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Abstract 
The water resources and hydrologic extremes in Mediterranean basins are heavily 

influenced by climate variability. Modeling these watersheds is difficult due to the complex 

nature of the hydrologic response as well as the sparseness of hydrometeorological observations. 

In this work, we first present a strategy to calibrate a distributed hydrologic model, known as 

TIN-based Real-time Integrated Basin Simulator (tRIBS), in the Rio Mannu basin, a medium-

sized watershed (472.5 km
2
) located in an agricultural area in Sardinia, Italy. In the basin, 

precipitation, streamflow and meteorological data were collected within different historical 

periods and at diverse temporal resolutions. We designed two statistical tools for downscaling 

precipitation and potential evapotranspiration data to create the hourly, high-resolution forcing 

for the hydrologic model from daily records. Despite the presence of several sources of 

uncertainty in the observations and model parameterization, the use of the disaggregated forcing 

led to good calibration and validation performances for the tRIBS model, when daily discharge 

observations were available. 

Future climate projections based on global and regional climate models (GCMs and 

RCMs) indicate that the Mediterranean basins will most likely suffer a decrease in water 

availability and an intensification of hydrologic extremes. Process-based distributed hydrologic 

models (DHMs), like tRIBS, have the potential to simulate the complex hydrologic response of 

Mediterranean watersheds. Thus, when used in combination with RCMs, DHMs can reduce the 

uncertainty in the quantification of the local impacts of climate change on water resources. In 

this study, we apply the calibrated tRIBS model in the Rio Mannu basin to evaluate the effects of 

climate changes reducing related uncertainties. The two downscaling algorithms and the DHM 

were used to simulate the watershed response to a set of bias-corrected outputs from four RCMs 

for two simulation extents: a reference (1971 to 2000) and a future (2041 to 2070) period. The 

time series and spatial maps simulated by the DHM were then post-processed by computing 

several metrics to quantify the changes on water resource availability and hydrologic extremes in 

the future climate scenarios as compared to historical conditions. 

The research was carried out within the CLIMB project, founded by the 7th Framework 

Programme of the European Commission. 
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1 Introduction 

Natural climate variability has always characterized the Earth system. However in the last 

decades, human factors have added changes to natural variability creating the issue of climate 

change. The Mediterranean area is particularly affected by climate variability. In the last few 

decades, Mediterranean basins have suffered flash floods and severe droughts which have caused 

socio-economic problems, affecting mainly the agricultural and touristic sectors. Future climate 

projections suggest an even worse situation predicting, with high probability, contemporaneous 

temperature warming and precipitation decreasing which will cause water resources reduction 

and an increased frequency of hydrological extreme events. 

1.1 Problem definition  

Climate studies agree on the prevision that Mediterranean area appears to be particularly 

affected by changes under global warming (Giorgi, 2006; Intergovernmental Panel on Climate 

Change (IPCC), 2007). According to the A1B scenario, indeed, the mean annual warming from 

2080 to 2099 compared with the period 1980-1999 is expected to be between 2.2°C and 5.1°C 

with higher increases in summer; at the same time mean annual precipitations are expected to 

decrease between 4 and 27% (Christensen et al., 2007, IPCC). Projected declines in water 

availability will particularly affect the agriculture sector in an area where water for production is 

already a scarce commodity (IPCC technical report, 2008). It is, therefore, important evaluate the 

effects of climate change, CC, at the local scale of hydrologic basin in order to provide possible 

scenarios to water managers and interested stakeholders (Cudennec et al., 2007).  

Climate models work at scales too wide to allow a suitable assessment of the local 

impacts of CC on hydrological cycle and water resources availability. Hence, these effects could 

be evaluated by coupling global and regional climate models with distributed hydrological 
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models using downscaling techniques to bridge the scale mismatch between climate and 

hydrological models. The study of climate change effects on hydrological regimes, indeed, is 

usually conducted through a three step procedure (Xu et al., 2005) consisting of (i) select 

General Circulation Models (GCMs) and Regional Climate Models (RCMs) to provide future 

global climate scenarios under the effect of increasing greenhouse gases, (ii) develop and apply 

downscaling techniques to suit the scale of GCM and RCM outputs to the scales of hydrological 

models, and (iii) use the downscaled outputs to force hydrologic models to simulate the effects of 

climate change on hydrological regimes at various scales. All these phases are affected by 

uncertainties: choice of emission scenario, climate forcing, downscaling technique, hydrologic 

tool used to assess the local impacts and observed data used to calibrate it (Wilby, 2005; 

Proudhomme and Davies, 2009a and 2009b) which propagates from one step to the subsequent, 

known as cascade of uncertainty (Mearns at al., 2001). 

1.2 Motivation and research objectives 

This thesis had the main objective of developing a modeling approach which allowed 

evaluating local hydrological impacts of climate change in a Mediterranean medium sized basin, 

located in an agricultural area of southern Sardinia, Italy. Outputs were post processed in order to 

provide probabilistic predictions to reduce the uncertainties in the possible hydrologic response. 

Climate models and a physically based distributed hydrologic model had been applied in 

cascade. Different future climate scenarios were used as driving inputs of hydrological 

simulations in the future period; hence, the uncertainty was characterized using multi-model 

ensemble techniques. 

The specific methodologies and steps were the following: 

- selection of a modeling approach to assess hydrologic effects of CC in a specific study 
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area; 

- setup and application of a hydrologic model to simulate land-surface water and energy 

fluxes at high spatial and temporal resolution using all available data; 

- calibration and validation of the hydrologic model in the period during which observed 

historical data were available, to find a set of parameters which minimized the distance 

between observed and simulated data; 

- use selected RCMs as forcing of hydrologic simulations during a reference and a future 

period; 

- evaluation of climatic trends in the study area comparing meteorological data in future 

and reference periods; 

- assessment of climate change impacts on water resources budget in the study area with 

probabilistic outputs taking into account different sources of uncertainty; 

- provision of high resolution spatio-temporal information which could be used to support 

management water resources at local scale (e.g. soil moisture and actual 

evapotranspiration). 

This work was conducted within the framework of the CLIMB (CLimate Induced 

changes on the hydrology of Mediterranean Basins) project, founded by European 7th FP, with 

the main aim of reducing uncertainties and quantifying risk through an integrated monitoring and 

modeling system (Ludwig et al., 2010). In particular, it was developed within the work package, 

WP, 5 related to the hydro(geo)logical modeling. This thesis focused on one of the seven 

CLIMB case studies, the Rio Mannu basin located in southern Sardinia, which could be 

considered a representative example of Mediterranean catchments. It was, indeed, heavily 

influenced by climate variability and characterized by the sparseness of hydrometeorological 
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observations, as many other basins in this area (Moussa et al., 2007, Cudennec et al., 2007). 

The Rio Mannu basin was selected for two main reasons. First, it included within its 

boundary the Azienda S. Michele, an agricultural experimental farm managed by the Agency for 

Research in Agriculture of Sardinian Region (AGRIS), one of the project partners. Hence, this 

basin gave the possibility to perform the analyses at basin scale and field scale (not considered in 

this study). Second, during the last 30 years, the Rio Mannu basin had been affected by 

prolonged drought periods that caused water restrictions for the agricultural and touristic sectors, 

with consequent significant financial losses and social conflicts. As a result, despite the lack of 

historical observations of hydrometeorological data, this watershed was a representative study 

case in the island of Sardinia for conducting a multidisciplinary analysis of the local impacts of 

climate changes, ranging from the quantification of the future availability of water resources, to 

the evaluation of the social and economical consequences for the population. 

This research concentrated on the basin scale using the distributed hydrologic model 

tRIBS, TIN based Real time Integrated Basin Simulator, (Ivanov et al., 2004a and 2004b) to 

simulate the hydrologic processes at high spatial and temporal resolution notwithstanding the 

scarcity of available data. The model was calibrated and validated in the period during which the 

limited observed streamflow data were found to be less uncertain. Two downscaling procedures, 

one for precipitation and the other for reference evapotranspiration, were performed, calibrated 

and validated in order to provide the model with suitable meteorological data in that calibration-

validation period. Despite the presence of several sources of uncertainty in the observations and 

model parameterization, the use of the disaggregated forcing led to good calibration and 

validation performances for the tRIBS model, when daily discharge observations were available. 

The same methodology was used to disaggregate outputs of climate models, selected and 
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provided by WP 4 of the same project, and to conduct high-resolution hydrologic simulations 

with the goal of quantifying the impacts of climate change on water resources and the frequency 

of hydrologic extremes within the medium-sized basin.  

1.3 Thesis outline 

The thesis consists of three chapters after the introductory part (Chapter 1). 

Chapter 2 contains the description of the Rio Mannu basin and related data set, the 

presentation of the hydrologic model, tRIBS, and its application in the study case. It focuses on 

input data treatment needed for its implementation and the phases of calibration and validation. 

The lack and sparseness of hydrometeorological data is overcome relying on two statistical 

downscaling tools which allow creating the high-resolution forcing (precipitation and potential 

evapotranspiration) required to perform detailed hydrologic simulations at hourly time scale. The 

downscaling tools are calibrated using data collected at different resolutions over diverse time 

periods. After demonstrating the reliability of each disaggregation algorithm, these tools are used 

to adequately calibrate and validate the hydrologic model based on streamflow observations 

available over a multi-year period, encompassing a wide range of flood and low flow conditions. 

Chapter 3 firstly analyses the outputs of four Regional Climate Models, RCMs, selected 

within the CLIMB project as the most skillful ones among a set of fourteen RCMs of the 

ENSEMBLES project. The main climatic forcing, precipitation and temperature, are analyzed in 

a control period (1971-2000) and in a future period (2041-2070), highlighting possible trends. 

The RCMs outputs are disaggregate using the same methodologies used in the calibration-

validation period to obtain input data at the required resolution. Subsequently, the results of the 

tRIBS simulations forced by the RCMs outputs are shown in the two periods (multi-model 

ensemble) and post-processed to compute several hydrologic metrics. This allows quantifying 
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the impacts of climate change on water resources and the frequency of hydrologic extremes 

within the Rio Mannu basin. 

Chapter 4 after summarizing the contents of this dissertation discusses the main results 

regarding the procedure used to calibrate a distributed hydrologic model in a medium size 

Mediterranean basin affected by poor data availability and the assessment of climate change 

effects on the case study, showing critical points and possible ways to continue the research. 
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2 Study area and hydrologic model 

This chapter contains the description of the study area, the Rio Mannu basin located in 

Sardinia, Italy, the related data set and the reasons for its selection. The hydrologic model, 

tRIBS, is presented together with its application in the study case focusing on input data 

treatment needed for its implementation. Finally, the calibration and validation of the model are 

discussed. As many other Mediterranean catchments, the Rio Mannu basin is affected by poor 

data availability. The lack and sparseness of hydrometeorological data is overcome relying on 

two statistical downscaling tools which allow creating the high-resolution forcing (precipitation 

and potential evapotranspiration) required to perform detailed hydrologic simulations at hourly 

time resolution. The downscaling tools are calibrated using data collected at different resolutions 

over diverse time periods. After demonstrating the reliability of each disaggregation algorithm, 

these tools are used to adequately calibrate and validate the hydrologic model based on 

streamflow observations available over a multi-year period. 

2.1 Introduction 

Mediterranean areas are highly sensitive to climate variability and this vulnerability has 

significant impacts on water resources and hydrologic extremes. During the last few decades, 

intense flood and flash-flood events have caused relevant socioeconomic losses (Chessa et al., 

2004; Delrieu et al., 2005; Silvestro et al., 2012), while persistent drought periods have limited 

water availability, causing restrictions that mainly affected the agricultural sector, often a pillar 

of the local economy. Unfortunately, future climate projections (IPCC, 2007; Schörter et al., 

2005; Giorgi, 2006) depict an even worse scenario since they predict, with high probability, that 

Mediterranean countries will suffer a general decreasing water availability (in terms of both 

rainfall and runoff) and an increasing occurrence of extreme hydrological events (IPCC, 2008; 
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Frei et al., 2006). This may cause, in cascade, a reduction of crop production and, in the worst 

scenario, a decrease of their quality due to the concomitant degradation of cultivated soils and 

water used for irrigation (Olesen and Bindi, 2002; Schörter et al., 2005). 

As most semiarid areas of the world, Mediterranean watersheds are characterized by a 

complex hydrologic response due to the erratic and seasonal nature of rainfall, its strong 

interannual variability, and the highly heterogeneous land surface properties (Moussa et al., 

2007). These features lead to the possible occurrence of a large range of initial basin wetness 

conditions prior to a storm event, and, in turn, to strong non-linear relations between rainfall and 

runoff (Piñol et al., 1997; Gallart et al., 2002; Beven, 2002). Modeling such complex systems in 

a continuous fashion to manage and plan water resources as well as to predict hydrologic 

extremes is a difficult task. A possible strategy is the use of process-based hydrologic models 

(DHMs ) that are able to quantify the vertical and lateral water fluxes in spatially distributed 

fashion at high (sub-daily) time resolution, and to capture the interaction between surface and 

subsurface processes (Van der Kwaak and Loague, 2001; Ivanov et al., 2004a; Camporese et al., 

2010, among others). These models are able to: (i) reproduce the different basin states during the 

dry season, the wetting-up period and the wet season (Noto et al., 2008), and (ii) to simulate the 

diverse surface and subsurface runoff types (Vivoni et al., 2007 and 2010) that typically 

characterize the hydrological regime of Mediterranean basins (Piñol et al., 1997). 

Distributed hydrologic models have been applied to study the hydrologic impacts of 

future climate change scenarios, with forcing provided by General (GCMs) or Regional (RCMs) 

Climate Models (e.g., Abbaspour et al., 2009; Cayan et al., 2010; Liuzzo et al. 2010; Sulis et al., 

2011, 2012; Montenegro and Ragab, 2012). In Mediterranean areas, conducting studies based on 

this approach is challenging for two reasons. First, the basin size is relatively small in most areas 
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(<1000 km
2
) and a spatiotemporal scale gap exists between GCM and RCM outputs and the 

scale of the dominant hydrological processes (Wood et al., 2004). Second, they are often affected 

by data sparseness, e.g. the data required to calibrate distributed hydrologic models are often 

characterized by limited spatial coverage and coarse time resolution, and they may have not been 

collected during simultaneous periods. For example, streamflow observations may be available 

in a period with no meteorological or rainfall data. In this thesis we proposed a possible solution 

to this issue (Mascaro et al., 2013b). 

2.2 Study area 

The study area is the Rio Mannu di San Sperate basin, located in southern Sardinia 

(Italy), with the outlet section at Monastir, a little town about 25 km North of Cagliari, the 

regional chief town. Fig. 2.1 shows the watershed, its localization and topographic aspect. Its 

WGS84 UTM coordinates vary between 4355115 and 4387635 m in latitude N and between 

500725 and 524295 m in longitude E. The basin drains an area of 472.5 km2 mainly 

characterized by gently rolling topography, belonging to the Campidano plain, except the 

southeastern part which reaches an height of 963 m in the "Sette Fratelli Chain". The main 

physiographic properties, including elevation, slope and river network features, are reported in 

Table 2.1. The mean, minimum and maximum elevations are 296 m, 66 m and 963 m 

respectively, while the mean slope is about 17%. The concentration time was computed using the 

Giandotti formula (Giandotti, 1934) as:  

min8.0

5.14

zz

LA
T

mean

b

C
−

+
=        (1) 

where Ab is the basin area, L is the length of the main reach, zmean and zmin are the mean 

and minimum elevation, respectively. 
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Fig. 2.1 Location of the Rio Mannu di San Sperate at Monastir basin (RMB) within (a) Italy and (b) the island of 

Sardinia. (c) Digital elevation model (DEM) of the RMB including UTM coordinates. Panels (b) and (c) also report 

the position of the thermometric station, rain gages and streamflow gage at the basin outlet with daily data observed 
during the years 1925-1935. 

 

Ab zmin zmax zmean ββββmean L Tc 

(km
2
) (m a.s.l.) (m a.s.l.) (m a.s.l.) (%) (km) (h) 

       

472.5 66 963 296 17.3 39 12 

       
Table 2.1 Physiographic characteristics of the RMB including area (Ab), minimum (zmin), maximum (zmax) and mean 

(zmean) elevation, mean slope (bmean), length of the main reach (L), and concentration time (Tc). 

 

The Rio Mannu basin (RMB in the following) is characterized by typical Mediterranean 

climate with wet periods from October to April and dry periods from May to September. Fig. 2.2 

shows the mean monthly values of precipitation, streamflow and temperature in the catchment.  
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Fig. 2.2 Mean monthly (a) precipitation, (b) discharge and (c) temperature in RMB computed in different periods in 

which daily data were available. Refer to Table 2.2 for the period of data availability. 

Given the topographic configuration (maximum elevation is 963 m a.s.l.) and geographic 

position (39° N) the only input in water balance is rainfall and snow melt can be neglected. As a 

result, the pattern of mean monthly discharge is in phase with rainfall, with highest values in 

winter months and lowest values from June to October (Fig. 2.2b). The streamflow regime is 

characterized by low flows (less than 1 m
3
/s) for most of the year, with few flood events in 

autumn and winter, caused by frontal systems of typical duration of 1-3 days (Chessa et al., 

1999; Mascaro et al., 2013a). Mean annual precipitation is about 600 mm, mainly concentrated 

in the rainy period (94%). Mean monthly temperature ranges from 9°C in winter and 25°C in 
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summer (Fig. 2.2c). 

The basin is one of the seven case studies of the EU FP7 CLIMB Project, of which this 

work is part (Ludwig et al., 2010). It has been selected, although its poor data availability (shown 

subsequently), for two main reasons. First, it is representative of Mediterranean climate and 

issues. In particular, during the last 30 years, the RMB has been affected by prolonged drought 

periods that caused water restrictions for the agricultural sector, with significant financial losses 

and social conflicts as a consequence. Second, it includes within its boundaries an experimental 

agricultural farm where productivity of several typical Sardinian crops is monitored by the 

Sardinian Agency for Research in Agriculture, AGRIS, partner of the Project. As a result, this 

catchment is an emblematic study case in the island of Sardinia to carry out a multidisciplinary 

assessment of the local impacts of climate changes, ranging from the quantification of the future 

availability of water resources and occurrence of hydrologic extremes (as it is shown in chapter 

3), to the evaluation of the corresponding social and economical vulnerability. 

 

 



13 
 

2.3 Data set 

The data set consists of hydrometeorological data and geospatial data, whose availability 

and quality is discussed in the following. 

Hydrometeorological data, including precipitation, temperature and streamflow, were 

collected during different and sometimes non overlapping time periods and at different time 

resolutions. They were mostly archived in technical reports of the Italian Hydrologic Survey (the 

‘Annali Idrologici’). As a result, the first step consisted of reading the data from the ‘Annali 

Idrologici’ and archiving them in electronic format. Daily discharge data at the RMB outlet 

section (square in Fig. 2.1c) were collected and published for 11 years, from 1925 to 1935. 

During the same period 12 rain gages (triangles in Fig. 2.1c) provided daily rainfall data and one 

thermometric station, located in Cagliari (circle in Fig. 2.1b), registered daily minimum (Tmin) 

and maximum (Tmax) temperature. This poor data availability represented a challenge for the 

calibration of the hydrologic model (as described in section 2.4). As a result, we took advantage 

of more recent high resolution meteorological data in RMB: (i) precipitation records at 1-min 

from automatic rain gages observed during the years 1986-1996, and (ii) hourly meteorological 

data from 1 station over the period 1995-2010. A summary of hydrometeorological data 

characteristics, including resolution, availability period, and source is reported in Table 2.2, 

while the stations location is shown in Fig. 2.3. As illustrated in the following, high resolution 

data had been exploited to develop and calibrate two downscaling tools to disaggregate the 

coarse dataset observed in the calibration and validation periods selected in the years 1925-1935, 

producing the forcing at hourly resolution required by the hydrologic model tRIBS. 
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Fig. 2.3 Location of rain gages, meteorological stations and streamflow gage. The square with a dashed line is the 

coarse domain L x L (L = 104 km) containing the fine scale grid at resolution l x l (l = 13 km) used to calibrate the 
precipitation downscaling tool. See Table 2.2 for details. 

 

Data Period Resolution # of gages Source 

     

Streamflow 1925-1935 Daily* 1 AI 

     

Precipitation 1925-1935 Daily* 12 AI 

 1986-1996 1 min 204 IHS 

     

Temperature 1925-1935 Daily** 1 AI 

 1995-2010 1 h*** 1 ARPAS 

     
Table 2.2 . Hydrometeorological data used in the study, including the available period, the resolution, the number of 

gages and the source for each type of data. The sources include: AI, “Annali Idrologici”; IHS, Italian Hydrologic 
Survey (data provided by the branch in Sardinia); and ARPAS, the Sardinian Agency for Environmental Protection. 

(*) Read at 9 am; (**) Only minum and maximum temperature(Tmin and Tmax); (***) Air temperature, air humidity, 

global radiation, and wind speed at 2 m height. 
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Geospatial (GIS) data for the RMB included: a Digital Elevation Model (DEM) at 10-

meter resolution (Fig. 2.1c); pedological map, digitized and geo-referenced from a map of 

Sardinia at scale 1:250’000 (Aru et al., 1992); land cover (LC) map derived from the 

COoRdination de l'INformation sur l'Environment (CORINE) project of the European 

Environment Agency (EEA) for the year 2008; orthophotos of the entire Island for years 1954 

and 2006. These maps were provided by different agencies of the Sardinian Region Government. 

Pedological and LC data were preprocessed to be used as input for the DHM. 

CODE PROFILE DEPTH 

A2 Profiles A-R, A-Bt-R and A-Bw-R  and emerging rock from shallow to deep 

B1 Emerging rock, soils with a profile A-C and secondary A-Bw-C shallow 

B2 Profiles A-C, A-Bw-C and secondary emerging rock from shallow to average deep 

C1 Emerging rock, soils with a profile A-C and secondary A-Bw-C shallow 

C2 Profiles A-C, A-Bw-C, emerging rock and secondary soils with a profile A-Bt-C from shallow to average deep 

D1 Emerging rock and soils with a profile A-C and secondary A-Bw-C shallow 

D4 Profiles A-Bw-C, A-C and secondary emerging rock from deep to shallow 

F1 Emerging rock, soils  with a profile A-C and A-Bt-C from shallow to average deep 

G1 Profiles A-C, emerging rock and secondary A-Bw-C shallow 

G2 Profiles A-Bw-C, A-Bk-C and A-C from average deep to deep 

G3 Profiles A-C deep 

H1 Profiles A-C, A-Bw-C and A-Bk-C from shallow to deep 

I1 Soils  with a profile A-Bt-C, A-Btg-Cg and secondary A-C deep 

I2 Soils  with a profile A-Bt-Ck, A-Btk-Ckm and secondary A-C deep 

L1 Profiles A-C and secondary A-Bw-C deep 

L2 Profiles A-C deep 

O Urban areas - 
Table 2.3 List of original Aru pedological map classes within RMB (free translation from the Italian legend). 



16 
 

The original pedological map presented, for each class of the map, a range of soil texture 

classes and a qualitative description of the soil depth, shortly summarized in Table 2.3. The 

RMB was characterized by a total of 17 classes. A series of field campaigns were conducted in 

2011 by CLIMB partners to reduce the uncertainty on soil texture within the framework of the 

project described in Ludwig et al. (2010). A total of 50 soil samples of 80 cm depth were 

collected throughout the watershed and analyzed to characterize the texture. These data were 

then used as a guide to aggregate the 17 classes and reduce the range of possible soil texture 

types for each class. The original and the resulting maps are shown in Fig. 2.4, while the 

percentage distribution of the classes in the reclassified map is reported in Table 2.4. 

 
Fig. 2.4 (a) Pedological map (Aru et al., 1992) for RMB and (b) reclassified soil texture map used as input for the 

tRIBS model. 
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The original CORINE LC classes (Fig. 2.5a) were aggregated into 8 groups, obtaining the 

map shown in Fig. 2.5b. According to the reclassification the main classes were agriculture 

(comprising main crops as wheat, corn and artichoke), which occupies about 48% of the basin 

area, and sparse vegetation, including Mediterranean species, (about 26%). The other groups 

were olives, forests, pasture, vinegars and urban areas, as reported in Table 2.4. The year in 

which the LC map was released (2008) was quite distant from the period in which streamflow 

data required to calibrate the hydrologic model was available (1925-1935). As a result, in order 

to evaluate the stationarity of the LC conditions, the orthophotos of the years 1954 and 2006 

were carefully compared. The visual comparison revealed minimal differences making us 

confident on the use of the LC map of the year 2008 as input for the hydrologic model. 

 
Fig. 2.5 (a) Original CORINE LC map for RMB and (b) LC map used as input for the tRIBS model. 
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Land Cover Class 
% basin 

area 

 Range of  

Soil Texture Classes 

% basin 

area 

     

Agriculture 47.64  Sandy clay loam - clay 1.57 

Forests 7.09  Sandy loam - sandy clay loam 19.59 

Olives 8.07  Sandy loam 8.84 

Pastures 5.43  Clay loam - clay 36.66 

Sparse vegetation 26.08  Urban 1.52 

Urban areas 3.25  Sandy loam - loam 31.82 

Vineyards 2.44    
Water 0.02    

     
Table 2.4 Land cover and range of soil texture classes used as input for the tRIBS model, with the corresponding 

percentage of basin area. 

2.4 Hydrologic model 

We used the TIN based Real Time Integrated Basin Simulator, tRIBS (Ivanov et al., 

2004a, 2004b) a process-based, distributed hydrologic model (DHM) which is able to 

continuously represent the different hydrologic processes. It was originally developed at MIT by 

Prof. Rafael Bras’ research group as the integration and further development of two previous 

models, Real-time Integrated Basin Simulator, RIBS (Garrote and Bras, 1995) and TIN-based 

Channel-Hillslope Integrated Landscape Development model, CHILD (Tucker et al., 2001). 

The model represents the topography through Triangulated Irregular Networks (TINs). 

This allows significant reduction of computational nodes as compared to grid-based models 

(Vivoni et al., 2004, 2005), by representing the domain with multiple resolutions: larger number 

of nodes where the topography is complex and less details in flat homogenous areas. The use of 

TINs has also the advantage of preserving linear features such as stream networks and terrain 

breaklines. Voronoi polygons are the basic computational elements, in which the domain is 

discretized starting from TIN. In each element the governing equations are solved using a finite-

difference control-volume approach (Ivanov et al., 2004a). Considering local dynamics and 

lateral mass exchanges the model can reproduce the spatially distributed hydrologic response of 
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a catchment. In each element, the model explicitly simulates the different processes involved in 

the hydrological cycle (Fig. 2.6): 

• Rainfall interception is computed following the canopy water balance model 

(Rutter at al., 1972).  

• Radiation and surface balance are computed using the combination equation 

(Penman, 1948; Monteith, 1965), gradient method and force-restore (Lin, 1980; Hu and Islam, 

1995). 

• Evapotranspiration is estimated through three components (Wigmosta et al., 

1994): evaporation from wet canopy, canopy transpiration and bare soil evaporation (Deardorff, 

1978).  

• The infiltration process is based on the assumption of gravity-dominated flow in 

heterogeneous, anisotropic soil (Cabral et al., 1992; Beven, 1982, 1984). Different saturation 

levels in the soil column are given by the evolution of moisture fronts (unsaturated zone) (Morel-

Seytoux et al., 1974; Neuman, 1976) coupled with variable groundwater table depths (saturated 

zone). Topography and soil drive lateral fluxes in vadose zone and groundwater during storm 

and interstorm periods (Smith et al., 1993; Childs and Bybordi, 1969). Accounting for these 

detailed processes, runoff generation is possible via four mechanisms: saturation excess, 

infiltration excess, perched subsurface stormflow and groundwater exfiltration. 

• Runoff routing is composed of two parts: non-linear hydrologic routing, 

governing overland flow, and kinematic wave routing, modeling water transport and dispersion 

in natural channels. 
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Fig. 2.6 Schematization of hydrologic processes represented in tRIBS model (Ivanov et al., 2004a, 2004b). 

Model parameters can be divided into three groups: routing parameters, which are 

spatially uniform, soil and vegetation parameters, which vary in space and are provided through 

maps and look-up tables. A detailed description of the physical processes simulated by the model 

and its parameterization is given by Ivanov et al. (2004a, b). Applications of the selected DHM 

to date have ranged from multiyear, continuous simulations using NEXRAD (Ivanov et al., 

2004a, 2004b), to event-based hydrograph predictions based on radar now-casting fields (Vivoni 

et al., 2006) or short-lead-time NWP fields. tRIBS has been used to track hydrologic response to 

precipitation forcing, downscaled with different techniques (Forman et al., 2008; Mascaro et al., 

2010) and to assess the impact of climate change (Liuzzo et al., 2010). 

Model inputs, beyond the watershed TIN, consist of spatial maps of surface properties 

(e.g., soil texture and land cover maps) and meteorological data. The time resolution of 

meteorological data must be at least hourly, it can be finer but not courser. These data are 

utilized to compute the surface energy fluxes and evaporation potential. Missing hourly data to 

compute potential evapotranspiration with the available formulas (Penman-Monteith, Deardorff 
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or Priestly-Taylor), the model accepts potential evapotranspiration values as input, which are 

converted in real evapotranspiration based on soil moisture state. 

tRIBS outputs include time series of discharge at any location in the stream network and 

spatial maps of several hydrological variables (e.g. actual evapotranspiration, soil water content 

at different depths) at specified times or integrated over the simulation period. Recently, the code 

has been parallelized to be used in high performance computing platforms (Vivoni et al., 2011), 

increasing the possibility of simulating large watersheds response for long periods. These 

characteristics make the tRIBS model suitable to be used in studies aimed at quantifying the 

impact of climate change on water resources and hydrologic extremes at the basin scale, while 

addressing the different sources of uncertainty. 

2.4.1 Hydrologic model setup 

In order to setup the hydrological model tRIBS for the RMB simulations several steps 

were undertaken. The spatial framework was created converting the original DEM in a property 

TIN and, from this, the tRIBS spatial domain based on Voronoi polygons. As stated in section 

2.3, some analysis was devoted to aggregate and harmonize the original land cover and soil 

texture maps in order to reduce the number of calibration parameters. The DHM required 

meteorological data at least at hourly resolution as input. In the RMB, in the period in which 

streamflow data for calibration-validation were available (1925-1935) the meteorological data 

had a daily resolution (section 2.3). As a result, two downscaling strategies, one for precipitation 

and the other for reference evapotranspiration (ET0), were developed in order to provide the 

model with suitable data. The downscaling procedures are discussed in the following section 2.5.  

The original DEM (Fig. 2.1c) was used to create the TIN network and, from this, the 

tRIBS spatial domain based on Voronoi polygons. Following the approach of Vivoni et al. 
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(2005), we created several TINs with different resolutions with the objective of identifying the 

best compromise between spatial aggregation and computational effort. The TINs resolution was 

evaluated comparing the horizontal point density, d, against two metrics characterizing the 

accuracy of terrain representation. The horizontal point density was defined as: 

DEM

TIN

n

n
d = ,        (2) 

where TINn  is the number of TIN nodes and DEMn  the number of DEM cells while the 

accuracy metrics are the vertical tolerance, zr, (maximum vertical error) and the root mean square 

error (RMSE) between TIN and DEM elevations. The relationship d versus zr and RMSE versus 

zr are shown in Fig. 2.7a while the TIN is displayed in Fig. 2.7b. For this case study the TIN with 

zr = 3 m was chosen, resulting in a total of 171'078 nodes, with d = 0.036 (or 3.6% of the DEM 

nodes) and RMSE = 1.50 m. An alternative parameter to quantify the irregular sampling of 

elevation nodes by TINs was the equivalent cell size, re, defined as the average grid spacing of 

points in a TIN: 

d

r

n

A
r

TIN

b

e ==        (3) 

where 2rnA DEMb =  is the basin area and r is the DEM cell length. 

The selected TIN was compared with the original 10-m DEM and a DEM aggregated at 

50-m resolution, size chosen in order to reach a similar equivalent cell size as in the TIN (re = 

52.7 m). The effects of terrain coarsening were illustrated in terms of the frequency distribution 

of topographic attributes (Vivoni et al., 2004), as shown in Fig. 2.8. While elevation (panel (a)) 

was not affected, slope and, in particular, curvature and topographic index (panels (b), (c) and 

(d)) appeared to be influenced by aggregation. The figure reveals that the selected TIN was able 
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to capture adequately the frequency distribution of elevation, slope, curvature and topographic 

index of the original DEM, performing better than the aggregated DEM with about the same 

equivalent resolution. 

Soil depth map was obtained combining the DEM and the soil texture information, 

following a procedure described on the website of the Distributed Hydrology Soil Vegetation 

Model (http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM/tools.shtml). 

 

 
Fig. 2.7 (a) Relations between vertical accuracy zr (maximum elevation difference between TIN and DEM) and 

horizontal point density d and RMSE between DEM and TIN elevations. (b) Voronoi polygons of selected TIN with 

zr = 3 m corresponding to d = 0.036 and RMSE = 1.5 m. 
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Fig. 2.8 Comparison of frequency distributions of (a) elevation, (b) slope, (c) curvature and (d) topographic index of 

the original 10-m digital elevation model (DEM 10), selected trianguleted irregular network (TIN 3) and a DEM 
aggregated at 50-m resolution (DEM 50). 

The model tRIBS is able to ingest different types of precipitation inputs and it makes 

available more methods to estimate the evapotranspiration losses. Among those possibilities the 

ones which allowed overcoming the data sparseness and coarse resolution in the calibration 

validation period were chosen. Precipitation fields can be given as point observations of rain 

gages which are interpolated through the Thiessen polygon method. Alternatively, they can be 

spatial grids, as those produced by climate models, weather radars (Ivanov et al., 2004b; Vivoni 
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et al., 2006; Nikolopoulus et al., 2011), numerical weather forecasting models or reanalysis 

products (Vivoni et al., 2009; Robles-Morua et al., 2012), and stochastic downscaling models 

(Forman et al., 2008; Mascaro et al., 2010). In order to capture the dynamics of the hydrologic 

response under different types of storm events, the physical equations implemented in the model 

requires precipitation inputs at least at hourly resolution. We provided the model with 

precipitation grids obtained through a downscaling procedure which is explained in the following 

section 2.5.1. The real evapotranspiration (ETR) losses are computed as a fraction of the potential 

evapotranspiration (ET0) based on the soil moisture available in the upper soil layer, using a 

piecewise-linear equation with different parameterization accounting for bare soils or vegetated 

surfaces (Mahfouf and Noilhan, 1991; Ivanov et al., 2004a). The model has the possibility to 

compute ET0 solving the energy balance through the Penman-Monteith approach (Penman, 1948; 

Monteith, 1965) based on hourly meteorological data, observed at stations or as grids, and on soil 

and vegetation parameters. Otherwise it can be forced directly with time series or grids of ET0 

computed offline. Failing to provide meteorological data required by the Penman-Monteith 

formula, we exploited the second possibility developing a downscaling procedure for ET0 based 

on daily minimum and maximum temperatures, the only meteorological data available in the 

period for calibration and validation. The procedure is described in the following section 2.5.2. 
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2.5 Downscaling tools 

The hydrologic model tRIBS required meteorological data at hourly resolution as input. 

In the RMB, the available meteorological data in the period of calibration-validation (1925-

1935) had a daily resolution (section 2.3). As a result, two downscaling strategies were 

developed, one for precipitation and the other for reference evapotranspiration, ET0, in order to 

provide the model with suitable data. 

2.5.1 Downscaling strategy for precipitation 

Among the different methods which have been recently developed to disaggregate 

precipitation events (Wilby and Wigley, 1997; Bardossy et al., 2011), a procedure based on 

multifractal theory was chosen. In particular, we adopted the multifractal downscaling model 

known as Space Time RAINfall (STRAIN) model. This model is able to simulate the 

precipitation variability in temporal, spatial and spatiotemporal frameworks in a wide range of 

scales, through binary multifractal cascades produced by a log-Poisson stochastic generator 

(Deidda et al., 1999; Deidda, 2000). The objective was to downscale daily precipitation observed 

by a network of rain stations producing gridded maps at hourly resolution. In order to reach this 

goal, a disaggregation tool was developed based on a previous application of the STRAIN model 

in Sardinia. Badas et al. (2006), indeed, downscaled precipitation from the coarse scale L = 104 

km and T1 = 6 h up to a fine scale l = 13 km and T2 = 45 min. In this thesis work, precipitation 

data were available in the coarse spatial domain at daily resolution in the period 1925-1935 and 

at 1-min resolution in the period 1986-1996. The location of the rain gauges used to calibrate the 

downscaling model, together with the coarse and the fine scale domains are displayed in Fig. 2.3. 

The downscaling procedure in the RMB was achieved through two steps which are 

shown schematically in Fig. 2.9. In the first step, the STRAIN model was used to perform a 
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temporal disaggregation of the rainfall volume observed in the domain L x L (L = 104 km) from 

the scale T0 = 24 h to the scale T1 = 6 h. In the second step, the model was utilized in a 

spatiotemporal framework to downscale precipitation from the coarse scale L x L x T1 to the fine 

scale l x l x T2 (l = 13 km, T2 = 45 min), as in Badas et al. (2006). In order to be used as input for 

the tRIBS model, the resulting downscaled precipitation grids were aggregated in time from T2 = 

45 min to 1 h. This further aggregation was undertaken to reduce computational time and to 

harmonize meteorological input forcing (precipitation and ET0) time resolution. 

 
Fig. 2.9 Schematic of the precipitation downscaling tool based on STRAIN model. The procedure consisted of two 

steps: (a) disaggregation in the time domain from the coarse scale L x L x T0 (L = 104 km, T0 = 24 h) to the fine 

scale L x L x T1 (T1 = 6 h); and (b) disaggregation in the space-time domain from the coarse scale L x L x T1 to the 
fine scale l x l x T2 (l = 13 km, T2 = 45 min). 

Observed precipitation fields are characterized by multifractal properties which the 

STRAIN model reproduces through a log-Poisson stochastic generator dependent on two 

parameters, c and β. These parameters were estimated by means of invariance and multifractal 
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analysis between the coarse and the fine scales. A wide group of rainfall events and one or more 

coarse scale predictors were used to create empirical calibration relationships between the two 

parameters. Previous studies (Deidda et al., 1999, 2004, 2006; Badas et al., 2006), found that the 

parameter β was almost constant and equal to e
-1

, while the parameter c was related to the coarse 

scale mean rainfall intensity R (mm/h) through the relation: 

c = c∞ + a⋅e−γ R,         (4) 

with parameters c∞, a and γ. Once the coarse predictors were used to derive values of c and β 

from the calibration relations, an ensemble of small-scale rainfall fields was generated, each 

representing a possible scenario statistically consistent with the same coarse scale condition. 

Details on the scale invariance and multifractal analysis can be found in Deidda (2000) and in 

Deidda et al. (1999, 2004). In the following, the model calibration in the time and in the space-

time frameworks is briefly described. Finally, the performances of the downscaling procedure 

are evaluated in section 2.5.3. 

Precipitation downscaling in the time domain 

The spatial grid, shown in Fig. 2.3 with a cell size l = 13 km and an extension L = 104 

km, was created in such a way that each cell contains at least one gage, as in Badas et al. (2006). 

The data observed by the gages in each pixel were averaged for a given time step, obtaining for 

the period 1986-1996 a dataset of gridded precipitation fields at resolution of 13 km and 45 min 

over the coarse domain of 104 x 104 km
2
. 

A group of 300 precipitation events at the coarse scale of L x L x T0 were selected to perform the 

scale invariance and multifractal analysis from T0 = 24 h to T1 = 6 h and estimate the parameters 

c and β. For this purpose, the events were ordered according to the coarse scale rain intensity R 

and grouped in 20 classes of 15 events on which the values of c, β and R were averaged. The 
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relation between c and R, shown in Fig. 2.10a with the c estimates in the 20 classes, followed 

equation 4 and β was equal to e
-1

, as found in the previous cited works. The values of the 

parameters c∞, a and γ are reported in Table 2.5. 

 c∞ a γγγγ    
    

Time domain 0.43 0.93 1.94 

Space-time domain 1.49 2.23 3.04 
    

Table 2.5 Parameter values of the calibration relation (4) of the STRAIN model for applications in the time and 
space-time domains, which are valid when expressing R in mm h-1. 

Precipitation downscaling in the space-time domain 

The application of the STRAIN model in three dimensions (space and time) requires the 

identification of a velocity parameter U (km h
-1

) that transfers the statistical properties observed 

in the space scale to the time scale. Following the approach of Badas et al. (2006), we adopted U 

= 17.33 km h
-1

; hence, downscaling was carried out from L = 104 km to l = 13 km in space and 

from T1 = L/U = 6 h to T2 = l/U = 45 min in time. To perform the scale invariance analysis, the 

precipitation fields were aggregated from the coarse scale L x L x T1 to the fine scale l x l x T2. 

The model was calibrated using a total of 800 precipitation events. As for the application in the 

time domain, events were grouped in 40 classes of 20 events and a single set of averaged 

parameters c and β was computed for each class, finding, again, β = e-1
 across the classes and c 

(estimated with β = e
-1

) linked to R according to equation (4). The resulting calibration relation is 

shown in Fig. 2.10b while parameters c∞, a and γ are reported in Table 2.5. In the previous study, 

the spatial distribution of precipitation in the Sardinian island appeared to be a non-homogeneous 

field, mainly due to the terrain aspects. Since the STRAIN model reproduces homogeneous 

fields, we followed the procedure suggested by Badas et al. (2006) to apply the model while 

accounting for the effect of orography. 
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Fig. 2.10 Calibration relations (4) between the STRAIN model parameter c and the coarse-scale mean precipitation 

intensity R for application in the (a) time and (b) space-time domains. 

 

2.5.2 Downscaling strategy for potential evapotranspiration 

When hourly meteorological data, required for internal ET0 computation, are missing the 

tRIBS hydrologic model can be forced by time series or grids of hourly potential 

evapotranspiration, ET0, computed offline with alternative approaches (see section 2.4.1). In our 

case study, in the period in which data for calibration was available (1925-1935, section 2.3), the 

presence of daily Tmin and Tmax only permitted estimating ET0 at daily resolution using, e.g., the 

Hargreaves equation (Hargreaves, 1994; Hargreaves and Allen, 2003). To circumvent this scale 

discrepancy, we designed a procedure to disaggregate ET0 from daily to hourly scale, using the 

hourly dataset of meteorological variables available from 1995 to 2010 (Fig. 2.3, table 2.2). The 

strategy was based on the computation of dimensionless functions ( )hmϕ , representing the diurnal 

cycle of the process averaged for each month and computed as: 

ϕm(h) =
ET

0
(h, m)

H

ET0(m)
D

,       (5) 



31 
 

the ratio between the monthly climatological averages of ET0 at hourly scale ( )
H

mhET ,0  

(subscript H), and at daily scale, ( )
D

mET0  (subscript D). These terms were given by the 

following equations:  

ET0 (h, m)
H

=
1

Ny

1

Nm

ET0 (h, d, m, y)
H

d=1

Nm

∑
y=1

Ny

∑     (6) 

ET0 (m)
D

=
1

Ny

1

Nm

ET0 (d, m, y)
D

d=1

Nm

∑
y=1

Ny

∑    .  (7) 

where Nm is the number of days in month m, Ny is the number of years considered for the 

climatological mean (in our case, Ny = 16), while ET0 (h, d, m, y)
H

and ET0 (d, m, y)
D

are the 

hourly and daily potential evapotranspiration computed for hour h in day d, month m and year y. 

The dimensionless functions ( )hmϕ
 
could be used to disaggregate ET0 from daily to hourly 

resolution as: 

ET0 (h, d, m, y)
H

= ϕm(h) ⋅ ET0 (d,m, y)
D

 .    (8) 

In our case study, the procedure was calibrated and validated in the period in which high 

resolution meteorological data were available (1995-2010) and applied in the period of 

hydrologic model calibration (1925-1935) when only temperature data were recorded. 

Calibration and application of the ET0 downscaling tool are described in the following.  

In the period 1995-2010, we computed ( )
H

ymdhET ,,,0
 using the Penman-Monteith 

(PM) equation (Allen at al., 1989, 2006), using equation: 

( )
( ) ( )( )










−−

a

s

0

2

r
0.341

273

37
0.408

,,,
r

+γ+∆

eTeu
+T

γ+GR∆

=ymdhET

ah

h

n

H0     (9) 
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The formula is reported for the sake of completeness but the reader is referred to Allen et 

al. (1989, 2006) for the meaning and computation of single terms. Values of stomatal resistance 

(rs) and albedo (a), required in equation (9), were taken from a study of Montaldo et al. (2008) in 

Sardinia. Daily estimates were derived by summing hourly values over the 24 hours of each day. 

Hence, having hourly and daily ET0 values for the entire period, it was possible the 

implementation of equations (6) and (7) and, from those, the computation of the monthly 

dimensionless functions (5). Fig. 2.11a shows examples of ( )hmϕ  for the months of January, 

April, July and October. It can be noticed that, as expected, fall and winter months presented a 

more pronounced peak in the central hours of the day due to the shorter daylight period. In the 

same period (1995-2010) we investigated the relationship between daily ET0 computed with PM 

formula, 
PMD

ymdET
,0

),,( , and daily ET0 computed with Hargreaves (HG) equation 

(Hargreaves, 1994; Hargreaves and Allen, 2003) starting from daily Tmin and Tmax, 

HGD
ymdET

,0
),,( , having equation: 

0.5

HGD
TD)+(TRA=ymdET ⋅⋅⋅ 17.80.0023),,(

,0      (10) 

Again, the reader can find in Hargreaves (1994) further information and symbols meaning. The 

analysis was carried out for each of the four seasons, with the aim of accounting for the 

variability of climate. We found that a simple linear relation: 

( ) ( )
HGDPMD

ymdETppymdET
,010,0 ,,,, ⋅+=       (11) 

could be used to link the two types of estimates. The values of p0 and p1 estimated for each 

season are reported in Table 2.6, along with the linear correlation coefficient (CC) and the root 

mean square error (RMSE) between 
PMD

ymdET
,0 ),,( , and 

HGD
ymdET

,0 ),,( . Fig. 2.11b shows 

an example for the spring season. 
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Fig. 2.11 (a) Dimensionless function 
( )hmϕ

 for the months January, April, July and October, and (b) scatterplot 
between the daily ET0 computed with the PM and HG formula during the spring season (MAM), along with the 

regression lines. 

 

Season p0 p1 CC RMSE 

     

DJF 0.409 0.367 0.608 0.165 

MAM 0.593 0.404 0.835 0.322 

JJA 1.486 0.269 0.538 0.361 

SON 0.405 0.429 0.875 0.248 

     
Table 2.6 Parameters p0 and p1of the linear regression (11) between daily ET0 expressed in mm and computed with 

the PM and HG formulas for each season (DJF: December, January and February; MAM: March, April and May; 
JJA: June, July and August; SON: September, October and November). The linear correlation coefficient (CC) and 

the root mean square error (RMSE) are also reported. 

The procedure was applied in the period of hydrologic model calibration - validation 

(1925-1935), starting from daily temperature data (Tmin and Tmax). The computation of hourly 

time series of ET0 was achieved by (i) calculating 
HGD

ymdET
,0

),,(  for a given day d in month m 

and year y; (ii) using the linear relation (11) to derive an estimate of 
PMD

ymdET
,0

),,( , with the 

values of p0 and p1 chosen depending on the season (Table 2.6); (iii) using equation (8) with the 

specific monthly dimensionless function, ( )hmϕ , to obtain the evapotranspiration at hourly scale 

H
ymdhET ),,,(0

 for h = 0, 1, ..., 23. A schematization of the entire downscaling procedure for 

ET0 is reported in Fig. 2.12. 
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Fig. 2.12 Schematizzazion of the downscaling procedure for reference evapotranspiration. 

2.5.3 Validation of the downscaling strategies 

The performances of the downscaling strategy for precipitation were evaluated 

comparing empirical cumulative density functions (ECDFs) of observed and synthetic rainfall 

series. We considered separately the time and the space - time frameworks and, at the end, the 

entire downscaling procedure. We randomly selected 10 observed rainfall events at the coarse 

scale in each group used in the scale invariance multifractal analyses. For each event, the 

STRAIN model generated 100 disaggregated series using the parameters values found in the 

calibration phase (Fig. 2.10 and Table 2.5). The observed and the synthetic high-resolution 

rainfall series were divided by corresponding R to have unitary coarse scale mean. We compared 

the ECDFs of the 10 observed standardized rainfall series at high resolution (i*) with the ECDFs 

of the 90% confidence intervals derived from the 10 x 100 standardized synthetic series. Results 

are shown in Fig. 2.13, where panels (a) - (d) refer to the time domain while panels (e) - (h) refer 

to the space - time domain. The STRAIN model seemed able to well reproduce the statistical 
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variability in time over a large range of standardized rainfall intensities and to have the capacity 

to capture the small-scale spatiotemporal precipitation distribution with reasonable accuracy. 

The entire downscaling procedure was evaluated considering the same daily rainfall 

events used to verify the application in the time domain. The mean daily rainfall intensities in the 

coarse domain of 104 x 104 km were first disaggregated in time, producing an ensemble of 10 

disaggregated series at time resolution T1 = 6 h (Fig. 2.9a). For each event of these series, the 

STRAIN model performed the disaggregation in space and time generating an ensemble of 10 

fields at the fine scale l x l x T2 (Fig. 2.9b), for a total of 100 (10 by 10) disaggregated grids. Fig. 

2.13 panels (i) - (l) presents the comparison between the ECDFs of the observed standardized 

rainfall series against the 90% confidence intervals of the generated series for four intensities. 

The model shows a relative good skill in reproducing the rainfall distribution at the fine scale. 
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Fig. 2.13 Comparison between the empirical cumulative density functions (ECDFs) of the small-scale 

observed precipitation fields and the 90% confidence intervals derived from an ensemble of 100 synthetic fields 

generated with the downscaling tool. The small-scale precipitation intensities were standardized and indicated as i* 
(see text for details). Panels (a)-(d) and (e)-(h) show results for the applications in the time and space-time domains, 

respectively, while panels (i)-(l) report results for the entire disaggregation procedure. 

The downscaling strategy for ET0 was evaluated in the period during which high 

resolution meteorological data were available (1995 - 2010). We compared the inter annual mean 

RMSE and the percent bias, between (i) the hourly ET0 obtained with the disaggregation method 

starting from daily Tmin and Tmax, and (ii) the hourly ET0 estimated with the PM formula using the 

meteorological data. Table 2.7 reports the results for each season of the period 1995-2010. The 

RMSE was quite low in each season and characterized by little inter annual variability; hence the 

downscaling procedure did not introduce a relevant error. The percent bias is always negative but 

small confirming that we obtained a quite good estimation of the hourly ET0, even if slightly 
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underestimated especially in winter. 

Season RMSE (mmh
-1

) Bias (mmh
-1

) 

   

DJF 0.019 -0.004 

MAM 0.031 -0.009 

JJA 0.039 -0.015 

SON 0.029 -0.011 
   

Table 2.7 RMSE and Bias between (i) the hourly ET0 obtained with the disaggregation method starting from Tmin 

and Tmax, and (ii) the hourly ET0 estimated with the PM formula using the meteorological data for each season of the 

years 1995-2010. 

 

2.6 Calibration and validation 

2.6.1 Selection of calibration and validation periods 

The discharge data in the RMB outlet were published in annual technical reports of the 

Italian Hydrologic Survey (called “Annali Idrologici”) for the years 1925-1935. Streamflow was 

estimated through a rating curve by reading the water stage every day at 9 a.m. (Table 2.2). The 

information published in each annual report included: the time series of daily water stage and 

discharge; the rating curve, provided as a set of stage and discharge points (linear interpolation is 

performed between each point); the stage and discharge values that were measured during the 

year to update the rating curve; and a description of the possible problems encountered during 

the year that affected the current or the past discharge estimates.  

To select the periods for model calibration and validation, we carefully inspected the 

information and the data contained in the technical reports, finding that: (i) the rating curves 

exhibited significant variation across the 11 years; and (ii) a number of significant problems were 

reported for some years that affected the quality of the discharge estimates (e.g., in 1929, an eddy 

close to the measurement device caused a consistent bias). To minimize data uncertainty, we 

identified three consecutive years (1930-1932), during which the published rating curves did not 
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vary significantly and problems were not reported. Next, we fitted a rating curve using the stage 

and discharge measurements over the three years and used this to derive a discharge time series 

from the stage records. Klemes (1986) and other authors suggest to use a wet period for 

calibration and a drier period for validation, especially when the hydrologic model is used to 

evaluate the effects of climate change. Among those three years, the year 1930 presented the 

major number of flood events and was then selected for calibration, while 1931 and 1932 were 

used to validate the model performance. 

2.6.2 tRIBS calibration and validation 

The hydrologic model tRIBS depends on a high number of parameters that can be divided 

into three groups according to the simulated processes: (i) channel and hillslope routing 

parameters, (ii) soils hydraulic and thermal properties parameters and (iii) vegetation properties 

parameters. Following Ivanov et al. (2004b) and results of a sensitivity analysis, the most 

influential parameters were found to be the saturated hydraulic conductivity at the surface (Ks) 

and the conductivity decay parameter (f), used to model the variation of Ks with the soil depth 

(Cabral et al., 1992). The values of Ks and f were modified within the ranges typical for the 

corresponding soil texture classes (Fig. 2.4), while, for the other parameters, we adopted 

literature values for similar soil and vegetation properties (Rawls et al., 1983; Noto et al., 2008; 

Montaldo et al., 2008; Vivoni et al., 2010) 

Using the downscaling model STRAIN (Deidda et al., 1999; Deidda, 2000 and Badas et 

al., 2006) as explained in Section 2.5.1, we created an ensemble of 50 disaggregated rainfall 

fields at the scale l x l x T2 for the time slice 1930-1932, starting from the daily mean rainfall 

intensities measured in the large grid L x L (Fig. 2.3). The resulting disaggregated precipitation 

grids were subsequently aggregated in time from T2 = 45 min to 1 h. No downscaling was 
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performed in those days without rain and grids with zero rainfall were created. The ability of the 

downscaling tool to represent observed precipitation was further checked comparing the 

observed and simulated series of daily mean areal precipitation (MAP) in the RMB. The 

simulated MAP series was obtained aggregating the synthetic grid at daily resolution and 

computing the spatial basin average. Observed series, on the other hand, was derived applying 

the Thiessen polygon method to the observations of the 12 gages represented by triangles on Fig. 

2.1c. The RMSE and bias between observed (MAPO) and downscaled (MAPD) values computed 

on rainy days are reported in Table 2.8 for the period 1925 – 1935. The RMSE has little 

interannual variability (average value of 4.38 mm) while the bias is negative (mean of – 0.89 

mm) indicating a tendency of the downscaling process to slightly underestimate the observed 

MAP (less than 10%). The hourly basin averaged ET0 series was computed applying the 

disaggregation strategy (Section 2.5.2) in each Voronoi polygon of the RMB and calculating the 

weighted mean across the basin. The values of Tmin and Tmax in each Voronoi element were 

determined by correcting the temperature observed at the station of Cagliari (circle in Fig. 2.1b) 

as a function of the element elevation, using an adiabatic lapse rate of -6.5°Ckm-1. 

The simulations with tRIBS model were performed using the parallelized code (Vivoni et 

al., 2011) in the Saguaro super computer at Arizona State University. Following the approach of 

Vivoni et al. (2005) we utilized a spin-up interval of two years prior to the start of the calibration 

period. The most influencing parameters were manually adjusted within the ranges typical for the 

corresponding soil texture classes (Fig. 2.4b) until a good estimation of the observed monthly 

streamflow volumes was reached. Table 2.9 shows the parameters values in the main classes, 

reporting the calibrated ones in italics.  
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Year RMSE (mm) Bias (mm) 

   

1925 4.34 -1.06 

1926 4.28 -0.78 

1927 4.18 -1.49 

1928 3.95 -0.60 

1929 4.19 -1.31 

1930 5.63 -0.64 

1931 4.27 -0.76 

1932 3.15 -0.74 

1933 4.86 -1.35 

1934 3.97 -0.29 
1935 4.48 -1.03 

   
All 4.37 -0.89 

   
Table 2.8 RMSE and Bias between the daily observed mean areal precipitation (MAPO) and the ensemble average 

from the downscaling tool and aggregated at daily scale (MAPD) for rainy days. Italic font is used for years selected 

to calibrate and validate the hydrologic model. 

Fig. 2.14a shows the time series of the observed discharge compared against the 90% confidence 

intervals derived from the ensemble streamflow simulations. In the two insets we can better 

visualize the comparison over two time periods with significant flood events, and appreciate the 

different resolution between the observations (daily) and model outputs (sub-hourly). For each 

inset, we also plotted the difference between the downscaled ensemble average (MAPD) and 

observed (MAPO) mean areal precipitation at the daily scale. Despite the uncertainty in 

hydrometeorological inputs, the model reproduced, with reasonably accuracy, the shape and 

timing of the major flood events. In some cases, the mismatch between observed and simulated 

precipitation inputs led to underestimation or overestimation of flood peaks. For example, the 

model was not able to reproduce the peaks labeled as M (missed), due to a previous period of 

underestimated precipitation (negative MAPD-MAPO). Similarly, the timing of flood peaks could 

be also affected, as illustrated by the label D (delayed). These discrepancies could not be entirely 

ascribed to a failure of the proposed procedure. First, the coarse (daily) sampling of 
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Fig. 2.14 Result of the tRIBS model calibration (year 1930). (a) Comparison between the observed discharge against 

the 90% confidence intervals (CI) derived from the 50 ensemble simulations of the tRIBS model. In the insets, a 
zoom on two periods with significant flood events is reported to better visualize the comparison, along with the 
difference between the daily MAPD and MAPO (see text for the definition). The circles represent the discharge 

values measured by the Italian Hydrologic Survey to update the rating curve. (b) Comparison between the observed 
flow duration curve and the 90% confidence intervals derived from the 50 ensemble simulations. 

stage levels was not sufficient to capture the high frequency of the discharge variability and the 

magnitude of the flood peaks properly, whereas the sub-hourly resolution of tRIBS outputs 

allowed better representing the system dynamics, as it is discussed below. Second, since the 

downscaling tool redistributed in stochastic fashion the daily rainfall volumes from a large 

domain (104 km x 104 km grid shown in Fig. 2.3) to smaller areas and times, it could be possible 

that, in some days, the multifractal model failed to capture the exact spatial localization of the 

storms. As a consequence, cases where MAPD and MAPO differed should be somehow expected, 
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as they are part of the uncertainty associated with the disaggregation approach. 

 Major Land Cover Types 

Land Cover Properties Variable 
(unit) 

Agricultu
re 

Sparse 
vegetation 

Olives Forests Pasture 

       

Area A (%) 47.64 26.08 8.07 7.09 5.43 
Vegetation fraction v (-) 0.5 0.5 0.5 0.5 0.4 

Albedo a (-) 0.2 0.2 0.2 0.18 0.2 

Vegetation height h (m) 1.0 1.0 3.0 10.0 0.7 

Vegetation transmission Kt(-) 0.5 0.5 0.5 0.5 0.5 
Minimum stomatal resistance  rmin (sm-1) 100 100 100 100 100 
       

       

 Major Soil Types   

Soil Properties Variable 

(unit) 

Clay loam 

–Clay 

Sandy loam 

– Loam 

Sandy loam – 

Sandy clay 
loam 

  

       

Area A (%) 36.66 31.82 19.59   

Saturated hydraulic 
conductivity 

Ks (mmh
-1

) 0.60 13.20 3.00   

Conductivity decay  f (mm
-1

) 0.00051 0.00096 0.00096   

Porosity n (-) 0.475 0.463 0.398   
Saturated soil moisture θs (-) 0.385 0.434 0.330   

Residual soil moisture θr (-) 0.090 0.027 0.068   

Stress soil moisture  θ*
 (-) 0.308 0.347 0.264   

Pore size distribution index m (-) 0.165 0.252 0.319   

       

Table 2.9 Parameters of tRIBS model for the main land cover and soil texture classes in the RMB. 

 

Time scale 
Calibration NSC 
Min, Mean, Max 

Validation NSC 
Min, Mean, Max 

   
Daily -3.53, 0.07, 0.61 -0.99, 0.02, 0.42 

Weekly -5.50, 0.46, 0.83 -0.72, 0.13, 0.47 
Monthly -0.06, 0.55, 0.89 0.30, 0.25, 0.74 

   
Table 2.10 Nash-Sutcliffe coefficients (NSC) between observed and simulated water volume at daily, weekly, and 

monthly time scales. The minimum, mean and maximum values across the 50 ensemble members are reported for 

the calibration and validation periods. 

The circles in Fig. 2.14a are the streamflow measurements made by the Italian 

Hydrologic Survey during campaigns aimed at updating the rating curve. Some of these 

observations were collected during three major flood events. One can note how the model was 

able to capture fairly well the magnitude of the high values observed between two daily 
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discharge readings. This was an important and promising result that built confidence on the 

model utility for analyses of flood frequency under climate change. Table 2.10 reports the Nash-

Sutcliffe coefficient (NSC) (Nash and Sutcliffe, 1970) computed for the water volume derived 

from the observed streamflow and the ensemble streamflow simulations. Specifically, the 

minimum, mean and maximum values of the 50 ensemble members are reported for different 

aggregation times (daily, weekly and monthly). Linear variability between discharge 

observations was assumed to calculate the volume. Clearly, the lowest values of NSC (poor 

performances) were obtained at daily resolution, because at this scale the direct correspondence 

between observation and simulations was more affected by the different sampling time step and 

by mismatching in the disaggregated forcing. When larger time scales were considered, NSC 

increased and reached a mean value of 0.55 at monthly resolution. In terms of total runoff 

volume, the ensemble mean was 170 mm (standard deviation, STD, of 70 mm across the 50 

members) and the observation was 183 mm. This underestimation (~10%) could be explained by 

the lower simulated MAP (mean and STD of 848 and 118 mm) as compared to the observation 

(902 mm). In both the observed streamflow and the ensemble mean, the runoff coefficient was 

found to be~0.20 for this period.  

To further illustrate the model performance, Fig. 2.14b shows the comparison between 

the observed flow duration curve (FDC) and the 90% confidence intervals from the ensemble 

simulations. The shape of the observed FDC was well reproduced within the range of wet season 

baseflow and for the major flood events. The model underestimated the streamflow values 

corresponding to the percentage of exceedance of 2 to 10%, due to a tendency to simulate steeper 

recession limbs. The shapes of simulated and observed FDCs diverged in the interval of dry 

season baseflow. However, in that range of discharge values, the absolute error between the 
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observations and simulations was very low, and the observed data were quite uncertain, as they 

were affected by releases from urban and irrigation activities.  

Results for the validation period (years 1931 and 1932) are shown in Fig. 2.15. It can be 

noted the good performances in reproducing the discharge time series (Fig. 2.15a) over year 

1931 and most of 1932. In the period from October to December 1932, the model simulated a 

number of peaks that were not observed, while sometimes underestimated the discharge, due to 

the same reasons discussed for the calibration period. Those peaks lowered the NSC values at the 

different aggregation times, as reported in Table 2.10. As in the calibration period, the total 

simulated runoff volume (mean of 103 mm and STD of 17 mm) was lower than the observation 

(147 mm), due to lower precipitation simulated by the downscaling tool (mean of 993 mm and 

STD of 96 mm) as compared to the observed total (1025 mm). The simulated runoff coefficient 

throughout the two years was on average 0.10 in the simulations, slightly smaller than the 

observed value of 0.14. Despite the discrepancies present in the time series and the metrics, Fig. 

2.15b reveals an excellent agreement between the shapes of observed and simulated FDCs, even 

in the range of the dry season baseflow. Overall, these results suggest that the combined use of 

the downscaling algorithms and the tRIBS model allowed reproducing with reasonable accuracy 

the hydrologic response of the RMB within the 3 years selected for calibration and validation. 

This holds promising for the subsequent application of these simulation tools to evaluate the 

local impacts of future climate change scenarios (chapter 3). 
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Fig. 2.15 Result of the tRIBS model validation (years 1931-1932). See Fig. 2.14 for a description of the figure 

content. 

2.7 Summary and conclusions 

We applied a process-based distributed hydrologic model in the Rio Mannu basin, a 

medium-size watershed (area of 472.5 km
2
) in the Mediterranean island of Sardinia, Italy. In the 

RMB, precipitation, streamflow and meteorological data were collected in different historical 

periods and at diverse temporal resolutions. We showed how this sparse hydrometeorological 

dataset could be used to calibrate two downscaling tools that are able to create high-resolution 

(hourly) precipitation forcing from daily observations and estimates of the hourly potential 

evapotranspiration for use in the distributed hydrologic model application. 

Despite the presence of several sources of uncertainty in the observations and model 

parameterization, the use of the downscaled forcing led to good calibration and validation 
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performances for the tRIBS model over the years from 1930 to 1932 with available daily 

discharge observations (Mascaro et al., 2013b). To our knowledge, this was the first study where 

a distributed hydrologic model is applied in the island of Sardinia. Different from most 

applications based on daily forcing, the methodology proposed here allows conducting 

hydrologic simulations at high time and space resolutions, thus capturing with higher detail the 

complex interactions between surface and subsurface processes occurring in Mediterranean 

watersheds. This methodology will be utilized in the subsequent chapter to disaggregate the 

outputs of different RCMs and simulate the hydrologic response of the RMB under different 

climate change scenarios, thus quantifying their local impacts on water resources and the 

frequency of hydrologic extremes. 
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3 Hydrologic impacts of climate changes 

Future climate projections based on global and regional climate models (GCMs and 

RCMs) indicate that the Mediterranean basins will most likely suffer a decrease in water 

availability and an intensification of hydrologic extremes. Process-based distributed hydrologic 

models (DHMs), like tRIBS, have the potential to simulate the complex hydrologic response of 

Mediterranean watersheds. Thus, when used in combination with RCMs, DHMs can reduce the 

uncertainty in the quantification of the local impacts of climate change on water resources. 

Hence, we used the two downscaling algorithms and the DHM, whose characteristics, set up and 

calibration were discussed in the previous chapter, to simulate the Rio Mannu basin response to a 

set of bias-corrected outputs from four RCMs for two simulation extents: a reference (1971 to 

2000) and a future (2041 to 2070) period. The time series and spatial maps simulated by the 

hydrologic model were then post-processed by computing several metrics to quantify the 

changes on water resource availability and hydrologic extremes in the future climate scenarios as 

compared to historical conditions. 

The chapter is organized as follows. First the four RCMs are introduced together with a 

brief description of the reasons for their selection. The validation, downscaling and bias 

correction procedures are also presented. Next, changes in climate signals are evaluated 

comparing the statistics of the main meteorological forcing, precipitation and temperature, in the 

two different time slices. Observed data in the reference period are provided as an additional 

source of comparison. Finally, the results of the hydrologic simulations forced with the climate 

models and measured data are presented and discussed to assess the impact of climate change in 

the Rio Mannu watershed. 
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3.1 Climate data 

3.1.1 Climate models description 

In this study the climate projections were provided by three Regional Climate Models, 

RCMs ( the Sweden RCA model, the Netherlands RACMO2 Model, the Germany REMO 

Model), and two General Circulation Models, GCMs (the HadCM3 Model (high sensitivity) and 

the Germany ECHAM5 / MPI OM), selected within the ENSEMBLES project. Four GCM-RCM 

combinations of these climate models were selected as the best performing in all the CLIMB 

study sites (Deidda et al., 2013). For simplicity and graphical advantage, we defined an acronym 

for each climate model used in this work. The list of climate models, GCM-RCM combination 

and acronyms is given in Tables 3.1 and 3.2.  

Climate  

model 
Climatological center and model Acronym 

   

GCMs 

Hadley Centre for Climate Prediction, Met Office, UK 

HadCM3 Model (high sensitivity) 
H 

Max Planck Institute for Meteorology, Germany 

ECHAM5 / MPI OM 
E 

   

RCMs 

Swedish Meteorological and Hydrological Institute (SMHI), Sweden 

RCA Model 
RC 

Max Planck Institute for Meteorology, Hamburg, Germany 

REMO Model 
RE 

Koninklijk Nederlands Meteorologisch Instituut (KNMI), Netherlands 

RACMO2 Model 
RM 

   Table 3.1 Climatological center and acronyms of the Global Climate Models (GCMs) used as drivers of 
ENSEMBLES Regional Climate Models (RCMs) considered in this study (first two rows) and acronyms of the 

RCMs (last three rows). 

RCM 
acronym 

RCM GCM 

ERC RCA Model ECHAM5 / MPI OM 

ERE 
REMO 

Model 
ECHAM5 / MPI OM 

ERM 
RACMO2 

Model 
ECHAM5 / MPI OM 

HRC RCA Model HadCM3 Model 

Table 3.2 List of the GCMs-RCMs combination acronyms used in this study associated to their GCMs and RCMs 

(acronyms). 
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The combinations included two different RCMs nested in the same GCM (the Germany 

ECHAM5 / MPI OM, E, combination ERE and ERM) and the two different GCMs forcing the 

same RCM (the Sweden RCA model, RC, combination ERC and HRC), giving also the 

possibility to explore different sources of uncertainties. Their outputs were mostly available from 

1951 to 2100 at daily scale and at the same spatial resolution of 0.22 degrees which corresponds 

to a grid resolution of approximately 24 km. Future climate predictions were based on 

greenhouse gas and aerosol concentrations from the A1B emission scenario (Nakićeović et al., 

2000), which is considered the most realistic. The A1 scenarios were conceived to represent an 

integrated world characterized by fast economic growth, maximum population of 9 billion 

reached in 2050, quick spread of new and efficient technologies, and extensive social and 

cultural interactions. The A1B scenario, in particular, provided a balanced use of all energy 

sources. We defined two periods, each 30 years long, for the assessment of climate change 

within the CLIMB project: a reference time slice from 1971 to 2000 and a future time slice from 

2041 to 2070 (respectively, REF and FUT in the following). 

3.1.2 RCMs validation, bias correction and downscaling 

Climate model data were validated using the same dataset for six catchments of the 

CLIMB project, the CRU E-OBS dataset from the ENSEMBLES EU-FP6 project, available by 

the ECA&D project (http://www.ecad.eu) and hosted by the Climate Research Unit (CRU) of the 

Hadley Centre. E-OBS data included gridded observations of daily precipitation and 

temperature, which had different advantages. They were based on high-quality historical 

measurements on a European network, available not only at the same spatial resolution of 

ENSEMBLES RCMs but even using the same grid of points (rotated grid of 0.22 degrees). The 

original data had been corrected in order to minimize the influence of local and orographic 
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effects. The grids had been obtained using kriging interpolation, one of the best linear unbiased 

estimation methods. More details on the evaluation, selection and validation procedures of 

climate models within the CLIMB project can be found in Deidda et al. (2013). Climate change 

predictions at local scale are affected by a large amount of uncertainty which arises from the 

considered emission scenario, from the use of different GCMs and RCMs (intermodel 

variability), from the different realizations of the same scenario with a given GCM (internal 

model variability or natural climate variability) and from the downscaling techniques (Wilby et 

al., 2000; Prudhomme and Davies, 2009; Todd et al., 2011). The selected set of RCMs allowed 

to explore the intermodel variability comparing the climate change response of different RCMs 

nested in a single GCM and the response of the same RCM forced by different GCMs. Even if 

the set of climate models was quite small, a descriptive evaluation of the uncertainties was 

possible. 

In order to run hydrological models and assess climate change effects at the basin scale, 

climate models outputs need to be downscaled (Wilby and Wigley, 1997; Bardossy et al., 2011) 

and bias-corrected. The same downscaling procedures adopted in the calibration-validation 

period (Mascaro et al., 2013b) and described in the previous chapter were used in this study. 

They allowed to obtain high resolution precipitation and reference evapotranspiration fields 

required by the hydrologic model tRIBS. Precipitation grids were downscaled using the Space 

Time RAINfall (STRAIN) model, the multifractal method described in Deidda (1999 and 2000) 

and in Badas et al. (2006). This approach allowed disaggregating precipitation both in space and 

in time (Fig. 2.9 in chapter 2). Starting from areal averages of daily precipitation obtained by 

averaging rainfall values over a 4x4 matrix of ENSEMBLES grid points centered in the 

catchment, covering an area of about 100 x 100 km2, the model was able to create hourly 
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precipitation fields at the spatial resolution of about 1 km
2
 (Fig. 3.1 from Deliverable 4.3 of 

CLIMB project). 

 
Fig. 3.1 Rio Mannu river basin, RMB, area and downscaling structure. In the map, the dots represent the grid points 

of the original ENSEMBLES 25 km x 25 km grid. Red dots (land) trace clearly the shape of Sardinia (and of the 

southernmost tip of Corsica), while white dots indicate the sea grid-points of the surrounding Mediterranean. The 

purple line includes the catchment area. The black line includes the area selected for 1 km x1 km downscaling. The 
blue line includes the 4x4 stencil points, that are surrounded by a green circle. (kindly provided by CLIMB 

Deliverable 4.3). 

Hourly reference evapotranspiration values were obtained through its specific 

downscaling strategy (section 2.5.2 in previous chapter) starting from daily minimum and 

maximum temperatures grids. The procedure was calibrated using high resolution meteorological 

data, the Penman - Monteith and the Hargreaves formulas (Mascaro et al., 2013b). In the case of 

RCMs grids, temperature fields were previously downscaled in space following the approach of 

Liston and Elder (2006) which considers a spatial interpolation scheme (Barnes, 1964, 1973) and 

orographic corrections. Bias correction is usually necessary to adjust seasonal statistics of 
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climate model outputs. This was achieved by correcting the seasonal probability distribution 

functions using the daily translation method, which was shown to be skilful in many hydrologic 

impact studies (Wood et al., 2004; Maurer and Hildago, 2008). Having the same number of data, 

scatter plots of E-OBS and climate models simulated values were used as transfer function to 

correct the model value according to the corresponding observed value. The procedure assured 

the coincidence of the moments of the probability distribution function of the corrected modeled 

data with those of measured ones. 

A systematic underestimation of monthly precipitation was noticed comparing climate 

models corrected outputs with available local observed data. Hence, it appeared necessary to 

further adjust precipitation fields to take into account local climatology which was not quite well 

represented even using the E-OBS dataset as validation counterpart. Mean areal precipitation 

(MAP) values in the RMB were computed based on daily data measured by rain gages in the 

period 1951-2008. The mean monthly MAP values were compared with those obtained in the 

period 1951-2010 using the 4 RCMs precipitation grids (Table 3.3). The monthly ratios between 

observed MAP and the mean of the climate models were used as correction multipliers. 

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
ERC 45.34 45.15 34.77 43.74 24.48 13.76 3.05 6.78 44.87 51.83 66.54 53.92 

ERE 45.24 40.21 35.64 43.31 23.17 12.57 2.91 6.04 41.09 53.82 72.56 58.02 

ERM 44.20 46.44 33.08 40.22 26.80 14.58 2.54 5.43 34.25 52.37 63.35 52.70 

HRC 43.95 51.21 34.79 44.68 26.85 9.82 3.19 6.12 33.15 56.92 71.51 59.82 
             

RCM mean 44.68 45.75 34.57 42.99 25.33 12.68 2.92 6.09 38.34 53.74 68.49 56.11 
             

Observed 58.85 63.90 57.13 52.56 37.42 16.35 6.93 12.65 41.75 62.91 81.08 83.04 
             

Ratio 1.32 1.40 1.65 1.22 1.48 1.29 2.38 2.08 1.09 1.17 1.18 1.48 

Table 3.3 Monthly Mean Areal Precipitation (MAP) in the RMB in the period 1951-2010 (mm) simulated by the 
four RCMs; average of the four RCMs (RCM mean); observed by rain gages in the period 1951-2008 (mm); and 

ratio between RCM mean and the observation. 
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3.1.3 Climate change anomalies 

Climate change signals were evaluated comparing mean annual and monthly values of 

the main meteorological forcing, precipitation and temperature, during the two periods. In the 

reference time slice measured data at daily resolution were available from several rain gages and 

from one thermometric station near the Rio Mannu watershed. We took advantage solely of 

observed rainfall data as a further source of comparison due to the higher uncertainty of this 

variable in RCMs as compared with temperature. In order to obtain hourly precipitation grids 

which could be next used to force the DHM, we considered 152 rain stations in the same large 

domain as in the calibration and application of the STRAIN model (grid with L = 104 km in 

Chapter 2, Fig. 2.3) and we run again the multifractal tool for the period 1971-2000. Only one of 

the possible disaggregated series had been considered for the computational effort required by 

successive hydrologic simulations. Based on RCMs and observed rainfall grids, mean areal 

precipitation, MAP, values in the RMB were computed and used for the parallel analysis. 

Figures 3.2 and 3.3 present annual and monthly results for precipitation while figures 3.4 and 3.5 

refer to temperature. 

All RCMs agreed on the prediction of a decreased annual precipitation amount in the 

FUT period ranging from 12% to 21% (HRC) (Fig.3.2). The dashed line in Fig. 3.2 represents 

observed mean annual MAP in the REF period. Observed MAP resulted slightly smaller than 

RCMs mean probably due to the different set of measured data used to correct RCMs (Table 3.3) 

and to the application of the downscaling tool which redistributed in stochastic fashion the daily 

rainfall volumes from the large domain (Mascaro et al., 2013b). Climate models were instead 

corrected considering daily precipitation values of stations within or quite close to the basin in 

the period 1951-2008. 
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Fig. 3.2 Mean annual MAP in the RMB predicted by the RCMs in REF (black bars) and FUT (gray bars) periods; 

horizontal dashed line represents mean annual MAP observed by 152 rain gauges (downscaled from the coarse grid 
in Fig. 2.3) in REF period. 

On a monthly basis the sign of variation depended on months and models (Fig. 3.3, 

panels (a) and (b)). In October, February and June only one model reversed the tendency of 

reduction predicting an increase, in December and January, instead, monthly precipitation 

increased according to three models (significantly for ERM in December and for HRC in 

January, more than 20%). A marked decrease had to be expected in April and May according to 

all the models. Hence, MAP was predicted to slightly increase in winter months and decrease in 

the other seasons. If we look at the mean monthly number of rainy days (defined as days during 

which MAP > 1 mm/d), presented in panels (c) and (d) of Fig. 3.3, we can note that all the 

RCMs agreed on a fall in all months in the FUT period except for the months of January and 

February (no significant change) and of July and August for HRC model (increase). The mean 

rain intensity in rainy days (Fig. 3.3 panels (e) and (f)) showed a less consistent trend in change. 

There were eight months (October, November, winter months, April, June and July) during 

which at least one RCM predicted a raise in rain intensity. This means that the probability of 

strong events was expected to enhance (increased precipitation amounts in less days), especially  
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Fig. 3.3 (a) Mean monthly MAP in the RMB plotted as mean ± standard deviation of the RCMs in the REF (black 

line) and FUT (gray line) periods; thin black line (without standard deviation) represents mean monthly MAP 
observed by152 rain gauges.(b) Relative change in mean monthly MAP between FUT and REF period. (c) Same as 

(a), but for the number of rainy days in each month (MAP>1 mm/d). (d) Same as (b), but for the number of rainy 

days in each month. (e) Same as (a), but for the rain intensity in rainy days in each month. (f) Same as (b), but for 

the rain intensity in rainy days in each month. 

in October, April, June and July. Panels (a), (c) and (e) of Fig. 3.3 allow also to compare RCMs 

means with observed MAP (thin black line) statistics in the REF period. Simulated mean 

monthly MAP is higher than observed one in some months (Fig. 3.3a). The number of rainy days 

tended to be slightly underestimated by RCMs (Fig. 3.3c) and, as a consequence, the rain 

intensity in rainy days presented larger values (Fig. 3.3e). 
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Temperature trends displayed less uncertainty than precipitation. All RCMs, in fact, 

predicted increased mean annual values (Fig. 3.4) in FUT period varying from 1.9°C to 3°C 

according to the HRC model. Also the monthly comparison was consistent among the 4 RCMs 

(Fig. 3.5) with positive changes in FUT period in all the seasons, ranging from about 7% (ERE 

June) to 30% (HRC March). The results presented in this thesis allowed to observe that in this 

study case the uncertainty due to the driving GCM (ERC and HRC combinations) is bigger than 

the variation caused by the two different RCMs nested in the same GCM (ERE and ERM). 

 
Fig. 3.4 Mean annual temperature in the RMB predicted by the RCMs in the REF (black bars) and FUT (gray bars) 

periods. 

 
Fig. 3.5 (a) Mean monthly temperature in the RMB plotted as mean ± standard deviation of the RCMs in the REF 
(black line) and FUT (gray line) periods. (b) Relative change in mean monthly temperature between FUT and REF 

period. 
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3.1.4 MAP statistical properties 

As further analysis, we investigated two statistical properties of precipitation, always 

computed as MAP in the RMB. First, we applied the Multiple Threshold Method General Pareto 

Distribution, MTM-GPD (Deidda, 2010) to daily MAP values predicted by the 4 RCMs and 

observed by rain gages (OBS). The GPD was proposed as a suitable threshold-invariant three-

parameter distribution function to reliably describe the exceedances of daily rainfall records with 

the property of reflecting the local climate signature. Looking at the MTM-GPD parameters, 

reported in table 3.4 for REF and FUT periods, different aspects could be observed. In the 

reference period HRC model had the highest probability of extreme rainfall events (x) and ERE 

the lowest while in future period that probability was predicted to be quite similar among the 

climate models. The scale parameters (a) which give information on the mean were not so 

different among the RCMs but bigger than OBS one and the mean tended to decrease in the 

future except for HRC ensemble member. On the contrary, the probability of rainfall (z) for this 

latter model was scheduled to halve, meaning less events but more intense. Figures 3.6 - 3.9, 

panel (d), show the empirical survival functions (continuous lines) and the MTM-GPD fit 

(dashed lines) in REF (black) and FUT (grey) periods for each RCM compared with the case of 

observed daily MAPs. We can note how the fitting could reliably capture the highest records 

even if the maximum thresholds were low (maximum 14.5 mm). Panels (a) and (b) of the same 

figures report some steps of the procedure to compute the MTM-GPD parameters in REF and 

FUT periods, respectively; panels (c) is the same in each figure referring to OBS analyses. 
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 xM aM zM 

RCM REF FUT REF FUT REF FUT 

       ERC 0.195 0.185 5.433 5.017 0.221 0.219 

ERE 0.105 0.206 5.192 4.354 0.240 0.251 
ERM 0.204 0.226 4.758 4.942 0.242 0.203 

HRC 0.228 0.213 4.945 6.679 0.222 0.116 
OBS 0.209 - 3.651 - 0.287 - 

Table 3.4 Parameters of the MTM-GPD fit to daily MAP values in the RMB in REF and FUT periods and with OBS 
data. 

 
Fig. 3.6 (a) MTM application on daily MAP values predicted by ERC in REF period. First plot shows the size of the 

records exceeding the thresholds u. The second plot displays the x estimates as the theshold u range from 0 to 20 

mm: the xM MTM estimate is the median value (horizontal line) within the range of selected thresholds. Similarly, 

the third and fourth plots display the unconditioned a0 and z0 estimates provided as a function of u. (b) and (c) 

shows the same plots as (a) but for MAP values predicted by ERC in FUT period and for OBS MAP. (d) Empirical 
survival functions (continuous lines) and MTM-GPD fit (dashed lines) of ERC MAP in REF (black) and FUT (grey) 

periods and for OBS (thin black) MAP. 
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Fig. 3.7 Same as Fig. 3.6 for ERE model. 

 

 
Fig. 3.8 Same as Fig. 3.6 but for ERM model. 
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Fig. 3.9 Same as Fig. 3.6 but for HRC model. 

The second statistical investigation regarded the annual maximum daily MAP values 

using the generalized extreme value (GEV) distribution, the expected distribution of the maxima 

within blocks of one year. Table 3.5 reports the GEV parameters for reference and future period 

while Fig. 3.10 shows the sorted values with the corresponding GEV fit using the maximum 

likelihood estimates. In the figure the values of each climate model in the REF period were 

compared with the observed ones and with the future. The measured annual maximum MAP 

values presented the highest shape parameter k indicating a major tendency towards a Fréchet 

distribution (bounded on the left and presenting a right tail). RCMs distributions instead could be 

classified as Gumbel ones (unbounded on the left and on the right). The ERM ensemble member 

displayed the most similar behavior comparing FUT and REF shapes and parameters. These 

statistical analyses put on evidence that (i) climate models precipitation were not consistent with 

each other; (ii) there was no coherence even between REF and FUT periods of the same model, 
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and (iii) RCMs rainfall was different from observed one not only in predicted values but also in 

the type of distribution. 

 k s m 

RCM REF FUT REF FUT REF FUT 

       ERC 0.007 -0.019 13.063 12.294 38.982 36.067 
ERE 0.012 -0.082 7.717 9.912 31.566 34.721 

ERM 0.06 0.032 12.613 13.253 35.432 36.095 
HRC 0.191 0.008 11.775 16.251 34.259 36.104 

OBS 0.331  8.443  27.002  
Table 3.5 Parameters of GEV fit with ML method to maximum annual daily MAP values for each RCM in REF and 

FUT period and OBS data. 

 
Fig. 3.10 Maximum annual MAP values predicted by the 4 RCMs (1 panel for each RCM) in REF (black circles) 

and FUT (grey circles) period and GEV fit with maximum likelihhod, ML, method (black line for REF, dashed grey 

line for FUT). Each panel shows also OBS MAP values (plus) and GEV fit (thin black line). 
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Similar results were obtained estimating GEV parameters with the method of the 

probability weighted moments, PWM. Parameters are reported in table 3.6 while Fig. 3.11 shows 

max annual MAP values and fits as with the ML method. 

 k s m 

RCM REF FUT REF FUT REF FUT 

       ERC 0.009 -0.024 13.852 13.165 38.610 35.756 
ERE -0.019 -0.014 8.550 9.998 31.387 34.125 

ERM 0.152 0.113 11.801 12.673 34.621 35.298 
HRC 0.280 -0.016 10.891 17.474 33.524 35.928 

OBS 0.211  9.495  27.241  
Table 3.6 Parameters of GEV fit with PWM method to maximum annual daily MAP values for each RCM in REF 

and FUT period and OBS data. 

 
Fig. 3.11 Maximum annual MAP values predicted by the 4 RCMs (1 panel for each RCM) in REF (black circles) 

and FUT (grey circles) period and GEV fit with probability weighted moments, PWM, method (black line for REF, 

dashed grey line for FUT). Each panel shows also OBS MAP values (plus) and GEV fit (thin black line). 
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3.2 Impacts of climate change on hydrologic response 

The tRIBS hydrologic model, set up and calibrated as discussed in the previous chapter, 

was forced with the outputs of the four RCMs to evaluate the effects of climate changes in the 

Rio Mannu basin. Meteorological input data were prepared adopting the same downscaling 

strategies for precipitation and reference evapotranspiration, as in the calibration validation 

period (section 2.5). To reduce computational time we re-aggregated the available precipitation 

and temperature grids (1 km resolution) to 5 km resolution (Fig. 3.12). Reference 

evapotranspiration values were obtained again starting from daily minimum and maximum 

temperatures and applying the specific downscaling procedure described in section 2.5.2. The 

DHM was run using the parallelized version (Vivoni et al., 2011) in a super computer (the 

Saguaro Cluster in Arizona State University) for the reference period (1971-2000) and the future 

period (2041-2070). In both cases simulations started two years before the beginning of the time 

slice in order to have a spin-up period to reach equilibrium conditions, as in the calibration-

validation case (Mascaro et al., 2013b, chapter 2.6.2) and in Vivoni et al. (2005). A total of 256 

years of simulations were performed (32 years x 2 periods x 4 RCMs forcing) with an additional 

simulation in REF period using observed meteorological data. Several hydro-climatic indexes 

were computed elaborating tRIBS time series and spatial maps in order to evaluate the RMB 

hydrologic response (river discharge, evaporation losses, soil water storage and groundwater 

recharge) to temperature and precipitation changes predicted by the 4 RCMs, previously 

described. 
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Fig. 3.12 Position of centroids of the downscaled RCMs grids at 5 km (dots) and position of the outlet section 

(square) in the Rio Mannu Basin. 

3.2.1 River discharge 

The hydrologic response in terms of streamflow was evaluated at the outlet section of 

RMB (square in Fig. 3.12). Fig. 3.13a shows the mean annual discharge simulated by tRIBS 

model forced with the 4 climate models in REF and FUT periods. All the simulations predicted a 

decrease in the future ranging from 17% (ERE) to 50% (HRC). This reduction confirmed what 

could be expected from precipitation and temperature annual anomalies (reduction and increase, 

respectively). While precipitation lowering and temperature rise predictions were quite similar 

according to the models ERC, ERE and ERM, models driven by the same GCM, the annual 

discharge loss in FUT period presented major differences showing the non linearity of the basin 

response. The simulation forced with observed meteorological data (OBS) presented a mean 
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annual streamflow slightly lower than that of RCMs simulations in agreement with the lesser 

mean annual MAP (dashed lines in Fig. 3.13a and 3.2, respectively). Seasonal behavior (Fig. 

3.13b) was consistent in each simulation providing decreased monthly runoff with the exception 

of ERM in December and ERE in June even if MAP was expected to slightly increase during 

winter months (Fig. 3.3b). The simulation forced with HRC respected the expectation with the 

highest reduction values in all months. 

 
Fig. 3.13 (a) Mean annual discharge in the RMB simulated by tRIBS model forced with the 4 RCMs in REF (black 

bars) and FUT (gray bars) periods; horizontal dashed line represents mean annual discharge simulated using 

observed meteorological data in REF period (simulation OBS). (b) Relative change in mean monthly discharge 

between FUT and REF period. 

The flow duration curves (FDCs) were computed based on daily discharge values and the 

relative results are displayed in Fig. 3.14. The FDCs (panel (a)) in REF period (all RCMs and 

OBS simulations) confirmed the typical streamflow regime of the basin characterized by low 

flows (less than 1 m3/s) for the main part of the year (Mascaro et al., 2013b). The OBS FDC 

presented lower medium and high flow values with respect to RCMs curves due to lower 

precipitation amount. In the FUT period a downward shift in the FDCs was projected, implying a 

nearly uniform streamflow reduction over the entire range of exceedance probabilities. Again, 

the HRC predicted the largest deviation from the corresponding REF simulation with a 

significant reduction of water discharge in all the flow regimes. 
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Fig. 3.14 (a) FDCs at RMB outlet section simulated by tRIBS model forced with the 4 RCMS in REF (continuous 

lines) and FUT (dashed lines) periods; thin continous line represents the FDC in simulation OBS. The vertical dot 
lines divide the curves into three portions corresponding to different flow magnitudes: high flows (0%–20%), 

medium flows (20%–70%), and low flows (70%–100%). The streamflows are plotted on a log scale which 

emphasizes differences in low flows. (b) Mean monthly low flow days (LFDs) plotted as mean ± standard deviation 

of the RCMs in the REF (black line) and FUT (gray line) periods; thin black line refers to simulation OBS. (c) Mean 
of annual maximum consecutive length of LFDs in REF (black bars) and FUT (gray bars) periods; thin dashed line 

represents results of simulation OBS. 

The configurations ERC and ERE presented the lowest shift and a quite similar trend, as 

confirmed also by the mean annual discharge value (about 72 mm). Based on FDCs, we 

computed the mean monthly number of low flow days and the maximum consecutive length of 

low flow days during each hydrologic year (from September to August). Low flow days were 

defined as days during which the streamflow was lower than the averaged value of the 4 

simulation in REF period corresponding to a 70% probability of exceedance (right vertical line in 

Fig. 3.14a). The monthly low flow days (Fig. 3.14b) were consistently expected to grow in each 

month. The OBS trend is quite similar to that of RCMs driven simulations except over August 

and September. Also the mean maximum consecutive length of low flow days in hydrologic 
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years, reported in Fig. 3.14c, tended to assume higher values in FUT period, especially according 

to HRC ensemble member (the mean consecutive length switched from 58 to 110 days, more 

than three months). These results depicted a basin with more days with almost no water in 

natural channels. 

Further effects of climate change, in particular of precipitation trends, can be detected in 

the physical mechanism that governs runoff generation. Fig. 3.15a shows the percentages of the 

different runoff components in the reference period as simulated with RCMs and OBS data as 

forcing. In all simulations the main contribute was given by groundwater exfiltration (GE) 

ranging from 55% (HRC) to 61% (ERE) followed by saturation excess (SE) in RCMs driven 

simulations (about 22%) and by infiltration excess (IE) in OBS simulation (about 24%). 

Grouping the four mechanisms of runoff generation computed by tRIBS model in surface runoff 

(infiltration excess and saturation excess, IE + SE) and subsurface runoff (perched return flow 

and groundwater exfiltration, PR + GE), it could be seen that their occurrence was quite similar 

among the ensemble members. Future projected changes in precipitation (decreased precipitation 

amounts with a minor number of rainy days) created variations in the components, as reported in 

Fig. 3.15b. All RCMs simulations predicted an increased occurrence of infiltration excess (from 

16% by ERM to 110% by HRC), a slight rise of perched return flow (from 4% by HRC to 20% 

by ERM) and a decrease in saturation excess (from -13% by ERE to -41% by HRC). Simulations 

ERE, ERM and HRC displayed also a decrease in groundwater exfiltration varying from -4% to -

18%. Considering runoff subdivision in two main components, the HRC simulation was the only 

one which presented appreciable differences: the 10% decrease in subsurface runoff was 

compensated by the same raise in surface runoff. This variation was reduced to 4% in ERM 

simulation and 1% in the other two ensemble simulations. 
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Fig. 3.15 (a) Runoff partitioning in the REF period predicted by RCMs simulations and OBS simulation: infiltration 
excess (IE), saturation excess (SE), perched return flow (PR), and groundwater exfiltration (GE) runoff components. 

(b) Relative change in runoff partitioning between FUT and REF period. 

We investigated also the changes month by month computing the percentage of each 

component in the two periods and considering the difference (FUT - REF). Fig. 3.16 shows the 

plots for each RCM simulation: the IE and GE mechanisms presented the monthly highest degree 

of variability with positive and negative values compensating each other. 

 
Fig. 3.16 Change in the percentages of monthly runoff partitioning (FUT - REF). Each panel refers to a RCM. 
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Fig. 3.17 GEV Maximum annual discharge values predicted by the simulations forced with the 4 RCMs (1 panel for 

each RCM) in REF (black circles) and FUT (grey circles) period and GEV fit with maximum likelihhod, ML, 

method (black line for REF, dashed grey line for FUT). Each panel shows also OBS maximum annual discharge 

values (plus) and GEV fit (thin black line). 

We repeated the generalized extreme value (GEV) analyses to maximum annual daily 

discharge values, expressed in m3/s. The results using the maximum likelyhood estimation 

method are shown in Fig. 3.17. The predicted changes in future precipitation (Fig. 3.10) were 

amplyfied considering annual discharge peaks. 
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3.2.2 Evaporation losses and soil water content  

Hourly grids of potential evapotranspiration, ET0, were used to force the hydrologic 

model tRIBS. They were computed starting from daily temperature grids provided by the 4 

RCMs and applying the same downscaling procedure as in the calibration - validation period 

(Mascaro et al., 2013b, section 2.5.2). The mean potential evapotranspiration averaged on RMB 

(Fig. 3.18a) was projected to slightly increase in FUT period due to higher temperatures. As in 

the case of temperature, the differences in mean monthly values among the 4 RCMs were 

smoothed (small standard deviation bars in Fig. 3.5a and 3.18a). The apparent temperature rice, 

however, was slightly softened in potential evapotranspiration where the future change was 

lower. 

 
Fig. 3.18 a) Mean monthly potential evapotranspiration, ET0, plotted as mean ± standard deviation of the RCMs in 

the REF (black line) and FUT (gray line) periods; thin black line refers to ET0 computed with observed 
meteorological data; dashed line represents the percentages of ET0 variation between FUT and REF periods. (b) 

Same as (a) but for real evapotranspiration, ETR, provided by tRIBS model simulations. (c) Ratio of mean monthly 

ETR and ET0, plotted as in previous panels. (d) Mean monthly root soil moisture content, RSM, provided by tRIBS 

model simulations and plotted as in previous panels. 
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Our hydrologic model estimated the real evapotranspiration losses, ETR, as a fraction of ET0 

based on the soil moisture available in the near surface soil layer, using a piecewise-linear 

equation (Mahfouf and Noilhan, 1991; Ivanov et al., 2004a). Real evapotranspiration (Fig. 

3.18b), on the contrary of ET0, was projected to decrease in FUT period as compared to REF 

period. Reduction in ETR with higher ET0 was most likely due to lower precipitation, which, in 

turn, led to drier soils. Fig. 3.18c shows the mean monthly ratio between actual and potential 

evapotranspiration which, as a consequence, presented smaller values in the future according to 

all the simulations. The relevant effect of soil humidity, and hence of precipitation amount, could 

also be inferred from the OBS simulations results: real evapotranspiration and ratio were more 

similar to that projected in the future period than in the reference one. The mean root zone soil 

moisture content (RSM, Fig. 3.18d) was expected to decrease in the FUT period according to all 

the ensemble members. Looking panels (c) and (d) of Fig. 3.18, it can be noticed the similar 

trend presented by the ratio of real and potential evapotranspiration and the soil moisture content. 

These results projected a basin condition of more water shortages with longer periods of dry soils 

despite having the same evaporation loss. In the future period, in fact, actual evapotranspiration 

presented similar or slightly lower values than in the reference period, even if potential 

evapotranspiration tended to a little rise, due to an increased emptying rate of the soil. 

Soil humidity and evaporation losses are related to terrain characteristics and soil types 

(Ivanov et al. 2004b). The relationships can be seen plotting these hydrologic components as a 

function of the topographic index, l, and considering the different soil texture classes. The 

topographic index (Vivoni et al., 2004), proposed by Beven and Kirby (1979) and O'Loughlin 

(1986), was computed as: 

)tan/ln( iii A βλ =          (3.1) 
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where iλ  was the topographic index, iA  was the contributing draining area and iβ  the 

slope at the i-th voronoi polygon. This index, whose spatial pattern in RMB is displayed in Fig. 

3.19, has the main objective to measure the tendency of the saturation excess runoff to occur in a 

TIN cell. Hence, it presents larger values in floodplain areas (the biggest is the draining area and 

the smallest is the local slope, the highest is the probability of saturated conditions, red areas in 

the figure) than in mountains areas (more yellow areas). Fig. 3.20 shows the variation in mean 

annual ETR, surface soil humidity, SSM, root zone soil humidity, RSM, and depth of groundwater 

table, Nwt, as a function of the topographic index. Vertical bars from points in the plot represents 

standard deviations of the values computed for the corresponding bins. The magnitude of the 

standard deviation within a bin was also related to the terrain location and was relatively smaller 

or larger for certain ranges of the topographic index. 

 
Fig. 3.19 Spatial distribution of topographic index, l, ranging from 0 to 30. 
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The variation in mean annual ETR (Fig. 3.20a) was characterized by slight increments in areas 

with low topographic index l (mountain areas) and reductions that increased in areas with 

higher l (from hillslopes to floodplains). The mean SSM (Fig. 3.20b) was expected to decrease, 

especially in areas with intermediate l. Panel (c) of the figure shows that also the RSM was 

projected to reduce in particular in floodplain areas (from intermediate to high l). All 

simulations predicted a drop in the groundwater table depth, Nwt, (Fig. 3.20d). The changes 

predicted with HRC forcing were the most extreme (highest decrease of ETR, RSM and Nwt), due 

to lower precipitation and higher temperature in FUT (Fig. 3.2 and 3.4). 

 
Fig. 3.20 Change in annual (a) real evapotranspiration, ETR, (b) surface soil moisture, SSM, (c) root soil moisture, 

RSM and (d) groundwater table depth, Nwt, as a function of the topografic index, l = ln(A/tanb). 

The infuence of topographic index and soil texture classes became even more evident 

considering seasonal variations plots for the main soil texture classes (sandy loam - sandy clay 
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loam, SL-SCL, clay loam - clay, CL-C, and sandy loam - loam, SL-L, Fig. 2.4b and table 2.4). 

Fig. 3.21 provides an example for the RSM change in the spring season predicted by the four 

simulations. The reduction was clearly more marked in areas with sandy soils and l values from 

intermediate to high, while it was general smaller in loamy soils. Again, the HRC simulation 

presented the highest values of decrease. 

 
Fig. 3.21 Change in spring RSM for the main soil types (see text for the acronyms explanation) as a function of the 

topografic index, l. Each panel refers to a RCM forced hydrologic simulation. 
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3.2.3 Spatial patterns of hydrologic variables changes 

The distributed model tRIBS gives the possibility to show the spatial variation of several 

hydrologic variables providing spatial maps with instantaneous or integrated values at specified 

times. We set the model in order to have integrated values every month and computed seasonal 

variations (mean on FUT menus mean on REF) of soil moisture at different depths (SSM and 

RSM), real evapotranspiration losses (ETR) and groundwater table depths (Nwt). The maps 

confirmed the influence of the spatial patterns of soil texture and terrain aspects on the 

hydrologic response of the basin, as it was inferred from the previous plots which related each 

variable to the topographic index. In addition, the maps, shown in figures 3.22-3.28, allowed 

seeing the effect of forcing grids. Each figure presents the variation (FUT - REF) of a component 

(SSM, RSM, ETR or Nwt) during the four seasons according to two simulations. The SSM (top 10 

cm of the soil, Fig. 3.22 and 3.23) variation, presented two main trends with similar values in 

winter and spring and in summer and autumn. In the first two seasons all the basin was affected 

by a slight decrease which was more marked in areas near the streamflow network (high l) and 

corresponding to the sandy loam class (Fig. 2.4b). In the second period there were some areas of 

small rise (1%) in clay soils. ERE and HRC displayed also the influence of rainfall grids, with 

the latter evidencing the highest decrease in winter and a reversed trend near the stream network. 

The RSM (top 1 m, Fig. 3.24 and 3.25) again was affected by soil texture, topography and 

forcing grids with summer and autumn trends appearing similar. Simulations ERC and ERE 

manifested a general negative variation, except during winter in few areas of loamy soils. In this 

cold season also the ERM presented rises in the sandy loam-loam and clay loam-clay zones with 

major soil depths. Winter enhanced mean soil water content could be explained with the monthly 

precipitation rice (Fig. 3.3b). Again the HRC ensemble member showed the maximum reduction 
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values. The real evapotranspiration change (Fig. 3.26 and 3.27) was conditioned by the same 

factors as soil moisture. It presented positive values near the rivers (high topographic index), 

more pronounced in spring according to all the 4 simulations. This fact could be likely explained 

with the increase in spring potential evapotranspiration (average of 5.5%) which could be 

reached in areas with water availability. The topographic influence was less significant in 

autumn and winter. The change of this component showed the greatest variability among the 

ensemble members of this study, with the HRC manifesting the extreme values, as for the other 

variables. 

Using the instantaneous values at the end of each month, we computed also the seasonal 

variation of groundwater table depths (m from soil surface) between future and reference period. 

In this case there were no meaningful differences among the seasons, hence only the variation, 

according to the four simulations, during autumn is displayed in Fig. 3.28 as an example. Every 

model presented an increase in groundwater table depths and hence a fall in the aquifer. The 

spatial pattern displayed the influence of soil texture, with higher drops of the water table in clay 

soils. Again, the HRC pointed out larger variation than the other members. 
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Fig. 3.22 Spatial maps of change in SSM during the four seasons as predicted by simulations forced with ERC (first 

four panels) and ERE (second group of four panels). 
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Fig. 3.23 Spatial maps of change in SSM during the four seasons as predicted by simulations forced with ERM (first 

four panels) and HRC (second group of four panels). 
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Fig. 3.24 Spatial maps of change in RSM during the four seasons as predicted by simulations forced with ERC (first 

four panels) and ERE (second group of four panels). 
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Fig. 3.25 Spatial maps of change in RSM during the four seasons as predicted by simulations forced with ERM (first 

four panels) and HRC (second group of four panels). 
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Fig. 3.26 Spatial maps of change in ETR during the four seasons as predicted by simulations forced with ERC (first 

four panels) and ERE (second group of four panels). 
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Fig. 3.27 Spatial maps of change in ETR during the four seasons as predicted by simulations forced with ERM (first 

four panels) and HRC (second group of four panels). 
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Fig. 3.28 Change in groundwater table depth, Nwt, during autumn as predicted by the simulataions forced with the 4 

RCMS. 
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3.3 Discussion and conclusions 

We used the physically-based distributed hydrologic model, tRIBS, to evaluate the 

effects of climate change in a medium-size Mediterranean watershed (area of 472.5 km2). The 

basin is located in an agricultural area of Sardinia, Italy, which already suffered drought 

problems in the last decades. Climate projections were provided by four GCM-RCMs 

combinations among the ENSEMBLES models. They were selected as the best performing in 

this study site and in the other 6 watershed sparse in the Mediterranean area within the CLIMB 

project, ensuring to explore the uncertainty due to the driving GCM (two GCMs driving the same 

RCM) and to the RCM (two RCMs nested in the same GCM). Their outputs were validated and 

bias corrected using the E-OBS data set and downscaled in space to fit the scale of hydrologic 

models. The same time downscaling procedures which allowed a good calibration and validation 

of the tRIBS model (chapter 2) were applied to RCMs grids to create the required hourly input 

data. The basin response to projected changes in the climate signal (temperature and 

precipitation) was assessed in terms of river discharge, evaporation losses, soil water content and 

groundwater depths. 

All RCMs predicted lower mean annual precipitation and higher mean temperatures in 

the future period 2041-2070 as compared to the period 1971-2000, confirming what is generally 

predict for Mediterranean areas. RCMs appeared to be more consistent in temperature than in 

precipitation projections. In fact, temperatures were projected to rise throughout the year while 

precipitation could increase in winter months. The main source of uncertainty appeared to be the 

driving GCM with the HRC model always displaying the highest variability and other models 

presenting more similar results. 

Changes in climate forcing affected the different components of the basin hydrologic 
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response showing also its non linearity. The hydrologic simulations, indeed, indicated: (i) 

decreasing mean annual runoff, with modification of the generation mechanisms; (ii) lowering of 

mean real evapotranspiration, likely due to drier soil moisture conditions; (iii) reduced mean 

level of the groundwater table. In addition, while precipitation reduction and temperature rise 

predictions were quite similar according to the RCMs driven by the German ECHAM5 GCM, 

discharge loss in the future period presented larger differences among the simulations. 

Differences in the distribution of maximum annual values (GEV distribution) of mean areal 

precipitation were amplified when considering maximum annual discharge. The strong effect of 

soil water content on evaporation losses might suggest that the watershed behavior was more 

influenced by precipitation than by temperature. Hydrologic simulations projected basin 

conditions of more water shortages in future period with longer periods of dry soils despite 

having just the same evaporation loss as in reference period. The future changes in the mean 

values of the hydrologic variables were influenced by the spatial patterns of topography and soil 

texture. 
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4 Conclusions 

The main contributions of this research work are presented in this final chapter. The 

primary outcome meets the main objective of this thesis, which is to develop a modeling 

approach to assess local hydrological impacts of climate change in a Mediterranean medium 

sized basin, located in an agricultural area of southern Sardinia, Italy, and affected by data 

sparseness. A process-based distributed hydrologic model (DHM), downscaling techniques and 

climate models are used in conjunction to reduce the uncertainty in the quantification of the local 

effects of climate change on water resources of a real case-study. 

4.1 Summary 

In this work, we used a DHM known as the TIN-based Real-time Integrated Basin 

Simulator (tRIBS, Ivanov et al., 2004a) to simulate the response of the Rio Mannu basin (RMB), 

a watershed of 472.5 km2 located in southern Sardinia, Italy. This basin was one of the study 

areas of a multi-institutional and interdisciplinary project that aimed at analyzing ongoing and 

future climate-induced changes on hydrological budgets and extremes across the Mediterranean 

and neighboring regions (Ludwig et al., 2010). The RMB was selected as an emblematic study 

case in the island of Sardinia for conducting a multidisciplinary analysis of the local impacts of 

climate changes, ranging from the quantification of the future availability of water resources and 

occurrence of hydrologic extremes, to the evaluation of the corresponding social and economical 

vulnerability (last point being beyond the scope and contents of this research work).  

As in most Mediterranean basins, the application of process-based hydrologic models, 

like tRIBS in the RMB, was prevented by the availability of hydrometeorological observations. 

In this thesis, we proposed an approach to circumvent this problem based on two statistical 

downscaling (or disaggregation) tools that allowed creating the high-resolution forcing 
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(precipitation and potential evapotranspiration) required to perform detailed hydrologic 

simulations at hourly time resolution (chapter 2). The downscaling tools were calibrated using 

data collected at different resolutions over diverse time periods. After demonstrating the 

reliability of each disaggregation algorithm, we used these tools to adequately calibrate and 

validate the hydrologic model based on streamflow observations available over a multi-year 

period (1930-1932), encompassing a wide range of flood and low flow conditions (Mascaro et 

al., 2013b). 

The proposed downscaling routines were adopted to disaggregate outputs of different 

RCMs and create the high-resolution inputs (hourly in time, ~1 km in space) for the tRIBS 

model, with the goal of quantifying the impacts of a set of future climate scenarios on the water 

resources of the RMB (chapter 3). Among the different scenarios that had been generated within 

the International Panel on Climate Change (IPCC), only data for the most probable and accepted 

scenario, the A1B, was considered in this study. Climate models were audited and downscaled 

by a group of experts in a specific Work Package of the same CLIMB project. They compared 

outputs of 14 RCMs of the ENSEMBLES project with a gridded data set of observations (E-

OBS) obtaining a classification of the models skills in each CLIMB study site. Based on this 

evaluation, 4 GCM-RCMs combinations were selected as the best performing and prepared to be 

used as input for hydrologic models (Deidda et al., 2013). Precipitations and temperatures were 

bias-corrected to better represent the seasonal statistics and downscaled to reach a spatial 

resolution more suitable for local scale hydrologic simulations. In this work they were further 

treated to be used as input for the tRIBS DHM during two simulation extents: a reference (1971-

2000) and a future (2041-2070) period. Climate signals were evaluated comparing annual and 

seasonal means in the two periods. The hydrologic response of the RMB to projected changes 
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was evaluated post-processing time series and spatial maps provided by the hydrologic model. 

This allowed quantifying the changes on water resources availability and hydrologic extremes in 

the future climate scenario as compared to historical conditions. 

 

4.2 Outcomes of this dissertation 

Evaluate the hydrologic effects of climate change in Mediterranean basins is a difficult 

task because they are characterized by a strong seasonal behavior and complex surface - 

subsurface interactions and they could be affected by poor observed data availability to calibrate 

hydrologic models. We focused on the Rio Mannu basin in Sardinia, an emblematic study site of 

such Mediterranean issues. We overcame the challenges through the following steps: 

• We proposed two strategies to disaggregate daily precipitation and potential 

evapotranspiration data at hourly scale. In order to develop, calibrate and validate 

these procedures we exploited high resolution meteorological data available in the 

last decades. For precipitation the multifractal downscaling model known as Space 

Time RAINfall (STRAIN) model was adopted (Deidda et al., 1999; Deidda, 2000 

and Badas et al., 2006). The model had been demonstrated to well reproduce the 

rainfall statistical variability in time over a large range of standardized rainfall 

intensities and to capture the small-scale spatiotemporal precipitation distribution 

with reasonable accuracy. Second, an empirical procedure to disaggregate potential 

evapotranspiration from daily to hourly scale was designed, using the hourly dataset 

of meteorological variables available in recent years (1995-2010), the Penman - 

Monteith and the Hargreaves formulas. 

• We showed how the downscaling strategies could be used to calibrate, with 

reasonable accuracy, the distributed hydrologic model, tRIBS. In particular, we 
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chose three consecutive years during which discharge data uncertainty appeared to 

be minor: the wettest for calibration and the other two for validation. Among the 

several tRIBS parameters, two parameters related to water infiltration in the soil 

were found as the most influencing ones, as in Ivanov et al. (2004a). Those 

parameters were manually changed until a good estimation of the observed monthly 

streamflow volumes was reached. The Nash-Sutcliffe coefficients at different 

aggregation scales were used as a metric to evaluate the hydrologic model 

performances. Overall, we concluded that the conjunct use of the downscaling tools 

and the tRIBS model allowed satisfactorily reproducing the hydrologic response of 

the Rio Mannu during the three years selected for calibration and validation. 

• We applied the downscaling strategies to disaggregate outputs of 4 RCMs in the 

reference (1971-2000) and future (2041-2070) periods and evaluated climatic trends 

in the study area comparing meteorological data in the two time slices. The 4 

RCMs were the best performing GCM-RCM combinations with the property of 

maintaining at least two RCMs nested in the same GCM, and two different GCMs 

forcing the same RCM. In the reference period, we compared also statistical 

properties of mean areal precipitation in RMB predicted by the RCMs with 

observed ones. 

• We forced the tRIBS hydrologic model with the disaggregated outputs of the four 

RCMs for the REF and FUT periods. Time series and spatial maps simulated by the 

DHM were post-processed to analyse the different components of the Rio Mannu 

hydrologic response: mean annual and monthly discharge at the outlet section, 

FDCs, runoff partitioning, mean actual evapotranspiration, surface and root zone 
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soil moisture and depths to groundwater table. 

The study allowed to provide a scenario of possible future changes in the local 

climatology. Mean annual precipitation was predicted to decrease while mean annual 

temperature to increase according to all the RCMs. Precipitation was projected to slightly 

increase in winter months and decrease in the other seasons while temperature was expected to 

increase throughout the year. This could have important effects on the water availability of the 

RMB because they affected seasons characterized by irrigation activities. The use of a multi-

model ensemble of four RCMs allowed to consider uncertainties coming from numerical 

schemes and parameterization used by different climate model. The small number of RCMs, 

nevertheless, and the use of only two GCMs to provide boundary conditions for the future 

climate scenarios, should not be considered as a representative sample of the complete range of 

possible future climate on the basin. However, such group of high resolution RCMs were the 

best available data we had at the moment and one of the first attempts in this direction in the 

study case. In this work extreme projected changes were given by climate scenarios driven by the 

two different GCMs. This proved that a better assessment of the full range of likely changes in 

climate could be provided using climate scenarios driven by different GCMs. The statistical 

analyses of precipitation values put on evidence the absence of coherence among the RCMs and 

during the two periods and the distance from observed data both as values and as type of 

distribution. By no way it should be thought that the range of future climate changes presented in 

this thesis will certainly realize in the Rio Mannu basin. Uncertainties coming from the emission 

scenario, skill of GCM-RCM combinations to realistic reproduce the climate under emission 

forcing that have been never observed before should also be taken into account. We explored 

some possible scenarios of future climate with the best information we had at the moment and 
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the results correspond to the best projections we could make based on our imperfect knowledge 

of a complex and non linear phenomena.  

The hydrologic simulations under the provided range of future climate forcing indicated 

reduced water resources availability. Mean annual runoff was predicted to decrease according to 

all the simulations. This was confirmed by a downward shift of the FDCs over the entire range of 

exceedance probabilities. As a result, the number of low flow days was projected to rise in all 

months as their maximum consecutive length per hydrologic year. The runoff generation 

mechanism was predicted to be influenced by changes in precipitation distribution. Mean real 

evapotranspiration was predicted to decrease due to drier soil moisture conditions. All simulation 

projected a drop in the groundwater table level. The changes predicted with the Hadley HadCM3-

RCA, HRC, model forcing were the most extreme (highest decrease of discharge, evapotranspiration and 

groundwater table) in agreement with the lower precipitation and higher temperature provided by this 

model in the future period. The high resolution spatial information (e.g. soil moisture and actual 

evapotranspiration maps), which could be used to support water management, showed the 

influence of spatial patterns of topography and soil texture. By no means it should be thought 

that the hydrological impacts of climate changes expected in the RMB will certainly lie between 

the ranges provided by this work. Further uncertainties coming from input data used to force the 

hydrologic model, its calibration-validation procedure (e.g. the selection of a single set of 

parameters), limited number of GCM-RCMs combination, performance of the downscaling 

techniques, unconsidered changes in land use and soil properties, add complexity to the cascade 

of uncertainties involved in the impact assessment. Again it can be claimed that we explore some 

possible scenarios of future climate, with the best information available at the moment, and that 

the predicted hydrological effects correspond to the best projections we could make based on our 

imperfect knowledge of this challenging topic. 
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4.3 Open issues and further research 

Calibration and validation of complex hydrologic models in basins affected by data 

sparseness still remain a difficult task. In this thesis we proposed an ad hoc solution but we 

underline that further research should focus on this topic. Streamflow measurements in nested 

catchments could help in this direction. The possibility to calibrate the DHM using also 

alternative observed data with respect to discharge data should be explored. Requiring even a 

hypothetical perfect model good input data, it is fundamental to collect and check data quality. 

GCMs and RCMs usually have spatial resolutions which differ from medium size 

catchment scale resolution, hence coupling climate and hydrologic models is not so immediate. 

Downscaling techniques are used to overcome the problem but the procedure is not yet 

standardized. Model climate variables usually differ from measured values requiring bias 

correction in order to at least match the corresponding reference distribution. Different methods 

can be adopted for the correction but the solution seems not to be unique. 

The use of ensemble of climate models is fundamental when trying to probabilistic 

evaluate the likely effects of climate change. Notwithstanding the combinations used in this 

study allowed to explore the uncertainty related to model parameterization and numerical 

schemes used by different climate models, the consideration of only one emission scenario and a 

small number of GCMs only provides a limited sample of the possible future climate. 

This thesis only analyzes expected change in water resources of the Rio Mannu basin. 

Variability of water demand for agricultural and civil requests in the future should be 

incorporated in integrated studies to be useful for assessing the final real effect of mitigation 

policies, being one of the aims of CLIMB project.  
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