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AbstratIn this thesis several results on two main topis are olleted: theoordination of networked multi agents systems and the di�usion ofinnovation of soial networks. The results are organized in two parts,eah one related with one of the two main topis. The ommon as-pet of all the presented problems is the following: all the system arerepresented by graphs.Two are the main ontributions of the �rst part.
• A formation ontrol strategy, based on gossip, whih leads a setof autonomous vehiles to onverge to a desired spatial dispo-sition in absene of a ommon referene frame. If the vehileshave ommon diretion, we prove that the proposed algorithm isrobust against noise on displaement measurement.
• The formalization of the Heterogeneous Multi Vehile RoutingProblem, whih an be desribed as follows: given an hetero-geneous set of mobile robots, and a set of task to be servedrandomly displaed in a 2D environment, �nd the optimal taskassignment to minimize the servie ost. We �rstly harater-ize the optimal entralized solution, and then we propose twodistributed algorithms, based on gossip, whih lead the systemto a sub-optimal solutions and are signi�antly omputationallymore e�ient than the optimal one.The ontributions of the seond part are the following.
• Adopting the Linear Threshold Model, we propose an algorithmbased on linear programming whih omputes the maximal o-hesive subset of a network. Moreover, we de�ne two problem of



interest in Soial Networks analysis and haraterize the optimalsolution: the In�uene Maximization Problem in Finite Timeand the di�usion of innovation over a target set.
• We haraterize the novel Non Progressive Linear ThresholdModel, whih extends the lassial Linear Threshold Model. Weformalize the model and we give a haraterization of the networkdynamis in terms of ohesive and persistent sets.
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Introdution
Introdution to the thesisThis thesis ollets several results on two main topis: the oordination of net-worked multi agents systems and the di�usion of innovation of soial networks.Both topis have been widely studied in literature in reent years and in di�erent�elds, sine it is evident in nature the enormous power of the olletivity respetto a single individual: the more a group of individuals is organized, the more itgrows up and generate well-being to eah member. Moreover, it has always beenevident that many target an be better reahed by a oordinated group of peoplethan a single individual, and in some ases ooperation is neessary. At the sametime, there are some phenomena in whih some individuals (or group of them)have a greater in�uene in the ommunity than others. Thus, in the last twodeades, researhers of di�erent �elds have been attrated by suh onepts: so-iology, biology, informatis, eletronis, arti�ial intelligene and ontrol theory.In this manusript we address di�erent problems haraterized by some om-mon aspets:

• all the onsidered the systems are sets of simple autonomous systems (agentsor individuals), whih are onneted together by a network;
• in eah system the behaviour of eah agent is in�uened by the behaviourof interonneted agents;
• all the desribed systems an be represented using graphs, thus all themathematial results of this thesis are based on graph theory.The thesis is organized in two parts, eah one foused on one of the two maintopis.
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Part 1: Coordination of multi-agent systems throughonsensusIn the �rst part we fous on the oordination of multi vehile systems. Given a setof autonomous vehile, whih an exhange information through a ommuniationnetwork, we propose several solutions of problems whih were largely studied inliterature in the reent years. All the results presented in this part are basedon distributed onsensus algorithm: agents exhange information aording to aommon protool in order to reah an agreement on a ertain quantity of interest.In partiular, most of the proposed solutions are based on gossip algorithms,whih are haraterized by the following:
• the ommuniation sheme involve only a ouple of agents at eah step;
• the ommuniation steps between ouple of agents are asynhronous.The ontribution of the �rst part are the following.(1) A formation ontrol strategy. We propose a novel deentralized oordinationstrategy, based on gossip, that allows a dynami multi-agent system, inabsene of a ommon referene frame, to estimate a ommon orientation andahieve arbitrary spatial formations with respet to the estimated frame.We assume that the agents are mobile point-mass vehiles that do nothave aess to absolute positions (GPS). To the best of our knowledge thisstrategy extends the state of art sine it simultaneously solves two problemwhih are ommonly onsidered separately:

• the ahievement of an agreement on a ommon referene frame inabsene of it;
• the ahievement of a desired spatial disposition.The method is robust against measurement noise of odometry or inertialnavigation.(2) Distributed solutions for the heterogeneous multi-vehile routing Problem.We fous on problems of MTSP (Multi Travelling Salesman Problem), andproblems of MVRP (Multi Vehile Routing Problem). Given a network,
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haraterized by a set of nodes and a set of onnetions between them, theproblem of MTSP is to optimally assign nodes, whih have to be visited, tothe di�erent vehiles, in order to minimize the sum of the osts of the paths.The problem of MVRP represents an extension of the MTSP in whih othervariables are taken into aount suh as the apaity of vehiles or ostsassigned to the nodes. We extend the state of art sine we onsider the asewhere a set of heterogeneous tasks arbitrarily distributed in a plane has tobe servied by a set of mobile robots, eah with a given movement speedand task exeution speed. Our goal is to minimize the maximum exeutiontime of robots. We propose two distributed algorithms based on gossipommuniation: the �rst algorithm is based on a loal exat optimizationand the seond is based on a loal approximate greedy heuristi.Part 2: Di�usion of innovation in Soial NetworksIn the seond part we fous on the di�usion of innovation in soial networks. Whitthe expression soial network we identify a group of people whih are onnetedtogether by some types of relationship: friendship, love, business. In partiularwe fous on the study of the mehanism whih onvine people to adopt anidea or an innovation, and how the behaviour of eah individual is in�uened bythe behaviour of the onneted individuals or groups. Following the trend of theontrol ommunity, we study mehanisms of innovation spread in Soial Networksin order to foreast, optimize, ontrol some di�usion behaviours. Our referenemathematial model is the so alled linear threshold model, and the ontributionof this thesis are the following.(1) Analysis and ontrol of the di�usion of innovation in the Linear ThresholdModel. We adopt the lassial linear threshold model, whih is haraterizedas follows:
• at eah individual is assigned a threshold value, whih is a value in
[0, 1];

• a node adopts the innovation as soon as the ratio of its neighbourswho have already adopted it is above its threshold value;
3



• the innovation is inepted in the network by a seed set of individuals.Aording to this model, we �rstly present an integer programming prob-lem and an iterative algorithm based on linear programming whih take asinput the set of innovators and ompute the maximal ohesive set of theomplement of the seed set. The output of these algorithms an be usedto ompute the set of �nal adopters in the network. We extend the stateof art by proposing a way to ompute the maximal ohesive set in a givensoial network, whih was just de�ned so far, to the best of our knowledge.Then we introdue and formalize with integer programming two problems.The "in�uene maximization in �nite time problem (IMFT)" is that of�nding a seed set of r individuals that maximizes the spread of innovationin the network in k steps. This problem represent an extension of thelassial in�uene maximization problem, whih onsiders an in�nite timehorizon.The seond one is that of �nding a seed set of whose ardinality is minimalwhih di�uses the innovation to a desired set of individual in k steps.(2) A novel non-progressive instane of the linear threshold model. The lassi-al linear threshold model has a progressive nature, i.e., an individual anadopt the innovation if it hasn't adopted yet, but one adopted it annotabandon it. We extend the lassial model by proposing a novel model inwhih eah individual in the soial network is in�uened by the behaviourof its neighbours, and at eah steps it deides either to adopt, abandon ormaintain the innovation by following a threshold mehanism.We assume that the innovation is inepted in the network by a seed set ofindividuals whih are assumed to maintain the innovation independently ofthe state of their neighbours for a �nite time. We identify all the possibleevolution of the network under the proposed model, and we desribe indetails the evolution of the system in terms of two partiular type of sub-groups, namely Cohesive and Persistent sets.
4



Part ICoordination of Multi-AgentSystems
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Chapter 1Using onsensus to oordinatemulti-agent systems: introdutionand literature overview.Multi Agent Systems (MAS) are a lass of systems haraterized by a set ofentities , agents, whih interat in a shared environment to ahieve a ommontarget. Suh systems have attrated the attention of many researhers from dif-ferent �elds in the last deades: eonomy, soiology , philosophy, and , of ourse,omputer siene and automation.In the ontrol theory ommunity the term agent identify an autonomous sys-tem, with a simple dynami, whih interat with the environment where it op-erates and takes autonomous deision to reah a given target. A NetworkedControl System (NCS) is a system omposed by a set of agents whih exhangeinformation through a ommuniation network, and take deisions in�uened byneighbours to reah a ommon target. These system presents many advantageswith respet to isolated systems.
• In a MAS agents an exeute in parallel sub-tasks of a single omplex task:that redues the total exeution time and the omputational oasts.
• The absene of a single deision enter makes the system more reliable androbust to failures.
• The implementation of a set of simple agents whih ooperates to solve a
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problem an be less expensive than a omplex entralized system.Reently, in literature this onepts have been applied to problem suh as:
• oordination of autonomous vehiles;
• environmental monitoring;
• loalization systems;
• oordination of mobile robots.Typial methods related with MAS are based on distributed onsensus algorithms:agents exhange loal information to reah an agreement on a ertain quantity ofinterests. These algorithms have been applied to problems suh as rendez-vous,�oking or intrusion detetion. When the state of the agents onverge to theaverage of their initial states we refer to it as average onsensus.In the next hapters we apply onsensus algorithms to two di�erent problems.In Chapter 2 we present a novel formation ontrol strategy, based on onsen-sus, whih leads a set of autonomous vehiles to onverge to a desired formationin absene of a ommon referene frame. In Chapter 3 we use gossip algorithmsto solve a partiular instane of the Multi Vehile Routing Problem.All the presented approahes are based on a speial type of onsensus al-gorithms, , namely gossip algorithms. Gossip algorithms are haraterized byan asynhronous pairwise ommuniation sheme: at eah step only two agentsexhange information independently of the rest of the agents.In the next setions we introdue the two studied problems in details.1.1 Formation ontrol for multi vehile systemsMulti-agent systems onsisting in a network of autonomous vehiles bene�t greatlyfrom the global positioning system (GPS) in that it allows to lose feedbak on-trol loops on estimated positions in a global referene frame ommon to everyvehile, enabling several ontrol tasks suh as surveillane, patrolling, forma-tion ontrol or searh and resue missions to be performed. Unfortunately suha powerful tool may not always be exploited for several reasons: for instanethe GPS signal is unreliable for indoor/underwater environments, during adverse

8



atmospheri onditions or in loations lose to transmission power lines and isvulnerable to jamming attaks. Furthermore, if the desired sale of relative dis-tanes between the vehiles is of the order of meters, the auray provided bythe GPS system might not be enough. The problem of how to oordinate anetwork of agents in absene of absolute position information has thus reeivedgreat attention from the ontrol theory ommunity (1, 2, 3). Furthermore, it isusually assumed that the full network topology is not known by the agents andthat only loal point-to-point ommuniation or sensing are available to modelsensors with limited apabilities. In (4) a theoretial framework and a method toahieve �oking in a multi-agent system is proposed based on the famous threerules of �oking by Reynolds (5) and on loal interation rules based on virtualpotentials that allow the ahievement of �oking as global emergent behaviour.In (6, 7, 8, 9) the onsensus problem, i.e., the problem of how to make the stateof a set of agents onverge toward a ommon value, was presented regarding alsothe appliation of multi-agent oordination. In partiular ontrol strategies basedon onsensus algorithms were desribed in these papers as a fundamental tool toahieve synhronization of veloities, diretions or the attainment of onstantrelative distanes between the agents.In our approah we assume that eah agent estimates relative positions with itsneighbours in its own loal referene frame entered on it. A similar assumptionwas made in (10), where a Nyquist riterion to determine the e�et of the topologyof a multi-agent system performing formation ontrol was proposed; in this asethe agents were assumed to have a ommon oordinate system but not a ommonorigin. Furthermore we �rstly assume that eah agent has an onboard ompass,whih allows all the loal frames to have the same orientation. Then we removethis assumption.Many formation ontrol strategies are based on Leader-based approahes (11,12), whih require the network of vehiles to properly follow one or more leaders,possibly ontrolled by a pilot, satisfying eventually some onstraints. Also someformation ontrol strategies in the literature take advantage from the presene ofleaders exploiting network properties suh as graph rigidity (13).In Chapter 2 we design a oordination strategy for point-mass agents in whihleaders are not required, and the desired formation is expressed with oordinatesentred at the estimated ommon referene point. We also show that the proposed
9



strategy, based on an overompensation of the agents' displaement, is robustagainst measurement noise. The onept of overompensation is presented in thefollowing setions.In (14) a deentralized algorithm to make a network of agents agree on theloation of the network entroid in absene of ommon referene frames waspresented; the algorithm is based on gossip (only random asynhronous pairwiseommuniations) and assumes stati agents displaed in a 3-d spae. In (15) adeentralized algorithm based on gossip to make a network of agents agree ona ommon referene point and frame was proposed, assuming stati agents ina 2-d plane. Our approah di�ers from (14, 15) in that we onsider dynamiagents that move while the the estimation proess is exeuted, we assume thatall the agents loal referene frames are oriented in the same diretion and thatnoise is a�eting the relative position measurements. Furthermore, the proposedapproah is used to implement formation ontrol.Summarizing, the following are the main ontributions of Chapter2.
• A novel loal interation protool that ahieves robust estimation of thenetwork entroid robust to parameter unertainties.
• A method to ahieve provably robust formation ontrol with respet toparameter unertainties in the agents' dynamis.
• An extended method to ahieve robust formation ontrol with formations ofarbitrary shape by performing agreement on a ommon referene frame. Weprovide simulations to orroborate the desription of this extended method.1.2 The Heterogeneous Multi Vehiles Routing Prob-lemThe travelling salesman problem (TSP) is a well known topi of researh andan be stated as follows: �nd the Hamiltonian yle of minimum weight to visitall the nodes in a given graph. Instrutive surveys an be found in (16, 17, 18).This problem has reeived great attention for both its theoretial impliationsand its several pratial appliations. The Vehile Routing Problem (VRP) is ageneralization of the TSP and was �rstly introdued in (19): given a �eet of n
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vehiles and a set of loations to be visited, the vehile routing problem onsistsof �nding n tours to visit all loations in minimum time.Several extensions of the TSP and the VRP have been proposed to better suitpratial appliations by introduing several additional onstraints and objetivessuh as a variable number of vehiles, a �nite load apaity, a ost assoiated toeah node whih represents the demand of the ostumer, servie time windowsand several more. Numerous extensions are well summarized in (20, 21, 22).Finally, several extensions explore a dynami setting in whih multiple vehilesserve a dynami number of tasks as disussed in (23).Multi-vehile routing problems have a ombinatorial nature, as all the possibletours must be explored to �nd the optimal on�guration. Exat algorithmiformulations are based, for example, on Integer Linear Programming (ILP) asdesribed in (22, 24). General ILP solvers are haraterized by an exponentialomputational omplexity, thus in the last deades many approximate algorithmshave been proposed whih are haraterized by a lower omputational omplexity.Examples of heuristis and approximate algorithms are presented in (21, 25, 26,27, 28, 29).We are interested in an instane of the VRP, alled the Heterogeneous MultiVehile Routing Problem (HMVRP), with the following properties: the number
n of vehiles is given a priori, a set K is given ontaining k tasks arbitrarilydistributed in a plane, to eah task is assigned a serviing ost, eah vehile isharaterized by a movement speed and a task exeution speed.It has been shown in (30) that when omparing the length of the optimal tourof one vehile that visits all tasks loations with the multiple vehile ase, themaximum length of the tours for the multiple vehile ase is proportional to thetour length of the single vehile ase and proportionally inverse to the number ofvehiles. Both upper and lower bounds with suh saling were given.In Chapter 3 we extend the result in (30) by onsidering exeution timesinstead of tour lengths to aount for vehiles of di�erent speeds, tasks witharbitrary exeution osts and vehiles with di�erent task exeution speeds. Weprovide upper and lower bounds to the optimal solution as funtion of the singlevehile optimal tour length to put in evidene how the performane is a�eted bythe number of vehiles.We propose two distributed and asynhronous algorithms for the HMVRP:
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the �rst one is based on the iterative optimization of the loal task assignmentbetween pairs of vehiles (31), the seond one is based on loal task exhange ofassigned tasks, one by one, between ouples of vehiles (32). For both algorithmswe provide deterministi bounds to their performane. The proposed approahesto the HMVRP are distributed algorithms easy to implement in a networkedsystem and have favorable omputational omplexity with respet to the ratio
k/n between the number of tasks and vehiles instead of k as in the entralizedapproah.Note that the onsidered problem an also be seen as a partiular instane ofa min/max VRP problem whose main feature is the heterogeneity of the speedand the tasks exeution speed of the vehiles. Related works on the min/maxVRP problem inlude (33, 34, 35).Summarizing, the following are the main ontributions of Chapter3.

• We formalize the entralized problem in terms of a mixed integer linearprogramming (MILP) problem and extend the bounds in (30) for the multiTSP to the HMVRP.
• We propose a �rst distributed algorithm, based on gossip ommuniationand on the solution of loal MILP, to solve the HMVRP and haraterizesome of its properties.
• We propose a seond distributed algorithm to solve HMVRP, based ongossip ommuniation and on loal task exhanges, haraterized by a lowomputational omplexity.
• We provide simulations that show that the proposed algorithms attain aonstant fator approximation of the optimal solution with respet to thenumber of vehiles. A detailed omparison among the performanes of thetwo proposed deentralized solutions is also presented.
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Chapter 2Formation Control StrategyThis hapter is organized as follow. In Setion 2.1 we present the onsideredsystem and the set of assumptions adopted. In Setion 2.2 we propose a formationontrol strategy whih is haraterize by a parallel appliation of two di�erentdeentralized algorithms: a loal displaement ontrol rule whih move eah agenttoward a target point and a onsensus algorithm whih allows agents to reah anagreement on a ommon referene frame. The onept of overompensation is herepresented. In Setion 2.2.4 the robustness of the proposed strategy is investigatedand an optimal hoie of the algorithm parameters is disussed.2.1 PreliminariesLet a network of agents be desribed by a time-varying undireted graph G(t) =

{V,E(t)}, where V = {1, . . . , n} is the set of nodes (agents), E ⊆ {V × V } is theset of edges eij representing point-to-point bidiretional ommuniation hannelsavailable to the agents, E(t) : R+ → E is the set of edges being ative at time t.Given a time interval T , the joint graph G([t, t + T )) is the union of graphs G(t)in the time interval [t, t + T ) de�ned as G([t, t+ T )) = {V,E([t, t+ T )))}, where
E([t, t+ T )) = E(t)

⋃

E(t+ 1)
⋃

. . .
⋃

E(t+ T )A node u ∈ V is said to be reahable from v ∈ V if there exists a path in thegraph from v to u. Node u ∈ V is said to be a enter node if it is reahable fromany node in V . In a onneted undireted graph all the nodes are enter nodes.
13



A node u ∈ V is said to be aperiodi if the greatest ommon divisor of all thepossible path length from u to u is 1.The state of eah agent i is haraterized by its absolute position xi, anestimation of the origin of the ommon referene frame si ∈ R
2 and an angle θiwhih represents the orientation of the x-axis of the loal referene frame withrespet to the x-axis of the global referene frame.Let Ni(t) = {j : eij(t) ∈ E(t)} be the set of agents that send and reeiveinformation to agent i at time t, these agents are alled neighbors of agent i. Wede�ne the degree of agent i as δi(t) = |Ni(t)| where |Ni(t)| denotes the ardinalityof set Ni(t). The elements of the Laplaian matrix L of graph G(t) are de�ned as

lij =











−1, if (i, j) ∈ E(t)

δi(t). if i = j

0 otherwiseGiven a generi square matrix Mn×n, the assoiated graph GM = {VM , EM} isomposed as follow:
• GM has n nodes, with index i ∈ [1, n], so VM = {1, . . . , n} ;
• GM has an edge eij if the entry mij ∈ M is nonzero, so EM = {(i, j)|mi,j 6=
0}If M has non zero diagonal entry mii, than node i ∈ GM has a self loop. If Mis symmetri then GM is an undireted graph. For a time-varying square matrix

M(t) the assoiated graph is denoted as GM(t) = {VM , EM(t)}.A square matrix A is stohasti if its elements are non-negative and the rowsums equals one. A stohasti matrix said to be ergodi if rank (limk→∞Ak
)

= 1.An ergodi matrix A is SIA (stohasti, indeomposable and aperiodi) if
lim
k→∞

Ak = 1nπ
T ,where π is the left eigenvetor of A orresponding to the unitary eigenvalue and

1n is the n-element vetor of ones. Given two matries A(m×n) and B(p×q), theKroneker produt is denoted as A⊗ B(mp×nq).In our disussion we onsider the following working assumptions: i. Agentsare modelled by disrete time single integrators; ii. Neighboring agents ommu-niate with bidiretional hannels and sense relative positions in a 2-D plane; iii.
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Eah agent owns a loal oordinate system that moves rigidly with it and do notknow the oordinate system of others.2.1.1 Coordinate systemsA 2-d referene frame Σ′ = (o′, θ′) is an orthogonal oordinate system harater-ized by an origin o′ ∈ R
2 and orientation of the x-axis θ′ ∈ [0, 2π) respet to aglobal oordinate system Σ de�ned by o = (0, 0) and θ = 0. We deal with threekinds of oordinate systems, whih are showed in Fig. 2.1.

Figure 2.1: Coordinate systems.
• Global oordinate system: is the referene frame used to desribe the systemfrom the point of view of an external observer. We denote it with Σ, andthe urrent position of agent i spei�ed in Σ is xi ∈ R

2.
• Loal oordinate system: eah agent owns a loal referene frame enteredon it. The loal oordinate system of agent i is denoted with Σi = (xi, θi),
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where xi is the position of agent i in Σ and θi is the angle between thex-axis of Σ and the x-axis of Σi. We denote the position of a generi point
j with respet to Σi as xi

j . Therefore, the position of j is
xj = Rix

i
j + xiwhere

Ri =

[

cos θi − sin θi

sin θi cos θi

]is a rotation matrix assoiated to the angle θi.
• Estimated oordinate system: eah agent keeps a loal estimation of theommon referene frame. With respet to Σ the estimated ommon ref-erene frame by agent i is denoted with Σi,es = (si, θi), where si is theestimated referene enter and θi is the estimated angle between the x-axisof the ommon referene frame and the x-axis of Σ. Note that the orien-tation of the loal estimated referene frame is the same as the orientationod Σi. We denote the position of a generi point j with respet to Σi,es as
xi,es
j . The position of agent j in frame Σi is: xi

j = xi,es
j + sii.2.2 Formation ontrol strategyIn this setion we present a deentralized ontrol strategy whih allows a networkof mobile agents in a 2-D spae to reah an agreement on a ommon refereneframe and simultaneously onverge to a desired formation. Here we assumethat all the agents have a ompass on board, whih allows them have a ommonreferene diretion. In partiular, we assume that ∀i ∈ V, θi = 0.The state of i-th agent is haraterized by a position xi ∈ R

2 and a variable
si ∈ R

2 whih represents the estimated enter of the ommon referene frame.When referring to the state of the agent in its own referene frame Σi we denoteits urrent estimation as sii ∈ R
2.Our strategy involves three loal state update rules:

• A rule to update the position of the agents;
• A rule to ahieve agreement on a ommon referene point;

16



2.2.1 Position update ruleEah agent is modeled by disrete time single integrator dynamis
xi(t + 1) = xi(t) + qui(t), (2.1)where xi ∈ R

2 is the agent position, ui ∈ R
2 is the ontrol ation representing adisplaement and q ∈ R

+ is a gain. Eah agent has to reah a onstant targetposition Di ∈ R
2 with respet to its estimated ommon referene frame. Thetarget position dii(t) with respet to Σi at time t an be omputed as

dii(t) = sii(t) +Di.In the ommon referene frame Σ the target position of agent i is
di(t) = xi(t) + dii(t) = xi(t) + (sii(t) +Di). (2.2)Therefore, eah agent drives itself toward its target position dii(t) with thefollowing state update

xi(t+ 1)− xi(t) = q (di(t)− xi(t)) (2.3)with respet to Σ. By replaing equation (2.2) in (2.3) we �nd the followingposition update rule:
xi(t + 1) = (1− q)xi(t) + q(si(t) +Di) (2.4)The referene frame of agent i thus moving rigidly with it, displae its urrentestimation of the ommon referene point. Therefore, the agent attempts toompensate this displaement by updating its estimation of the position of theommon referene point as follows In other words, beause the agents' loal frameis entered on xi and moves rigidly with it, eah agent i needs to update sii, andonsequently dii.

sii(t + 1) = sii(t)− q
(

sii(t) +Di

) (2.5)whih, with respet to referene frame Σ, keeps the absolute position of theestimated point onstant in time
si(t + 1) = si(t).
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To implement these updates, however, a perfet knowledge of parameter q isrequired whih orresponds to an exat measurement of the movement or atua-tors with perfet preision.Sine measurements may be a�eted by disturbane and atuators subjetedto malfuntioning, we introdue a di�erent state update rule, whih we prove isrobust against unertainties in the parameter q of any agent. We all this stateupdate as overompensation beause it e�etively moves the urrent estimationfurther away than neessary, as follows:
sii(t + 1) = sii(t)− k

(

sii(t) +Di

) (2.6)Equation (2.6) represents a overompensation of agent displaement based onparameter k, whih ontrols how muh the agents ompensate their displaement.Using equation (2.4) and equation (2.6) in terms of si(t), we an express thegeneral update rule as follow:
{

xi(t+ 1) = xi(t) + q((si(t) +Di)− xi(t))

si(t+ 1) = si(t)− k((si(t) +Di)− xi(t)) + q((si(t) +Di)− xi(t))
(2.7)We an set h = k − q and rewrite equation (2.7) as follows:

{

xi(t+ 1) = xi(t) + q((si(t) +Di)− xi(t))

si(t + 1) = si(t)− h((si(t) +Di)− xi(t))
(2.8)

{

xi(t+ 1) = (1− q)xi(t) + qsi(t) + qDi

si(t + 1) = (h)xi(t) + (1− h)si(t) + (−h)Di

(2.9)Note that:
• if h = −q (k = 0) the distane vetor di(t)− xi(t) is onstant, thus there isno ompensation;
• if −q < h < 0 (0 < k < q), di(t) translate in the same diretion of xi(t)and |di(t + 1) − xi(t + 1)| < |di(t) − xi(t)|, thus there is only a partialompensation;
• if h = 0 (k = q) the target position di(t) is onstant, thus the ompensationis perfet;
• if h > 0, (k > q) di(t) moves toward xi(t), thus an overompensation ismade.
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2.2.2 Consensus on the network entroidEah agent has a loal estimate sii(t) whih onsiders as the enter of a ommonestimated frame. By exhanging this loal information with neighbours, agentsare able to reah an agreement on a ommon referene enter, whih means that:
∀i, j ∈ V, lim

t→∞
‖si(t)− sj(t)‖ = 0At eah time step agent i reeives the value sjj from eah agent j ∈ Ni(t). InFigure 2.2 it is shown how agent i is able to determine the orret value sij ofagent j with respet to Σi by only knowing xi

j and the reeived value sjj . The

Figure 2.2: Information exhange between agent i and j.update rule for the loal estimate is:
sii(t+ 1) = sii(t) + ε

∑

j∈Ni(t)

(sjj(t) + xi
j(t)− sii(t)) (2.10)with 0 < ε ≤ |Ni(t)|. The same rule ould be written with respet to Σ:

si(t + 1) = si(t) + ε
∑

j∈Ni(t)

lij(sj(t)− si(t)) (2.11)
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With respet to Σ the overall estimate update rule ould be expressed asfollow:
s(t+ 1) = (P (t)⊗ I2×2)s(t) (2.12)where P (t) ∈ P is a time-varying matrix whih depends on network topology attime t and ε, and P is the set of all possible matries representing the systemupdate de�ned in (2.11). Due to the update rule de�nition all matries P (t) ∈

P are stohasti. Note that equation (2.12) an represent both deterministisynhronous onsensus algorithms and randomized gossip algorithms. At eah
t, algorithm (2.12) an be represented by the assoiated graph GP (t). If ∀t > 0there exists a T > 0 suh that GP ([t, t + T )) is onneted, than limt→∞ s1(t) =

. . . = limt→∞ sn(t), where GP ([t, t + T )) is the union of graphs GP (t) in the timeinterval [t, t + T ) (7)(8).2.2.3 Formation ontrol strategyLet us de�ne olumn vetors x(t) = {x1(t), . . . , xn(t)}, s(t) = {s1(t), . . . , sn(t)}and D = {D1, . . . , Dn}. Note that D represents the desired formation respet toa ommon enter. By summing the ontributions of equations (2.8) and (2.12)the overall formation ontrol strategy ould be expressed as follow:
[

x(t+ 1)

s(t + 1)

]

= (M(t)⊗ I2×2)

[

x(t)

s(t)

]

+

[

qD

−hD

] (2.13)where
M(t) =

[

(1− q)In×n qIn×n

hIn×n (P (t)− hIn×n)

] (2.14)For all t, M(t) ∈ M, where M is the set of all possible matries of type (2.14)orresponding to di�erent P (t) ∈ P. A given formation is onsidered to beahieved if
• x(t) = s(t) +D;
• ∀i, j ∈ V, ‖si(t)− sj(t)‖ = 0Lemma 2.2.1 Consider system (2.13). If

lim
t→∞

(M(1)M(2) . . .M(t)⊗ I2×2)

[

x(0)

s(0)

]

= c12n (2.15)
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then
• limt→∞ x(t) = s(t) +D,

• ∀i, j ∈ V, limt→∞ ‖si(t)− sj(t)‖ = 0.Thus the desired formation is asymptotially ahieved.Proof: Condition (2.15) implies that system (2.13) is stable. At the equilib-rium x(t + 1) = x(t) and s(t + 1) = s(t). From the �rst equation of (2.13) we�nd:
(1− q)Ix(t) + qIs(t) + qID = x(t)

x(t) = s(t) +DBy substituting in the seond equation:
Ps(t) = (I − εL)s(t) = s(t)whih implies s(t) = c1, where c ∈ R is a onstant. �Convergene of the proposed strategy toward the desired formation an thus beaddressed by studying the stability of the following linear time-varying system

[

x(t + 1)

s(t+ 1)

]

= (M(t)⊗ I2×2)

[

x(t)

s(t)

] (2.16)2.2.3.1 Case I: stati topologyIf the network topology is stati and onneted, than M(t) = M, ∀t.Lemma 2.2.2 (Lin,(36)) A stohasti matrix M is SIA if and only if the asso-iated graph GM has a entre node whih is aperiodi. �Now we are able to prove the following result.Theorem 2.2.1 Consider a network of agents with a stati onneted topology.Given system (2.16) with M(t) = M , if
0 ≤ h ≤ 1− εδmax (2.17)where δmax = max{δ1, · · · , δn} represents the maximum degree for the network,then
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lim
t→∞

[

x(t)

s(t)

]

= c12n,where c ∈ R is a onstant.Proof If ondition (2.17) holds M is stohasti as all entries are non negativeand row sums are equal to 1. Now we have to prove that M is SIA. We anrepresent system (2.16) using a undireted graph GM assoiated to matrix M. Inthis graph eah agent i is represented by two nodes:
• one assoiated to the agent position xi, that we all position node;
• one assoiated to the agent estimate si, that we all estimate node.For eah agent the two assoiated nodes are onneted together by a bidiretionaledge, as the position update depends on the position estimate and vie versa.The onnetions between agents depend on matrix P − hI. In partiular, givena ouple of agents (i, j) there exists an edge between their estimation nodes ifthe pij entry of P is non zero. As the network is onneted and undireted byassumption, the graph GM is onneted as well and eah node is a enter node.More, as all diagonal entries in (1 − q)I are nonzero, eah position node in theassoiated graph has a self loop, so GM is aperiodi. It follows from Lemma 2.2.2that matrix M is SIA, so

lim
t→∞

M
t

[

x(0)

s(0)

]

= c12nwhere c is a onstant. �2.2.3.2 Case II: time-varying topology.In order to prove the robustness of (2.16) we need �rst to present some preliminarynotions.Lemma 2.2.3 (Jadbabaie et al.,(8)) Let {M1,M2, . . . ,Mm} be a set of stohastimatries of the same order suh that the joint graph {G(M1)
⋃

G(M2)
⋃

. . .
⋃

G(Mm)}is onneted. Then the matrix produt M1M2 . . .Mm is ergodi. �
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Lemma 2.2.4 (Wolfowitz,(37)) Let {M1,M2, . . . ,Mm} be a set of ergodi ma-tries with the property that for eah sequene Mi1 ,Mi2 , . . . ,Mij of positive length
j the matrix produt Mi1Mi2 . . .Mij is ergodi. Then for eah in�nite sequene
Mi1 ,Mi2 , . . . there exists a row vetor c suh that limj→∞Mi1Mi2 . . .Mij = 1c. �Now we an state the following theoremTheorem 2.2.2 Consider a network of agents with time-varying topology de-sribed by (2.16). Let us assume that ∀t > 0 there exists a T > 0 suh that
GP ([t, t+T )) is onneted. The following ondition is su�ient for the system toonverge to the desired formation:

0 ≤ h ≤ 1− εδmax (2.18)Proof Let Mc be the set of all possible produt matries in M of length T suhthat the joint graph GP ([t, t + T )) is onneted. In the theorem we assume thatfor eah time interval [t, t+ T ) the matrix
M(t)M(t + 1) . . .M(t + T ) ∈ McThus we an represent the evolution of the system as a produt of matries

Mc(t) ∈ Mc. If ondition (2.18) holds, then all matries M(t) ∈ M are stohastias showed in the proof of Theorem 2.2.1, and it follows from Lemma 2.2.3 that allmatries Mc(t) ∈ Mc are ergodi as well as all produts in Mc. Finally it followsfrom Lemma 2.2.4 that:
lim
t→∞

(Mc(1)Mc(2) . . .Mc(t)⊗ I2×2)

[

x(0)

s(0)

]

= c12n

�2.2.4 Charaterization of the robustness of the approahThe proposed oordination strategy desribed in setion 2.2 an be a�eted byerrors due to the odometry or inertial navigation system. In partiular the desireddisplaement that the generi agent xi(t) should ahieve within one sample of timeis as follows
xi(t + 1) = xi(t)− qi(t)(xi(t)− si(t)). (2.19)
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where the time-varying parameter qi(t) = q+∆i(t) models a random error in theposition update at time t.Thus, the proposed loal interation rule beomes










xi(t+ 1) = (1− qi(t))xi(t) + qi(t)si(t)

si(t+ 1) = h(t)(xi(t)− si(t))

+(si(t) + ε
∑

j∈Ni
lij(sj(t)− si(t)))

(2.20)where hi(t) = h−∆i(t).Let Q(t) and H(t) be n× n diagonal matries where Qii = qi(t) and Hii(t) =

hi(t). The global system dynamis are thus desribed by
[

x(t+ 1)

s(t + 1)

]

= (M∆(t)⊗ I2×2)

[

x(t)

s(t)

] (2.21)
M∆(t) =

[

I −Q(t) Q(t)

H(t) P (t)−H(t)

] (2.22)For all t, M∆(t) ∈ M∆, where M∆ is a in�nite set of matriesM∆(t) haraterizedby di�erent values of q(t), h(t) and P (t). Now we haraterize the robustness ofthe proposed strategy with respet to measurement noise.Theorem 2.2.3 Consider a system as in eq. (2.21). Let us assume that ∀t > 0there exists a T > 0 suh that GP ([t, t + T )) is onneted . If the measurementnoise ∆i(t) is bounded by
h+ εδmax − 1 ≤ ∆i(t) ≤ min{h, (1− q)}, ∀i, t (2.23)then

lim
t→∞

[

x(t)

s(t)

]

= c12nwhere c is a onstant.Proof The diagonal entries of the matries I −Q(t) and P (t)−H(t) are
[I −Q(t)]ii = 1− q −∆i(t)

[P (t)−H(t)]ii = 1− εδi − h+∆i(t)
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We an assume that q > ∆i(t). If ondition (2.23) hold, then all matries in M∆are stohasti, beause all entries are non negative and row sums equal to one.Thus, the proof follows as in theorem 2.2.2. �Note that ∆(t) ould be positive or negative.We now disuss what is the best parameter hoie to ahieve maximum ro-bustness. Given a �xed value of q, the optimum value of h is the one whihmaximizes the following objetive funtion:
max

h
{min{h, (1− q), |h+ εδmax − 1|}}By substitution it holds

• If 1− εδmax

2
≤ (1−q) the optimum value of h is h = 1−δmax

2
thus the bound(2.23) beomes symmetri

−1− εδmax

2
≤ ∆i(t) ≤

1− εδmax

2
, ∀i, t

• If 1− εδmax

2
> (1− q) the optimum value of h is h = (1− q). It holds

εδmax − q ≤ ∆i(t) ≤ 1− q, ∀i, t

�2.2.5 Convergene speedWe now haraterize the onvergene speed of the proposed strategy in the time-invariant ase M(t) = M and P (t) = P . Let ΛM be the set of the 2n eigenvaluesof M . As M is SIA, λ = 1 is a simple eigenvalue of ΛM , and all other eigenvalueshave module less than 1. The onvergene speed of (2.16) depends on the seondbiggest module eigenvalue λ2 ∈ Λ , whih is alled algebrai onnetivity. Byknowing the eigenvalues of P , ΛM an be determined.Theorem 2.2.4 Let M be a 2 × 2 blok matrix as in eq. (2.16). Let ΛP =

{λp1, λp2, . . . , λpn} be the set of the n eigenvalues of P . The 2n eigenvalues of Mare funtion of the eigenvalues of P as follows:
λmi1,2

=
(λp + 1− h− q)

2

±
√

(λp + 1− h− q)2 − 4((1− q)λp − h)

2

(2.24)
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Where λmi1,2
∈ ΛM are the two eigenvalues orresponding to λpi ∈ ΛPProof Following the work in (38) on how to ompute the determinant of 2× 2blok matries as funtion of the bloks, we ompute the eigenvalues ofM solving

det (M − λmI) = 0.Sine (1− q)hI = h(1− q)I

det (M − λmI) = det ((1− q − λI)(P − hI − λI)− hqI) ,by some manipulations
det
(

(λ2I − λ(P − hI − qI + I) + (1− q)P − hI)
)

= 0,putting (1− q − λ) in evidene:
(1− q − λ)ndet((

λ2I − λ(1− h− q)I − hI)

1− q − λ
+ P ))) = 0for (1− q − λ) 6= 0,

det((
λ2I − λ(1− h− q)I − hI)

1− q − λ
+ P ))) = 0.Now, let λp = −λ2−λ(1−h−q)−h)

1−q−λ
. Sine λp is the solution of det(λp − P ) = 0, theeigenvalues of M as funtion of the eigenvalues of P are, after trivial manipula-tions, the solutions of

λ2 − λ(1− h− q + λp) + (1− q)λp − h = 0whose solutions are (2.24). �2.3 Formation ontrol strategy in absene of aommon referene frameIn the previous parts we have assumed that all the agents have a ompass onboard, whih allows them to maintain a ommon orientation of the loal refereneframe. In this setion we remove this assumption, thus eah agent i belongs toa loal referene frame Σi = {xi, θi} entered on it, where xi is he position of
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the agent i and θi is the orientation of the x-axes with respet to the x-axes ofthe global referene frame. Under this new assumption the state of eah agent
i is desribed by the three state variables {xi, si, θi}. We modify the formationontrol strategy proposed in setion 2.2 whih is not suitable anymore to orretlyontrol the system, by introduing an algorithm whih leads the agent to reah aommon referene diretion. The new formation ontrol strategy is haraterizedby:(1) a rule to ahieve agreement on a ommon referene diretion;(2) a rule to update the position of the agents;(3) a rule to ahieve agreement on a ommon referene point.All the results in this setion are presented with respet of the global refereneframe Σ, and we assume that the agents are able to exhange loal information.An interesting method whih allows the agent to exhange loal estimates ofpoints and diretions in absene of a ommon referene frame is presented in (14),thus we an assume that the agents exhange information by using it. Under thisassumption, we don't need to modify the onsensus algorithm on the networkentroid, while the position update rule needs to take into aount the variabilityof the target point due to the variability of the orientation of the orientation ofthe loal referene frame.This setion is organized as follows: in the �rst part we haraterize rule (1),then we haraterize rule (2), by modifying the rule presented in setion 2.2, andwe point out the dependene of these rules from (1). Finally we desribe theglobal formation ontrol strategy.2.3.1 Ahieving onsensus on a ommon referene diretionIn order to lead the agents to reah a onsensus on a ommon referene diretion,we use Algorithm 1, originally proposed in (39), whih allows the system to reaha global synhronization on a ommon heading. Algorithm 1 is based on a Gossipommuniation sheme: at eah t a ouple of nodes (i, j) suh that (i, j) ∈ E(t)is randomly seleted, and the seleted nodes synhronize the orientation of theirloal referene frame by averaging on the shortest path arh between them. In
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Algorithm 1 Gossip Algorithm for undireted graphs((39))(i) At time t arh (i, j) ∈ E(t) is randomly seleted.(ii) Agentsi and j update the orientation of their loal referene frame as follows:
• if max{θi(t), θj(t)} −min{θi(t), θj(t)} ≤ π

2

θi(t+ 1) = θi(t+ 1) =
θi(t) + θj(t)

2

• if max{θi(t), θj(t)} −min{θi(t), θj(t)} >
π

2

θi(t+ 1) = θi(t+ 1) =
θi(t) + θj(t)

2
+

π

2

• For eah a ∈ V suh that a 6= i and a 6= j:
θa(t+ 1) = θa(t)(39) a onvergene analysis of Algorithm 1 is also provided: applying Algorithm1 the set of agents globally asymptotially synhronize with probability 1.2.3.2 Position update ruleThe position update rule proposed in setion 2.2 doesn't onsider the orientationof the loal referene frame θi(t) for eah agent i, whih may hange among thetime aording to Algorithm 1. For eah i ∈ V, the estimated target point di(t)and of the estimated ommon referene enter si(t) in global oordinates, at time

t, depend on θi(t) as follows:
si(t) = xi(t) +Ri(θi(t))s

i
i(t) (2.25)and

di(t) = xi(t) +Ri(θi(t))(s
i
i(t) +Di) = si(t) +Ri(θi(t))Di (2.26)where

Ri(θi(t)) =

[

cos(θi(t)) − sin(θi(t))

sin(θi(t)) cos(θi(t))

]

.
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Following the same steps disussed in setion 2.2.1, and introduing equations(2.25) and (2.26), we obtain the following position update rule:
{

xi(t+ 1) = (1− q)xi(t) + qsi(t) + qRi(θi(t))Di

si(t + 1) = (h)xi(t) + (1− h)si(t) + (−h)Ri(θi(t))Di

(2.27)2.3.3 Formation ontrol strategyLet us de�ne now the olumn vetor D(θ) as follows:
D(θ) =







R1(θ1(t))D1...
Rn(θn(t))Dn





as the vetor of the target point, whih depend on the orientations of the loalframes. The new formation ontrol strategy an be expressed as follows:
[

x(t + 1)

s(t+ 1)

]

= (M(t)⊗ I2×2)

[

x(t)

s(t)

]

+

[

qD(θ)

−hD(θ)

] (2.28)Aording to the assumptions made in this setion, a given formation is on-sidered to be ahieved if
• ∀i, j ∈ V, θi(t) = θj(t)

• x(t) = s(t) +D;
• ∀i, j ∈ V, ‖si(t)− sj(t)‖ = 0The onvergene of the agents to the desired formation depends on the onver-gene of Algorithm 1: a given formation annot be ahieved until all the loalframes onverge to a ommon orientation. In setion 2.4 we provide a set of sim-ulations whih are useful to understand the behaviour of the system under theassumption made in this setion.2.4 Simulation resultsIn this part we present the results of some simulations with two purpose: validatethe analytial results obtained in setions 2.2 and 2.2.4, and introdue someonjetures about the behavior of the system in the senario desribed in setion2.3 whih do not belong to the studied ases.
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() Final formationFigure 2.3: Example of formation2.4.1 Agents with a ommon referene diretionIn Fig 2.3 an example of ahievement of a desired formation using formationontrol strategy (2.13) is presented. The system is omposed by a set of agentswith a ommon referene diretion, that are initially randomly sattered in a2-D spae as in Fig 2.3a. They exhange loal information through a gossipommuniation sheme, and for all of them q = 0.1 and h = 0.05. The agentsreah the desired formation (a rux shape) by following the trajetories showedin Fig 2.3b. The red lines represent the trajetories of the estimated ommonreferene enters, while the blue lines are the trajetories of the agent.
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Our simulations have pointed out an interesting phenomena: using formationontrol strategy (2.13), in a system of agent with a ommon referene diretion,the desired formation is reahed for eah value of h in −q < h < 0, i.e., for valuesof h that do not respet ondition (2.18). In other words, a small ompensationis enough for the system to onverge to the desired formation.
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Figure 2.4: Value of |λ2| for q = 0.15, −0.15 < h < 0 and n ∈ [10, 100]Fig 2.5 shows the the value of |λ2|, i.e., the module of the seond largesteigenvalue of the matrix M, of a system of agents with q = 0.15, omputed for
−q < h < 0 and n ∈ [10, 100]. For all the simulations the topology of thenetwork is onneted and randomly generated. It an be observed that in ase ofno ompensation, i.e., for h = −q, |λ2| = 1, and the system is not stable, whilefor −q < h < 0 the seond largest eigenvalue of M has a module smaller thanone, and the system onverge to the desired formation.2.4.2 Agents in absene of ommon referene diretionLet us now onsider the ase of absene of ommon referene frame. In Se-tion 2.3 we have haraterized the algorithm whih lead the agents to reah thetarget formation. We have supposed that the agents loally interat and exhangeinformation using the method proposed in (14) whih is based on the determina-tion of the relative positions, i.e., relative distane and angles, and the orretnessof the information exhange depends on the preision of this estimation. Here we
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suppose that the relative loalization is a�eted by an error, and we simulate thebehavior of the system for di�erent values of the error. The agents exhange infor-mation following a gossip ommuniation sheme. The estimations of the relativedistane d and the relative angle of view γ are a�eted by a uniformly distributedrandom error with a maximum amplitude |∆dm| = αdd and |∆γm| = αγγ. InFig. 2.5 is represented a system of 13 agents with a triangle-shape target forma-tion. In Fig. 2.5a is αd = αγ = 0.01, while in Fig. 2.5b is αd = αγ = 0.02. Itan be observed that eah agent makes a random walk around its target position.The amplitude of the random walk grows as:
• αd and αγ grow;
• the distane of the target point from the estimated ommon referene entergrows.
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(b) |∆dm| = 0.02d, |∆γm| =

0.02γFigure 2.5: Example of formationThe same behavior an be observed in Fig 2.6, where the average amplitudeof the random walk is reported for di�erent values of αd and αγ. Eah value isthe average of 20 simulations, and for eah simulation the initial positions andthe loal orientations of the agents were randomly generated. Moreover, Fig 2.6show that in absene of errors in the relative loalization, the system onverge tothe desired formation.
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|∆dm| = 0 |∆dm| = 0.005 |∆dm| = 0.01d |∆dm| = 0.015d |∆dm| = 0.02d |∆dm| = 0.025dTarget Point |∆γm| = 0 |∆γm| = 0.005γ |∆γm| = 0.01γ |∆γm| = 0.015γ |∆γm| = 0.02γ |∆γm| = 0.025γ

(0, 0) 0 0.01 0.02 0.04 0.04 0.09

(1, 0) 0 0.10 0.15 0.25 0.35 0.45

(−1, 0) 0 0.09 0.18 0.28 0.30 0.44

(−2.5, 0) 0 0.21 0.46 0.71 0.69 1.21

(2.5, 0) 0 0.26 0.37 0.73 0.75 1.18

(0, 2.5) 0 0.23 0.43 0.74 0.85 1.06

(1, 2.5) 0 0.32 0.45 0.80 0.82 1.35

(−1, 2.5) 0 0.28 0.51 0.69 0.76 1.17

(2.5, 2.5) 0 0.29 0.58 1.05 1.02 1.62

(−2.5, 2.5) 0 0.30 0.60 1.07 1.24 1.51

(0, 5) 0 0.5 0.73 1.24 1.36 2.38

(5, 0) 0 0.58 0.9 1.44 1.51 2.14

(−5, 0) 0 0.49 0.89 1.44 1.40 2.01Figure 2.6: Amplitude of the random walk for di�erent values of αd and αγ2.5 ConlusionsIn this Chapter we �rstly have proposed a novel oordination strategy, based onan overompensation of agent displaement, to ahieve an arbitrary formationin a multi-agent system. We have proved that our strategy is robust with re-spet to measurement noise of odometry or inertial navigation. Our strategy isharaterized by a deentralized algorithm to ahieve agreement on a ommonreferene point and a onsensus based strategy to provide ohesion in the net-work. The system ahieves arbitrary formations by speifying positions in theestimated ommon referene frame on whih the agents agree upon. Then wehave extended our strategy to a multi vehile system in absene of a ommon ref-erene frame. Our future objetive is to �nd analytial support for the extendedstrategy, whose performanes are studied only through simulations so far.
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Chapter 3The Heterogeneous Multi VehileRouting ProblemThis Chapter is strutured as follows. In Setion 3.1 the HMVRP is formalized.In Setion 3.2 the HMVRP is disussed and solved via a entralized optimizationbased on MILP. In Setion 3.3 a deentralized algorithm is proposed and hara-terized. In Setion 3.4 an heuristi approah to solve the HMVRP is proposed,and in Setion 3.5 simulations are shown to orroborate the analytial resultspresented in the previous setions. Finally, in Setion 3.6 onlusions and futurediretions are disussed.3.1 Problem statementConsider a set N of n mobile robots sattered in a onneted region R in a plane.Let K be a set of k tasks sattered in region R, that should be assigned to robotsto be exeuted.Robots move at di�erent speeds and have di�erent exeution speeds of tasks.Tasks have di�erent osts. In partiular, the following notation is used:
• vr is the speed of robot Rr,
• wr is the task exeution speed of robot Rr,
• vmin (vmax) is the minimum (maximum) speed of robots,
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• wmin (wmax) is the minimum (maximum) task exeution speed of robots,
• ci is the ost of the i-th task,
• cmin (cmax) is the minimum (maximum) ost of tasks.Moreover, dmax is the maximum length of the shortest path between any twopoints in the region R.Robots are supposed to �rst oordinate themselves to deide upon their taskassignment and then start to serve the tasks autonomously.To use a notation that is standard in the literature, we assume that robotsare initially positioned in depots and should go bak to them after the exeutionof tasks. The set of depots is alled D and the generi r-th depot is Dr.Now, ifKr denotes the set of tasks assigned to robotRr, our goal is to minimizethe objetive funtion:

J = max
r∈N

Jr =

(

TSP (Kr ∪ {Dr})
vr

+

∑

i∈Kr
ci

wr

) (3.1)where TSP (Kr∪{Dr}) is the minimumTSP tour length of robotRr that, initiallypositioned in Dr, visits all tasks in Kr and go bak to Dr.In simple words we want to minimize the maximum exeution time of the nrobots that have to visit and exeute all tasks assigned to them, guaranteeingthat eah task is exeuted by exatly one robot.The above problem an be seen as a generalization of the lassial multi-TSPproblem. First, beause we are also assuming that tasks should not only bevisited by the robots, but should be proessed by them. Seondly, beause theoptimization is arried out over an heterogeneous network due to the heterogene-ity of the agents and the tasks. Similar problems have been reently addressedin the literature, see e.g. (30), but to the best of our knowledge, never under theassumption of heterogeneous agents and tasks.Let us onlude this setion with the introdution of some notation that willbe used in the remaining of the hapter. Let Kr be the set of tasks assigned torobot Rr. We denote as K̃r the ordered set with the same elements of Kr, butwhose ordering spei�es the order in whih tasks in Kr are visited by robot Rr.Therefore, sets K̃r are the unknown variables of the optimization problem (3.1).
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Finally, let K̃ = {K̃1, . . . , K̃n} be an ordered set of n ordered sets, that sum-marizes the generi solution of the onsidered tasks alloation problem. The set
K̃ is alled network state.3.2 Optimal entralized solutionIn this setion we �rst disuss a entralized strategy that leads to an optimalsolution of the above task assignment problem. Suh an approah is based onmixed linear integer programming (MILP). Then we provide a haraterization ofthe optimal solution in terms of an upper and a lower bound on the optimal valueof the objetive funtion. This will be useful when evaluating the e�etiveness ofthe deentralized approah proposed in the next setion.To represent all possible direted tours of n robots, let us de�ne a ompletedireted graph G = {V,E} where:

• V = N ∪K is the set of n+ k nodes;
• E = (N ∪ K) × (N ∪ K) is the set of (n + k)2 edges representing diretedpaths from the depots in whih robots are initially plaed to tasks, and viz,and from tasks to tasks1.Moreover, we de�ne the following binary variables that ompletely identify a taskalloation and the order in whih tasks are exeuted by robots. In simple wordsthey ompletely identify a network state K̃. Sine we want to minimize the totalexeution times of robots, we always assume that distanes among tasks, andamong tasks and depots, are overed through straight lines.
• We assign n binary variables xir to eah node i ∈ V; here r ∈ N: if i ∈ N,
xir = 1 means that robot Rr starts its tour from node i, while if i ∈ K,
xir = 1 means that task i is exeuted by robot Rr.

• We assign n binary variables yijr to eah edge (i, j) ∈ E; here r ∈ N: yijr = 1means that robot Rr goes diretly from node i to node j in its path.1In the sets V and E the generi r-th depot is identi�ed via the r-th element in N. This hasbeen done for learity of presentation as it will appear in the following.
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Moreover, we introdue the following ost oe�ients.
• We assign n osts cir = ci/wr to eah node i ∈ K; here r ∈ N: cir representsthe exeution time of task i by robot Rr with an exeution speed of wr.
• We assign n osts dijr = lij/vr to eah edge (i, j) ∈ E; here r ∈ N: dijrrepresents the time spent by robot Rr to pass the length lij of edge (i, j)with speed vr.Proposition 3.2.1 Let us onsider the alloation problem formalized in Se-tion 3.1. An optimal solution an be omputed solving the following MILP prob-lem:















































































































J = minλs.t.
∑

i∈K

xircir +
∑

(i,j)∈E

dijryijr < λ, ∀r ∈ N (a)

xrr = 1, ∀r ∈ N (b)
∑

r∈N

xir = 1, ∀i ∈ K (c)

∑

j∈V

yjir =
∑

j∈V

yijr = xir, ∀i ∈ V, ∀r ∈ N (d)

∑

i/∈S

∑

j∈S

yijr ≥ xqr ∀S ⊆ K,

∀q ∈ S, ∀r ∈ N (e)

λ ∈ R (f)

xir ∈ {0, 1} ∀i ∈ V, ∀r ∈ N (g)

yijr ∈ {0, 1} ∀(i, j) ∈ E, ∀r ∈ N. (h)Proof: The proof is arried out via a detailed explanation of all the on-straints and the objetive funtion.� Constraints (a) and objetive funtion: The left hand side term of (a) isequal to the total exeution time of robot Rr. Thus, given the objetive funtion,onstraints (a) aim to minimize the maximum exeution time of robots.� Constraints (b): These onstraints fore eah robot to move from its initialposition (depot).� Constraints (): Eah task i must be exeuted by exatly one robot.� Constraints (d): If robot Rr exeutes task i, it must arrive at node i insome way and at the end of the exeution has to leave it. The same holds if node
i models a depot, i.e., i ∈ N.
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� Constraints (e): Eah robot Rr has to make a single onneted tour visitingall its tasks, so we have to exlude all the disjoint paths. In words onstraint (e)relative to robot Rr, imposes that if robot Rr exeutes a task i ∈ S ⊆ K, theremust be an edge passed by Rr to enter in S. These onstraints are named SubtourElimination Constraints (SEC) and are typial of vehile routing problems andTSP models (20). �The number of unknowns in the MILP (3.2.1) is equal to
N = n(n+ k)2 + n(n + k) + 1 = O(n3 + nk2 + n2k).The total number of onstraints is O(n2k+nk2k). Indeed we have n onstraintsof type (a), n onstraints of type (b), k onstraints of type (), (n+k)n onstraintsof type (d), and n

∑k
i=1 i

k!

(k − i)!i!
≤ nk2k onstraints of type (e).The following two theorems provide a haraterization of the optimal value ofthe performane index J∗.Theorem 3.2.2 The optimal solution J∗ of the objetive funtion (3.1) is upperbounded by

J∗ ≤ Cup +Dup (3.2)where
Cup =

1

n

(

TSP (K)

vmin

+

∑

i∈K ci

wmin

)

, (3.3)
Dup = 2

dmax

vmin

+
cmax

wmin

. (3.4)Proof: The proof is based on an heuristi that an be summarized in thefollowing main steps.
• Generate an optimal tour that visits all tasks. Obviously, if an agent withspeed vmin and exeution speed wmin follows the tour and exeutes all tasks,its servie time is equal to

Ĵ =

(

TSP (K)

vmin

+

∑

i∈K ci

wmin

)

.
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• Divide the tour in n onseutive sub-tours using the following rule. Takea robot (e.g. R1) at random and make it follow the route of the optimalsingle vehile tour at the previous item, starting from the position of anarbitrary task. Stop it as soon as its servie time Ĵ1 satis�es the ondition
Ĵ1 ≥ Ĵ/n. Now, sine the largest ost of tasks is equal to cmax, the smallestexeution speed of robots is wmin, and the time taken to travel betweentasks is ontinuous, it is

Ĵ1 ≤
Ĵ

n
+

cmax

wmin
.Selet at random a new robot (e.g. R2) and put it at the end of the routeof R1 and repeat the same strategy, until all robots are onsidered. If therearen't enough tasks for the robots, simply onsider null the servie time forthe remaining robots.

• Now, if dmax is the maximum length of the shortest path between any twopoints in the region R, the exeution time Jr of eah robot Rr is suhthat Jr ≤ Ĵr + 2dmax/vmin. Indeed the total servie time of eah robotorresponds to the time it takes to omplete its sub-tour along the routeof the optimal single vehile TSP, plus the time to go from its depot to its�rst task and go bak to the depot. Therefore, it is
Jr ≤

Ĵ

n
+

cmax

wmin
+ 2

dmax

vmin
, ∀r ∈ N.Sine the optimal solution J∗ of the objetive funtion (3.1) an only be smalleror equal than the solution resulting from the above heuristi, for sure it is

J∗ ≤ max
r∈N

Jr ≤
Ĵ

n
+

cmax

wmin

+ 2
dmax

vmin

= Cup +Dupthus proving the orretness of the upper bound. �Theorem 3.2.3 The optimal solution J∗ of the objetive funtion (3.1) is lowerbounded by
J∗ ≥ Clo −Dlo (3.5)where

Clo =
1

n

(

TSP (K)

vmax

+

∑

i∈K ci

wmax

)

, (3.6)
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Dlo =
dmax

vmin
. (3.7)Proof: Let Sopt =

∑

r∈N J∗
r be the sum of all the servie times orrespondingto an optimal task assignment. Sine, by de�nition J∗ = maxr∈N J∗

r , obviously itis
J∗ ≥ Sopt

n
. (3.8)Now, let Sp

opt be the sum of the ontributions to J∗
r , with r ∈ N, relative tothe only time spent moving from one task to another one, or from/toward thedepots, without inluding the time spent to exeute tasks.Obviously, it is

Sopt ≥ Sp
opt +

∑

i∈K ci

wmax
. (3.9)Moreover, trivially generalizing the result in (30) to the ase of heterogeneousrobots, we have that

Sp
opt +

TSP (D)

vmin

≥ TSP (D ∪K)

vmax

≥ TSP (K)

vmax

(3.10)or equivalently
Sp
opt ≥

TSP (K)

vmax

− TSP (D)

vmin

. (3.11)By equations (3.9) and (3.11) it follows that
Sopt ≥ TSP (K)

vmax

− TSP (D)

vmin

+

∑

i∈K ci

wmax

≥ TSP (K)

vmax
− n

dmax

vmin
+

∑

i∈K ci

wmax
.

(3.12)Finally, by equations (3.8) and (3.12), it is
J∗ ≥ Sopt

n
=

1

n

(

TSP (K)

vmax

+

∑

i∈K ci

wmax

)

− dmax

vmin

= Clo −Dlo

(3.13)thus proving the statement. �
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3.3 Deentralized solution based on optimal loaltask assignmentIn this setion we �rst propose a deentralized approah to solve the task alloa-tion problem in Setion 3.1 that is based on gossip. Then, a omparison amongthe omputational omplexity of the proposed algorithm and the entralized algo-rithm is provided. Convergene properties of the gossip algorithm are disussed.Finally, some haraterizations of the solution obtained via the deentralized ap-proah are proposed.3.3.1 MILP Gossip algorithmThe idea of the proposed deentralized algorithm is that robots loally balanetheir loads aording to a gossip interation rule, i.e., via pairwise ommunia-tions, under the following main assumption:(A1) All robots may interat with all the other robots.Starting from an initial task assignment, e.g., assuming that robots have thesame number of tasks, a ouple of robots is seleted at random. Seleted robotsoptimally balane their load; a new ouple of robots is seleted and so on, untilno better balaning among robots an be obtained. This an be summarizedin Algorithm 1. The variable Tmax denotes a maximum number of steps to beexeuted that is assumed to be large enough so that no further improvement ofthe objetive funtion an be obtained.3.3.2 Computational omplexity of the loal optimizationLet us now disuss the advantages in terms of omputational omplexity omingfrom loal optimizations using Algorithm 2 with respet to a entralized opti-mization.To this aim, let us �rst present some preliminary results. In partiular, thefollowing proposition ensures that when the number of iterations of Algorithm 2inreases, the optimal value of the objetive funtion an never inrease. Obvi-ously this does not imply that an optimal solution is obtained.
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Algorithm 2 MILP Gossip algorithm(i) Tasks are initially assigned to robots so that eah robot has either k/n or
k/n+ 1 tasks.(ii) Let t = 0.(iii) While t ≤ Tmax(a) Choose at random two robots r and q. Let them solve the MILP (3.2.1)where N = {r, q} and K = Kr ∪Kq.(b) If the new task assignment leads to a smaller total exeution time,then update the assignments of robots r and q aordingly,else leave them unhanged.() Let t = t+ 1 and go bak to Step 3.(iv) All robots proess their own set of tasks following the order spei�ed by theoptimal loal solution.
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Proposition 3.3.1 Let Jgossip(t) be the maximum exeution time of robots om-puted after t iterations of Algorithm 2. For any t ≥ 0, it is Jgossip(t + 1) ≤
Jgossip(t).Proof: Let Rr and Rq be the two robots seleted at time t+1. By Algorithm 2this means that only the tasks alloation of suh robots may hange, while theload of all the other robots keeps unaltered. Now, sine at Step 3.a of Algorithm 2tasks are assigned to robots Rr and Rq so as to minimize the maximum exeutiontime among them, this implies that the maximum exeution time among Rr and
Rq either dereases or it keeps unaltered at time t+ 1. Moreover, the maximumexeution time among all robots may derease at time t + 1 if and only if either
Rr or Rq, or both, are the robots to whih it orresponds the maximum exeutiontime among all robots at time t. Indeed with no loss of generality, we may assumethat Rr is the �ritial� robot at time t, i.e., the robot to whih it orrespondsthe maximum exeution time among all robots at time t. Three di�erent asesmay our at time t+1, after the new tasks alloation. First, Rr may still be therobot with the maximum exeution time, but in suh a ase for sure, its exeutiontime annot be larger than that at time t. Seondly, robot Rq may be at time
t+1 the robot with the maximum exeution time but for sure its exeution timeannot be larger than that of robot Rr at time t. Finally, at time t + 1, neitherto Rr nor to Rq it orresponds the maximum exeution time among robots. Thisimplies that a third robot, e.g., Rp, has beome the ritial one at time t+ 1. Inany ase for sure its exeution time is smaller than that of robot Rr at time t,sine by assumption robot Rr was the ritial robot at time t. �Let us now provide an upper bound on the value of the maximum exeutiontime of robots resulting from Algorithm 2 at a generi iteration t. To this aim,we �rst reall some deterministi upper bounds to the maximum length of theshortest path (SP) between a set K of k loations in a unit square area, that aredue to (40) and (41), respetively:

SP (K) ≤
√
2
√
k + 7/4, (3.14)and

SP (K) ≤ 0.984
√
2
√
k + 11. (3.15)To the best of our knowledge the above two upper bounds are the best a-tually proposed in the literature. Moreover, we annot a priori say whih of the
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above bounds is the most strit one. Indeed the bound in (41) has a smallermultipliative fator with respet to (40), but has a larger additive onstant. Inthe following, we fous on upper bound (3.14), but obviously similar results anbe repeated onsidering (3.15).Proposition 3.3.2 Let Jgossip(t) be the maximum exeution time of robots om-puted after t iterations of Algorithm 2, then ∀ t ≥ 0 it is
Jgossip(t) ≤

(

√
2

√

k

n
+ 2 +

7

4
+
√
2

)

dmax

vmin
+

(

k

n
+ 1

)

cmax

wmin
.Proof: By Algorithm 2 at time t = 0 the maximum number of tasks that anbe assigned to a robot is equal to k/n + 1. Moreover, sine eah robot starts itspath from its depot and has to ome bak to it, then by equation (3.14), for any

r ∈ N it is
TSP (Kr(0) ∪ {Dr}) ≤

(

√
2

√

k

n
+ 2 +

7

4
+
√
2

)

dmax. (3.16)Note that the additional term √
2 between parenthesis omes from the fatthat to form a Eulidean TSP tour from a path in a unit square it is su�ient toonnet the start and end point to form a yle, thus inreasing the size of thepath of at most √2 in the unit square. Moreover, dmax omes from the fat thatin our problem statement depots and robots are not distributed in a square ofunitary edge, but in a region R that is ontained in a square of edge dmax beingby de�nition dmax the maximum length of the shortest path between any twopoints in R.Finally, sine by assumption ∑

i∈Kr(0)

ci ≤
(

k

n
+ 1

)

cmax, it follows that
Jgossip(0) ≤

(

√
2

√

k

n
+ 2 +

7

4
+
√
2

)

dmax

vmin
+

(

k

n
+ 1

)

cmax

wminthat proves the statement being by Proposition 3.3.1 Jgossip(t) ≤ Jgossip(0) for all
t ≥ 0. �Let us now provide a proposition that haraterizes the maximum number oftasks that are assigned to robots at a generi iteration t of Algorithm 2.
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Proposition 3.3.3 Let Kmax(t) = maxr∈N |Kr(t)| be the maximum number oftasks that are assigned to robots at a generi iteration t of Algorithm 2. For any
t ≥ 0 it is:

Kmax(t) ≤ wmax

cmin

[(

√
2

√

k

n
+ 2 +

7

4
+
√
2

)

dmax

vmin

+

(

k

n
+ 1

)

cmax

wmin

]

.

(3.17)Proof: By Proposition 3.3.2, for all t ≥ 0, it holds
Jgossip(t) ≤

(

√
2

√

k

n
+ 2 +

7

4
+
√
2

)

dmax

vmin

+

(

k

n
+ 1

)

cmax

wmin

. (3.18)Now, it is
Jgossip(t) ≥

Kmax(t)cmin

wmax

(3.19)sine the exeution time of Kmax(t) tasks is greater or equal than that we have ifsuh tasks are at a null distane from the robot that has to proess them, all taskshave a ost equal to cmin and the robot who proess them has an exeution speedequal to wmax. By equations (3.18) and (3.19) the statement of the propositionfollows. �An important remark needs to be done. The above proposition provides anupper bound on the maximum number of tasks that an be assigned to a robotat any iteration. For partiular values of the parameters it may happen thatthe upper bound given by Proposition 3.3.3 is not signi�ant beause it is largerthan k. However, this only ours for very partiular ases, while for most of thesigni�ant and general situations where the number of tasks is su�iently large,robots and tasks are su�iently distributed in R and their osts and speeds arein reasonable ratio, Proposition 3.3.3 enables us to onlude that
Kmax(t) = O(k/n).Now, sine loal optimization onsiders two robots at a time, the number of tasksthat are involved in a loal optimization is surely smaller or equal than 2Kmax(t).This means that the number of unknowns of the MILP that should be solved atthe generi iteration t of Algorithm 2 is
Ngossip = O(k2/n2)
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rather than N = O(n3+nk2+n2k) as in the entralized ase. Moreover, the num-ber of onstraints is O(k2k/n/n) rather than O(n2k + nk2k) as in the entralizedase.3.3.3 Finite time and almost sure onvergeneWe now introdue two de�nitions to formalize two important properties of gossipommuniation shemes, namely deterministi persistene and stohasti persis-tene. Similar de�nitions have been reently proposed in (42). As usual in thisframework, we assume that the possible interations among agents are modeledby an undireted graph G = {V,E} where agents orrespond to verties, and anedge exists if and only if the interation among the agents orresponding to theinidene nodes is possible. Obviously, assumption (A1) implies that in our aseit is E = V × V . At eah iteration t of the gossip algorithm a di�erent edge isseleted. In the following we denote as e(t) the edge seleted at time t, while theset of edges seleted in the time interval [t1, t2] is denoted as ē(t1, t2), i.e., we have
ē(t1, t2) =

t2
⋃

t=t1

e(t).De�nition 1 (Deterministi persistene)A gossip ommuniation sheme is said to be deterministially persistent if
∀t ≥ 0 there exists a �nite T > 0 suh that

∀e′ ∈ E, Pr(e′ ∈ ē(t, t+ T )) = 1or equivalently, ē(t, t+ T ) = E. �Deterministi persistene implies that, if we onsider a �nite but su�iently largetime interval, then for sure all ars are seleted at least one during suh interval.De�nition 2 (Stohasti persistene)A gossip ommuniation sheme is said to be stohastially persistent if ∀t ≥ 0there exists a �nite T > 0 and a probability p ∈ (0, 1) suh that
∀e′ ∈ E, Pr(e′ ∈ ē(t, t+ T )) ≥ pwhere Pr(·) denotes a probability. �
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In simple words, stohasti persistene implies that, if we onsider a �nite butsu�iently large time interval, then eah edge has a probability greater or equalthan a �nite value p of being seleted during suh an interval.Theorem 3.3.4 Let K̃(t) be the network state resulting at time t from the exe-ution of Algorithm 2. If the gossip ommuniation sheme satis�es the deter-ministi persistene property then, for every initial task assignment, there existsa network state K̃∗
gossip and a �nite time T > 0 suh that K̃(t) = K̃∗

gossip, for all
t ≥ T .Proof: Let us present some preliminary omments.� First, K̃∗

gossip is an invariant network state for the state evolution followingAlgorithm 2. This follows from Step 3.b of Algorithm 2.� Seondly, if at a given time the network state is updated then the previousnetwork state is no more visited during the algorithm evolution. This also fol-lows from Step 3.b of Algorithm 2 and the monotoniity property expressed byProposition 3.3.1.� Thirdly, the number Nn,k of admissible network states is �nite sine boththe number of robots and the number of tasks are �nite.Now, with no loss of generality we assume that at the initial time t = 0 itis K̃r 6= K̃∗
gossip,r for all r = 1, . . . , n, i.e., no robot is in its �nal assignment. Ifthe ommuniation sheme among agents is deterministially persistent, sine thegraph modeling the possible interations among robots is fully onneted and thenumber Nn,k of admissible network states is �nite, then for sure after some �nitetime T0 the robot with the maximum ost in the �nal assignment reahes its �nalassignment. Let Rr be suh a robot. By Step 3.b of Algorithm 2 this impliesthat the assignment of Rr is no more hanged during the algorithm evolution,i.e., K̃r(t) = K̃∗

gossip,r for all t ≥ T0.Analogously, after some further �nite time T1 the �nal assignment is reahedby the robot with the seond largest ost, and so on, until all robots have reahedtheir �nal assignment. Sine all Ti's are �nite, this proves that the �nal networkstate K̃∗
gossip is reahed in a �nite time T =

∑n
i=1 Ti. �Theorem 3.3.5 Let K̃(t) be the network state resulting at time t from the exeu-tion of Algorithm 2. If the gossip ommuniation sheme satis�es the stohasti
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persistene property, then, for every initial task assignment, there exists a net-work state K̃∗
gossip and almost surely a �nite time T > 0 suh that K̃(t) = K̃∗

gossipfor all t ≥ T , i.e., the network state onverges almost surely in �nite time to
K̃∗

gossip.Proof: We prove this theorem following the same arguments an in (43). Theproof is based on verifying the following three fats:(i) K̃∗
gossip is an invariant network state for the state evolution following Algo-rithm 2;(ii) K̃(t) is a Markov proess on a �nite number of states;(iii) starting from any initial network state K̃(0), there is a positive probabilityfor the network state to reah K̃∗

gossip in a �nite number of steps.Let us now hek the above three properties in order.� (i) As already disussed in Theorem 3.3.4, this follows from Step 3.b ofAlgorithm 2.� (ii) As already disussed in the proof of Theorem 3.3.4, the number ofadmissible network states Nn,k is �nite, being �nite both the number of robotsand the number of tasks. Markovianity immediately follows from the fat thatsubsequent random seletion of edges are independent.� (iii) This issue an be proved using similar arguments as in Theorem 3.3.4with the only di�erene that now the ommuniation sheme is stohastiallypersistent, rather than deterministially persistent. This implies that for anyinitial network state K̃(0) there is a �nite probability that after some �nite time
T0 the robot with the maximum ost in the �nal assignment reahes its �nalassignment, that is no more hanged during the algorithm evolution. The sameholds for the robot with the seond largest exeution ost in the �nal assignment,and so, until the invariant network state K̃∗

gossip is reahed. Sine the number ofpossible states is �nite, item (iii) holds. �3.3.4 Performane haraterization of the MILP algorithmAlgorithm 2 does not guarantee the onvergene to an optimal solution. However,some results an be given to haraterize its solution at the equilibrium, i.e.,
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after a number of iterations that is su�iently large so that no better balaningamong robots may be obtained. In partiular, the following theorem provides aharaterization of the maximum distane among the proessing times of robotsthat have loally balaned their loads.Theorem 3.3.6 Let J∗
gossip,r and J∗

gossip,q, respetively, be the total exeution timesof two generi robots Rr and Rq resulting from the appliation of Algorithm 2. Itholds
|J∗

gossip,r − J∗
gossip,q| ≤ Krq = 2

drqmax

vrqmin

+
crqmax

wrq
min

(3.20)where drqmax is the maximum distane among tasks in Kr and tasks in Kq, vrqmin =

min{vr, vq}, and wrq
min = min{wr, wq}.Proof: We prove the statement by ontradition, i.e., we assume that

|J∗
gossip,r − J∗

gossip,q| > Krq.With no loss of generality, we assume that it is J∗
gossip,r > J∗

gossip,q. Now, let z bethe task in Kr whose distane with respet to tasks in Kq is minimum. Remove
z from Kr and put it in Kq. Let J̃r and J̃q be the resulting exeution times ofrobots r and q, respetively. Obviously, we have

J̃q ≤ J∗
gossip,q +

cz
wq

+ 2
drqmax

vq
= J∗

gossip,q +Krq (3.21)where the inequality follows from the fat that the optimal TSP of robot q issurely smaller than the path obtained by simply adding twie the path from thelosest task in Kq to z. Now, by the ontraditory assumption, we have
J∗
gossip,r > J∗

gossip,q +Krq (3.22)thus (3.21) an be rewritten as
J̃q < J∗

gossip,r. (3.23)As a onsequene
max{J̃q, J̃r} < max{J∗

gossip,q, J
∗
gossip,r}. (3.24)However, this ontradits the assumption that J∗

gossip,r and J∗
gossip,q are the timeexeutions orresponding to an optimal task assignment, thus proving the state-ment. �
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Corollary 3.3.7 Let J∗
gossip,r and J∗

gossip,q, respetively, be the total exeutiontimes of two generi robots Rr and Rq resulting from the appliation of Algo-rithm 2. It holds
|J∗

gossip,r − J∗
gossip,q| ≤ Dup (3.25)where Dup is de�ned as in equation (3.4).Let us now provide a theorem that gives an upper bound on the maximum ex-eution time resulting from the appliation of Algorithm 2. First, we introduethe following Lemma neessary to the proof of Theorem 3.3.8.Lemma 3.3.1 Let Sgossip(t) be the sum of all Ji's at iteration t of Algorithm 2.Then

∀t > 0, Sgossip(t) ≤
(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

ndmax

vmin
+

∑

j∈K cj

wmin
. (3.26)Proof: By de�nition Sgossip(t) =

∑n
i=1 Ji(t). Sine

Ji(t) =
TSP (Ki(t) ∪ {Di})

vi
+

∑

j∈Ki
cj

wi

,it is
Sgossip(t) =

n
∑

i=1

TSP (Ki(t) ∪ {Di})
vi

+
n
∑

i=1

∑

j∈Ki
cj

wi

.By onsidering the worst ase senario in whih eah agent has speed vi = vminand task exeution speed wi = wmin for i = 1, . . . , n, we have the followingstraightforward upper bound
Sgossip(t) ≤

n
∑

i=1

TSP (Ki(t) ∪ {Di})
vmin

+

∑

j∈K cj

wmin

. (3.27)To eah robot ki(t) = |Ki(t)| tasks are assigned at any given time. By ex-ploiting the result by Few (40) and (41) given in eq. (3.14) and eq. (3.15), andtaking into aount that suh results refer to a unit square area, the maximumtour length that eah robot has to drive to visit all its assigned tasks is
TSP (Ki(t) ∪ {Di}) ≤

(

α
√

ki + 1 + β
)

dmax (3.28)
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where α, β ∈ R are appropriate onstants that depend on the onsidered bound.Thus, we may now write
Sgossip(t) ≤

αdmax

vmin

n
∑

i=1

(

√

ki(t) + 1
)

+
nβdmax

vmin
+

∑

j∈K cj

wmin
. (3.29)The only term in eq. (3.29) that is a�eted by the task assignment to the robots is

∑n
i=1

(

√

ki(t) + 1
). We now �nd the task assignment that maximizes the boundin eq. (3.29) by solving the following optimization problem:































max
∑n

i=1

(√
ki + 1

)

s.t.
∑n

i=1 ki = k

ki ≥ 0 i = 1, . . . , n

ki ∈ N i = 1, . . . , n

(3.30)
Any solution to Problem (3.30) found by relaxing the onstraint to have integervariables is an upper bound to the solution of the given problem. We thereforesolve Problem (3.30) by relaxing the integer onstraint using Lagrange multipliers:

f(k1, . . . , kn, λ) =

n
∑

i=1

(

√

ki + 1
)

+ λ

(

n
∑

i=1

ki − k

) (3.31)By setting partial derivatives of the objetive funtion (3.31) to zero we get
∂f(k1, . . . , kn, λ)

∂ki
=

1

2
√
ki + 1

+ λ = 0 i = 1, . . . , n

∂f(k1, . . . , kn, λ)

∂λ
=

(

n
∑

i=1

ki − k

)

= 0
(3.32)Thus, for any i, j ∈ N, it is

1

2
√
ki + 1

=
1

2
√

kj + 1
,i.e., the maximum of funtion (3.31) is found for ki = k

n
for all i ∈ N. Therefore,an upper bound to the solution of Problem (3.30) is

n
∑

i=1

(

√

ki + 1
)

≤
n
∑

i=1

(

√

k

n
+ 1

)

= n

√

k

n
+ 1.
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Finally, by substituting the solution of (3.31) into (3.29)
Sgossip(t) ≤ αn

(

√

k

n
+ 1 + β

)

dmax

vmin
+

∑

j∈K cj

wmin
. (3.33)If we onsider the results by Few (3.14) we get

Sgossip(t) ≤
(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

ndmax

vmin
+

∑

j∈K cj

wmin
. (3.34)

�We are now ready to state one of the main results of this hapter.Theorem 3.3.8 The maximum exeution time J∗
gossip resulting from the applia-tion of Algorithm 2 satis�es

J∗
gossip ≤

(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

dmax

vmin
+

1

n

∑

i∈K ci

wmin
+Dup. (3.35)Proof: Let Sgossip(t) be the sum of all Ji's at iteration t of Algorithm 2. ByLemma 3.3.1 we have

Sgossip(t) ≤
(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

ndmax

vmin
+

∑

j∈K cj

wmin
(3.36)Let J∗

gossip,min be the smallest exeution time between the vehiles after the exeu-tion of Algorithm 2. Corollary 3.3.7 implies J∗
gossip,min ≥ J∗

gossip −Dup. Moreover,
∀t ≥ 0 it obviously is

J∗
gossip,min(t) ≤

1

n
Sgossip(t) (3.37)thus

J∗
gossip ≤ J∗

gossip,min +Dup ≤
1

n
Sgossip(t) +Dup

≤
(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

dmax

vmin
+

1

n

∑

i∈K ci

wmin
+Dup.

(3.38)proving the statement. �
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3.3.5 Asymptoti behaviorWe now study what is the performane to expet from the proposed algorithmin the limit ases in whih the ratio between tasks and robots goes to in�nity. Inpartiular we obtain the following result.Proposition 3.3.9 Let J∗
gossip be the maximum exeution time resulting fromthe appliation of Algorithm 2 and let J∗ be the optimal solution to the HMVRproblem. Then
lim
k
n
→∞

J∗
gossip

J∗
≤ cmax

cmin

wmax

wmin
. (3.39)Proof: By taking the ratio between the upper bound to J∗

gossip given in The-orem 3.3.8 and the lower bound of the optimal solutions to the HMVR problem
J∗ given in eq.(3.5) we get

lim
k
n
→∞

J∗
gossip

J∗
≤
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√
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)
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+
1
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i∈K ci
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+Dup

1

n

(

TSP (K)

vmax

+

∑

i∈K ci

wmax

)

−Dlo

. (3.40)The term 1
n
TSP (K)
vmax

, being at the denominator, an be lower bounded by zero.The term 1

n

∑

i∈K ci

wmin

at the numerator an be upper bounded by k
n

cmax

wmin
whilethe equivalent term ∑

i∈K
ci

wmax
at the denominator an be lower bounded by k

n
cmin

wmax
.Therefore, we get

lim
k
n
→∞

J∗
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J∗
≤

(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

dmax
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+
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+Dup

1

n

TSP (K)
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+

k
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wmax
−Dlo

. (3.41)The term k
n
dominates both on the onstants and on the term √

k
n
, thus we get

lim
k
n
→∞

J∗
gossip

J∗
≤ cmax

cmin

wmax

wmin

. (3.42)proving the statement. �
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3.4 An heuristi gossip algorithmIn this setion we present a new algorithm, alled the Deentralized HeuristiAlgorithm, and disuss its onvergene properties and omputational omplexityin omparison with the algorithm in the previous setion.The robots update their states following Algorithm 3, while the task exhangerule is desribed in Algorithm 4. The basi idea is as follows. When two robotsare seleted at step 3.a of Algorithm 3, the two agents start to balane theirexeution time by the iterative exeution of Algorithm 4. At eah exeution ofAlgorithm 4 only two senarios are possible:
• the sets of assigned tasks of the two robots do not hange;
• one task is given by the robot with the higher exeution time to the otherrobot.Note that the determination of the possible exhanges is made by the omputationof the Approximated Eulidean TSP (ATSP ), thus, unlike in the MILP gossipalgorithm, this approah involves polynomial time algorithms. There exist avast literature on polynomial time algorithms to ompute approximations to theEulidean TSP suh that

ATSP ≤ αTSPwhere TSP denotes the value of the optimal TSP and α represents the worstase ratio. In (44) some heuristis for the TSP problem are summarized. Manyheuristis are based on the omputation of the Minimum Spanning Tree (MST)among the nodes and guarantee a worst ase ratio of α = 2 with a running time of
O(m2), where m denotes the number of nodes to be visited. Another polynomialtime heuristi based on MST whih provides a value of α = 1.5 is the Christo�desalgorithm desribed in (45), whih is haraterized by a running time of O(m3).We observe that the STOP of Algorithm 4 ensures that after the exeutionof Algorithm 4 it holds

max{Jr(t+ 1), Jq(t+ 1)} ≤ max{Jr(t), Jq(t)}whatever is the hoie of the algorithm to ompute the value of the ATSP .As a �nal remark we note that onditions an be given on the gossip ommu-niation sheme whih allow the robot to onverge to stable task assignment in a
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Algorithm 3 Deentralized Heuristi Algorithm(i) Tasks are initially arbitrarily assigned to robots.(ii) Let t = 0.(iii) While t ≤ Tmax(a) Selet two robot Rp and Rr at random.(b) Apply Algorithm 4 repeatedly on Rp and Rr until no more task ex-hanges are possible.() Let t = t+ 1 and go bak to Step 3.(iv) All robots proess their own set of tasks following the order spei�ed by theloal solution of an ATSP Algorithm.�nite time. In partiular, the following two theorems an be given, whose proofsare omitted here beause they follow the same lines of Theorems 3.3.4 and 3.3.5,respetively.Theorem 3.4.1 Let K̃(t) be the network state resulting at time t from the exe-ution of Algorithm 3. If the gossip ommuniation sheme satis�es the deter-ministi persistene property then, for every initial task assignment, there existsa network state K̃∗
heur and a �nite time T > 0 suh that K̃(t) = K̃∗

heur, for all
t ≥ T .Theorem 3.4.2 Let K̃(t) be the network state resulting at time t from the exeu-tion of Algorithm 3. If the gossip ommuniation sheme satis�es the stohastipersistene property, then, for every initial task assignment, there exists a net-work state K̃∗

heur and almost surely a �nite time T > 0 suh that K̃(t) = K̃∗
heur forall t ≥ T , i.e., the network state onverges almost surely in �nite time to K̃∗

heur.3.4.1 Computational omplexity of the loal optimizationIn this setion we disuss about the advantages of the proposed heuristi in termsof omputational omplexity with respet to the MILP gossip algorithm.
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Algorithm 4 Loal Balaning between robots Rr and Rq- INPUT: Kr(t) and Kq(t).- OUTPUT: Kr(t+ 1) and Kq(t+ 1).- ASSUMPTION: We assume, with no loss of generality, that Jr(t) > Jq(t).- STEPS:(i) Let Kex = ∅, Kv = Kr and F = 0.(ii) While F = 0 and Kv 6= ∅

• Selet i ∈ Kv randomly.
• Let Kv = Kv \ {i}.
• Compute

Jnew =
ATSP (Kq ∪ {i})

vq
+

∑

j∈(Kq∪{i})
cj

wq
.

• If Jnew < Jr(t)(a) Kex = Kex ∪ {i}.(b) F = 1.End While.- STOP:
• Kq(t + 1) = Kq(t) ∪Kex and Kr(t+ 1) = Kr(t) \Kex.
•

Jq(t+ 1) =
ATSP (Kq(t+ 1))

vq
+

∑

j∈(Kq(t+1)) cj

wq
,

Jr(t + 1) = min

{

Jr(t)−
∑

i∈Kex
ci

wr
,

ATSP (Kr(t+ 1))

vr
+

∑

j∈(Kr(t+1)) cj

wr

}

.
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Let us begin with the analysis of the omputational omplexity of the singletask exhange rule in Algorithm 4. The following proposition haraterizes therunning time of Algorithm 4.Proposition 3.4.3 Assume to ompute the ATSP using, at step 2 of Algo-rithm 4, an algorithm with a running time of O(kp). The worst ase runningtime of Algorithm 4 is O(kp+1).Proof: The maximum number of nodes assigned to a robot is k, thus at eahiteration of the while loop of Algorithm 4 the running time of the algorithm toompute the ATSP is at maximum O(kp). The while loop an be repeated atmaximum k times, as there may be at maximum k tasks exhange. Thus thetotal running time of Algorithm 4 is k · O(kp) = O(kp+1). �.An important property of the proposed heuristi is presented in the followingproposition.Proposition 3.4.4 Let Jheur(t) = maxi∈N Ji(t) be the maximum exeution timeof robots at time t resulting from the exeution of Algorithm 3. The followingholds
∀t ∈ N, Jheur(t+ 1) ≤ Jheur(t).Proof: The proof diretly follows from the update rules of Algorithm 4.Let Rr and Rq be the ouple of robots seleted by Algorithm 3 at time t withexeution time respetively Jr(t) and Jq(t). Let Rmax be the robot with themaximum exeution time at time t ≥ 0, so it is Jmax(t) = Jheur(t). Now, byAlgorithm 4 is holds max{Jr(t+ 1), Jq(t+ 1)} ≤ max{Jr(t), Jq(t)}, and only twoases may our

• if Rr, Rq 6= Rmax, Jheur(t+ 1) = Jheur(t), i.e., the maximum exeution timedoes not hange;
• if either Rr = Rmax or Rq = Rmax, Jheur(t+1) ≤ Jheur(t), i.e., the maximumexeution time may be redued.

�
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A similar property was disussed for the MILP gossip algorithm as well: at eahiteration of the loal optimization rule the maximum exeution time an not in-rease. Note that in the MILP gossip algorithm eah loal optimization requiresto solve a MILP problem, whih is an exponential time algorithm. Proposition3.4.3 shows that the proposed heuristi is based on a loal balane with a onsid-erably smaller omputational omplexity than the MILP gossip algorithm.We onlude this setion with some onsiderations about the total number ofloal interations required to reah a �nal task assignment. We onjeture thatthe expeted number of iterations of Algorithm 3 required to onverge are of thesame order as the number of iterations required in the MILP gossip algorithm.Our onjeture is based on the following observations. The exeution of Algo-rithm 4 leads to a di�erent task assignment only if the maximum exeution timeamong the involved robots an be dereased, otherwise the task assignment doesnot hange. In the proposed framework if at time t the exeution of Algorithm 4leads to a derement of the maximum exeution time, the network state K̃(t)hanges to a new one K̃(t+ 1). It follows from Proposition 3.4.4 that K̃(t) is nomore visited during the algorithm evolution. This property holds for the MILPgossip algorithm as well. Starting from an initial network state K̃(0), in bothdeentralized solutions all the possible network states may be visited before toreah the equilibrium state. For that reason we an reasonably onjeture thatthe MILP gossip algorithm and Algorithm 3 have omputational omplexity ofthe same order in terms of total number of iterations. Our onjeture is supportedalso by the results of some simulations presented in the following.3.4.2 Charaterizations of the heuristi solutionIn this setion we fous on some properties of J∗
heur, i.e., the solution of Al-gorithm 3 at the equilibrium, when no better balaning among robots may beobtained. As the MILP gossip algorithm, Algorithm 3 does not guarantee theonvergene to an optimal solution. Firstly we present a theorem that harater-izes the maximum distane among the exeution times of two robots that haveloally balaned their loads. Then we provide an upper bound on the maximumexeution time resulting from the appliation of Algorithm 3.
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Theorem 3.4.5 Let J∗
r,heur and J∗

q,heur, respetively, be the total exeution timesof two generi robots Rr and Rq resulting from the appliation of Step 2 of Algo-rithm 3. It holds
|J∗

r,heur − J∗
q,heur| ≤ Krq = 2

drqmax

vrqmin

+
crqmax

wrq
min

(3.43)where drqmax is the maximum distane among tasks in Kr and tasks in Kq, vrqmin =

min{vr, vq}, and wrq
min = min{wr, wq}.Proof: Let Rr and Rq be a ouple of robots seleted in Algorithm 3 attime t with exeution time respetively Jr(t) and Jq(t) after t iterations. Bystep 2 of Algorithm 3 robots Rr and Rq exhange tasks one by one until no moreexhanges are possible. Assume, without lak of generality, that at time t it holds

Jr(t) > Jq(t). Now, let us assume to exhange one task from Rr to Rq. Surelythe exeution time of Rr dereases, thus Jr(t + 1) ≤ Jr(t). On the ontrary, theexeution time of robot Rq inreases but the resulting value is suh that:
Jq(t + 1) ≤ Jq(t) +

crqmax

wq
+ 2

drqmax

vq
.Thus, by exhanging one task a redution of the maximum exeution time isguaranteed if

Jq(t) +
crqmax

wq
+ 2

drqmax

vq
≤ Jr(t).In other words, if

Jr(t)− Jq(t) ≥
cmax

wq
+ 2

drqmax

vqthen there exists at east task that an be exhanged suh that
max{Jq(t+ 1), Jr(t+ 1)} < max{Jq(t), Jr(t)}.Sine the number of possible task assignments is �nite and at eah iteration ofAlgorithm 4 the loal maximum may be dereased due to a task exhange, someof these on�gurations are never visited again. Thus we have that in �nite time

|J∗
r,heur − J∗

q,heur| ≤ Krq = 2
drqmax

vrqmin

+
crqmax

wrq
min

�
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By Theorem 3.4.5 and the fat that eah robot interats with any other suf-�iently often, a signi�ant result follows.Corollary 3.4.6 Let J∗
r,heur and J∗

q,heur, respetively, be the total exeution timesof two generi robots Rr and Rq resulting from the appliation of Algorithm 3. Itholds
|J∗

r,heur − J∗
q,heur| ≤ Dup (3.44)where

Dup = 2
dmax

vmin
+

cmax

wmin
.

�Finally, the following result an be proved using the same arguments as in theproof of Theorem 3.3.8.Theorem 3.4.7 Let J∗
heur be the value of the objetive funtion (3.1) resultingfrom the exeution of Algorithm 3. It is

J∗
gossip ≤

(

√
2

√

k

n
+ 1 +

7

4
+
√
2

)

dmax

vmin
+

1

n

∑

i∈K ci

wmin
+Dup. (3.45)where Dup = 2

dmax

vmin
+

cmax

wmin
.Proof: Follows the same steps of Theorem 3.3.8. �3.5 Numerial simulationsIn this setion we present some numerial results omparing the performaneof the proposed heuristi and the performane of the MILP gossip algorithm.We �rst analyze the value of J∗

heur and J∗
gossip for di�erent values of k and n,omparing them with the lower and upper bounds, given in eq. (3.2) and eq. (3.5),respetively. We then ompare the onvergene time of the two deentralizedsolutions either in terms of number of iterations required or in terms of absolutetime.In all the experiments robots and tasks are randomly sattered in a squarebox of side 5. Costs of tasks are integer values randomly generated with uniformdistribution in the interval [1, 5]. Speeds vi and wi are real values randomly
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generated with uniform distribution in [1, 2]. In both deentralized algorithmsthe edge seletion is performed in a uniformly random way. The MILP problemsare solved using the MATLAB optimization tool glpk, while the results relatedwith Algorithm 3 are obtained using our own MATLAB sript. The value of the
ATSP is omputed by alulating a minimum spanning tree and adding shortutsin the indued yle, thus approximating the optimal TSP length by a fator of
α = 2.In Fig.3.1 are reported the results of the omparison between the followingvalues:

• the value of J∗
heur, obtained by the exeution of Algorithm 3;

• the value of J∗
gossip obtained by the exeution of Algorithm 2;

• the upper and lower bound of the entralized approah given respetivelyby (3.2) and (3.5).For eah ouple (n, k) of n robots and k tasks, J∗
heur, J∗

gossip and the two boundsare the mean values of 10 experiments. Simulations show that the maximumservie time obtained with the two approahes lies always between the upper andthe lower bound of the entralized approah. Moreover, the performane of thetwo approahes are similar. It an be observed that Algorithm 2 leads to betterresults than Algorithm 3 when the ratio k
n
is high.In Fig. 3.2, Fig. 3.3 and Fig. 3.4 the exeution times of Algorithm 3 areompared with the exeution times of Algorithm 2. In partiular, Fig. 3.2 andFig. 3.3 show the exeution time respetively of the MILP gossip algorithm andAlgorithm 3 in terms of number of iterations, while in Fig. 3.4 the omparison ismade in terms of time in seonds spent by MATLAB to exeute the Algorithms.The two �gures on�rm that the proposed framework has a omputational om-plexity onsiderably lower than the MILP gossip algorithm.The results in Fig. 3.2 and Fig. 3.3 on�rm also the onjeture that we havedisussed in the �nal part of Setion 3.4.1: the exeution time in terms of num-ber of iterations are of the same order in Algorithm 3 and in the MILP gossipalgorithm.Finally we fous on the exeution time of Algorithm 3 in seonds and in termsof number of yles. Figure 3.5 shows the number of iterations while Figure 3.6
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Figure 3.4: Exeution time of MILP gossip algorithm and Algorithm 3.shows the exeution time in seonds for Algorithm 3 for di�erent values of k in asystem with n = 10 robots.Figure 3.5 shows that the expeted number of iterations of Algorithm 3 growslinearly with the number of tasks if the number of robots is kept onstant. Onthe other hand, in Figure 3.6 is shown that the atual omputational time is ofthe order of O(n3) seonds. This is due to the fat that the omplexity of thetask exhange aording to the heuristi grows linearly with the number of tasksfor eah iteration of Algorithm 3 thus aounting for at least a quadrati grow ofomputational time, the remaining di�erene an be aounted by the softwareimplementation and exeution in Matlab.3.6 Conlusions and future workIn this hapter we proposed upper and lower bounds for the ost of the optimalsolution to the HMVRP whih onsiders vehiles with di�erent movement andtask exeution speed and tasks with di�erent serviing osts. We extended to
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Figure 3.5: Number of iterations of Algorithm 3 for n = 10 and di�erent valuesof k
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our framework the bounds for the multi-vehile routing problem in (30). Fur-thermore, we proposed two algorithms based on gossip to solve the HMVRP ina distributed fashion exploiting only pairwise task exhanges between vehiles.The �rst algorithm is based on loal, asynhronous and pairwise optimizationsto improve the loal task assignment. The seond one is an heuristi with linearomplexity with respet to the number of tasks. The omputational omplex-ity of the �rst method sales with exponential omplexity with respet to theratio between the number of tasks and vehiles, improving with respet to a en-tralized optimization that sales exponentially with the number of tasks. Theproposed algorithms have been haraterized in terms of �nite-time almost sureonvergene and in terms of minimum guaranteed performane.We validated through simulations that the proposed algorithms ompute asolution that sales with the number of robots within a onstant fator of ap-proximation with respet to the optimal entralized solution.As future work we plan to extend the framework to a dynami ase in whihrobots start to move and serve tasks while the deentralized optimization is beingexeuted and new tasks appear in the region.
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Part IIGraph methods for di�usion ofinnovation in soial networks
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Chapter 4Mathematial models for thedi�usion of innovation in soialnetworks: Introdution andliterature overview.In the last deades many researhers from di�erent �elds have been interested inthe study of how innovation spreads in soial networks. What is the mehanismthat onvines an individual to follow a new idea or to buy a new produt?What is the best marketing strategy whih a ompany should adopt to take aompetitive advantage? How does viral marketing works? Many mathematialmodels have been proposed to give an answer to questions of this type.Sine the 40's, many mathematial models on the di�usion of innovation hasbeen proposed ((46, 47)) suh as: the Linear Threshold Model, the Independentasade model ((48)) and epidemi models suh as SIS and SIR ((49, 50)). Allthese models are based on the same onept: in a soial network the behaviourof eah individual is highly in�uened by the behaviour of its neighbours.Many of these models are based on the threshold e�et : an individual adoptsa behaviour if a ertain ratio of its soial ontats have already adopted it, di�er-ently from the epidemi models in whih a node adopts a behaviour with a ertainprobability if at least one of its neighbours has adopted it. Threshold models aremore suitable to desribe soial in�uene phenomena and individual behaviours,
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while epidemi models are more used for mass behaviours. Examples of thresholdmodels are presented in (51, 52, 53). The �rsts examples of threshold approahesgo bak to the seventies ((51, 54)). Several aspets of the di�usion phenomenahave been studied among he years, from the loal interations between neighbours((55, 56)), to the analysis of groups behaviours ((53, 57, 58)), whih is the aspetwe fous on.In the following hapters we deal with the Linear Threshold model, whih wasoriginally proposed in (51), and has been widely studied in reent years. As inmost of the models appeared in the literature, the soial network is representedby a graph in whih eah node represents an individual, and edges representthe relationships among individuals. In the original model a threshold value
λi is assigned to eah individual i, and all the neighbours of i have the samein�uene weight on it. An individual adopts the innovation as soon as the ratioof its neighbours who have already adopted it is above its threshold value. Theorigin of the previous rule is the following: many ompetitive games suh anindividual deision rule has been proved to be the best response to the ationsof one's neighbours ((53, 57)). When a node adopts the innovation we say thatit beomes ative, otherwise is said to be inative. It is impliitly assumed thata node an adopt the innovation, but one adopted, it annot abandon it, i.e., anode an swith its state from inative to ative but annot swith it from ativeto inative. This model an be used to represent systems in whih the adoptionof a innovation is permanent and in the literature is alled progressive ((59, 60)).For instane, the progressive Linear threshold model an be suitable to representa group of people who want to buy a ertain item: one an individual spendsmoney to buy that, i.e., one it adopts the innovation, usually it annot have themoney bak, thus we an say that the adoption of the innovation has a permanentnature.In many ases, however, the progressive model is not suitable to orretlydesribe the spread of innovation, as habits may hange: an individual who votesfor a party for a period an deide to hange its preferene, a person who eatsevery day at the same restaurant an be persuaded to hange of venue. More-over, the in�uene pattern in real networks is usually time-varying, as the humanonnetions are subjeted to hanges: friendships an beome stronger or weakerdue to the passing of time, new onnetions an be setted up and old onnetions
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an be removed. All these hanges in the network an in�uene the spread of theinnovation, and in suh systems an individual who has adopted the innovationan be persuaded to abandon it. Suh types of mehanisms an be desribedusing non-progressive models, in whih eah individual periodially updates itsstate by looking at its neighbours, deiding either to be ative or inative.To the best of our knowledge, most of the model presented in literature areprogressive ((61, 62, 63)), while the non-progressive di�usion of innovation hasnot reeived muh attention ((64)).In the following hapters of we deal both with the progressive and non progres-sive models: in partiular in Chapter 5 and Chapter 6 we deal with the lassialprogressive Linear threshold model, while in Chapter 7 we present a novel nonprogressive instane of the line threshold model.Our researh has been foused on two main aspets:
• the role of ohesive subgroups in the spread of innovation in the network;
• how to in�uene the network.The �rst aspet represent an analysis problem: we want to understand how asystem behave starting from a ertain initial state. The seond aspet representsa ontrol problem: we want to impose a spei� state to the system in order tomake it follow a desired behaviour.The soial ohesion is onsidered a key aspet to understand olletive be-haviours in soial networks. Many de�nitions of ohesiveness and soial sub-groups have been proposed in literature, and good surveys an be found in(65, 66, 67). Here we study two partiular types of ohesive subgroups, namelythe ohesive and persistent sets, to haraterize the system, sine this two typesof groups are stritly related to the adopting rules of the onsidered Thresholdmodels. We an de�ne ohesive sets in both progressive and non progressivemodels, while the persistent sets are important in the non-progressive model.Chapters 5 and 6 ollet the results disussed in (68), presented at the inter-national onferene Nesys 2013.In Chapter 5 our analysis is inspired by the reent work (58), whih extends anidea proposed in (57), and present a haraterization of the spread of innovationin soial networks, given a seed set � i.e., the set of initial adopters � based ongroups ohesion. A group of individuals is said to be ohesive if none adopts
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the innovation starting from any external seed set. Moreover, in (58) it wasproven that, given a seed set, the �nal adopters set an be easily omputedby knowing the maximal ohesive subset ontained in the omplement of theseed set. We �rstly haraterize with a Binary Programming Problem (BPP)the omputation of the maximal ohesive set. This haraterization is useful tomodel other problems in soial network analysis suh as the ones presented in thenext setions. Seondly we propose an algorithm, based on the linear relaxationof the presented BPP, whih takes as input a seed set and omputes the maximalohesive subset ontained in the omplement of the seed set.In Chapter 6 we disuss the problem of in�uene maximization, whih an beas follows: �nd a seed set of r individuals whih maximizes the number of �naladopters. This problem is NP-hard, as shown in (60), and many approximatedand greedy algorithms have been proposed in literature ((60, 69, 70, 71, 72)). Tothe best of our knowledge the target of all the approahes proposed so far is themaximization of the number of �nal adopters. This represents a limitation, as inmany realisti ases it would be required to maximize the spread of innovation on anetwork in a �nite time horizon. For example, let's think about a ompany whihproposes a new produt, it has to hose the best possible advertising strategy toonvine the maximum number of ostumers to adopt its produt before othersimilar produts ome to the market. In this hapter we introdue the In�ueneMaximization in Finite Time Problem with parameters r and k (IMFTP(r, k)),whih represents a generalization of the lassial in�uene maximization problem.The IMFTP(r, k) an be desribed as follows: �nd a seed set of r individualswhih maximizes the set of adopters in k time steps. Choosing a value of khigh enough the solution of the IMFTP(r, k) oinides with the solution of thelassial in�uene maximization problem. In setion 6.1 a BPP whih solves the(IMFTP(r, k)) is proposed.Chapter 7 ollets the results disussed in (73), presented in Florene at theinternational onferene CDC 2013. In that hapter we present a non-progressiveinstane of the linear threshold model whih an be onsidered as a generalizationof the model presented in (74). We assume that the innovation is inepted in thenetwork by a seed set, and the seed nodes are supposed to maintain the innovationfor a �nite time - the seeding time -, after whih they start to update their stateby following the same rules adopted by all the other nodes in the network.
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We haraterize the system evolution in two di�erent phases: during andafter the seeding time. We show that during the seeding time the system behavesas in the progressive model in (74). The main ontribution of our work is theanalysis of the system evolution after the seeding time, whih represent the maindi�erene between our model and the previously ones presented in literature, asin this phase non-progressive mehanisms may our. We use ohesive groups toharaterize some onditions under whih suh mehanisms take plae.
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Chapter 5Di�usion of innovation in theProgressive Linear Threshold ModelThe hapter is organized as follows. In Setion 5.1.1 we desribe the representa-tion of the network and the used model. In Setion 5.2 we use binary and linearprogramming to ompute the maximal ohesive set in a network.5.1 Network representation and referene model5.1.1 Network strutureWe represent the network as a direted graph G = (V,E) where V = {1, 2, . . . , n}is the set of nodes and E ⊂ V×V is the set of edges. Eah node i ∈ V representsan individual and an oriented edge (i, j) ∈ E denotes that node j is in�uened bynode i. For this reason in this manusript we use the terms individual or nodeinterhangeably. No sel�oops, i.e., edges from one node to itself, are allowed. Foreah node i, let λi ∈ [0, 1] denote its threeshold value and let Ni = {j | (j, i) ∈ E}denote the set of its in-neighbours.The topologial information about the graph an be enoded in the adjaenymatrix A ∈ {0, 1}n×n whih is de�ned as follows:
A(i, j) =

{

1 if there is an edge from node i to j

0 otherwise
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We de�ne the in-neighbours saled adjaeny matrix Â ∈ [0, 1]n×n as follows:
Â(i, j) =

A(i, j)

|Nj|
.We denote with Λ = diag([λ1 λ2 . . . λn]) the diagonal matrix whose diagonalentries are the thresholds of the graph nodes.5.1.2 Linear threshold modelLet us de�ne φ0 as the seed set, i.e., the set of nodes whih have adopted theinnovation at time t = 0. From the seed set the innovation spreads through thesoial network, and we denote as φt the set of nodes whih adopt the innovationat time t. All the individuals that adopt the innovation during the time interval

[0, t] belong to the set Φt =
⋃t

j=0 φj. In general, node i whih has not adoptedthe innovation until time t, adopts the innovation at time t + 1 � i.e., i ∈ φt+1 �if the following holds:
|Φt

⋂

Ni|
|Ni|

=
|∪t

j=0φj

⋂

Ni|
|Ni|

≥ λi (5.1)The innovation spreads in the network until no more individuals an adopt it,and we denote the set of �nal adopters as:
Φ∗ =

∞
⋃

j=0

φj.Algorithm 5 desribes the dynami of the network and returns as output the set
Φ∗ omputing at eah step whih nodes respet equation (5.1).5.1.3 Other mathematial resultsWe assoiate to eah set of nodes X ⊂ V a harateristi vetor de�ned as follows.De�nition 3 Given a set X ⊂ V, the assoiated harateristi vetor x ∈ {0, 1}nis suh that xi = 1 if i ∈ X else xi = 0.
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Algorithm 5 Computing Φ∗INPUT: A graph G = (V,E). A set φ0 ⊂ V .OUTPUT: The set of �nal adopters Φ∗.(i) Let Φ = φ0, Φ̄ = V \ φ0, and Φold = ∅.(ii) Let k = 0.(iii) While Φ 6= Φold(a) k = k + 1.(b) Let Φold = Φ.() For i ∈ Φ̄� If |Φold

⋂

Ni|
|Ni| ≥ λi, then:1. Φ = Φ ∪ {i}.2. Φ̄ = Φ̄ \ {i}.(d) end while.(iv) Let Φ∗ = Φ.
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In the rest of the hapter we denote with xi the harateristi vetor of the set
φi and with wi the harateristi vetor of the set Φi. Aording to the linearthreshold model, for eah ouple of sets (φi, φj) suh that i, j ≥ 0 and i 6= j itholds:

φi ∩ φj = ∅It follows that, ∀t ∈ N:
wt = x0 + x1 + . . .+ xt ≤ 1nThe following de�nition formalizes the onept of ohesive set.De�nition 4 A set X ⊂ V is alled ohesive if for all i ∈ X it holds

|X ∩Ni|
|Ni|

> 1− λi. (5.2)In other world a set X ⊂ V is said to be ohesive if for eah i ∈ X the ratioof neighbours whih do not belong to X is stritly smaller than λi. If X is aohesive set it follows that if φ0 ∩X = ∅, then no individual in X an adopt theinnovation. An important result ofLemma 5.1.1 (Lemma 2 in (58)) Let
φ0 ⊂ V be the seed set of a network and let M ⊂ V \ φ0 be the maximal ohesiveset of the omplement of φ0. The set of �nal adopters Φ∗ is given by:

Φ∗ = V \M. (5.3)5.2 Computing maximal ohesive setLemma 5.2.1 shows that, given a network with seed set φ0, the knowledge of themaximal ohesive set M ⊂ V \ φ0 permits an immediate omputation of the setof �nal adopters Φ∗. In this setion we propose an algorithm that omputes themaximal ohesive subset of V\φ0 by solving some Linear Programming Problems(LPPs) . We �rst present a Binary Programming Problem (BPP), whose optimalsolution is the harateristi vetor of M, then we prove that the LPP obtainedby the relaxation of the BPP an be used to iteratively ompute M.
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Lemma 5.2.1 A set X ⊂ V is ohesive if and only if its harateristi vetor xfor all i ∈ X satis�es
x
T Â(·, i) ≥ 1− λ̄iwhere

λ̄i =







λi −
1

|Ni|
if λi · |Ni| ∈ N

λi if λi · |Ni| /∈ NProof: Firstly we make the following obvious remark:
x
T Â(·, i) = x

TA(·, i)
1TA(·, i) =

|X ∩Ni|
|Ni|

.Then we observe that equation (5.2) an be rewritten as follows:
|X ∩Ni|

|Ni|
> 1− λi ⇔ |X ∩Ni| > |Ni| − λi · |Ni|. (5.4)Sine the LHS of the last inequality of (4) is an integer, we onsider two ases:

• if λi · |Ni| ∈ N the inequality an be rewritten as:
|X ∩Ni| ≥ |Ni| − λi · |Ni|+ 1;

• if λi · |Ni| /∈ N the inequality an be rewritten as:
|X ∩Ni| ≥ |Ni| − λi · |Ni|.Dividing these inequalities by |Ni| the result follows immediately. �Aording to the de�nition of λ̄i introdued in Lemma 5.2.1 we de�ne the diagonalmatrix Λ̄ = diag([λ̄1 λ̄2 . . . λ̄n]).Now we are able to present the following BPP.Proposition 5.2.1 Given a graph G = {V,E}, let φ0 ⊂ V be a seed set withharateristi vetor y. The maximal ohesive set M ontained in V \ φ0 has aharateristi vetor x that is the solution of the following BPP:

max 1
T · x















x ≤ 1− y
[

I − Λ̄− ÂT
]

· x ≤ 0

x ∈ {0, 1}n

(5.5)
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Proof: Firstly, we observe that
M ∩ φ0 = ∅ ⇐⇒ x+ y ≤ 1,whih an be rewritten as the �rst onstraint in (5.5).Seondly, sine M is a ohesive set, by Lemma 5.2.1 it holds

∀i ∈ M, x
T Â(·, i) ≥ 1− λ̄i

m
∀i ∈ V, x

T Â(·, i) ≥ (1− λ̄i)xi

m
x
T Â ≥ x

T [I − Λ̄]and this an be immediately rewritten as the seond onstraint in (5.5).Finally, the ohesive set omputed by BPP (5.5) is maximal beause of thehosen objetive funtion. �Note that, as shown in a suh a maximal ohesive set always exists � but maybe the empty set � and is unique.The main advantage of our haraterization is that using harateristi vetorswe an model several problems whih are di�ult to represents, suh as thein�uene maximization problem presented in setion 6.1. However, aording tothe previous proposition, omputing a maximal ohesive set M requires solving aBPP, a task that may be omputationally hard for large graphs. We will presentin the following an alternative approah that requires solving a series of linearprogramming problems and is thus omputationally viable.First we onsider a relaxed version of BPP (5.5) and haraterize its solutions.Proposition 5.2.2 Given a graph G = {V,E}, let φ0 ⊂ V be a seed set withharateristi vetor y, and let M be the maximal ohesive set ontained in V \φ0.Consider the following LPP:
max 1

T · x














x ≤ 1− y (a)
[

I − Λ̄− ÂT
]

· x ≤ 0 (b)

x ≥ 0

(5.6)and let x∗ ∈ [0, 1]n be an optimal solution of LPP (5.6).
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(i) For all i ∈ M, x∗
i = 1.(ii) If x∗ ∈ {0, 1}n then M = {i ∈ V | x∗

i = 1}.Proof: We prove separately the two statements.(i) The �rst result an be proved by ontradition. Assume x is an optimalsolution of (5.6) suh that Z = {i ∈ M | xi < 1} is not empty, and onsider
x
′ where x′

i = xi if i /∈ Z else x′
i = 1. We laim that x

′ satis�es theonstraint set of (5.6).In fat onstraint (a) is trivially veri�ed by x
′, sine for all i ∈ Z it holds

yi = 0.Consider now onstraints of the form (b). For all i ∈ V \ Z it holds
x
′T Â(·, i) ≥ x

T Â(·, i) ≥ (1− λ̄i)xi = (1− λ̄i)x
′
iwhile for all i ∈ Z ⊆ X it holds

x
′T Â(·, i) ≥ |X ∩Ni|

|Ni|
≥ 1− λ̄i = (1− λ̄i)x

′
isine M is a ohesive set. As shown in the proof of Proposition 5.2.1 thesetwo results imply that x′ satis�es onstraints (b).Finally, sine 1

T · x′ > 1
T · x, then x is not an optimal solution, whihontradits the assumption.(ii) If x∗ ∈ {0, 1}n then x

∗ is also the optimal solution of BPP (5.5) and thusit is the harateristi vetor of set M. �We an �nally write Algorithm 6 for the iterative omputation of the maximalohesive subset of the omplement of the seed.Some omments about the algorithm.(1) Eah time the LPP is solved, all nodes i with x
(k)
i < 1 do not belong to M(aording to Proposition 5.2.2, part 1). Hene at step iii.(b) we an safelyhange the input of the LLP to y

(k+1) setting for these nodes y
(k+1)
i = 1.Clearly the set M we want to determine is also the maximal ohesive setontained in V \ Y (k+1), where Y (k+1) is the set whose harateristi vetoris y(k+1).
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Algorithm 6 Computing Maximal Cohesive Set using LPPINPUT: A graph G = (V,E) with saled adjaeny matrix Â and matrix Λ̄. Aset φ0 ⊂ V with harateristi vetor y ∈ {0, 1}n.OUTPUT: The harateristi vetor of the maximal ohesive set M ontained in
V \ φ0.(i) Let k = 0 and y

(0) = y.(ii) Let x(k) ∈ [0, 1]n be an optimal solution ofthe LPP
max 1

T · x














x ≤ 1− y
(0)

[

I − Λ̄− ÂT
]

· x ≤ 0

x ≥ 0(iii) While x
(k) /∈ {0, 1}n(a) Let k = k + 1.(b) Let y(k) =

⌈

1− x
(k−1)

⌉.() Let x(k) ∈ [0, 1]n be an optimal solution ofthe LPP
max 1

T · x














x ≤ 1− y
(k)

[

I − Λ̄− ÂT
]

· x ≤ 0

x ≥ 0(iv) End while.(v) x
(k) is the harateristi vetor of M.
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(2) When the optimal solution of the LPP is a binary vetor, we an be surethat it represents the harateristi vetor of set M (aording to Proposi-tion 5.2.2, part 2).The �nal result we present in this setion onerns a bound on the number ofsteps the previous algorithm requires before halting.Proposition 5.2.3 Algorithm 5 and Algorithm 6 require a number k̄ of repeti-tions of the while-loop where
k̄ ≤ n− |φ0| − |M|+ 1.Proof: In Algorithm 5 at eah exeution of the while-loop it holds that theardinality of Φ inreases at least of 1. In Algorithm 6 one an immediatelysee that eah time the while-loop is exeuted vetor y inreases in at least oneomponent, and in both ases the maximal number of inrements is equal to

n− |φ0| − |M|. �Algorithm 6 provides an alternative way, with respet to Algorithm 5, toompute the set of �nal adopters that does not require to determine the evolutionof the network. However, we annot laim that Algorithm 6 is more e�ientthan Algorithm 5 at the light of Proposition 5.2.3. Algorithm 6 is based onthe haraterization of ohesive sets given in Proposition 5.2.1, and its interestonsist in showing how a BPP for analysis of soial network is amenable to alinear relaxation. We believe that other problems may exists whih an be solvedby using this type of approahes, and for that reason we have inluded thispreliminary result.
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Chapter 6In�uene Problems in theProgressive Linear Threshold ModelThe Chapter is organized as follows. In setion 6.1 we deal with the In�ueneMaximization problem. In setion 6.2 another BPP model is proposed to solve thefollowing problem: hoose the minimum seed set whih an di�use the innovationover a target set in a �nite time horizon. Finally, in the last setion, we presentsome simulations and some numerial results related with the presented problem.6.1 The In�uene Maximization in Finite TimeProblem (IMFTP).The in�uene maximization represents one of the most attrative problems re-lated with the di�usion of innovation in soial networks. It an be summarized asfollows: given a network desribed by a graph G = (V,E), �nd a seed set φ0 ⊆ Vof r innovators to maximize the di�usion of innovation, i.e., �nd a φ0 suh that
|φ0| = r and |Φ∗| is maximal.The lassial in�uene maximization problem presented above onsiders asquantity of interest the �nal number of adopters. Sometime it ould be requiredto maximize the spread of innovation in a �nite time horizon. The In�ueneMaximization in Finite Time Problem with parameters r and k (IMFTP(r, k))an be formalized as follows: hoose a seed set of r nodes to maximize the in-�uene on the network in k time steps, i.e., �nd a φ0 suh that |φ0| = r and
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|Φk| is maximal. It's evident that the IMFTP(r, k) represents an extension of thelassial in�uene maximization problem: hoosing a value of k high enough theIMFTP(r, k) has the same solution as the lassial problem.As the number of possible subsets of r elements in a set of n is
(

n

r

)

=
n!

r!(n− r)!the IMFTP(r, k) has a ombinatorial nature. We haraterize a solution to thisproblem using binary programming.We �rst introdue the de�nition of k-evolution vetor assoiated to a seed set
φ0.De�nition 5 (k-evolution vetor) Consider the di�usion of innovation in anet starting from a seed set φ0 aording to the linear threshold model presented insubsetion 5.1.2. Given a positive integer k, let Φt be the set of nodes that adoptthe innovation at time t (for t = 0, 1, . . . , k) and let wt be the harateristi vetorof Φt. The vetor w

T = [wT
0 w

T
1 . . . w

T
k ] is the k-evolution vetor assoiated to

φ0.Lemma 6.1.1 Given a graph G = {V,E}, let φ0 ⊂ V be a seed set, and at eahtime t let xt and wt be the harateristi vetors respetively of φt and Φt. Thefollowing property holds.
∀t ∈ N, [ÂT + Λ]wt − Λwt+1 ≥ 0n (6.1)Proof: A node i ∈ V suh that i /∈ Φt adopt the innovation at time t + 1,i.e., i ∈ φt+1, if and only if

w
T
t Â(:, i) ≥ λi (6.2)Equation (6.2) follows from the following observation:

w
T
t Â(:, i) =

w
T
t A(·, i)

1TA(·, i) =
|Φt ∩Ni|

|Ni|It follows that: ∀i ∈ φt+1, ÂT (·, i)wt ≥ λi.Thus:
∀i ∈ V, ÂT (:, i)wt ≥ λixt+1(i)

m
ÂT

wt − Λxt+1 ≥ 0n
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As xt+1 = wt+1 −wt it follows:
∀t ∈ N, [ÂT + Λ]wt − Λwt+1 ≥ 0n

�Given a seed set φ0, all the omponents of the assoiated k-evolution vetorrespet equation (6.1). The k-evolution vetor w assoiated to φ0 is unique, andkeeps all the information about the evolution of the innovation di�usion in ksteps. There may exist however other vetors whose omponents satisfy equation(6.1) but do not represent the evolution of the innovation di�usion. We de�nethese vetors as k-step vetors.De�nition 6 (k-step vetor) Let φ0 be a seed set with harateristi vetor
ŵ0, and ŵ0, ŵ1, . . . , ŵk be k + 1 vetors of n elements. The vetor ŵ

T =

[ŵ0
T
ŵ

T
1 . . . ŵ

T
k ] is a k-step vetor assoiated to φ0 if ∀i ∈ {1, . . . , k} the om-ponent ŵi ∈ {0, 1}n, and respets equation (6.1).Observe that, given a seed set φ0 there ould be several k-step vetors as-soiated to it. Let us onsider the network represented in Figure 1, and let

λ1 = λ2 = 0.49 and λ3 = λ4 = 0.60. Let φ0 = {2}, whose harateristi vetor is
x0 = [0100]T , then it is Φ1 = {1, 2, 3, 4} and w1 = [1111]T . Thus, aording toLemma 6.1.1 and De�nition 5, vetor w = [01001111]T is surely a possible 1-stepvetor assoiated to φ0 and it is also its unique 1-evolution vetor. However it iseasy to verify that w is not the only possible 1-step vetor assoiated to φ0, butalso ŵ

′ = [01000100]T and ŵ
′′ = [01000101]T .Lemma 6.1.2 Let φ0 be a seed set whose k-evolution vetor is w. For all possiblek-step vetors ŵ′ assoiated to φ0 it holds:

wk ≥ ŵk.Proof: Aording to the linear threshold model, if an individual i an adoptthe innovation at time t ≤ k, then for eah omponent j ≥ t of the k-evolutionvetor it holds wj(i) = 1, while in a k-step vetor ŵ it an be ŵj(i) = 1 or
ŵj(i) = 0, as in both ases equation (6.1) is respeted. If an individual i an'tadopt the innovation during the k steps, then for eah omponent j ≥ k it mustbe wj(i) = ŵj(i) = 0. Thus wk ≥ ŵk. �
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Figure 6.1: A network with n = 4 nodes.Using the above de�nitions we propose now a BPP whih solves the IMFTP(r, k).For a given network G = {V,E}, the hoie of the onstraints guarantees that theoptimal solution of the following BPP is a k-step vetor assoiated to a seed set
φ∗
0 of r nodes, whih maximize the spread of innovation in G in k steps. Moreover,we prove that the weights of the objetive funtion guarantee that the optimalsolution is the k-evolution vetor assoiated to φ∗

0.Proposition 6.1.1 Given a graph G = {V,E} with |V| = n, onsider the follow-ing BPP problem:
max [1T

nk (nk)1T
n ] ·w



















1
T
nw0 = r (a)

∀i ∈ {1, . . . , k},
[ÂT + Λ]wi−1 − Λwi ≥ 0n (b)

w ∈ {0, 1}n(k+1) (c)

(6.3)
where w

T = [wT
0 w

T
1 . . . w

T
k ] . Let w∗ be an optimal solution of (6.3). Then:

• w
∗
0 is the harateristi vetor of the seed set φ∗

0 whih solve the IMFTP(r, k);
• w

∗ is the k-evolution vetor of φ∗
0.Proof: From De�nition 6 it follows that onstraints (b) and () guaranteethat eah feasible solution of (6.3) must be a k-step vetor assoiated to φ∗

0. Weprove the properties above in two steps:(i) �rstly we prove that vetor w
∗
k is the harateristi vetor of Φ∗

k startingfrom a seed set φ∗
0;
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(ii) seondly we prove that w∗
0 is the k-evolution vetor of φ∗

0.We analyse the two steps separately.(i) We prove this statement by ontradition. Let the i-th omponentw∗
i of theoptimal solution w

∗ be the harateristi vetor of a set Θi. Let us supposethat Θk 6= Φk starting from φ∗
0. As w∗ is a k-step vetor, by Lemma 6.1.2it follows that |Φk| ≥ |Θk|.Let |Φk| = m ≤ n, than at maximum it an be |Θk| = m − 1. For theharateristi vetor wk of Φk it holds:

(nk) · 1T
nwk = nkmFor the optimal solution Φ∗ it an be at maximum:

|φ∗
0| = |Θ1| = . . . = |Θk| = m− 1,thus

[1T
nk (nk) · 1T

n ]w
∗ ≤ k(m− 1) + nk(m− 1)

= nkm− nk +mk − kAs mk − nk is for sure a non-positive value, it follows that:
[1T

nk (nk) · 1T
n ]w

∗ < (nk) · 1T
nwkthus Θk an't be the set whose harateristi vetor is the k-th omponentof the optimal solution.(ii) As the problem is a maximization, the value of the objetive funtion ismaximized when eah individual adopts the innovation as soon as ondition(5.1) is satis�ed, hene eah omponent w

∗
i is the harateristi vetor of

Φk starting from the seed set φ∗
0. �6.2 Di�usion of innovation over a target setAnother interesting problem in soial network is the following: minimize the seedset φ0 to di�use the innovation over a target set of nodes Φd ⊆ V in k time step.In this setion we use the de�nitions of k-evolution vetor and k-step vetor tomodel a BPP whih an be used to solve this problem.
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Proposition 6.2.1 Given a graph G = {V,E} with |V| = n, let wT = [wT
0 w

T
1 . . . wT

k ]be a n(k + 1) vetor and xd be the harateristi vetor of the target set Φd ⊆ V.Consider the following BPP:
min [1T

n 0
T
nk] ·w































wk ≥ xd (a)

∀i ∈ {1, . . . , k},
[ÂT + Λ]wi−1 − Λwi ≥ 0n (b)

w ∈ {0, 1}n(k+1) (c)

(6.4)
Let w∗ be an optimal solution of (6.4). Then w

∗
0 is the harateristi vetor ofthe minimum seed set whih an di�use the innovation over the target set Φd in

k steps.Proof: Constraints (b) and () guarantee that the optimal solution w
∗ is ak-step vetor. Constraint (a) guarantees that, starting from a seed set φ∗

0 withharateristi vetor w∗
0 a set Φ∗

k ⊇ Φd an be reahed in k steps. Moreover, asthe problem is a minimization BPP, the seed set must be the minimum. �Like (6.3), in BPP (6.4) the omplexity grows as the number of steps k inreases.The relaxed version of (6.4) an be used to ompute a lower bound of its optimalsolution.Proposition 6.2.2 Given a graph G = {V,E} with |V| = n, let wT = [wT
0 w

T
1 . . . wT

k ]be a n(k + 1) vetor and xd be the harateristi vetor of the target set Φd ⊆ V.Consider the following LPP:
min [1T

n 0
T
nk] ·w































wk ≥ xd (a)

∀i ∈ {1, . . . , k},
[ÂT + Λ]wi−1 − Λwi ≥ 0n (b)

w ≥ 0n(k+1) (c)

(6.5)
Let w∗ be an optimal solution of (6.5). The following properties hold:(i) if w∗ ∈ {0, 1}n(k+1) then w

∗ is also an optimal solution of (6.4);
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Figure 6.2: In this network if λ ≪ 0.5 Algorithm 6 is more e�ient than Algorithm5.(ii) ⌈1T
nw

∗
0⌉ is a lower bound on the ardinality of the minimum seed set whihdi�uses the innovation to the whole target set Φd in k steps.Proof: The two statements trivially follow by the de�nition of relaxed BPP.

�6.3 Numerial resultsIn this setion we propose a small seletion of the results obtained by the simu-lations of the proposed algorithms. Firstly we present a ase in whih Algorithm6 is more e�ient than Algorithm 5.The network in Figure 2 represents a ase in whih Algorithm 6 an be moree�ient than Algorithm 5 depending on the hoie of λ.Table 6.1Algorithm 5
φ0 n λ Exeuted while-loops Exeution time (se.)
{1} 1000 0.01 1000 6.6
{1} 1000 0.005 1000 6.6
{1} 1000 0.001 1000 6.6Algorithm 6
φ0 n λ Exeuted while-loops Exeution time (se.)
{1} 1000 0.01 100 5.7
{1} 1000 0.005 67 4.1
{1} 1000 0.001 30 1.9Table 6.1 shows the results of the omparison of the two algorithms for di�er-ent values of λ and n = 1000.
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Figure 6.3: Network used to test BPP (6.3)We have solved the IMFTP(r, k) in the network represented in Figure 6.3using BPP (6.3) for di�erent values of r and k. The values of λ are di�erent ateah node and have been randomly generated. The results of the experiment areplotted in Figure 6.4, in whih the value of |Φ∗
k| is omputed for di�erent values ofthe parameters (r, k). As it was expeted, if the value of k is �xed, the funtion

|Φ∗
k|(r) is non-dereasing as well as the funtion |Φ∗

k|(k) if the value of r is �xed.We have tested BPP (6.4) and LPP (6.5) in the network represented in Fig-ure 6.5. In this ase also the values of lambda are di�erent at eah node andhave been randomly generated. The hosen target set is Φd = V. Figure 6.6show the variation of |φ∗
0| omputed with BPP (6.4) for di�erent values of k, andthe respetive lower bound omputed with LPP (6.5). As it was expeted thefuntion |φ∗

0|(k) is non-dereasing.6.4 ConlusionsIn this hapter we have disussed di�erent aspets related to the di�usion ofinnovation in soial networks. In the �rst part we have proposed a BPP hara-terization and an iterative algorithm based on LPP whih ompute the maximalohesive subset of the omplement of the seed set when the seed set is known. In
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Figure 6.4: |Φ∗
k| obtained by BPP (6.3) for di�erent values of k and r.the seond part a BPP model is presented that determines the set whih maxi-mizes the spread of innovation over the network in k steps.This hapter presents a useful haraterization of the Linear Threshold Modelusing vetors and matries, and shows that there exist some problems whih anbe represented with BBPs and solved using their linear relaxations. We believethis preliminary approah an be applied to solve e�iently other problems ofinterest in soial network analysis.
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Figure 6.5: Network used to test BPPs (6.4) and (6.5).
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Chapter 7
A Non-Progressive instane of theLinear Threshold Model
The Chapter is organized as follows. In setion 7.2 we introdue the non-progressive linear threshold model, formalizing the used notation, the main as-sumptions and the adopting onditions. In setion 7.3 we de�ne and haraterizethe persistent sets with respet of the presented model. Finally, in setion 7.4we analyse how the innovation spreads in a soial network aording to the non-progressive linear threshold model, and we on�rm the analytial results throughsome numerial examples.
7.1 BakgroundLet us represent a soial network with a direted graph G = {V,E}, where eahnode i ∈ V represents an individual and eah edge (i, j) ∈ E denotes that node iin�uenes node j. We denote as n = |V| the number of individuals in the network.No self-loops are allowed, thus (i, i) /∈ E, ∀i ∈ V. For all nodes i ∈ V we denoteas Ni = {j | (j, i) ∈ V} the set of the in-neighbours. A weight wij ∈ [0, 1] isassoiated to eah edge (i, j) ∈ E and denotes how muh node i in�uenes node
j. We assume that for all i ∈ V it holds: ∑j∈Ni

wj,i = 1.
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7.2 Non-Progressive Linear Threshold ModelIn this setion we introdue a non-progressive instane of the linear thresholdmodel. Firstly we list the assumptions on whih the model is based, then wede�ne the update rule. For the rest of the hapter we refers to this model as thenon-progressive linear threshold model.7.2.1 System desriptionA threshold value λi ∈ [0, 1] is assoiated to all nodes i ∈ V. We assume thatthe independent variable time t belongs to N. The innovation spreads in thenetwork starting from a seed set φ0, i.e., a set of individuals are ative at time
t = 0. We assume that all the nodes in φ0 are ative for a time interval t ∈ [0, Ts],independently of the state of their neighbours, then for t > Ts they update theirstate following the same rule as the rest of the nodes. We all Ts the seeding time.We assume that:

• the topology of the network is stati and all the onnetions and the in�u-ene weights are known;
• the thresholds λi, ∀i ∈ V are stati and known;
• a node an be more in�uened by some neighbours than others, thus foreah node the weights of the in-edges may be di�erent.7.2.2 Update ruleLet Φt be the set of ative nodes at time t. In the non-progressive linear thresholdmodel the nodes update their states at time t aording to the following equation:

Φt =











φ0 t = 0

φ0

⋃ {i |∑j∈(Ni∩Φt−1)
wji ≥ λi}, t ∈ [1, Ts]

{i |∑j∈(Ni∩Φt−1)
wji ≥ λi}, t > Ts

(7.1)In other words, after the seeding time a node is ative at time t if the sum ofthe weights of the in-edges oming from ative neighbours at time t−1 is greaterthan or equal to its threshold. Di�erently from the progressive model, in whih a
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node maintains the innovation inde�nitely one adopted, in the non-progressivemodel a node an swith its state from inative to ative and vie versa.Additional notation that will be used in the rest of the hapter is the following.
• φ+

t = Φt \ Φt−1, i.e., the set of nodes whih beome ative at time t;
• φ−

t = Φt−1 \ Φt, i.e., the set of nodes whih beome inative at time t;
• Φ∗ = limt→+∞Φt denotes if it exists, the set of �nal adopters.Note that the set Φ∗ does not always exist. The existene of this set will bedisussed in setion 7.4.7.3 Cohesive and Persistent SetsIn this setion we de�ne two types of ohesive groups in the non-progressivelinear threshold model, whih are useful to analyse the spread of innovation in thenetwork. We �rstly adapt to our model the onept of ohesive sets as presentedin (74). Then we introdue the idea of persistent sets, whih desribe a di�erenttype of oherene with respet to ohesive sets.De�nition 7 (Cohesive set ((74))) A set X is ohesive if for all nodes i ∈ Xthe sum of the weights of the in-edges oming from nodes whih are not in X islower than their threshold λi, i.e.:

∀i ∈ X,
∑

j∈(Ni∩X)

wji > 1− λi. (7.2)An important property of a ohesive set, proved in (74), is that if none of thenodes within the set is ative at time t, then none of them an beome ative forall t′ > t. In Figure 7.1 the sets {1, 2, 3} and {8, 9} are ohesive, while {4, 5, 6, 7}is not ohesive.De�nition 8 (Persistent set) A set X is persistent if for all nodes i ∈ X thesum of the weights of the in-edges oming from nodes within X is greater than orequal their threshold λi, i.e.:
∀i ∈ X,

∑

j∈(Ni∩X)

wji ≥ λi. (7.3)
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The following theorem points out the reason why suh type of sets are importantin the non-progressive linear threshold model.Theorem 7.3.1 Let X be a persistent set. If at time t′ all the nodes in X areative, then they remain ative for all t > t′.Proof: If all nodes in X are ative at time t′, i.e., X ⊆ Φt′ , from (7.3) followsthat
∀i ∈ X,

∑

j∈(Ni∩Φt′)

wji ≥
∑

j∈(Ni∩X)

wji ≥ λi.hene X ⊆ Φt′+1. The result follows by reursion. �Property 7.3.2 Let X1 and X2 be two persistent sets. The set X1 ∪ X2 is apersistent set as well.Proof: As X1 is persistent, eah node i in X1 satis�es equation (7.3). As
X1 ⊆ X1 ∪X2 it holds for k = 1, 2:

i ∈ Xk,
∑

j∈(Ni∩(X1∪X2))

wji ≥
∑

j∈(Ni∩Xk)

wji ≥ λi.Thus all the nodes in X1 ∪X2 satisfy equation (7.3), i.e., X1 ∪X2 is a persistentset. �In Figure 7.1 the sets {1, 2, 3} and {4, 5, 6, 7} are persistent, while {3, 4} is notpersistent. We onlude this setion by observing that a set an be both ohesiveand persistent, e.g., the set {1, 2, 3}.7.4 System's dynamiThe purpose of this setion is to haraterize how the innovation spreads in thenetwork aording to the non-progressive model. We analyse separately two dif-ferent phases of the evolution in the network:
• during the seeding time, i.e. for 0 ≤ t ≤ Ts;
• after the seeding time, i.e., for t > Ts.We pay partiular attention to the evolution of the innovation after the seedingtime: whih are the nodes that are able to hold their states ative after Ts?
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We use the following de�nitions to desribe the evolution of the innovation inthe network aording to the presented model.De�nition 9 (Progressive evolution) The di�usion of the innovation in thenetwork is progressive (or non-dereasing) during a time interval [t1, t2] if:
∀t ∈ [t1, t2], φ−

t = ∅.In other words, for all t ∈ [t1, t2] all ative nodes i ∈ Φt−1 remain ative at time
t. If t1 = t2 = t′, we said that the evolution is progressive in t′ if φ−

t′ = ∅.De�nition 10 (Non-progressive evolution) The di�usion of the innovationin the network is non-progressive during a time interval [t1, t2] if:
∃t ∈ [t1, t2], φ−

t 6= ∅.In other words, during the time interval t ∈ [t1, t2] there is at least a node whihbeomes inative.De�nition 11 (Degressive evolution) The di�usion of the innovation in thenetwork is degressive (or non-inreasing) during a time interval [t1, t2] if:
∀t ∈ [t1, t2], φ+

t = ∅.De�nition 12 (Periodi evolution) The di�usion of the innovation in the net-work is periodi after time t if there exist a T > 0 ∈ N suh that:
∀k ∈ N, t′ ≥ t Φ′

t = Φt′+kT .where T is the period of the evolution.The de�nitions of progressive and degressive follow the usual de�nitions in lit-erature. Note that an evolution an be both progressive and degressive if theset of ative nodes is onstant. In the following parts we prove analytially thefollowing results:(a) during the seeding time the system has a progressive evolution;(b) after the seeding time the evolution of the system is progressive if ΦTs
ispersistent, otherwise is non-progressive;

101



() if Ts is su�iently large (larger than a parameter Td alled di�usion timeand introdued in the following setion) two results holds: a) the set of �naladopters Φ∗ exists and is the maximal persistent set in ΦTs
; b) if ΦTs

is notpersistent the system has a degressive evolution for t > Ts.Examples of evolutions, inluding a ase in whih the system has a periodievolution, are given in the �nal subsetion.7.4.1 Evolution during the seeding time: 0 ≤ t ≤ TsIn this part we prove that in the non-progressive model, aording to the assump-tions made so far, during the seeding time [0, Ts] the system has a progressiveevolution.Theorem 7.4.1 The evolution of a soial network with seed set φ0 and seedingtime Ts is progressive in the time interval [0, Ts].Proof: We prove the statement by indution on the time step t, assuming
Ts ≥ 1 (if Ts = 0 the result is trivial).(base step) At time step t = 1, the evolution is progressive beause by equation(7.1) Φ0 = φ0 ⊆ Φ1, hene φ−

1 = ∅.(indutive step) Assume that at time step t−1 (where t ∈ [2, Ts]) the evolutionis progressive: we now show that the evolution is also progressive at time step tthus ompleting the proof.Observe that the assumption φ−
t−1 = ∅ implies Φt−2 ⊆ Φt−1, hene for all i ∈ Vholds:

Ni ∩ Φt−2 ⊆ Ni ∩ Φt−1.By (7.1) this implies that Φt−1 ⊆ Φt, hene φ−
t = ∅. �The previous analysis also points out that as long as the nodes of the seed set areative, no node in the network an beome inative, i.e., during the seed time anode, whih is not in the seed set, adopts the innovation as soon as the sum ofthe weights of the in-edges oming from ative nodes is greater than or equal itsthreshold value, and maintains it.This behaviour is also typial of the progressive instane of the linear thresholdmodel presented in (74). Di�erently from our model, the progressive in (74)
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assumes that all in-edges at eah node have the same weight, i.e., for all i ∈ V itholds:
wji =

1

|Ni|
, ∀j ∈ Ni.In the progressive model an inative node i adopt the innovation at time t ifat time t− 1 it holds:

∑

j∈(Ni∩Φt−1)

wji =
|Φt−1

⋂

Ni|
|Ni|

≥ λi (7.4)Aording to the previous equation, also in the progressive model a nodeadopts the innovation as soon as the sum of the weights of the in-edges omingfrom ative nodes is above its threshold value, but di�erently from our non-progressive model an individual is assumed to never abandon the innovation oneadopted. Thus we an laim that the non-progressive linear threshold modelrepresents a generalization of the progressive model. In partiular, the evolutionof the progressive model orresponds to the evolution of the non-progressive modelin ase of Ts → ∞.We an exploit this similarity even further. We know from (74) that theprogressive model reahes in a �nite time a steady state where the set of ativenodes remains onstant and is:
Φ̂∗ = V−M, where M denotes the maximal ohesive set in the omplement of the seed set.Motivated by this, we de�ne a parameter, the di�usion time, whih will playan important role in the analysis of the evolution of the non-progressive modelas will be shown in the following setions.De�nition 13 (Di�usion Time Td) For Ts su�iently large the innovation spreadsin the network until a time Td ≤ Ts suh that ΦTd

= ΦTd+1 = · · · = ΦTs
. Theparameter Td is the di�usion time of the network.7.4.2 Evolution after the seeding time: t > TsAt time Ts + 1 some nodes in the seed set may beome inative, as they maynot satisfy equation (7.1). If that happens, at time Ts + 2 some ative nodes
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onneted to the seed set may beome inative, et. Suh a tendeny to abandonthe innovation leads to a non-progressive evolution.In this setion we haraterize the evolution of our model after the seedingtime and also present some partiular results that hold in the speial ase Ts < Td.Lemma 7.4.1 Consider a soial network with seeding time Ts. If there exists atime step t̄ > Ts suh that the evolution in t̄ is progressive, then the evolution isalso progressive for all t > t̄.Proof: Observe that the assumption φ−
t̄ = ∅ implies Φt̄−1 ⊆ Φt̄, hene for all

i ∈ V holds
Ni ∩ Φt̄−1 ⊆ Ni ∩ Φt̄.By (7.1) this implies that Φt̄ ⊆ Φt̄+1, hene φ−

t̄+1 = ∅. The result follows byreursion. �The following theorem �xes the onditions under whih the evolution of thesystem remains progressive for t > Ts.Theorem 7.4.2 Consider a soial network with seed set φ0 and seeding time Ts.The evolution of the network is progressive for all t > 0 if and only if ΦTs
ispersistent.Proof: We prove separately the if and only if parts.(if) For 0 ≤ t ≤ Ts it has been shown in Theorem 7.4.1 that the networkhas a progressive evolution. If ΦTs

is persistent, Theorem 7.3.1 implies that theevolution at time step Ts + 1 is progressive. From Lemma 7.4.1 one onludesthat the evolution is also progressive for all time steps t > Ts + 1.(only if) If ΦTs
is not persistent, by De�nition 8 there exists a node i ∈ ΦTssuh that ∑j∈(Ni∩ΦTs )

wji < λi. By (7.1) if follows that node i beomes inativeat step Ts + 1, hene the network has a non-progressive evolution. �The following orollary points out that to determine if the system has a pro-gressive evolution after Ts it is su�ient to determine if all nodes in the seed setremain ative at time Ts + 1.Corollary 7.4.1 The evolution of a soial network with seed set φ0 and a seedtime Ts is progressive for all t > 0 if and only if at time Ts+1 it holds: φ0∩φ−
Ts+1 =

∅.
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Proof: Sine φ0 ∩ φ−
Ts+1 = ∅ it holds
φ0 ⊆

{

i |∑j∈(Ni∩ΦTs )
wji ≥ λi

}hene
φ0

⋃

{

i |∑j∈(Ni∩ΦTs−1)
wji ≥ λi

}

⊆
{

i |∑j∈(Ni∩ΦTs)
wji ≥ λi

}and by (7.1) this implies that ΦTs+1 ⊆ ΦTs
. The result follows from Lemma 7.4.1.

� The following theorem points out a su�ient ondition on the struture onthe seed set under whih the evolution of the system is progressive.Theorem 7.4.3 Consider a soial network with seed set φ0 and seeding time Ts.If φ0 is persistent, the evolution of the network is progressive for all t > 0.Proof: To prove this statement is su�ient to prove that if φ0 is persistent,then ΦTs
is persistent as well. We an onsider ΦTs

as:
ΦTs

= φ0 + φ+
1 + φ+

2 + . . . φ+
Ts. Sine φ0 is persistent, it holds:

φ0 ∈ ΦTs+1.Sine all the nodes in φ0 are ative at time Ts + 1, it holds:
φ+
1 ∈ ΦTs+1.Using the same argument we an observe that:

φ+
2 ∈ ΦTs+1; . . . ;φ+

Ts
∈ ΦTs+1. Thus it follows that:

φ−
Ts+1 = ∅and from Corollary 7.4.1 it follows that the evolution is progressive for t > 0. �We now present some results that apply to the speial ase in whih Ts ≥ Td. Ifthis ondition holds, the progressive evolution during the seeding time reahes asteady state and ΦTd

= ΦTd+1 = · · · = ΦTs
.Next theorem points out whih are the nodes that remain ative for all t > Td.
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Theorem 7.4.4 Let φ0 be a seed set of a soial network with a seed time Ts anddi�usion time Td < Ts. If ΦTs
= ΦTd

is not persistent, then the system has adegressive evolution for t > Ts.Proof: The proof is based on verifying the following two fats.(a) Firstly, we prove that if ΦTs
is non-persistent, then φ+

Ts+1 = ∅ and φ−
Ts+1 6= ∅.Observe that if ΦTs

= ΦTd
is not persistent it follows from Theorem 7.4.3that φ−

Ts+1 6= ∅. Moreover, as Ts > Td, it holds that V−ΦTs
= M, where Mis the maximal ohesive subset of the omplement of the seed set. Thus nonodes an adopt the innovation at time Ts + 1, i.e., φ+

Ts+1 = ∅.(b) Seondly we prove that for all t > Ts + 1 it holds φ+
t = ∅. At time Ts + 1 itholds ΦTs+1 ⊆ ΦTs

, thus aording to equation (7.1) it holds φ+
Ts+2 = ∅. Bythe iteration of the same argument, for all t > Ts + 1 it is:

Φt ⊆ Φt−1 ⇔ φ+
t+1 = ∅ �Theorem 7.4.5 Let φ0 be a seed set of a soial network with seed time Ts anddi�usion time Td < Ts. The set Φ∗ of ative nodes for t → ∞ is the maximalpersistent set ontained in ΦTs

and is reahed at time Tf ≤ Ts + |ΦTs
| − |Φ∗|.Proof: If the set of ative nodes at step t is not persistent, there is at leastone node in Φt that beomes inative at step t + 1. This, sine the evolution isdegressive aording to Theorem 7.4.4, the number of ative nodes dereases ateah step until the system reahes a persistent set of ative nodes Φ∗, whih isthe maximal persistent set ontained in ΦTs

. The steady state is ahieved from
Ts in a number of steps whih is at maximum |ΦTs

| − |Φ∗|, thus:
Tf ≤ Ts + |ΦTs

| − |Φ∗|. �7.4.3 Some examplesIn this setion we onsider soial networks with seeding time Ts smaller than thedi�usion time Td beause in this ase several types of evolutions are possible, asopposed the networks with Ts ≥ Td that we have shown an only admit degressiveevolutions after the seeding time. We illustrate three di�erent senarios separatelythrough examples.
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Example 7.4.6 (Senario 1: progressive evolution) Consider the networkin Fig. 7.1 with seed set φ0 = {1, 2} and seeding time Ts = 2. The di�usiontime for the onsidered network is Td = 4. As it is shown in Fig. 7.2, the evo-lution of the system is progressive. Aording to Theorem 7.4.3 the progressiveevolution an be predited by observing that ΦTS
= Φ2 is a persistent set, as allthe nodes that belong to it satisfy equation (7.3). The set of �nal adopters existsand is Φ∗ = {1, 2, 3, 4, 5, 6, 7}.

Figure 7.1: Network in senario 1.
t Φt φ+

t φ−
t0 {1, 2}1 {1, 2, 3} {3} ∅2 {1, 2, 3, 4} {4} ∅3 {1, 2, 3, 4, 5, 7} {5, 7} ∅4 {1, 2, 3, 4, 5, 6, 7} {6} ∅5 {1, 2, 3, 4, 5, 6, 7} ∅ ∅Figure 7.2: Evolution in senario 1.
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Example 7.4.7 (Senario 2: non-progressive evolution) Consider the net-work in Fig. 7.3 with seed set φ0 = {1, 3} and seeding time Ts = 1. The di�usiontime for the onsidered network is Td = 3. As it is shown in Fig. 7.4, the evo-lution of the system is non-progressive. The set of �nal adopters exists and is
Φ∗ = ∅.

Figure 7.3: Network in senario 2.
t Φt φ+

t φ−
t0 {1, 2}1 {1, 2, 3} {3} ∅2 {3, 4, 5} {4, 5} {1, 2}3 {4, 5, 6, 7, 8, 9} {6, 7, 8, 9} {3}4 {6, 7, 8, 9} ∅ {4, 5}5 ∅ ∅ {6, 7, 8, 9}Figure 7.4: Evolution in senario 2.The numerial results on�rm the analytial result obtained in Theorem 7.4.3:as the set ΦTs

is non-persistent, the system has a non-progressive evolution.The next example represent a ase in whih the evolution of the system is periodiafter Ts. This is a partiular, but interesting, ase of non-progressive evolutions
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but so far we have not found any analytial haraterization of this behavior.Example 7.4.8 (Senario 3: periodi evolution.) Consider the network inFig. 7.5 with seed set φ0 = {1, 3} and seeding time Ts = 1. The di�usion timefor the onsidered network is Td = 2. As it is shown in Fig. 7.6, the evolution ofthe system is non-progressive after Ts, as the set ΦTs
is non-persistent. Moreover,the system has a periodi evolution with period T = 2 from t = 2. In this asethe set Φ∗ annot be de�ned.

Figure 7.5: Network in senario 3.
t Φt0 {1, 3} φ+

t φ−
t1 {1, 2, 3, 5} {2, 5} ∅2 {2, 4, 5} {4} {1, 3}3 {1, 2, 3} {1, 3} {4, 5}4 {2, 4, 5} {4, 5} {1, 3}5 {1, 2, 3} {1, 3} {4, 5}6 {2, 4, 5} {4, 5} {1, 3}Figure 7.6: Evolution in senario 3.
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7.5 ConlusionsIn this hapter we have presented a non-progressive instane of the linear thresh-old model, in whih the di�usion of the innovation starts from a seed set whosenodes are assumed to maintain the innovation for a �nite time. We harater-ized analytially the onditions under whih the system has a progressive, non-progressive and degressive evolution. This model represents a �rst step in theanalysis of non-progressive mehanisms dealing with the linear threshold model.In our future works we want to extend the presented model by exploring othermehanisms whih an lead the network to a non-progressive evolution, suh ashanges in the network topology or in the in�uene weights. Furthermore wealso plan to haraterize the set of �nal adopters when Ts < Td and to �nd someonditions on the graph struture to haraterize the evolution on the network.
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Chapter 8ConlusionsIn this thesis we have presented several algorithm, based on graph theory, on twomain topis: the oordination of multi-agent systems through onsensus and thedi�usion of innovation in soial networks.Regarding the oordination of multi-agent systems, the following are the pre-sented results.
• In Chapter 2 a formation ontrol strategy for a set of autonomous vehilein absene of a ommon referene frame, based on gossip, is proposed. Ifthe agent have a ommon referene diretion the algorithm is proved tobe robust to noise on the displaement measurement. To the best of ourknowledge this algorithm is a rare example in literature of formation ontrolstrategy in absene of a ommon referene frame, whih is not haraterizedby a leader.
• In Chapter 3 we have proposed the Heterogeneous Multi Vehile RoutingProblem (HMVRP), whih represent an extension of the lassial MultiVehile Routing Problem. We have proposed upper and lower bounds forthe ost of the optimal solution. Furthermore, we proposed two algorithmbased on gossip to solve the HMVRP in a distributed fashion exploitingonly pairwise task exhanges between vehiles, thus greatly reduing theomputational omplexity required to ompute a solution. The proposedmethods sales with exponential omplexity with respet to the ratio be-tween the number of tasks and vehiles instead of saling with respet tothe number of tasks. We believe that our framework an be extended to the
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ase of Dynami MVRP, in whih robots start to move and serve tasks whilethe deentralized optimization is being exeuted and new tasks appear inthe regionRegarding the di�usion of the innovation in soial networks, the following are theproposed results.
• In Chapter 5 we have adopted the lassial Linear Threshold Model for thedi�usion of innovation in Soial Network. We �rstly have proposed an algo-rithm, based on linear programming, whih omputes the maximal ohesivesubset of a network. This algorithm an be used to ompute the set of �naladopters for a given seed set of nodes. Then we have haraterized the op-timal solutions of two problems: the In�uene Maximization in Finite Timeand the di�usion of innovation over a target set. The framework presentedin this hapter represents a useful haraterization of the Linear ThresholdModel using vetors and matries, and shows that there exist some prob-lems whih an be represented with BBPs and solved using their linearrelaxations. We believe this preliminary approah an be applied to solvee�iently other problems of interest in soial network analysis,. Anotherinteresting orientation for future work is the study of heuristi approahesto the presented problems, sine most of them have a ombinatorial nature.
• In Chapter 7 we have de�ned and analysed a novel model, the Non Pro-gressive Linear Threshold Model, whih extends the lassial model and,di�erently from it, is suitable to represent non progressive phenomena ofinnovation di�usion. We have haraterized the evolution of the network intherms of Cohesive and Persistent sets. The analysis of innovation di�usionphenomena through the analysis of the ohesion in the network representan atual and still open problem. We believe that this tehnique an beextended to other models whih represent di�usion phenomena. Further-more, the proposed model represents a �rst step in the analysis of non-progressive mehanisms dealing with the linear threshold model, whih anbe extended by exploring other phenomena whih an lead the network to anon-progressive evolution, suh as time-varying network topology or in thetime varying edge weights.
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Appendix AAppendix
A.1 Algebrai graph theoryA graph an be de�ned as G = {V,E} where V = {1, . . . , n} is the set of n nodesor verties, whih in our thesis represent agents or individuals and E ⊆ {V × V }is the set of edges, whih represents the existene of an interation between anygiven ouple of nodes. A graph an be direted (digraph) or undireted. A graphG is direted if to eah edge (i, j) we assoiate a diretion. We all head of theedge node i and tail node j, �nally we say that edge (i, j), whih sometime isreferred as ei,j in short, goes from node j to node i.A loop is an edge whose endpoints are the same. A walk wi,j from node i tonode j in G is an alternate sequene of verties and edges, for instane

w1,3 = v1, e1,2, v2, e3,2, v3.A path pi,j from node i to node j in G is an alternate sequene of verties andedges, for instane
p1,3 = v1, e1,2, v2, e2,3, v3.In an undireted graph in whih edges do not have a diretion, a walk isequivalent to a path.A graph is:

• disonneted if there exists two nodes i and j and there does not exist awalk from i to j;
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• weakly onneted if for any ouple of nodes i, j ∈ V there exists a walkbetween i and j;
• quasi-strongly onneted if from eah node i ∈ V there exist a path to node
w;

• strongly onneted if there exists a path between eah pair of nodes i, j,∈ V .If graph G is undireted, it an be only disonneted or onneted.Dynami aseWe de�ne a time-varying graphs as G(t) = {V,E(t)} where V = {1, . . . , n} is theset of nodes and E(t) ⊆ {V × V } is the time-varying set of edges that map eahinstant of time into a set of edges E : R −→ E. We de�ne the union of graphG1 = {V1, E1} and G2 = {V2, E2} as the graph G = G1

⋃G2 = {V1

⋃

V2, E1

⋃

E2whose vertex and edge set is the union of those of G1 and G2. Given an intervalof time [t, t′] we de�ne the union graph G[t, t′] over an interval of time asA time-varying graph G(t) is uniformly strongly onneted if for any t thereexists T in whih G[t, t + T ] is strongly onneted.
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