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Introduction

Low mass vector meson (ρ, ω, φ) production provides key information on the hot and

dense state of strongly interacting matter produced in high-energy heavy ion collisions.

Among the different probes, strangeness enhancement can be accessed through the mea-

surement of φ meson production, while the measurement of the φ nuclear modification

factor provides a powerful tool to probe the production dynamics and hadronization

process in relativistic heavy ion collisions.

The φ meson production in heavy ion collisions has been studied at the CERN Super

Proton Synchrotron (SPS) by NA38, CERES, NA49, NA50 and NA60 experiments,

and at Brookhaven’s Relativistic Heavy Ion Collider (RHIC) by PHENIX and STAR

experiments. The results obtained by these experiments present however some discre-

pancies, such as the measurement of the φ RAA (consistent with binary scaling in the

intermediate pT region in central collisions at STAR and suppressed in the same pT

region and centrality at PHENIX).

The aim of this work is the study of φ meson production at forward rapidity in pp,

p-Pb and Pb-Pb collisions in the muon channel with the ALICE apparatus.

The importance of the pp analysis is mostly related to the necessity of having a baseline

for the nucleus-nucleus (A-A) collisions, where the Quark Gluon Plasma is supposed to

be formed, while the p-A collisions provide not only a reference for the A-A collisions,

but can also give an insight on soft particle production in cold nuclear matter, being a

system where no hot, dense medium is formed in the final state, while its initial state

is similar to that in A-A collisions.

The data analyzed in the pp analysis were the ones collected by ALICE in 2013: the φ

differential and integrated cross sections for 1 < pT < 5 GeV/c have been extracted.

p-Pb analysis was based on the data collected in 2013 at both forward and backward

rapidity: the φ yield as a function of pT , together with the φ nuclear modification factor
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RpPb as a function of pT at both forward and backward rapidity, and the yield ratio of

forward to backward rapidity RFB in the common rapidity window have been studied.

The Pb-Pb data were collected in 2011. The main focus of this analysis has been the

study of the φ yield and nuclear modification factor RAA as a function of the number

of participating nucleons Npart.

In Chapter 1 the description of the dominant processes in the dimuon mass spectrum

in the low-mass region and the importance of φ meson as a probe of the Quark Gluon

Plasma, together with the results on φ meson production obtained by previous experi-

ments at the SPS and at RHIC are reported.

In Chapter 2 the ALICE apparatus is described, with particular attention to the muon

spectrometer.

Chapter 3 describes the parametrization of the Monte Carlo generator used to calculate

the acceptance × efficiency correction.

The results obtained in pp analysis are shown in Chapter 4.

Chapter 5 presents the results obtained in p-Pb analysis, while the Pb-Pb analysis is

reported in Chapter 6.
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Low mass dimuons in heavy ion

collisions

Contents

1.1 A brief introduction to Quantum Chromodynamics . . . . . 3

1.2 Resonances in the low-mass region . . . . . . . . . . . . . . . 4

1.3 Quark-Gluon Plasma and phase diagram of the strongly

interacting matter . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 φ-meson production as a probe of the Quark-Gluon Plasma 13

1.5 Experimental results on φ meson . . . . . . . . . . . . . . . . 15

1.1 A brief introduction to Quantum Chromodynamics

According to the standard model, besides the gravitational interaction, there are three

types of elementary interactions that are mediated by specific bosons. They are the

strong, electromagnetic and weak interactions.

The Quantum Chromodynamics (QCD) is the theory that describes strong interactions:

according to QCD, the quarks are characterized not just by certain values of spin, charge

and momentum, but also by a certain color charge, that can assume three different

values, red (r), blue (b) and green (g); an anti-quark is different from the corresponding

quark because of its anti-color (r̄, b̄, ḡ) and the opposite sign of the charge and the other

quantum numbers.
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1. LOW MASS DIMUONS IN HEAVY ION COLLISIONS

The bosons that mediate the strong interaction among quarks are called gluons and

unlike the chargeless photon, they carry color charge. A gluon carries at the same

time color and anti-color and according to the Group theory, excluding the “white”

combinations, the possible combinations are:

rḡ, rb̄, gb̄, gr̄, br̄, bḡ,
√

1
2(rr̄ − gḡ),

√
1
6(rr̄ + gḡ − 2bb̄).

They correspond to a gluon octet. The interactions among the particles carrying color

(both gluons and quarks) occur via the exchange of the gluons of the octet.

With the color, the quarks acquire one additional degree of freedom, but the fact that

we cannot observe quarks as free particles implies that only particles of neutral color

(i.e. white) can exist. At low energies, a single quark cannot be teared off from an

hadron, because two “colored” objects would result (the quark and what would remain

of the original hadron): this is the so called confinement. The potential that acts on

the quarks grows infinitely with the growing of the distance between the quark and the

original hadron and has the form:

V = −4

3

αs~c
r

+ kr, (1.1)

where αs is the strong coupling constant, r is the distance between the partons and k

is a constant whose value (experimentally measured) is 0.85 GeV/fm.

Combining a color with its anti-color, or combining the three colors or the three anti-

colors, a white state is obtained. The hadrons can be divided into baryons (constituted

by three quarks) and mesons (constituted by a quark and an anti-quark).

1.2 Resonances in the low-mass region

A way to obtain hadrons is through e+e− collisions in colliders.

The production cross section of dimuons and hadrons in e+e− collisions as a function of

the centre-of-mass energy
√
s has a trend that goes as 1/s and it is interrupted by the

presence of some peaks, called resonances (see fig. 1.1), that are quark-antiquark (qq̄)

bound states, with a rather short mean lifetime and well defined quantum numbers:

they are indeed particles and their masses are equal to the total energy available in the

centre-of-mass of the reaction.

4



1.2 Resonances in the low-mass region

Figure 1.1: Cross sections for the e+e− → hadrons reactions as a function of the centre-

of-mass energy
√
s; the dashed line represents the direct dimuon production cross section

[1].

Resonances can be produced also in hadron colliders, for instance with a reaction

pp → R + X, where R is the resonance. One way to observe them is through their

decay into dileptons.

The dominant processes in the dimuon mass spectrum, for invariant masses smaller

than 1.5 GeV (the so called low-mass region), are the electromagnetic decays of the η,

η′, ρ, ω and φ mesons (see fig. 1.2).

The continuum in the low-mass region is due mostly to the uncorrelated muon pairs

coming from the semi-leptonic decays of open charm mesons D± → µ± + νµ(ν̄µ) and

from the Drell-Yan process (in which a quark and an antiquark annihilate, creating a

virtual photon or a Z boson that decays then into a pair of opposite-sign leptons).

5



1. LOW MASS DIMUONS IN HEAVY ION COLLISIONS

Figure 1.2: Invariant mass spectrum in the low mass region in the dimuon channel as

measured by HELIOS-1 experiment in p-Be collisions at 450 GeV/c [2] and by ALICE in

pp collisions at 7 TeV [3].

1.2.1 η and η′ mesons

η and η′ mesons are pseudo-scalar mesons, characterized by total angular momentum

J = 0 (together with orbital angular momentum L = 0 and spin angular momentum S

= 0); they have negative parity and are a linear combination of the states uū, dd̄ e ss̄:

η =
(
cosθP√

6
− sinθP√

3

)
uū+

(
cosθP√

6
− sinθP√

3

)
dd̄−

(
cosθP√

6/2
− sinθP√

3

)
ss̄

η′ =
(
sinθP√

6
+ cosθP√

3

)
uū+

(
sinθP√

6
+ cosθP√

3

)
dd̄−

(
sinθP√

6/2
− cosθP√

3

)
ss̄

where θP = 11.5◦ is the mixing angle.

They have a mass of 547.853 ± 0.024 MeV and 957.78 ± 0.06 MeV respectively; con-

sidering the muon channel, η meson can decay in the 2-body decay µ+µ− and both η

and η′ can decay in µ+µ−γ (Dalitz decay).

In the Dalitz decay, η and η′ mesons decay in two photons, one of which is virtual and

decays in two muons: η → γ∗γ → µ+µ−γ.

η mesons can also decay with a double Dalitz decay, in which both virtual photons

decay in two muons, but this kind of decay has a much smaller branching ratio with

respect to the single Dalitz decay.
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1.2 Resonances in the low-mass region

Figure 1.3: Feynman diagrams of 2-body decay (left) and Dalitz decay (right) of η e η′.

The 2-body decay of η′ is strongly suppressed, because the branching ratio of a pseu-

doscalar meson into a lepton pair is proportional to (ml/mp)
2, where ml and mp are

the masses of the lepton and of the pseudoscalar meson respectively [4].

1.2.2 ρ, ω and φ mesons

ρ, ω and φ are vector mesons, characterized by total angular momentum J = 1 (S =1,

L = 0) and negative parity.

The peak at 770-780 MeV (see fig. 1.2) is given by the superposition of ρ (mass 775.26

± 0.25 MeV) and ω (mass 782.65 ± 0.12 MeV) resonances. ρ and ω are mixed states

of uū and dd̄ quarks:

ρ = 1√
2
(uū− dd̄)

ω = 1√
2
(uū+ dd̄)

The φ meson (mass 1019.455 ± 0.020 MeV) is a ss̄ bound state, characterized by a

width of only 4.26 MeV, that implies a rather large mean lifetime (10−22 s).

ρ, ω and φ decay mostly through the mediation of a virtual photon: V → γ∗ → µ+µ−.

The ω meson presents also a Dalitz decay channel, decaying at first in a neutral pion

and a virtual photon, which decays into two muons: ω → γ0π0 → µ+µ−π0 (see fig.

1.4).
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1. LOW MASS DIMUONS IN HEAVY ION COLLISIONS

Figure 1.4: Feynman diagrams of the 2-body decay of ρ, ω and φ mesons (left) and of

the Dalitz decay of the ω meson (right).

1.3 Quark-Gluon Plasma and phase diagram of the strongly

interacting matter

As mentioned before, the force that keeps a hadronic system together is too strong, at

long distances, to allow us to treat quarks and gluons as essentially free particles.

The strength of the quark-gluon and gluon-gluon coupling is parametrized by the strong

coupling constant αs, whose value is not constant but depends on the energy of the

process. At low energies the coupling is so strong that the Perturbation Theory can

not be applied to the system; at larger energies (that is, for E ≥ 1 GeV), the value of

αs decreases, until it becomes small enough to apply the Perturbation Theory.

The energy dependence of the coupling constant corresponds to a dependence on the

separation between the partons. For very small distances and correspondingly high

values of the energy, αs decreases, vanishing asymptotically, so that quarks and gluons

can be considered “free”: this is called asymptotic freedom.

This state can be recreated in high energy heavy ion collisions: viewed from the centre-

of-mass system, the nuclei approach each other not as symmetric spheres, but as thin,

Lorentz contracted disks. The participating nucleons are the ones that participate in

the collision in the overlap region, while those that are not involved and continue to

travel along the direction of the beam axis are called spectators.

The time-space evolution of the matter created in heavy ion collisions is shown in fig.

1.5.

Immediately after the impact, the collision system is in a pre-equilibrium state. The

participants transfer their original kinetic energy into the system and some of this

energy is used for parton production. The hadronic density and the frequency of the

8



1.3 Quark-Gluon Plasma and phase diagram of the strongly interacting
matter

Figure 1.5: Time-space evolution of the matter created in heavy ion collisions [5].

collisions between quarks and gluons increase so much, that the value of αs decreases

and the partons start to act as essentially free particles: this state is known as Quark-

Gluon Plasma (QGP).

Parton interactions lead to thermal equilibrium during this early stage: the primary,

relatively hard gluons produce many soft gluons, which quickly thermalize, and the

resulting heat bath draws energy from the remaining hard gluons, leading eventually to

thermalization [5][6]. Once equilibrium is achieved, common thermodynamic quantities

like temperature and pressure can be used to characterize the system, and its evolution

from now on can be modeled by relativistic hydrodynamics.

The high pressure of the plasma makes the fireball expand. As it expands, the tem-

perature drops, eventually crossing the transition temperature (∼ 150-160 MeV) and

leading to hadronization from the quarks and the gluons of the plasma. The system at

this stage is in fact composed of deconfined quarks and gluons and of hadrons. This

mixed phase would exist only if the transition is of the first order. Inelastic collisions

between the newly formed hadrons continue to occur until the system cools to the

chemical freeze-out point. At this point the multiplicity of the newborn particles and

so the chemical composition of the fireball are fixed.

Elastic collisions between the hadrons cease at the thermal freeze-out point (∼ 100

MeV), when the momentum distributions of all the particles are frozen too.

9



1. LOW MASS DIMUONS IN HEAVY ION COLLISIONS

The thermal freeze-out occurs only after the chemical one, due to the fact that the

cross sections of the inelastic processes are much smaller than the ones of the elastic

processes (the first are of the order of the mb, while the latter are of the order of the

hundred of mb). This is what causes the ceasing of the strong short-range interactions

and the freeze-out of the particles spectra.

After the thermal freeze-out, the particles produced in the collision stream freely and

can be measured by the detectors. The hot and dense medium created in heavy ion col-

lisions is extremely short-lived (∼ 5-10 fm/c, that is, ∼ 10−23 s), so that to characterize

the system properties, final state observables have to be studied.

The different evolution stages, from primary collisions to freeze-out, require very diffe-

rent probes for their investigation. To make an example, pions appear at the very end,

either directly or as decay products of resonances, so they do not retain much of the

very early phases of the system; on the contrary, hard Drell-Yan dileptons are produced

essentially at the time of the collision and then remain unaffected by the subsequent

history of the system: hence they are not able to provide information on thermalization

and freeze-out.

The basis for a quark-gluon plasma is the high parton density in the early stages after

the collision; this effectively screens all confining long-range forces, so that only short-

range interactions remain.

So far, two types of probes have been considered to study the quark-gluon plasma: the

external probes, produced essentially by primary parton collisions before the existence

of any medium, and the internal probes, produced by the quark-gluon plasma itself.

The external probes indicate, by their observed behaviour, whether the subsequent

medium was deconfined or not. The production of quarkonium states (J/ψ, Υ) pro-

vides one of the best known examples of such a probe. Short distance QCD predicts

that the dissociation of quarkonia, that results then in their suppression [7], is possi-

ble only in a deconfined medium, since it requires harder gluons than those present

in hadrons. Another very promising probe to study the QGP are the quarkonia re-

generation phenomena, due to the statistical recombination of qq̄ pairs emerging from

the medium, that are expected to be more and more important as the centre of mass

energy increases and a higher number of heavy quarks is produced. A third example

of external probe is the energy loss or attenuation of hard jets, which is expected to

increase considerably in a deconfined medium (jet quenching).

10



1.3 Quark-Gluon Plasma and phase diagram of the strongly interacting
matter

Dileptons and photons produced by the quark-gluon plasma constitute the internal

probes: they leave the medium without being affected by its subsequent states, under-

going only weak or electromagnetic interactions after their formation. However, since

both can also be produced by a confined medium, they can serve as thermometer of the

medium rather than as probe for its confinement status. Even if isolating a possible

thermal component is quite challenging, since both dileptons and photons are produced

abundantly in hadron decays, this kind of measurements has been performed with good

precision at both CERN SPS and RHIC [8][9].

At the present stage, quarkonia dissociation, jet quenching and quarkonia recombina-

tion appear anyway the most promising direct signatures for deconfinement [10].

1.3.1 Phase diagram of the strongly interacting matter

The different phases of strongly interacting matter are summarized in fig. 1.6 [5].

Low temperatures and values of baryochemical potential 1 µ ∼ 1 GeV (corresponding

to the nuclear density) identify the region of the ordinary hadronic matter.

Color deconfinement can be obtained either by compression of the nuclear matter (i.e.

increasing µ) or by heating (that is, increasing T).

For sufficiently high values of the baryochemical potential, the system exhibits a first-

order transition between hadronic matter and the QGP. Lattice calculations at non-

zero chemical potential suggest the existence of a critical point (µc, Tc), such that the

transition is no longer of the first order for µ < µc.

In particular, lattice calculations show that the nature of the transition for a value of

the baryochemical potential µ = 0 would be a crossover [11][12].

At low temperatures and high values of the chemical potential, nuclear matter consists

of interacting and degenerate Fermi gas of quarks at high density. The interaction

among the quarks can be attractive in specific combinations of color states, leading to

the formation of quark-quark pairs, which determine a color superconducting phase.

Besides deconfinement, another phase transition occurs with increasing density: chiral

symmetry restoration.

1In statistical mechanics, the chemical potential is the energy necessary to add (or extract) a particle

to a system: µ = dE/dN . The baryochemical potential is directly related to the baryon-number density.

For example, in a non-interacting gas of nucleons at zero temperature, µ = εF ≡ p2
F /2m ∝ ρ2/3.

11



1. LOW MASS DIMUONS IN HEAVY ION COLLISIONS

Figure 1.6: Phase diagram for strongly interacting matter [13].

1.3.2 Chiral Symmetry Restoration

When matter passes from confined to deconfined phase, the effective mass of the quarks

is expected to change. When they are confined in hadrons, the light quarks acquire

through “dressing” with gluons an “effective constituent quark” mass of about 300

MeV. On the other hand, the quarks in the Lagrangian of QCD are almost massless.

This means that the mass of the constituent quarks in the confined phase is genera-

ted spontaneously, through the confinement interaction itself. Hence it is likely that,

when deconfinement occurs, the quarks revert to the intrinsic mass they have in the

Lagrangian.

A shift in the effective quark mass is a further transition to look for, as the density

of strongly interacting matter increases. Massless fermions possess chiral symmetry:

they can be decomposed into independent left- and right-handed massless spin one-

half particles. In the case of massive fermions, these two handed components are

mixed. In the limit of vanishing quark mass, the confinement interaction must lead to

a spontaneous breaking of this symmetry, which should be restored in the deconfined

phase (chiral symmetry restoration) [5].

With increasing density, it is expected that this critical behavior occurs in strongly

interacting matter, leading to deconfinement and chiral symmetry restoration.
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While deconfinement is basically the transition from bound to unbound quark con-

stituents, from a state of color-neutral hadrons to one of colored quarks, chiral symme-

try restoration is the transition from a state of massive “dressed” constituent quarks

to one of massless current quarks. These two phenomena do not need to coincide, and

there are theories in which they do not [14][15]: in this case, deconfinement occurs at a

much lower temperature than chiral symmetry restoration. However, rather basic ar-

guments suggest that chiral symmetry restoration occurs either together with or after

color deconfinement [16].

1.4 φ-meson production as a probe of the Quark-Gluon

Plasma

φ meson is an excellent probe of the Quark-Gluon Plasma, due to its small inelastic

cross section for interaction with non-strange hadrons, that makes φ less affected by

hadronic rescattering during the expanding hadronic phase and reflects better the initial

evolution of the system. Hence the φ spectra produced during this phase will not be

altered during the expanding hadronic phase.

The mechanism for φ meson production in high energy heavy ion collisions is still not

completely clear. As the lightest bound state of strange quarks, φ meson is suppressed

in elementary collisions because of the Okubo-Zweig-Iizuka (OZI) rule [17][18][19]. The

OZI rule states that processes with disconnected quark lines in the initial and final

state are suppressed.

In an environment with many strange quarks, such as the QGP, s and s̄ would be pro-

duced primarily by gluon-gluon interactions. These interactions occur very rapidly, so

that the s abundance approaches soon the equilibrium level. During the hadronization

phase, φ mesons can be produced through coalescence, not being subjected to the OZI

rule anymore. The lifting of OZI suppression, together with the large abundance of s

quarks in the plasma, results in a production of φ mesons enhanced with respect to

the production of other vector mesons of similar mass, like ρ and ω, that are linear

combinations of u and d quarks. This means that the φ/(ρ + ω) ratio would be a

sensitive probe of QGP formation [20][21][22][23].

It was also suggested that the φ meson enhancement in heavy ion collisions could have

been due to the φ meson being produced via KK̄ → φ in the hadronic rescattering

13
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stage. Models such as RQMD [24] and UrQMD [25] have predicted an increase of the

φ to K− production ratio at midrapidity as a function of the number of participating

nucleons, but this prediction was disproved by STAR experiment at RHIC in Au-Au

collisions at
√
sNN = 200 GeV [26][27].

The in-medium properties of vector mesons in the hot and dense matter are also in-

teresting: it has been predicted that the mass and width of φ could change because of

the partial restoration of chiral symmetry in the nuclear medium. In particular, the φ

mass decreases as a result of many-body effects in the hadronic medium [28][29].

It has also been proposed, as a signature of the phase transition from Quark-Gluon

Plasma to the hadronic matter, that a double φ peak structure should appear in the

dilepton invariant mass spectrum in relativistic heavy ion collisions [30]. The low mass

φ peak results from the decay of φ mesons with reduced in-medium mass during the

transition.

Other calculations have predicted that the φ meson width can be widened significantly

because of the nuclear medium effects [31][32][33].

KEK-PS E325 experiment observed a mass modification of φ meson at normal nuclear

density in p-A collisions at 12 GeV in the e+e− channel [34][35]. The leptonic channel

is quite interesting in the study of the in-medium properties of the φ with respect to the

dominant hadronic channel φ → KK. In fact, differently from the leptons, the kaons

coming from the hadronic channel are unlikely to escape without reacting further, thus

destroying any useful information possessed about the φ.

The elliptic flow parameter v2 is another probe to study the Quark Gluon Plasma.

STAR experiment observed that the dependence of v2 on the particle mass at low pT

(0 < pT < 2 GeV/c) in Au-Au collisions at 130 and 200 GeV [36][37] is consistent

with hydrodynamic calculations in which local thermal equilibrium of partons has been

assumed [38][39][40]. This observation implies the creation of a thermally equilibrated

partonic matter. However, at intermediate pT (2 < pT < 5 GeV/c), v2 for various

hadrons seems to depend on the number of the constituent quarks in the hadron,

rather than on its mass: this scenario is consistent with coalescence/recombination

models [41][42][43][44]. Being the φ a meson with a mass close to that of the proton,

the measurement of φ elliptic flow should provide a powerful tool for testing this point.
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1.4.0.1 Nuclear Modification Factors

Nuclear modification factors are a powerful tool to probe the production dynamics and

hadronization process in relativistic heavy ion collisions [42][44][45].

RAB is defined as the yield ratio of nucleus A + nucleus B collisions to inelastic pp

collisions, normalized by Nbin (that is, the number of binary inelastic nucleon-nucleon

collisions determined from Glauber model calculations [46]). It can be written as a

function of transverse momentum pT as well as a function of other variables:

RAB(pT ) =

[
1

Nbin
dn
dpT

]A+B[
dn
dpT

]pp (1.2)

Rcp is often used instead of RAB in absence of a pp reference to nucleus-nucleus mea-

surement; it is defined as the ratio of the yields in central to peripheral collisions

normalized by Nbin:

Rcp(pT ) =

[
1

Nbin
dn
dpT

]central
[

1
Nbin

dn
dpT

]peripheral (1.3)

These factors will be equal to unity if nucleus-nucleus collisions are just simple super-

positions of nucleon-nucleon collisions. Deviation from unity may imply contributions

from nuclear or Quark-Gluon Plasma effects.

In fact, in absence of medium-induced effects, particle production in nucleus-nucleus

collisions should scale with the number of binary collisions in the high pT region, re-

sulting in RAB = 1, while in the low pT region, the yield is not expected to scale with

Nbin but with the number of participating nucleons Npart, reflecting the bulk properties

of the system.

This scaling can be modified when the initial parton distribution is changed in the

nuclear environment or when the partons lose energy in the medium prior to fragmen-

tation, resulting in RAB < 1.

1.5 Experimental results on φ meson

The production of φ mesons has been studied systematically at ever increasing
√
s, since

the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory,
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1. LOW MASS DIMUONS IN HEAVY ION COLLISIONS

with the E802 experiment in Si-Au collisions at 14.6 AGeV and the E917 experiment in

Au-Au collisions at 11.7 AGeV. The φ production has been studied at the CERN Super

Proton Synchrotron (SPS) by NA38, CERES, NA49, NA50 and NA60 experiments,

and at Brookhaven’s Relativistic Heavy Ion Collider (RHIC) by PHENIX and STAR

experiments.

1.5.1 Results from CERN SPS

NA38 and NA50 have studied the production of vector mesons (ρ, ω, φ) through their

decay into muon pairs in d-C, p-W, d-U, S-S, S-Cu and S-U collisions at 200 AGeV

(NA38) and in Pb-Pb collisions at 158 AGeV (NA50).

The relative yield R =
Bφσφ

Bρσρ+Bωσω
(from now on indicated as φ/(ρ + ω)) has been

studied for the dimuon transverse momentum region (0.6 ≤ PT,µµ ≤ 3.0 GeV/c) by the

NA38 experiment [47]. In order to obtain an integrated result, an extrapolation from

PT,µµ ≥ 0.6 GeV/c was done. The measured ratio is 2.5 times larger in S-U than in

p-W collisions, independently of pT .

Figure 1.7: NA38 - Ratio R =
Bφσφ

Bρσρ+Bωσω
in the dimuon channel, integrated in pT , as a

function of energy density ε in S-U collisions, compared with the value in p-W (represented

by the shaded area).

The increase of the φ/(ρ + ω) ratio depending on the size of the interacting nuclei is

clearer in fig. 1.8, where the ratio φ/(ρ+ω) is shown as a function of pT , for transvere

mass1 mT > 1.5 GeV/c2 in central collisions, for different colliding nuclei. The value

of this ratio appears to be constant as a function of pT [48][49].

1The transverse mass is defined as mT =
√
m2 + p2

T .

16



1.5 Experimental results on φ meson

Figure 1.8: NA38/50 - φ/(ρ + ω) as a function of pT for different colliding nuclei, for

mT > 1.5 GeV/c2.

In fig. 1.9 φ/(ρ+ω) ratio is shown as a function of the number of participating nucleons

Npart, for 1.4 < pT < 3.5 GeV/c in the case of Pb-Pb collisions and for 0.6 < pT < 3.0

GeV/c in the case of the other colliding systems: the ratio increases as a function of

Npart, up to Npart ∼ 250, where it starts to saturate. This increase can be interpreted

as an enhancement of φ production with respect to ρ and ω mesons.

Figure 1.9: NA38/50 - φ/(ρ+ ω) as a function of Npart for different colliding nuclei

NA50 has also measured the φ yield as a function of the transverse mass in Pb-Pb

central collisions, shown in fig. 1.10, compared with the results obtained by NA49 and
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1. LOW MASS DIMUONS IN HEAVY ION COLLISIONS

by CERES.

Figure 1.10: Comparison of φ transverse mass distribution obtained by CERES, NA49

and NA50 in Pb-Au (CERES) and Pb-Pb (NA49 and NA50) central collisions at 158

AGeV.

NA49 has measured the φ meson production in pp, p-Pb and Pb-Pb collisions at various

energies from 20 AGeV to 158 AGeV, in the hadronic channel φ→ K+K− [50], while

CERES has measured the φ meson production in p-Be and p-W collision at 450 GeV

per nucleon, in S-Au collisions at 200 GeV per nucleon and in Pb-Au collisions at 40

and 158 GeV per nucleon. The measurements were performed in both the dilepton

channel φ→ e+e− and the hadronic channel φ→ K+K− [51].

Fig. 1.10 compares the transverse mass distribution of φ meson obtained by CERES in

both the dielectron and hadronic channels in Pb-Au central collisions at 158 AGeV, by

NA49 in the hadronic channel in Pb-Pb central collisions at 158 AGeV and by NA50

in the dimuon channel in Pb-Pb central collisions at 158 AGeV. CERES results are

in agreement with the ones by NA49, while in the case of NA50, the values of the T

parameter in the transverse momentum distribution dN
dpT
∝ pT e−mT /T are different with

respect to the ones obtained by the other two experiments. Moreover, the φ multiplicity

measured in Pb-Pb collisions by NA50 is higher by about a factor 4 with respect to the
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1.5 Experimental results on φ meson

corresponding NA49 one in the K+K− channel. This discrepancy, known as φ puzzle,

has not been totally clarified yet: it was argued that in-medium effects may affect the

spectral function of the φ, causing a modification of its mass and partial decay widths.

Moreover, kaon absorption and rescattering in the medium can result in a loss of signal

in the region of φ invariant mass in the K+K− channel, reducing the observed yield.

This effect would be concentrated at low pT , causing a hardening of the pT spectrum

in this channel [52][53]. Anyway, according to those calculations, the yield in lepton

pairs is expected to exceed the one in kaons by about 50%, which is much lower than

the observed differences.

The NA60 experiment has measured φ production in In-In collisions at 158 AGeV, in

both the K+K− and µ+µ− channels [54][55].

Fig. 1.11, left side, shows the normalized transverse mass spectra for semicentral and

central collisions in the hadronic channel, compared with the corresponding spectra in

the dimuon channel.

The ratio 〈φ〉 / 〈Npart〉 as a function of 〈Npart〉 in both the φ→ K+K− and φ→ µ+µ−

channels is shown in fig. 1.11, right side. The yields in the two channels are in agreement

within the errors.

Figure 1.11: NA60 - left side: φ transverse mass distribution for central and semicentral

collisions in φ → K+K− and φ → µ+µ− channels; right side: 〈φ〉 / 〈Npart〉 as a function

of 〈Npart〉 in both channels.

Fig. 1.12 shows both the inverse slope and the 〈φ〉 / 〈Npart〉 ratio as a function of

〈Npart〉, for central C-C, Si-Si, In-In and Pb-Pb collisions. The value measured by
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NA60 is compared to the ones obtained by CERES, NA49 and NA50. The inverse

slope shows an initial fast increase at low 〈Npart〉 values, that becomes less pronounced

going towards higher 〈Npart〉. NA50 observed a lower value with respect to the CERES

and NA49 measurements in Pb-Pb and to the NA60 ones in In-In collisions in both the

hadronic and dimuon channels.

Concerning the 〈φ〉 / 〈Npart〉 ratio, the NA50 measurement exceeds by at least a factor

of ∼ 2 the central Pb-Pb values obtained by NA49 and CERES. Moreover, the CERES

measurement in dielectrons and kaon pairs are in agreement within the errors, excluding

a yield in dileptons exceeding the one in kaons by more than 60% at a 95% C.L.

Figure 1.12: NA60 - inverse slope Teff (top) and 〈φ〉 / 〈Npart〉 ratio (bottom) as a function

of 〈Npart〉, for central C-C, Si-Si, In-In and Pb-Pb collisions. Values from NA60 are

compared with CERES, NA49 and NA50 results.
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1.5.2 Results from RHIC

The STAR experiment has measured φ meson production via the hadronic decay chan-

nel φ→ K+K− in Au-Au collisions at
√
sNN = 62.4, 130 and 200 GeV, and in pp and

d-Au collisions at
√
sNN = 200 GeV.

In particular, STAR has measured the φ nuclear modification factors Rcp and RAB.

Figure 1.13: STAR - left side: top panel: φ Rcp with respect to midperipheral collisions,

compared with the Rcp of Λ + Λ and K0
S ; bottom panel: φ Rcp with respect to most

peripheral collisions, compared with the Rcp of Λ + Λ, K0
S , π+ + π− and pp. Right side:

φ Rcp as a function of pT for Au-Au collisions at 62.4 and 200 GeV, compared with d-Au

collisions at 200 GeV. The rectangular bands represent the uncertainties of binary and

participant scalings.

φ Rcp as a function of pT in Au-Au collisions at 200 GeV is shown on the left side

of fig.1.13. The top panel shows the values of φ Rcp with respect to midperipheral

collisions, compared with the Rcp of Λ + Λ and K0
S . The bottom panel shows φ Rcp

with respect to most peripheral collisions, compared with the Rcp of Λ+Λ, K0
S , π++π−

and pp [27].

In the measured pT region, the φ Rcp is consistent with Npart scaling at lowest pT

(represented in the figure by the dot-dashed line) and is significantly suppressed relative
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to the binary collision scale (dashed horizontal line at unity in the figure) for all values

of pT in Au+Au collisions at 200 GeV. Comparing φ Rcp with the one of Λ + Λ and

K0
S measured by STAR as well, φ Rcp is similar to that of K0

S , especially for the case

0-5%/40-60%, rather than to the Rcp of Λ, which has a similar mass but is a baryon.

For 0-5%/60-80%, φ Rcp sits between those of Λ and K0
S . This may be attributed to

the shape change of the φ pT spectra from exponential at 40-60% centrality to Levy-

Tsallis1 at 60-80% centrality observed at STAR, which may be due to the change of

the φ production mechanism at intermediate pT in different environments.

Fig.1.13, right side, shows φ Rcp as a function of pT in Au-Au collisions at 62.4 and

200 GeV and in d-Au collisions at 200 GeV. From this plot we can see that the Rcp

follows Npart scaling at low pT for the three collision systems. However, at intermediate

pT Rcp is strongly suppressed in Au-Au collisions at 200 GeV, weakly suppressed in

Au-Au collisions at 62.4 GeV and not suppressed in d-Au collisions at 200 GeV. This

measurement can support the partonic coalescence/recombination scenario at interme-

diate pT [43][45], where the centrality dependence of the particle yield depends on the

number of constituent quarks, rather than on the mass of the particle.

φ RAB as a function of pT for Au-Au and d-Au most central collisions at 200 GeV is

shown in fig. 1.14, compared with the RdAu of π+ + π− and p+ p̄. RdAu for φ follows

a similar trend as π+ + π− and p+ p̄ at intermediate pT , with the same enhancement

attributed to the Cronin effect [56][57][58]. RAA in Au-Au collisions at 200 GeV is

instead lower than in d-Au at the same energy, and consistent with the binary collision

scaling at intermediate pT .

PHENIX has measured the φ meson production in the φ → K+K− channel on pp,

d-Au, Cu-Cu and Au-Au collisions at
√
sNN = 200 GeV.

Fig. 1.15, shows the φ nuclear modification factor RAA as a function of pT in Au-Au

collisions at 200 GeV, compared with the RAA of π0, K+ +K−, p+ p̄ and η. φ meson

exhibits a different suppression pattern with respect to the one of lighter non-strange

mesons and baryons. In most central collisions (see top panel), φ RAA shows less

suppression than π0 and η in the intermediate pT range of 2 < pT < 5 GeV/c, while at

higher pT values, pT > 5 GeV/c, the φ RAA becomes comparable to the one of π0 and

η. The behaviour of φ RAA as a function of pT compared with the RAA π0 is similar

1The Levy-Tsallis function is defined as fLevy = pT
A(n−1)(n−2)

nT [nT+M(n−2)]

[
1 + mT−M

nT

]−n
. Here M is the

φ meson mass, mT is the transverse mass, A, n and T are the free parameters.
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Figure 1.14: STAR - φ RAB as a function of pT for Au-Au and d-Au collisions at 200 GeV,

compared with π+ + π− and p + p̄ values. Rectangular bands represent the uncertainties

of binary (solid line) and participant (dot-dash line) scalings.

also in semi-central (central panel) and peripheral Au-Au collisions (bottom panel). In

particular, π0 is slightly suppressed at a level of ∼ 20% in peripheral collisions, whereas

the φ is not suppressed.

The K+ +K− data in central collisions cover only a very limited range at low pT < 2

GeV/c, but in this range they seem to follow the φ RAA trend better than that of π0

and η. p+p̄ show instead no suppression but rather an enhancement at pT > 1.5 GeV/c

in central collisions, whereas the φ meson is suppressed. The difference between φ and

protons disappears in the most peripheral collisions, where their RAA is very similar

(see bottom panel).

PHENIX results for φ RAA in Au-Au collisions differ from the ones obtained by the

other RHIC experiment, STAR, which showed that the RAA is consistent with binary

scaling in the intermediate pT region where Rcp shows a remarkable suppression, due

to the higher invariant pT yield measured by STAR of almost a factor of 2 with respect

to PHENIX.

Fig. 1.16 shows φ RAA as a function of Npart for pT > 2.2 GeV/c in Cu-Cu and Au-Au

collisions. The fact that there is no difference in the RAA between the two systems
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Figure 1.15: PHENIX - φ RAA of φ, π0, K+ + K−, p + p̄ and η as a function of pT in

Au-Au collisions for different centralities. The uncertainty in the determination of 〈Ncoll〉
is shown as a box on the left.

indicates that it scales with the average size of the colliding system [59].

Fig. 1.17 shows the RdAu as a function of pT in central d-Au collisions at
√
s = 200
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Figure 1.16: PHENIX - φ RAA as a function of Npart in Au-Au and Cu-Cu collisions at
√
s = 200 GeV. The uncertainty in the determination of 〈Ncoll〉 is shown as a box on the

left.

GeV of φ, π0 and p+p̄ for central (top panel) and peripheral (bottom panel) d-Au

collisions. φ and π0 have similar RdAu in both centralities, indicating that cold nuclear

effects are not responsible for the differences between φ and π0 seen in Au-Au and Cu-

Cu collisions. The proton exhibits instead an enhancement in its RdAu for 2 < pT <

4 GeV/c, attributed to the Cronin effect, while φ and π0 RdAu shows little or no

enhancement [59].
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Figure 1.17: PHENIX - Top: RdAu as a function of pT in central d-Au collisions at
√
s =

200 GeV of φ, π0 and p+p̄. Bottom: RdAu as a function of pT in peripheral d-Au collisions

at
√
s = 200 GeV. The uncertainty in the determination of 〈Ncoll〉 is shown as a box on

the left.
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2.1 The Large Hadron Collider

The CERN Large Hadron Collider (LHC) is a pp collider, designed to discover the

Higgs boson and also to perform heavy ion collisions, reproducing the conditions of the

Universe at about 10 µs from the Big Bang and reaching much higher energies with

respect to the previous accelerators like LEP, SPS, Tevatron or RHIC.

Built in the same site as the LEP, 100 m underground, 27 km of circumference, LHC

has started his activity in 2009, at first with pp collisions at
√
s = 900 GeV. It has

then collected data in pp collisions in 2010 at 7 TeV and in 2012 at 8 TeV. Two short

runs at 2.76 TeV were performed in 2011 and 2013. The two runs with Pb-Pb collisions

were performed in 2010 and 2011 at 2.76 TeV, while the ones with p-Pb collisions were

performed in 2012 and 2013 at 5.02 TeV. The record luminosities achieved are 7.91 ·
1032 cm−2s−1 in pp collisions (30 October 2011), 4.27 · 1026 cm−2s−1 in Pb-Pb collisions

(5 December 2011) and 1.15 · 1029 cm−2s−1 in p-Pb collisions (10 February 2013). In

the future it will run at 14 TeV in pp collisions and at 5.5 TeV in Pb-Pb collisions,

with an expected luminosity of 1034 cm−2s−1 and 1027 cm−2s−1 respectively.

The major experiments around LHC are ALICE, ATLAS, CMS and LHCb.

LHCb is the experiment dedicated to the study of the B mesons, necessary to explain
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the asymmetry between matter and antimatter in the Universe; the aim of ATLAS and

CMS is the study of the Higgs boson and of the lightest supersymmetric particles.

ALICE (A Large Ion Collider Experiment) is the experiment dedicated to the study of

the heavy ion collisions and of the Quark Gluon Plasma.

A scheme of LHC is shown in fig. 2.1.

2.2 The ALICE detector

ALICE is a general-purpose heavy-ion experiment, with capability of measuring the

majority of known observables (such as hadrons, electrons, muons and photons). It

was designed to track and identify particles in a wide momentum range (from less than

100 MeV/c up to about 100 GeV/c) and to reconstruct short-living particles such as

open heavy flavours and hyperons in a very high multiplicity environment, up to 8000

charged particles per rapidity unit at midrapidity [60][61].

The ALICE detector consists mainly of three parts (see fig. 2.2):

• the Central Barrel inside the L3 magnet, covering the pseudorapidity region |η| <
0.9 and dedicated to the study of dielectrons, photons and hadrons;

• the muon spectrometer (Muon Arm), to detect muons coming from hadrons in

the pseudorapidity region -4 < η < -2.5;

• the Forward Detectors, to evaluate the multiplicity of photons and charged par-

ticles and the centrality of the collision, in the pseudorapidity region η > 4.

2.2.1 The Central Barrel

The Central Barrel is the region inside the L3 magnet. The L3 is a large solenoid (its

internal radius is about 5 m), characterized by a magnetic field of 0.5 T.

The Central Barrel is capable of identifying and tracking particles with a transverse

momentum down to 80 MeV/c and consists of the following detectors:

• Inner Tracking System (ITS)

• Time Projection Chamber (TPC)
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Figure 2.1: Scheme of the Large Hadron Collider

29



2. THE ALICE EXPERIMENT

Figure 2.2: Scheme of the ALICE detector

• Transition Radiation Detector (TRD)

• Time Of Flight (TOF)

• High Momentum Particle Identification Detector (HMPID)

• PHOton Spectrometer (PHOS)

• ElectroMagnetic CALorimeter (EMCAL)

The ITS allows to determine the primary and secondary vertices of charm and hyperon

decays with a resolution better than 60 µm, and to identify and track the particles with

a low momentum (p < 80 MeV/c), to improve the momentum and angular resolution

for the tracks reconstructed by the TPC or to track the particles that do not reach the

TPC. It consists of six cylindrical layers of silicon detectors with a radius varying from

4 to 44 cm, covering the pseudorapidity region |η| < 0.9. The two inner-most layers

are pixel detectors (SPD), while the two intermediate layers are drift detectors (SDD)

and the two outer ones are strip detectors (SSD) (see fig. 2.3).
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Figure 2.3: Scheme of ALICE ITS

The TPC is the main detector of the Central Barrel: it provides particle identification

and, together with the TRD and the ITS, it measures the soft and hard probes produced

in the dielectron channel, from pT ∼ 0.1 GeV/c up to ∼ 100 GeV/c; it is also able to

distinguish the prompt J/ψ mesons from the ones coming from B meson decays. The

low magnetic field (≤ 0.5 T) and a very large volume of the detector, which allows to

measure a large section of the track, are what makes possible the identification of both

high and low momentum particles.

The TPC has a cylindrical shape, with an internal radius of about 85 cm and an

external one of ∼ 2.5 m, with a length in the beam direction of 5.1 m. The readout

planes are divided in 18 sectors of MWPC.

The gas inside the TPC is a mixture of Ne, CO2 and N2. A high voltage electrode

divides the gas in two symmetric drift regions, each one of them 250 cm long (fig. 2.4).

The TRD identifies the electrons with a momentum greater than 1 GeV/c and in

conjuction with the TPC and the ITS, measures the light and heavy vector meson

production and the semileptonic decays of hadrons with Open Charm and Beauty.

The detector has a radial position between 2.9 and 3.7 m and consists of 540 modules,

organized in 18 supermodules, each one composed of 6 layers of detectors, divided in

5 sections along the beam axis (see fig. 2.5). Each module is made up of a MWPC,

a radiator 4.8 cm thick (made of polymethacrylimide foam plates reinforced by glass

fibre sheets, with 3.2 cm of polyproylene fibres sandwiched in between) and the readout

electronics.
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Figure 2.4: Scheme of ALICE TPC

Figure 2.5: Scheme of ALICE TRD

The TOF identifies the hadrons with a transverse momentum between 0.5 and 2.5

GeV/c through time-of-flight measurements. Coupled with the ITS and TPC, it pro-

vides an event-by-event identification of large samples of pions, kaons and protons. The

detector is located at a radial position of 3.7 m and consists of 1638 Multigap Resi-

stive Plate Chambers, organized in 90 modules, sorted in 18 supermodules along the

azimuthal angle and in 5 sections along the beam direction, as in the case of the TRD.
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2.2 The ALICE detector

The time resolution is 80 ps [62].

The HMPID identifies hadrons with pT > 1 GeV/c; it enhances the particle iden-

tification capability of ALICE by enabling the identification of particles beyond the

momentum interval attainable through energy loss (in ITS and TPC) and time-of-

flight measurements (in TOF). The detector is optimized to extend the range for π/K

and K/p discrimination, on a track-by-track basis, up to 3 GeV/c and 5 GeV/c respec-

tively. The HMPID is designed as a single-arm array with a pseudo-rapidity acceptance

of |η| < 0.5 and an azimuthal coverage of about 58°, corresponding to 5% of the central

barrel phase space; it consists of seven modules of about 1.5×1.5 m2 RICH (Ring Imag-

ing CHerenkov) counters that detect the Cherenkov light emitted by the particles; it is

located near the internal radius of the L3 magnet. The gas inside is C6F14, transparent

to Cherenkov photons in the momentum range between 1 and 5 GeV/c. The photons

are detected through a CsI photocatode and a MWPC.

The PHOS purpose is the identification of photons and neutral mesons through their

two-photon decay channel. The measurement of single photon and di-photon spectra

and of Bose-Einstein correlations of direct photons allows to test the properties of the

initial phase of the heavy ion collisions, while the detection of high-pT π0 allows the

investigation of jet quenching as a probe of deconfinement. PHOS is an electromagnetic

calorimeter composed of 17280 channels of scintillating PbWO crystals, and a charged

particle veto detector consisting of a Multi-Wire Proportional Chamber with cathode-

pad readout. They are located in the lower part of the Central Barrel and cover an

area of about 8 m2, corresponding to the pseudorapidity region |η| < 0.12. The PHOS

is capable of measuring photons with a momentum between 0.5 and 10 GeV/c and η

mesons with a momentum between 2 and 10 GeV/c.

The EMCAL is the last detector added to the ALICE layout; its construction started

in 2008. It is located under the ALICE magnet coil at a radius of 4.5 m from the beam

line. It covers the pseudorapidity range |η| < 0.7. The azimuthal acceptance of 107°is

limited by the PHOS and the HMPID. It consists of a layered Pb scintillator sampling

calorimeter with alternating layers of 1.44 mm of lead and 1.76 mm of polystyrene

scintillator. The EMCAL provides a fast and efficient trigger for photons and electrons,

and combined with ALICE capabilities to track and identify particles from very low to

high pT , it allows the study of jet interactions in the medium produced in heavy ion

collisions.
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2.2.2 The Muon Arm

The Muon Arm is the detector dedicated to the study of the muon pairs produced in

pp and nucleus-nucleus collisions, paying particular attention to the resonances, like φ,

J/ψ, Υ. The muon spectrometer has a mass resolution of 55 MeV/c2 at the φ peak.

The Muon Arm consists of a big dipole magnet, five tracking stations, two trigger

stations, plus a front absorber, a muon filter and a beam shield (see fig. 2.6).

Figure 2.6: Side view of the Muon Arm

2.2.2.1 Absorbers

The three absorbers have been designed to safeguard the detector from the huge particle

flux expected in Pb-Pb collisions: about 7000 particles produced inside the spectro-

meter acceptance and about 6000 particles intercepting the beam-pipe in the region

-7 < η < -4.

The front absorber covers the pseudorapidity region -4 < η < -2.5; it is located inside

the L3 magnet, between the interaction point and the first tracking station, at 90 cm

from the interaction point; its length of 4 m corresponds to ten hadronic interaction

lengths. The front absorber has the double task of decreasing the background of muons

coming from the decay of pions and kaons, absorbing the greater part of these latter
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2.2 The ALICE detector

ones before their decay, and attenuating the flux of charged particles by at least two

orders of magnitude.

The absorber is designed to provide both a good shielding capability and a limited

multiple scattering (which would compromise the spectrometer mass resolution). To

obtain this, a low-Z material in the absorber layers close to the vertex, and a high-Z

shielding materials at the rear end have been used. A total thickness of 20 cm of Pb

interleaved with layers of boronated polyethylene, which can moderate neutrons by

quasi-elastic scattering, was chosen for the front part, while lead and tungsten were

selected for the rear end. The absorber is completed by a combination of concrete and

carbon.

The muon filter consists of an iron wall 1.2 m thick, located between the last tracking

station and the first trigger station. Its task is to stop the muons with momentum

lower than 4 GeV/c, in order to reduce the background due to the decay into muons of

kaons and pions, and to improve the performances of the trigger chambers, blocking the

hadrons that have not been stopped by the front absorber or that have been produced in

the beam pipe, without compromising the spatial resolution of the tracking apparatus.

The beam shield protects the detector from the high rapidity secondary particles

produced along the beam pipe. It is made of tungsten and lead and it is covered by a

layer of stainless steel.

2.2.2.2 Dipole magnet

The dipole magnet (see fig. 2.7) is 5 m long, 6.6 m wide and 8 m high. It provides

a maximum central field of 0.7 T and an integral field of 3 Tm. Its aim is to deflect

the muons depending on their charge, in order to measure their momentum, that is

inversely proportional to the deflection angle. The bending plane is directed along the

vertical axis, while the non-bending plane is along the horizontal axis.

2.2.2.3 Tracking stations

The task of the tracking stations is to reconstruct the muon tracks along the apparatus.

There are five tracking stations, each one composed of two chambers: the first two

stations are between the front absorber and the dipole magnet, the third one is inside

the dipole magnet, the fourth and the fifth ones are located between the magnet and

the muon filter.
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2. THE ALICE EXPERIMENT

Figure 2.7: The dipole magnet.

The tracking chambers are Multi-Wire Proportional Chambers (MWPC), with the

two cathode planes segmented in strips (or divided in pads); they make possible the

calculation of the coordinates of the impact point of the muon on the chamber with

the weighted average of the charge deposited on a certain strip/pad.

The spatial resolution of the tracking chambers is ∼ 100 µm in the bending direction

and 1 mm in the non-bending direction.

To keep the occupancy1 at a 5% level, a very fine segmentation is needed: pads near

the beam pipe in the first station are as small as 4.2×6 mm2 (see fig. 2.8). The total

number of read-out channels is about 1 million. The chambers in stations 1 and 2 have

a quadrant geometry (see fig. 2.9, left side), with read-out electronics on the surface,

while those in stations 3, 4 and 5 have a slat geometry (see fig. 2.9, right side) and

read-out electronics on the side. In order to minimize the multiple scattering of the

muons, the materials in the tracking system are composite ones, such as carbon fiber,

so that the total thickness of a chamber is 0.03 X0.

To be accepted by the tracking system, a muon track must fire at least one of the two

chambers in the stations 1, 2 and 3, and give at least 3 signals in the stations 4 and 5.

Fig. 2.10 shows one of the tracking chambers.

The front-end electronics for all stations is based on a 64 channels board (MAnas

NUmérique, MANU) On this board the signals of four 16-channels charge amplifier

chips (Multiplexed ANAlogic Signal processor, MANAS) are sent to 12-bits ADCs and

to a readout chip (Muon Arm Readout Chip, MARC) whose functionalities include

1The occupancy is defined as the ratio between the number of pads/strips hit and the total number

of pads/strips present in a given detector area.
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2.2 The ALICE detector

Figure 2.8: Schematic view of a chamber in stations 3, 4 and 5 respectively, with the

different strip densities.

the zero suppression. The Concentrator ReadOut Cluster (CROCUS) dispatches the

trigger signal from the central trigger processor (CTP) to each half plane, it performs
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Figure 2.9: Left side: quadrant geometry of tracking chambers in stations 1 and 3; left

side: slat geometry of tracking chambers in stations 3, 4 and 5.

Figure 2.10: One of the tracking stations.

the calibration of the MANU, and gathers data through specific buses (Protocol for the

ALICE Tracking CHamber, PATCH) sending them to the DAQ within 240 µs after the

trigger signal.
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2.2 The ALICE detector

2.2.2.4 Trigger stations

The trigger task is to select the events of interest (i.e., the muon pairs produced by the

decay of the resonances) with respect to the particles from the background, most of

which are low-momentum muons coming from the decay of pions and kaons. In order

to do this, the trigger applies a cut on the transverse momentum, asking for it to be

greater than a certain value.

There are two trigger stations (MT1 and MT2), each one of them made up of two

chambers, 1 m far from each other, located behind the muon filter, at 16.1 m from the

interaction point (see fig. 2.11).

Each station is constituted by two planes of 18 Resistive Plate Chambers (RPC), made

up of high resistivity bakelite electrodes separated by 2 mm wide gas gap and with

a time resolution of ∼ 2 ns. The planes are segmented in strips and provide the

coordinates of the muon: the horizontal strips (aligned with the x axis in the ALICE

reference system) measure the bending deviation due to the dipole magnetic field, while

the vertical strips (aligned with the y axis) measure the non-bending direction.

The system is totally composed of 234 detection areas, each one of them associated

with a local trigger board. The local board density reflects the strip segmentation.

The strips width is 1, 2 or 4 cm in the bending plane, going from the center of the

chamber outwards, and it is 2 or 4 cm in the non-bending plane.

The signals are discriminated and sent to the read-out electronics to be processed. The

muon trigger is fired when at least three of the four RPC planes give a signal compatible

to a tracklet in the muon trigger system.

The trigger threshold can be varied according to the collision system.

The trigger information is also used to identify the tracks in the offline analysis, since

muons are not absorbed by the iron wall, differently from the residual hadrons.

The decision time of the trigger is about 300 ns.

2.2.3 The Forward Detectors

Many processes typical of the Quark-Gluon Plasma, like charmonia and bottomonia

production, are function of the energy density and are evaluated through the centrality

of the collisions.
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Figure 2.11: The trigger stations.

The Forward Multiplicity Detector (FMD) is a silicon strip detector divided in

seven disks perpendicular to the beam pipe and placed at distances between 42 and 225

cm from the interaction point. It provides a charged particle multiplicity information

complementary to the SPD, covering the pseudorapidity ranges -3.4 < η < -1.7 and

1.7 < η < 5.1.

The Photon Multiplicity Detector (PMD) determines the plane of the reaction

and the anisotropy of the azimutal angle; it is a preshower detector that measures the

multiplicity and spatial distribution of photons in the forward pseudorapidity region

2.3 < η < 3.7 and provides an estimation of the transverse electromagnetic energy and

of the reaction plane on an event-by-event basis.

It is located at 5.8 m from the interaction point and covers a pseudorapidity region 1.8

≤ η ≤ 2.6. The PMD consists of two identical planes of detectors, each one composed

of 3×3 modules containing 24×24 gas proportional counters with honeycomb structure

(Honeycomb Proportional Chambers) and wire readout, with a 3X0 thick lead converter

in between.

The TZERO is made of two arrays of Cherenkov counters, with a time resolution

lower than 50 ps, asymmetrically placed at 72.7 cm (muon spectrometer side) and

375 cm (PMD side) from the interaction vertex, covering the pseudorapidity ranges -

3.28 < η < -2.97 and 4.61 < η < 4.92. It is designed to provide a T0 signal for the TOF

detector, to measure the particle multiplicity and the vertex position with a precision
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of ±1.5 cm.

The VZERO consists of two arrays of scintillator material, located 90 cm (Muon Spec-

trometer side) and 340 cm (PMD side) from the interaction point. The detectors are

segmented into 72 elementary counters distributed in 5 rings, covering the pseudora-

pidity ranges -3.8 < η < -1.7 and 2.8 < η < 5.1. The measurement of the time-of-flight

difference between the two parts of the detector allows to identify and reject the beam-

gas events, providing a minimum bias trigger for the central barrel detectors and a

validation signal for the muon trigger. Moreover, the VZERO measures the charged

particle multiplicity, indicating the centrality in Pb-Pb collisions.

The Zero Degree Calorimeters (ZDC) are two pairs of calorimeters located in

opposite positions at about 115 m from the interaction point. Each one of them consists

of a proton detector and a neutron one, composed of quartz fiber calorimeters based

on the Cherenkov effect, built-in inside a high density material (brass in the case of the

proton detector and a tungsten alloy in the case of the neutron one), oriented at zero

degrees with respect to the beam axis. The Cherenkov light produced in the optical

fibers is guided to the photomultipliers.

The ZDC are dedicated to the study of the centrality of the collision through the

measurement of the energy of the nucleons not directly involved in the reaction.

The number of the spectating nucleons decreases as the centrality of the collision in-

creases; an estimate of the number of participating nucleons is given by the relation:

Np = A− EZDC
EA

where A is the ion mass number, EZDC is the energy measured in the ZDC and EA is

the energy of the beam per nucleon.

2.2.4 ALICE trigger and data acquisition

The trigger signals from the detectors are collected and processed by the ALICE Cen-

tral Trigger Processor (CTP). The CTP is designed to select events with a variety of

different features and rates, and to scale down these rates in order to fit the bandwidth

requirements of the acquisition system.

The first trigger signal, called Level-0 (L0), at 1.2 µs after the collision, are sent by

the fastest detectors (SPD, VZERO, TZERO) and by the muon trigger system. These

signals are combined in the CTP with AND and OR logic, to select a certain class of
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events. The information provided by the slower detectors is used to create a Level-1

trigger signal (L1), that is dispatched after 6.5 µs. The ALICE trigger system has a

past-future protection circuit that searches for other events of the requested type, in

certain time windows before and after the collision under investigation: this helps the

rejection of pile-up events and the read-out of the detectors. The Level-2 (L2) trigger

waits for this past-future protection and arrives after 88 µs.

The ALICE Data AcQuisition system (DAQ) has been designed taking into account

the fact that pp collisions occur at high rates and have relatively small event sizes,

while on the other hand Pb-Pb collisions are characterized by lower rates and larger

amount of data, up to 1.25 GB/s sent to the storage elements.

Once the CTP decides to acquire a specific event, the trigger signal is sent to the Front-

End Read-Out electronics (FERO) of the involved detectors. Data are thus dispatched

to farms of computers (Local Data Concentrators), which build the event fragments

coming from the front-end electronics into sub-events. The sub-events are then sent to

the Global Data Collectors (GDC), that take all the sub-events from the various LDC,

build the whole event and, eventually, send it to the storage facilities.

42



3

Monte Carlo simulation of the

dimuon sources

Contents

3.1 Parametrization of the low mass resonances distributions . 43

Monte Carlo generators are used in high energy physics for various tasks, such as

the estimation of the frequency or the topology of the events, the simulation of the

background, the development of methods for data analysis.

The presence of the apparatus introduces distortions in the measurement: in this case,

a simulation of the apparatus (performed with the use of the transport code GEANT3),

together with a Monte Carlo generation of the sources, is needed in order to calculate

the acceptance correction.

3.1 Parametrization of the low mass resonances distribu-

tions

The main sources of the signal mass spectrum in the low mass region are the electro-

magnetic decays of the light resonances (already described in 1.2) and the semi-leptonic

decays of Open Charm and Open Beauty:

η → µ+µ−

η → µ+µ−γ

ρ→ µ+µ−
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ω → µ+µ−

ω → µ+µ−π0

η′ → µ+µ−γ

φ→ µ+µ−

D → µνµ

B → µνµ

The continuum due to the semi-leptonic decays of open charm and beauty was simulated

using a parametrization of PYTHIA, AliGenCorrHF [63].

The light resonances were simulated using the hadronic cocktail generator (AliGen-

MUONLMR), that was at first developed for the analysis in pp collisions at 7 TeV

[3][64] and derives from the old GENESIS generator developed for CERES.

The kinematic distributions depending on energy that were parametrized are:

• transverse momentum;

• rapidity;

• multiplicity.

The distributions independent on energy being parametrized are instead:

• mass line shape;

• form factors of Dalitz decays;

• polar angle.

3.1.1 Parametrization of pT , rapidity and multiplicity distributions

In the 7 TeV pp analysis, the input rapidity and multiplicity distributions for all parti-

cles were based on a parametrization of PYTHIA 6.4 [65] with the Perugia-0 tune [66]

at 7 TeV; similarly, in the case of pp and Pb-Pb collisions at 2.76 TeV, the rapidity

and multiplicity distributions for each process have been parametrized on the basis of

PYTHIA events at that energy.

In fig. 3.1 the rapidity distributions obtained at 2.76 TeV for η, η′, ρ, ω and φ mesons

are shown.

The multiplicity distributions of the light resonances at 2.76 TeV are shown in fig. 3.2.
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3.1 Parametrization of the low mass resonances distributions

Figure 3.1: Rapidity distributions of light resonances obtained with a PYTHIA Perugia-0

parametrization at 2.76 TeV.

Figure 3.2: Multiplicity distributions of the light resonances at 2.76 TeV.

In the 7 TeV analysis the transverse momentum distribution was based on the same

PYTHIA parametrization at that energy in the case of η′, while for the η meson it was
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based on the preliminary results from η production yields measured in the two-photon

decay channel by ALICE [67].

The transverse momentum distribution for ρ, ω and φ was instead described with a

power law function, used also by HERA-B experiment to fit the φ p2T spectrum [68]:

dN

dpT
= C

pT
[(1 + pT /p0)2]n

(3.1)

where the parameters n and p0 were tuned iteratively to the results of the analysis in

pp at 7 TeV itself.

At 2.76 TeV also the η and η′ pT distributions have been described with the power law

function, parametrized on the basis of the ALICE measurement at 7 TeV, while for ρ,

ω and φ the average pT value has been scaled as the value at 7 TeV based on PYTHIA,

according to the formula:

〈pt〉ALICE2.76 TeV = 〈pt〉ALICE7 TeV .
〈pt〉PY THIA2.76 TeV

〈pt〉PY THIA7 TeV

(3.2)

where 〈pt〉ALICE7 TeV was obtained from the low mass region analysis at 7 TeV.

Fig. 3.3 shows the pT distributions of the light resonances at 2.76 TeV.

Figure 3.3: pT distributions of the light resonances at 2.76 TeV.
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The comparison between the pT distribution of φ and ω mesons at 2.76 and 7 TeV is

shown in fig.3.4.

Figure 3.4: Comparison of φ (left) and ω (right) pT distributions at 2.76 and 7 TeV.

3.1.2 Parametrization of line shape, form factors and polar angle di-

stributions

The linewidths of η, η′, ω and φ (Γη = 1.31 ± 0.05 keV, Γη′ = 0.198 ± 0.009 MeV,

Γω = 8.49 ± 0.08 MeV, Γφ = 4.26 ± 0.04 MeV) are negligible with respect to the ALICE

apparatus resolution (55 MeV): for this reason, their line shape has been generated as

a Dirac δ function. The linewidth of ρ meson (Γρ = 149.1 ± 0.8) is larger than the

apparatus resolution, so the ρ line shape has been parametrized on the basis of NA60

measurements [69]:

dRρ→µ+µ−

dM
=

α2m4
ρ

3(2π)4

(
1− 4m2

π
M2

)3/2 (
1− 4m2

µ

M2

)1/2 (
1 +

2m2
µ

M2

)
(M2 −m2

ρ)
2 +M2Γ2

(2πMT )3/2e−M/T (3.3)

where T = 170 MeV.

The ρ line shape is shown in fig. 3.5.

The form factors of the Dalitz decays have been parametrized with the pole approxi-

mation [70], on the basis of the NA60 measurement as well:

F (q2) ≡ F (M2) =

(
1− M2

Λ2

)−1
(3.4)
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Figure 3.5: ρ meson line shape

The ϑ polar angle distributions of the decay products of the light resonances have been

assumed to be flat between 0 and π in the case of the 2-body decays. In the case of

the Dalitz decays, similarly to what has been done at CERES and NA60 experiments,

a polarized distribution has been assumed:

W (ϑ) ∝ 1 + cos2ϑ
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collisions at
√
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The pp analysis at 2.76 TeV is necessary to provide a baseline for the Pb-Pb analysis

at the same energy. LHC has run twice in pp collisions at
√
s = 2.76 TeV: the first run

in 2011 (already presented in [64]), and the second run in 2013, with a statistics about

4 times greater with respect to 2011.

4.1 Data sample and applied selections

The data collected in 2013 are the ones corresponding to LHC13g period (see 6.8), with

an integrated luminosity of 81.094 ± 0.015 nb−1.

Data were collected with a dimuon trigger, that consists in the coincidence of two

single-muon all-pT trigger signals, with the all-pT trigger threshold set at pT ∼ 0.5

GeV/c.

The selections applied to the data were:
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• Physics Selection to remove beam-gas background: this is done before any ana-

lysis, by computing the timing of a signal that passes the triggers, to ensure that

the event had occurred at the ALICE interaction point;

• 2.5 < ηµ < 4 (to cut the tracks at the borders of the detector acceptance);

• both muon tracks reconstructed in the muon tracking chambers have to match a

tracklet reconstructed in the muon trigger;

• 2.5 < yµµ < 4.

The number of opposite sign dimuon triggers in our sample satisfying these requirements

amounts to NOS ∼ 5.02 ·106.

4.1.1 Estimation of the integrated luminosity

The integrated luminosity Lint = 81.094 ± 0.015 nb−1has been calculated run by run

as Lint = ΣrunN
run
OS /(f

run
norm · σMB).

Here σMB = 55.4 ± 1.0 mb is the minimum bias cross section, estimated in 2011 through

a Van Der Meer scan [71]; N run
OS is the number of opposite-sign dimuon triggers per run

and f runnorm is the normalization factor that allows to rescale the number of opposite-

sign dimuon triggers to the number of minimum bias triggers through the relation

NMB = fnorm ∗NOS . fnorm is defined as fnorm =
Ntrig
MB

Ntrig
OS&MB

, where N trig
MB is the number

of events flagged with the minimum bias trigger and N trig
OS&MB is the number of events

triggered by both minimum bias and dimuon triggers.

4.2 Background subtraction

The opposite sign mass spectrum of the muon pairs satisfying the above mentioned

selections is shown in fig. 4.1.

Here the background is mostly due to uncorrelated muon pairs coming from the decay

of pions and kaons.

The background has been subtracted with the use of the event mixing technique, where

two muons coming from two different, independent events are randomly paired, so to

build an invariant mass spectrum that consists of muon pairs uncorrelated by construc-

tion.
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Figure 4.1: Opposite sign dimuon mass spectrum in pp collisions at 2.76 TeV.

The distribution obtained from the event mixing has been normalized to 2R
√
N real
µ+µ+N

real
µ−µ− ,

where N real
µ+µ+ and Nmixed

µ+µ+ are the oppisite-sign pairs of muons from data and from event

mixing respectively.

The R factor is defined as Aµ+µ−/
√
Aµ+µ+Aµ−µ− , where Aµ+µ+ (Aµ−µ−) is the accep-

tance for a ++ (- -) pairs and takes into account the possible correlations introduced

by the detector. It was estimated as R = Nmixed
µ+µ− /2

√
Nmixed
µ+µ+ N

mixed
µ−µ− , where Nmixed

µ+µ+

(Nmixed
µ−µ− ) is the number of mixed pairs for a given charge combination.

In fig. 4.2 the opposite sign dimuon mass spectrum together with the background

evaluated through the event mixing are shown.

The signal/background ratio (see fig. 4.3) is about 2 at the φ peak.

To estimate the quality of the background subtraction, we can look at the ratio between

the invariant mass spectra of the like-sign real and mixed pairs (see fig. 4.4). This ratio

is reasonably flat, meaning that the event mixing reproduces with enough accuracy the

mass spectrum of the real like-sign pairs. The difference in the ratio by 2.2% from

unity has been taken as an estimate of the systematic uncertainty on the background

normalization.
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Figure 4.2: Opposite sign dimuon mass spectrum and background evaluated through the

event mixing in pp collisions at
√
s = 2.76 TeV.

Figure 4.3: Signal/background ratio in pp collisions at
√
s = 2.76 TeV.
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Figure 4.4: Ratio between the like-sign real and mixed pairs mass spectra in pp collisions

at
√
s = 2.76 TeV.

4.3 Acceptance × efficiency correction

The acceptance × efficiency (A×ε) correction is needed because of the distortions in-

troduced in the measurement by the presence of the apparatus.

To estimate A×ε, a Monte Carlo simulation of the dimuon sources in the low mass

region, together with the simulation of the apparatus, is mandatory.

The Monte Carlo generation was done using the parametric generator already described

in cap. 3; the simulation of the ALICE apparatus was performed with the transport

code GEANT 3.

A×ε as a function of pT is calculated as the ratio between the reconstructed and

generated dimuon pT distributions in certain pT intervals in the same rapidity window.

The selections applied to the reconstructed dimuons are the same as the ones applied

to the data.

For φ meson, A×ε = 11.78% for 1 < pT < 5 GeV/c and 2.5 < y < 4.
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4.4 Signal extraction

The fit to the mass spectrum is show in fig. 4.5, for 1 < pT < 5 GeV/c. The invariant

mass spectrum has been fitted with the contributions given by the decays into muons

of the light resonances and of Open Charm and Open Beauty (see also chapter 3).

The free parameters of the fit are the normalizations of the following processes:

• η → µ+µ−γ

• ω → µ+µ−

• φ→ µ+µ−

• Open Charm

The other processes were fixed according to the relative branching ratios or cross sec-

tions: η → µ+µ− and η′ → µ+µ−γ are fixed to η → µ+µ−γ, ρ→ µ+µ− and ω → µ+µ−γ

are fixed to ω → µ+µ−, the Open Beauty normalization is fixed to the one of Open

Charm.

The red band represents the uncertainty in the relative normalization of the sources and

it is mainly due to the error on the branching ratios of the ω and η′ Dalitz decays. The

blue band represents instead the systematic error due to the background subtraction.

The raw numbers of φ and ρ+ω resonances extracted through the fit are N raw
φ = 1410

±102 and N raw
ρ+ω = 3370 ±145, for dimuon pT between 1 and 5 GeV/c: this value is

about one half of the statistics collected in pp analysis at 7 TeV [3] and about 4 times

the statistics collected in the previous pp run at 2.76 TeV [64].

A small excess of about 7% is observed in the region 0.4 < M < 0.7 GeV/c2. The

statistics of our data sample does not allow a reliable study of the nature of this excess

as a function of pT and rapidity, that will be instead carried out in the p-Pb analysis.

The fact that the hadronic cocktail does not reproduce well all the expected sources

will be in any case taken into account in the evaluation of the systematic uncertainty.

In order to measure the φ differential cross section, the raw number of φ has been

extracted in seven pT bins between 1 and 5 GeV/c: the dimuon invariant mass spectrum

after combinatorial background subtraction in these pT bins is shown in figure 4.6.
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4.4 Signal extraction

Figure 4.5: Dimuon invariant mass spectrum in pp at
√
s = 2.76 TeV after combinatorial

background subtraction for 1 < pT < 5 GeV/c (full circles). Light blue band: systematic

uncertainty from background subtraction. Red band: sum of all simulated contributions.

The width of the red band represents the uncertainty on the relative normalization of the

sources.

4.4.1 Systematic uncertainties on the signal extraction

To determine the systematic uncertainties on the raw number of φ and ρ+ω, the fit with

the hadronic cocktail has been replaced with a fit with two empirical functions, due

to the fact that the hadronic cocktail does not reproduce well all the expected sources

in the mass spectrum. In both functions, the resonance peaks have been described by

Crystal Ball functions1, fixing the ratio between ρ and ω such that σρ/σω = 1. In the

1The Crystal Ball function consists of a Gaussian core portion and a power-law tail at low mass

defined by the parameters a and n. The power-law part reproduces non-Gaussian fluctuations due to

energy loss processes:

f(x, x̄, σ, α, n) = N ·

 e
− (x−x̄)2

2σ2 for (x−x̄)2

σ
> −α

A ·
(
B − x−x̄

σ

)−n
for (x−x̄)2

σ
≤ −α
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Figure 4.6: Dimuon invariant mass spectrum in pp at
√
s = 2.76 TeV after combinatorial

background subtraction in several pT bins between 1 and 7 GeV/c.
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case of the first function (f1), the continuum has been parametrized as the superposition

of an exponential (that dominates the region 2mµ < M < 0.4 GeV/c2) and a straight

line.

In the case of the second function (f2), the continuum has been parametrized as a

variable width Gaussian, that is, a Gaussian whose width varies as a function of the

mass values.

In figures 4.7 and 4.8 the fits with f1 and f2 for the different pT bins are shown.

The systematic uncertainty has been estimated as half of the maximum difference on

the raw number of φ calculated with the three fitting methods (hadronic cocktail, f1,

f2), taking as reference value the one obtained with the hadronic cocktail.

The raw number of φ as a function of pT , obtained with these fitting methods, is

reported in fig. 4.9.

The raw number of φ obtained with the different fit functions and the corresponding

systematic uncertainties and A×ε factors for the different pT bins are reported in table

4.1.

Table 4.1: Raw number of φ and corresponding systematic uncertainty in different pT

bins, obtained with different fit functions

pT Nraw
φ (hadronic cocktail) Nraw

φ (f1) Nraw
φ (f2) syst. A×ε

1-1.5 GeV/c 448 ± 70 445 ± 55 403 ± 54 5.06% 6.11%

1.5-2 GeV/c 401 ± 53 385 ± 45 365 ± 44 4.48% 12.35%

2-2.5 GeV/c 300 ± 38 357 ± 31 347 ± 30 9.55% 19.66%

2.5-3 GeV/c 167 ± 26 188 ± 23 182 ± 22 6.43% 27.74%

3-3.5 GeV/c 83 ± 19 87 ± 17 83 ± 15 2.14% 34.67%

3.5-4 GeV/c 59 ± 15 67 ± 13 64 ± 12 6.49% 38.91%

4-5 GeV/c 41 ± 16 49 ± 13 54 ± 15 15.60% 39.15%

1-5 GeV/c 1487 ± 100 1590 ± 85 1494 ± 88 7.9% 11.78%

4.5 φ differential cross section

The φ differential cross section has been extracted for pT between 1 and 5 GeV/c,

calculating for each pT bin the quantity:

dσφ
dydpT

=
N raw
φ (∆pT )

A · ε(∆pT )BRφ→e+e−LINT
(4.1)
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Figure 4.7: Dimuon invariant mass spectrum in pp at
√
s = 2.76 TeV after combinatorial

background subtraction fitted with the function f1 in the different pT bins.
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4.5 φ differential cross section

Figure 4.8: Dimuon invariant mass spectrum in pp at
√
s = 2.76 TeV after combinatorial

background subtraction fitted with the function f2 in the different pT bins.
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Figure 4.9: Raw number of φ vs pT in pp at
√
s = 2.76 TeV obtained fitting the mass

spectra with the hadronic cocktail (full circles), f1 (open squares) and f2 (open stars).

where N raw
φ (∆pT ) is the raw number of φ for a given pT bin, A · ε is the corresponding

acceptance × efficiency, BRφ→e+e− = (2.954 ± 0.030)×10−4 is the branching ratio for

the φ decay into electrons, and LINT = 81.094±0.015 nb−1 is the integrated luminosity.

The reason why the branching ratio for φ decay into electrons has been used instead of

the one into muon pairs, is due to the fact that, according to the lepton universality, the

coupling of the leptons to gauge bosons are flavour-independent, but the uncertainty

of the measurement for the muon decay is about 6 times greater than the one in the

electron channel (BRφ→µ+µ− = (2.87 ± 0.19)×10−4).

The φ differential cross section as a function of pT is shown on the left side of fig. 4.10,

while on the right side the same measurement is compared with the previous one

obtained with the data collected in 2011. Due to the low statistics collected in 2011, the

corresponding measurement of φ differential cross section was extracted for 1 < pT < 4

GeV/c and not for 1 < pT < 5 GeV/c. The two measurements are in good agreement.

Fig 4.11 shows the fit of the φ differential cross section with both a power-law fpow =
A·pT

[1+(pT /p0)2]n
and a Levy-Tsallis1 function fLevy. The two fits are indistinguishable. The

1The Levy-Tsallis function is defined as fLevy = pT
A(n−1)(n−2)

nT [nT+M(n−2)]

[
1 + mT−M

nT

]−n
. Here M is the
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4.5 φ differential cross section

Figure 4.10: Left: φ differential cross section as a function of pT in pp collisions at
√
s = 2.76 TeV. Right: comparison between the measurement in 2011 (open squares) and

in 2013 (full circles).

Figure 4.11: φ differential cross section as a function of pT in pp collisions at
√
s =

2.76 TeV. fitted with power-law (red line) and Levy-Tsallis function (black line).
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resulting fit parameters are:

A = 1.70± 0.91
p0 = 1.68± 0.45
n = 3.78± 0.72

 forfpow

A = 2.16± 1.03
n = 10.2± 4.81
T = 0.284± 0.072

 forfLevy

Besides the differential cross section, the pT integrated cross section has been calculated

as well, for two different pT intervals:

σφ(1 < pT < 5GeV/c) = 0.542± 0.052(stat)± 0.043(syst)mb

σφ(2 < pT < 5GeV/c) = 0.1082± 0.0095(stat)± 0.0071(syst)mb

The different contributions to the systematic uncertainty are discussed in the next

section.

These values are the ones that will be used in the calculation of the nuclear modification

factors in p-Pb and Pb-Pb collisions respectively.

4.5.1 Systematic uncertainty on φ differential cross section

In the calculation of the φ differential cross section, several sources of systematic un-

certainty have been taken into account:

• uncertainty on the evaluation of the branching ratio BRφ→e+e− = (2.954 ±
0.030)×10−4 (1%);

• uncertainty on the integrated luminosity, coming from the uncertainty on σMB

(1.8% - see 4.1.1);

• uncertainty on the raw number of φ determined by the fit, varying from about

2% to about 15% and already described in section 4.4.1);

φ meson mass, mT is the transverse mass, A, n and T are the free parameters.
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• uncertainty on the evaluation of the tracking efficiency. The value used is the

one obtained in peripheral Pb-Pb collisions in 2011 (4.5% - see 6.4.1.5), since at

present, the tracking efficiency has not been estimated for the pp data collected

in 2013. This uncertainty was previously evaluated in pp collisions at 2.76 TeV

in the 2011 data, and it amounted to 4%;

• uncertainty on the evaluation of the trigger efficiency. The systematic uncertainty

arising from the intrinsic trigger efficiency was estimated by varying by 2% the

efficiency of each local board in the simulation and amounts to 2%. This value

was obtained by varying the cuts on the trigger tracks used to determine the

intrinsic efficiency. This uncertainty is uncorrelated as a function of pT and y.

Another contribution comes from the uncertainty on the pT trigger threshold.

This contribution, amounting to 2%, has been evaluated in the Pb-Pb analysis

(see 6.4.1.6), replacing the trigger response in the Monte Carlo with a function

that fits the ratio between the pT distributions of the muons that match two

different trigger thresholds (pT & 0.5 GeV/c and pT & 1 GeV/c). The same

approach could not be used in the pp analysis, since the data in this case were

collected with the pT & 0.5 GeV/c threshold only. In order to be conservative,

we decided to consider also this contribution on the systematic uncertainty. It

has to be noticed that if a sharp pT cut on the single muon is applied (pT > 0.5

GeV/c and pT > 1 GeV/c), the difference in the number of φ corrected for the

A×ε is lower than the square root of the difference between the variances. This

indicates that the A×ε correction does not introduce pT dependent biases. The

total value of the uncertainty related to the trigger efficiency amounts to 3%.

A possible additional source of systematic uncertainty is the contribution related to

the background subtraction: in fact, due to the high signal/background ratio, the 2.2%

uncertainty in the background normalization (see 4.2) translates into an uncertainty in

the number of φ of only 0.5% for 1 < pT < 1.5 GeV/c, and lower values for higher pT .

This contribution was therefore neglected.

The values of φ differential cross section in the different pT bins, together with the

statistical and the systematic uncertainties, are summarized in table 4.2.
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Table 4.2: Values of φ differential cross section as a function of pT in pp collisions at
√
s = 2.76 TeV

pT d2σ/dydpT (mb) stat. syst.

1-1.5 GeV/c 0.4045 0.064 4.1%

1.5-2 GeV/c 0.1739 0.024 1.8%

2-2.5 GeV/c 0.0848 0.011 0.6%

2.5-3 GeV/c 0.0325 0.005 0.2%

3-3.5 GeV/c 0.0133 0.003 0.1%

3.5-4 GeV/c 0.0083 0.002 0.1%

4-5 GeV/c 0.0027 0.001 0.1%

2-5 GeV/c 0.1082 0.010 0.7%

1-5 GeV/c 0.5420 0.052 4.3%

4.5.2 φ differential cross section: comparison with models

In fig. 4.12 the comparison of the φ differential cross section as a function of pT

with PHOJET[72][73] and several tunes of PYTHIA[65] (Perugia-0[66], Perugia-11[74],

ATLAS-CSC[75] and D6T[76]): the PYTHIA tunes Perugia-0 and Perugia-11 strongly

underestimate the measured cross section; PYTHIA ATLAS-CSC also underestimates

the data (even if to a lesser degree than Perugia-0 and Perugia-11), while PYTHIA D6T

slightly overestimates them. PHOJET is instead in good agreement with the measured

values. The ratio between data and models is shown in fig. 4.13. Table 4.3 reports the

measured integrated cross section, together with the integrated cross sections obtained

with the models in the pT intervals 1 < pT < 5 GeV/c and 2 < pT < 5GeV/c.

Table 4.3: φ cross section in pp at 2.76 TeV: measurement from ALICE compared with

values from PHOJET and PYTHIA tunes Perugia-0, Perugia-11, D6T and ATLAS-CSC,

for 1 < pT < 5GeV/c and for 2 < pT < 5GeV/c, in the rapidity interval 2.5 < y < 4

σφ [mb] (1 < pT < 5 GeV/c) σφ [mb] (2 < pT < 5 GeV/c)

ALICE µµ measurement 0.542 ± 0.052 ± 0.043 0.108 ± 0.010 ± 0.007

PYTHIA Perugia-0 0.276 0.066

PYTHIA Perugia-11 0.297 0.063

PYTHIA D6T 0.634 0.119

PYTHIA ATLAS-CSC 0.469 0.075

PHOJET 0.494 0.108
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Figure 4.12: φ differential cross section as a function of pT in pp collisions at
√
s =

2.76 TeV compared with the predictions based on the PYTHIA tunes ATLAS-CSC, D6T,

Perugia-0 and Perugia-11 and on PHOJET.

Figure 4.13: Ratio between data and models (PYTHIA tunes ATLAS-CSC, D6T,

Perugia-0 and Perugia-11 and PHOJET) of φ differential cross section as a function of

pT in pp collisions at
√
s = 2.76 TeV.
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The p-A collisions provide an example of a system where no hot, dense medium is

formed in the final state, while its initial state is similar to that in A-A collisions. Since

it is believed that the Quark Gluon Plasma is formed only in A-A collisions, the results

from p-A analysis are important to provide a reference for A-A collisions and to give

an insight on soft particle production in cold nuclear matter.

5.1 Data sample and applied selections

The data for p-Pb analysis were collected during January 2013 at
√
sNN = 5.02 TeV.
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The data were collected at forward rapidity, with the proton beam directed towards

the Muon Arm (p-Pb) and at backward rapidity, with the lead beam directed towards

the Muon Arm (Pb-p).

Due to the different energy of the proton (4 TeV) and the lead nucleus (1.58 A×TeV),

the center of mass moves with a rapidity y0 = 0.465 in the laboratory frame, where the

Muon Arm covers the pseudorapidity region 2.5 < ηlab < 4.0. As a consequence, the

rapidity of the center of mass and the one of the laboratory do not coincide anymore:

in p-Pb collisions, the rapidity of the center of mass is shifted of +0.465, and therefore

is 2.03 < ycm < 3.53. In Pb-p collisions the rapidity of the center of mass is shifted

of -0.465 and results to be -4.46 < ycm < -2.96. A direct comparison between forward

and backward is possible only in the rapidity window 2.96 < |ycm| < 3.53.

The data used for this analysis are the ones corresponding to the LHC13d and LHC13e

periods (p-Pb analysis), and to LHC13f period (Pb-p analysis - see 6.8 for the complete

list of runs).

As in the pp run, dimuons were collected using the unlike-sign and like-sign dimuon

triggers, both with a threshold on the single muon pT of about 0.5 GeV/c. The like-sign

trigger sample was downscaled by a factor that varied from run to run, ranging from

10% to 29%.

The total integrated luminosity amounts to 5.03 ± 0.18 nb−1 in p-Pb and to 5.81 ±
0.19 nb−1 in Pb-p.

The same selections applied for the pp analysis (see cap4) were applied to these data

too.

The number of opposite sign dimuon triggers satisfying the selections applied in our

sample amounts to NOS ∼ 9.27 ·106 in p-Pb and to NOS ∼ 2.11 ·107 in Pb-p.

5.2 Background subtraction

The background was evaluated through the same event mixing technique used in pp

analysis (see 4.2), with the only difference that the like-sign pairs collected with the

like-sign trigger were upscaled, run by run, by the corresponding factor.

Fig. 5.1 shows the opposite-sign dimuon mass spectrum, together with the correlated

background evaluated through the event mixing technique for p-Pb (left) and Pb-p

collisions (right).
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Figure 5.1: Opposite-sign dimuon mass spectrum and combinatorial background in p-Pb

collisions (left) and in Pb-p collisions (right).

The ratio between signal and background is shown in fig. 5.2 for p-Pb (left) and Pb-p

(right). Its value is ∼0.7 in p-Pb and ∼0.4 in Pb-p at the φ peak.

Figure 5.2: Signal/background ratio in p-Pb collisions (left) and in Pb-p collisions (right).

The quality of the background subtraction has been evaluated as in pp, looking at the

ratio between the like-sign real and mixed pairs (see fig. 5.3). As in pp, the ratio is flat

and its difference from unity, 1.5% in p-Pb and 1.1% in Pb-p, has been taken as the

estimate of the systematic uncertainty on the background subtraction.
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Figure 5.3: Ratio between the like-sign real and mixed pairs mass spectra in p-Pb (left)

and Pb-p collisions (right) at 5.02 TeV.

5.3 Acceptance × efficiency correction

The acceptance × efficiency (A×ε) correction for φ and ω mesons was calculated as a

function of the transverse momentum via a Monte Carlo simulations similar to that of

pp analysis, as the ratio between the reconstructed and generated dimuons in a certain

pT interval, applying to the Monte Carlo reconstructed dimuons the same selections

that were applied to the data.

The transverse momentum distribution for φ, ρ and ω mesons was tuned on the data,

while the pT parametrization of the other processes is based on a PYHTIA generation

at 5.02 TeV. The parametrization of the other distributions is instead the same as the

one of pp analysis at 7 TeV.

For the φ meson, in the pT interval 1 < pT < 7 GeV/c, A×ε = 12.84% in p-Pb for 3.03

< y < 3.53 and A×ε = 9.17% in Pb-p for -4.46 < y < -2.96.

5.4 Signal extraction

Fig. 5.4 shows the signal after background subtraction fitted with the sources described

in 3. The fit was performed fixing the same parameters as the ones in pp analysis (see

4.4).

The Open Beauty in p-Pb was fixed to the Open Charm via a preliminary fit of the

full-pT data sample in which both processes are left free: the resulting ratio is then kept
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Figure 5.4: Dimuon invariant mass spectrum in p-Pb (left) and Pb-p (right) at
√
s =

5.02 TeV after combinatorial background subtraction for 1 < pt < 10 GeV/c (full circles).

Light blue band: systematic uncertainty from background subtraction. Red band: sum of

all simulated contributions. The width of the red band represents the uncertainty on the

relative normalization of the sources.

fixed when fitting the mass spectra projected into the various pT intervals considered,

scaled via the pT distributions of the two processes given by the MC simulations.

The raw number of φ extracted for 1 < pT < 7 GeV/c is 21062 ± 642 in p-Pb and

23358 ± 683 in Pb-p.

As in pp, an excess of about 10% is observed in the region 0.4 < M < 0.7 GeV/c2 in

both p-Pb and Pb-p. This excess is more important at lower pT and grows going toward

midrapidites; it is sensible to the cut on the single muon pT , since it decreases applying

a cut at 1 GeV/c, suggesting a possible correlation with the trigger threshold. The

excess is also sensible to the shape and normalization of the sources of the continuum,

in particular to the relative normalization of Open Charm and Open Beauty.

The origin of the excess is still not completely clear: it seems however to not be a

physical origin, since it depends on the rapidity of the laboratory frame and not on the

rapidity of the centre-of-mass frame (see fig. 5.5).

The presence of the excess does not influence our analysis, since our work is focused

mainly on φ and ω mesons. The fact that the excess is sensible to the cut on the

single muon pT and on the description of the continuum in the hadronic cocktail will
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Figure 5.5: Integral of the signal/cocktail ratio in the region 0.4 < Mµµ < 0.7 GeV/c2

as a function of the rapidity of the laboratory frame, for both p-Pb and Pb-p.

be anyway taken into account in the evaluation of the systematic uncertainty.

5.4.1 Systematic uncertainty on N raw
φ

The systematic uncertainty on N raw
φ was calculated in a similar way as in pp analysis

at 2.76 TeV (see 4.4.1), fitting the signal with the same empirical functions f1 (Crystal

Ball + exponential + straight line) and f2 (Crystal Ball + variable width Gaussian),

and evaluating the systematics as the half of the maximum difference of the raw number

of φ calculated with the three fitting methods (hadronic cocktail, f1, f2), taking the

hadronic cocktail as reference. Fig. 5.6 shows the fits to the mass spectrum for 1

< pT < 7 GeV/c with f1 and f2 for both p-Pb and Pb-p.

The raw number of φ as a function of pT , obtained with these fitting methods, is

reported in fig. 5.7 for both p-Pb and Pb-p.

Besides this, other tests were also considered:

• varying the ratio between Open Beauty and Open Charm by a factor up to 50%,

in order to take a reasonably wide range of variation for the shape of the total

continuum;
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Figure 5.6: Fits to the mass spectrum for 1 < pT < 7 GeV/c with f1 (left column) and

f2 (right column) in p-Pb (top) and Pb-p (bottom).

• excluding invariant masses from 0.4 to 0.65 GeV/c2 from the fit, to test our

sensitivity to the observed disagreement between data and MC in that region;

• varying the ση′/ση ratio down to 0.2 and up to 0.4, in order to reproduce the

uncertainty coming from a selection of various PYTHIA tunes;

• varying the σρ/σω ratio down to 0.8 and up to 1.2, corresponding to the uncer-

tainty of the measured ratio in the analysis of pp data;
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Figure 5.7: Raw number of φ vs pT in p-Pb (left) and Pb-p (right) at
√
s = 5.02 TeV

obtained fitting the mass spectra with the hadronic cocktail (full circles), f1 (open squares)

and f2 (open stars).

• varying the hypothesis on the BR of the Dalitz decay of the ω meson, down to

0.9 · 10−4 and up to 1.7 · 10−4, corresponding to ±1 σ of the value cited in the

PDG.

The raw number of φ extracted for different intervals of pT between 1 and 7 GeV/c,

with the corresponding systematic uncertainties and A×ε factors, are reported in tables

5.1 (p-Pb) and 5.2 (Pb-p).

Table 5.1: Nraw
φ with corresponding systematic uncertainty and A×ε factor in different

pT bins in p-Pb collisions at
√
sNN = 5.02 TeV

pT Nraw
φ syst. A×ε

1-1.5 GeV/c 5216 ± 401 9.73% 6.45%

1.5-2 GeV/c 5598 ± 359 8.64% 12.32%

2-2.5 GeV/c 4710 ± 258 6.08% 19.71%

2.5-3 GeV/c 3017 ± 215 5.70% 25.93%

3-3.5 GeV/c 1978 ± 161 10.66% 31.70%

3.5-4 GeV/c 1367 ± 117 8.37% 34.49%

4-4.5 GeV/c 824 ± 99 6.99% 41.24%

4.5-5 GeV/c 494 ± 71 5.00% 41.34%

5-6 GeV/c 512 ± 79 6.24% 44.71%

6-7 GeV/c 178 ± 47 15.13% 47.07%
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Table 5.2: Nraw
φ with corresponding systematic uncertainty and A×ε factor in different

pT bins in Pb-p collisions at
√
sNN = 5.02 TeV

pT Nraw
φ syst. A×ε

1-1.5 GeV/c 5841 ± 516 7.53% 4.69%

1.5-2 GeV/c 6774 ± 392 6.52% 8.97%

2-2.5 GeV/c 5072 ± 260 7.25% 14.28%

2.5-3 GeV/c 3551 ± 171 4.51% 18.96%

3-3.5 GeV/c 2277 ± 122 5.28% 23.29%

3.5-4 GeV/c 1461 ± 87 2.48% 25.86%

4-4.5 GeV/c 776 ± 63 2.77% 29.87%

4.5-5 GeV/c 477 ± 45 5.00% 30.81%

5-6 GeV/c 464 ± 46 6.04% 33.45%

6-7 GeV/c 169 ± 27 9.35% 35.63%

5.5 φ yield

The φ yield has been evaluated as a function of pT , calculating for each pT bin the

quantity:

Y (∆pT ) =
N raw
φ (∆pT )

Aε(∆pT )BRφ→e+e−NMB
(5.1)

where NMB is the number of minimum bias events, obtained scaling the number of

opposite sign dimuon triggers NOS by the normalization factor fnorm, according to the

relation:

NMB = fnorm ∗NOS (5.2)

The normalization factor fnorm has been evaluated as:

fnorm =
N trig
MB

N trig
OS&MB

=

{
1135.0± 20.0 (stat.) for p− Pb

585.5± 6.0 (stat.) for Pb− p
(5.3)

whereN trig
MB is the number of events flagged with the minimum bias trigger andN trig

OS&MB

is the number of events triggered by both minimum bias and dimuon triggers.

The φ yield as a function of pT is shown in fig. 5.8 for both p-Pb (left) and Pb-p (right).

Confronting the two cases, it can be noticed that the yield is larger when the Pb beam

is directed towards the Muon Arm.

The φ yield has been extracted also as a function of rapidity. Fig. 5.9, left side, shows

it for 1 < pT < 7 GeV/c.
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Figure 5.8: φ yield as a function of pT in p-Pb (left) and Pb-p (right).

The asymmetry of the rapidity distribution is expected in p-A collisions; fig. 5.9,

right side, shows for comparison the pseudorapidity distribution of charged particles

measured by PHOBOS in Au-Au and d-Au collisions at
√
sNN = 200 GeV [77], together

with the measurement done by UA5 collaboration in pp̄ collisions at 540 GeV [78]: here

the asymmetry between pp(AA) and p-A collisions can be noticed at once.

Figure 5.9: Left side: φ yield as a function of rapidity, for 1 < pT < 7 GeV/c. Right

side: pseudorapidity distribution of charged particles measured by PHOBOS in Au-Au and

d-Au collisions at
√
sNN = 200 GeV and by UA5 in pp̄ collisions.
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5.5 φ yield

5.5.1 Systematic uncertainty on the φ yield

In the evaluation of φ yield, several sources of systematic uncertainty have been taken

into account:

• uncertainty on N raw
φ , already described in 5.4.1;

• uncertainty on the evaluation of the branching ratio BRφ→e+e− = (2.954 ±
0.030)×10−4 (1%);

• uncertainty on the evaluation of the tracking efficiency. The value of this un-

certainty has been obtained using an algorithm based on reconstructed tracks

[79] and has been evaluated as the difference in the tracking efficiency between

the data and the Monte Carlo. It amounts to 4% for p-Pb and to 6% to Pb-p

collisions;

• uncertainty on the evaluation of the trigger efficiency. The systematic uncertainty

arising from the intrinsic trigger efficiency was estimated by varying by 2% the

efficiency of each local board in the simulation and amounts to 2%. This value

was obtained by varying the cuts on the trigger tracks used to determine the

intrinsic efficiency. This uncertainty is uncorrelated as a function of pT and y.

Another contribution comes from the uncertainty on the pT trigger threshold.

This contribution, amounting to 2%, has been evaluated in the Pb-Pb analysis

(see 6.4.1.6), replacing the trigger response in the Monte Carlo with a function

that fits the ratio between the pT distributions of the muons that match two

different trigger thresholds (pT & 0.5 GeV/c and pT & 1 GeV/c). The same

approach could not be used in the p-Pb analysis, since the data in this case were

collected with the pT & 0.5 GeV/c threshold only. In order to be conservative, we

decided to consider also this contribution on the systematic uncertainty. It has to

be noticed that if a sharp pT cut on the single muon is applied (pT > 0.5 GeV/c

and pT > 1 GeV/c), the difference in the number of φ corrected for A×ε is lower

than the square root of the difference between the variances. This indicates that

the A×ε correction does not introduce pT dependent biases. The total value of

the uncertainty related to the trigger efficiency amounts to 3%.
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The values of φ yield in the different pT bins, together with the statistical and the

systematic uncertainties, are summarized in tables 5.3 and 5.4 for p-Pb and Pb-p

respectively.

Table 5.3: φ yield as a function of pT in different pT in p-Pb collisions

pT yield stat. syst.

1-1.5 GeV/c 355.8 · 10−4 27.4 · 10−4 10.92%

1.5-2 GeV/c 198.2 · 10−4 12.7 · 10−4 10.34%

2-2.5 GeV/c 106.5 · 10−4 5.8 · 10−4 9.69%

2.5-3 GeV/c 51.2 · 10−4 3.6 · 10−4 9.63%

3-3.5 GeV/c 27.6 · 10−4 2.2 · 10−4 9.52%

3.5-4 GeV/c 16.7 · 10−4 1.4 · 10−4 9.19%

4.5-5 GeV/c 5.0 · 10−4 0.7 · 10−4 7.42%

5-6 GeV/c 2.53 · 10−4 0.39 · 10−4 7.47%

6-7 GeV/c 0.79 · 10−4 0.21 · 10−4 8.14%

Table 5.4: φ yield as a function of pT in different pT in Pb-p collisions

pT yield stat. syst.

1-1.5 GeV/c 457.0 · 10−4 40.4 · 10−4 11.90%

1.5-2 GeV/c 279.1 · 10−4 16.1 · 10−4 9.39%

2-2.5 GeV/c 135.3 · 10−4 6.9 · 10−4 10.18%

2.5-3 GeV/c 69.4 · 10−4 3.3 · 10−4 8.03%

3-3.5 GeV/c 36.5 · 10−4 2.0 · 10−4 9.09%

3.5-4 GeV/c 20.7 · 10−4 1.2 · 10−4 8.08%

4-4.5 GeV/c 9.9 · 10−4 0.8 · 10−4 7.50%

4.5-5 GeV/c 5.7 · 10−4 0.5 · 10−4 8.47%

5-6 GeV/c 2.6 · 10−4 0.3 · 10−4 9.66%

6-7 GeV/c 0.9 · 10−4 0.1 · 10−4 13.84%

5.5.2 φ yield as a function of pT : comparison with models

The φ yield as a function of pT , compared with HIJING[80] and DPMJET[81], is shown

in fig. 5.10 for p-Pb (left) and Pb-p (right).

The integrated yield obtained from the data at forward rapidity is (5.83 ± 0.27) · 10−2.

The corresponding value obtained with HIJING is (4.99 ± 0.01) · 10−2, while DPMJET

gives (4.75 ± 0.01) · 10−2.
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At backward rapidity, the integrated yield from the data is (7.66 ± 0.38) · 10−2. The

value given by HIJING is (6.50 ± 0.01) · 10−2 and the one obtained with DPMJET is

(3.08 ± 0.01) · 10−2.

Both models slightly underestimate the data in p-Pb, while in Pb-p they underestimate

the data more severely; in particular, DPMJET underestimates the data in greater

measure with respect to HIJING.

Figure 5.10: φ yield as a function of pT compared with HIJING and DPMJET in p-Pb

(left) and Pb-p (right).

5.6 σpp interpolation at 5.02 TeV

In order to calculate the φ nuclear modification factor, the reference cross section σpp

at 5.02 TeV is needed. Since there was no direct measurement at 5.02 TeV, σ5.02TeVpp

has been obtained interpolating the differential cross sections measured in pp collisions

at
√
s = 2.76 and at 7 TeV with three different functions: a straight line, a power-law

and an exponential (see fig. 5.11).

The uncertainty on the interpolation has been calculated as the RMS of the σ5.02TeVpp

distribution obtained fluctuating 1000 times the experimental points.

The interpolated cross sections, relative to the 4.0 < ycms < 2.5 rapidity range of

the reference pp measurements, were then scaled to the forward and backward rapidity

windows 2.03 < ycms < 3.53 and 4.46 < ycms < 2.96. The relative scaling factors fpPb =

1.135 ± 0.031 and fPbp = 0.850 ± 0.028 were evaluated as an average from simulations
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with PHOJET and various tunes of PYTHIA; the uncertainties (amounting to about

3%) correspond here to the differences between the considered predictions and have

been included in the systematic uncertainty.

Figure 5.11: d2σpp/dydpT values measured at 2.76 and at 7 TeV, interpolated with a

straight line (left), a power-law (center) and an exponential (right).

The pT -differential cross section at 5.02 TeV obtained through the interpolation, is

shown in fig. 5.12, left side, where it is compared with the values at 2.76 and 7 TeV.

Figure 5.12: Left side: d2σpp/dydpT (5.02 TeV) obtained through the interpolation, com-

pared with d2σpp/dydpT (2.76 TeV) and d2σpp/dydpT (7 TeV). Right side: d2σpp/dydpT

(5.02 TeV) fitted with a power-law function

The systematic uncertainty due to the interpolation is taken as the half of the maximum
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difference between the values given by the three functions.

Fig. 5.12, right side, shows the d2σpp/dydpT (5.02 TeV) fitted with a power-law func-

tion. The replacement of the power-law with a Levy-Tsallis gives indistinguishable

results in this pT region. The values corresponding to pT > 5 GeV/c are obtained ex-

trapolating the mean value of the power-law and Levy-Tsallis functions at those values

of pT .

Values for d2σpp/dydpT (5.02 TeV) in the various pT bins, together with their systematic

uncertainty, are summarized in table 5.5.

Table 5.5: d2σpp/dydpT (5.02 TeV) obtained with the interpolation procedure in the

various pT bins and corresponding systematic uncertainty

pT
d2σpp
dydpT

(5.02 TeV/c) [µb/GeV/c] syst.

1-1.5 GeV/c 568.8 13.49%

1.5-2 GeV/c 257.3 6.84%

2-2.5 GeV/c 114.9 7.13%

2.5-3 GeV/c 54.0 6.93%

3-3.5 GeV/c 27.1 6.57%

3.5-4 GeV/c 14.5 8.74%

4-4.5 GeV/c 8.2 13.48%

4.5-5 GeV/c 4.9 19.43%

5-6 GeV/c 2.5 28.47%

6-7 GeV/c 1.1 41.76%

5.7 φ nuclear modification factor RpPb

φ nuclear modification factor RpPb has been calculated as:

RpPb =
Y (∆pT )

σppTpPb
(5.4)

where σpp is the φ cross section at
√
sNN = 5.02 TeV and TpPb is the nuclear overlap

function in p-Pb collisions, calculated with a fit based on the Glauber model of the

VZERO amplitude distribution [82]: TpPb = 0.0983 ± 0.0034 mb−1.

As already shown in 5.6, σpp was calculated through an interpolation between the

measurements at
√
s = 2.76 and 7 TeV.

φ RpPb at forward and backward rapidities as a function of pT are shown in fig. 5.13.

The nuclear modification factor is compatible with unity for pT > 3 GeV/c at forward
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Figure 5.13: φ RpPb at forward (left) and backward rapidity (right) as a function of pT .

The grey boxes represent the uncorrelated systematic uncertainties, while the lilac box

represents the correlated ones.

rapidity and is larger at backward rapidity. This effect is due to the asymmetry in the

particle production present between forward and backward rapidities.

5.7.1 Systematic uncertainty on φ RpPb

Several sources of systematic uncertainty in the evaluation of φ RpPb have been taken

into account:

• systematic uncertainty on the φ yield, uncorrelated as a function of pT , already

calculated in 5.5.1;

• systematic uncertainty on σpp, correlated as a function of pT , calculated in 5.6;

• systematic uncertainty on TpA, correlated as a function of pT (3.66%).

The values of the φ RpPb at forward and backward rapidities in the different pT bins,

together with the systematic uncertainties bin to bin, are summarized in tables 5.6 and

5.7 respectively.

5.7.2 φ RpPb: comparison with charged particles

The comparison between the φ RpPb, obtained in the muon channel at both forward and

backward rapidities, and the RpPb of the charged particles measured with the Central
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Table 5.6: φ RpPb at forward rapidity as a function of pT in different pT bins (p-Pb

collisions)

pT RpPb stat. syst.

1-1.5 GeV/c 0.5595 0.0430 17.36%

1.5-2 GeV/c 0.6889 0.0442 12.40%

2-2.5 GeV/c 0.8292 0.4551 12.03%

2.5-3 GeV/c 0.8446 0.0603 11.86%

3-3.5 GeV/c 0.9090 0.0740 11.56%

3.5-4 GeV/c 1.0267 0.0878 12.68%

4-4.5 GeV/c 0.9879 0.1187 15.34%

4.5-5 GeV/c 0.9243 0.1333 20.80%

5-6 GeV/c 0.9155 0.1408 29.44%

6-7 GeV/c 0.6572 0.1745 42.50%

Table 5.7: φ RpPb at backward rapidity as a function of pT in different pT bins (Pb-p

collisions)

pT RPbp stat. syst.

1-1.5 GeV/c 0.9612 0.0849 17.99%

1.5-2 GeV/c 1.2979 0.0751 11.62%

2-2.5 GeV/c 1.4090 0.07226 12.43%

2.5-3 GeV/c 1.5373 0.0741 10.60%

3-3.5 GeV/c 1.6078 0.0860 11.22%

3.5-4 GeV/c 1.7073 0.1015 11.90%

4-4.5 GeV/c 1.4517 0.1183 15.43%

4.5-5 GeV/c 1.4048 0.1314 21.20%

5-6 GeV/c 1.2623 0.1264 30.07%

6-7 GeV/c 0.9877 0.1595 43.95%

Barrel in the kaon channel at midrapidity, for |η| < 0.3 [83], is shown in fig. 5.14. The

φ RpPb shape is similar to the one of the charged particles, even if its values are smaller

in the entire pT range in the case of forward rapidity. The RpPb of the charged particles

sits between the φ RpPb at forward and backward rapidities.

A similar trend, where the nuclear modification factor grows as a function of pT , tending

to saturate at pT > 3 GeV/c, was observed also at RHIC by PHOBOS and BRAHMS

experiments.

Fig. 5.15 shows RdAu of charged particles as a function of pT measured by PHOBOS at

midrapidity in d-Au collisions at
√
sNN = 200 GeV, for three different pseudorapidity
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Figure 5.14: φ RpPb as a function of pT in the muon channel at forward rapidity compared

with charged particles RpPb in the kaon channel ad midrapidity. Statistics uncertainties are

represented by the bars; square brackets represent the uncorrelated systematic uncertainties

and the boxes are the correlated systematic uncertainties.

ranges (0.2 < η < 0.6, 0.6 < η < 1.0, 1.0 < η < 1.4) [84].

Figure 5.15: RdAu of charged particles as a function of pT in three different pseudorapidity

ranges measured by PHOBOS in d-Au collisions at
√
sNN = 200 GeV. Brackets show the

systematic uncertainty.

RdAu of charged particles as a function of pT at different pseudorapidities (η = 0, 1,
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2.2, 3.2), measured by BRAHMS in d-Au collisions at
√
sNN = 200 GeV [85] is instead

shown in fig. 5.16.

Figure 5.16: RdAu of charged particles as a function of pT at different pseudorapidities

measured by BRAHMS in d-Au collisions at
√
sNN = 200 GeV. One standard deviation

statistical errors are shown with error bars. Systematic errors are shown with shaded boxes

with widths set by the bin sizes. The shaded band around unity indicates the estimated

error on the normalization to 〈Ncoll〉. Dashed lines at pT < 1.5 GeV/c show the normalized

charged-particle density ratio 1
〈Ncoll〉

dN/dη(Au)
dN/dη(pp) .

5.8 Yield ratio of forward to backward rapidity RFB

The RFB is defined as the yield ratio of forward to backward region. The advantage

in using RFB consists in the fact that it does not depend on the interpolation used to

calculate σpp, nor on the Glauber model used to calculate the nuclear overlap function.

On the other hand, the analysis must be restricted to the common |ycm| region, of

about half a rapidity unit, thus leading to a reduction of the usable statistics.

The RFB of φ meson as a function of pT was evaluated in the common rapidity window

2.96 < |ycm| < 3.53 as

RFB =
Y pPb
φ

Y Pbp
φ

It is shown in fig. 5.17. The first bin between 1 and 1.5 GeV/c has been excluded

because of the very poor statistics in that bin in the rapidity window 2.96 < |ycm| <
3.53. The trend as a function of pT is constant within uncertainties; RFB integrated

value in the range 1.5 < pT < 7 GeV/c is 0.53 ± 0.03, differing from unity by 47%: this

is a consequence of the asymmetry in the particle production present between forward

and backward rapidities.
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Figure 5.17: φ RFB as a function of pT for 2.96< |ycm| < 3.53.

The sources of systematic uncertainty in RFB evaluation come only from the systematic

uncertainty on the yields (see 5.5.1).

RFB values bin to bin, together with their systematic uncertainty, are summarized in

table 5.8.

Table 5.8: φ RFB as a function of pT in different pT bins

pT RFB stat. syst.

1.5-2 GeV/c 0.5096 0.0796 15.71%

2-2.5 GeV/c 0.5085 0.0754 15.20%

2.5-3 GeV/c 0.4547 0.0817 14.33%

3-3.5 GeV/c 0.5147 0.0797 16.04%

3.5-4 GeV/c 0.6737 0.1109 18.63%

4-4.5 GeV/c 0.6025 0.1234 11.52%

4.5-5 GeV/c 0.5781 0.1330 17.24%

5-6 GeV/c 0.5704 0.1870 11.76%

6-7 GeV/c 0.5144 0.3468 19.97%
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6.1 Data sample and applied selections

The Pb-Pb run at LHC was performed in 2011 at
√
sNN = 2.76 TeV.

The statistics consists of 134 runs (the complete run list is reported in 6.8), where the

data were collected with the unlike and like-sign dimuon triggers (called CPBI1MUL

and CPBI1MLL), with the hardware trigger threshold set at the low-pT level (pµT & 1

GeV/c). The collected opposite-sign dimuon triggers were 1.715 ·107.
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We have performed our analysis taking into account four different centrality classes:

0-20%, 20-40%, 40-60% and 60-90%.

The centrality of the events was determined with a fit based on the Glauber model of

the V0 amplitude distribution [82]; this fit allows also to extract variables such as the

number of participants and the nuclear overlap function TAA per slice of centrality.

The corresponding values of participating nucleons and TAA for each centrality class

are given in table 6.1

Table 6.1: Number of participating nucleons Npart and values of the nuclear overlap

function TAA for each centrality class.

Centrality Npart TAA (mb−1)

0-20% 308.20 ± 3.40 18.93 ± 0.74

20-40% 157.30 ± 3.40 6.86 ± 0.28

40-60% 68.76 ± 2.40 2.00 ± 0.11

60-90% 17.55 ± 0.72 0.31 ± 0.03

0-90% 124.29 ± 2.29 6.26 ± 0.24

The selections applied to the data are:

• physics selection to remove the beam-gas background;

• both muon tracks reconstructed in the muon tracker match a tracklet recon-

structed in the muon trigger at the low-pT level (pµT & 1 GeV/c);

• 2.5 < ηµ < 4 (to cut the tracks at the borders of the detector acceptance);

• pµT > 0.85 GeV/c: this cut elminates the residual muons that survive the trigger

selection at low pT . It has to be reminded that the trigger does not introduce

a sharp pT cut, but it is rather characterized by an efficiency that grows as a

function of pT , as shown in fig. 6.6;

• χ2
µ < 5;

• 2.5 < yµµ < 4;

• pµµT > 2 GeV/c (also consequence of the hardware trigger threshold set at ∼ 1

GeV/c, thus causing a negligible φ acceptance × efficiency for pT < 2 GeV/c).
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6.2 Background subtraction

In the mass region 0 < M < 10 GeV/c2, the numbers of muon pairs satisfying the

applied selections are:

• Nµ+µ− ∼ 1.99 · 106

• Nµ+µ+ ∼ 9.74 · 105

• Nµ−µ− ∼ 9.16 · 105

6.2 Background subtraction

To evaluate the combinatorial background, the event mixing technique already de-

scribed for the pp analysis at 2.76 TeV has been used in Pb-Pb analysis too.

The event mixing was performed in this case requiring that the events to be mixed had

similar event plane and centrality. We used 10 equally spaced bins in the event plane

of the reaction between -π/2 and π/2, and 13 centrality bins that were not equally

spaced, but that had the following boundaries: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,

60, 70, 90%. These values were chosen on the basis of the centrality distribution of the

events triggered by the dimuon triggers, as shown in fig. 6.1.

Figure 6.1: Centrality disdtribution of the events with dimuon triggers in Pb-Pb analysis.

The distribution obtained from the event mixing has been normalized to 2R
√
N real
µ+µ+N

real
µ−µ− .

The R factor (already defined in 4.2) is equal to unity for Mµµ > 1 GeV/c2 and ranges

between 0.9 and 1.03 for Mµµ < 1 GeV/c2. It is independent of centrality (see fig. 6.2).

The opposite-sign mass spectra before the background subtraction, together with the

background evaluated through the event mixing, are shown in fig. 6.3, for dimuon
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Figure 6.2: R factor as a function of the mass for different centrality bins for dimuon

pT > 2 GeV/c

pT > 2 GeV/c, in the four centrality classes we have analyzed: looking at these plots,

it can be noticed that φ and ω peaks are more defined and neater going from central to

peripheral collisions. Fig. 6.4 shows the signal/background ratio in the same centrality

classes: the S/B ratio for the φ grows from ∼ 0.07 in central collisions to ∼ 2 in

peripheral collisions.

As it will be discussed later, the analysis has been restricted to pT > 2 GeV/c, because

for pT < 2 GeV/c the hardware pT trigger set at pT & 1 GeV/c does not allow to

extract any signal.

In order to verify the quality of our background subtraction, the like-sign mass spectra

obtained from the data have been compared with the ones obtained from the event

mixing. Fig. 6.5 shows the ratio between the like-sign real and mixed spectra as a

function of the mass, for dimuon pT > 2 GeV/c.

The ratios are flat for Mµµ > 0.6 GeV/c2 and slightly greater than 1, differing from

unity by about 2% for most central collisions.

This value has been taken as a conservative estimate of the systematic uncertainty on

the background normalization.
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6.3 Acceptance × efficiency correction

Figure 6.3: Raw mass spectra compared to event mixing in different centrality bins for

dimuon pT > 2 GeV/c.

6.3 Acceptance × efficiency correction

The use of the pure signal simulations to calculate A×ε, as done in pp and p-Pb

analysis, does not allow the extraction of the reconstruction efficiency for the different

sources as a function of the centrality, mandatory in the case of Pb-Pb analysis.

In order to do that, we had to perform simulations of the φ meson using the embedding

technique.

The embedding Monte Carlo technique consists in simulating a signal particle and

embedding the detector response into the raw data of a real event. The embedded

event is then reconstructed as if it were a normal real event. The embedding technique

has the advantage of providing the most realistic background conditions. Such realistic

description is necessary if the environment (high particle multiplicity) could alter the
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Figure 6.4: Signal/background ratio in different centrality bins for dimuon pT > 2 GeV/c

track reconstruction efficiency, as it is the case in central Pb-Pb collisions.

Fig. 6.6 shows A× ε for φ meson as a function of pT , integrated in centrality, obtained

with the simulations performed with the embedding. It can be observed that A× ε is

negligible for pT < 2 GeV/c.

Simulations were performed using as input pT distribution the one extracted from the

pp analysis at 2.76 TeV [64]. In order to extract the φ acceptance × efficiency integrated

for 2 < pT < 5 GeV/c, the input pT distribution was replaced with the function that

describes the data measured in central Pb-Pb collisions through the kaon channel at

midrapidity. Fig. 6.7 shows the fit to the experimental points from KK channel with a

Levy-Tsallis functionfLevy (already defined in 4.5). For comparison the function that

fits the pp data is also reported as a dashed line.

In order to extract the acceptance × efficiency with the correct function, we replaced the

generated pT distribution with fLevy(pT ), obtaining the corresponding reconstructed pT

distribution as fRec(pT ) = fLevy(pT ) ·A× ε(pT ).

A×ε for 2 < pT < 5 GeV/c is calculated as:

A× ε2−5 =

∫ 5
2 frec(pT )dpT∫ 5
2 fgen(pT )dpT

. (6.1)
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Figure 6.5: Like-sign pairs real/mixed ratio as a function of the mass in different centrality

bins for dimuon pT > 2 GeV/c (different range in y axis for centrality bins between 60 and

90%)

To evaluate the systematic uncertainty on the A×ε in the pT range 2 < pT < 5 GeV/c,

we have considered two different functions (the Levy-Tsallis fLevy and an exponential,

fpow = A · pT · e−mT /T ) that fit the central barrel pT distribution, and we have varied

the content of each pT bin according to its statistical error, refitting every time and

recalculating A× ε. The uncertainties so calculated are about 4% (see fig. 6.8).

The same method applied to φ was used to calculate ω acceptance × efficiency too,

using the same function used for φ mesons, with the same parameters. φ and ω mesons

A×ε as a function of centrality with their systematic uncertainty is shown in fig. 6.9.

The values of A× ε for φ and ω are summarized in table 6.2 for the different centrality

classes.
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Figure 6.6: φ acceptance x efficiency as a function of pT , integrated in centrality, from

simulations with the embedding technique.

Figure 6.7: Fit to the experimental points from KK channel at midrapidity in Pb-Pb

collisions at 2.76 TeV with fLevy (red line). The green dashed line represents the function

that fits the pp data in the muon channel at forward rapidity at 2.76 TeV.
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Figure 6.8: pT distribution varied and fitted to calculate the systematic uncertainty on

A× ε.

Figure 6.9: Acceptance x efficiency for φ and ω mesons as a function of centrality for

embedding simulations (2 < pT < 5 GeV/c).

6.4 Signal extraction

The fit to the dimuon invariant mass spectrum, for dimuon pT > 2 GeV/c, is shown

in figures 6.10 and 6.11, in the different centrality classes and integrated in centrality

respectively.
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Table 6.2: A× ε resampled values for φ and ω mesons in different centrality classes

Centrality A×ε (φ) syst. A×ε (ω) syst.

0-20% 5.66% 0.23 6.00% 0.23

20-40% 6.05% 0.22 6.03% 0.23

40-60% 6.30% 0.23 6.39% 0.25

60-90% 6.56% 0.31 6.67% 0.28

0-90% 5.55% 0.83 5.66% 0.89

The fit was performed with the contributions of the 2-body decays of ρ + ω and φ

mesons, while the background processes have been described with an additional em-

pirical function. This choice is due to the fact that there might be present other

contributions than the ones coming from the hadronic cocktail, such as the in-medium

modification of the ρ meson or the thermal dilepton continuum, to which, at this stage

of the analysis, we are not interested, since our focus is on φ and ω mesons only. The

normalization of the ρ relative to the ω was fixed requiring that σρ = σω.

The raw number of φ and ω mesons, obtained for the four centrality classes and for

dimuon 2 < pT < 5 GeV/c, is reported in table 6.3.

Table 6.3: Nraw
φ and Nraw

ω in different centrality bins for dimuon 2 < pT < 5 GeV/c

Centrality Nraw
φ Nraw

ω

0-20% 1506 ± 335 1675 ± 376

20-40% 1022 ± 148 1002 ± 165

40-60% 448 ± 58 467 ± 64

60-90% 111 ± 20 143 ± 22

0-90% 3073 ± 371 3271 ± 417

In fig. 6.12 the fit to the mass spectrum is shown for 1 < pT < 2 GeV/c, for pµT > 0.85

GeV/c: extracting a signal in this cases is not possible, because of the high pT threshold

(∼1 GeV/c) of the low-pT trigger.It was therefore decided to limit the analysis to

dimuon pT > 2 GeV/c.

6.4.1 Systematic uncertainties on signal extraction

In the evaluation of the systematic uncertainty in the raw number of φ extracted,

several sources have been taken into account:
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Figure 6.10: Fit to the mass spectrum in different centrality classes for dimuon pT > 2

GeV/c in Pb-Pb collisions at 2.76 TeV

• background subtraction;

• cut on single muon pT ;

• description of the correlated background;

• mass fit range;

• tracking efficiency;

• trigger efficiency.
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Figure 6.11: Fit to the mass spectrum integrated in centrality for dimuon pT > 2 GeV/c

in Pb-Pb collisions at 2.76 TeV

6.4.1.1 Uncertainty due to background subtraction

To evaluate the uncertainty related to the background subtraction, the background

normalization has been varied by ± 2% (see figure 6.13), corresponding to the difference

from unity in the ratio between like sign real and mixed pairs mass spectra, as discussed

in 6.2. Applying this variation in both the directions, the level of the continuum is

modified, but the raw number of φ for the most central bin varies only by 3.8% in

central collisions, varying by a quantity lower than 1% for centralities higher than 20%:

it has to be noticed that this is a much smaller value with respect to the statistical

error.

6.4.1.2 Uncertainty due to the cut on single muon pT

To evaluate the uncertainty related to the cut on single muon pT , we have applied three

different cuts (0.7, 0.85 and 1 GeV/c, see fig. 6.14); the variations on the number of

Nφ corrected by the corresponding A×ε go from 2.6% to 9% depending on centrality.
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Figure 6.12: Fit to the mass spectrum integrated in centrality for 1 < pT < 2 GeV/c,

for pµT > 0.85 GeV/c.

Figure 6.13: Fit to the mass spectrum for the 0-20% centrality class for dimuon pT > 2

GeV/c, with a +2% variation (left side) and -2% variation (right side) on background

normalization
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Figure 6.14: Fits to the mass spectrum for the different centrality classes for dimuon

pT > 2 GeV/c with different single muon pT cuts: 0.7 GeV/c (left), 0.85 GeV/c (center),

1 GeV/c (right)
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6.4 Signal extraction

Figure 6.15: Fits to the mass spectra for the different centrality classes for dimuon pT > 2

GeV/c with different functions: hadronic cocktail (left); Crystal Ball for φ and ρ+ω peaks

and exponential + constant for the other processes (center); Crystal Ball for φ and ρ+ ω

peaks and exponential + Landau function for the other processes (right)
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6.4.1.3 Uncertainty due to the description of the correlated background

To evaluate the uncertainty coming from the description of the correlated background,

a fit with two empirical functions alternative to the hadronic cocktail, was performed.

In these functions, φ and ρ+ω peaks were described by Crystall Ball functions (already

defined in 4.4.1), while to describe the other processes, an exponential plus a constant,

or an exponential plus a Landau function, were used (see fig. 6.15). The fit with the

hadronic cocktail was taken as reference. In this case we have variations in N raw
φ that

go from 3.15% to 6.21%, depending on centrality.

6.4.1.4 Uncertainty due to the range in the fit to the mass spectrum

We have evaluated the systematic uncertainty coming from the range in the fit to the

mass spectrum, considering three different fit ranges: 0.2 < Mµµ < 1.5 GeV/c2 (taken

as reference), 0.2 < Mµµ < 1.8 GeV/c2 and 0.2 < Mµµ < 2.0 GeV/c2 (see fig. 6.16).

The differences in the raw number of φ vary from 1.5% to 3.3%, depending on centrality.

6.4.1.5 Uncertainty due to the tracking efficiency

The systematic uncertainty on the tracking efficiency has several components [86]: a

first contribution of 4% is given by the measured differences on the tracking efficiencies

in simulations and in peripheral events from real data. This uncertainty is correlated

as a function of centrality.

An additional systematic uncertainty of 2% is due to the correlated dead areas, which

are dead areas located in front of each other in the same tracking station and that lead

to an overestimation of the efficiency. Also this uncertainty is correlated as a function

of centrality.

Adding in quadrature these components, we have eventually a systematic uncertainty

of 4.5% in all centrality classes.

6.4.1.6 Uncertainty due to the trigger efficiency

To evaluate the systematic uncertainty on the trigger efficiency, the first step has

been to fit the ratio of the events with two different trigger thresholds (events with

pT & 1 GeV/c, from now on called pT1 threshold, over events with pT & 0.5 GeV/c,
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6.4 Signal extraction

Figure 6.16: Fits to the mass spectra for the different centrality classes for dimuon pT > 2

GeV/c with different mass fit range: 0.2 < Mµµ < 1.5 GeV/c2 (left), 0.2 < Mµµ < 1.8

GeV/c2 (center) and 0.2 < Mµµ < 2.0 GeV/c2 (right).

from now on called pT2 threshold), as a function of pT , in minimum bias events, with
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Figure 6.17: Ratio between events triggered with pT1 threshold over events triggered

with pT2 threshold, as a function of pT , fitted with the empirical function f(pT ).

the empirical function:

f(pT ) =

{
A+B · (1 + Erf(pT − pcutT )/

√
2σ) if pT < pvalueT

A′ +B′ · (1 + Erf(pT − p
′cut
T )/

√
2σ′) if pT > pvalueT

(6.2)

where A, A’, B, B’, σ, σ′, pcutT , pcut
′

T and pvalueT are free parameters and the function

Erf(x) is defined as Erf(x) = 2√
π

∫ x
0 e
−x2

dx. This fit is shown in fig. 6.17.

The histograms of the embedded Monte Carlo simulations have therefore been filled

requiring that the events matched the pT1 trigger threshold (instead of the standard

pT2 threshold request), and at the same time weighting the dimuon histograms with

f(pT (µ1)) * f(pT (µ2)), where the parameters of the functions f(pT (µ1)) and f(pT (µ2))

are the ones obtained from the above mentioned fit.

The acceptance × efficiency integrated for 2 < pT < 5 GeV/c has been then recalcu-

lated: the difference between this value and the one obtained in 6.3 gives the systematic

uncertainty (from 0.1% to 1.9% depending on centrality).
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Considering all these contributions, we can obtain the final systematic uncertainties for

the four different centrality classes we have considered.

The systematic uncertainties on N raw
ω have been calculated in the same way.

The values of systematics on N raw
φ and N raw

ω are summarized in table 6.4 and in table

6.5 respectively.

Table 6.4: Systematic uncertainties on Nraw
φ in different centrality bins, for dimuon

2 < pT < 5 GeV/c

Centrality 0-20% 20-40% 40-60% 60-90%

BKG subtraction 3.79% < 0.10% < 0.10% < 0.10%

Cut on pT (µ) 8.90% 6.67% 3.05% 3.71%

Fit function 3.41% 2.59% 3.50% 5.00%

Fit range 2.49% 1.45% 3.29% 2.08%

Tracking efficiency 4.50% 4.50% 4.50% 4.50%

Trigger efficiency 1.90% 0.10% 1.90% 0.60%

Total 11.63% 8.63% 7.51% 7.98%

Table 6.5: Systematic uncertainties on Nraw
ω in different centrality bins, for dimuon

2 < pT < 5 GeV/c

Centrality 0-20% 20-40% 40-60% 60-90%

BKG subtraction 2.61% < 0.10% < 0.10% < 0.10%

Cut on pT (µ) 6.44% 2.77% 1.40% 2.73%

Fit function 7.51% 12.40% 14.69% 11.11%

Fit range 5.44% 1.34% 2.33% 0.93%

Tracking efficiency 4.50% 4.50% 4.50% 4.50%

Trigger efficiency 1.90% 0.10% 1.90% 0.60%

Total 12.57% 13.57% 15.72% 12.34%

6.5 φµµ/(ρµµ + ωµµ) ratio

The
BRσφ

BRσρ+BRσω
ratio (from now on indicated as φµµ/(ρµµ + ωµµ)) has been calcu-

lated as the ratio between the raw number of φ and ω mesons, corrected for the

acceptance×efficiency, in each centrality class. φ/(ρ + ω) as a function of the number

of participating nucleons Npart is shown in fig. 6.18, where the Pb-Pb values obtained

in the different centrality classes with the dimuon triggers are compared to the value
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Figure 6.18: φµµ/(ρµµ + ωµµ), corrected for the acceptance×efficiency, as a function of

Npart. Results from Pb-Pb analysis in different centrality classes are compared with pp

result at 2.76 TeV.

obtained in pp analysis at 2.76 TeV with the data collected in 2011. φµµ/(ρµµ + ωµµ)

in Pb-Pb increases with respect to the value in pp by a factor of about 2, and tends to

saturate from peripheral towards central events, indicating an enhancement of φ meson

with respect to ρ and ω mesons in central collisions.

6.5.1 Systematic uncertainty on φµµ/(ρµµ + ωµµ) ratio

The systematic uncertainty on φµµ/(ρµµ+ωµµ) ratio comes from the systematic uncer-

tainties on N raw
φ and N raw

ω (see 6.4.1) and from the A×ε correction (see 6.3).

Among the contributions of N raw
φ and N raw

ω systematic uncertainty, the uncertainties

on tracking and trigger efficiency (the same for both N raw
φ and N raw

ω ) cancel out in the

ratio, while the uncertainty related to the background subtraction is very small and

has been neglected.

The uncertainty related to the A×ε correction cancel out in the ratio too.

The remaining sources are then:

106



6.6 φ yield

• cut on single muon pT (see 6.4.1.2);

• description of the correlated background (see 6.4.1.3);

• range of the fit to the mass spectrum (see 6.4.1.4).

The systematic uncertainties on φµµ/(ρµµ + ωµµ) are summarized in table 6.6.

Table 6.6: Systematic uncertainties on φµµ/(ρµµ +ωµµ) in different centrality classes, for

dimuon 2 < pT < 5 GeV/c

Centrality 0-20% 20-40% 40-60% 60-90%

Background subtraction 1.25% < 1% < 1% < 1%

Cut on pT (µ) 3.37% 9.99% 1.72% 5.01%

Fit function 10.80% 16.07% 16.74% 7.86%

Mass fit range 6.71% 2.02% 1.49% 2.07%

Total 13.21% 19.03% 16.89% 9.54%

6.6 φ yield

Figure 6.19: φ yield as a function of the number of participating nucleons.
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Figure 6.20: φ yield as a function of pT , fitted with the Levy-Tsallis function.

The φ yield as a function of the number of participating nucleons has been calculated

for each centrality class according to the formula

Y =
Nφ
raw

AεBRφ→e+e−NMB
(6.3)

The number of minimum bias events has been obtained scaling the number of opposite

sign dimuon triggers NOS in each run by the normalization factor fnorm through the

relation NMB = fnorm ∗NOS .

The normalization factor fnorm has been obtained through a fit with a constant to the

run by run values of f runnorm, where

f runnorm =
N trig
MB

N trig
OS&MB

(6.4)

Here N trig
MB is the number of events flagged with the minimum bias trigger and N trig

OS&MB

is the number of events triggered by both minimum bias and dimuon triggers in each

run.

The final value of fnorm given by the fit is fnorm = 27.28±0.02(stat.)±0.54(syst.) [86].
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6.6 φ yield

The φ yield as a function of the number of participating nucleons, for 2 < pT < 5

GeV/c, is shown in fig. 6.19. Its trend is similar to the one of the φ/(ρ + ω) ratio,

tending to saturate towards central collisions.

The yield as a function of pT , integrated in centrality, is instead shown in fig. 6.20.

The data are well fitted by the Levy-Tsallis function.

Figure 6.21: φ pT distribution for different centralities compared with 2.76 TeV pp

parametrization (used in our MC simulations, with dashed lines in the plot) and with the

function used in φ→ K+K− analysis (used to resample the acceptance × efficiency, solid

line).

The φ pT distribution is shown in fig. 6.21 for the centrality classes 0-20 and 20-90%

and integrated in centrality. Data are compared with the 2.76 TeV pp parametrization

(dashed line in the plot) and with the function from φ → K+K− analysis used to

resample the acceptance (see 6.3, solid line in the plot). Data are clearly best described

by the second function, showing the correctness of our decision to replace the 2.76 TeV

pp parametrization with the one from φ→ K+K− analysis.

A comparison between the φ yield in the pT range 2 < pT < 5 GeV/c per 〈Npart〉 as

a function of 〈Npart〉, measured in the muon channel at forward rapidity and with the

central barrel in the KK channel at midrapidity, is shown in fig. 6.22. Results from pp

collisions at the same energy are shown for comparison too. While the φ yield in the

muon channel grows from peripheral to central collisions and tends to saturate towards

central collisions, the yield in the KK channel grows as a function of 〈Npart〉 but shows

no saturation. The different yield measured in the muon and KK channels suggests a

possible different hydrodynamic push at forward and midrapidity.
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Figure 6.22: Comparison between dN/dy/ 〈Npart〉 as a function of 〈Npart〉 measured in

the muon channel at forward rapidity and with the central barrel in the KK channel at

midrapidity, in Pb-Pb collisions at
√
sNN = 2.76 TeV, for 2 < pT < 5 GeV/c. Results

from pp collisions at the same energy are shown for comparison too.

6.6.1 Systematic uncertainty on φ yield

The systematic uncertainty on the φ yield comes from the systematic uncertainties on:

• N raw
φ (see 6.4.1);

• acceptance × efficiency correction (already described in 6.3);

• branching ratio of φ in dielectrons (1%);

• scaling factor fnorm (2%).

These values are summarized in table 6.8.

6.7 φ nuclear modification factor RAA

The nuclear modification factor RAA (see also 1.4.0.1) is defined as the yield ratio of

nucleus-nucleus collisions to inelastic pp collisions, normalized by the number of binary
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Table 6.7: Systematic uncertainties on φ yield in different centrality classes

Centrality 0-20% 20-40% 40-60% 60-90%

Nraw
φ 11.63% 8.63% 7.51% 7.98%

A×ε (φ) 3.88% 3.32% 3.80% 4.45%

BRφ→e+e− 1.02% 1.02% 1.02% 1.02%

fnorm 1.98% 1.98% 1.98% 1.98%

Total 12.46% 9.51% 8.71% 9.41%

Figure 6.23: φ RAA as a function of the number of participating nucleons.

inelastic nucleon-nucleon collisions.

The φ nuclear modification factor has been calculated for each centrality class in the

rapidity range 2.5 < y < 4 and in the dimuon pT range 2 < pT < 5 GeV/c, through

the formula:

RAA =
Yφ

〈TAA〉σppφ
(6.5)

where Yφ is the φ yield for that centrality class, 〈TAA〉 is the nuclear overlap function

in the same centrality class (see table 6.1) and σpp is the φ cross section measured in

pp collisions at 2.76 TeV in the same pT interval (see 4.5).
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Figure 6.24: PHENIX - φ RAA as a function of Npart in Au-Au and Cu-Cu collisions at
√
sNN = 200 GeV. The uncertainty in the determination of 〈Ncoll〉 is shown as a box on

the left.

The φ RAA as a function of the number of participating nucleons is shown in fig. 6.23.

RAA is compatible with unity, within the uncertainty, in peripheral collisions, indicating

that these collisions behave as a superposition of incoherent pp collisions. In the most

central bin, φ RAA value is about 0.5, showing a suppression of the φ yield with respect

to the pp reference in the intermediate pT region. This trend is similar to the one

observed by the PHENIX experiment at similar pT values [59] and shown in fig. 6.24.

It has to be noticed that PHENIX measurement in Au-Au collisions at 200 GeV is less

suppressed than ours in Pb-Pb collisions at the much higher energy of 2.76 TeV. to the

energy of the collision, being more suppressed as the energy increases.

A comparison between our results in the muon channel at forward rapidity and the

results obtained by the central barrel in the KK channel at midrapidity is shown in

fig. 6.25. Within the uncertainties, each point measured in the dimuon channel is in

agreement with the corresponding one in the hadronic channel.

It has however to be noticed that the most peripheral points of the RAA in the muon

channel are higher than the ones in KK, while the semicentral and especially the central

points are lower, decreasing more rapidly with respect to the points in the KK channel.

This is a consequence of the differences we observed in the φ yield in the two channels.

These differences are currently under study.
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Figure 6.25: Comparison of φ RAA as a function of Npart in the KK channel (|y| < 0.5)

and in the µµ channel (2.5 < y < 4).

6.7.1 Systematic uncertainty on φ RAA

The sources of systematic uncertainty in the evaluation of the nuclear modification

factor of the φ meson come from the uncertainties on the yield (already discussed in

6.6.1), on the nuclear overlap functions TAA and on the reference cross section measured

in pp collisions at 2.76 TeV (described in 4.5.1).

These values are summarized in table 6.8.

Table 6.8: Systematic uncertainties on φ RAA in different centrality classes, for dimuon

2 < pT < 5 GeV/c

Centrality 0-20% 20-40% 40-60% 60-90%

φ yield 13.9% 9.4% 8.4% 8.4%

TAA 3.9% 4.1% 5.5% 9.7%

σpp 6.6% 6.6% 6.6% 6.6%

Total 15.9% 12.2% 12.0% 14.4%
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6.8 φ nuclear modification factor Rcp

Figure 6.26: φ Rcp as a function of the number of participating nucleons

The Rcp (see also 1.4.0.1) is defined as the ratio of the yields in central to peripheral

collisions normalized by Nbin.

For each centrality bin it has been calculated as:

Rcp =
Y central
φ / 〈TAA〉central

Y peripheral
φ / 〈TAA〉peripheral

(6.6)

where the peripheral bin is the one corresponding to 60-90% centrality.

φ Rcp as a function of Npart is shown in fig. 6.26.

The contributions to systematic uncertainties are the ones on the φ yield and on TAA,

already described in 6.7.1.

Rcp is equal to unity in the most peripheral bin by definition; it is still compatible with

unity for semiperipheral collisions, while it is suppressed for semicentral and central

collisions.
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Conclusions

The aim of this work was the study of the φ meson production at forward rapidity in

pp, p-Pb and Pb-Pb collisions in the muon channel with the ALICE apparatus.

In pp analysis (2013 data) the φ differential and integrated cross sections for 1 < pT < 5

GeV/c and 2 < pT < 5 GeV/c have been extracted.

The integrated cross sections calculated in the two pT ranges are:

σφ(1 < pT < 5GeV/c) = 0.542± 0.052(stat)± 0.043(syst)mb

σφ(2 < pT < 5GeV/c) = 0.1082± 0.0095(stat)± 0.0071(syst)mb

Comparison with PHOJET and with the PYTHIA tunes Perugia-0, Perugia-11, ATLAS-

CSC and D6T shows that the PYTHIA tunes Perugia-0 and Perugia-11 strongly un-

derestimate the measured cross section; PYTHIA ATLAS-CSC also underestimates the

data (even if to a lesser degree than Perugia-0 and Perugia-11), while PYTHIA D6T

slightly overestimates them. PHOJET is instead in good agreement with the measured

values.

In p-Pb analysis (2013 data), the φ yield as a function of pT , together with the φ

nuclear modification factor RpPb as a function of pT at both forward and backward

rapidities, and the nuclear modification factor RFB in the common rapidity window

between forward and backward rapidities have been extracted.

φ RpPb at forward rapidity is compatible with unity for pT > 3 GeV/c and it is larger

at backward rapidity. This effect is due to the asymmetry in the particle production

present between forward and backward rapidities.

The comparison between φ RpA, obtained in the muon channel at both forward and

backward rapidities, and the RpA of the charged particles measured with the Central

Barrel in the kaon channel at midrapidity, for |η| < 0.3, shows that the φ RpA shape is

similar to the one of the charged particles, even if its values are smaller in the entire
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pT range in the case of forward rapidity. The RpA of the charged particles sits between

the φ RpA at forward and backward rapidities.

The yield ratio of forward to backward rapidity RFB as a function of pT , in the common

rapidity window 2.96 < |ycm| < 3.53 between forward and backward rapidities, is

constant within uncertainties; its integrated value in the range 1.5 < pT < 7 GeV/c is

0.53 ± 0.03, differing from unity by 47%: this is a consequence of the asymmetry in

the particle production present between forward and backward rapidities.

In Pb-Pb analysis (2011 data), the
BRσφ

BRσρ+BRσω
ratio and of the φ nuclear modification

factors RAA and Rcp as a function of the number of participating nucleons Npart have

been extracted.

The comparison of φµµ/(ρµµ+ωµµ) ratio with the value obtained in pp analysis at 2.76

TeV shows that φµµ/(ρµµ + ωµµ) in Pb-Pb increases with respect to the value in pp

by a factor of about 2, and tends to saturate from peripheral towards central events,

indicating an enhancement of φ meson with respect to ρ and ω mesons in central

collisions.

The comparison between the φ yield in the intermediate pT range 2 < pT < 5 GeV/c

per Npart as a function of Npart, measured in the muon channel at forward rapidity

and with the central barrel in the KK channel at midrapidity, shows two different

behaviors: the φ yield in the muon channel grows from peripheral to central collisions

and tends to saturate towards central collisions, while the yield in the KK channel

grows as a function of Npart but shows no saturation. This effect may be due to a

possible different hydrodynamic push at forward and at midrapidity.

The φ RAA as a function of the number of participating nucleons is compatible with

unity, within the uncertainty, in peripheral collisions, indicating that these collisions

behave as a superposition of incoherent pp collisions. In the most central bin, φ RAA

value is about 0.5, showing a suppression of the φ yield with respect to the pp reference

in the intermediate pT region.

A comparison between φ RAA in the muon channel at forward rapidity and the φ RAA

measured by the central barrel in the KK channel at midrapidity shows that, within

the uncertainties, each point measured in the dimuon channel is in agreement with the

corresponding one in the kaon channel. However, the most peripheral points of the

RAA in the muon channel are higher than the ones in KK, while the semicentral and

especially the central points are lower: this is a consequence of the differences between
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forward and midrapidity observed before in the φ yield. These differences are still under

investigation.

φ Rcp is equal to unity in the most peripheral bin by definition; it is compatible with

unity for semiperipheral collisions and it is suppressed for semicentral and central col-

lisions.
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List of runs

List of LHC13g runs (pp analysis)

197692, 197669, 197643, 197616, 197613, 197611, 197608, 197606, 197584, 197583,

197555, 197553, 197501, 197500, 197499, 197497, 197471, 197470

List of LHC13d runs (p-Pb analysis)

195682, 195724, 195725, 195726, 195727, 195760, 195765, 195767, 195783, 195787,

195826, 195827, 195829, 195830, 195831, 195867, 195869, 195871, 195872, 195873

List of LHC13e runs (p-Pb analysis)

196311, 196310, 196309, 196308, 196214, 196201, 196200, 196199, 196194, 196187,

196185, 196107, 196105, 196091, 196090, 196089, 196085, 196006, 196000, 195994,

195989, 195958, 195955, 195954, 195950, 195949

List of LHC13f runs (Pb-p analysis)

197388, 197387, 197386, 197349, 197348, 197342, 197341, 197302, 197299, 197298,

197258, 197256, 197255, 197254, 197247, 197189, 197184, 197153, 197152, 197150,

197148, 197147, 197145, 197144, 197143, 197142, 197139, 197138, 197099, 197098,

197092, 197091, 197089, 197011, 197003, 196974, 196973, 196972, 196965, 196876,

196869, 196774, 196773, 196722, 196721, 196720, 196702, 196701, 196648, 196646,

196608, 196605, 196601, 196568, 196566, 196564, 196563, 196535, 196528, 196477,

196475, 196474, 196433

List of LHC11h runs (Pb-Pb analysis)

170593, 170572, 170390, 170389, 170388, 170387, 170313, 170312, 170311, 170309,

170308, 170306, 170270, 170269, 170268, 170230, 170228, 170207, 170204, 170203,

170193, 170163, 170162, 170159, 170155, 170091, 170089, 170088, 170085, 170084,

170083, 170081, 170040, 170036, 170027, 169969, 169965, 169859, 169858, 169855,

169846, 169838, 169837, 169835, 169683, 169590, 169588, 169587, 169586, 169557,

169555, 169554, 169553, 169550, 169515, 169512, 169506, 169504, 169498, 169475,
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169420, 169419, 169418, 169417, 169415, 169411, 169238, 169236, 169167, 169160,

169156, 169148, 169145, 169144, 169138, 169099, 169094, 169091, 169045, 169044,

169040, 169035, 168992, 168826, 168777, 168514, 168512, 168511, 168467, 168464,

168461, 168460, 168458, 168362, 168361, 168342, 168341, 168325, 168322, 168318,

168311, 168310, 168213, 168212, 168208, 168207, 168206, 168205, 168203, 168181,

168175, 168173, 168172, 168115, 168108, 168107, 168076, 168069, 168066, 167988,

167987, 167986, 167985, 167921, 167920, 167915, 167818, 167814, 167813, 167808,

167807, 167806, 167713, 167706
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