal underlying structures;

• detect outliers;

• possibly develop parsimonious models.

One of the techniques we employ is Principal Component Analysis (PCA), an unsuper-

vised approach that can assist in the identification of patterns in high dimensional data sets

and can help to express the data in such a way as to highlight their similarities and differ-

ences.

PCA is a well known method that uses an orthogonal transformation to convert a set of

samples of possibly correlated variables into a set of values of linearly uncorrelated variables

called principal components. The number of principal components is less than or equal to

the number of original variables.

One of the advantages of PCA is that you can compress the data by reducing the number

of dimensions, without much loss of information. PCA provides a direct mapping of the

(often high-dimensional) original dataset into a lower-dimensional space containing most

of the original information.

The coordinates of the samples in the new space are called scores, while the dimensions

of the new space are linear combinations of the original variables called loadings.

Ultimately we can say that PCA "simplifies" data breaking down a large matrix in two

smaller ones.

The function pca() of the RFmarkerDetector package returns the scores and the loading

matrices and also the variances associated with the principal components. These matrices

can be used both to obtain the scores plot ( plot.pca.scores()) (Figure 5.6), a projection of

data onto a low dimensional subspace that helps to identify possible relationships between

observations, and the loading plot (plot.pca.loadings()) (Figure 5.7) that provides informa-

tion regarding the variables (metabolites), which can explain the relationships revealed in

the scores plot.
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Figure 5.6: PCA scores on PCs 1 and 2.

Figure 5.7: PCA loadings on PCs 1 and 2.

The screeplot() returns a graphical display of the variance explained by each principal

component that is useful for determining the appropriate number of principal components

to be used (Figure 5.8).

Another exploratory data analysis technique available in RFmarkerDetector is the Multi-

dimensional Scaling (MDS) based on the Random Forest proximity matrix (Figure 5.10).
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Figure 5.8: Scree plot showing the fraction of total variance in the data as explained by

each PC.

As already said, RFmarkerDetector is based on the Random Forest algorithm [20], an en-

semble of weak learners used for solving both classification and regression problems.

Given a set of training data χt = {(xm, ym),m = 1,2, ..., M} where xm is an M-dimensional

input vector and ym is the predictor output, we can define a weak learner as a predictor

f (x,χt ) with low bias and high variance [21, 98].

A collection of weak learners f (x,χt ,θk ) can be obtained by randomly sampling from the

set χt . The random vector θk selects the data points for the kth weak learner f (x,χt ,θk). By

applying bootstrap sampling to generate θk , for example, almost two-thirds of the observa-

tions are used by each weak learner, while the remaining are out of the bootstrap sample or

out-of-bag (OOB) [98]. Bootstrap samples are independent and identically distributed.

It can be shown that creating a committee by combining independent and identical dis-

tributed weak learners, you can keep the bias approximately unchanged and reduce the vari-

ance by a factor equal to the mean value of the correlation between each weak learner [20].

In other words we can say that a random forest is a collection of decision trees (used

as weak learners) created following an efficient strategy aimed at increasing the diversity

between the trees. Each weak learner is an unpruned classification or regression tree, created
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Figure 5.9: MDS plot using Random Forests proximities.

by using bootstrap samples of the training data and random feature selection.

To get low bias, trees are grown to maximum depth (unpruned), while to achieve low

correlation, randomization is applied at different levels:

• Each tree of the forest is grown on a bootstrap sample drawn from the training set;

• For each tree "node", n variables are randomly selected from the set of all variables

and evaluated for their ability to split the data. Only the variable that provides the best

split is used out of the n selected.

Outputs of all trees are then aggregated to produce one final prediction Ŷ . For classifica-

tion problems, Ŷ is the class predicted by the majority of trees, while in regression it is the
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average of the individual tree predictions.

Random Forest allows to calculate the proximity between samples which assumes high

values if samples are similar. These values can be used to perform a Multi Dimensional Scal-

ing (MDS) that is a means of visualizing the level of similarity of individual samples of a

dataset.

Figure 5.10: Proximity measures and outliers.

The proximity or similarity between any two samples in a dataset is calculated as the

number of times the two samples end up in the same terminal node of a tree divided by

the number of trees in the forest. The Random Forest algorithm calculates the proximities

between samples and then arranges them in a matrix termed proximity matrix.

The method plot.mds() of the RFmakerDetector package, employs these proximity scores

to build two-dimensional MDS plots that provide a means for visualizing the similarity be-

tween samples, represented as the distances between data points.

MDS plots can also be used for the identification of outliers or mislabelled samples that

can be recognized as those samples whose proximity to all other samples of the same class

is small.
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5.5 Tuning Model Parameters

The number of input variables randomly chosen at each split (often referred to as mtry) and

the number of trees (ntree) in the forest, are the two main parameters for the random forest

algorithm.

The RFmarkerDetector package provides two methods to tune and optimize these pa-

rameters:

• tuneMTRY();

• tuneNTREE()

tuneMTRY() attempts to identify the optimal mtry, testing a user-defined sequence of

values. For each mtry value, the function builds several Random Forest models (the num-

ber can be selected by the user) providing their performances in terms of out-of-bag (OOB)

errors and arranging them in a matrix.

In the original implementation of the random forest algorithm, each tree is trained on

about 2/3 of the total training data. As the forest is built, each tree can thus be tested on

the samples not used in building that tree. This is the OOB error estimate, an internal error

estimate of a random forest as it is being constructed.

Comparing OOB performance estimation and k-fold cross-validation, has shown that

they are in good agreement [88]. Thus, being the OOB error the default output of the ran-

dom forest algorithm, we decided to use this estimate to compare the models within the

tuneMTRY() method.

The matrix returned by this method can be passed as argument to the function plotOOB-

vsMTRY() for visualizing the trend of the average OOB error as a function of mtry (see Figure

5.11). tuneNTREE() follows a similar approach to optimize the number of trees in the forest.

5.6 Potential Biomarker Identification

The identification of potential biomarkers from matrices of metabolic profiles involves a

double cross validation scheme: one to optimize the model complexity given for each can-

didate subset of variables, and the other to assess the final model performance.
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Figure 5.11: The average OOB error expressed as a function of the mtry parameter. The

shaded area represents the 95% confidence interval.

RFmarkerDetector includes the method rfMCCV() that implements this scheme consist-

ing of two steps:

• step 1: the whole dataset is randomly split into training and test sets;

• step 2: the biomarker selection is iteratively performed using only the training set.

Each candidate variable-subset random forest model is evaluated using the out-of-bag

error estimate (this is the inner cross validation loop);

• step 3: the best parsimonious random forest model is then validated on the test set.

The performance of this model is evaluated on the basis of he ROC curve analysis of

the test data;

• step 4: the first three steps are then repeated N times such that N parsimonious model

evaluations can be performed.
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Examining the probability of selection of the features selected across the N parsimonious

models, it will be possible to determine whether a consistent group of metabolites has been

found.

1 l i b r a r y ( "WilcoxCV " )

2 l i b r a r y ( "randomForest" )

3 rfmccv <− function ( data , n s pl i t s , t e s t _prop , opt_params , nvar , ranking = "MDA" ) {

4 NTREE = 1000

5 MTRY = fl oor ( s q r t ( ncol ( data ) − 2) )

6 i f ( ( nvar < 2 | nvar > ncol ( data ) − 2) ) {

7 nvar = ncol ( data ) − 2

8 stop ( "argument nvar out of range . " )

9 }

10 i f ( hasArg ( opt_params ) ) {

11 i f ( ! i s . null ( opt_params [ [ " ntree " ] ] ) ) {

12 NTREE = opt_params$ntree

13 }

14 i f ( ! i s . null ( opt_params [ [ "mtry" ] ] ) ) {

15 MTRY = opt_params$mtry

16 }

17 i f ( ! i s . null ( opt_params [ [ " r e f _ l e v e l " ] ] ) ) {

18 r e f _ l e v e l = opt_params$ r e f _ l e v e l

19 l a b el s <− l e v e l s ( data [ , 2 ] )

20 i f ( ! ( r e f _ l e v e l %in% l a b el s ) )

21 stop ( "A problem occurred in opt_params : check r e f _ l e v e l parameter" )

22 data [ , 2] <− r e l e v e l ( data [ , 2] , r e f = r e f _ l e v e l )

23 }

24 }

25 l e v e l s ( data [ , 2 ] ) <− c (0 , 1)

26 ntest <− f l oor ( t e s t _prop * nrow ( data ) )

27 s et . seed (1234)

28 t e s t . index . matrix <− generate . s p l i t (n = nrow ( data ) , n i t er = n s pl i t s , ntest = ntest )

29 m <− matrix (nrow = ntest , ncol = n s p l i t s )

30 predictions <− data . frame (m)

31 l a b el s <− data . frame (m)

32 models <− l i s t ( )

33 for ( i in 1:nrow ( t e s t . index . matrix ) ) {

34 indexes <− t e s t . index . matrix [ i , ]

35 t e s t s e t <− data [ indexes , ]

36 t r a i n i n g s et <− data[−indexes , ]

37 trained_model <− randomForest ( x = t r a i n i n g s et [ , 3 : ncol ( t r a i n i n g s et ) ] , y = t r a i n i n g s et [ , 2] , mtry =

MTRY, ntree = NTREE,

38 importance = T)

39 i f ( ranking == "MDA" ) {

40 tmp_ var = importance( x = trained_model , type = 1)

41 }
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42 el s e {

43 tmp_ var = importance( x = trained_model , type = 2)

44 }

45 top_ var <− tmp_ var [ order (tmp_var , decreasing = T) , , drop = F ]

46 top_ var <− top_ var [ 1 : nvar , ]

47 headers <− append(names( data ) [ 1 : 2 ] , names( top_ var ) )

48 t r a i n i n g s et <− t r a i n i n g s et [ , headers ]

49 t e s t s e t <− t e s t s e t [ , headers ]

50 model <− randomForest ( x = t r a i n i n g s et [ , 3 : ncol ( t r a i n i n g s et ) ] , y = t r a i n i n g s et [ , 2] , x t e s t =

t e s t s e t [ , 3 : ncol ( t e s t s e t ) ] ,

51 y t es t = t e s t s e t [ , 2] , mtry = MTRY, ntree = NTREE)

52 predictions [ , i ] <− model$ t e s t $votes [ , 2]

53 l a b el s [ , i ] <− t e s t s e t [ , 2]

54 models [ [ i ] ] <− model

55 }

56 res <− RFmarkerDetector : : mccv ( predictions , labels , models )

57 }

Listing 5.1: Source code of the function rfMCCV.

For the identification of potential biomarkers, RFmarkerDetector provides an implemen-

tation of the AUC-RF algorithm [22] based on optimizing the area under the ROC curve (AUC)

of a random forest model. The strategy performs an iterative backward elimination process

based on the initial ranking of variables.

The functions aucMCV() and plotVarFreq() can help to detect the candidate biomarkers

by providing a graphical representation of them.

5.7 Case Study

In the following section, I will illustrate the predictive and interpretational benefits of some

of the outlined methodologies using a real data sets.

5.7.1 Epilepsy dataset

Epilepsy is a group of neurological disorders characterized by epileptic seizures [24]. Epilep-

tic seizures are episodes that can vary from brief and nearly undetectable to long periods of

vigorous shaking.

The dataset investigated has been obtained selecting patients affected by partial epilepsy

pharmacologically well controlled or pharmaco-resistant, enrolled in the Epilepsy Diagnos-
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tic and Treatment Centre of Cagliari. Blood samples were collected from 2 groups of fasted

patients : (i) 35 affected by epilepsy and (ii) 35 healthy subjects.

The epileptic patients included two subgroups: 18 patients classified as responders (R)

and the remaining 17 as nonresponders (NR) according to their response to therapy (Table

5.2).

Classes Age (mean + SD )/ [range] Gender (F/M)

Controls (n = 35) (44.38 + 17.19)/ [6-76] 24/11

Responders (n = 18) (47.5 + 16.86 )/[27-80] 11/7

Non Responders (n = 17) (52.17 + 9.57)/[41-71] 11/6

Table 5.2: Characteristics of the classes enrolled in the study

5.7.2 Sample Preparation

Plasma samples were thawed on ice and then centrifuged at 2500 g for 10 min at 4°C. An

aliquot of 800 µl of plasma was used and a solution of chloroform/methanol 1:1 (2400 µl )

plus 350 µl of distilled water was added. Samples were stirred for 1 minute and centrifuged

for 30 min, at 1700 g at RT. After the centrifugation, hydrophilic and hydrophobic phases

were obtained. The first was concentrated overnight using a speed vacuum instrument and

then re-suspended in 630 µl of D2O and 70 µl TSP (Trimethylsilyl propanoic acid) 5.07 mM.

TSP was added to provide an internal reference for the chemical shifts of the spectrum

obtained with the NMR analysis.

NMR experiments were performed on a Varian UNITY INOVA 500 spectrometer operat-

ing at 499 MHz equipped with a 5mm triple resonance probe with z-axis pulsed field gradi-

ents and autosampler.

One-dimensional 1H-NMR spectra were collected at 300 K with a noesy pulse sequence

to suppress the residual water signal by using 0.100 ms of mixing time.

Spectra were manually phased, baseline corrected and chemical shifts referred to the

internal standard TSP (at δ = 0.0 ppm) using MestReNova software [6]. Metabolite identifica-

tion was carried out by using the library of metabolite NMR spectra from the Chenomx NMR

Suite (version 7.1) [3]. The Chenomx NMR Suite software allows to fit the spectral signa-
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tures (singlets, doublets, triplets etc) of a compound from an internal database of reference

spectra to the experimental NMR spectrum.

Also for the determination of the concentrations of individual metabolites (quantifica-

tion) Chenomx NMR Suite has been used. The matrix obtained had 70 rows and 20 columns.

Each row represented a sample, while each column the concentration of one of the metabo-

lites identified.

The samples have been divided into two groups: 35 labeled as healthy control individuals

and the remaining 35 as epileptic patients.

5.7.3 Data Analysis Strategy

The goal of the analysis was to build a classification model able to correctly discriminate be-

tween healthy controls and patients and to attempt to identify a panel of potential biomark-

ers.

After a raw filtering step, the concentration matrix has been scaled using the Pareto ap-

proach, in order to emphasize all metabolite signals and reduce the noise.

Figure 5.12: Identification of the optimal parsimonious model.

The biomarker selection process has been performed using a repeated Monte Carlo cross

validation (MCCV) scheme based on random forest models. In each MCCV, two thirds (2/3)

of the samples have been used to evaluate the feature importance by using the importance
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measure of the random forest algorithm. The top important features have been used to build

classification models validated on the 1/3 of the samples that were left out. The procedure

have been repeated multiple times to calculate the performance and confidence interval of

each model.

Figure 5.13: Evaluation of the performance of the parsimonious model.

Figure 5.12 illustrates the structure of the optimal parsimonious model and the candidate

biomarker identified, while in Figure 5.13 is reported the the average ROC curve generated

by Monte Carlo Cross-Validation.





Chapter 6

Concluding remarks

In this thesis we investigated the problem of metabolomics data management in conjunc-

tion with the application of machine learning techinques and chemometric analysis.

The focus has been put on multivariate strategies for metabolomics data analysis and

on the validation of classification and prognostic models for the identification of potential

biomarkers that could aid the diagnosis, monitoring and the prediction of a disease or the

outcome of a therapy.

Metabolomics deals with the global assessment of the metabolites present in a biological

system to evaluate the progress of a disease and provide insights into the underlying patho-

physiology. It can be seen as a complementary tool to genomics and proteomics: in fact,

while Genomics and Proteomics provide extensive information regarding the genotype but

provide limited insights about phenotype, the metabolites are the closest link to the pheno-

type of the biological system studied.

The growing interest in metabolomics has been encouraged by rapid advances in metabolic

profiling techniques and by technological developments of the diverse analytical platforms,

including proton Nucleic Magnetic Resonance (1H NMR), Gas Chromatography-Mass Spec-

trometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS), used for gen-

erating metabolic profiles. The result is the production of a huge amount of data and infor-

mation.

To efficiently handle the data generated and optimize the complex experimental pro-

cesses needed to produce them, we designed and developed a software platform called QTREDS

(Quality and TRacEability Data System).

79
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QTREDS is a Laboratory Information Management System (LIMS), which is a software

infrastructure to support the integrated management of multiple data types and the activi-

ties of "omics" laboratories.

The software application was designed to provide researchers with a complete knowl-

edge of the laboratory processes at each step, in order to manage and verify the: (I) workflow

creation, (II) samples traceability, (III) diverse experimental protocol definitions, (IV) inven-

tory of reagents and (V) users’ roles and privileges.

The software platform has been developed to address the specific needs of the Sequenc-

ing and Genotyping Laboratories of the CRS4 research center, where it has been tested and

used to carry out almost one hundred DNA library preparation and sequencing experiments.

Thanks to its flexibility QTREDS is currently undergoing an optimization process to adapt it

to the requirements of metabolomics laboratories. Another topic I have investigated in this

thesis, concerns the multivariate analysis of metabolomics data. The following aspects have

been covered and discussed:

• data preprocessing and pretreatment;

• exploratory analysis;

• biomarker discovery and selection using the Random Forest algorithm.

The data used in our experiments were mainly 1H - NMR spectra of blood plasma sam-

ples from epileptic patients, provided by the Department of Biomedical Sciences of the Uni-

versity of Cagliari. The first step of data preprocessing has been baseline removal, carried out

by using a robust estimation procedure with the help of the researchers of the Department

of Biomedical Sciences of the University of Cagliari. Baseline distortions in fact, can affect

the quantification of metabolites and the consequent statistical analysis.

After baseline corrections, several other preprocessing methods has been applied (spec-

tral regions suppression, alignment, binning) in order to eliminate spurious signals or reduce

the chemical shift problem. Different normalization and filtering techniques (autoscaling,

Pareto scaling) have been investigated and compared to evaluate their impact on the subse-

quent statistical analysis.

In order to explore and discover the overall structure of the data, find trends and group-

ings, several exploring techniques have been studied and implemented: Principal Compo-
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nent Analysis, Multi Dimensional Scaling based on Random Forest proximity matrices, K-

means just to name a few.

Most of the research activities and the experiments has been focused on the identifica-

tion and selection of potential biomarkers. Choosing the most suitable machine learning

algorithm for biomarkers discovery was not an easy task, because different requirements

had to be fulfilled:

• high prediction accuracy;

• ability to handle high dimensional datasets;

• interpretability of the prediction model.

Support Vector Machines, Artificial Neural Networks, K-Nearest Neighbors, Linear Dis-

criminant Analysis are some of the most widely used machine learning techniques for creat-

ing predictive models. However, most of them provide too little insights on the importance

of the variables involved in the prediction process. Variable importance measures, besides

helping in the interpretation of a prediction model, can be crucial in the discovery and iden-

tification of candidate biomarkers.

Therefore the models I developed to carry out the multivariate analysis of metabolomics

data were based on the Random Forest algorithm which is probably the closest to having the

desired combination of features previously indicated.

I have mainly been concerned with the study of the calibration of the main parameters

of the Random Forest algorithm and the development of procedures of crossvalidation in

order to achieve two objectives: first, the creation of models that, starting from the metabolic

profile were able to diagnose the presence or absence of a disease with a satisfactory degree

of accuracy; then, the development of methods for the identification of those elements of

the metabolic profile correlated to a particular disease state (biomarkers).

The techniques discussed, together with a variety of chemometrics and machine learn-

ing methods have been encoded in the R language and grouped within an open source pack-

age, named RFMarkerDetector, freely available online.
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