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1 INTRODUCTION 

The nuclear fusion arises as the unique clean energy source capable to meet 

the energy needs of the entire world in the future. 

On present days, several experimental fusion devices are operating to 

optimize the fusion process, confining the plasma by means of magnetic 

fields. The goal of plasma confined in a magnetic field can be achieved by 

linear cylindrical configurations or toroidal configurations, e.g., stellarator, 

reverse field pinch, or tokamak. 

Among the explored magnetic confinement techniques, the tokamak 

configuration is to date considered the most reliable. Unfortunately, the 

tokamak is vulnerable to instabilities that, in the most severe cases, can lead 

to lose the magnetic confinement; this phenomenon is called disruption. 

Disruptions are dangerous and irreversible events for the device during 

which the plasma energy is suddenly released on the first wall components 

and vacuum vessel causing runaway electrons, large mechanical forces and 

intense thermal loads, which may cause severe damage to the vessel wall and 

the plasma face components. 

Present devices are designed to resist the disruptive events; for this reason, 

today, the disruptions are generally tolerable. Furthermore, one of their aims 

is the investigation of disruptive boundaries in the operational space. 

However, on future devices, such as ITER, which must operate at high 

density and at high plasma current, only a limited number of disruptions will 

be tolerable. For these reasons, disruptions in tokamaks must be avoided, 

but, when a disruption is unavoidable, minimizing its severity is mandatory. 

Therefore, finding appropriate mitigating actions to reduce the damage of the 

reactor components is accepted as fundamental objective in the fusion 

community. 



11 

 

The physical phenomena that lead plasma to disrupt are non-linear and very 

complex. The present understanding of disruption physics has not gone so 

far as to provide an analytical model describing the onset of these 

instabilities and the main effort has been devoted to develop data-based 

methods.  

In the present thesis the development of a reliable disruption prediction 

system has been investigated using several data-based approaches, starting 

from the strengths and the drawbacks of the methods proposed in the 

literature. In fact, literature reports numerous studies for disruption 

prediction using data-based models, such as neural networks. Even if the 

results are encouraging, they are not sufficient to explain the intrinsic 

structure of the data used to describe the complex behavior of the plasma. 

Recent studies demonstrated the urgency of developing sophisticated control 

schemes that allow exploring the operating limits of tokamak in order to 

increase the reactor performance. 

For this reason, one of the goal of the present thesis is to identify and to 

develop tools for visualization and analysis of multidimensional data from 

numerous plasma diagnostics available in the database of the machine. The 

identification of the boundaries of the disruption free plasma parameter 

space would lead to an increase in the knowledge of disruptions. A viable 

approach to understand disruptive events consists of identifying the intrinsic 

structure of the data used to describe the plasma operational space. Manifold 

learning algorithms attempt to identify these structures in order to find a low-

dimensional representation of the data. Data for this thesis comes from 

ASDEX Upgrade (AUG). ASDEX Upgrade is a medium size tokamak 

experiment located at IPP Max-Planck-Institut für Plasmaphysik, Garching 

bei München (Germany). At present it is the largest tokamak in Germany. 
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Among the available methods the attention has been mainly devoted to data 

clustering techniques. Data clustering consists on grouping a set of data in 

such a way that data in the same group (cluster) are more similar to each 

other than those in other groups. Due to the inherent predisposition for 

visualization, the most popular and widely used clustering technique, the 

Self-Organizing Map (SOM), has been firstly investigated. The SOM allows 

to extract information from the multidimensional operational space of AUG 

using 7 plasma parameters coming from successfully terminated (safe) and 

disruption terminated (disrupted) pulses. Data to train and test the SOM have 

been extracted from AUG experiments performed between July 2002 and 

November 2009. 

The SOM allowed to display the AUG operational space and to identify 

regions with high risk of disruption (disruptive regions) and those with low 

risk of disruption (safe regions).  

In addition to space visualization purposes, the SOM can be used also to 

monitor the time evolution of the discharges during an experiment. Thus, the 

SOM has been used as disruption predictor by introducing a suitable 

criterion, based on the trend of the trajectories on the map throughout the 

different regions. When a plasma configuration with a high risk of disruption 

is recognized, a disruption alarm is triggered allowing to perform disruption 

avoidance or mitigation actions. 

The data-based models, such as the SOM, are affected by the so-called 

"ageing effect". The ageing effect consists in the degradation of the predictor 

performance during the time. It is due to the fact that, during the operation of 

the predictor, new data may come from experiments different from those 

used for the training. In order to reduce such effect, a retraining of the 

predictor has been proposed. The retraining procedure consists of a new 

training procedure performed adding to the training set the new plasma 
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configurations coming from more recent experimental campaigns. This aims 

to supply the novel information to the model to increase the prediction 

performances of the predictor. 

Another drawback of the SOM, common to all the proposed data-based 

models in literature, is the need of a dedicated set of experiments terminated 

with a disruption to implement the predictive model. Indeed, future fusion 

devices, like ITER, will tolerate only a limited number of disruptive events 

and hence the disruption database won't be available. 

In order to overcome this shortcoming, a disruption prediction system for 

AUG built using only input signals from safe pulses has been implemented. 

The predictor model is based on a Fault Detection and Isolation (FDI) 

approach. FDI is an important and active research field which allows to 

monitor a system and to determine when a fault happens. The majority of 

model-based FDI procedures are based on a statistical analysis of residuals. 

Given an empirical model identified on a reference dataset, obtained under 

Normal Operating Conditions (NOC), the discrepancies between the new 

observations and those estimated by the NOCs (residuals) are calculated.  

The residuals are considered as a random process with known statistical 

properties. If a fault happens, a change of these properties is detected. In this 

thesis, the safe pulses are assumed as the normal operation conditions of the 

process and the disruptions are assumed as status of fault. Thus, only safe 

pulses are used to train the NOC model. In order to have a graphical 

representation of the trajectory of the pulses, only three plasma parameters 

have been used to build the NOC model. Monitoring the time evolution of 

the residuals by introducing an alarm criterion based on a suitable threshold 

on the residual values, the NOC model properly identifies an incoming 

disruption. Data for the training and the tests of the NOC model have been 
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extracted from AUG experiments executed between July 2002 and 

November 2009. 

The assessment of a specific disruptive phase for each disruptive discharge 

represents a relevant issue in understanding the disruptive events. Up to now 

at AUG disruption precursors have been assumed appearing into a prefixed 

time window, the last 45ms for all disrupted discharges. The choice of such a 

fixed temporal window could limit the prediction performance. In fact, it 

generates ambiguous information in cases of disruptions with disruptive 

phase different from 45ms. In this thesis, the Mahalanobis distance is applied 

to define a specific disruptive phase for each disruption. In particular, a 

different length of the disruptive phase has been selected for each disrupted 

pulse in the training set by labeling each sample as safe or disruptive 

depending on its own Mahalanobis distance from the set of the safe 

discharges. 

Then, with this new training set, the operational space of AUG has been 

mapped using the Generative Topography Mapping (GTM). The GTM is 

inspired by the SOM algorithm, with the aim to overcome its limitations.  

The GTM has been investigated in order to identify regions with high risk of 

disruption and those with low risk of disruption. For comparison purposes a 

second SOM has been built. Hence, GTM and SOM have been tested as 

disruption predictors. Data for the training and the tests of the SOM and the 

GTM have been extracted from AUG experiments executed from May 2007 

to November 2012. 

The last method studied and applied in this thesis has been the Logistic 

regression model (Logit). The logistic regression is a well-known statistic 

method to analyze problems with dichotomous dependent variables. In this 

study the Logit models the probability that a generic sample belongs to the 

non-disruptive or the disruptive phase. The time evolution of the Logit 
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Model output (LMO) has been used as disruption proximity index by 

introducing a suitable threshold. Data for the training and the tests of the 

Logit models have been extracted from AUG experiments executed from 

May 2007 to November 2012. Disruptive samples have been selected 

through the Mahalanobis distance criterion. 

Finally, in order to interpret the behavior of data-based predictors, a manual 

classification of disruptions has been performed for experiments occurred 

from May 2007 to November 2012. The manual classification has been 

performed by means of a visual analysis of several plasma parameters for 

each disruption. Moreover, the specific chains of events have been detected 

and used to classify disruptions and when possible, the same classes 

introduced for JET are adopted. 

1.1 Outline of the thesis 

The thesis is organized as follows: 

 Chapter 2 reports an overview of the controlled thermonuclear fusion 

reactors and a description of the basic concepts about the stability of 

the tokamak. Finally, the causes of the disruptions are discussed. 

 In Chapter 3 the attention is focused on the description of the 

Machine Learning methods. In particular, the Self Organizing Maps 

and the Generative Topographic Mapping are presented.  

 In Chapter 4 an overview on statistics and regressive methods for 

data analysis is presented. 

 Chapter 5 describes the analysis and the algorithms implemented to 

map the AUG operational space and for disruption prediction. 

 In Chapter 6 a manual classification of the disruptions at AUG is 

presented. 

 In Chapter 7 the conclusions are drawn. 
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 In Chapter 8 the list of the publications related to the thesis are 

reported. 
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2 NUCLEAR FUSION 

Power generation by fusion reactions is a promising future energy source 

because the nuclear energy that can be obtained is much greater than energy 

released by chemical reactions. 

On the earth, different fusion reactions can be realized: 

MeVHTDD 03.4     (2.1) 

MeVnHeDD 27.3      (2.2) 

MeVnHeTD 59.16     (2.3) 

MeVHHeTD 3.18     (2.4) 

The D-T reaction is considered by the researchers as the most feasible fusion 

reaction due to the highest cross section in the reaction rates at low 

temperature, as shown in Figure 2.1. 

 

Figure 2.1: Experimental cross section for different fusion reactions versus different temperature levels 

[1]. 

The highest probability to achieve a nuclear fusion between D and T occurs 

for a temperature around 100 keV. In these conditions the atoms are fully 

ionized and they are in plasma state. 
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In order to achieve the temperatures and densities to start and to maintain a 

sufficient number of fusion reactions, several types of magnetic confinement 

in toroidal devices have been investigated: 

 Tokamak; 

 Stellarator; 

 Reverse Field Pinch (RFP). 

Among these, the tokamak is the most highly developed technology. 

2.1 The magnetic confinement 

The Tokamak is a toroidal plasma confinement system where the 

confinement is obtained by means of the interaction of two magnetic fields, 

the toroidal and the poloidal fields. 

Toroidal field is generated by toroidal coils around the plasma and the 

poloidal field is generated by inducting an electrical current in the plasma, 

which represents the secondary circuit of a transformer device whose 

primary is located at the reactor center. The combination of the toroidal field 

and the poloidal field results in magnetic field lines which have helical 

trajectory around the plasma, as shown in Figure 2.2. 

 

Figure 2.2:Schematic representation of tokamak configuration. 
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The only ohmic heating generated by plasma current is not enough to drive 

the plasma to the high temperature needed, thus, external heat sources exist 

to maintain the temperature required for the fusion reaction. Additional 

heating systems commonly used are: Neutral Beam Injection (NBI), Ion-

Cyclotron heating (ICRH) and Electron-Cyclotron heating (ECRH). 

To achieve thermonuclear conditions for fusion reactions in a tokamak it is 

necessary to confine the plasma for a sufficient time. The energy 

confinement time τ represents the mean time in which the plasma can use the 

input energy [2], it is defined as the ratio between the thermal energy and the 

plasma input power. It is demonstrated that τ decreases with the level of 

additional heating power. If the level of input power exceeds a threshold, 

which depends on the discharge characteristics, the plasma spontaneously 

switches from a low confinement state (L-mode) to a high confinement state 

(H-mode) [3]. The H-mode is a confinement with high performance, because 

the density, the temperature and the confinement time increase about by a 

factor of two with respect to L-mode confinement [1]. The key features that 

determine which operation regime prevails are the amount of external 

heating power supplied and the way in which the plasma makes contact with 

the first material surface [1]. 

The tokamak equilibrium has two basic aspects; one is characterized by the 

balance between the plasma pressure and the forces due to the magnetic 

field. The second one is characterized by the magnetic geometry, which is 

determined and controlled by the current in the external coils. These two 

aspects are described by two variables: the Beta parameter (β) and the Safety 

Factor (q).  
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The efficiency of confinement of the plasma pressure by the magnetic field 

is defined by the ratio: 






B

p02
   (2.5) 

where <p> is the average plasma pressure, μ0 is the vacuum permeability and 

B is the toroidal magnetic field. The performance of a fusion reactor is 

directly connected to high values of . 

The safety factor q, is so called because it plays a fundamental role in the 

MHD stability; in general terms higher values of q lead to greater stability 

configurations. The field line follows a helical path as it goes round the torus 

on its associated magnetic surfaces. So that, if a magnetic field line returns to 

its starting position after one rotation round the torus q=1. In general, q=m/n, 

where m and n are respectively the number of toroidal and poloidal rotations 

around the torus. The value of q at the radius r can be calculated though the 

following equation: 





BR

Br
rq

0

)(




    

(2.6) 

where B, and B, are respectively the toroidal and the poloidal magnetic 

field, r and R0 are the minor and the major radius [4].  

  



21 

 

2.2 ASDEX Upgrade 

Data for this thesis comes from ASDEX Upgrade (Axially Symmetric 

Divertor EXperiment); it is a midsize divertor tokamak operating at IPP 

Max-Planck Institute for Plasma Physics in Germany. At present, it is the 

largest tokamak reactor in Germany. 

The machine parameters and the typical plasma properties of ASDEX 

Upgrade (AUG) are listed in Table 2.1. 

Table 2.1:  

Table 2.1: The machine parameters and the typical plasma properties. 

Major radius 1.6 m 

Minor horizontal radius (a) 0.5 m 

Minor vertical radius(b) 0.8 

Ellipticity b/a 1.8 

Plasma types D, T, He 

Material of the first wall Tungsten 

Maximum magnetic field 3.1 T 

Plasma current range 0.4 MA - 1.6 MA 

Pulse duration < 10 s 

Plasma heating: up to 27 MW 

Ohmic heating 1 MW 

Neutral beam injection heating 20 MW (with 
2
H = D) 

Injection energy 60 keV and 100 keV 

Ion-Cyclotron heating 6 MW (30 MHz - 120 MHz) 

Electron-Cyclotron heating 2 x 2 MW (120 GHz) 
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2.3 Disruption classes 

Presentelly, the tokamak is the most advanced and the best investigated 

fusion device. Thanks to the results obtained with respect to the Reverse 

Field Pinch and the Stellarator, in terms of plasma parameters and 

performance (confinement time and fusion power), it is the most promising 

technology for the design of a future fusion reactor. On the other hand, the 

tokamak is vulnerable to instabilities that in the most severe cases can lead to 

lose the magnetic confinement, resulting in a sudden and irreversible loss of 

the plasma energy and current; this phenomenon is called disruption. 

Disruptions are dangerous events during which the plasma energy is 

suddenly released on the first wall components and vacuum vessel causing 

runaway electrons, large mechanical forces and intense thermal loads, which 

may cause severe damage to the vessel wall and the plasma face 

components. In present devices, disruptions can induce in the vacuum vessel 

forces up to 1MN [5] and these values are destined to increase in reactors 

with large plasma currents. That poses a potential threat to the operation of 

tokamaks such as ITER and later. For these reasons, disruptions in tokamaks 

must be avoided, but, when a disruption is unavoidable, minimizing its 

severity is mandatory. Therefore, finding appropriate mitigation actions to 

reduce the damage of the reactor components is accepted as fundamental 

objective in the fusion community. A reliable prediction of the disruption 

type would allow the control and mitigation systems to optimize the strategy 

to safely land the plasma and to reduce the probability of damages in the 

device. In order to optimize the effectiveness of mitigation systems, it is 

important to predict the type of disruptive event about to occur. As an 

example, it has been proven in JET that the killer gas injection has not 

always the same positive effect and it is imperative to understand whether 

this depends on the disruption type. Otherwise, the best strategy to handle a 
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disruptive plasma evolution triggered by an internal transport barrier (ITB), 

is not necessarily the same as the one to mitigate a radiative collapse [6]. 

The physical phenomena leading to plasma disruptions in tokamaks are very 

complex and non-linear and the present understanding of disruption physics 

has not gone so far as to provide an analytical model describing the onset of 

these instabilities. In the framework of fusion research, a huge effort is 

devoted to the study of the operational limits of a tokamak and the 

theoretical stability limits of the plasma, in order to identify an operational 

space free from disruptions [7, 8]. It is well known that a stable operation in 

tokamaks (operative regions free of disruptions) are limited in plasma 

current (Ip) by the edge safety factor, in pressure by the Troyon normalized β 

parameter (N=∙a∙B/IP) and in density (ne) by the Greenwald limit. 

The Greenwald limit is defined as [9]: 

][

][
]10[

22

320

ma

MAI
mneGW P




  (2.7) 

where a is the minor plasma radius. 

Each of these parameters has a "nominal limit": 

 q = 2 

 1
neGW

ne
 

 N = 3,5 

If these nominal limits are not observed, usually, an increase of MHD 

activity initiates and then eventually the onset of a major disruption occurs 

[10]. 
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The temporal sequence of events that leads to a disruption is illustrated in 

Figure 2.3. It comprises mainly four phases as described in the following [4]:  

1. Pre-precursor phase: there is a change in the operative conditions that 

lead toward an unstable configuration. This change is often clear, as 

in the case of an increase of the plasma density or the auxiliary power 

shut-down when the reactor operates near at the Greenwald density 

limit. 

Due to the complex phenomena that govern the disruptions, this 

phase is not always clear identifiable. 

2. Precursor phase: in this phase, the magnetic confinement starts to 

deteriorate and MHD instability grows. 

3. Fast phase: the central temperature collapse (thermal quench). 

4. Quench phase: finally the plasma current decays to zero. 

Figure 2.3 :  

 

Figure 2.3: Temporal sequence of a disruption [4]. 
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The disruption is a very complex phenomenon. Often the chain of events that 

leads to a disruption has numerous root causes and follows a complicate path 

[5]. Moreover different events and paths can lead to the same disruption 

type. Therefore the aim of classifying a disruption database is not a trivial 

task. The literature reports two studies into disruption causes (technical 

problems and physics instabilities) of JET operations across the change of 

the C-wall to the full metal ITER-like wall [5, 11]. Several types or classes 

of disruption have been identified on the base of the chain of events that 

leads to the disruption, depending on the operative regime. Instead, in [12] 

the causes of the disruption occurred at AUG in the 2012-13 experimental 

campaign have been analyzed, and disruption preceded by similar sequence 

of precursor have been categorized according to the same classification 

scheme used in [11] for JET.  

In this thesis, disruptions from May 2007 to November 2012 experimental 

campaigns at AUG have been classified looking at common destabilizing 

mechanism that can set into motion the disruption. Following that criterion, 

five main disruptions classes have been identified:  

1. Vertical displacement events 

2. Cooling edge disruptions 

3. Impurity accumulation disruptions 

4. β-limit disruptions 

5. Low q-low ne - Error field disruptions. 

Vertical Displacement Event (VDE)  

When the plasma cross section is elongated, as at AUG, the plasma column 

becomes unstable to the motion in the direction of elongation. A fast change 

in plasma parameters can cause the loss of the vertical position control, 

leading to an uncontrolled upward or downward fast acceleration of the 
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plasma to the wall [10]. Otherwise, the loss of control of the position can 

occur due to the failure of the feedback stabilize control system [4]. A loss of 

vertical stability followed by the cooling of the plasma core typically gives 

rise to a Vertical Displacement Events (VDE). 

The moving plasma column eventually contacts a limiting surface with a 

little change in the plasma current, reducing the safety factor at the edge. 

When the boundary safety factor decreases to a sufficiently low value 

(typically less than 2), rapid growth of MHD activity (n = 1 modes) produces 

a fast thermal quench similar to those observed in major disruptions [10]. 

During the subsequent thermal quench the plasma wall-contacting induces 

flowing of vessel currents commonly called 'halo currents' leading to global 

vessel forces and local heats loads on in-vessel components. Furthermore, 

the loss of control of the position can occur as effect of a strong perturbation 

as a result of a disruption [4]; this means that a VDE can ensue from a major 

disruption.  

In this thesis the VDEs are detected monitoring the displacement difference 

between the pre-programmed and the actual plasma column position. If this 

difference is greater than 7cm a VDE is detected. 

Cooling Edge disruption (CE) 

The phenomenology characterizing a so called cooling edge disruption (CE) 

has been treated in different papers [5, 12-15]. The destabilizing mechanism 

consists in a contraction of the current profile (increasing of the internal 

inductance) which leads to the destabilization of the m = 2 tearing modes, 

then a subsequent thermal instability causing a radial collapse of the 

temperature profile occurs [12-16].  

Moreover, at AUG, the cooling of the plasma edge is typically accompanied 

by a MARFE (Multifaceted Asymmetric Radiation From the Edge) [13, 17, 
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18]. The MARFE phenomenon is a region of cold and dense plasma. It 

usually occurs on the inner major radius edge of the torus but also appears 

around the X-point of the divertor configuration. Being a source of an 

intensive radiation, it increases the radiation near the X-point region up to 

several MW of power. 

By a physical point of view, the cooling of the plasma edge can be achieved 

in three different ways:  

 high electron density 

 high impurity density at the edge  

 contact of the plasma with the wall (see VDE) 

High electron density. The fusion power in a tokamak reactor is proportional 

to neT, where ne is the plasma density, T is the ions temperature and  is 

the energy confinement time. In order to maximize the thermonuclear power 

the future reactors, such as ITER, must to operate at high density. For this 

reason different study on several devices have been conducted in order to 

study the operative regions at high plasma density. 

During the classical density limit experiments, the limit of density is 

achieved by continuous gas puffing, which finally leads to a saturation of the 

density increase with a following energy collapse and a disruptive 

termination of the discharge [19]. The density and the safety factor at the 

edge (qa) can be combined in a diagram, known as Hugill diagram (see 

Figure 2.4) [4], in order to find dependencies of these two parameters from 

experimental behaviors free from disruptions. As can be seen in Figure 2.4, 

disruptions in ohmically heated tokamaks are limited by the boundary 

relation between the parameter BRne /  and the value of qa, where en is the 

line average density, R is the major radius and B  is toroidal field. 
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Figure 2.4: The Hugill diagram for ohmically heated plasma (solid line) and when additional heating is 

used (dashed line) [4] 

As can be noted, the operative regions free from disruption are limited by the 

value qa=2. In this region the arise of m=2, n=1 external kink mode is 

destabilizing and leads to disruption of the discharge. This is an empirical 

boundary, which increases with the application of additional heating [20]. In 

addition a clear density-limit is found, the well-known Greenwald limit. This 

density-limit is directly proportional to the average current density and it is 

independent of the power. The diagram reported in Figure 2.4 does not 

indicate if a discharge ends in a disruption or not, but it shows the limitations 

imposed by high ne and low qa, moreover, it does not prohibit that 

disruptions may happen inside the boundary limit. 

The density limit disruptions never happen in H-mode configuration, they 

are always preceded by an H-L transition at high density (ne/neGW in the 

range [0.8÷1]), followed by a rise of MHD activity and a subsequent 

radiative collapse. This kind of disruptions have been grouped in a class 

labeled GWL-H [12].  

Furthermore, another type of density limit in L-mode (Ohmic discharge), 

where the saturation of the density leads a disruption, have been identified. 

This type of disruptions are grouped in a class called density control problem 
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(NC) in according to [5], instead in [12] they are considered as a separated 

class named GWL (L-mod). 

In addition to physical causes, the diagnostic problems could be another 

cause for disruptions characterized by a cold edge. When the plasma 

operates near to the Greenwald limit the H-L back transition may occur as 

consequence of an input power drop-off related to an auxiliary power system 

switch-off, usually the NBI. The fast switch-off of auxiliary power could 

lead to difficulties in controlling density and to lead the discharge a 

disruption [5]. Disruptions characterized by that onset have been grouped in 

a class called Auxiliary power Shutdown Disruption (ASD). 

Diagnostic errors could confuse the feedback control system. As an example, 

an erroneous density signal due to a fringe-jump of the interferometer signal 

may lead to excessive gas requests from the density feedback system 

pushing again the plasma towards the density limit [5]. In this thesis, as in 

[5, 12], these type of disruptions are clustered together with the NC. 

High impurity density at the edge. It was established that the saturation of the 

density increase is directly linked to a power balance problem at the edge. If 

the edge cools to a sufficiently low temperature of 50-100 eV, a radiative 

instability can occur due to the effect of a small concentration of impurities 

(typically low-Z impurities released from the first wall) that changes the 

plasma radiation characteristics in such a way that, with decreasing 

temperature, an increasing radiative loss occurs [19]. When the cooling of 

the plasma edge occurs following that mechanism the disruptions have been 

grouped in a class called Impurity control problem (IMC). 

Problems with impurity seeding control may lead to an excessive radiation at 

the edge and finally trigger a cold edge disruption. These type of disruptions 

are clustered together with the IMC [5, 12]. 
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Impurity accumulation disruption (radiation peaking) 

Another important cause of instability related to radiation is the impurity 

accumulation. The impurity accumulation occurs when the radial density 

profile of an impurity evolves a stronger peaking than the profile of the main 

plasma ions [20]. The impurities, generally high-Z impurity, are due to the 

plasma wall interaction (mostly Tungsten in the considered database). 

Impurity accumulation is common in AUG under certain plasma conditions, 

such as insufficient heating of the plasma core, low density, absence of gas 

puff and ELM free phases [12]. 

Impurity through transport processes can penetrate into the plasma core. 

Once they have arrived in the plasma center, the core starts to irradiate 

because the impurities are partially ionized. The energy lost by radiation 

leads to a drop in the central electron temperature. As a consequence the 

electron density profile peaks, whereas the electron temperature profile 

becomes flat due to the enhanced radiated power from the center. The 

electrical conductivity of the plasma σ  f(Zeff)Te
3/2

 (where Zeff is the 

effective charge of the plasma and Te is the electron temperature) decreases, 

resulting in a decrease current density in the plasma center. The 

accumulation of impurities is often followed by internal disruptions, which 

are a collapse of the central plasma parameters due to tearing modes and in 

the exceptional cases double tearing modes arises. As a result of these 

instabilities minor and major disruptions can occur [21]. 

Beta limit disruption (-limit) 

Since MHD perturbations are related to pressure gradients it is easy to expect 

that  is subject to stability limits [4]. The normalized N should not exceed 

the value of 3.5 MA/(mT) as shown in [22]. 
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The major obstacles to achieve high  are the external kink modes [8] and 

the neoclassical tearing modes (NTMs). The NTMs are driven by the local 

reduction of the bootstrap current due to the pressure flattening across the 

magnetic islands. The most significant NTMs are those with m/n= 3/2 or 2/1 

[10]. Although it was said that tearing modes are usually stable in tokamak 

discharges, it was found that in plasmas with a high β and consequently a 

large bootstrap current, a mechanism exists that can result in large tearing 

modes that leads the discharge in a disruption [5]. 

-limit disruptions are different from CE disruptions also because the 

majority of them happens at low values of q95, and the local pressure 

gradient exceeds the stability limit for kink and ballooning modes near the 

q=1 radius, whilst at the edge the plasma is stable [14].  

Low q and low ne - Error field disruption (LON-EFM) 

A source of locked modes in tokamaks arises from small deviations of the 

magnetic fields from axisymmetry. They can be due to misalignments of 

external coils during the installation, alignment errors in the poloidal field 

coils or ferritic material in the vicinity of the plasma. In such conditions, 

usually, low-m and low-n tearing modes are excited. These modes can grow 

and terminate in a disruption. The critical axisymmetry of the magnetic field 

depends on various plasma parameters [20]. In AUG, significant axi-

asymmetries of the magnetic field are not particularly significant, but studies 

of error field have been carried out in the last 2 years by means the 

Resonance Magnetic Perturbation coils (RMP), which generate a n=1 radial 

electric field resonant on the surface q=2, in low density and low q95 plasmas 

[12]. Error field locked modes are operationally important because they tend 

to persist once established and then limit the performance or cause 



32 

 

disruptions [10]. This type of disruption is sometimes called low ne-EFM, 

where EFM means error field mode [12]. 
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3 DATA VISUALIZATION METHODS 

Over the last few decades the visualization of high-dimensional data has 

become an important problem in many different domains. For these reason a 

variety of techniques for the visualization of such high-dimensional data 

have been proposed. Most of these techniques simply provide tools to 

display more than two data dimensions, and leave an easy interpretation of 

the data to the human observer [23]. One approach to achieve this is to 

assume that the data of interest lie on a low-dimensional manifold, 

embedded in the high-dimensional space. Thus, data reduced to a small 

enough number of dimensions can be visualized in the low-dimensional 

embedding space. Attempting to uncover this manifold structure in a dataset 

is referred to as manifold learning. Over the last few years, a number of 

supervised and unsupervised, linear and non-linear manifold learning 

techniques have been developed for dimensionality reduction purposes [24]. 

In this thesis, two non-linear algorithms for dimensionality reduction, the 

Self organizing Map and the Generative topographic mapping, have been 

applied in order to extract information from the complex multidimensional 

operational space of ASDEX Upgrade by means of the 2-D data 

visualization. 

Let us consider a set of N points T= (t1,…, tN) in the D-dimensional input 

space T. The goal of the applied methods is to define a mapping onto the 

smaller set of K<<N prototypes points X= (x1,…, xK) with 
L

j x  and 

L<D. For visualization purposes, the resulting mapping in the high 

dimensional space has to be transposed into 2 or 3-dimensional latent space. 

In this thesis, L is chosen to be 2. 

  



34 

 

3.1 Self Organizing Map (SOM) 

The Self Organizing Map (SOM), created by Kohonen [25] is an 

unsupervised learning algorithm which performs two different aims: 

1. high dimensional input data are projected on a low-dimensional 

regular grid (dimensionality reduction); 

2. points close to each other in the input space are mapped to the same 

or neighboring clusters in the output space (data clustering and 

topology preservation). 

The K prototypes points, for the SOM commonly called also map units, are 

arranged in a 2-D lattice, the so-called Kohonen layer, and are fully 

connected to the inputs via the weights w. The j
th

 map unit represents the j
th

 

cluster. Hence, the output of the j
th

 map unit Oj, j =1,...,K, is: 


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 i=1, ….., N      (3.1) 

The weights w are initialized and then updated iteratively during the SOM 

training procedure. The SOM runs through the dataset T several times, 

called epochs. During each epoch, for each ti, the closest prototype vector 

wj* is determined. Then, the coordinates of all the prototypes are updated 

according to a competitive learning rule: 

)*)(,( *jij jj wtw    (3.2) 

The neighborhood function (j,j*) is equal to one for j=j* and decreases 

with the distance djj* between prototypes j and j* in the output lattice. Thus, 

prototypes close to the winner, as well as the winner itself, have their 

weights updated, while those further away experience little effect. A typical 

choice for (j,j*) is a Gaussian function: 
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where  is a width parameter that is gradually decreased. 

When the training is completed, the weight vectors associated to each 

prototype define the partitioning of the multidimensional data. Moreover, 

each point in the original space corresponds to a prototype in the output 

lattice. 

Learning generally proceeds in two broad stages: a shorter initial training 

phase in which the map reflects the coarser and more general patterns in the 

data, followed by a much longer fine tuning stage in which the local details 

of the partition are refined. One can start with a wide range of (j,j*) and , 

then reduce both the range of (j,j*) and the value of  gradually as learning 

proceeds.  

During the training the grid is stretched through the densely populated areas 

of the input space, as shown in Figure 3.1. 
Figure 3.1:  

 

Figure 3.1: The first subplot in left side shows the initialized SOM; the next two subplots show the 

SOM in an intermediate and final step. In green the grid and in black the data input clouds. 

When the training algorithm converges, the weight vectors in the output 

space provide the coordinates of the prototype image in the input space. 

Each prototype corresponds to a cluster, or a homogeneous grouping of input 

data located in that specific area according to a similarity criterion detected 

by the algorithm, so that points close to each other in the input space are 

mapped to the same or neighboring cluster in the output space. 

The dimensionality reduction performed by the SOM allows one to visualize 

high dimensional data. The problem that data visualization attempts to solve 



36 

 

is that humans simply cannot visualize high dimensional data as it is, so 

techniques are created to explore and acquire insight into useful information 

embedded in the underlying data. 
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3.2 Generative Topographic Mapping (GTM) 

The Generative Topographic Mapping is a probability density model which 

describes the distribution of the data in a space of several dimensions in 

terms of a smaller number of latent variables [26]. 

This approach is based on a nonlinear transformation from the L-

dimensional space (latent space) to the D-dimensional space which is based 

on a constrained mixture of Gaussians whose parameters are optimized 

through the Expectation Maximization algorithm [27]. Thus, the GTM 

defines a mapping from the latent space into the data space. 

Finally, for visualization purposes, the mapping is inverted using the Bayes' 

theorem in order to define the posterior probability in the latent space. 

The latent space X, which consists of a regular grid of nodes, is mapped into 

the data space T by means a parameterized nonlinear function y(x;W), where 

W is the matrix of parameters representative of the mapping. 

The transformation y(x;W) maps the latent variable into a L-dimensional 

non-Euclidean manifold S embedded within the data space [27]. This is 

illustrated schematically for the case of L=2 and D=3 in Figure 2.2. 

 

Figure 3.2 Manifold embedded S in the input space by means the non linear function y(x;W). 

The objective of the GTM is to define a probability distribution over the D-

dimensional space in terms of latent variables. 

Since the data in reality will only approximately be enclosed on a low 

dimensional manifold, the model includes noise in the observed data which 
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will be modeled by a radially symmetric Gaussian probability density 

function centered on the transformed latent nodes. Thus the distribution of t, 

for a given x and W, is a spherical Gaussian centered on y(x,W) [27]: 
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where the inverse of the β parameter is the noise variance. 

The probability distribution in t-space, for a given value of W, is obtained by 

integration over the x-distribution: 

xxWxtWt dppp )(),,|(),|(      
(3.5) 

This integral is generally not analytically tractable, but choosing the p(x) to 

have a particular form (a set of delta functions each one associated with one 

of the nodes of the regular grid in the latent space), p(x) can be written as: 
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From (3.5) and (3.6) the distribution function in data space can take the 

form: 
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The suggested approach is to use radial basis functions (RBFs), such as for 

example Gaussians, to perform the nonlinear mapping between the latent 

space and the data space [28].  

The mapping can be expressed by a linear regression model, where the 

mapping function y is expressed as a linear combination of "basis functions" 

Φ (Gaussian or sigmoidal functions) [28]: 

)(),( xy WWx         (3.8) 
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where W is a D×M matrix of weight parameters and M is the number of the 

basis functions. 

Each point xi is then mapped to a corresponding point y(xi;W) in data space, 

which forms the centre of a Gaussian density function, as illustrated in 

Figure 2.3.  

 

Figure 3.3: Each node xi is mapped onto a corresponding point y(xi;W) in data space and forms the 

centre of a corresponding Gaussian distribution. 

Since the GTM represents a parametric probability density model, it can be 

fitted to the data set by maximum likelihood, e.g. maximizing the log 

likelihood function. This can be performed, using the expectation-

maximization algorithm. 

The likelihood function, for a finite set of i.i.d. (independent identically 

distributed) data points, {t1,...,tN} can be written as: 
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(3.9) 

But in practice it is convenient to maximize the log-likelihood function [27]: 
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An important application for the GTM is the visualization. The mapping in 

the high-dimensional space must be transposed into the low-dimensional 

latent space, which is chosen to be 2-D or 3-D. In order to invert the 

mapping Bayes' theorem is applied, which calculates the posterior 

probability in the latent space.  
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The iterative fitting procedure of the Gaussian mixture with respect to data 

points through EM algorithm will give rise to the values W* and *, and by 

means of the Bayes' theorem, it will be possible to compute the 

corresponding posterior probability distribution in latent space for any given 

point in data space, t, as: 
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For visualizing all the data points, it is possible to plot the mean (or the 

mode) of the posterior probability distribution in the latent space. The mean 

in the latent space is calculated by averaging the coordinates of all nodes 

taking the posterior probabilities as weighting factors [28]. 

Accordingly to the SOM algorithm, GTM can be applied for data clustering 

and topology preservation. Being the mapping defined by the nonlinear 

function y(x;W) smooth and continuous, the topographic ordering of the 

latent space will be preserved in the data space, in the sense that points close 

in the latent space will be mapped onto nodes still close in the data space. 

With respect to the Self Organizing Map algorithm, GTM defines explicitly 

a density model (given by the mixture distribution) in the data space, and it 

allows overcoming several problems, in particular the ones related to the 

objective function (log likelihood) to be maximized during the training 

process, and the convergence to a (local) maximum of such an objective 

function, that is guaranteed by the Expectation Maximization algorithm. 
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4 PROBABILISTIC, STATISTICAL AND 

REGRESSIVE MODELS 

In a complex system the occurrence of a fault can be very likely under 

certain conditions. Generally, a fault is a change in a system condition that 

prevents it to operate in the proper manner. Numerous applications on fault 

detection and isolation (FDI) have been developed. FDI is an active research 

field, where a reference model of the process is built on the base of the 

normal operating conditions, and a fault is detected by monitoring the 

difference between the effective state and that simulated by the reference 

model. Literature reports several techniques for detecting faults such as 

observers, parity space methods, eigenstructure assignments, parameter 

identification based approaches [29 - 31]. 

Different methods can be used to build the reference model, among these the 

autoregressive models are largely used. 

4.1 Auto-regressive model (ARX) 

A model is a tool which allows us to describe more or less complex relations 

between one or more output variables and one or more inputs variables. 

The easiest way to achieve a model is to suppose a linear combination 

between the current and the past values of a variable. Let us consider a time 

series y(t), the current output value yt can be evaluated by means of na past 

values of the same variable [yt-1, yt-2, yt-3,…,yt-na]: 
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Where, ai are the regression coefficients and et is a zero-mean white noise. 



42 

 

The equation (4.1) describes an AutoRegressive model of order na AR(na). 

The term autoregressive is used since (4.1) is actually a linear regression 

model for yt in terms of the explanatory inputs [yt-1, yt-2, yt-3, …,yt-na]. 

Often, a more accurate representation of the process is obtained using an 

external information, called exogenous input. Furthermore, if the effect of 

the exogenous variable acts with a determinate delay, a time delay nk is 

introduced. So, the model described in (4.1) can be modified in: 
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This model is called AutoRegressive model with eXegenous input 

ARX(na,nb). Generalizing to r eXogenous inputs ut
(r)

, j=1, 2,…, r, the model 

reported in (4.2) has to be modified as: 
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In case of multiple-input systems, estimate the input/output delay from the 

experiments, as well as the model order and the time delay, might be a 

difficult task. 

A wrong choice of the time delay and the model orders could lead to a model 

over-fitted. For multiple-input systems, as the model in (4.2), a good 

procedure is to start using all feasible time delays with a second-order 

model. The delay, nk*, that gives the best fit is selected. When the optimal 

value of nk* it is found, another optimization procedure, which allows to 

estimate the model orders na and nb, is performed. All feasible model orders 

are used to evaluate the performance of the ARX model with nk* delay. The 

model orders, na* and nb*, that give the best fit are selected [32]. This 

procedure can be easily applied to a multiple-input systems, as the model in 

(4.3). 
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The time delay and model order ranges, where the previous optimization 

procedures occur are imposed by the user.  

Fit is a measure of goodness of the model, typically it summarize the 

discrepancy between observed values and the values expected under the 

model. It is evaluate as )
)(

1(100[%]Fit
ymeany

yyh




 , where y and yh are 

the actual and the predicted model output respectively [32]. 

Finally, once known the time delays and the model orders, the final step is 

estimate the coefficients ai and bij. In order to understand how to estimate the 

coefficients ai and bij, it is easier to focus on the model with only one 

exogenous input and then generalize to the other variables. 

Parameters estimation of the ARX model 

Considering the vector of unknown coefficients = [a1 a2 ... ana, b11 b12 

...b1nb1] which fit as best as possible the equation (4.2), and the observations 

vector (or regressor vector) written as: r=[y(t-1) y(t-2) ... y(t-na), u1 (t-1) 

u1(t-2) ... u1(t-nb1)]
T
, the equation 4.2 can be written as: 

tt ey  rθ      (4.4) 

How it can be noted, yt is a linear combination of the regressor r, except for 

the error et. The error et is an unobservable random variable introduced into 

the model to account for its inaccuracy. 

The vector θ can be estimated by means the Ordinary Least Squares (OLS) 

method, which minimizes the sum of squared distances between the 

observed responses yt and the responses predicted by the linear 

approximation ŷt. The estimation error can be written as: 

ttt yye ˆ      (4.5) 
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Since tŷ  is the predicted value, the equation (4.5) can be written as 

rθ  tt ye . Finally, the method of ordinary least squares minimizes a 

function that consists of sum of error squares: 
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Where n=max(na, nnb1) is the index limit at which the error minimization 

occurs [33]. 
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4.2 Logistic regression (LOGIT) 

The logistic regression is a well-known statistic method to analyze problems 

with dichotomous (binary) dependent variable [34]. It models the probability 

of a case being classified into one category of the dependent variable (Y) as 

opposed to the other, using D independent variables or predictors V= [V1, 

V2, ... , VD]. Assuming that the two possible values of the dependent variable 

are 1 and 0, the probability that Y is equal to 1, P(Y=1|V), could be 

expressed through a linear regression model as: 

βVV  )|1(YP      (4.7) 

Where α and β=(β1, β2, ..., βD) are parameters to be identified on the base of 

the training data. α is the intercept and represent Y when V=0 and β are the 

partial regressor coefficients, partial because each independent variable gives 

a partial contribute to predict Y. 

The equation in (4.7) results to be inappropriate since the observed values of 

P(Y=1|V) must be 0 and 1, instead the predicted values by the equation (4.7) 

are in the range (-∞ ,+∞). To solve this problem, the logistic transformation 

[35] is applied and the (4.7) can be written as: 
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Finally, it is possible to calculate the odds that Y=1. Odds is the ratio of the 

probability that Y is equal 1 and the probability that Y is equal 0. 
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Where 1-P(Y=1|V)=P(Y=0|V). Being the ratio of the probability that Y=1 to 

the probability that Y≠1, the odds(Y=1) runs between 0 and +∞. A further 
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transformation using the natural logarithm of the odds, called logit(Y), is 

performed: 

))1(ln()(logit  YoddsY  (4.10) 

The resulting logit(Y) can be any number between -∞ and +∞, in fact it 

becomes negative and increasingly large in absolute value as the odds 

decreases from 1 to 0, and becomes increasingly large in the positive 

direction as the odds increases from 1 to +∞. Therefore, logit(Y) can be used 

as dependent variable in the equation (4.7) instead of P(Y=1) 
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The function logit(Y) can be converted back to odds(Y = 1), then back to the 

probability P(Y = 1): 

Vβ

Vβ

V
















e

e

Yodds

Yodds
YP

1)1(1

)1(
)|1(   (4.12) 

The graph of the equation 4.12 is the sigmoid function, which is plotted in 

Figure 4.1. 

 

Figure 4.1: Trend of a sigmoid function. 

If P>0.5 the corresponding dependent variable is Y=1 whereas, if P<0.5, 

then Y=0. 
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Parameters estimation of the logistic regression 

When the logistic regression is applied as classification method to separate 

patterns between two classes, first the parameters α and β are estimated from 

the training data minimizing the misclassifications via Maximum-Likelihood 

estimation method; then the logit(Y) and the probability P(Y=1) of a test case 

are calculated using (4.7) and (4.12) respectively. In the end, the class label 

is assigned to the test case by comparing the logit model output, or the 

calculated probability, with an appropriate threshold. 

The goal of the logistic regression is estimate the unknown parameters α and 

β of the equation (4.11). This is done with maximum likelihood estimation 

which entails finding the set of parameters for which the probability of the 

observed data is the greatest. 

The maximum likelihood equation is derived from the probability 

distribution of the dependent variable. 

For each training data-point (N), a vector of features, Vi, and depended 

vector, yi, is observed and the maximum likelihood function L(α,β) is 

computed: 
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The log(L) replaces products into sums: 
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Finally, in order to find the maximum likelihood estimates it is necessary to 

differentiate the log likelihood respect to the parameters and set the 

derivatives equal to zero. Solution vector gives the maximum likelihood 

estimator α and β. 
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4.3 Mahalanobis distance 

The Mahalanobis distance (MD) is a statistical measure of the distance 

between a point x and a reference group of point in a multidimensional 

space, introduced by P. C. Mahalanobis in 1936 [36]. 

For a sample xi (i =1,2,…,n) in a D-dimensional space the MD is defined as: 

2 1 )()( μxΣμx  TMD   (4.15) 

where µ and  are respectively the multivariate mean and the covariance 

matrix of the reference group data. If the covariance matrix is the identity 

matrix, the Mahalanobis distance reduces to the simple Euclidean distance. 

Mahalanobis distance is often used to detect outliers [37]. Outlier detection 

belongs to the most important tasks in data analysis. The outliers describe 

the abnormal data behavior, i.e. data which are deviating from the natural 

data variability. 
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5 DISRUPTION PREDICTION 

The tests presented in this chapter will be organized in two parts. In first 

part, two different approaches are proposed as disruption predictors at 

ASDEX Upgrade, using non-disrupted and disrupted discharges coming 

from AUG experiments executed between July 2002 and November 2009.  

The first method consists of extracting information from the 

multidimensional operational space of the machine by means of data 

visualization and dimensionality reduction methods, such as the Self 

Organizing Maps (SOM). A SOM trained with non-disrupted and disrupted 

pulses has been used to display the AUG operative space in order to identify 

regions with high risk of disruption and those with low risk of disruption. 

Moreover, the proposed approach allows the definition of simple displays 

capable of presenting meaningful information on the actual state of the 

plasma, and this has suggested to use the SOM as a disruption predictor. 

Then, a visual analysis of the predictor input signals has been performed for 

wrong predictions in order to identify possible common causes, and some 

criteria to increase the prediction performance have been identified. Finally, 

in order to reduce the ageing effect of the SOM a procedure of retraining is 

proposed. 

The second method allows building an autoregressive model using only few 

plasma parameters coming from successfully terminated pulses. A fault 

detection and isolation approach has been used and the disruptions prediction 

is based on the analysis of the residuals of an auto-regressive with exogenous 

input models. 

In the second part, three different approaches are proposed as disruption 

predictors at ASDEX Upgrade, using non-disrupted and disrupted discharges 

coming from AUG experiments executed from May 2007 to November 

2012. The choice of May 2007 as starting point of this database has been 
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made because significant changes in the machine configuration that 

influence the disruptions behavior have been done. In particular, the ASDEX 

Upgrade carbon wall and divertor have been replaced by full W-wall. 

The mapping of the 7-dimensional plasma parameter space of ASDEX 

Upgrade (AUG) using SOM and GTM is proposed. The GTM such as the 

SOM can be used as disruption predictor, monitoring the trajectory into the 

map. 

The drawback of this methods is that they need the availability of disrupted 

discharges and hence the identification of the disruptive phase. An erroneous 

choice of this phase could lead to prediction performance not satisfactory. 

An alternative method, in contrast to those reported in the literature, is based 

on the Mahalanobis distance in order to define a specific disruptive phase for 

each disruption in the training set. 

Finally, the Logistic regression model (Logit) has been built. The Logit 

models the probability that a generic sample belongs to a non-disruptive or a 

disruptive phase. Monitoring the time evolution of the Logit model output, it 

is possible to predict the occurrence of a disruption. 
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5.1  Database 2002-2009 

Data for developing disruption prediction models and for testing their 

performances were selected from experimental campaigns performed 

between July 2002 and November 2009. It has been divided in three subsets 

(named DB1, DB2 and DB3) following the temporal progression. The three 

data sets include both non-disrupted (safe) and disrupted pulses. 

Only disruptions occurred in the flat-top phase or within the first 100 ms of 

the plasma ramp-down phase and characterized by a flat-top plasma current 

greater than 0.8 MA are considered. Disruptions characterized by a flat-top 

plasma current lower than 0.8 MA are not considered because they are not 

dangerous for the integrity of the machine. Disruptions occurring in the 

plasma ramp-up and in the plasma ramp-down are excluded because they are 

mostly a consequence of a wrong control of the plasma current during the 

initial and the final phase of the experiment, respectively. Moreover, the 

topic of this thesis is the development of a system able to predict disruptions 

occurring during the stationary phase of the plasma current.  

Disruptions mitigated by massive gas injection (both those triggered by the 

locked mode alarm, and those performed as valve test), and those caused by 

vertical instabilities (VDEs), were excluded. Disruptions after massive gas 

injection have been discarded because they are purposely caused by the 

operator in order to test the proper operation of the "killer gas valve". In 

addition, in these discharges no precursors of the disruptions are present. 

VDEs are excluded because, at AUG, by monitoring the deviation of the 

vertical position of the plasma centroid with respect to the feedback 

reference position, the VDEs are easily predictable. Indeed, in [15] an alarm 

threshold of 0.07 m is able to detect the 96% of VDEs contained in the 

considered database. 
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The composition of the three data sets is reported in Table 5.1.  

Table 5.1:  

Table 5.1: Database composition (time period July 2002 - November 2009). 

 
Safe pulses 

Disrupted 

pulses 
Pulse Range Time Period 

DB1 80 149 16200-19999 July 2002- April 2005 

DB2 537 81 20000-22146 June 2005 - July 2007 

DB3 533 118 22162-25665 July 2007 - November 2009 

Each of the three datasets is composed of time series related to the following 

plasma parameters: 

1. Ip: plasma current [A]. 

2. q95:safety factor at 95% of poloidal flux. 

3. Pinp: total input power [W]; it is the sum of different additional power 

sources, such as neutral beam injection (PNBI), electron cyclotron 

heating (PECRH), ion cyclotron heating (PICRH), and ohmic power 

(Uloop*Ip), where Uloop is the loop voltage. 

4. LM ind.: The LM ind. results from an algorithm which takes the 

useful information about the locking and growing of helical modes 

from the LM signals removing drift and offset. The algorithm is 

presented in [38]. 

5. Prad: radiated power [W]. 

6. Pfrac: radiated fraction of the total input power, ratio between the 

radiated power and the total input power. 

7. f(GWL): Greenwald fraction, f(GWL)=ne/neGW, where ne is the 

line averaged density selected from different interferometers as 

described [38] and neGW is the Greenwald limit defined as: 

][

][
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8. βp: poloidal β, is a measure of the efficiency of confinement of 

plasma pressure, defined as β
P
=
 p dS  dS 

Ba
2

2μ0

  

where p is the plasma pressure, Ba=
μ0Ip

l
 , l is the length of the 

poloidal perimeter, and the integrals are surface integrals over the 

poloidal cross section [4]. 

9. li: internal inductance, defined as 𝑙𝑖 =  
2  𝐵𝜃

2𝑟  𝑑𝑟  
𝑎

0

𝑎2𝐵𝜃𝑎
2   

where Bθ is the poloidal field and Bθa is the poloidal field at the 

plasma surface section [4]. 

 

They have been selected on the basis of previous results presented in the 

literature [39] and taking into account physical considerations and the 

availability of real-time data. 

All signals are sampled making reference to the time base of the plasma 

current. The sampling rate is equal to 1kHz. 
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5.1.1 Mapping of the ASDEX Upgrade operational space 

In fusion research a huge effort is devoted to study the operative limits of a 

tokamak in order to identify operative regions free from disruptions. The 

identification of characteristics regions where the plasma ends in a disruption 

is significant for tokamak development. In literature different papers, which 

treat the operative limits of a tokamak, are present. In particular, Murakami 

introduced the homonymous limit where the maximum plasma electron 

density is proportional to the current density [40]. Then, Hugill combined the 

Murakami parameter versus the inverse of the safety factor in order to show 

that the boundary relation between these parameters is limited by disruptions 

[4]. The Hugill diagram presents a limit at 1/qa < 0.5 because in the region 

where this condition is not satisfied, the external kink mode m = 2, n = 1 

becomes unstable and leads to disruption of the discharge. Moreover, the 

diagram shows the dependence between the safety factor at the edge and the 

plasma current; this is a limit on the maximum current for a given magnetic 

field. The disadvantage of this diagram is that it analyzes only two plasma 

parameters at once. In this thesis an alternative approach is proposed, which 

uses more than 2 plasma parameters in order to describe the AUG 

operational spaces. Among the available methods the attention has been 

devoted to data clustering techniques, which consist on the classification of 

similar objects into different groups, or more precisely, the partitioning of 

the data set into subsets (clusters). Due to the inherent predisposition for 

visualization, the most popular and widely used clustering technique, the 

Self-Organizing Map (SOM), has been used. In particular, the preliminary 

approach proposed in [41] is taken into account and it has been studied in 

detail in order to describe the operative regions of AUG and to predict the 

occurrence of disruptions. 

Before the training of the SOM, different issues have been analyzed: 
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 The number of samples in safe pulses and in the non-disruptive phase 

of a disrupted discharge (safe samples) is much larger than the 

number of samples available in the disruptive phase (disruptive 

samples). For this reason, in order to balance the number of safe and 

disruptive samples and in order to reduce the computational cost 

during the SOM training, a data reduction was necessary. 

Before to explain the data reduction algorithm it is necessary to 

identify the time instant that discriminates between safe and pre-

disruptive phase of a disrupted discharge. Such time instant, named 

tpre-disr, does not have a prefixed value, and its identification could be 

a very difficult task. Despite several physical and statistical criteria 

have been proposed no one has been proved to be the ultimate. In the 

first part of this thesis the length of the pre-disruptive phase is chosen 

equal for all the training disrupted discharges. The choice of using a 

fixed pre-disruptive phase for all disruptive discharge is widely 

shared in the literature and in different machines [12, 39, 42]. In [39] 

with the same set of signals and the data coming from the same 

experimental campaigns of this thesis the optimal value of tpre-disr has 

be found to be 45 ms before the disruption time tD. The samples that 

belong to the interval [tpre-disr ÷tD] have been assumed as disruptive 

samples. 

The data reduction algorithm consists in perform a clustering of each 

shot (safe and disrupted) using again a SOM. Then, only one sample 

for each cluster containing safe samples is considered, conversely, all 

the disruptive samples are included in the training set. This procedure 

reported in [43] allows us to automatically select a limited and 

representative number of samples. With this technique only 7% of the 
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training samples has been retained, reducing the number of samples 

from 780.969 to 55.829. 

 The range of the plasma parameters can be very different (even 

several orders of magnitude). Since SOM algorithm uses Euclidean 

distance to measure distances among data, in this thesis the 

normalization between 0 and 1 was adopted. 

The map dimension, i.e., the number of clusters in the SOM, has to be 

properly selected; limiting the number of clusters preserves the 

generalization capability of the map. It is mandatory to choose the map 

dimension in order to maximize its capacity to discriminate among patterns 

with different features, keeping in the meanwhile a high generalization 

capability when a pattern not contained in the training set is projected on it. 

In [44] with the same plasma parameters and the same training set of this 

thesis, the optimal number of clusters has been found to be 1.421. 

The DB1 was used to train the SOM, DB2 was used to test the generalization 

capability of the SOM, finally DB3 was used to evaluate the performance 

deterioration of the SOM on later campaigns. 

In this thesis, the SOM Toolbox 2.0 for Matlab [45] has been used to train 

the SOM. 

During the SOM training a further knowledge can be added to the intrinsic 

knowledge contained by plasma parameters, which consists in associating a 

label to each sample in the training set: 

 a disruptive label is associated to each sample belonging to the 

disruptive phase in a disrupted discharge.  

 a safe label is associated to each sample belonging to a safe discharge 

or to the non-disruptive state of a disrupted discharge in the interval 

[tflat-top ÷ tpre-disr] where tflat-top is the flat-top beginning time. 
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An intuitive representation of this samples classification is reported in Figure 

5.1, where ss, ss
d
 and sd are respectively safe samples in a safe discharge, 

safe samples in a disrupted discharge, and disrupted samples in a disrupted 

discharge. 

 

 

Figure 5.1: Plasma current evolution for a safe (a) and a disrupted (b) discharge; ss, ssd and sd are 

respectively safe samples in a safe discharge, safe samples in a disrupted discharge, and disrupted 

samples in a disrupted discharge. 

The 2-D SOM is trained using seven plasma parameters (q95, Pinp, LM ind.., 

Pfrac, li, f(GWL), βp), which are expected to be those most suitable for 

disruption prediction purposes. They have been selected on the basis of 

previous results presented in the literature [39] and the availability of real-

time data. The 2-D SOM is reported in Figure 5.2. Following the sample 

classification previously reported, four different types of cluster can be 

identified depending on their composition: 

1. Safe clusters, which contain only safe samples (ss and/or ss
d
); 

2. Disruptive clusters, which contain only disruptive samples (sd); 

3. Mixed clusters, which contain both safe and disruptive samples; 

4. Empty clusters, which are empty. 
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A color has been associated to each cluster of the map depending on the 

class membership as shown in Figure 5.2: 

 Safe clusters are green; 

 Disruptive clusters are red; 

 mixed clusters are gray; 

 Empty clusters are white. 

Moreover, each color, which is representative of a particular cluster 

composition, can be associated to a different disruption risk. 

Since the safe clusters contain only safe samples a low risk of disruption can 

be associated to a safe region. Conversely, the disruptive cluster contains 

only disruptive samples hence a high risk of disruption can be associated to 

disruptive regions. Finally, because the mixed clusters contain several 

combinations of safe and disruptive samples, the associated risk of 

disruption of each cluster depends on its own composition.  

 

Figure 5.2: 2-D SOM of 7-D AUG operational space, dimension map 1.421 clusters (49x29). Safe 

clusters are green, disrupted clusters are red, mixed clusters are gray and empty clusters are white 
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The 2-D SOM reported in Figure 5.2 highlights the presence of a safe region 

(green) with an associated low risk of disruption, disruptive regions (red) 

with a high risk of disruption and transition regions, which are between the 

previous two regions, with an indeterminate risk of disruption. 

In addition, Figure 5.3 reports the component plane representation for each 

plasma parameter and the 2-D SOM of AUG. The component plane is a tool 

available to analyze the SOM results [45]. Component planes display the 

relative component distribution of the input data on the 2-D map. By means 

of the component planes it is possible to detect if the variables are correlated 

to each other and if particular ranges of values are correlate to the disruption 

risk. The color bar on the right side of each component plane reports the 

range of values of the variable assumed by the prototype vector of the 

clusters. 
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Figure 5.3:Component planes for each plasma parameters and the 2-D SOM of 7-D AUG operational 

space. 

The growth and locking of MHD instabilities is one of the most indicative 

precursors of disruptions, as it is can be found by analyzing Figure 5.3, 

where the high values of the LM indicator clearly correspond to the 

disruptive region.  

Another characteristic pattern typically associated to a disruptive behavior, 

as one can find on the relative component distribution on the map, is the 

combination of high values of internal inductance, low values of the poloidal 

β associated to an high fraction of radiated power. This combination 

typically describes one of the most frequent phenomenology that leads to 

disruption, that is, the cooling of the edge. Furthermore, other common 

disruption indicators that one can retrieve is the high Greenwald fraction 
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representative of density limit disruptions, as it is possible to see on the right 

side of the SOM, or the low values of edge safety factor and Greenwald 

fraction corresponding to the upper part of the map, which are likely 

associated to low q95 and low density or EFM disruptions. 

Instead, the safe region identifies combinations of the considered plasma 

parameters which, if the safe and the disruptive operational spaces are 

exhaustively represented, have a low probability to lead to disruption. 

5.1.1.1 SOM predictor 

As it has been reported in §2.3, disruptions can occur in a tokamak when the 

plasma becomes unstable and they can potentially damage plasma-facing 

surfaces of the machine. For these reasons, the importance of avoiding 

disruptions in tokamaks and/or finding appropriate mitigating actions to 

reduce the damage of the reactor components is fundamental for tokamaks 

development. In addition, the mitigation system efficiency is linked to its 

activation time, this means that the prediction must be made sufficiently in 

advance to enable intervention of mitigation systems. Moreover, one of the 

main goals of experimental devices, as AUG, is to exploit its own 

potentialities. A too conservative disruption predictor could limit the 

exploration capability of the machine; in order to avoid this drawback, the 

percentage of disruptions triggered too far in advance has to be limited as 

well as the false alarms. Finally, the predictor must supply also the 

disruption type in order to optimize the strategy to safely land the plasma 

and to reduce the probability of damages in the device. Therefore, it is 

important and crucial to develop disruption predictors that have specific 

characteristics: 

 The correct predictions of disrupted discharge must be higher than 

those of the disruption predictor actually installed in the machine; 
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 The number of false alarms must be limited; 

 The number of missed alarms must be limited; 

 The prediction system must operate in real time; 

 The prediction system must predict different disruption types. 

In addition to space visualization purposes, the SOM can be used also to 

display the time evolution of the discharges during experiments, in fact each 

sample of a discharge can be projected onto the SOM; the temporal sequence 

of the samples forms a trajectory on the map that describes the discharge 

dynamics. The trajectory onto the map can be seen as sequence of points that 

represent the Best Matching Units (BMUs). To determine the BMU, one 

method is to iterate through all the nodes of the SOM and calculate the 

Euclidean distance between each prototype vector and the current sample of 

the discharge. The node with the weight vector closest to the current sample 

of the discharge is tagged as the BMU. 

The analysis of the trajectory can provide information on an eventual 

impending disruptive event. In particular, it has been noted that, for the 

majority of disruptive discharges, the trajectory starts in the safe region 

(green region) and, passing through the transition region, ends in a red 

cluster (see the black trajectory in Figure 5.4.). Conversely, the great 

majority of safe discharges evolve within the safe region as shown in Figure 

5.4. (blue trajectory). Thus, the SOM could be used as disruption predictor 

by introducing suitable criteria, based on the behavior of the trajectories, 

able to trigger disruption alarms well in advance to perform disruption 

avoidance or mitigation actions. 
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Figure 5.4: Trajectories of safe discharge # 20437 (blue trajectory) and disrupted discharge # 21098 

(black trajectory) on the 2-D SOM of 7-D AUG. 
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5.1.1.2 Performance indexes 

In order to evaluate the performance of the SOM predictor different 

performance indexes have been introduced. 

A disruption is correctly predicted if the predictor is able to trigger the alarm 

in the time interval [tD - 160 ÷ tD - 2] ms. The upper limit depends on the 

time needed for the mitigation systems to intervene. At AUG the mitigation 

system is able to mitigate a disruption within 2ms [46]. The lower limit is a 

conservative value determined on the basis of a locked-mode signal analysis. 

In [39], it is shown that more than 90% of disruptive discharges has a 

quickly increase of the frequency of oscillation within 160ms before the 

disruption. 

The performance of the prediction system is evaluated in terms of: 

 SPs: Successful Predictions, fraction of discharges (disruptive or 

safe) that are correctly predicted; 

 MAs: Missed Alarms, fraction of discharges predicted as non-

disrupted; 

 PDs: Premature Detections, fraction of disruptive discharges where 

the alarm is triggered more than 160ms before the disruption time; 

 TDs: Tardive Detections, fraction of disruptive discharges where the 

alarm is triggered less than 2 ms before the disruption time; 

 FAs: False Alarms, fraction of safe discharges predicted as 

disrupted. 

 SR: Successful Rate, fraction of discharges (safe and disruptive) 

correctly predicted. 

A good disruption predictor has to be characterized by high successful 

prediction rate and SRs, low PDs and TDs, low MAs and low FAs. 
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5.1.1.3 Alarm criterion  

In this thesis, different criteria have been tested to trigger an alarm 

monitoring the trajectory followed by the discharge during its temporal 

evolution on the map. 

A first attempt has been done activating the alarm as soon as the trajectory 

passes through the disruptive region of the SOM. Nevertheless, this criterion 

has not produced good results due to spikes in the diagnostic signals, which 

move the trajectory from the low-risk region to the high-risk region, causing 

false alarms or a premature detections.  

Furthermore, in order to improve the prediction performance of the SOM 

predictor a redefinition of the disruptive region has been carried out, 

considering as disruptive clusters also the mixed clusters with a percentage 

of disruptive samples greater than 85%. 

This has led a new map with a larger disruptive region, as it is shown in 

Figure 5.5. 

 

Figure 5.5: 2-D SOM of 7-D AUG operational space. (Green) Safe clusters. (Red) Both disruptive 

clusters and those mixed clusters with a percentage of disruptive samples greater than 85%. (Gray) 

Other mixed clusters.(White) Empty clusters. 



67 

 

In addition, an alarm criteria has been optimized to trigger the alarm when 

the trajectory stays in a cluster in the high-risk region for at least k 

consecutive samples (waiting samples). Equation (5.1) reports the law which 

controls the waiting samples k, in according to the line in Figure 5.6: 
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(5.1) 

where DS% is the percentage of disruptive samples in the current cluster and 

the line parameters DSMIN%, kMIN and kMAX have been empirically chosen 

maximizing the SR on the training set. In order to avoid false or premature 

alarms caused by spikes in the diagnostic signals for DS%=100, kMIN has been 

set equal to 2, whereas the parameters DSMIN%, kMAX, have been optimized in 

the range: 

 DSMIN %=85÷95 

 kMAX=15÷30 

 

Figure 5.6: Representation of k law. The disruptive samples percentage (DS%) versus the number of 

the waiting samples k. 

For each red cluster, the parameter k was evaluated following the linear 

relation in (5.1). 

The ratio of this alarm criterion is that k inversely decreases with the number 

of disruptive samples in the cluster. This means that the bigger is the 
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percentage of disruptive sample in the cluster and the shorter is the trigger 

waiting samples. 

The best performance on DB1 has been obtained by triggering the alarm 

when the trajectory stays in a cluster in the high risk region (red clusters in 

the Figure 5.5) for at least 14442.1 %  DSk  samples. The value of k is 

updated only if the trajectory moves into clusters with higher DS%. 

Conversely, the alarm is not triggered at all in the low risk region (green and 

gray clusters with a percentage of disruptive samples lower than 85%) in 

Figure 5.5. 

The prediction performances of the proposed system using discharges from 

DB1, DB2 and DB3 are reported in Table 5.2.  
Table 5.2:  

Table 5.2: Prediction performances of the SOM for DB1, DB2 and DB3. 

 Disruptive Discharges Safe Discharges  

 PD [%] SP [%] TD [%] MA [%] SP [%] FA [%] SR [%] 

DB1 9,40 83,89 1,34 5,34 95,00 5,00 87,34 

DB2 9,88 65,34 4,94 19,75 90,88 9,12 87,38 

DB3 16,95 56,78 5,08 21,19 85,19 14,82 80,03 

Note that, as previously explained, the SOM was created using a training set 

consisting of a subset of samples from safe and disruptive discharges in 

DB1. Test discharges from DB1 therefore belong to the set of experimental 

campaigns used for training. Conversely, DB2 and DB3 discharges belong to 

later campaigns. Thus, the test on DB2 and DB3 provide information on 

generalization abilities of the map. Moreover, the test on DB3 provides 

information on the so-called predictor ageing. The ageing effect is common 

in experimental machines that operate in ever-changing conditions in order 

to explore their potential. The composition of DB3, in terms of disruption 

classes, could suggest a possible difference in the operative space explored 
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in the recent years. This is confirmed in [15],where the authors noted that, 

until 2008, the large majority of disruptions were of cooling edge type. In 

2009, the percentage of cooling edge disruptions decreases to about 45%, 

due to the increase of impurity accumulation and β-limit disruptions. 

As one might expect, this determines poorer prediction performances on 

DB2 and DB3 discharges. 

Analyzing the SOM prediction performances reported in Table 5.2, for DB1, 

the performances are quite good. The PDs, TDs, MAs and FAs are always 

lower than 10%. The SPs on disrupted and safe discharges are respectively 

about 84% and 95% respectively. Conversely, for DB2, PDs, TDs, MAs and 

FAs always increase with respect to DB1, although PDs and FAs remain 

lower than 10%. Also for DB3, PDs, TDs, MAs and FAs increase with 

respect to DB1, but in addition PDs and FAs are well above 10%. For both 

DB2 and DB3 the SPs for safe and disrupted pulses decrease, confirming the 

ageing effect. 
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5.1.1.4 Analysis of false predictions 

In order to identify the causes of incorrect predictions, a visual analysis of 

the 7 input signals has been performed on DB2. The DB3 has not been taken 

into account in this analysis in order to have a test set independent from the 

actions that have been adopted.  

Firstly, the analysis performed on the correctly predicted disruptions shows 

that the large majority of them are triggered in the presence of an increase of 

Prad. Moreover, it has been noticed that one of the most common source of 

false alarms is the presence of a peak in Pfrac. Therefore, the behavior of the 

signals contributing to Pfrac, i.e., Ip, PICRH, PECRH, PNBI, Prad, Uloop, has 

been analyzed in order to identify the origin of the Pfrac peak. That analysis 

highlighted that 73.5% of false alarms and 50% of premature detections 

correspond to the shutdown of one or more additional heating systems that 

cause a sudden decrease of the total input power Pinp. This produces a peak 

in the Pfrac, which is responsible of triggering the alarm. As an example, 

Figure 5.7 reports (a) Pinp and (b) Pfrac for the safe discharge #21011, which 

generates a false alarm at 5,01s as a result of the NBI shutdown. 
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Figure 5.7: Time evolution of the Pinp (a) and the Pfrac (b) in the safe discharge # 21011; a sudden 

decrease of Pinp generates a peak in Pfrac. The SOM triggers the alarm at 5,01s. 

Following trajectories of this kind of discharges on the map, they always 

evolve in the region with low disruption risk, except at the peak of Pfrac when 

they enter the higher disruption risk region. In Figure 5.8, the trajectory of 

the safe discharge # 21011 is reported on the map. The three points in the red 

region represent the samples corresponding to the peak of Pfrac. Figure 5.8, 

reports also the component planes of Pinp and Pfrac. As highlighted by the 

black squares on the component planes,  the three points belong to clusters 

characterized by low values of Pinp and high values of Pfrac. 
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Figure 5.8: Trajectory of the safe discharge # 21011 on the SOM together with the component planes 

of Pinp and Pfrac. The three points in the red region of the SOM represent the samples responsible for 

the FA. These three points correspond to low values of Pinp and high values of Pfrac as highlighted by 

the black squares on the component planes. 
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5.1.1.5  2-D SOM of 8-D AUG operational space 

The analysis performed on the achieved results suggested to provide 

additional information to the SOM predictor. Firstly, it has to be noted that a 

high value of Pfrac corresponds both to a high value of Prad (nominator of 

Pfrac), or to a low value of Pinp (denominator of Pfrac). Hence, the information 

curried out by Pfrac could be not adequate to discriminate between the two 

cases. For this reason Prad was added to the previous 7 signals of the training 

set. Thus, a new SOM was trained with 8 plasma parameters. 

In order to train the new map the same issues of the section 5.1.1 were 

addressed. In particular, a data reduction is again necessary to balance the 

number of safe samples and disruptive samples. The adopted algorithm 

reported in [43] allows us to reduce the safe samples to 49.169 starting from 

780.969. Also in this case, the tpre-disr has been set equal to 45 ms before the 

disruption time, as reported in [39]. 

The dimension of the map was obtained by means a of trial and error 

procedure that maximizes the SR on the training set. The best compromise 

results in a map with 2318 clusters (see Figure 5.9) on a 61x38 grid. The 

SOM reported in Figure 5.9 shows the same characteristic of the SOM in 

Figure 5.5, with the three regions at different disruption risk. The same color 

code of Figure 5.5. is adoped in Figure 5.9. 
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Figure 5.9: 2-D SOM of 8-D AUG operational space with the same color code as in Figure 5.5. The 

figure displays 2.318 clusters on a 61x38 grid. 

In addition, Figure 5.10 reports the component planes representation for each 

plasma parameter. Also in this case, it is possible to note that the disruptive 

regions are characterized by typical patterns, as the already described 

combination of high values of internal inductance, low values of the poloidal 

β, high fraction of radiated power and high values of the locked mode 

indicator, commonly describing the radiative collapse and cooling of the 

edge. Furthermore, similarly to what has been described in the analysis of 

Figure 5.3, there are disruptive regions with high values of Greenwald 

fraction (left side of the SOM), or still regions that see the combination of 

low values of edge safety factor and Greenwald fraction (upper part of the 

map), likely associated to low q95 and low density or EFM disruptions. 
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Figure 5.10: Component planes for each plasma parameter and the 2-D SOM of 8-D AUG operational 

space. 

Secondly, in order to limit false alarms due to a peak of Pfrac, an inhibition 

alarm algorithm was implemented, which inhibits the alarm if the following 

conditions are simultaneously satisfied: 

 
THR|

dt

dP

dt

dP inpinp
 at least once in the time window

1
 of 20ms preceding the 

alarm. The threshold 
dPinp

dt
|
THR

=-1.2
GW

ms
 is set as the maximum value 

assumed by 
dPinp

dt
, during the shutdown of one or more auxiliary 

heating system in the discharges where a FA has been activated by 

the shutdown itself. 

                                                 
1
 The time windows was optimized among the values [5, 10, 20] ms. The best performance 

on DB2are achieved for a time windows of 20 ms. 
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 Prad≤Prad|
THR

. The threshold Prad|
THR

 is set as the minimum value 

assumed by Prad at the alarm time, for all the correct predictions 

performed by the SOM for the DB2 in the presence of an increase of 

Prad. 

 
dPrad

dt
<

dPrad

dt
|
THR

.The threshold 
dPrad

dt
|
THR

=11MW/ms is the minimum 

value assumed by 
dt

dPrad  at the alarm time, for all the correct 

predictions performed by the SOM in the presence of an increase of 

Prad. 
dt

dPrad  is computed in a time windows of 5 ms. 

Hence, an alarm is inhibited in the presence of a peak on Pfrac caused by a 

shutdown of the auxiliary heating system, with limited values of Prad and its 

derivative. 

In order to highlight the influence of adding the signal Prad and that of using 

the alarm inhibition criteria (AI) the prediction performances of the 7-D and 

8-D SOMs are reported in Tables 5.3, 5.4 and 5.5, for DB1, DB2 and DB3 

respectively, without and with AI. The alarm criterion is the same described 

in section 5.1.1.3. The best performance on DB1 has been obtained by 

triggering the alarm when the trajectory stays in a cluster in the high-risk 

region for at least 44.77754.0 %  DSk  consecutive samples. Whereas, 

the alarm is not triggered at all in the low risk region (green and gray cluster 

with a percentage of disruptive samples lower than 85%) in Figure 5.9. 

 

 

 

Table 5.3:. 



77 

 

Table 5.3: Prediction performances of the SOMs of the 7-D and 8-D operational spaces of AUG on 

DB1. 

 Disruptive Discharges Safe Discharges 
 

DB1 PD [%] SP [%] TD [%] MA [%] SP [%] FA [%] SR [%] 

7-D 9.40 83.89 1.34 5.34 95.00 5.00 87.34 

8-D 11,41 86,58 0,67 1,34 96,25 3,75 92.87 

able 5.4:  

Table 5.4: Prediction performances of the SOMs of the 7-D and 8-D operational spaces of AUG with 

and without alarm inhibition algorithm (AI) on DB2. 

 Disruptive Discharges Safe Discharges  

DB2 PD [%] SP [%] TD [%] MA [%] SP [%] FA [%] SR [%] 

7-D 9,88 65,43 4,94 19,75 90,88 9,12 87,54 

8-D 11,11 69,14 6,17 13.58 91,25 8.75 88,35 

7-D+AI 8,64 66,67 4,94 19,75 94,04 5,96 90,45 

8-D+AI 9,88 69,14 6,17 14,81 93,85 6,15 90,61 

Table 5.5:  

Table 5.5: Prediction performances of the SOMs of the 7-D and 8-D operational spaces of AUG with 

and without alarm inhibition algorithm (AI) on DB3.  

 Disruptive Discharges Safe Discharges  

DB3 PD [%] SP [%] TD [%] MA [%] SP [%] FA [%] SR [%] 

7-D 16,95 56,78 5,08 21,19 85,18 14,82 80,03 

8-D 11,02 66,95 7,63 14,40 85,37 14,63 82,03 

7-D+AI 14,41 59,32 5,08 21,19 87,24 12,76 82,18 

8-D+AI 8,47 69,50 7,63 14,40 87,05 12,95 83,87 

The comparison among the previous tables shows that, by adding the signal 

Prad to the SOM inputs, a reduction of MAs and an increase of SPs for safe 

and disrupted discharges are achieved for DB1, DB2 and DB3 (see Tables 

5.3-5.5). Note that, however, this does not always bring a benefits for the 

reduction of FAs and PDs (Tables 5.3-5.5). Analyzing the performances on 
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DB2 reported in Table 5.4, adding the Prad in the training set causes an 

increase of the PDs with respect to the PDs of the 7-D predictor. 

On the contrary, the use of AI leads to significant reductions of PDs, FAs and 

MAs, for both the two test sets (DB2 and DB3). But any positive effect on 

TDs is achieved. It seems that the use of both criteria together (adding Prad 

and AI) gives the better performance. This is confirmed by comparing the 

total prediction success rate (SR). Referring to DB2, the total prediction 

success rate grows from 87,54% for 7-D SOM predictor, to 88,35%, for the 

8-D, to 90.45% for 7-D + AI, and, to 90,61% for the 8-D+AI. Referring to 

DB3, the total prediction success rate grows from 80,03% for 7-D SOM 

predictor, to 82,03% for the 8-D, to 82,18% for the 7-D +AI, to 83,87% for 

the 8-D+AI. 
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5.1.1.6 Retraining of the 8-D AUG operational space 

The results obtained in the previous section (5.1.1.5) shows a quite good 

prediction success rates, which degrades with the temporal distance of the 

considered campaigns from those included in the training. As largely known, 

the ageing effect is one of the main drawbacks of the data-based models, 

such as SOM. 

In order to improve the extrapolation capability of the SOM predictor, which 

is intrinsically poor when the inputs come from regions of the parameters 

space different from those used during the training, further knowledge has to 

be supplied regarding these regions. This can be performed occasionally 

retraining the SOM, supplying it new data coming from discharges that 

correspond to wrong answers of the predictor. In this way, the map can learn 

incrementally from new data as the operational space is enlarged with 

respect to the prior campaigns. Following this philosophy, a new training 

session has been performed providing to the SOM the MAs, TDs, PDs and 

FAs triggered when the SOM is tested on the DB2 discharges. In case of 

PDs and FAs all samples that belong to the time window of 20 ms before the 

alarm is used for updating. Furthermore, in case of MAs the samples useful 

for the updating are selected by means of the data reduction procedure 

(explained in § 5.1.1), in this way novel information of safe and disrupted 

states are added to the training set.  

As previously cited, the analysis of the wrong answers of DB2 highlighted 

that the great majority of false alarms and half of premature detections 

correspond to the shutdown of one or more auxiliary heating systems that 

cause a sudden decrease of the total input power Pinp. This produces a peak 

in the Pfrac, which is responsible of triggering an alarm even if Prad has low 

values (this analysis is reported in § 5.1.1.4). For this reason, these pulses are 
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not used in the retraining in order not to teach the map to associate safe 

states to high values of Pfrac. 

Figure 5.11 reports the 2-D SOM of the 8-D AUG operational space after the 

retraining. The same color code of the Figure 5.5 is adoped. In this case, the 

dimension of the map was obtained by means of a trial and error procedure 

that maximizes the SR on the DB2. The best compromise results in a map 

with 1.692 clusters. 

 

Figure 5.11: 2-D SOM of 8-D AUG operational space after the retraining with the same color code as 

in Figure 5.5. The figure displays 1.692 clusters on a 53x32 grid. 

The alarm criterion is the same described in the section 5.1.1.3, i.e., the best 

performance on DB2 has been obtained by triggering the alarm when the 

trajectory stays in a cluster in the high risk region (red clusters) for at least 

14442.1 %  DSk  consecutive samples. Whereas the alarm is not 

triggered at all in the low risk region (green and gray cluster with a 

percentage of disruptive samples lower than 85%) in Figure 5.11. 

The performance of the prediction system is evaluated using the performance 

indexes reported in § 5.1.1. 
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Tables 5.6 and 5.7 report the prediction performance of the SOM used as 

disruption predictor for DB2 and DB3 respectively before (these results are 

reported in § 5.1.1.5) and after the retraining. 

Table 5.6:  

Table 5.6: Prediction performances of the 2-D SOM of the 8-D AUG operational space on DB2 before 

and after the retraining. 

 Disruptive Discharges Safe Discharges  

DB2 PD [%] SP [%] TD [%] MA[%] SP [%] FA [%] SR [%] 

Before the 

Retraining 
11,02 66,95 7,63 14,40 85,37 14,63 82,03 

After the 

Retraining 
10,13 73,42 3,80 12,66 93,31 6,69 90,70 

Table 5.7:  

Table 5.7: Prediction performances of the 2-D SOM of the 8-D AUG operational space on DB3 before 

and after the retraining. 

 Disruptive Discharges Safe Discharges  

DB3 PD [%] SP [%] TD[%] MA[%] SP [%] FA [%] SR [%] 

Before the 

Retraining 
11,02 66,95 7,63 14,41 85,37 14,63 82,03 

After the 

Retraining 
9,32 68,64 7,63 14,41 89,12 10,88 84,65 

As it can be noted, comparing Tables 5.6 and 5.7, for both DB2 and DB3, 

the successful predictions (SP) after the retraining, increases for both safe 

and disruptive discharges. It seems that the use of periodically retraining 

gives the better performance. This is confirmed by comparing the total 

prediction success rate (SR). Referring to DB2, the total prediction success 

rate grows from 82,03% before the retraining, to 90,70% after the retraining. 

Referring to DB3, the total prediction success rate grows from 82,03% before 

the retraining to 84,65% after the retraining. 
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Moreover, the suitability of the proposed updating procedure is confirmed 

making reference to DB3: due to the ageing, the overall performance slightly 

deteriorates with respect to that of DB2, but the prediction success rates are 

still high. 
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5.1.2 Normal operating conditions model of ASDEX Upgrade 

In the last decade, the disruption prediction issue has been investigated in 

various tokamaks resorting to data-based approaches such as neural 

networks, support vector machines, fuzzy logic, classification and regression 

trees[15, 39, 42, 47-48]. One of the main drawbacks of all the data-based 

model proposed in literature, as well as in section 5.1.1 and in the later of 

this thesis, is the need of a dedicated set of experiments terminated with a 

disruption to implement the predictive model For future fusion devices, like 

ITER, disruptions associated damages could be even more severe because of 

the much higher plasma current of the devices. Hence, the disruption 

database will not be available. Thus, previously cited approaches will not be 

directly applicable. 

In this thesis, in order to overcome the previous highlighted drawbacks, a 

disruption prediction system for AUG is proposed using only input signals 

from safe pulses. The proposed approach refers to the model-based methods 

for Fault Detection and Isolation (FDI) in batch processes [49]. Indeed, the 

current experimental tokamak machines operate in a discontinuous or pulsed 

way and individual pulses can be seen as a single batch. FDI is an important 

and active research field. Literature reports several techniques for detecting 

faults such as observers, parity space methods, eigen structure assignments, 

parameter identification based approaches, etc (see the survey of [50] for a 

recent review). The majority of the model-based FDI procedures are based 

on statistical analysis of residuals. Commonly, the residual is the difference 

between the measured output and an estimated output based on the system 

model. Given an empirical model identified on a reference dataset, obtained 

under normal operating conditions (NOC), the residuals of new observations 

of the current process run are calculated. The residuals are considered as a 
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random process with known statistical properties. In case of fault there is a 

change of these properties. 

A number of approaches have been developed for fault diagnosis and 

identification of batch processes that are commonly used in many industrial 

sectors. They are characterized by the repeated execution of a planned 

schedule over a finite duration of time. Most recent researches apply 

Principal Component Analysis (PCA) based techniques [31, 51]. The Multi-

way PCA is the standard way to analyze batch data [52] that are inherently 

three-dimensional (batch×variable×time), Batch Dynamic PCA [53] to take 

into account the dynamic of the batch process; Auto-Regressive PCA [54] to 

filter auto and cross correlations. 

In this thesis, the safe pulses are assumed as the normal operation conditions 

and the disruptions are assumed as status of fault. The disruption prediction 

system is based on the analysis of residuals in the multidimensional space of 

the selected variables, which are able to describe the safe operational space 

of the tokamak. An Auto Regressive eXogenous input (ARX) model is used 

as predictor for the variables; the discrepancy (residuals) between the outputs 

provided by the NOC model and the actual measurements is an indication of 

process fault (disruption). 
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5.1.2.1 Database 

Among the seven variables available in the data base (see section 5.1.1), 

there are external control parameters as Pinp as well as plasma parameters 

which are strictly related to well-known operational limits, as f(GWL) or q95 

for example. Others physics parameters, furthermore, are particularly suited 

to characterize the disruptive operational space because of their close 

connection to the disruptivity, as Pfrac, li, LM ind. and βp 

In order to select the best combination of variables in input to the ARX 

model for the disruption prediction, a preliminary analysis was performed. 

For ten safe discharges randomly selected from the DB1 an autoregressive 

model of order 1 (AR(1)) for Pfrac, li, LM ind. and βp was built.  

Table 5.8 reports the FIT% for the AR(1) model for each variable for the ten 

safe discharges. As can be noted from the Table 5.8, the best fitting was 

achieved by Pfrac, li and βp, for which FIT% is always greater than 54%, 

reaching in some cases more than 90%, whereas for LM ind., it is always 

lower than 20%. This analysis shows that, unlike to LM ind., Pfrac, li and βp 

would seem suitable to be modeled by means of a autoregressive model. 

Table 5.8:  

Table 5.8:  FIT (%) for the AR(1) model of each selected safe discharge, for Pfrac, βp, li and LM ind.. 

FIT[%] for AR(1) Model  

# Safe Discharges Pfrac [%] βp [%] li [%] LM ind. [%] 

16601 89,81 90,45 88,83 14,50 

16978 74,04 91,23 89,79 14,00 

17222 84,57 88,91 42,66 12,98 

17434 89,36 75,59 70,43 13,96 

17970 84,15 88,67 85,42 12,53 

18465 76,95 89,16 57,27 11,98 

18686 90,57 96,00 90,28 13,58 

19027 94,86 90,14 83,09 18,69 

19453 93,65 92,81 55,71 23,04 

19876 54,27 95,61 88,00 13,97 
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Data for this test were selected from experimental campaigns performed 

between July 2002 and November 2009 and it has been divided in three 

subsets following the temporal progress as reported in Table 5.9.  

Table 5.9:  

Table 5.9: Database composition. 

 
Safe pulses Disrupted pulses 

 Training Validation Test Test 

DB1 37 19 17 149 

DB2 - - 537 81 

DB3 - - 533 118 

Some safe pulses of the DB1 was used for the training of the ARX model, 

the validation set was used to optimize the characteristic of the predictor as it 

is explained later and finally the rest of DB1 was used to test the ARX 

predictor. As can be noted, disruptive discharges of DB1 were used only as 

test set. DB2 was used to test the generalization capability of the model, 

finally DB3 was used to evaluate the performance of the model with 

discharges belonging to later campaigns. The safe and disruptive discharges 

are the same discharges used to evaluate the prediction performance of the 

SOM predictors shown in the § 5.1.1 and in the later. 

The dataset is composed by time series related to Pfrac, li and βp. The reason 

to use only three variables is to have a graphical representation of the 

process and hence to verify the correct functioning of the model. 

5.1.2.2 NOC model of ASDEX Upgrade  

The NOC model of AUG was built using 37 training discharges of DB1. For 

each plasma parameter, the dynamic structure of each pulse is estimated 

through the fitting of an ARX model, which uses as inputs the three selected 

plasma parameters and provides as outputs one plasma parameter at once, 

one step ahead. In particular, the ARX model for each variable is built 

according to equation (4.3) reported in chapter 4. As an example, 
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considering Pfrac as output variable and li and βp as exogenous inputs, the 

equation 4.3 becomes as in the following: 
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(5.2) 

Therefore, for each of the tree models, na,  is the order of the output variable, 

nb=[nb1, nb2], contains the orders of the exogenous inputs, ai, bi1 and bi2 are 

vectors that contain the model coefficients of the three variables and 

nk=[nk1, nk2] is the vector of the time delay. To estimate the ARX structures, 

the parameters na, nb and nk must be specified. In this study, the three 

parameters have been set as those corresponding to the best fit on the 

validation set. In particular, an ARX model for each model order and time 

delay combination is estimated. Then, the loss function, which is the 

normalized sum of squared prediction errors, for each model is calculated. 

The best fit minimizes the loss function on the validation set. The delays and 

the orders have been optimized in the range [1-40] and [1–20] respectively. 

Moreover, the coefficients ai,bi1 and bi2 in the ARX model structure have 

been estimated with the least-squares method, which minimizes the loss 

function provided by the model on the same validation set. In this thesis the 

model order, the time delay and the model coefficients have been optimized 

using the System Identification toolbox for Matlab [32]. 

The NOC model for each plasma parameter is still an ARX model whose 

coefficients are obtained as mean value of coefficients of the 37 ARX 

models of the training shots. Table 5.10 reports the NOC model orders 

associated to the different outputs related to the three inputs. 
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Table 5.10:  

Table 5.10: Model orders associated with the different outputs and inputs. 

 na nb1 nb2 nb3 

Pfrac 20 - 57 48 

li 20 48 - 31 

βp 20 31 20 - 

Once the NOC model has been built, it can be used for pulses monitoring. 

Indeed, sample by sample NOC model output depicts the simulated 

trajectory of the discharge in the 3-D space Pfrac, li and βp. As an example, 

Figure 5.12. reports the actual and the simulated temporal evolution in the 3-

D space for the disrupted pulse # 16220 (a) and for the safe pulse # 16863 

(b). As can be noted, for the safe pulse the two trajectories (red and blue 

line) are always overlapped. Conversely, for a disrupted discharge the more 

the disruption time approaches the more the two trajectories diverge. This 

suggested to use the discrepancy between the predicted and the actual values 

as disruption proximity indicator. 

Therefore, the residuals of the actual values from the NOC models are used 

for monitoring the pulses. In particular, the residuals are assumed as the 

Euclidean distances between the position of the samples on the actual pulse 

trajectory in the 3-D parameter space, and the corresponding positions 

simulated with the three NOC models. Figure 5.13 reports the time evolution 

of the residual for the same disrupted (a) and safe (b) discharges in Figure 

5.12. As can be noted for the safe discharge the residual assumes always a 

low values for the entire duration of the experiment (Figure 5.13 (b), green 

line) while for the disrupted discharge, the residual starts and evolves with 

low values and rapidly it increases close to the disruption. 
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Figure 5.12: Actual (blue line) and the simulated NOC model output (red line) temporal evolution in 

the 3-D space for the disrupted pulse # 16220 (a) and for the safe pulse # 16863 (b). 
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Figure 5.13: Time evolution of the residual for (a) the disrupted discharge #16220 (blue line) and (b) 

the safe discharge #16863 (green line). 

The aim is to identify the pre-disruptive phase evaluating the distance of the 

simulated shot trajectory in the 3-D space from the actual one. In order to 

detect the disruptive phase for a disrupted pulse it is necessary to find a 

residual threshold which discriminates between the non-disruptive and the 

disruptive phase. 

In this thesis, the choice of the residual threshold has been carried out on 

training and validation sets of DB1 (see Table 5.9). Figure 5.14 reports the 

standardized distribution of the residuals of the training and validation 

discharges. In order to find the optimal residual threshold, a confidence limit 

of 99% has been empirically assumed to discriminate between the non-

disruptive and the disruptive phase, and the alarm threshold has been set 

accordingly. 
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Figure 5.14: Distribution of the residuals of the training and validation sets. 

To avoid false alarms caused by spikes in the diagnostic signals, a time delay 

has been introduced that inhibits the alarm for k consecutive samples after 

that the alarm is activated. The parameter k has been optimized in the range 

[1÷10]. The optimal value of k is evaluated maximizing the prediction 

performance calculated on validation set (reported in Table 5.11). 

In order to evaluate the prediction performance of the predictor the same 

performance indices introduced in section 5.1.1.2 have been adopted. 

The best performances are obtained triggering the alarm when the residual is 

greater than the alarm threshold for at least k consecutive samples. The 

minimum value of k that maximizes the performance on validation set is 

equal to 5 samples. 
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Table 5.11:  

Table 5.11: Prediction performances of the NOC predictor on validation set. 

k SP [%] FA [%] 

1 5,26 94,74 

2 21,05 78,95 

3 26,36 73,68 

4 68,42 31,58 

5 89,47 10,53 

6 89,47 10,53 

7 89,47 10,53 

8 89,47 10,53 

9 89,47 10,53 

10 89,47 10,53 

The performances of the NOC model as disruption predictor on DB1, DB2 

and DB3 are reported in Table 5.12. 

Table 5.12:  

Table 5.12: Prediction performances of the NOC model on DB1, DB2 and DB3. 

 Disruptive Discharges Safe Discharges 
 

k=5 PD [%] SP [%] TD [%] MA [%] SP [%] FA [%] SR [%] 

DB1 10,07 77,18 1,34 11,41 100 0 79.51 

DB2 18,52 64,20 3,70 13,58 77,28 22,72 65,91 

DB3 18,64 72,03 0,00 9,32 75,61 24,39 72,68 

The prediction performances of the proposed method are quite encouraging, 

considering that the model is trained with only safe pulses. For DB1 the 

successful prediction on safe pulses is 100% and the successful prediction on 

disrupted pulses is greater than 77%. 

Note that, as previously explained, the NOC model was created using a 

training set from safe discharges of the DB1. Test discharges from DB1 
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therefore belong to the set of experimental campaigns used for training. 

Conversely, DB2 and DB3 discharges belong to later campaigns. Indeed, as 

shown in Table 5.12 the performances of the NOC model, for DB2 and DB3, 

deteriorates. The PDs and the FAs for DB2 and DB3 increase with respect to 

the PDs and FAs of DB1. Referring to DB2, the total prediction success rate 

decreases from 79.51% for DB1 to 65.91%, whereas, for DB3 the total 

prediction success rate decreases from 79.51% for DB1 to 72.68%. 

Figure 5.15 reports a histogram giving the cumulative distribution of the 

warning times tD−talarm for DB1, where talarm is the alarm time. The 

percentage is referred to the total number of alarms triggered by the system 

on disrupted pulses. The stem corresponding to a warning time greater than 

160 ms includes also the premature detections. As can be noted, because at 

AUG 2 ms are sufficient for the protection system to intervene, in 98.5% of 

the cases the alarm is given enough in time. 

 

Figure 5.15: Cumulative histogram of the warning time (tD − talarm) between the disruption time and the 

alarm time, for DB1. 
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5.1.2.3 Analysis of false predictions 

As highlighted in section 5.1.1.4 one of the most common sources of 

incorrect predictions on DB2 is the shutdown of one or more auxiliary 

heating systems that causes a sudden decrease of the Pinp. This produces a 

peak in the Pfrac, which is responsible for increasing the residual and for 

triggering the alarm. As an example, the same pulse analyzed in section 

5.1.1.4 is taken into account. Figure 5.16 reports Pinp, Pfrac and the NOC 

residual, for the safe discharge # 21011. An increase of the residual well 

above the alarm threshold is recorded in correspondence to the Pinp drop-off, 

which generates a false alarm at 5.01s as a result of the NBI shutdown. 

 

Figure 5.16: Discharge # 21011: a) Pinp; b) Pfrac; c) the corresponding NOC model residual 

In order to limit the wrong predictions due to a peak of Pfrac, the same 

algorithm proposed in section 5.1.2, which inhibits the system alarm in the 

presence of a peak on Pfrac caused by a shutdown of the auxiliary heating 

systems has been adopted. 

Tables 5.13 and 5.14 report the prediction performances of the NOC model 

on DB2 and DB3, without (first row) and with (second row) the alarm 

inhibition (AI) algorithm respectively. 
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Table 5.13:  

Table 5.13: Prediction performances of the NOC model without and with alarm inhibition algorithm 

(AI) on DB2. 

 Disruptive Discharges Safe Discharges 
 

DB2 PD [%] SP [%] TD [%] MA [%] SP [%] FA [%] SR [%] 

without 

AI 
18,52 64,20 3,70 13,58 77,28 22,72 65,91 

with 

AI 
9,88 70,37 4,94 14,81 87,15 12,85 72,57 

 

Table 5.14:  

Table 5.14: Prediction performances of the NOC model without and with alarm inhibition algorithm 

(AI) on DB3. 

 Disruptive Discharges Safe Discharges 
 

DB3 PD [%] SP [%] TD [%] MA [%] SP [%] FA [%] SR [%] 

without 

AI 
18,64 72,03 0,00 9,32 75,61 24,39 72,68 

with 

AI 
13,56 76,27 0,00 10,17 84,62 15,38 77,78 

The use of AI leads to significant reductions of PDs and FAs, on both the two 

data sets (DB2 and DB3). But any positve effect on TDs and MAs is 

achieved. However, it seems that the use of the AI criteria gives the better 

performances. This is confirmed by comparing the total prediction success 

rate (SR). Referring to DB2, the total prediction success rate grows from 

65.91% for the ARX NOC model without AI, to 72.57% for the NOC ARX 

with AI. Referring to DB3, the total prediction success rate grows from 

72.68% for the ARX NOC model without AI, to 77.78% for the NOC ARX 

with AI. 
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Figures 5.17 and 5.18 report the histograms giving the cumulative 

distributions of the warning times for DB2 and DB3, respectively. As can be 

noted, the alarm is given soon enough in 94.20% of the cases for the DB2 

and in 100% of the cases for the DB3. 

 

Figure 5.17: Cumulative histogram of the warning time (tD − talarm) between the disruption time and the 

alarm time, for DB2. 

 

Figure 5.18: Cumulative histogram of the warning time (tD − talarm) between the disruption time and the 

alarm time, for DB3. 
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5.1.3 Conclusions 

A 2-D SOM of the 7-D plasma parameter space has been built for AUG. The 

map has been used as disruption predictor by analyzing the trajectories 

described over the map by the discharges under test. The performance has 

been evaluated using the data coming from experimental campaigns different 

and temporally far from those used to build the SOM. 

In order to improve such performance, the results have been analyzed with 

reference to the wrong predictions. It has been found that high values of Pfrac, 

due to the shutdown of the auxiliary heating systems are responsible for most 

of FAs and PDs. In order to reduce this problem, two actions have been 

undertaken: adding Prad to the SOM inputs and introducing an inhibition 

alarm algorithm. These have leaded to an increase of the performance for 

both on DB2 and DB3. 

Moreover, in order to reduce the ageing effect of the mapping a periodically 

retraining of the SOM has been proposed. In particular, the SOM has been 

updated using data from wrong predictions on pulses from DB2. The 

updated SOM has been tested over DB3. This last test is important as the 

deterioration of the generalization capability across campaigns is one of the 

main drawbacks of data-based approaches. There is an improving of the 

performance confirming the appropriateness of a retraining phase; the 

prediction success rate on disruptive discharges is about 69%, and greater 

than 89% on safe discharges 

Finally, a new view on disruption prediction using a well-tested industrial 

technique, the FDI approach, has been proposed. The main advantage with 

respect to the SOM is the fact that the model does not need disruptions to 

train the system but only a limited number of safe pulses. In addition this 

method is suitable to be applied in future devices, such as ITER, which must 

tolerate only a limited number of disruptive events and hence a large 
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database of disrupted discharges is not available. The prediction is based on 

the analysis of the residuals of an Auto Regressive eXogenous input model 

(ARX) built using Pfrac, li and βp. The prediction performance of the 

proposed system is encouraging when it is applied on DB1. However, the 

false alarms significantly increase when the system is tested on discharges 

coming from DB2 and DB3. In order to reduce this problem, the inhibition 

alarm algorithm proposed for the SOM has been adopted with good 

improvements on the total success rate. 

Note that, the computational time required to generate the ARX models 

using the System Identification Toolbox of Matlab [55] is about few 

minutes, but it is an off-line operation, as well as training a SOM by means 

the SOM toolbox running in Matlab. During on-line operation the ARX 

predictor only calculates the residuals and compares them with the threshold. 

Whereas the SOM predictor only calculates the Euclidean distance among 

the considered sample and the prototype vectors and assigns it to the closest 

one. These operations are quite fast and well below the signal sampling time 

of 1ms. 
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5.2 Database 2007-2012 

In order to confirm the validity of the manifold learning methods to serve as 

disruption predictors a new data base has been considered, which contains 

safe and disrupted discharges selected from experimental campaigns 

performed at AUG between May 2007 and November 2012, hence 

containing data from more recent campaigns. 

The choice of May 2007 as starting point of the new database has been made 

because significant changes in the machine configuration have been done. In 

particular, the ASDEX Upgrade carbon wall and divertor have been replaced 

in a stepwise manner by full W-wall [56]. It is known that the plasma 

behavior is directly connected to the plasma-wall interaction and then also 

disruptions are affected from this modification. Hence, the new database 

contains both all discharges (safe and disrupted) in the pulse range 

[21654÷22146] of the DB2 and all pulses (safe and disrupted) of the DB3 (as 

labeled in Table 5.1). Moreover, it contains also safe and disrupted pulses 

from the experimental campaigns performed from December 2009 to 

November 2012. 

The shots selection for the creation of the database followed the criteria 

reported in section 5.1.1. Briefly, only those disruptions which occurred in 

the flat-top phase or within the first 100ms of the plasma ramp-down phase 

and characterized by a plasma current greater than 0.8MA are considered. 

Moreover, disruptions mitigated by massive gas injection (both those 

triggered by the locked mode alarm, and those performed as valve test), and 

those caused by vertical instabilities, were excluded. The composition of the 

new database is reported in Table 5.15. 
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Table 5.15: Composition of the new database (time period May 2007-November 2012) 

Data set Safe pulses Disrupted pulses Time Period 

Training Set 291 77 May 2007- April 2011 

Test 1 145 72 May 2007- April 2011 

Test 2 254 82 May 2011- April 2012 

Each of the three datasets is composed of time series related to the following 

plasma parameters: 

1. Ip: plasma current [A] 

2. q95:safety factor at 95% of poloidal flux [a.u.] 

3. Pinp: total input power [W] 

4. LM ind.: locked-mode indicator [V]. 

5. Prad: radiated power [W] 

6. f(GWL): Greenwald fraction [AU] 

7. βp: poloidal β [AU] 

8. li: internal inductance [AU] 

All signals are sampled making reference to the time base of the plasma 

current and the sampling rate is equal to 1kHz. 

Discharges performed from May 2007 to April 2011 has been used to train 

the models (Training Set). The Test 1 has been built with shots performed in 

the same time period of the Training Set, but not included in the Training 

Set. It has been used to test the generalization capability of the models. 

Finally the Test 2, containing shots successive to those in the Training Set, 

has been used to evaluate the ageing of the models when used during more 

recent campaigns. 
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5.2.1 Mapping of the ASDEX Upgrade operational space using GTM 

and SOM 

As previously highlighted, the identification of the boundaries of the 

disruption free plasma parameter space would lead to an increase of the 

knowledge of disruptions. A viable approach to understand the disruptive 

events consists in extracting information from the complex multidimensional 

operational space, of the machine and to assume those data, which describe 

this space lie on an embedded, low-dimensional sub-space (manifold) within 

the higher dimensional space. Manifold learning algorithms attempt to find a 

low-dimensional representation of the data [57]. Once the low-dimensional 

representation of the data is carried out, the exploratory data analysis 

techniques can be useful in order to identify if the parameters used to 

describe the plasma operational space are correlated to each other or to 

detect the most important variables or if particular ranges of the variables are 

associated to the disruption risk.  

In the section 5.1 of this thesis a first manifold learning method has been 

presented, the Self Organizing Map (SOM). The SOM trained with non-

disrupted and disrupted pulses has been used to display the AUG operative 

space in order to identify regions with high risk of disruption and those with 

low risk of disruption. In addition to space visualization purposes, the SOM 

has been used also to monitor the time evolution of the discharges during an 

experiment. The SOM has been used as a disruption predictor achieving 

good results. 

In this second part of the thesis another manifold learning technique has been 

investigated, the Generative Topographic Mapping (GTM). Moreover, for 

comparison purposes in terms of mapping and prediction performances, a 

SOM is again developed. 
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5.2.1.1 Data reduction 

Being each signal sampled at 1 kHz, a huge amount of data (about 1M 

samples) is available for describing the safe operational space. The number 

of samples in safe pulses together with those belonging to the safe phase of 

disruptive shots is much larger than the number of samples available in the 

disruptive phase. For this reason, in order to balance the number of safe and 

disruptive samples and in order to reduce the computational effort during the 

GTM and the SOM training phase, a data reduction of the safe samples 

aimed to select only a limited number of significant samples has been 

performed. In this case, conversely to the data reduction procedure reported 

in section 5.1.1, the data reduction algorithm is applied only to the safe 

discharges. Because it is widely shared by the fusion community that the 

non-disruptive phase of disruptive shots is well represent by the safe pulses. 

Hence, only samples belonging to the safe discharges have been considered 

to describe the non-disruptive configurations as also assumed in [15]. 

The data reduction has been performed by means of a SOM built using the 

safe samples belonging to the safe discharges in the training set. A limited 

number of samples for each cluster have been selected. Once the SOM is 

trained, each cluster will contain only samples supposed to have similar 

features. Then, for each not empty cluster at most three samples have been 

retained.  

In Figure 5.19 a generic cluster of the SOM is visualized. The black point 

represents the cluster prototype vector, the red and the blue points are the 

samples with the smallest and greatest Euclidean distance from the cluster 

prototype vector respectively. The green point is the closest to the 

intermediate Euclidean distance between the green and the red ones. The red, 

the green and the blue points have been selected during the data reduction 

procedure whereas the black and the gray points have been discarded. 
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Figure 5.19: Generic cluster of the SOM. The black point is the prototype vector, the red, the green 

and the blue points are the samples with the smallest, the closest to the intermediate and greatest 

Euclidean distance from the cluster prototype vector, respectively. The black and the gray points are 

the samples not selected during the data reduction. 

Following this criteria only 2.6% of the training safe samples has been 

retained, reducing the number of samples from 1.030.018 to 26.640. 
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5.2.2 SOM & GTM predictors 

The training phase of the SOM and GTM predictors is based on the 

availability of a set of disrupted and a set of non-disrupted discharges. The 

non-disrupted set is composed of safe samples while the disruptive set is 

composed of all samples taken in the time interval [tpre-disr ÷ tD] of the 

selected disrupted discharges. Even in this training phase, as that in section 

5.1.1., the time instant tpre-disr has been chosen equal for all disrupted 

discharges. For AUG discharges, the optimal value of tpre-disr is set equal to 

45 ms before the disruption time, as it suggested in the literature [39]. 

As it was done in section 5.1.1, during the training of both GTM and SOM, 

further knowledge has been added to the intrinsic knowledge contained by 

plasma parameters, which consists in associating a label to each sample in 

the training set: 

 a disruptive state is associated to each sample belonging to the 

disruptive set. 

 a safe state is associated to each sample belonging to the safe 

discharges. 

The Min-Max normalization between 0 and 1 has been adopted to train the 

GTM and the Z-score standardization has been adopted to train the SOM. 

The Z-score standardization, widely used in statistics, consists to convert a 

distribution x with mean µ and standard deviation σ to a new distribution 

with zero mean and standard deviation equal to one, i.e., if x is a generic 

plasma variable of the training set, the Z-score standardization is computed 

as: 

σ

μ


x
x scorez

         
(5.2) 

For the two maps, the normalization/standardization type has been chosen 

maximizing the SR on the Training Set. 
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In this thesis, the SOM Toolbox 2.0 for Matlab [45] has been used to train 

the SOM, while the exploratory data analysis toolbox for Matlab [58] and 

the extension of this toolbox [27] have been used to train the GTM. 

As illustrated in section 5.1.1, the 2-D SOM was trained using seven plasma 

parameters (q95, Pinp, LM ind., Pfrac, li, f(GWL), βp), but in this second 

database Pfrac=Prad/Pinp has been excluded in order to reduce the ambiguous 

information provided to the models. This ambiguity is due to the fact that 

high values of Pfrac may correspond both to a high values of Prad (nominator 

of Pfrac), or to low values of Pinp. These latest are determined by the 

shutdown of one or more additional heating systems that cause a sudden 

decrease of the total input power Pinp. In the § 5.1.1.4 and 5.1.2.3 it has been 

shown that the most common source of incorrect predictions is the shutdown 

of one or more auxiliary heating systems that causes a sudden decrease of 

Pinp. This produces a peak in Pfrac, which is responsible for triggering the 

alarm. For these reason, Pfrac has been replaced with Prad. 

The number of clusters in the SOM is chosen by using the heuristic formula 

K=5*N
0.54321

, which is suggested as default in the SOM Toolbox 2.0 [45], 

where N is number of the training samples. As the tool used to train the 

GTM implements only squared maps, the number of cluster in the GTM has 

been chosen as the square of an integer closest to the number of clusters in 

the SOM. 

For both maps the same type of clusters reported in §5.1.1 can be identified 

and the same colors code used in Figure 5.2 has been associated to each 

cluster. Moreover, to each cluster composition a different disruption risk can 

be associated, as already done in section 5.1.1. 

Figure 5.20 reports the 2-D GTM (a) and the 2-D SOM (b) of the 7-D AUG 

operational space. The number of clusters is equal to 1.396 for the GTM and 

1.364 for the SOM.  
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Figure 5.20: (a) 2-D GTM (37x37 clusters), (b) 2-D SOM (44x31 clusters) of 7-D AUG operational 

space. Safe clusters are green, disrupted clusters are red, mixed clusters are gray and empty clusters 

are white. Figure 5.20:  

In both maps the safe regions (green) identify combinations of the 

considered plasma parameters that, if the overall operational space is 

exhaustively represented, have a low probability to lead to a disruption. 

Furthermore, in both maps there are several disruptive regions (in red) with 

an associated high-risk of disruption, mostly separated through a transition 

region (in gray) from the safe ones, which represents a boundary mainly 

populated by samples in between a safe and a disruptive behavior. 

Figures 5.21 and 5.22 report the component plane representation for each 

plasma parameter for GTM and SOM respectively, with the 2-D GTM and 

the 2-D SOM. 
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Figure 5.21: Component planes for the considered plasma parameters and the 2-D GTM of 7-D AUG 

operational space. 
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Figure 5.22: : Component planes for the considered plasma parameters and the 2-D SOM of 7-D AUG 

operational space.Figure 5. 23: 

By reflecting the relative component distribution of the single input 

parameters on the 2-D map (Figures 5.21 and 5.22), the component planes 

are a powerful tool to retrieve dependencies among the different parameters 

by analyzing similar patterns in data. For both the mappings, as expected, the 

operational space is described by not straightforward relations among the 

parameters, which reflect the complex variety of chain of events that leads to 

disruptions.  

In general, in both the maps most of the disruptive regions are characterized 

by a combination of high values of internal inductance, low values of the 

q95 Pinp Prad 

li p LM ind. 

f(GWL) 
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poloidal β, high fraction of radiated power and high values of the locked 

mode indicator. This combination is a clear signature of the most frequent 

phenomenology that leads to disruption, that is, the cooling of the edge. The 

picking of the current profiles induced by the cooling of the edge, are often 

followed by a radiative collapse accompanied by the development and the 

final locking of an MHD instability.  

Of course, beyond the main phenomenology and depending on the different 

root causes and the different types of disruption, there are also other 

components which characterize such regions. It can be found a high 

Greenwald fraction representative of density limit disruptions, as in the left 

side for the SOM and in right side for the GTM, or it can be found low 

values of the edge safety factor and the Greenwald fraction as in the upper 

part of the maps, which is likely associated to low q95 and low density or 

EFM disruptions. 

Furthermore, in both the maps, a disruptive region presents low values of the 

internal inductance and high fraction of radiated power, typical of impurity 

accumulation disruptions. 

Basically, the disruptive regions are mostly representative of the final part of 

the discharge where clear signatures of the disruptive behavior start to 

appear. This happens mainly because of the need to reduce as more as 

possible the uncertainty related to transition regions.  

Furthermore, they can be detected features representative of well-known 

operational boundaries, but, except these cases, it results to be really hard to 

think in terms of specific range of parameters: what really matters is their 

combination and the proposed manifold learning tools are one of the most 

powerful techniques to represent them. 

The GTM such as the SOM can be used also to display the time evolution of 

the discharges during an experiment. In fact, the temporal sequence of the 
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samples of a discharge forms a trajectory on the map depicting the 

movement of the operating point. Figure 5.23 reports the trajectory of a safe 

pulse (# 21654) and a disruptive pulse (# 21722). 

Simulating the online operation during an experiment, the GTM such as the 

SOM, can be used as disruption predictors, by introducing suitable criteria 

that link the disruption risk of the different regions of the map to the 

temporal evolution of the discharge. 

 

 

Figure 5.23: Trajectories of the safe discharge # 21654 (blue trajectory) and of the disrupted discharge 

# 21722 (black trajectory) on the 2-D GTM of the 7-D AUG. 

5.2.2.1 Performance indexes 

In order to uniform the performance of GTM and SOM predictors with the 

most recent results reported in literature for disruption prediction at AUG 

[15] some new performance indexes have been introduced to evaluate the 

prediction performance on the disrupted pulses. In particular, a false alarm 

definition has been introduced also for disrupted shots, which takes into 

account alarm triggered in a disrupted pulse more than 1s prior the disruption 

time.  
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Moreover, the time windows of the alarm trigger for the successful 

predictions and the early detections have been redefined, as in the following. 

The new performance indexes are defined as follows: 

 SPs: Successful Predictions, fraction of disruptive discharges which 

are correctly predicted. A disruption is correctly predicted if the 

predictor is able to trigger the alarm in the time interval [tD-500 ÷ tD-

2] ms.  The new lower bound of 500 ms has been adopted following 

[15]. Note that this bound is less restrictive with respect to that used 

in section 5.1.1.2. 

 EDs: Early Detections, fraction of disruptive discharges where the 

alarm is triggered more than 500 ms but less than 1s before the 

disruption time. The time of 1s before the disruption has been 

adopted because before this time the disruption precursors are hardly 

ever observed [15]. 

 FAD: False Alarms in a disrupted discharge are generated when a 

disruption alarm is triggered more than 1s prior the disruption time. 

The other performance indexes, SR, TD, MA on disrupted pulses and FA 

and SP on safe pulses (reported in the § 5.1.1.2) remain unchanged. 

5.2.2.2 Alarm criterion 

Due to the good results achieved by the SOM predictors, presented in 

chapter 5.1, the same algorithm introduced in section 5.1.1.3 has been used 

to trigger the alarm in the GTM and the SOM trained using discharges 

performed between 2007 and 2012. In order to reduce the FAs, FADs and the 

EDs, a small change in the alarm criteria has been adopted. It consists in the 

optimization of the minimum number of the waiting samples (kMIN) when the 

trajectory stays in red clusters, which was set equal 2 in section 5.1.1.3. 
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For each disrupted and mixed cluster, the parameter k was evaluated by the 

linear relation (5.1): 
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
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100for  %  DSDS%MIN        
(5.3) 

Maximizing the SR on Training Set, the parameters DSMIN%, kMAX and kMIN 

have been optimized in the range: 

 DSMIN %=80÷98 

 kMAX=15÷35 

 kMIN=2÷10 

The value of k is updated only if the trajectory moves into clusters with 

higher DS%. Conversely, the alarm is not triggered at all in clusters with 

DS%< DS%MIN. 

The best performance on Training Set has been obtained by triggering the 

alarm when the trajectory stays in red or mixed clusters for at least k 

consecutive samples with: 

 4484.4 %  DSk    for the GTM with DS%MIN=95% 

 5555.5 %  DSk    for the SOM with DS%MIN=98% 
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The prediction performances of the proposed systems for the considered 

database are reported in Tables 5.16 and 5.17. 

able 5.16: Prediction performance of the GTM for Training Set, Test 1 and Test 2. 

Table 5.16: Prediction performances of the GTM for Training Set, Test 1 and Test 2. 

GTM 

Disrupted Discharges Safe Discharges 

 

FAD 

[%] 

ED 

[%] 

SP 

[%] 

TD 

[%] 

MA 

[%] 

SP 

[%] 

FA 

[%] 

SR 

[%] 

Tr.ing Set 10,39 5,19 71,43 1,30 11,69 92,44 7,56 88,04 

Test 1 8,33 11,11 72,22 1,93 6,94 85,52 14,48 81,10 

Test 2  13,41 3,66 72,95 0,00 10,97 86,22 13,78 82,74 

Table 5.17: Prediction performances of the SOM for Training Set, Test 1 and Test 2. 

SOM 

Disrupted Discharges Safe Discharges 

 

FAD 

[%] 

ED 

[%] 

SP 

[%] 

TD 

[%] 

MA 

[%] 

SP 

[%] 

FA 

[%] 

SR 

[%] 

Tr.ing Set 10,39 0,00 67,53 1,30 20,78 98,63 1,37 92,12 

Test 1 9,72 8,33 70,83 1,39 9,72 88,97 11,03 82,95 

Test 2  20,73 4,88 59,76 1,22 13,41 90,16 9,84 82,74 

The GTM predictor performances reported in Table 5.16, for the Training 

Set are good. The FAs, EDs and TDs are always lower than 10%, the FADs 

are about 10% and the MAs are about 12%. The SPs on disrupted and safe 

discharges are about 71.43% and 92% respectively. Instead, for Test 1 and 

Test 2 the sum of FADs and EDs and FAs increases and the SPs for safe 

discharges decreases. The SPs for disrupted discharges remain about 

constant passing in the three sets. 

Analyzing the SOM predictor performance reported in Table 5.17, for 

Training Set, the performances are still good. The FAs, EDs and TDs are 
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always lower than 10% and the FADs are about 10%. But the MAs are higher 

than 20%. The SPs on disrupted and safe discharges are respectively about 

67% and 99%. Instead, for Test 1 and Test 2 the sum of FADs and EDs and 

FAs increases and the SPs for disrupted and safe discharges decrease. 

The SRs obtained with SOM predictor result to be better than those obtained 

with the GTM predictor, for the Training Set and Test 1, but for the Test 2 

the SR is the same for both predictors. Moreover, the GTM has always better 

performance on MAs and SPs for disrupted discharges, for all datasets, 

whereas the SOM achieves lower FAs than the GTM, for all datasets. 

Even if the prediction performance for SOM and GTM are quite good, they 

are not fully satisfactory (for example, the MAs for SOM for the training set 

are greater than 20% or FADs are about 20% for the Test 2). This may be due 

to the wrong choice of the tpre-disr during the training phase of the maps. In 

this training procedure the tpre-disr has been set equal to 45ms before the tD for 

all disrupted discharges, as reported in [39]. Note that, this time instant has 

been optimized by the authors by means of a heuristic procedure using data 

coming from the experimental campaigns from 2002 to 2005. This time 

instant may not be appropriate for the disrupted discharges coming from the 

experimental campaigns from 2007 to 2011, which are used to train the 

SOM and the GTM. A wrong choice of the tpre-disr gives ambiguous 

information to the models in cases of disruptions with disruptive phase 

different from 45ms. In fact, during the labeling of the disruptive samples in 

the training phase of the models two different problems could arise. The first 

one appears if the actual disruptive phase be shorter than 45ms, in this case, 

some non-disrupted samples are labeled as disruptive. The second one 

appears if the disruptive phase is longer than 45ms, in this case some 

disruptive samples are omitted in the training phase and hence the models 

are poorer in terms of disruptive knowledge provided. 
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5.2.3 Disruptive phase identification using the Mahalanobis distance 

The assessment of a specific disruptive phase for each disruptive discharge 

represents a relevant issue in the understanding of disruptive events, but the 

identification of the beginning of this phase is often a very difficult task if 

physical criteria are used. 

In this thesis, the Mahalanobis distance [36] has been applied to define a 

specific disruptive phase for each disruption. Mahalanobis distance is used in 

literature to detect outliers of a prefixed distribution. An outlier is an 

observation that numerically deviates abnormally from other values in the 

rest of the population it belongs to. In this thesis an outlier can be seen as a 

disruptive sample and the group of reference points is assumed to be the safe 

discharges in the training set. 

Monitoring the Mahalanobis distance for the disruptive pulses, it was noted 

that the Mahalanobis distance is low during the evolution of the discharge 

and increases when the disruption is approaching. This suggested us to use 

the Mahalanobis distance to select the disruptive samples. Hence, a different 

tpre-disr has been selected for each disrupted pulse in the training set by labeling 

each sample as safe or disruptive depending on its Mahalanobis distance 

value. Therefore, a suitable threshold on Mahalanobis distance, which 

discriminates between disruptive and safe configurations, has to be set. 

In this thesis the optimization of the Mahalanobis threshold has been carried 

out and a confidence limit of about 99% has been empirically assumed for 

the Mahalanobis distance of safe points. By means of this threshold (TH) it 

is possible to exclude 1% of outliers of the reference points distribution. As 

previously mentioned, an outlier can be considered as a disrupted sample. 

As an example, Figure 5.24 reports the Mahalanobis distance for a safe 

(#21654) and a disruptive (#21722) discharge belonging to the training set. 

The green line, on both plots, indicates the threshold TH (TH=1.93). As it 
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can be noted, the Mahalanobis distance remains always well below the 

threshold for the safe shot (Figure 5.24(a)), whereas, for the disruptive shot 

(Figure 5.24 (b)), the Mahalanobis distance increases when the disruption is 

approaching and crosses the threshold (the green line) when t=3.58s. 

 

Figure 5.24: Mahalanobis distance for the safe discharge #21654 (a) and the disruptive discharge 

#21722 (b). The green line is the selected threshold (TH). 

In Figure 5.25 the distribution of the length of the pre-disrupted phase for the 

disrupted pulses of the training set is reported, evaluated using the 

Mahalanobis distance. 

 

Figure 5.25: Distribution of the length of the pre-disrupted phase for the disrupted pulses of the 

Training Set. 



117 

 

As it can be noted, the majority of disrupted pulses in the Training Set has a 

disruptive phase length of about 6ms. Besides, there are disrupted pulses 

with a disruptive phase longer than 45ms. 

Figure 5.26 reports the cumulative distributions of the length of the pre-

disrupted phase for the disrupted pulses in the Training Set. As can be noted, 

48% of the pulses has a pre-disruptive phase equal or shorter than 6 ms, 

93.5% has a pre-disruptive phase equal or shorter than 52 ms.  

 

Figure 5.26: Cumulative histogram of the length of the pre-disruptive phase for the pulses of the 

Training Set. 

The resulting number of samples selected as disruptive by means of the 

Mahalanobis distance is 2.947 instead of 3.465 samples previously selected 

considering all the samples in the last 45ms. 

A new GTM and SOM with a disruptive phase selected by means of the 

Mahalanobis distance have been trained. The number of clusters in the SOM 

and GTM, chosen as previously described, are 1.369 and 1.333 respectively. 

For comparison purposes, the composition in terms of cluster types for the 

GTM trained with a tpre-disr equal 45 ms before the disruption time tD (GTM1) 

and the GTM trained with a tpre-disr|MD selected using the Mahalanobis distance 
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(GTM2) is shown in Table 5.18. Figure 5.27 shows the GTM1 and the 

GTM2. 

Figure 5. 27:  

 

Figure 5.27: GTM1 trained with tpre-disr equal 45 ms before the disruption time and GTM2 trained with 

tpre-disr|MD. Note that the map dimension remains unchanged passing from GTM1 to GTM2.  

Table 5.18:  

Table 5.18: Cluster composition for GTM1 and GTM2 

Cluster type GTM1 [%] GTM2 [%] 

Safe 83,20 85,98 

Disrupted 8,77 7,30 

Mixed 5,99 4,67 

Empty 2,05 2,04 

Analyzing Table 5.18 it can be noted that, passing from GTM1 to GTM2, a 

decrease of the mixed clusters is achieved. The empty clusters for the two 

GTMs remain unchanged. The disrupted clusters decrease and the safe 

clusters increase. The mixed clusters reduction can be interpreted as a better 

discrimination capability of the mapping between safe and disrupted 

behaviors. 

The GTM composition in terms of samples into the clusters is reported in 

Table 5.19. As can be noted, passing from GTM1 to GTM2 a decrease of the 

disruptive and mixed samples contained in the disruptive and transition 
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regions respectively, and an increase of the safe samples contained in the 

safe region is achieved. This is indicative again of a better discrimination 

capability of GTM2 with respect to GTM1. 

Table 5.19:  

Table 5.19 Clusters composition in terms of total samples for GTM1 and GTM2. 

 Samples/Total Samples [%] 

 Safe Disrupted Mixed 

GTM1 84,54 8,33 7,71 

GTM2 87,60 6,98 5,42 

Table 5.20 reports the GTM samples distribution into the clusters. As can be 

noted, passing from GTM1 to GTM2 an increase of the disruptive and safe 

samples contained in the disruptive and safe regions is achieved. This is 

indicative again of a better discrimination capability of GTM2 with respect 

to GTM1. 

Table 5.20: Cluster composition in terms of safe and disrupted samples for GTM1 and GTM2. 

Cluster 

GTM1 GTM2 

Safe samples/ 

Total safe 

samples 
[%] 

Disruptive 

samples/Total 

Disruptive 

samples 
[%] 

Safe samples/ 

Total safe 

samples 
[%] 

Disruptive 

samples/Total 

Disruptive 

samples 
[%] 

Safe 95,45 --- 97,28% --- 

Disrupted --- 70,13 --- 72,88 

Mixed  4,55 29,87 2,72% 27,12 

The SOM composition in terms of cluster type for SOM trained with a tpre-disr 

equal 45 ms before the disruption time, tD (SOM1) and the SOM trained with 

a tpre-disr|MD selected using the Mahalanobis distance (SOM2) is shown in Table 

5.21. Figure 5.28 shows the SOM1 and the SOM2. 
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Figure 5.28: SOM1(with 1364 cluster) trained with a tpre-disr equal 45 ms before the disruption time and 

SOM2 (with 1333 cluster) trained with a tpre-disr|MD. 

Analyzing Table 5.21 it results that, passing from SOM1 to SOM2 a 

decrease of the mixed clusters is achieved. The empty clusters for SOM 

remain about unchanged. The mixed clusters reduction can be interpreted as 

a better discrimination capability of the mapping between safe and disrupted 

behaviors.  

Table 5.21:  

Table 5.21: Cluster composition for SOM1 and SOM2. 

Cluster type SOM1 [%] SOM2 [%] 

Safe 81,89 84,85 

Disrupted 8,34 7,88 

Mixed 7,64 5,25 

Empty 2,13 2,02 

The SOM composition in terms of samples into the clusters is reported in 

Table 5.22. Passing from SOM1 to SOM2 a decrease of the mixed samples 

contained in the transition region is shown, whereas an increase of the safe 

samples contained in the safe region is achieved. The disruptive samples 

contained in the disruptive region remain about constants. 
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Table 5.22:  

Table 5.22: Clusters composition in terms of total samples for SOM1 and SOM2. 

 Samples/Total samples [%] 

 Safe Disrupted Mixed 

SOM1 80,88 6,74 12,38 

SOM2 86,12 6,80 7,08 

The Table 5.23 reports the SOM samples distribution into the clusters. 

Passing from SOM1 to SOM2 an increase of the disruptive and safe samples 

contained in the disruptive and safe regions respectively, is achieved. This is 

indicative again of a better discrimination capability of SOM2 with respect 

to SOM1. 

Table 5.23: Cluster composition in terms of safe and disrupted samples for SOM1 and SOM2. 

Cluster 

SOM1 SOM2 

Safe samples/ 

Total safe samples 
[%] 

Disruptive 

samples/ Total 

disruptive 

samples 
[%] 

Safe samples/ 

Total safe 

samples 
[%] 

Disruptive 

samples/ Total 

disruptive 

samples 
[%] 

Safe 91,40 --- 95,64 --- 

Disrupted --- 58,59 --- 68,27 

Mixed 8,60 41,41 4,36 31,73 

In order to prove that the wrong choice of the tpre-disr could influence the 

prediction performance, they have been evaluated for GTM2 and SOM2 

predictors. For comparison purposes, the prediction performances for GTM1 

and SOM1 are reported again. 

The same alarm criterion presented in the § 5.2.2.2, for both predictors, is 

adopted. 

Table 5.24 reports the prediction performances for GTM2 while Table 5.25 

reports prediction performances for GTM1. The best performances on 

Training Set, for GTM2, are achieved activating the alarm when the 

trajectory stays in red or mixed cluster for at least k consecutive samples: 
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2052 %  DSk  with DS%MIN=95%. These coefficients were optimized 

maximizing the SR on the training set.  

Table 5.24:  

Table 5.24: Prediction performances for GTM2. 

GTM 2 Disrupted Discharges Safe Discharges 

 

FAD  

[%] 

ED  

[%] 

SP  

[%] 

TD  

[%] 

MA  

[%] 

SP  

[%] 

FA  

[%] 

SR  

[%] 

Tr.ing Set 5,19 5,19 77,92 3,90 7,79 96,91 3,09 92,93 

Test 1 8,33 6,94 75,00 1,39 8,33 88,97 11,03 84,33 

Test 2  12,20 2,44 73,16 0,00 12,20 89,76 10,24 85,71 

Table 5.25: Prediction performances for GTM1. 

GTM 1 Disrupted Discharges Safe Discharges  

FAD  

[%] 

ED  

[%] 

SP  

[%] 

TD  

[%] 

MA  

[%] 

SP  

[%] 

FA  

[%] 

SR  

[%] 

Tr.ing Set 10,39 5,19 71,43 1,30 11,69 92,44 7,56 88,04 

Test 1 8,33 11,11 72,22 1,93 6,94 85,52 14,48 81,10 

Test 2  13,41 3,66 72,95 0 10,97 86,22 13,78 82,74 

Comparing Tables 5.24 and 5.25 it can be noted that using a different tpre-disr 

for each disrupted discharges leads to an increase of the performances of the 

GTM predictor. In particular, the global success rates SRs and the SPs for 

safe and disrupted discharges increase for all datasets. The FADs, the EDs 

and the FAs decrease for all dataset. Note that, a slight increase of the MAs 

for Test Set 1 and 2 is achieved. 

Table 5.26 reports the prediction performances for the SOM2 while Table 

5.27 reports the prediction performances for the SOM1. The best 

performances on Training Set, for SOM2, are achieved activating the alarm 

when the trajectory stays in red or mixed cluster for at least k consecutive 
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samples: 5025 %  DSk  with DS%MIN=98%. These values were 

optimized maximizing the SR on the training set. 

Table 5.26: Prediction performances for SOM2. 

SOM2 Disrupted Discharges Safe Discharges 

 

FAD  

[%] 

ED  

[%] 

SP  

[%] 

TD  

[%] 

MA  

[%] 

SP  

[%] 

FA  

[%] 

SR  

[%] 

Tr.ing Set 6,49 3,90 77,92 1,30 10,39 94,85 5,15 90,76 

Test 1 8,33 6,94 72,22 2,78 9,72 89,66 10,34 83,87 

Test 2  9,76 3,66 76,83 0,00 9,76 90,55 9,45 87,20 

Table 5.27: Prediction performances for SOM1. 

SOM1 Disrupted Discharges Safe Discharges  

FAD  

[%] 

ED  

[%] 

SP  

[%] 

TD  

[%] 

MA  

[%] 

SP  

[%] 

FA  

[%] 

SR  

[%] 

Tr.ing Set 10,39 0,00 67,53 1,30 20,78 98,63 1,37 92,12 

Test 1 9,72 8,33 70,83 1,39 9,72 88,97 11,03 82,95 

Test 2  20,73 4,88 59,76 1,22 13,41 90,16 9,84 82,74 

Comparing Tables 5.26 and 5.27 it can be noted that using a different tpre-disr 

for each disrupted discharges leads to an increase of the performances of the 

predictor. In particular, the global success rates SRs and the SPs for safe and 

disrupted discharges increase for all datasets (except for SPs for the safe 

discharges in the Training Set). The FADs, the EDs and the FAs decrease for 

all datasets. 

It is interesting to note that the successful prediction for the disrupted 

discharges for GTM2 and SOM2 remain high for all data sets, suggesting 

that the ageing phenomenon is not present. Further analyses have been 

developed in chapter 6 to justify that.  
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5.2.4  Disruption prediction using the Logistic Regression 

The logistic regression is a well-known statistic method to analyze problems 

with dichotomous (binary) dependent variables. It models the probability of 

a case being classified into one category of the dependent variable as 

opposed to the other, using D independent variables or predictors. In this 

thesis a Logit Model has been trained to predict the probability that a generic 

sample belongs to a safe or a disruptive phase and the independent variables 

are the plasma parameters. 

Data for this study were extracted from the AUG experimental campaigns 

performed between May 2007 and November 2012. The database 

composition is reported in Table 5.15. 

During the training of the model, the dichotomous output has been set equal 

to 0 for safe samples and 1 for disruptive samples. Safe samples come from a 

reduced representative set of samples belonging to safe shots (see section 

5.2.1.1). The disruptive samples come from a time window of disrupted 

shots identified through the Mahalanobis distance criterion (see section 

5.2.4). 

The plasma parameters used to train the Logit Model are the same seven 

plasma parameters used to build the GTM and the SOM predictors presented 

in section 5.2.2. The Logit Model inputs are normalized in the interval [0,1]. 

In this way, the Logit Model Output (LMO) does not depend on the absolute 

magnitude of the signals. 

The Logit Model is built according to equation 4.11. Taking into account 7 

plasma parameters as inputs, the equation 4.11 becomes as in the following: 

)(.             76

5432951

GWLfindLM

liPPqLMO pradinp









   

(5.4)
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where the parameters α and β are the LMO coefficients estimated during the 

training by minimizing the misclassifications via Maximum-Likelihood 

method. 

It has been observed that for the majority of safe discharges belonging to the 

training set, the LMO is always smaller than 0 throughout the discharge. On 

the contrary, for the great majority of the disrupted discharges, the time 

evolution of the LMO remains at low values during the first part of the 

discharge and starts to grow when the pulse approaches the disruption time. 

As an example, Figure 5.29 reports the LMO for a safe (#21654) and a 

disruptive (#21722) discharge. 

 

Figure 5.29: Logit Model Output (LMO) for a safe discharge #21654 and a disruptive discharge 

#21722 (lower plot). 

This behavior suggests using the Logit Model as disruption predictor by 

introducing a threshold value able to properly identify an incoming 

disruption. 

Figure 5.30 reports the probability density function (pdf) of the LMO for 

samples belonging to the safe and disruptive discharges of the Training Set. 

As it can be noted, the distribution of safe samples belonging to safe shots 

(in blue) and those belonging to the safe samples of disruptive shots in the 

interval [tflat-top ÷ tpre-disr|MD] (in green) are well separated from that of 
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disruptive sample (in red). Therefore, a suitable threshold on the LMO value 

can be set to discriminate between safe and disruptive phase of the pulse. A 

disruption alarm can be triggered when the LMO exceeds the threshold 

value. Moreover, to avoid false alarms sometimes caused by spikes in the 

diagnostic signals, a time delay has been introduced that inhibits the alarm 

for k samples after the alarm activation. 

The optimum LMO threshold has been optimized in the range (0÷5) where 

the pdfs of safe and disruptive samples have a limited overlap and the 

parameter k has been optimized in the range (1÷10). 

 

Figure 5.30: Probability density function of the LMO for samples belonging to the training set. 

The best performance of the LMO as disruption predictor has been achieved 

with an alarm threshold equal to 3.9 and k =1 (see Table 5.24). These values 

have been optimized maximizing the SR on the Training Set. 
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Table 5.28: Prediction performance for the Logit predictor on the three data sets. 

Data set 

Disrupted Discharges Safe Discharges 

 

FAD  

[%] 

ED  

[%] 

SP  

[%] 

TD  

[%] 

MA  

[%] 

SP  

[%] 

FA  

[%] 

SR  

[%] 

Tr.ing 0,00 0,00 94,81 3,90 1,30 98,63 1,37 97,83 

Test 1 2,78 0,00 91,67 2,78 2,78 97,24 2,76 95,39 

Test 2  2,44 3,66 92,68 0,00 1,22 95,28 4,72 94,64 

Analyzing the Logit predictor performances reported in Table 5.24, for 

Training Set, the performances are very high. The FADs, FAs, EDs and TDs 

are always lower than 4%. Moreover the FADs and EDs are nulls. The SPs 

on disrupted and safe discharges are about 95% and 99% respectively. 

The prediction performances remain high both for Test 1 and Test 2. The 

FADs, FAs, EDs and TDs are always lower than 5%. The global success 

rates SRs are always greater than 94% for all data sets. 

The prediction performance of the Logit predictor are better than those of the 

GTM2 and SOM2 predictors, furthermore they remain quite high for all data 

sets. 

5.2.5 Conclusions 

Data for the second part of this thesis have been selected from experimental 

campaigns performed at AUG between May 2007 and November 2012. 

The mapping of the AUG operational space has been proposed using seven 

plasma parameters by means the Self Organizing Maps and the Generative 

Topographic Mapping.  

The maps are trained using a reduced set of samples coming from the safe 

discharges and the samples in the last 45ms of the disrupted discharges as 

disrupted samples. 
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The maps (GTM1 and SOM1) have been used as disruption predictors by 

analyzing the trajectories described over the map by the discharges under 

test. The performance has been evaluated using the data coming from 

experimental campaigns different from those used to build the maps. The 

prediction performances of the predictors are good. For the GTM1 predictor 

the SPs on disrupted and safe discharges are about 71.43% and 92% 

respectively and decreases of few percentage points passing from Training 

Set to Test 1 and Test 2. The global success rate SR is always greater than 

81% for all dataset. For the SOM1 predictor the SPs on disrupted and safe 

discharges are about 68% and 98% respectively and decreases of few 

percentage points passing from Training Set to Test 1 and Test 2. The global 

success rate SR is always greater than 88% for all dataset but the MAs are 

greater than 20% for the Training Set. 

In order to improve the prediction performance of the previous predictors, a 

different selection of the disruptive samples using the Mahalanobis distance 

has been performed and the SOM and GTM predictors has been re-trained 

(GTM2 and SOM2). From a detailed analysis of the map compositions it 

resulted that using the Mahalanobis distance to select the disruptive samples 

gives mappings (GTM2 and SOM2) with a discrimination capability 

between safe and disruptive behaviors better than the maps GTM1 and 

SOM1. In fact a reduction of the mixed clusters and the samples inside them 

is achieved. 

Furthermore, the new training session has led an improvement of the 

prediction performances. 

For both Test 1 and Test 2 the performances increase passing from GTM1 to 

GTM2 and from SOM1 to SOM2. 
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For GTM2 the global success rate on both the test sets is good, always 

higher than 84%. In particular, the success predictions are good both on 

disrupted and safe shots. 

For SOM2 the global success rate on both the test sets is good, always higher 

than 83%. In particular, the success predictions are good both on disrupted 

and safe shots. 

Finally, a logistic regressor has been proposed as disruption predictor. The 

Logit Model built with seven plasma parameters as inputs is able to model 

the probability that a generic sample belongs to a non-disruptive or a 

disruptive phase of the discharges and introducing a suitable alarm criteria it 

has been used to identify an incoming disruption. 

The prediction performance of the proposed system is very encouraging. The 

FADs, EDs and FAs are always lower than 4% and the global success rate is 

always greater than 94% for all 3 data sets. 

Even if the prediction performances of the Logit Model are better than those 

of GTM2 and SOM2, it is not suitable to describe the operational space of 

the machine. The GTM, such as the SOM, could be useful in the 

identification of the boundaries of the disruption free plasma parameters 

space leading to an increase in the knowledge of disruptions.  
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6 DISRUPTION CLASSIFICATION AT 

ASDEX UPGRADE 

Avoidance or mitigation of disruptions is of primary importance in order to 

preserve the integrity of tokamak machines. In this frames, it would be 

helpful to distinguish the cause of the disruption, because different 

disruption classes may require different avoidance and mitigation strategies. 

The avoidance strategies are focused in preventing that the plasma enters in 

regions of the operational space with high risk of disruption by either 

suppressing or keeping under control instabilities or precursors whose 

growth typically leads to disruption. If avoidance fails the unique action that 

can be taken is to mitigate the consequences of the disruption by means, e.g., 

of the injection of a large amounts of gas.  

Nevertheless, different disruption types could have also an implication on 

the effect of the mitigation: for example, it has been proven in JET that, 

depending on the underlying conditions, the killer gas injection has not 

always the same positive effect. Therefore, being different disruption types 

interested by different regions of the operational space, it would be 

particularly useful to investigate on possible dependencies with respect to the 

different effects of the mitigation, to understand whether this depends on the 

disruption type, the disruption phase, or some other mechanism. 

Therefore, the need to develop reliable prediction of the disruption type is 

essential in order to optimize the strategy to safely land the plasma and to 

reduce the probability of damages of the device [6]. 

In literature some contributions have been devoted to the disruptions 

classification. Moreover, a considerable effort is dedicated to understand the 

physics of disruptions with the aim to find the root causes of the 

phenomenon, therefore a strong interest in developing methods and 
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techniques to manually and automatically classify disruptions is taking place 

in the last years. In [5] a manual classification is proposed for the discharges 

occurring during the JET operations with the Carbon Wall (JET-C) from 

2000 to 2010, while in [11] a manual classification is proposed for the 

discharges occurring during the JET operations with the ITER like Wall 

(JET-ILW) from 2011 to 2012. In both the papers the specific chain of 

events that led to a disruption was identified and used to classify disruptions, 

grouping those that follow specific paths. Sometimes these paths are clear 

and unique, while others could follow near similar courses. Moreover, 

several different physics phenomena may occur simultaneously, eventually 

leading to a disruption. This means that not always an unambiguous manual 

classification is possible [5]. In [12] the authors proposed a manual 

classification for the disruptions occurred at AUG in 2013 (part of the 2012-

2013 experimental campaign). Disruptions with similar causes were 

categorized, when possible, according to the classification used for JET in 

[11].  

Instead, in [6] the disruptions manually classified in [5] were automatically 

classified using nonlinear manifold learning methods. 

  



132 

 

6.1 Manual classification at AUG 

In this work three disruption predictors have been designed on a database 

containing discharges performed at AUG from May 2007 to November 2012 

(presented in chapter 5.2). Their performances are evaluated through three 

datasets (Training Set, Test 1 and Test 2), and the analysis of the 

performance highlights: 

o an high generalization capability when the performances are 

evaluated using discharges contained in the same time period of the 

Training set (Test 1). 

o a very low ageing effect when the performances are evaluated using 

discharges belonging on later campaigns (Test 2). 

The ageing effect is an intrinsic drawback of the data-based models, it 

consists in the performance degradation when the model is used with data 

temporally far from those used in the training phase; the more the data 

temporarily deviate from the training set the higher the performance 

degradation is. The ageing effect is very common in the experimental 

machines, such as AUG, which operate in ever-changing conditions in order 

to explore their potentialities. Therefore, significant ageing was expected on 

Test 2. 

The high generalization capability and a low ageing effect of the predictors 

could be justified if plasma configurations contained in the Training Set are 

well representative of those in Test 1 and Test 2. 

Hence, a manual classification of the 231 disruptive discharges belonging to 

the considered data base has been performed with the aim of examining the 

distribution of the disruption classes throughout the three datasets. 

The manual classification has been performed by means of a visual analysis 

of several plasma parameters for each disruption and taking also into account 

the aim of the different experiments. The manual classification criteria try to 
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follow that performed in [5]. In particular, the specific chains of events have 

been detected and used to classify disruptions and when possible, the same 

classes introduced for JET are adopted [5]. 

The analysis of physical and technical mechanisms that lead to a disruption 

allowed us to identify 9 disruption classes and these classes are reported in 

Table 6.1. 

Table 6.1: AUG disruption classes and their acronyms. 

 Disruption Class Acronym 

1 H-mode Greenwald Limit  GWL-H 

2 
L-mode Greenwald Limit and density 

control problem 
NC 

3 Impurity control problem IMC 

4 Auxiliary power shut down ASD 

5 

CE (disruption characterized by the 

radiative collapse and current profile 

peaking) 

CE 

6 Impurity accumulation (radiation peaking)  RPK  

7 β-limit disruption β-limit 

8 
Low-q and low-ne or Error field 

disruption 
LON-EFM 

9 Vertical displacement event VDE 

Disruptions clustered in the first five classes are typically characterized by 

the final cooling of the edge and differ mainly for the root cause of the chain 

of events. As already explained in chapter 2 (§2.3), the cooling of the plasma 

edge (CE) can be summarized with the following chains of phenomena: the 

radiation losses exceeds the heating power, then the temperature collapses 

causing the contraction of the plasma current profile, resulting in an 

increasing of the internal inductance [5,14, 15]. The cooling of the plasma 

edge makes the plasma unstable to MHD tearing modes, which leads to 
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disruption. As shown in the section 2.3, the cooling of the plasma edge can 

be achieved in two different ways: by means of a high level of electron 

density or by means of a high impurity density at the edge. 

The first one can be achieved by a continuous gas puffing, which leads to a 

saturation of the density increase with a following energy collapse and a 

disruptive termination of the discharge [19]. This phenomenology can be 

detected in the CE due to achieved Greenwald limit after H/L back transition 

and in the CE due to achieved Greenwald limit in L-mode discharge.  

In addition to physical causes, the diagnostic problems could be another 

cause of disruptions characterized by a cold edge. For example, an erroneous 

density signal due to a fringe-jump of the interferometer signal may lead to 

excessive gas requests from the density feedback system pushing again the 

plasma towards the density limit. This happens in the CE due to density 

control problem. When the plasma operates near to the Greenwald limit the 

H-L back transition may occur as consequence of a sudden drop of the input 

power related to an auxiliary power system switch-off, usually the NBI. The 

fast switch-off of auxiliary power could lead to difficulties in controlling 

density leading to the discharge disruption [5]. This happens in the CE due to 

auxiliary power shut-down. 

The second one is directly linked to a power balance problem at the edge. If 

the edge cools to a sufficiently low temperature, a radiative instability can 

occur due to the effect of a small concentration of impurities (typically low-

Z impurities released from the first wall or deliberately introduced) that 

changes the plasma radiation characteristics in such a way that, with 

decreasing temperature, an increasing radiative loss occurs [19]. This 

happens in the CE due to impurity control problem. 

Another important cause of instability related to plasma radiation is the 

impurity accumulation of high-Z materials in the plasma centre due to 
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plasma wall interactions (mostly Tungsten in the considered database). This 

accumulation gives rise to strong core radiation due to the fact that high-Z 

impurity atoms are able to reach the centre without being fully ionized. This 

leads to a flattening or even a hollowing of the current density due to an 

increase of the plasma resistivity. If this mechanism is amplified, the central 

temperature collapses, then the plasma ends in a disruption due to the onset 

of MHD activity. 

Regarding the MHD stability, one restriction on the accessible operational 

domain is imposed by the Troyon ideal MHD limit. The Troyon limit defines 

the maximum plasma pressure which can be confined for a given toroidal 

magnetic field, typically expressed with a limit on the volume averaged 

toroidal β. High β plasmas are unstable to external kink modes, and, 

depending on the boundary  conditions, are mainly restricted by Neoclassical 

Tearing Modes (NTMs) and Resistive Wall Modes (RWMs). 

MHD instabilities, such as locked modes, could be excited by error fields, 

which are deviations of the magnetic fields from axisymmetry. In AUG the 

error fields are not particularly significant, but studies of error fields have 

been carried out in the last 2 years by means of the Resonance Magnetic 

Perturbation coils (RMP), which generate a n=1 radial magnetic field 

resonant on the surface q=2, in low density and low q95 plasmas [12]. 

For some pulses, disrupted by means a radiative collapse, most of the plasma 

signals required for the classification were not available. These disruptions 

have been grouped in a class labeled Other. 

Moreover, during the disruptions database analysis it has been observed that 

various disruptions arose through a mechanism not matching with those 

described above (cooling edge, radiation peaking, LON-EFM). For some of 

them, the performed analysis has shown only to the presence of a mode that 

grows and finally locks. Thus, a further class, called “MOD”, has been 
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defined, where the common phenomenon leading to the disruption is only 

the locked mode. 

Finally, when the plasma cross section is elongated, as at AUG, the plasma 

column is inherently unstable to the motion in the direction of elongation. A 

fast change in plasma parameters can cause the loss of the vertical position 

control, leading the plasma column to contact the first wall reducing the 

safety factor at the edge. When the edge safety factor decreases to a 

sufficiently low value, rapid growth of MHD activity produces a fast thermal 

quench similar to those observed in major disruptions. The vertical 

displacement events (VDEs) are excluded from the database used for the 

classification, because they are easily predictable at AUG monitoring the 

deviation of the vertical position of the plasma centroid with respect to the 

feedback reference position [15]. 

In the following, for each class, an example of its evolution is reported and 

commented.   
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6.1.1 Example of NC disruption 

An example of a disruption due to the achieving of density limit in a 

classical L-mode density limit discharge (NC) is reported in Figure 6.1. The 

figure reports the temporal evolution of: (a) the plasma current [MA], (b) the 

line average density in the plasma core [10
19

m
-2

], (c) the Greenwald fraction 

[a.u], (d) the total input power [MW] together with the total radiated power 

[MW], (e) the internal inductance [a.u], (f) the plasma energy [MJ], (g) the 

Deuterium gas rate [10
20

/s] and (h) the Locked Mode signal [V] for the shot 

# 26511. 

Figure 6.1: Example of NC disruption (discharge # 26511). (a) Plasma current, (b) line average density 

in the core, (c) Greenwald fraction, (d) total input power (blue line) and total radiate power (red line), 

(e) internal inductance, (f) plasma energy, (g) Deuterium gas rate, (h) Locked Mode signal. The 

disruption time is 1.631s. 

In the L-mode configuration, from t=1.538s a continuous gas puffing leads 

to a rapid increase of both the line averaged density in the plasma and the 

Greenwald fraction, as can be observed in subplot (g), (b) and (c) of Figure 
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6.1; at the same time instant the cooling of the plasma edge takes place 

causing the decrease of the plasma energy (Figure 6.1 (d), (e) and (f) 

respectively) which deteriorates the plasma confinement. Moreover, at 

t=1.587s a mode starts to lock when the Greenwald fraction is equal to 0.87 

whereupon the plasma density continues to increase bringing up the 

Greenwald fraction values up to 1, then at t=1.631s the discharge ends in a 

disruption. During this last phase, a MARFE developed around the X-point 

region. 

The MARFE can be detected by means of an increasing of the edge density 

at the High Field Side with a corresponding increase of the radiation that 

could extend also to the X-point region. 

Figure 6.2 shows the temporal evolution of the ratio between the line 

average density at the edge and the line average density at the core for the 

pulse #26511. After 1.6s the increase of such ratio, due to the likely 

development of a MARFE, can be clearly observed. 

 

Figure 6.2: Temporal evolution of the ratio between the edge line average density and the core line 

average density in pulse # 26511. 

Whereas, Figure 6.3 shows the radiated power recorded from the 46 

channels of the FHC camera of the bolometer during the last 31ms of the 

same discharge. An increase of the radiated power (yellow and red regions) 



139 

 

is detectable in the last ~10 ms around the X-point region (covered by the 

channels 10-15) highlighting the development of a MARFE. 

 

 

Figure 6.3: Contour map of the radiated power measured from the 46 channels of the FHC bolometer 

camera for the last 31 ms of the pulse #26511. The yellow and red region highlight the development of 

MARFE around the X-point region. 

6.1.2 Example of GWL-H disruption 

An example of a cooling edge disruption due to the achieving of density 

limit in a classical H-mode density limit discharge (GWL-H) is reported in 

Figure 6.4. The figure reports the temporal evolution of: (a) the plasma 

current [MA], (b) the line average density in the plasma core [10
19

m
-2

], (c) 

the total input power [MW] together with the total radiated power [MW], (d) 

the Greenwald fraction [a.u], (e) the internal inductance [a.u], (f) the plasma 

energy [MJ], (g) the Deuterium gas rate [10
20

/s] and (h) the Locked Mode 

signal [V] for the shot #26692. 
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Figure 6.4: Example of GWL_H disruption (discharge # 26694). (a) Plasma current, (b) line average 

density in the core, (c) total input power (blue line) and total radiate power (red line), (d) Greenwald 

fraction, (e) internal inductance, (f) plasma energy, (g) Deuterium gas rate, (h) Locked Mode signal. 

The disruption time is 4.654s. 

During the H-mode configuration, from t=1s to t=4.172 s the continuous gas 

puffing (Figure 6.4(g)) leads to the saturation of the density (Figure 6.4 (b)). 

At t=4.172s the Greenwald fraction reaches 0.97 causing an H-L back 

transition, resulting in an increase of the density and in a faster decrease of 

the plasma energy, as shown in subplots (b) and (f) respectively. At t=4.471s 

the cooling of the plasma edge takes place causing a rapid deterioration of 

the plasma energy (Figure 6.4 (c), (e) and (f) respectively). Moreover, at 

t=4.650s a mode starts to lock, then the discharge ends in a disruption at 

t=4.654s. 
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6.1.3 Example of ASD disruption 

An example of a cooling edge disruption due to the auxiliary power 

shutdown (ASD) is reported in Figure 6.5. The figure reports the temporal 

evolution of (a) the plasma current [MA], (b) the line average density in the 

plasma core [10
19

m
-2

], (c) the total input power [MW] together with the total 

radiated power [MW] and the power from the ECRH [MW], (d) the 

Greenwald fraction [a.u], (e) the internal inductance [a.u], (f) the plasma 

energy [MJ], (g) the Deuterium gas rate [10
20

/s] and (h) the Locked Mode 

signal [V] for discharge # 26440. 

 

Figure 6.5: Example of ASD disruption (discharge # 26440). (a) Plasma current, (b) line average 

density in the core, (c) total input power (blue line), total radiate power (red line) and the PECRH 

(black line), (d) Greenwald fraction, (e) internal inductance, (f) plasma energy, (g) Deuterium gas rate, 

(h) Locked Mode signal. The disruption time is 4.388s. 

The shutdown of the ECRH and a rapid reduction of the gas rate can be 

observed at t=4.278s in Figures 6.5 (g) and (h) respectively. As a 

consequence, the plasma energy starts to decrease (Figure 6.5 (f)) while the 
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plasma density remains constant. At t=4.33s the cooling of the edge takes 

place determining a rapid decrease of the plasma energy (Figures 6.5 (c), (e) 

and (f) respectively) which deteriorates the plasma confinement. Moreover, 

at t=4.370s a mode starts to lock, then the discharge ends in a disruption at 

t=4.388s. 

6.1.4 Example of IMC disruption 

An example of a cooling edge disruption due to impurity control problem 

(IMC) is reported in Figure 6.6. The figure reports the temporal evolution of: 

(a) the plasma current [MA], (b) the line average density in the plasma core 

[10
19

m
-2

], (c) the total input power [MW] together with the total radiated 

power [MW], (d) the Greenwald fraction [a.u], (e) the internal inductance 

[a.u], (f) the plasma energy [MJ], (g) Deuterium gas rate [10
20

/s] and Argon 

gas rate [10
20

/s] and (h) the Locked Mode signal [V] for the discharge 

#24332. 
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Figure 6.6: Example of a IMC disruption (discharge # 24332), (a) plasma current, (b) line average 

density in the core, (c) total input power (blue line) and total radiate power (red line), (d) Greenwald 

fraction, (e) internal inductance, (f) plasma energy, (g) Deuterium gas rate (blue line) and Argon gas 

rate (green line), (h) Locked Mode signal. The disruption time is 2.422s. 

During the temporal evolution of the discharge the Argon is injected at 

t=2.295s (Figure 2.10 (g) green line). At t=2.317s a strong edge radiation 

occurs, indeed, the total radiated power starts to increase while the plasma 

energy rapidly decreases (Figures 10 (c) and (f) respectively). At t=2.385s 

the cooling of the edge takes place deteriorating the plasma confinement. 

Moreover, at t=2.396s a mode starts to lock (Figure 2.10 (h)), finally the 

discharge ends in a disruption at t=2.422s. 
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6.1.5 Example of RPK disruption 

An example of impurity accumulation disruption (RPK) is reported in  

Figure 6.7. The figure reports the temporal evolution of: (a) the plasma 

current [MA], (b) the internal inductance [a.u], (c) the tungsten concentration 

[nW/ne], (d) the plasma temperature (several channels from ECE diagnostic) 

[keV], (e) the plasma energy [MJ], (f) the core and the edge radiation factor 

[a.u], (g) the radiation peaking factor [a.u], defined as the radiated power 

from the core divided by the radiated power from the edge, and (h) the 

Locked Mode signal [V] for the discharge #28172. 

 

Figure 6.7: Example of a impurity accumulation disruption (discharge #28172), (a) plasma current, (b) 

internal inductance, (c) W concentration, (d) central temperature (ECE diagnostic), (e) plasma energy, 

(f) core and edge radiation, (g) radiation peaking factor (core radiated power/edge radiated power), (h) 

Locked Mode signal. The disruption time is t=3.577s. 

At t=2.956s the W concentration starts to increase (see Figure 6.7(c)) giving 

rise to a strong core radiation as highlighted by both the rising of the cyan 

line in Figure 6.7(f) and the growth of radiation peaking factor (Figure 

6.7(g)). The strong core radiation leads to the reduction of both the central 
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temperature (Figure 6.7(d)) and the plasma energy (Figure 6.7(e)). At 

t=3.120s the core radiation exceeds the edge radiation (Figure 6.7(f)) 

determining an increase of the radiation peaking factor above one, and a 

lowering of the internal inductance (Figure 6.7(g)). Finally a Locked Mode 

leads the discharge to a disruption. 
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6.1.6 Example of -limit disruption 

An example of ideal -limit disruption is reported in Figure 6.8. The figure 

reports the temporal evolution of: (a) the plasma current [MA], (b) the total 

input power [MW] together with total radiated power [MA], (c) the line 

average density in the plasma core [10
19

m
-2

], (d) the internal inductance 

[a.u], (e) the plasma energy [MJ], (f) the N [a.u], (g) the plasma temperature 

(several channels from ECE diagnostic) [keV], (h) the time derivative of the 

radial component of B [V/s] and (i) the Locked Mode signal [V] for the 

discharge #25175. 

 

Figure 6.8: Example of a -limit disruption (discharge #25175), (a) plasma current, (b) total input 

power (blue line) with together the total radiate power (red line), (c) line average density in the core, 

(d) internal inductance, (e) plasma energy, (f) N, (g) central temperature (several channels from ECE 

diagnostic), (h) time derivative of the radial component of B and (i) Locked Mode signal. The 

disruption time is 1.320s. 

Ideal -limit disruptions are typically obtained in short experiments in which 

the heating power (Figure 6.8 (b)) is sufficient to produce a continuous rise 
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of N, the plasma energy, the electron density and the temperature (Figures 

6.8(f), (e), (c) and (g) respectively). A strong MHD instability (visible in 

Figure 6.8 (h)) arises at t=1.30s and grows up until t=1.318s when it locks 

(Figure 6.8 (i)) terminating the discharge in a disruption at t=1.320s.  
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6.1.7 Example of LON-EFM disruption 

In Figure 6.9 a temporary evolution of a LON-EFM disruption is reported 

for discharge #26405. The figure reports the temporal evolution of: (a) the 

plasma current [MA], (b) the total input power [MW] together with the total 

radiated power [MW], (c) the current of the RMP coil [kA], (d) the line 

average density in the plasma core [10
19

m
-2

], (e) the internal inductance 

[a.u], (f) the plasma energy [MJ], (g) the absolute value of q95 [a.u], (h) the 

plasma temperature (several channels from ECE diagnostic) [keV] and (i) 

the time derivative of the radial component of B [V/s]. 

Figure 6.9:  

 

Figure 6.9: Example of a LON-EFM disruption (discharge #26405). (a) plasma current, (b) total input 

power (blue line) with together the total radiate power (red line), (c) the current of the RMP coil, (d) 

line average density in the core, (e) internal inductance, (f) plasma energy, (g) |q95|, (h) time derivative 

of the B radial component. The disruption time is t=3.751s. 
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As shown in Figure 6.9, a typical LON-EFM disruption is characterized by 

very low plasma density, about 1.910
19

 m
-2 

(Figure 6.9(d)), together with a 

very low value of |q95|, slightly above 3 (Figure 6.9(g)). In this configuration 

the RMP current starts to increase at t=1.85s (Figure 6.9(c)). At t=3.751s the 

confinement is deteriorated due to a strong MHD activity detected by the 

Mirnov coils (Figure 6.9 (h)), which results in the final drop of the plasma 

energy (Figures 6.9 (f)). 
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6.1.8 Example of a MOD disruption 

In Figure 6.10 a temporary evolution of a MOD disruption is reported for 

discharge #26315. The figure reports the temporal evolution of the last 

500ms of: (a) the plasma current [MA], (b) the total input power [MW] 

together with the total radiated power [MW], (c) the line average density in 

the plasma core [10
19

m
-2

], (d) the internal inductance [a.u], (e) the plasma 

energy [MJ], (f) the N [a.u], (g) the plasma temperature (several channels 

from ECE diagnostic) [keV], (h) the Locked Mode signal [V] and (i) the 

time derivative of the radial component of B [V/s]. 

 

Figure 6.10: Example of a MOD disruption (discharge #26315), (a) plasma current, (b) total input 

power (blue line) together with the total radiated power (red line), (c) line average density in the 

plasma core, (d) internal inductance, (e) plasma energy, (f) N, (g) plasma temperature (several 

channels from ECE diagnostic) [keV], (h) Locked Mode signal and (i) time derivative of the radial 

component of B. The disruption time is t=3.406s. 
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As shown in Figure 6.10, the only phenomenon that can be observed in a 

MOD disruption is the strong MHD activity and then the final locked mode 

that leads a disruption the discharge. 

During the normal evolution of the discharge #26315, a strong MHD 

instability (visible in Figure 6.10 (i)) arises and grows at t=3.364s, then it 

locks in t=3.394s (Figure 6.10 (h)) terminating the discharge in a disruption 

at t=3.406s. 
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6.2 Statistical analysis of the manual classification at 

AUG 

Following the chain of events that leads to each disruption outlined in the 

previous paragraphs, described by means of the time evolution of several 

plasma parameters, the 231 disruptions have been manually classified. The 

manual classification consists in associating a label to each disruption of the 

Training Set, Test 1 and Test 2. The database composition of the disrupted 

discharges is shown in Table 6.2. 

Table 6.2:  

Table 6.2: Disruption database composition 

Data set Disrupted pulses Time Period 

Training Set 77 May 2007- April 2011 

Test 1 72 May 2007- April 2011 

Test 2 82 May 2011- April 2012 

Note that, as previously mentioned, the VDEs are excluded from the 

database and for this reason they are not present in the following statistics. 

The percentage frequency of occurrence of each disruption class (Disruption 

Class Rate, DCR) for each data set is computed with respect to the total 

number of disrupted discharges belonging to the considered data set. 

The histograms in Figures 6.10-6.12 show the Disruption Class Rate versus 

the disruption classes for each data set. 
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Figure 6.11: Disruption Class Rate % versus the disruption classes for the Training Set. 

 

Figure 6.12: Disruption Class Rate % versus the disruption classes for the Test 1. 
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Figure 6.13: Disruption Class Rate % versus the disruption classes for the Test 2. 

From Figure 6.10, it can be noted that the majority (about 65%) of the 

disruptions are characterized by the cooling of the edge and a final radiative 

collapse (GWL-H, NC, IMC, CE, ASD). About 16% of disruptions is 

represented by the LON-EFM and 12% of them are MOD disruptions. 

Finally, a low percentage of disruptions is caused by impurity accumulation 

(RPK) and by high values of βeta (β-limit). 

The DCR for the different classes changes passing from Training Set to Test 

1 and Test 2. The large majority of the disruptions is always characterized by 

the cooling edge phenomenon (about 70%) (GWL-H, NC, IMC, CE, ASD). 

A decrease of the LON-EFM and MOD disruptions and an increase of the 

RPK disruptions can be observed. 

The LON-EFM DCR decreases from 15,58% for the Training Set, to 6.94%, 

for the Test 1 and to 9.76 % for Test 2. 

The RPK DCR rate increases from 5,19% for the Training Set, to 6.94%, for 

the Test 1 and to 7.32 % for Test 2. 

The MOD DCR decreases from 11,69% for the Training Set, to 9.72%, for 

the Test 1 and to 2.44 % for Test 2. 
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Finally, for the Test 1 and the Test 2 a low percentage of disruptions is not 

classified (Other). The Other DCR increases from 0% for the Training Set to 

1.39% for the Test 1 and to 6.10% for the Test 2. 

As previously mentioned, this statistical analysis is useful also to interpret 

the prediction performances for the disrupted discharges of the predictors 

proposed in section 5.2. The prediction performances of the predictors have 

been evaluated using the same disrupted pulses used for the classification. 

The successful prediction rate (SPs) for the disrupted discharges of the three 

predictors reported in Tables 5.24, 5.26 and 5.28 are summarized in Table 

6.3. 

Table 6.3: SPs for the disrupted pulses for the GTM2, SOM2 and Logit predictors 

 SP[%] 

Data Set GTM 2 SOM 2 Logit  

Training Set 77,92 77.92 94,81 

Test 1 75,00 72.22 91,67 

Test 2  73,16 76,83 92,68 

As can be seen from Table 6.3, the generalization capability of the three 

models is high. For all predictors, the SPs on Test 1 decrease of few 

percents. As far as, the ageing effect is concerned, the degradation of 

predictors’ performance is still quite limited and, surprisingly, SPs of SOM2 

and Logit models slightly improve moving from Test 1 to Test 2.  

This is likely due to the fact that the Training Set contains a representation in 

terms of disruption classes (and hence in terms of plasma configurations) 

that does not significantly vary for Test 1 and Test 2. 
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7 CONCLUSIONS 

The activities carried out in this thesis regarded the development and the 

application of algorithms for disruptions prediction using data coming from 

AUG experimental campaigns. 

Although on present experimental machines, disruptions are generally 

tolerable, as they are designed with the purpose of investigating the 

disruptive boundaries, next devices, such as ITER, must tolerate only a 

limited number of disruptive events. For this reason, the development of 

efficient disruption prediction model is crucial. 

The physical phenomena that leads to plasma disruptions in tokamaks are 

very complex and the present understanding of disruption physics has not 

gone so far as to provide an analytical model describing the onset of these 

instabilities. The identification of the boundaries of the disruption free 

plasma parameter space would lead to an increase in the knowledge of 

disruptions. A viable approach to understand disruptive events consists of 

identifying the intrinsic structure of the data that describes the plasma 

operational space. Manifold learning algorithms attempt to identify these 

structures in order to find a low-dimensional representation of the data. 

Among the available methods, in this thesis, the attention has been devoted 

to the Self Organizing Maps (SOM) and to the Generative Topographic 

Mapping (GTM). 

Firstly, the 7-D AUG operational space has been mapped onto a 2-D SOM 

trained with data extracted from AUG experiments executed between July 

2002 and November 2009. The 7-D operational space has been described 

through 7 plasma parameters (q95, Pinp, Pfrac, li, βp, LM ind. and f(GWL)) 

sampled at 1kHz. This database has been divided in three subsets (named 

DB1, DB2, and DB3). The first set (DB1) is the training set and includes 

samples coming from safe discharges and from the non-disruptive phase of 
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disruptive discharges Data reduction algorithms has been implemented to 

extract a significant number of safe samples able to represent the AUG 

operational space free from disruption. Moreover, all samples in the last 45 

ms of the selected disruptive discharges have been included in the training 

set to describe the disrupted operational space. The remaining discharges 

have been used to build the two test sets (DB2 and DB3). The last one 

contains the discharges belonging to the most recent campaigns in order to 

test the ageing effect. 

Using the SOM visualization capabilities it is possible to identify regions 

with high risk of disruption (disruptive region) and those with low risk of 

disruption (safe region). In addition to space visualization purposes, the 

SOM has been used also to monitor the time evolution of the discharge 

during an experiment; in fact, each sample of a discharge can be projected 

onto the SOM displaying a trajectory on the map that describes the discharge 

dynamics. The trajectory provides useful information on an eventual 

impending disruptive event. Thus, the SOM has been used as disruption 

predictor by introducing suitable criteria, based on the behavior of the 

trajectories, which triggers disruption alarms well in advance to perform the 

disruption avoidance or mitigation actions. The prediction performances for 

the SOM predictor are evaluated using the previously mentioned data set 

achieving good results. The global success rate of the SOM predictor is 

greater than 87% for the DB1 and DB2 and 80% for the DB3. 

In order to improve such performance, the results have been analyzed with 

reference to the wrong predictions. It has been found that high values of Pfrac, 

due to the shutdown of the auxiliary heating systems, i.e., to the reduction of 

Pinp, are responsible for most of FAs and for 50% of PDs. Since it has to 

distinguish between the increases of Pfrac due to a reduction of Pinp or to a 

growing of Prad, this last signal has been added to the inputs of the SOM. 
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Moreover, an algorithm is introduced that inhibits the alarm when 

appropriate conditions on Pinp and Prad are satisfied. These two actions, i.e., 

adding Prad and introducing the inhibition alarm algorithm, lead to an 

increase of the performance both on DB2 and DB3: the percentage of MAs 

decreases by about 5% for DB2 and by more than 6% for DB3; the 

percentage of FAs decreases by about 3% for DB2 and by about 2% for 

DB3. Moreover, the percentage of PDs is unchanged for DB2 and decreases 

by more than 8% for DB3. Note that the percentage of TDs increases of 

about 1% for DB2 and of 2.6% for DB3. 

Moreover, in order to reduce the ageing effect of the predictor a periodically 

retraining of the SOM has been proposed. The ageing effect is one of the 

main drawbacks of data-based models; it is defined in the literature as the 

deterioration of the generalization capability of the model across more recent 

campaigns. The retraining procedure consists of supplying the new plasma 

configurations coming from more recent experimental campaigns and not 

included in the training set. In particular, the training set of the SOM has 

been updated using data coming from wrong predictions on pulses from 

DB2. The updated SOM has been tested over DB3, showing an improvement 

of the performance: the global success rate on DB3 grows from 82,03% 

before the retraining to 84,65% after the retraining. 

A drawback of the data-based models proposed in literature is that they make 

use of dedicated experiments terminated with a disruption to implement the 

predictive model. For future fusion devices, like ITER, the disruptions 

database will not be available. Moreover, disruption associated damages 

could be even more severe because of the much higher plasma performance 

of the devices. Thus, previously cited approaches will not be directly 

applicable. 
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In order to overcome the previous highlighted drawback, a data-based model 

built using only input signals from safe pulses has been proposed in this 

thesis. The proposed approach refers to the model-based methods for fault 

detection and isolation (FDI) in batch processes. Indeed, the current 

experimental tokamak machines operate in a discontinuous or pulsed way 

and individual pulses can be seen as a single batch. The prediction is based 

on the analysis of the residuals of an auto regressive exogenous inputs 

(ARX) model built using some signals, which are able to describe the safe or 

normal operation condition (NOC) of the tokamak. The NOC model has 

been built using only few safe pulses of the DB1 and using only three plasma 

parameters: Pfrac, li and βp. 

The prediction performance of the proposed system is encouraging when it is 

applied on DB1 and they remain satisfactory when the system is tested on 

discharges coming from DB2 and DB3. The global success rate of the NOC 

predictor is greater than 79% for the DB1 and about 77% for the DB2 and 

DB3. 

Another limitation of the data based models proposed in the literature is that 

disruptive configurations were assumed appearing into the last fixed ten of 

milliseconds (ranging from 40 to 56 ms at AUG) of each discharge with 

disruptive termination. Even if the achieved results in terms of correct 

predictions were good, it has to be highlighted that the choice of such a fixed 

temporal window might have limited the prediction performance. In fact, it 

generates ambiguous information in cases of disruptions with disruptive 

phase shorter than 45ms. Conversely, missing or wrong information is 

caused in case of disruptions with a disruptive phase longer than the prefixed 

one. Thus, the assessment of a specific disruptive phase for each disruptive 

discharge represents a relevant issue in understanding the disruptive events. 
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In this thesis a similarity measure, the Mahalanobis distance, has been tested 

to set a different length of the disruptive phase for each disrupted pulse in the 

training set. 

In order to demonstrate the feasibility of this method, a new mapping of the 

operational space of AUG has been developed using both GTM and SOM, 

using data extracted from AUG experiments executed between May 2007 

and November 2012 described through 7 plasma parameters (q95, Pinp, Prad, 

li, βp, LM ind. and f(GWL)). Also in this case, the database has been divided 

in three subsets, following a temporal progression (Training Set, Test 1, and 

Test 2). 

Again, a data reduction has been performed on the safe samples. The 

disruptive samples come from a time window of disrupted shots identified 

through the Mahalanobis distance criterion. 

For comparison purposes other two maps (GTM and SOM), which differ 

only in the disruptive set (composed by the last 45 ms of the disruptive 

discharges of the Training Set) have been trained. 

The results obtained highlight that using a different disruptive phase for each 

disrupted discharges gives better performance for both SOM and GTM 

predictors than those of the predictors trained used a fixed disruptive phase 

(last 45ms). Furthermore, the ageing effect is very limited.  

Finally, a statistical method has been applied to evaluate the membership of 

each sample to a safe or disruptive configuration. In particular, a Logistic 

model has been trained to predict the probability of a disruptive event during 

AUG experiments. The Logit Model has been built with the same 7 plasma 

parameters extracted from AUG experiments executed between May 2007 

and November 2012.  

The global success rate on both the test sets is very good, always higher than 

94%. In particular, the success predictions are quite good both on safe and 
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disrupted shots, higher than 97% and 91% respectively for Test 1 and 95% 

and 92% respectively for Test 2. It has to be highlighted the low value of 

FAs, both on safe and disruptive shots, which reaches at most 5% (Test 2). 

Furthermore, the performance degradation of the Logit predictor when it is 

tested using data coming from more recent experimental campaigns is 

limited with an ageing effect very low. 

In order to better understand the results of the developed prediction models, 

a manual classification of the disruptions has been performed for the 231 

disruptive discharges belonging to campaigns performed at AUG from May 

2007 to November 2012. This analysis showed that the disruption classes 

distribution in the Training Set is not significantly different from that of Test 

1 and Test 2. This fact can justify the limited ageing effect experienced for 

the SOM, GTM and Logit models. 

The good performance of the proposed methods gives rise to the perspective 

of a deployment of these tools in real time. In fact, the response of the 

predictors (SOM, GTM, ARX and Logit) is quite fast and well below the 

signal sampling time of 1 ms. 
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