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Introduction

Over the past decades, the progress in WSN technology, both in terms of processing capability

and energy consumption reduction, has evolved WSNs into complex systems that can gather

information about the monitored environment and make prompt and intelligent decisions. In

the beginning, military applications drove the research and development of WSNs [2], with

large-scale acoustic systems for underwater surveillance (e.g. Sound Surveillance System, SO-

SUS [3]), radar systems for the collection of data on air targets (e.g. Cooperative Engagement

Capability, CEC [4]), and Unattended Ground Sensor (UGS) systems for ground target detec-

tion (e.g. Remote Battlefield Sensor System, REMBASS [5]). Typical civil WSNs are basically

not complex monitoring systems, whose applications encompass environment and habitat mon-

itoring [6][7][8][9], infrastructure security and terror threat alerts [10][11], industrial sensing

for machine health monitoring [12][13], and traffic control [14][15][16][17]. In these WSNs,

sensors gather the required information, mostly according to a fixed temporal schedule, and

send it to the sink, which interfaces with a server or a computer. Only at this point data from

sensors can be processed, before being stored.

Recent advances in Micro-Eletro-Mechanical Systems (MEMS), low power transceivers

and microprocessor dimensions have led to cost effective tiny sensor devices that combine sens-

ing with computation, storage and communication. These developments have contributed to the

efforts on interfacing WSNs with other technologies, enabling them to be one of the pillars of

the Internet of Things (IoT) paradigm [18]. In this context, WSNs take a key role in application

areas such as domotics, assisted living, e-health, enhanced learning automation and industrial

manufacturing logistics, business/process management, and intelligent transportation of people

and goods. In doing so, a horizontal ambient intelligent infrastructure is made possible, wherein

the sensing, computing and communicating tasks can be completed using programmable mid-

dleware that enables quick deployment of different applications and services.

One of the major issues with WSNs is the energy scarcity, due to the fact that sensors

are mainly battery powered. In several cases, nodes are deployed in hostile or unpractical envi-

ronments, such as underground or underwater, where replacing battery could be an unfeasible

operation. Therefore, extending the network lifetime is a crucial concern. Lifetime improvement
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has been approached by many recent studies, from different points of view, including node de-

ployment [19][20][21], routing schemes [22][23][24], and data aggregation [25][26][27].

Recently, with the consistent increase in WSN application complexity, the way distributed

applications are deployed in WSNs is another important component that affects the network

lifetime. For instance, incorrect execution of data processing in some nodes or the transmission

of big amounts of data with low entropy in some nodes could heavily deplete battery energy

without any benefit. Indeed, application tasks are usually assigned statically to WSN nodes,

which is an approach in contrast with the dynamic nature of future WSNs, where nodes fre-

quently join and leave the network and applications change over the time [28]. This brings to

issue talked in this thesis, which is defined as follows.

Dynamic deployment of distributed applications in WSNs: given the requirements of WSN

applications, mostly in terms of execution time and data processing, the optimal allocation of

tasks among the nodes should be identified so as to reach the application target and to satisfy

the requirements while optimizing the network performance in terms of network lifetime. This

issue should be continuously addressed to dynamically adapt the system to changes in terms of

application requirements and network topology.

The rest of the thesis is structured as follows.

In Chapter 1, the state of the art related to WSN will be presented. First, some definitions

and the principle regarding WSN related standards will be given. Then, an overview of the main

WSN applications, from the dawn of the first military sensor networks to the nowadays IoT

related applications, will be provided. Finally, the state of the art for the lifetime optimization

problem will be analyzed.

In Chapter 2, the dynamics of a WSN will be investigated, in order to infer an energy

consumption model and a network model that will be used throughout the rest of the thesis.

In Chapter 3, a framework for convenient allocation and deployment of the tasks of WSN

applications will be proposed. This framework is based on a centralized optimization algorithm

which first evaluates the application subdividing it into tasks; then, it assigns the tasks to the

network nodes in order to accomplish the application target while minimizing its impact on the

network lifetime. The performance of the algorithm will be evaluated by means of simulation

results.

In Chapter 4, a distributed algorithm, the DLMA, based on gossip will be presented.

DLMA is proven to improve the WSN capability to adapt to energy consumption changes,

while contemporary reducing the message exchange overhead for the application deployment,

and reducing the computational complexity making it scaling well with the network dimension.
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Simulation results will be shown and analyzed to evaluate the performance of the algorithm.

In Chapter 5, the TAN distributed algorithm, based on non-cooperative game theory, will

be described. This algorithm not only improves the previous algorithms performance reducing

computational complexity, but also takes into account both network energy consumption and

application execution time, so that the application deadline is not reached before its execution

is done.

Finally, in Chapter 6, conclusions will be drawn regarding the effectiveness of the proposed

algorithms, and some possible future works will be sketched.





Chapter 1

State of the Art

WSNs have recently gained worldwide attention. The phenomenal advances in Very Large

Scale Integration (VLSI) and MEMS technology, contributed in the development of smaller

and smarter sensors, and inexpensive low-power transceivers [1]. The impressive progress on

research projects such as Smart Dust Project [29] and Wireless Integrated Network Sensors

(WINS) Project [30] enabled the development of tiny, low-power and low-cost sensors, con-

trollers and actuators. The miniaturization of computing and sensing technologies have consid-

erably broaden the WSN application field.

In this Chapter, the state of the art related to WSNs will be presented. Section 1.1 gives an

overview of the background and general principles concerning WSNs. The evolution of WSN

from simple data acquisition systems to complex smart and interoperable systems placed in

the wider context of the Future Internet (FI) and IoT will be surveyed in Section 1.2. In Sec-

tion 1.3, the lifetime optimization problem will be analyzed and addressed considering different

approaches: node deployment, routing techniques, data aggregation, and task assignment.

1.1 Background of WSNs

A sensor is a device which gathers information related to physical objects or processes (Ta-

ble 1.1). This information, collected under the form of parameters or events, is transduced into

signals that can be measured and analyzed. These signals are then transmitted to a sink, which

is connected either to the Internet network or to controllers and processing station directly. An

example of WSN is depicted in Figure 1.1.

WSNs can be classified either as hierarchical or flat. In a flat network, nodes (grey devices

in Figure 1.1) act as sensors and routers contemporarily, and transfer data to the sink (blue

devices in Figure 1.1) through multi-hop routing. In a hierarchical WSN, the network is orga-

nized into clusters, with cluster members and cluster heads. Cluster heads (green devices in
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Table 1.1: Example of sensors [1]

Measure Type
Temperature Thermistors, thermocouples
Pressure Pressure gauges, barometers, ionozation gauges
Optical Photodiodes, phototransistors, infrared sensors, CCD
Acoustic Piezoelectric resonators, micrphones
Mechanical Strain gauges, tactile, capacitive diaphgrams, piezoresistive cells
Motion, vibration Accelerometers, gyroscopes, photo
Flow Anemometers, mass air flow
Position GPS, ultrasound-based, infrared-based, inclinometers
Electromagnetic Hall-effect sensors, magnetometers
Chemical PH, electrochemical, infrared gas
Humidity Capacitive and resistive, hygrometers, MEMS-based humidity
Radiation Ionization detectors, Geiger-Mueller counters

Figure 1.1: Wireless Sensor Network
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Figure 1.1) are more powerful fixed or mobile relay nodes, which collect data from their cluster

members and forward them to the sink.

Actuators are often included into WSNs to allow them to directly control the physical

world. Such networks are usually referred to as Wireless Sensor and Actuator Network (WSANs).

Information from the distributed sensor nodes is processed and transformed into commands

to be sent to the actuator. The actuator then interact with the physical world, thereby form-

ing a closed control loop. Some examples of WSANs are: the Heating, Ventilation and Air-

Conditioning (HVAC) system [31], where actuators cooperate with sensors in order to keep

a good indoor air quality; smart monitoring systems, which keeps energy flowing efficiently

and economically through the system, maintaining power quality while reducing the risk of

brownouts and blackouts [32]; smart city applications such as smart metering, traffic and park-

ing management systems [33].

1.1.1 WSN Protocol Stack

According to [34], the protocol stack of a wireless sensor node (Figure 1.2) consists of five

layers: a physical layer, a data link layer, a network layer, a transport layer and an application

layer. The physical layer selects the required frequency, generates the carrier frequency, detects

and modulates signals, and encrypts data. The data link layer is responsible for the multiplex of

data, the detection of data frames, the medium access and the error control. Since the environ-

ment is typically noisy and nodes can be mobile, the Medium Access Control (MAC) protocol

of the data link layer must be able to minimize collision with neighbors’ broadcast. Further-

more, it must be power aware. The network layer takes care of routing the data supplied by the

transport layer. The transport layer help to maintain the flow of data required by the application.

Depending on the sensing tasks, different types of application software can be implemented and

used on the application layer.

The stack also includes three planes which cross-cut all the layers: the power manage-

ment plane, the mobility management plane and the task management plane [34]. These planes

help the nodes coordinate their tasks and lower the overall power consumption. The power

management plane is responsible for the node power management. If required, it may turn off

unnecessary functionalities in order to preserve energy. The mobility management plane detects

and registers the nodes movements in order for them to always maintain a route back to the sink,

and to keep track of their neighbor nodes. The task management plane balances and schedules

the tasks given to a specific node.
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Figure 1.2: WSN protocol stack

1.1.2 Communication in WSNs

The earliest WSNs communicated using the IEEE 802.11 [35] family of standards. However,

this standard is unsuitable for low-power sensor networks, due to consistent overheads. Further-

more, with the exception of high bandwidth applications (e.g. multimedia monitoring), typical

data rate requirements are comparable to dial-up network bandwidth. Therefore, IEEE 802.11

data rates are usually much higher than necessary.

A whole range of WSN-related standards have been defined [36]. The most widespread

are based on the IEEE 802.15.4 [37] and IEEE 802.15.3 [38] protocols.

IEEE 802.15.4

The IEEE 802.15.4 is the wireless standard that specifies the physical layer and the MAC layer

for Low-Rate Wireless Personal Area Network (LR-WPAN). It is designed for short range wire-

less networks, where battery lifetime is critical. Its main strengths are: low power consumption,

low complexity, and low deployment costs. The physical layer operates on the 868/915 MHz

and 2.4 GHz unlicensed frequency bands. The access to the radio channel is controlled by the

MAC layer using the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

protocol. ZigBee [39], WirelessHART [40][41], ISA100.11a [42], and 6LoWPAN [43][44] are

the most common higher layer communication protocols based on the 802.15.4.

ZigBee It is the most commonly used communication protocol for WSNs. Thanks to its char-

acteristics of robustness, reliability, simple deployment, and simple maintenance, ZigBee is
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Figure 1.3: Example of a ZigBee network

designed for low-data rate, low-power consumption applications. ZigBee devices are often de-

ployed as mesh networks that are able to organize themselves forming ad-hoc multihop net-

works. A ZigBee network consists of: a coordinator, routers, and end devices. Figure 1.3 shows

an example of ZigBee network. The coordinators (blue devices in Figure 1.3) initiate the net-

work, store information, and can bridge networks together. The routers (red devices in Fig-

ure 1.3) connect groups of nodes, and provide multi-hop communications across the network.

The end devices (grey devices in Figure 1.3) can communicate only with the router or the coor-

dinator. They can be sensors, actuators, or controllers.

WirelessHART It is a wireless communication standard mostly used in the industrial field for

process measurement and control applications. It supports mesh networking, channel-hopping,

and time-synchronized messaging. There are three types of WirelessHART devices: a network

manager, gateways, and wireless field devices. The network manager is responsible for configur-

ing the network, scheduling communication devices, managing message routes, and monitoring

network health. The gateways enable communication between wireless field devices and host

applications connected to a wired network. The wireless field devices are connected to process

o plant equipment.

ISA100.11a It is a wireless communication protocol designed for low-data rate monitoring

and process automation applications. The ISA100.11a only specifies tools for constructing an

interface. It does not specify a process automation protocol application layer or an interface to

an existing protocol. It focuses on scalability, reliability and interoperability with other wireless

devices.
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6LoWPAN It is the IPv6-based Low-power communication protocol for Wireless Personal

Area Networks. The 6LoWPAN is designed for low-data rate devices that require Internet com-

munication. In a 6LoWPAN WSN, devices communicate using IP-based protocol. Since IPv6

packet sizes are larger than the IEEE 802.15.4 frame size, an adaptation layer is provided by

the standard. The IP packet header is compressed by the adaptation layer in order for the packet

to fit into an IEEE 802.15.4 frame size. The 6LoWPAN is prospected to be widely used for

Internet of Things applications.

IEEE 802.15.3

The IEEE 802.15.3 is the wireless standard that specifies the physical and MAC layers for

High-Rate Wireless Personal Area Network (HR-WPAN). It is designed for real-time multi-

media streaming applications. Its physical layer operates on the 2.4 GHz unlicensed frequency

band, at data rates that go from 11 Mbps to 55 Mbps. Quality of Service (QoS) is ensured by

the use of the Time Division Multiple Access (TDMA) channel-access scheme. It supports both

synchronous and asynchronous data transfer. The most common higher-layer protocol based on

IEEE 802.15.4 is Wibree [45].

WiBree It is a wireless communication standard designed for low-cost, low-power devices.

WiBree allows the communication among small battery-powered devices and Bluetooth de-

vices. WiBree limits are given by Bluetooth characteristics: it works at data rates up to 1 Mbps,

for distances between devices up to 10 meters.

1.2 State of the Art in WSN Applications

The origin of WSNs can be traced back to the military research, when the term ”sensor net-

works” was not even coined. The first systems were designed ad-hoc, with specialized comput-

ers and communication capabilities [2].

During the Cold War, a large-scale acoustic system for underwater surveillance, the SO-

SUS, was deployed by the US Navy at strategic locations for a anti-submarine warfare purpose.

The SOSUS is still currently used by the National Oceanographic and Atmospheric Adminis-

tration (NOAA) to monitor blue whale sounds as well as seismic activity in the North Pacific

Ocean [3]. Not only the ocean was monitored during Cold War, but also the sky: air defense

radar systems were developed to defend the continental USA and Canada.

In 1978, the Defense Advanced Research Projects Agency (DARPA) started the Dis-

tributed Sensor Network (DSN) program, laying the foundation for modern WSN research.
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By that time, the Advanced Research Projects Agency Network (ARPANET) counted about

200 hosts at universities and research institutes. The initial aim was to extend the ARPANET

approach for communication to sensor networks. The DSN organized the Distributed Sensor

Network workshop [46] to identify the technology components on which the research would

focus. These included sensors, high-level communication protocols [47], processing techniques

and algorithms, and distributed software. The first application of DSN consisted in a helicopter

tracking system, developed at the Massachussets Insitute of Technology (MIT) [48]. Later, the

Advanced Decision Systems developed a multiple-hypothesis tracking algorithm to deal with

difficult situations involving high target density, missing detections, and false alarms, and de-

composed the algorithm for distributed implementation [49].

The 1990s saw the evolution of military sensor networks, with the birth of systems for

air, ground and water surveillance. The CEC [4], developed by the US Navy, consists of mul-

tiple radars which collect data on air targets. Anti-submarine sensor networks such as Fixed

Distributed System (FDS) and Advanced Deployable System (ADS) [50] were deployed us-

ing acoustic sensor arrays. Ground monitoring was undertaken by means of UGS such as the

REMBASS [5] and the Tactical REmote Sensor System (TRSS).

Modern research in the WSN field started exactly in the 1990s, with the advent of smarter

and smaller devices. Before that time, sensor nodes were rather large, and communications

among them were wired. In 1996 the University of California at Los Angeles (UCLA), in col-

laboration with the Rockwell Science Center, developed the Low Power Wireless Integrated Mi-

crosensor (LWIM) [51], funded by DARPA. It was an intelligent wireless low-power system,

whose nodes were required to: 1) be reconfigurable by their base station, 2) be autonomous

to permit local control of operation and power management, 3) self-monitor themselves for

reliability, 4) be power efficient for long term operation, 5) incorporate diverse sensor capa-

bility with highly capable, low power microelectronics. In 1998 DARPA selected for funding

the Smart Dust project [29], conducted by the University of California at Berkley. The aim

of the project was to demonstrate that a complete sensor/communication system can be inte-

grated into a cubic millimeter package called mote. Berkely, and more precisely the Berkely

Wireless Research Center (BWRC) was responsible for another important project: the PicoRa-

dio project [52]. PicoRadio focused on the design of what they called PicoNodes, small, light

and low-cost nodes characterized by ultra-low power consumption. The goal was to reach a

power-dissipation level so low that PicoNodes could be able to power themselves using energy

extracted from the environment, such as solar or vibrational energy. The MIT conducted the

Micro-Adaptive Multi-domain Power-aware Sensors (µAMPS) project [53], which studied the

design of a low-power wireless sensor device that is able to scale voltage dynamically, and the

techniques to restructure data processing algorithms to reduce power requirements at the soft-
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ware level. In 2003 the IEEE released the first version of the IEEE 802.15.4 standard, which

specifies the physical and MAC layers for LR-WPAN (see Section 1.1.2).

All these efforts have resulted in the evolution of sensors into tiny devices combining

sensing with communication, computation and storage. In the following, some examples of the

most common monitoring applications will be given.

1.2.1 Environment and Habitat Monitoring

Environment and habitat monitoring lend themselves well to sensor networks, because the vari-

ables under monitoring (e.g. temperature, light exposure, pollution) are distributed over a large

region. There is a huge amount of environment and habitat monitoring applications involving

WSN. One example is the Environmental Observation and Forecasting System (EOFS) [6].

This type of large-scale distributed embedded system is designed to monitor, model, and fore-

cast wide-area physical processes such as river systems. A prototype of EOFS, CORIE, was

deployed to study the Columbia river estuary and plume. Another example is [7], where the

requirements of a sensor network for volcanic data collection are presented. The application fo-

cuses on the detection of triggered event and retrieval of reliable data, taking into account band-

width and data-quality demands. The WSN was deployed on Volcán Tungurahua and Volcán

Reventador in Ecuador. A low-cost WSN based system for monitoring the alpine environment

is SensorScope [8]. SensorScope was deployed on top of a rock glacier in Switzerland. The aim

was to monitor a micro-climate phenomenon leading to cold air release from a rock-covered

glacier in a region of high alpine risks. An example of air pollution monitoring application is

the Wireless Sensor Network Air Pollution Monitoring System (WAMPS) [9], a large scale

WSN studied to monitor air pollution in Mauritius.

1.2.2 Infrastructure Security and Terror Threat Alerts

Infrastructure monitoring concerns infrastructure security and counterterrorism applications.

Critical buildings and facilities such as power plants and communication centers need to be

protected from structural failures, as well as terrorist threats [2]. WSNs can provide early de-

tection of these risks. An example of a structural health monitoring application is given in [11].

In this study, an indirect damage detection approach which monitors the changes in structural

properties is considered. In particular, they focused on vibration monitoring, by means of ac-

celerometers. This system was deployed on the Berkley pedestrian footbridge and on the Golden

Gate Bridge in San Francisco. As far as terrorist threats are concerned, WSNs are particularly

suitable to hostile domains, and therefore they have been widely used in wireless UGS sys-

tems contexts. An adaptive autonomous UGS application is represented by the Sense, Decide,
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Act, Communicate (SDAC) [10]. In this system, sensors not only sense the environment and

communicate the information gathered, but they also make decisions and act upon them.

1.2.3 Industrial Sensing for Machine Health Monitoring

Commercial industry has long been interested in sensing as a means of lowering cost and im-

proving machine performance and maintainability. Unplanned downtime events can be con-

siderably reduced by monitoring machine health through the use of sensors nodes that can be

deeply embedded into machines, and can reach regions inaccessible by humans. The collab-

orative nature of industrial WSNs brings several advantages over traditional wired industrial

monitoring and control systems, including self-organization, rapid deployment, flexibility, and

inherent intelligent-processing capability. Industrial WSNs are able to create a highly-reliable

and self-healing industrial system that rapidly responds to real-time events with appropriate

actions [12]. In [13] Predictive Maintenance technologies, and more precisely vibration anal-

ysis, are used to detect impending failures in advance. The system developed was deployed in

a central utility support building at a semiconductor fabrication plant, and aboard an oil tanker

operating in the North Sea.

1.2.4 Traffic Control and Intelligent Transportation System

As traffic congestion has become a critical issue, traffic control applications based on WSNs

have recently mushroomed, so as to make WSNs a crucial technology within the Intelligent

Transport System (ITS) paradigm. These distributed sensing systems gather information about

the position, density, sizes and speed of vehicles on roads or parking lots, and process it in order

to give suggestions to drivers such as alternative roads, or the nearest vacant car parking space.

An example of traffic surveillance system is given by Traffic-Dot [14]. In Traffic-Dot sensors

gather traffic condition data that are sent to a traffic management center, which analyzes them

and then take actions such as adjusting the traffic light duration. A highway Cooperative Colli-

sion Avoidance (CCA) in the context of vehicle-to-vehicle wireless communication is described

in [15]: as soon as a vehicle detects a collision, the information is sent to the vehicles behind

it, so that successive collisions can be avoided. In [16], an example of intelligent car park man-

agement system based on WSNs is described. This system is able to find vacant parking lots,

auto-toll, manage security, and report statistics. A system architecture enabling mobile nodes to

query a largely deployed WSN in an ITS scenario is defined in [17].
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1.2.5 The Future Internet and the Internet of Things

According to [54], WSANs are among those technologies recognized as the atomic components

that will link the real world with the digital world. Sensor networks will play a crucial role in the

IoT [18], given their inclination to cooperate with other technologies such as Radio-Frequency

IDentification (RFID) and Near Field Communications (NFC), and the standardization of com-

munication protocols that can give them the possibility to perfectly integrate within a big het-

erogeneous network of things (e.g. using the 6LoWPAN protocol described in Section 1.1.2).

Sensor network is a key technology for Ubiquitous Sensor Network (USN), where heteroge-

neous and geographically dispersed WSANs are integrated into rich information infrastructures

for accurate representation and access to different dynamic user’s physical contexts [55]. Small

physical dimensions of sensor nodes are often one of the musts in a typical USN, since it is

dedicated to unobtrusive integration into living, working, scientific, industrial, and other en-

vironments [56]. This implies high integration of sensing, computing, and communication ca-

pabilities of the devices meeting at the same time application-specific demands. Using mostly

wireless infrastructure, ubiquitous technologies are supposed to interface the physical environ-

ment in various scenarios such as Smart Cities [57], Smart Homes [58][59][60] and Smart

Grids [61].

1.3 Lifetime Optimization Problem in WSNs

One of the main challenges for WSNs is the extension of the network lifetime. As already seen

in the previous Sections, huge progresses have been made to improve sensor node hardware.

Furthermore, a great deal of effort has been made by researchers to find effective strategies

to increase network lifetime. These strategies encompass network node deployment, routing

mechanisms, data aggregation, and optimal task assignment. In the following, the state of the

art regarding these mechanisms will be presented.

1.3.1 Node Deployment

An appropriate node deployment is probably the most critical issue to be addressed to reduce

communication costs within a WSN. In [19], nodes are non-uniform spaced as a function of

their distance. Since nodes close to the sink feel the effects of their higher traffic more than

other nodes, spacing are adjusted in such a way that nodes with higher traffic have a shorter

hop distance than nodes with lower traffic. An algorithm for contemporarily improve coverage

and lifetime is presented in [20]. In this work, the authors model the coverage and lifetime of a

node as a Gaussian random variable, whose parameters depend on some network settings. The
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nodes are then deployed according to the selected policies, which could be either lifetime- or

coverage-oriented. A step forward is taken in [21], where an algorithm to maximize the area

of coverage, minimize the network energy consumption, maximize the network lifetime and

minimize the number of deployed nodes, while assuring connectivity of each node to the sink

is proposed. In this study, the problem is modeled as a multi-objective optimization problem

where the aim is to find the node deployment corresponding to the optimal trade-off.

1.3.2 Routing

Once the network is deployed, the use of appropriate routing mechanisms could help to consid-

erably increase its lifetime: a convenient choice of paths to route data may result in significant

energy conservation. In [22], five power-aware metrics for determining energy-efficient routes

are presented. In these metrics, routes are chosen taking into account the energy consumption

at each node. Nevertheless, since node residual energy is not considered, nodes belonging to

the minimum energy path will be drain-out of batteries quickly. This issue is addressed in [23],

where algorithms of maximization of the system lifetime are proposed. MobiRoute [24] intro-

duces the concept of mobile sinks, which are mobile nodes with significantly more resources

than normal nodes. Whenever is needed, mobile sinks take charge of forwarding data instead of

normal nodes. Other energy-efficient routing techniques are described in [62][63][64].

1.3.3 Data Aggregation

Besides these traditional techniques that either modify network topology or provide an energy-

efficient routing protocol, due to the recent advances in MEMS, low power transceivers and

microprocessor dimensions, which provide additional capabilities to sensor nodes, more ad-

vanced methods that extend network lifetime are now possible. Therefore, network lifetime

optimization not only is centered on reduction of packet transmission power, but also involves

convenient data processing that reduces the amount of data delivered to data sinks. This is the

principle behind node clustering protocols, such as LEACH [25], EC [26] and the clustering

algorithms in [27], in which cluster head nodes aggregate data and reduce transmitted data vol-

ume, which in turn reduces the overall transmission energy consumption of the network.

1.3.4 Optimal Task Assignment

A step forward in extending network lifetime is to consider not only data aggregation to re-

duce data volume, but also any possible data processing task assignment. Task assignment is

performed taking into account various aspects related to energy consumption such as network
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topology, battery power, and node processing capabilities. However, existing methods have

limited scope in studying lifetime extension with regards to application data processing. For

instance, in [65], maximization of cluster lifetimes is studied. However, this approach consid-

ers only communication tasks, but not the tasks generated by applications and assigned to the

network for execution. Furthermore, it only focuses on homogeneous networks, which are not

common in real scenarios. In contrast, [66] considers execution of application tasks, and pro-

vides an adaptive task allocation algorithm that aims at reducing the overall energy consump-

tion by balancing node energy levels overall the network. However, this mechanism requires

exchange of some additional messages among all the nodes in the network, which considerably

increases packet overhead.

One method to perform task assignment is the use of a central controller that divides large

application programs into smaller and easily executable tasks and then distributes these tasks

to nodes. Task allocation solutions that consider a central controller are called centralized so-

lutions. A centralized solution for the maximization of the WSN lifetime will be described in

Chapter 3, and is based on the study proposed in [67]. Some other centralized lifetime max-

imization algorithms are studied in [68][69][70]. The problem with centralized algorithms is

that they suffer from computational complexity, as well as large control packet overhead due to

frequent updates collected from nodes in order to adapt to network dynamism.

To address this problem, the DLMA [71], will be presented in Chapter 4. DLMA is an

overlaying framework that determines the distribution of tasks among the nodes in a WSN

by means of a distributed optimization algorithm, based on a gossip communication scheme,

aimed at maximizing the network lifetime. A similar approach is studied in [72], where the

distributed algorithm is based on particle swarm optimization. However, the major drawback of

these studies is that they do not take into account the deadline of the applications assigned to

the network.



Chapter 2

Modeling of WSNs

To model an energy-efficient task assignment algorithm, the perfect knowledge of all the param-

eters and variables that intervene in the network dynamics is required. In order to do it, a model

that characterizes the network nodes, the tasks in which the application assigned to the WSN

is subdivided, and the energy consumption dynamics is needed. Therefore, prior to proceeding

with the description of the proposed algorithms, a careful evaluation of the characteristics pa-

rameters that influence the network behavior is necessary. In this Chapter, the models that will

be used throughout the thesis are presented. The energy consumption model will be analyzed in

Section 2.1. A model for WSN topology and node devices is provided in Section 2.2.

2.1 Energy Consumption Model

Energy consumption in WSNs is determined by three main components: sensing, processing

and transmission.

Sensing energy consumption esensi for sensor node i is determined by the specific charac-

teristics of the sensor. Its value is determined on the basis of the device datasheet.

Processing energy consumption eprocih for sensor node i and task h is proportional to the

complexity of task h – i.e. the number of instructions Ih needed to complete it – and to the

average energy consumption per instruction einsi related to node i. Hence

eprocih = Ih × einsi (2.1)

As far as communication energy consumption is concerned, there are two main compo-

nents that contribute to it: transmission and reception energy consumption. As mentioned in [73]{
P T
ij = P T0

i + PA
i (δij) = P T0

i + P Tx
i (δij)/ηi

PR
j = PR0

j

(2.2)

where: P T
ij and PR

j are radio frequency power consumption values for transmitting and receiving
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respectively; PA
i (δij) is the power consumption of the Power Amplifier (PA), which depends

on the distance δij between transmitting node i and receiving node j; P T0
i and PR0

j are the

components of power consumption of the transmitting and receiving circuitry respectively; P Tx
i

is the output power at node i antenna which, for reliable transmissions, depends on the distance

δij; ηi is the drain efficiency of the PA at node i.

Considering a channel in which the path loss component is predominant, and thus sec-

ondary effects such as multipath and Doppler can be neglected, the transmitted power P Tx
i (δij)

can be expressed as

P Tx
i (δij) = PRx

j × Aij × δ
αPL
ij (2.3)

where Aij is a parameter determined by the characteristics of the antennas (such as gain and

efficiency) and αPL denotes the path-loss exponent, which is about 2 for free space. This kind

of modeling is typical of free space propagation. Of course, the model might be extended to

account for other fading effects.

From (2.2) and (2.3) follows that

P T
ij = P T0

i +
PRx
j × Aij × δ

αPL
ij

ηi

Considering ϕij = PRxmin
j × Aij , where PRxmin

j is the minimum reception power at node j for

a reliable communication

P T
ij = P T0

i +
ϕij × δαPL

ij

ηi

Defining as etxij the energy per bit necessary to transmit data at rate R from node i to its adjacent

node j, and erxj the per-bit energy consumed to receive data at node j

etxij =
P T
ij

R
=

1

R

(
P T0
i +

ϕij × δαPL
ij

ηi

)
erxj =

PR
j

R
=
PR0
j

R

(2.4)

The model described does not take into account mechanisms such as sleep schedule and

route discovery, which may produce overhead. Therefore, it could be necessary to consider not

just the single packet transmission, but also the energy consumption due to the overhead.

2.2 Network Model

The goal of the WSN under consideration is to accomplish a given application tasks, mostly

based on some measurements performed on the relevant environment. In this scenario, each
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Figure 2.1: Example of network model

node can perform a given set of tasks, such as: data processing, temperature measurement,

video monitoring, data transmission, and data storage.

The WSN is modeled as a Directed Acyclic Graph (DAG) GX = (X,EX), where the

vertices represent the nodes X = {1, . . . , i, . . . , N}, while the links are described by the set

of edges EX = (eXij ), where each edge represents a connection from node i to node j. Node i

can be a sensing node, a router or an actuator (or a node with a combination of this roles). The

network is considered to have only one sink, referred to as node 1. Figure 2.1 shows an example

of network topology, where an ID is assigned to each node.

The network is characterized by two parameters: the distance matrix ∆ = (δij) and the

matrix Φ = (ϕij), described in Table 2.1. Furthermore, each node in the network is represented

by the parameters presented in Table 2.2, necessary to compute energy consumption values.

Table 2.1: Network parameters

Parameter Description

∆ = (δij)
Matrix of the pairwise distances (in meters) between adjacent nodes.
If nodes i and j are not adjacent, then δij =∞

Φ = (ϕij)
Matrix of parameters ϕij introduced in Section 2.1. If nodes i and j
are not adjacent, then ϕij =∞
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Table 2.2: Node parameters

Parameter Description

esensi Average energy spent by node i to perform a sensing task

einsi
Average energy spent by node i to perform a single instruction, as
defined in Section 2.1

etxi = (etxij )

Each element etxi j of this vector is the energy spent per bit to send
data from node i to an adjacent node j ∈ X : eXij ∈ EX , as described
in Section 2.1

erxi Per-bit reception energy at node i
eresi Residual energy of node i



Chapter 3

Centralized Task Allocation Algorithm

In the previous Chapters, the evolution of WSNs from simple monitoring networks to more

complex low-cost systems able to dynamically interact with the surrounding environment has

been discussed. Still, extending the network lifetime is an open challenge. These considerations

contribute to the vision of an horizontal ambient intelligence infrastructure wherein sensing,

computing and communicating infrastructure is set with a programmable middleware that al-

lows for quickly deploying different applications running on top of it so as to follow the chang-

ing ambient needs, e.g. monitoring a given geographical area and alerting when something is

happening herein; activating the heating system when the ambient is getting cold; tracking the

processing chain in industrial plants to prevent hazardous scenarios. In this case, the focus is

put on the need of a logic that, starting from the desired application, can be set up in complex

scenarios with hundreds of nodes, evaluate every possible decomposition of the application into

sensing and processing tasks, and decide which nodes should perform the required tasks so as

to accomplish the application target while minimizing its impact on the network lifetime [67].

This Chapter is organized as follows. Section 3.1 describes the problem and how it has been

approached. Section 3 defines the centralized algorithm used to extend the network lifetime. In

Section 3.3 the algorithm performance are evaluated by means of simulation results.

3.1 Problem Formulation

The goal of a WSN is to accomplish a given number of tasks mostly based on some measure-

ments performed on the relevant environment. In the proposed scenario, not all the nodes have

the same capabilities. In Figure 3.1, three sets of possible tasks have been considered (e.g. data

processing, temperature measurement and video monitoring). Given the status of the network

in terms of node capacities, topology, and energy distribution, the problem addressed is to as-

sign to each node the tasks that, combined together, contribute to the target network application
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Figure 3.1: Example of a WSN. Nodes belonging to set 1 are able to perform task t1; nodes in
set 2 are able to perform task t2; nodes in set 3 are able to perform task t3

while minimizing its impact on the residual lifetime.

The network model used in this framework has been defined in Section 2.2.

The application assigned to the network can be decomposed into a sequence of distributed

tasks. This application could represent diverse operation, such as: computing the average of

the temperature in a given geographical area, measuring the light intensity in a room, video-

surveillance of a specific geographical area, or a combination of these. In the following, a spe-

cific reference application, named spatial and temporal monitoring, is considered as an example

to better explain the model. In this application, a spatial and temporal mean operation over an

hour is performed on the temperature values sensed every 10 minutes by the sensors from 3

different locations; the average values are stored in the sink.

Three significant parameters can be associated to the application to be deployed:

• the total cost value P tot, which takes into account the overall power consump-

tion related to the application under consideration;

• the DG that describes the relations among tasks GT = {T,ET}, where T =

{t1, . . . , tl, . . . , tL} is the sequence of tasks in which the application can be

subdivided, while ET = (eTuv) is the set of edges euv representing a unidi-

rectional data transfer from task u to task v. With reference to the spatial

and temporal monitoring example, t1, t2 and t3 are the sensing tasks: t1 is

temperature sensing in area 1, t2 is temperature sensing in area 2, and t3 is

temperature sensing in area 3. The processing tasks are: the temporal mean

t4, and the spatial mean t5. The DG for this example is shown in Figure 3.2,

while the task descriptions are listed in Table 3.1.
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Figure 3.2: DG corresponding to the spatial and temporal monitoring example

Table 3.1: Tasks for the spatial and temporal monitoring example

ti Description

t1 Temperature sensing in area 1

t2 Temperature sensing in area 2

t3 Temperature sensing in area 3

t4 Temporal mean
t5 Spatial mean

Furthermore, two parameters are associated to each node with reference to the tasks to be

performed:

• the set Di = {di1, ..., dim, ..., dili}, where the elements of Di are the tasks that

the node i is able to perform;

• the status si, that defines which task tl is assigned to node i. The status si can

only be chosen among the set of tasks Di that the node is able to perform.

If node i is not assigned to any task, si = 0. In this case, it only forwards

received data, if any.

Thanks to the greater processing power and storage capacity of modern sensors, contrary

to the past, the same application can be performed in several different ways: gathered data can

be immediately sent to a sink or it can be processed before being transmitted. In the case of

the latter, the number of bits to be sent would be smaller, and therefore the transmission energy

consumption would be lower as well; however, processing energy consumption could be higher

in this second case. Quantifying the energy consumption in both cases, it could be possible to

establish which one determines a reduction of battery consumption in the sensors, incrementing

the network lifetime.
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The framework described further takes a high-level code as input, evaluates which com-

bination of the set of statuses S = {s1, ..., si, ..., sN} permits the application to be performed

with the lowest possible cost function P tot, and finally elaborates and assigns among the nodes

the most appropriate tasks to be performed. Hence, it is evident that the cost function P tot will

vary depending on the status of each node, that is, how the tasks are assigned to network nodes.

The problem addressed is then defined as the set of statuses S that minimizes the impact of the

application on the network lifetime. In the following, the considered scenario will be elaborated

by defining further constraints that solve the problem.

3.2 Deployment of Distributed Applications

In the following, the proposed solution towards a distributed application deployment in WSN

is presented. The following Subsections present: the constraints on the traffic generated by the

distributed application; the concept of virtual nodes, which are duplicates of real nodes that are

introduced to deal with nodes that perform more than a single task; the cost functions built on

the basis of the energy consumption formulas; the network lifetime maximization procedure; a

summary of the proposed framework. Note that the modeling proposed in this work and pre-

sented in this Section is aimed at evaluating all the possible solutions of application deployment

in terms of data transmission and processing. The parameters, constraints and cost functions are

introduced for the sole aim of evaluating the viability of the solution.

3.2.1 Constraints on Traffic Flows

In the reference scenario it is assumed that the sources of traffic in the network (the sensors)

generate samples of k bits at a certain frequency f . The processing in the network is performed

on this type of traffic flow coming from different nodes. The generic node i receives the traffic

Θin
i over which it performs the task corresponding to its assigned status si. The effect of this

task is the generation of the output traffic Θout
i , which is computed by function p as follows

Θout
i = p(Θin

i , si) (3.1)

The output traffic is then sent to the next node towards the sink.

The data generated by p in node i is modeled by the H-dimensional vector Θout
i =

(θouti1 , ..., θ
out
ih , ..., θ

out
iH ), with element θoutih = {koutih , f

out
ih } corresponding to a traffic flow where

each sample of koutih bits is transmitted at the frequency f outih . Each sample described by θoutih

results from a spatial processing or a sensing. The data Θout
i is then sent to the following node

j, according to adjacency matrix EX .
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Node j receives data from all the adjacent nodes that reach the sink through j

Θin
j =

N⋃
i=1

Θout
i × eXij (3.2)

This implies that, if node j’s adjacent nodes do not have any output flows, node j is not trans-

mitting any data, i.e. Θout
j has all its fields set to 0.

As defined by Equation 3.1, data Θin
j received by node j is processed according to its

status:

• if sj is a sensing status, p does not take any Θin
j as input and the output is

defined by the specific sensing task;

• if sj = 0, the output of p is exactly equal to Θin
j ;

• if sj is a processing status, Θout
j can be the most diverse depending on the spe-

cific processing objectives, which are coded in sj and that control the specific

function p. In the following certain cases will be analyzed.

Referring to the spatial and temporal monitoring example, processing can be a spatial

averaging, a temporal averaging, or a combination of both. In a spatial processing, the samples

coming from different paths are processed together, as shown in an example in Figure 3.3(a).

Here, four flows of 25 bits per second are received by node 4, and are then averaged to produce

a single flow of 25 bits per second. Accordingly, the resulting Θout
j is made of only one element

θoutj1 =
{
koutj1 , f

out
j1

}
, where the number of bits per sample koutj1 and the frequency f outj1 are equal

to those of each input flow. Note that, in general, koutj1 is not necessarily equal to the number of

bits of each input flow, but it may be different according to the processing output.

Differently, the temporal averaging is performed on every traffic flow in Θin
j . The resulting

Θout
j contains the same number of traffic flows as in Θin

j , where each element θoutjh is charac-

terized by the same number of bits per sample koutjh and the same frequency f outjh corresponding

to the averaging frequency associated to the node status sj . Indeed, different status codes may

be associated to the temporal averaging, each one distinguished by a different processing fre-

quency. Figure 3.3(b) shows an example for this kind of processing, where, in this case, node

status is assumed to correspond to temporal averaging with frequency 0.5 Hz.

Other processing tasks can be performed on every single sample of each received traffic

flow without involving other samples. This is the case, for instance, where one must evalu-

ate whether the received values exceed a given threshold or not, consequently transmitting a

boolean output value. The only thing that changes in the output traffic flows is the number of

bits per sample; therefore, Θout
j contains the same number of traffic flows as in Θin

j at the same
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(a) Spatial averaging (b) Temporal averaging

(c) Single sample processing

Figure 3.3: Examples of data processing in node 4 that receives input traffic from nodes 1-3. The
sketches correspond to the input and output traffic for: spatial averaging (a), temporal averaging
(b), and single sample processing (c)

frequency f outjh , but with different bits per sample koutjh . Figure 3.3(c) shows the traffic flows for

the described processing.

There are many other processing tasks that can be performed in a given network. For each

one of these, an operator p(x, y) is defined. Note that for the required objective, this operator

is needed to figure out the traffic flows that will be traversing the network for each deployment

scenario.

3.2.2 Virtual Nodes

It is possible that a single node has to perform more than one task. For instance, referring to

the spatial and temporal monitoring scenario, it may happen that a single node has to compute

both spatial and temporal average values on the received data. To take into account this type of

scenario, the concept of virtual nodes is introduced. These are copies of real nodes, each one

able to perform only a specific task and sending the resulting data at zero-energy cost to the

next virtual node (except the last one that sends the data to the next node). The set of tasks that

a single node i can perform consecutively for the implementation of the assigned application is
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Figure 3.4: Example of virtual nodes substituting node x4, which can perform a sensing action

defined as

Gi = Di ∩ T (3.3)

If |Gi| > 1, node i is divided into |Gi| virtual nodes. Each virtual node is created so as to be

able to execute only one of the tasks in Gi. Each virtual node can then be assigned to perform

only one task. Hence, the new network will have a number N vir of total nodes Xvir = (xvirv )

N vir =
N∑
i=1

Γi, with Γi =

{
|Gi| if |Gi| > 0

1 otherwise

The set of possible tasks for each node xvirv is Dvir
v . Figure 3.4 draws an example of se-

quence of virtual nodes for node x4, which is substituted by nodes xvir4 , xvir5 and xvir6 . With

reference to the spatial and temporal monitoring example and the associated DG of tasks GT
shown in Figure 3.2. Additionally, let {t1, t4, t5} ⊂ D4, i.e. node x4 can monitor area 1, perform

a temporal averaging, and a spatial averaging

Dvir
4 = {t1}

Dvir
5 = {t4}

Dvir
6 = {t5}

(3.4)

A new adjacency matrix Evir
X is defined to incorporate additional virtual nodes. Such ma-

trix is built simply by substituting the real node with the sequence of virtual nodes, so that

the first virtual node is connected to the nodes from which node i received the data, while the

last virtual node is connected to the node to which node i sent the data. The other nodes are

connected in sequence. An exception happens if the real node can also perform some sensing

functions. In this case, the corresponding virtual node is kept outside this sequence and it merely
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sends the data to the subsequent virtual node. This rule has been introduced because the sensing

operation does not need any data from other nodes. This scenario is depicted in the example in

Figure 3.4, where the temperature sensing function can be performed by node xvir4 .

A set of characteristic parameters einsvir,i, e
tx
vir,ij , e

rx
vir,i, and eresi , corresponding to those de-

fined in Table 2.2, has to be associated to each virtual node. Taking into account the virtual

nodes substituting node i, the transmission cost from a virtual node to the other must be null.

Therefore, only the last virtual node, that has to transmit the data to the network, has the same

characteristic parameters as node i: the virtual nodes before it must have the parameters etxvir,ij
and erxvir,i set to 0.

A new matrix ∆vir is defined, where its elements are null for adjacent virtual nodes from

the same original node. In the following, a network with virtual nodes will be considered; how-

ever, to make the presentation clearer, the subscript “vir” will be skipped, as it is unnecessary.

3.2.3 Cost Functions

The objective of the proposed algorithm is to evaluate the viability of each deployment solution

on the basis of a cost function that is connected to energy consumption. Quite often in similar

scenarios, past studies have proposed the evaluation of the network lifetime and have aimed at

maximizing it. Since in the proposed framework more than one application is assumed to be

assigned simultaneously to the network, there is no sense in computing the network lifetime

since it is affected by other applications which are not considered in the same analysis. For

this reason, the energy consumption is minimized for the application under analysis, allowing

the network administrator to also include a parameter that takes into account the current node

residual battery energy level, as shown in the following.

Three cost functions are considered: one for the sensing, one for the processing and one

for the transmission.

The sensing cost function for node i is expressed as

P sens
i = f outi × γi × esensi × yi, with yi =

{
1 if si ≡ sensing code
0 otherwise

(3.5)

with esensi representing the sensing energy consumption as defined in Table 2.2. Recall that f outi

is the node output traffic frequency, which also represents the sensing frequency. The parameter

γi is a coefficient in inverse proportion to the residual energy eresi of node i, which can be set

to drive the deployment of the application towards nodes with higher residual energy levels, as

anticipated above. When performing the experiments, γi has been set to 1 when the battery is

fully loaded, while γi has been set to 5 when the battery level is lower than 20% of the total
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charge. From 1 to 5, γi changes linearly.

The processing cost function is defined as follows

P proc
i =

H∑
h=1

f outih ×γi×e
proc
ih (tsi ,Θ

in
i )×vi with vi =

{
1 if si ≡ processing code
0 otherwise

(3.6)

where γi is the coefficient defined above, and eprocih is the processing energy consumption de-

fined by Equation 2.1, which depends on the energy einsi spent by node i to perform a single

instruction, the number of instructions Ih related to task h, and the received data Θin
i described

in Equation 3.2. Because P proc
i depends on the number of processing per second performed by

node i, it is proportional to the frequency f outih of each of the H egress traffic flows, where H is

the size of Θout
i as described in Section 3.2.1. The number of samples to calculate eproci is de-

fined differently for each kind of processing detected in Section 3.2.1. For a spatial processing,

the number of processed samples is equal to the number of ingress traffic flows; for a temporal

processing, the number of processed samples for each traffic flow θoutih is the ratio between the

frequency of arrival of the samples f inih and the processing frequency f outih ; by definition, for a

single sample processing the number of processed samples is 1.

Both sensing and processing are followed by a transmission. The related cost function is

P tx
i = γi ×

N∑
j=1

H∑
h=1

f outih × koutih × (etxij + erxj )× eXij (3.7)

with f outih and koutih transmission frequency and number of bits for the egress traffic flow h, γi
residual energy coefficient, etxij and erxj transmission and reception energy consumption values

defined in Table 2.2, and eXij edge connecting node i to node j, as defined in Section 2.1.

Given Equations 3.5, 3.6, and 3.7, the overall cost function is

P tot =
N∑
i=1

(
P sens
i + P proc

i + P tx
i

)
(3.8)

3.2.4 Maximization of Network Lifetime

The goal of the maximization process is to find the set of the statuses S = {s1, ..., si, ..., sN} of

the nodes that minimizes the network energy cost function.
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Therefore, the optimization problem becomes

minimize P tot =
N∑
i=1

(
P sens
i + P proc

i + P tx
i

)
(3.9a)

subject to Qmin
l ≤

N∑
i=1

qil ≤ Qmax
l with qil =

{
1 si ≡ tl

0 otherwise
(3.9b)⋃

v

{sv} = G1 ∀v : v 7→ 1 (3.9c)

The condition in Equation 3.9b is a constraint on the minimum (Qmin
l ) and the maximum (Qmax

l )

number of nodes that have to perform the task tl. This could be necessary, for example, when a

given geographical area is monitored by a certain number of nodes, but the required information

is not needed from all of them. If, for instance, the mean temperature value of an area monitored

by 30 sensors is needed, it may be preferred the temperature information to be gathered just by

10 of those sensors, in order to consume less energy. In this case, bothQmin
l andQmax

l would be

equal to 10, and the algorithm would choose the 10 sensors which weight less on the network

lifetime, among the 30 sensors which are able to sense temperature in the required area. When

this constraint is not needed for a task l, Qmin
l is null and Qmax

l is set to N .

The condition in Equation 3.9c shows that the set of statuses of the virtual nodes corre-

sponding to the original sink node 1 must correspond to the set |G1|. This implies that all the

virtual nodes corresponding to the original sink node are in a processing status, i.e. if there is

any data still to be processed, those virtual nodes have to process them.

The problem defined in Equation 3.9 is a Mixed Integer Linear Programming (MILP)

problem [74]: the unknown status of node i can be defined as a |T |-dimensional binary array,

where T is the set of tasks as defined in Section 3.1. Because every node can only have one

status, which means that it can perform only one task among those that it is able to perform,

only one element of this array can be equal to 1, and it corresponds to one of the tasks that

the relating node i is able to perform, according to Di. The elements of the array represent the

weights to the contributions (in Equations 3.6 and 3.5) of the node to the cost function.

MILP problems are classified as NP-hard. Their exact solution is usually found using

branch-and-bound algorithms. The worst case complexity of branch-and-bound algorithms is

the same as the complexity of exhaustive search, which means that its complexity scales expo-

nentially with the problem size. In the case under consideration, the problem size is dominated

by the number of tasks |T | and the number of virtual nodes N vir. Therefore, the worst case

complexity would be O(2|T |×N
vir

). Nevertheless, in most cases branch-and-bound is more ef-

ficient compared to exhaustive search. Furthermore, the problem’s structure is such that only

one element of the |T |-dimensional array representing the status of each node is nonzero. This

condition allows to reduce the search space to O(N vir|T |). It has to be noted that commercial
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mathematical programming solvers such as CPLEX [75] or Xpress Optimization Suite [76] are

claimed to use optimized branch-and-bound algorithms whose complexity scales linearly with

the problem size.

In order to further reduce complexity, heuristic algorithms might be used as well, obtaining

sub-optimal solutions which may be considered sufficient in most cases.

3.2.5 The Proposed Framework

Given a network similar to the one in Figure 3.1, the sink, which is responsible for initiating

and maintaining the network, is the device on which the deployment algorithm is performed.

The proposed algorithm needs to know the exact topology of the network, that is, how the nodes

are connected to each other (i.e. matrix EX) and what the distance between any two of them

is (i.e. matrix ∆). In order to compute the cost function of Equation 3.8, further information is

needed, such as the parameters to model the radio channel, the transmission, reception, sensing

and processing energy consumption of each node, the residual energy of each node, the working

frequency and the data rate.

In summary, the algorithm performs the following steps:

1. define DAG GX , matrices ∆ and Φ, set Di, and parameters esensi , einsi , etxi ,

erxi , and eresi ;

2. define DG GT ;

3. define sets Gi;

4. define the new network with N vir virtual nodes xviri , and the characteristic

parameters associated to it;

5. given Equation 3.9, solve it with a linear programming solver, in order to find

set S.

The solving algorithm has been implemented in Mosel language, and the solution has been

found using Xpress Optimization Suite. The binary array Σvir
v = {σvirv1 , ..., σvirvl , ..., σvirvL } has

been associated to each node xvirv , where L is the cardinality of T , that is the number of tasks

in which the application considered is subdivided, as described in Section 3.1. The elements of

Σvir
v must satisfy the following constraints:

• the element σvirvl can be equal to 1 if and only if xvirv is able to perform the

task tl ∈ T , which means that σvirvl cannot be equal to 1 if the task tl is not an

element of the set of tasks Dvir
v that the node xvirv is able to perform

tl /∈ Dvir
v ⇒ σvirvl 6= 1 (3.10)
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• only one element in Σvir
v can be equal to 1

L∑
l=1

σvl = 1 (3.11)

The elements of the array built this way are the weights yi and vi of the energy contributions in

Equations 3.5 and 3.6 defined in Section 3.2.3.

The optimum way to accomplish the assigned application at issue and spend the least

amount of energy as possible will then be found. The node or the combination of nodes that are

able to perform it and consume the minimum amount of energy will be chosen; then, a low level

code describing which tasks each node has to perform will be developed and distributed to the

appropriate nodes.

3.3 Performance Analysis

3.3.1 Test Cases and Simulations Setup

To evaluate the effectiveness of the proposed strategy, three test cases have been taken into

account according to some of the most significant realistic scenarios considered in past works,

such as in [77]:

1. case1: uniform energy consumption and uniform initial energy (UC-UE) at

each node (equal characteristic parameters and battery life for every node);

2. case2: non uniform energy consumption and uniform initial energy (NUC-

UE) at each node (different characteristic parameters but same battery life for

every node). The energy consumption of the nodes have been assigned accord-

ing to a uniform distribution from 60% to 140% of the energy consumption

for case1;

3. case3: uniform energy consumption and non uniform initial energy (UC-

NUE) at each node (same characteristic parameters but different battery life

for every node). The battery charge has been assigned randomly according to

an uniform distribution from 20% to 100% of the total charge.

A rectangular-shaped outdoor environment (e.g., a vineyard, a seaport, a tourist plaza),

divided into areas of 25 m2, is monitored, where the nodes have been deployed with different

densities:

• 0.2 nodes per square meter;
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• 0.3 nodes per square meter;

• 0.4 nodes per square meter.

The nodes have been positioned randomly, following a uniform distribution. Each node is

equipped with sensors for the measurement of temperature, humidity, PH and light exposure.

The data are sent to the sink, which has identification number 1.

The analysis has been focused on the following two operations:

1. OpA: calculation and storage in the sink of the (temporal and spatial) mean

values of temperature, humidity, PH and light exposure over an hour, starting

from the values sensed every 10 minutes from every area;

2. OpB: aggregation of traffic coming from different areas of the network, car-

rying temperature, humidity, PH and light exposure values to the sink for later

analysis by qualified staff.

Each sensed value is assumed to be represented as a double numerical value, which is 64

bits long. Note that these two operations have been selected to compare the scenarios in which

the network is required to perform significant data processing (OpA) and nodes have to perform

only basic processing on the data, yet can significantly reduce the amount of transmitted data

by aggregating the sensed samples (OpB).

For both OpA and OpB, the first tasks are the sensing ones: t1 is the temperature, humidity,

PH and light exposure sensing for area 1, t2 is the temperature, humidity, PH and light exposure

sensing for area 2, and so on for every area. In order not to weigh down the text with alternatives,

just 2 areas are take into account, which is not the case of the simulation scenario. Similarly to

the spatial and temporal monitoring example in Section 3.1, for OpA t3 is temporal mean, and

t4 is spatial mean. In addition to t1 and t2, OpB has the aggregation of samples task t3. The tasks

for the two operations are summarized in Table 3.2 and described by their DGs in Figures 3.5(a)

and 3.5(b).

The nodes communicate using IEEE 802.15.4 radio interfaces on the 2.4 GHz frequency

band. To keep things simple, any possible overhead has not been taken into account.

Table 3.2: Tasks for OpA and OpB, for two monitored areas

ti OpA OpB

t1 Temperature, humidity, PH and light exposure sensing for area 1

t2 Temperature, humidity, PH and light exposure sensing for area 2

t3 Temporal mean Aggregation of samples
t4 Spatial mean ——
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(a) OpA (b) OpB

Figure 3.5: DG for the tasks of OpA (a), and OpB (b), considering two monitored areas

Table 3.3: Simulation setup parameters

Parameter Value

RF frequency 2400 MHz
Bit rate 250 kbps

Programmable output power range
Programmable in 8 steps from approximately
−24 to 0 dBm

Receiver sensitivity −94 dBm
PR0 59.2 mW
PT0 26.5 mW
η 50%

A 14 dB
einstr 1 nJ
Packets header 12 bytes
Packets maximum payload 125 bytes

The resulting scenarios have been simulated in MatLab environment, where the proposed

algorithm as been implemented along with alternative approaches as discussed in the following

Subsection. The main setup parameters are listed in Table 3.3. More specifically, processing

cost parameters can be found in [73], radio frequency parameters specified in [78], and IEEE

802.15.4 parameters listed in [39]).

3.3.2 Analysis of Case Studies

The optimization algorithm has been applied to each of the cases mentioned in 3.3.1. The re-

sulting cost value has been compared with:
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1. the cost value that is obtained if data are processed only by the sink. This

means that each traffic flow generated by the sensors is sent to the sink without

any processing at the intermediate nodes. This comparison is referred to with

the letter S;

2. the data are processed (whenever needed) by every cluster head 1 found in the

path to the sink. This comparison is referred to with the letters CH;

3. the mean cost value for all possible solutions that might be detected. This is

introduced to make a comparison with a possible solution where the process-

ing of the data is performed on fixed nodes, which is expected to bring results

corresponding to the median solution. This comparison is referred to with the

letter M.

These comparisons are expressed as a percentage of the energy conservation that would

result using the proposed technique with respect to the alternatives one.

Figure 3.6 shows the results for the two operations.

The two graphs show significant improvements of the proposed strategy with respect to

the alternative ones with an average improvement of 36.3%. Limited benefits are observed in

case UC-UE for both OpA and OpB. In fact, when all the nodes have the same parameters,

and thus have a uniform energy consumption and the same initial energy, the choice of which

node will perform the processing boils down to which cluster heads will do it. The scenario is

illustrated in Figure 3.7, which depicts a cluster head CH1 connected to the cluster head CH2

by nodes 1, 2, and 3. Note that the cluster heads are just nodes that receive more than one

traffic flow from different links. Because processing in CH1 weights on the network as much

as processing on node 1, node 2 or node 3, any processing of the data before arriving to CH2 is

more energy conserving. Processing the data on CH1 ensures spending less transmission energy

than processing data on nodes 1, 2 or 3. Accordingly, the CH approach allows for obtaining

results similar to the ones obtained with the proposed approach in case UC-UE. Slightly better

results are obtained because when cluster heads are close to each other sometimes it is better to

perform the processing only in the second cluster head rather than in both of them.

On the contrary, in cases NUC-UE and UC-NUE, devices’ energy consumption does not

weight the same amount on the entire network. This means that the nodes chosen by the pro-

posed algorithm to perform the processing will be those that weight less on the network, regard-

less of whether they are cluster heads or not. Therefore, the detection of the lower cost solution

determines the best results, in terms of energy consumption, for networks with heterogeneous

parameters, which are the most common type of networks in real scenarios.
1For the definition of cluster heads see Section 1.1
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(a) OpA

(b) OpB

Figure 3.6: Percentage of energy conservation using the proposed framework, for OpA and OpB

Figure 3.7: Example of a transmission from cluster head CH1 to cluster head CH2
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The benefits with respect to the approach CH are lower than the case of using approaches

S and M. In fact, literature dictates that the use of cluster heads is a convenient solution, because

the aggregation of frames coming from different paths leads to a reduction in network energy

consumption. For this reason, when using cluster heads the cost is much lower, compared to

sending every single frame to the sink, or to the average of the other possible solutions; this

determines less difference from the optimization algorithm solution, and thus a lower energy

conservation. However, this approach requires every node in the network to be able to perform

data processing, which is not always the case. In any case, the proposed approach is proven to

always outperform the CH approach.

It could be noted that for OpA, in which processing is more elaborate and the number of

instructions for every process greater, energy conservation is higher than it is for OpB. In fact, as

could be expected, the lower the energy cost necessary for the processing, the more convenient

it is to process the data in every cluster head encountered.

This fact is demonstrated by the results shown in Figure 3.8, which depicts the percentage

of energy conservation while the ratio between the processing cost and the cost to transmit 137

bytes of data increases. The distance considered is equal to the average distance of all the nodes

from the sink. Comparison has been made both in the case that data are processed only by the

sink (solid lines) and cases in which data are processed by every cluster head (dashed lines).

In the former, energy conservation decreases when processing cost to transmission cost ratio

Figure 3.8: Percentage of energy conservation with respect to the ratio between processing cost
and the cost to transmit 137 bytes of data. Solid lines show energy conservation with respect
to data processed only by the sink; dashed lines show energy conservation with respect to data
processed by every cluster head
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increases. In fact, as could be expected, when the processing cost increases with respect to the

transmission cost, it becomes more convenient to transmit data rather than process data. On

the other hand, when compared with the CH approach, energy conservation increases when the

processing cost to transmission cost ratio increases. In fact, when the processing cost increases,

it is more convenient to accurately choose the nodes where processing might be performed

rather than processing data every time that it is possible to do so.

Table 3.4 shows the results for OpA and OpB, for different node density of 0.2 and 0.4

nodes/m2. The resulting tendency of an improved energy conservation when node density in-

creases is basically due to two factors:

• in cases NUC-CE and UC-NUE, when the number of nodes in the same area

increases, it is more likely that among neighboring nodes there are nodes

where the processing cost is lower;

• the higher the number of nodes in the same area, the higher the number of

clusters formed, and therefore the bigger the amount of data that can be pro-

cessed before they arrive to the sink, reducing the energy cost.

It may be inferred from the results that using the framework would be particularly energy

conserving when data from different nodes have to be processed together, the processing is

pretty complex, and the energy consumption or the initial energy is not uniform for the network.

When the network experiences the failure of a node, that node must be bypassed and data

addressed to it must be sent to the following node. In order to do it, an appropriate new routing

path must be find. The number of packets exchanged to find a new routing path depends on the

routing algorithm used by the network. Supposing to be in a bad case scenario where an average

of 50 packets have to be sent among 10-hops distant nodes where each node is 2 m far from the

other ones, supposing to have one node failure every hour, energy conservation would decrease

by about 7.8%. It has been estimated that the decrease in energy conservation for OpA and for

Table 3.4: Percentage values of energy conservation using the proposed framework

Node density
[nodes/m2] Case 1 [%] Case 2 [%] Case 3 [%]

S CH M S CH M S CH M

OpA
0.2 19.5 5.5 11.7 50.0 29.3 42.2 47.5 16.4 33.6

0.4 25.6 5.9 16.5 58.0 35.3 46.2 56.7 23.5 43.7

OpB
0.2 28.9 0.1 17.0 33.3 0.7 19.9 38.6 1.6 19.7

0.4 30.8 0.1 18.2 37.8 1.0 21.4 40.9 3.5 21.1
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Figure 3.9: Percentage of energy conservation for every area of the network for OpA, compari-
son S, for a density of 0.3 nodes/m2, for an increasing distance of the area from the sink

a density of 0.3 nodes/m2 would be about 8.2% in case UC-UE, 12% in csae NUC-UE and

14.7% in case UC-NUE.

A final observation may be made in regard to Figure 3.9, which depicts the percentage of

energy conservation for OpA, comparison S, in cases UC-UE, NUC-UE and UC-NUE, for a

density of 0.3 nodes/m2, in relation to the distance of each area from the sink. As could be

expected, the greater the distance of the sources from the sink, the more energy conservation is

derived from the use of the framework.

Although they have not been reported, similar results have been obtained for all other

cases.





Chapter 4

Decentralized Lifetime Maximization
Algorithm

In the previous Chapter, a centralized solution for the optimal task assignment that ensures

that the overall energy consumption is minimized has been described. However, centralized

algorithms suffer from computational complexity, especially for WSNs with a high number of

nodes. Furthermore, centralized algorithms have to frequently collect updates from nodes in

order to adapt to network dynamism. This incurs a large control packet overhead.

In this Chapter, a distributed solution that improves the capability of the network to adapt

to energy consumption changes, to reduce the message exchange overhead for the application

deployment, and to provide a solution whose computational complexity scales well with the

number of nodes. The proposed algorithm [71], is based on an iterative and asynchronous local

optimization of the task allocations among neighboring nodes. The resulting scheme is based

on gossip, which consists in a communication paradigm in which, at each instant of time, each

node in the network has some positive probability to interact with one of its neighbors [79].

A first contribution consists in a decentralized and asynchronous algorithm, called MLE,

that provides a simple local interaction rule between sensor nodes. This rule allows each node

in the network to estimate in known and finite time the network lifetime within the set of nodes

that compose their routing paths toward the root node sink. A second contribution consists

in a decentralized and asynchronous algorithm, called Decentralized Lifetime Maximization

Algorithm (DLMA), that maximizes the lifetime in the network in a distributed way without

assuming any knowledge of network topology or global state information, apart from the infor-

mation provided by Algorithm MLE. A significant feature of this algorithm is that the lifetime

is maximized monotonically as function of time despite adopting a distributed approach. The

algorithm consists in the update of the nodes’ state with the solution of optimization problems

that involve only local state variables. These updates do not need to be executed in any specific

order, thus the algorithm can be executed with asynchronous updates that greatly simplify its
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implementation in large-scale networks.

This Chapter is organized as follows. Section 4.1 defines the problem and introduces the

notation used. Section 4.2 deals with the traffic flows analysis and the definition of the cost

function. Section 4.3 describes the decentralized solution aimed at maximizing the network

lifetime. Section 4.4 focuses on simulation results.

4.1 Problem Formulation

The considered scenario is analogous to the one described in Section 3.1. Again, the WSN

under consideration is the one illustrated in Figure 3.1, where not all the nodes have the same

capabilities. The model of the network has already been described in Section 2.2. The sink is

referred to as node 1.

Let Ni = {j ∈ X : (i, j)or(j, i) ∈ EX} be the neighborhood of node i, namely the nodes

that share a communication channel with node i. Let Nout,i = {j ∈ X : (i, j) ∈ EX} be the

set of nodes that receive information from node i and Nin,i = {j ∈ X : (j, i) ∈ EX} the set of

nodes that send information to node i to reach the sink node 1. These two sets are defined with

respect to the flowing of data from the sensors toward the sink.

As an example, consider the network shown in Figure 2.1, where to each node is assigned

the corresponding ID. The sink node has always ID equal to 1. Furthermore, node 11 has in-

neighborhood Nin,11 = {12, 13} and out-neighborhood Nout,11 = {4, 10}. Note that the arrows

represent the direction of the traffic when flowing from the sensors to the sink.

Once again, an application assigned to the network, which can be decomposed into a se-

quence of tasks, is considered. As far as tasks are concerned, two sequences are distinguished:

one for the sensing tasks and one for the processing tasks. The sequence of the sensing tasks

that have to be executed by the network is defined as T s = {ts1, ..., tsW}, where W is the total

number of sensing tasks required. The sequence of the processing tasks that have to be executed

by the network is defined as T p = {tp1, ..., t
p
L}, where L is the total number of processing tasks

required. If, for instance, the application is the spatial and temporal monitoring example intro-

duced in Section 3.1, the set of sensing tasks is T s = {ts1, ts2, ts3}, where ts1 is the temperature

sensing in area 1, ts2 is the temperature sensing in area 2, and ts3 is the temperature sensing in

area 3. The set of processing tasks is T p = {tp1, t
p
2}, with tp1 temporal mean and tp2 spatial mean.

The relation among tasks can be described as a DG GT = ({T s, T p}, ET ), where ET = (eTuv)

is the set of edges, with each edge eTuv representing a unidirectional data transfer from task u to

task v. Figure 4.1 shows the DG for the spatial and temporal monitoring example.

As to the sensing, a binary state mi ∈ {0, 1}W coding the sensing tasks executed by node
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Figure 4.1: DG for the spatial and temporal monitoring example

i is assigned to each node. The state miw is equal to 1 if node i performs the sensing task w.

As to the processing tasks, a binary state vector si ∈ {0, 1}L representing the processing

tasks currently assigned to the node i is assigned to each node. To each configuration of the node

setting corresponds different energy consumption, as it will be better explained in the following

Sections. Different nodes are assumed to consume different amounts of energy for the same

processing to include heterogeneity of devices in the modeling. To each node i is associated a

binary vector di ∈ {0, 1}L, which represents the kinds of processing that node i is allowed to

execute. In particular, the following holds: dil ≥ sil, ∀i ∈ X and ∀l ∈ {1, . . . , L}. To simplify

the notation the matrix that collects the states of all nodes is denoted as S = [s1, s2, . . . , sN ]T

and the matrix that represents all constraints as D = [d1,d2, . . . ,dN ]T .

In the considered scenario, the sensing tasks are already assigned to the network nodes

(i.e., binary vectors mi are given, for i = 1, . . . , N ). Differently, the processing tasks can be

executed according to different solutions: gathered data can be immediately sent to a sink, or

it can be processed before being transmitted. In the case of the latter, the number of bits to

be sent would be smaller, reducing the transmission energy consumption; however, processing

energy consumption could be higher in this second case. Quantifying the energy consumption

in both cases, it could be possible to establish which one determines a reduction of battery

consumption in the nodes, incrementing the network lifetime. The addressed problem is then

defined as the processing status matrix S that minimizes the impact of the application on the

network, maximizing the lifetime of the network τ , intended as the time in which at least one

node has exhausted its energy reserve from the battery: in fact, when this condition is reached,

the network topology is disrupted.

Denoting the energy reserve of node i at time t as eresi (t), then the lifetime of the network
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can be defined as

τ = inf{t | (∃i ∈ X)eresi (t) = 0} (4.1)

by assuming that all the transmission rates at the nodes are constant and that the processing

assignment defined by matrix S does not change. Furthermore, it can be observed that the

optimal processing assignment is

Sopt = arg max
S

τ(S) = arg max
S

min
i∈X

eresi
Pi(S)

,

where Pi is the energy consumed per unit of time. The last equation puts in evidence the de-

pendence of τ and Pi from the processing assignment S and follows from the fact that in a

stationary state the time required for a node to drain its battery is eresi /Pi.

Since the tasks a node can process are limited, a constrained optimization problem of the

form

max
S

min
i∈X

eresi
Pi(S)

,

s.t.

di ≥ si ∀i ∈ X
S ∈ {0, 1}N×L

(4.2)

is obtained, where di, the i-th column of matrix D, is the characteristics vector of the tasks that

can be processed by node i and si, the i-th column of matrix S, is the processing state of node

i. In the following, the considered scenario is elaborated by defining the traffic flows and cost

function. Then, the proposed distributed solution will be illustrated.

4.2 Analysis of Traffic Flows and Energy Consumption

4.2.1 Traffic Flows

In the reference scenario, the sources of traffic in the network (the sensors) are assumed to

generate samples of k bits at a certain frequency f . The generic node i receives a number

of incoming traffic flows represented by vector Θin
i = (θini1 , ..., θ

in
ih′i

), where each element is a

traffic flow (expressed in bit per second), where h = 1, . . . , h′i are the labels of the traffic flows

incoming from its in-neighbors. The value h′i is the maximum number of traffic flows that can

be received by node i. Over these traffic flows, node i performs the tasks corresponding to its

assigned status si. As a result from this processing, the generation of the output traffic flows

Θout
i ∈ Rh′i , can be modeled as

Θout
i = pi(Θ

in
i , si), (4.3)
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where pi(·) : Rh′i × {0, 1}L → Rh′i is a look-up table of node i that makes a correspondence

between the incoming traffic flows, the processing performed by node i on these traffic flows

and the output traffic of the node. Note that the number of elements in Θin
i is set equal to those

of Θout
i , that is, h′i. Some of these elements can be null depending on the type of processing

performed by node i. The generated output traffic is sent to the downstream nodes in the out-

neighborhood of node i.

The elements of vector Θout
i = (θouti1 , ..., θ

out
ih′i

) correspond to traffic flows with samples of

size koutih bits transmitted at frequency f outih . The data Θout
i is then sent to the downstream nodes

j ∈ Nout,i according to a DG GX .

If node i is aware of the incoming traffic flows Θin
j , the processing assignment sj and the

look-up tables of its in-neighbors j ∈ Nin,i, then it can compute its output traffic flows as

Θout
i = pi

(∑
j∈Ni

pj
(
Θin
j , sj

)
, si

)
. (4.4)

There are many processing tasks that can be performed in a WSN. For each one of these, the

look-up table of each node pi(·) has to be experimentally identified. For the objective set, this

operator is needed to figure out the traffic flows that will be traversing the network for each

deployment scenario. Three common kinds of processing are identified: spatial, temporal and

single sample processing. For further details about this distinction, see Section 3.1.

4.2.2 Cost Functions

The objective of the proposed algorithm is to evaluate the viability of each deployment solution

on the basis of cost functions that are connected to power consumption. Three cost functions

are considered: one for the sensing, one for the processing and one for the transmission. Each

cost function represents the amount of energy consumed in the unit of time.

The sensing cost function for node i is expressed as

P sens
i =

W∑
w=1

f outi × esensiw ×miw, (4.5)

with esensiw representing the sensing energy consumption for node i performing sensing task w if

its status miw is equal to 1, as defined in Section 2.1. Recall that f outi is the node output traffic

frequency, which also represents the sensing frequency.

The processing cost function for node i is defined as

P proc
i =

L∑
l=1

h′i∑
h=1

f outih × e
proc
ih (tpsil ,Θ

in
i )× sil, (4.6)
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where eprocih is the processing energy consumption defined in Equation 2.1, which depends on the

task tpsil that has to be executed and on the input traffic Θin
i . The status sil of node i with respect

to each possible task l determines whether this energy consumption should be considered or

not. Since the processing cost depends on the number of processing instructions per second

performed by node i, P proc
i is proportional to the frequency f outih of each of the h egress traffic

flows, where h′i is the size of Θout
i as described in Section 4.2.1.

Both sensing and processing are followed by a transmission. The related cost function is

P tx
i =

N∑
j=1

H∑
h=1

f outih × koutih × (etxij + erxj )× eXij (4.7)

with f outih and koutih transmission frequency and number of bits for the egress traffic flow h, eresi
residual energy coefficient, etxij and erxj transmission and reception energy consumption values

defined in Table 2.2, and eXij edge connecting node i to node j, as defined in Section 2.1.

Given Equations 4.5, 4.6 and 4.7, the overall cost function for any node i is

Pi =
(
P sens
i + P proc

i + P tx
i

)
. (4.8)

In the following, the cost function for node i is denoted as Pi(S). This is to show that the energy

cost depends on the task assignment on the network represented by matrix S. With a slight abuse

of notation, the cost function of node i may also be denoted as Pi(sk : k ∈ Nin,i
⋃
{i}) to show

that — assuming the input flows Θin
j for j ∈ Nin,i are known — it depends on the tasks assigned

to node i and to its in-neighbors.

4.3 Proposed Distributed Solution

In the proposed framework of decentralized power saving for WSNs, a solution in which the

communication scheme is based on gossip [79],[80],[81],[82] is adopted. Gossip algorithms

are decentralized and asynchronous. They consist in a communication scheme in which at each

instant of time each node in the network has some positive probability to interact with one of

its neighbors. By the iterative interaction between nodes, several examples of emerging behav-

iors have been developed such as load balancing [83], distributed averaging [80], distributed

convex optimization over networks [84], failure detection [85] and many more. Thus, commu-

nication schemes based on gossip that mimic the act of gossiping in a crowd of people, are

easy to implement, do not require network routing or multi-hop communications, are inherently

asynchronous and decentralized in nature.

The aim of the proposed solution is to solve the problem in Equation 4.2 in a decentralized

way, by iteratively and asynchronously solving an equivalent local optimization problem that

involves at each iteration only one node i and its in-neighbors Nin,i.
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The proposed method involves two decentralized algorithms. First, Algorithm 1, called

MLE, is used to spread information about the current minimum node lifetime in the network. It

consists in a broadcast message that is updated every time it is retransmitted by the nodes until

all the nodes in the network received at least one of these messages. By the execution of this

algorithm each node estimates what is the minimum node lifetime in the set of nodes included

in all the paths between itself and the sink.

Second, Algorithm 2, called DLMA, executes an iterative local optimizations (described

in Definition 4.3.2) between neighboring nodes exploiting information only locally available to

locally reassign the processing tasks to the nodes. The basic idea to achieve the maximization

on the network lifetime through a distributed algorithm is to use the information provided by

Algorithm MLE 1 to iteratively execute the local optimizations of Algorithm (DLMA) 2, while

guaranteeing a monotonic increase in the network lifetime.

In the next two Subsections, the MLE and DLMA algorithms will be described. Then, the

node selection process that drives the execution of the DLMA in the network nodes and the stop

criterion will be analyzed. Finally, the algorithm computational complexity will be determined.

4.3.1 Algorithm 1 - Minimum Lifetime Estimation

In the DAG GX = {X,EX} that represents the network topology, a path pij is an alternating

sequence of consecutive vertices and edges pij = {i, (i, r), r, (r, k), k, (k, j), j} without rep-

etitions starting from node i and ending in node j. Let Xi = {j ∈ X : ∃piN} be the set of

nodes through which node i is reachable through a path from 1 (the sink). For example, with

reference to Figure 2.1, considering nodes 3 and 1, the relevant sets are X3 = {10, 13} and

X1 = {3, 4, 8, 9, 10, 12}, respectively. To each node i ∈ X a variable xi is assigned to it to

represent its current estimation of the minimum node lifetime of the nodes in the set Xi.

Let t1, t2, . . . tk with k ∈ N+ beset a set of instants of time which represent the instants of

time in which local state updates are performed. The sink node 1 sends to all its in-neighbors

j ∈ Nin,1 the value of its lifetime τ1. All the other nodes, at each instant of time tk, send their

current estimation xj(tk) to all their in-neighbors. Whenever a node i receives an estimation

update by an out-neighbor, it updates its own minimum lifetime estimation according to

xi(tk+1) = min{τi, xj(tk)}. (4.9)

The minimum lifetime estimation algorithm can now be stated

Algorithm 1 (Minimum Lifetime Estimation).

1. Each node i ∈ X a variable xi(t0) = τi is initialized with the node lifetime.
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2. While (true)

3. At time tk, the sink i = 1 sends the value of x1(tk) to all the nodes in its

in-neighborhood Nin,i.
4. Each node i that at time tk receives a message from a parent node updates its

local estimation according to

xi(tk) = min{τi, xj(tk)},

and at tk+1 sends xi(tk+1) to in-neighborhood Nin,j .
5. end while. �

Algorithm 1 can be seen as a wave of messages triggered by the sink node that propagates

from the sink to the leaves of the network. As soon as the wave has completed its path, each

node i becomes aware of the value of the minimum lifetime between the nodes in the set Xi.

Proposition 4.3.1. Let a network of N nodes that execute Algorithm 1 be described by a rooted

connected DAG GX . Assume that a message reception and transmission cycle is performed by

each node in at most T units of time. Let D be the length of the longest directed path in GX that

starts from the sink node. Assume that at t = t0 the sink node initiates Algorithm 1.

Then, in at most T ·D units of time, each node i is aware of a lower bound on the minimum

life time of the nodes in set Xi

∀i ∈ X, xi(t) = min
j∈Xi

{xj(t− T ·D)} = min
j∈Xi

{τj(t− T ·D)}.

Proof. By assumption, there exists a sink node i = 1 from which each other node is reachable.

Let d be the minimum number of edges that separate the generic node from the sink node.

After the sink node sends the first message to its in-neighbors, at time Td all the nodes whose

minimum path in GX from the sink node is less than or equal to d have performed the local state

update setting their state to the minimum value found along the path. By assumption, since GX
is connected and all nodes are reachable from the sink, all nodes are triggered. Since GX is

acyclic, when the furthest node j whose distance is at most D edges from the sink is reached,

the algorithm stops. Thus, after T ·D units of time, the state of each node is

∀i ∈ X, xi(t) = min
j∈Xi

{xj(tD)} = min
j∈Xi

{τj(t− T ·D)}. (4.10)

�

In the following it is assumed that the sink node initializes Algorithm MLE periodically

each T units of time. This is necessary to keep the information about the minimum network

lifetime updated in each node. The execution of Algorithm MLE is independent from the ex-

ecution of Algorithm DLMA that will be presented in the next Subsection. On the contrary,

the execution of Algorithm DLMA requires the information about the network lifetime that is

computed by Algorithm MLE.
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4.3.2 Algorithm 2 - Decentralized Lifetime Maximization Algorithm

The focus will be now shifted to the core of the proposed technique, namely the DLMA.

The DLMA consists in a local state update rule that neighboring nodes apply to their state if

triggered by an incoming request message. Since the execution of the proposed state update has

an energy cost, let Êi be the upper bound to the energy spent by solving the local optimization

in node i. Then, the node that is expected to execute the optimization sees its lifetime reduced

to

τi =
eresi − Êi

Pi
,

thus, a total decrement in absolute terms of

∆τi =
Êi
Pi
.

Since the objective of the proposed algorithm is to iteratively maximize the lifetime, τi(tk) is

denoted as the lifetime that node i has at time tk defined as

τi(tk) = inf{t ≥ tk|eresi (t) = 0},

under the assumption that no more local optimizations are performed. Clearly, at each iteration

of the algorithm, the lifetime of each node may change. Furthermore, in the following tk will

be referred to as the instant of time in which the local state update rule is triggered and tk+1 as

the instant of time right after the given update is completed.

Such local state update rule is always triggered by a node toward its in-neighbor nodes. In

the following, the dependencies of Θout
i on its input parameters will be implied.

Local state update rule 4.3.2.

Let node i be triggered.

1. Node i, with a current processing state s̄i and current output traffic flow Θ̄out
i

enquires the state s̄j and current input traffic Θ̄in
j for all j ∈ Nin,i.

2. If τi > minj∈Nin,i
⋃
{i}τj + ∆τi, then solve the following local mixed in-

teger linear programming problem in the unknown variables α and sj for
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j ∈ Nin,i
⋃
{i}

min α

s.t.
Pj(sk : k ∈ Nin,i

⋃
{i})

eresj
< α ∀j ∈ Nin,i

Pi(sk : k ∈ Nin,i
⋃
{i})

eresi − Êi
< α

dj ≥ sj ∀j ∈ Nin,i
⋃
{i}

Θout
i ≤ Θ̄out

i

α ∈ R+

si ∈ {0, 1}L ∀j ∈ Nin,i
⋃
{i}

(4.11)

and let its optimal solution be (αopt, sopt,k : k ∈ Nin,i
⋃
{i}).

Set the new processing assignment to sj = sopt,j, for all j ∈ Nin,i
⋃
{i}.

endif.

If τi > xi + ∆τi, then solve the following local MILP problem [74] in the

unknown variables sj for j ∈ Nin,i
⋃
{i}. Let α = maxj∈Xi

1

τj

min Θout
i (Θin

j , sj : j ∈ Ni, si)
s.t.
Pj(sk : k ∈ Nin,i

⋃
{i})

eresj
< α ∀j ∈ Nin,i

Pi(sk : k ∈ Nin,i
⋃
{i})

eresi − Êi
< α

dj ≥ sj ∀j ∈ Nin,i
⋃
{i}

Θout
j ≤ Θ̄out

j , ∀j ∈ Nin,i
si ∈ {0, 1}L ∀j ∈ Nin,i

⋃
{i}

(4.12)

and let its optimal solution be (sopt,j : j ∈ Nin,i
⋃
{i}). Set the new pro-

cessing status to sj = sopt,j, for all j ∈ Nin,i
⋃
{i}.

endif. �

Remark 4.3.3. Note that the conditions that trigger the execution of the optimization algorithms

τi > min
j∈Nin,i

⋃
{i}
τj + ∆τi (4.13a)

τi >xi + ∆τi (4.13b)
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ensure that the algorithm execution is never started in node i if its current lifetime τi is lower

than the known minimum network lifetime plus its expected lifetime decrement ∆τi due to the

energy spent by solving the optimization. �

The nodes which apply the local state update rule 4.3.2 at any given instant of time tk are

chosen by a node selection process v(t) : R+ → X
⋃
{∅}. Two node selection processes that

modify the algorithm performance under different sets of fundamental assumptions are studied.

These are discussed in the following Subsection.

Algorithm DLMA can thus be summarized as follows.

Algorithm 2 (DLMA for WSNs).

1. Each node i ∈ X is initialized with the residual energy of the battery eresi and

state si = {0}L (no processing assigned).

2. Let k = 0 and t0 = 0.

3. While (Stop criterion=False) do

4. Each node executes Algorithm 1.

5. According to node selection process v(tk), node i is selected and applies the

local state update rule 4.3.2 to its in-neighborhood Nin,i.

6. Let k = k + 1.

7. End while. �

The Stop criterion for Algorithm 2 is discussed in Subsection 4.3.4. Figure 4.2 shows a

flux diagram that explains in words the execution of Algorithm 2. The formal proof that at

each iteration k of the Algorithm 2, the objective function of Equation 4.2 is either improved or

does not change will be given in Theorem 4.3.4, although the optimal solution of Equation 4.2

cannot be guaranteed as eventually found as k increases. However, Algorithm 2 offers several

advantages with respect to centralized algorithms.

• Both problems in Equations 4.11 and 4.12 are hard to solve. However, the

computational complexity of the local optimization is function only of the

number of nodes involved in the optimization, thus despite being a MILP

problem, its complexity does not grow by increasing the number of nodes in

the network and is small in absolute terms if the number of processing that

may be allocated locally between the nodes is small.

• Since the allocation of processing is dynamic, the algorithm reacts to unex-

pected drops in battery charge and in network topology by changing the status

of the nodes involved.



52 4 Decentralized Lifetime Maximization Algorithm

Figure 4.2: Flux diagram of Algorithm 2.

The behavior of the network while DLMA is being executed will be now characterized.

Theorem 4.3.4. Consider a WSN that executes Algorithm 2. Let V (t) = mini∈X
Pi(S)

eresi
be the

inverse of the minimum lifetime in the network set by the nodes with the smallest ratio between

power consumption and energy reserve. Then, if the network executes Algorithm 2

∀k = 1, . . . ,∞ : V (tk+1) ≤ V (tk).

Proof. During the algorithm execution, at each iteration k two situations may occur:

Case 1: The processing state matrix S of the network does not change, then V (tk+1) = V (tk)

by definition.

Case 2: The processing state matrix S changes according to the solution of the local optimiza-
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tion problem described by Equations 4.11 and 4.12.

The solutions of problems in Equations 4.11 and 4.12 minimize locally the energy con-

sumption for the node with the shortest lifetime between nodes i and j ∈ Ni only if the

lifetime of the node performing the optimization is greater than the minimum lifetime in its

neighborhood by at least a constant ∆τi. Thus, if a feasible solution is found, the processing

state S is updated only if minj∈Nin,i
⋃
{i}

eresj
Pj(sk : k ∈ Ni

⋃
{i})

> minj∈Nin,i
⋃
{i} τj(S̄) caus-

ing V (tk+1) < V (tk), or τi > xi + ∆τi causing
∑

j∈Nin,i
Θout
j to be minimized. Thus, since

xi(tk) ≤ minj∈Si
τj , the constraints of the optimization problem ensure that locally the lifetime

is not reduced to a value smaller than the minimum lifetime between the nodes Xi.

The nodes not involved in the local optimization will be now proved to not decrease their

lifetime as a result. In the proposed local optimization a processing state update is performed

only if each single information flow passing from node i to the nodes in Nout,i is not increased

due to the constraint Θout
i ≤ Θ̄out

i . Now the transmission cost for any node in Nin,i can only

decrease as Θout
i is decreased, as shown in Equation 4.7, and its processing cost cannot increase,

as shown in Equation 4.6. Furthermore, also the nodes in the downstream path towards the sink

receive a smaller information flow thus consuming less power. Finally, the nodes in the upstream

path have their information flow left unchanged, thus V (tk+1) ≤ V (tk) for any k = 1, . . .∞,

proving the statement. �

4.3.3 Node Selection Processes

The two main node selection strategies to apply the local update rule 4.3.2 will be now dis-

cussed. The first, called deterministic node selection process, is defined by function v(t) :

R+ → X
⋃
{∅} that at each step k selects the out-neighbors of the nodes chosen at step

k − 1. Furthermore the sink node executes the local state update periodically v(t0+kT ) = 0,

for k = 1, . . .∞. In other words, with period T , the sink node i = 1 triggers its neighbors

to perform a local optimization, thus triggering an avalanche mechanism that triggers all the

nodes starting from the sink toward the leaf nodes. This mechanism is controlled by the sink

node since the period T in which it is activated controls the frequency of optimizations that

occur in the network. Since the graph is rooted, connected, directed and acyclic, it is ensured

that all nodes are triggered in a not self-sustaining way so that after the leaf nodes are triggered,

no more local optimizations are performed until the sink node triggers a new round.

The second, called stochastic node selection process, is defined by a random stochastic

process v(t) : R+ → X
⋃
{∅}, which assigns to each node a probability pi (with i = 1, . . . , N )

of activating a local optimization at each instant of time t.
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The advantages of the deterministic node selection process are that it terminates in finite

time, gives complete control over frequency of local optimization to the sink node and ensures

that local optimizations are triggered evenly throughout the network.

The advantages of the stochastic node selection process are that it is completely decentral-

ized and due to the randomization process may get closer to the optimal processing assignment.

Furthermore, the frequency of each local optimization may vary between the nodes, thus in-

creasing for nodes with large lifetime with respect to the others and minimizing for those nodes

close to the minimum lifetime in the network.

4.3.4 Stop Criterion

In this Section, the stop criterion for Algorithm 2 will be discussed.

Definition 4.3.5 (Stop Criterion). Let a sensor network execute Algorithm 2 and Algorithm 1.

Let D be the length of the longest directed path in GX and let T be the maximum time it takes

for a node to complete a reception and transmission cycle. Assume that a deterministic node

selection process is adopted so that at most every DT units of time every node has executed the

local update according to Algorithm 2. Then, for each node i selected to perform Algorithm 1,

if xi(t) = xi(t
′) for t ∈

[
t′, t′ + D(D+3)

2
· T
]
, assign to node i Stop criterion := True and stop

the execution of Algorithm 2 at node i. �

In the following proposition, the proof that when the stop criterion in Definition 4.3.5

is satisfied any further execution of Algorithm 2 cannot improve the network lifetime will be

given.

Proposition 4.3.6. Consider a sensor network that executes Algorithm 2 and Algorithm 1 with a

deterministic node selection process. Assume that each node verifies the conditions for the stop

criterion given in Definition 4.3.5. Then, any further execution of Algorithm 2 cannot improve

the minimum network lifetime τ .

Proof. Assume the conditions for the stop criterion in Definition 4.3.5 are verified and the

network is executing a deterministic node selection process. Assume that at time t′ a local

update on node i occurs. The longest time it takes for such an optimization to have an effect, if

any, on the minimum network lifetime, will be now computed. When node i updates its state,

four cases may occur:

1. Node i does not improve its own lifetime nor reduces its output bitrate. In this

case nothing happens.

2. Node i has the shortest lifetime in the network and improves it. In this case,

after at most TD units of time all nodes that may affect its lifetime are aware
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of the change due to Proposition 4.3.1.

3. Node i does not improve its own lifetime but reduces its output bitrate. In this

case, if the minimum network lifetime has been improved and after at most

TD units of time all nodes are aware of the change due to Proposition 4.3.1.

4. Node i does not have the shortest lifetime in the network but it improves its

own. In this case, only the neighbors of node i may detect the change.

Thus, the worst case scenario that may take the longest time for a given node to detect a

change in the minimum network lifetime is set by case (4) when a node changes its state but

only its neighbors are ensured to detect it. Clearly, if after this update in the next TD units of

time the neighbors do not make changes to their state, the network lifetime will not change and

no further local state update will be performed due to the state change of node i. Therefore, the

longest time it takes for node j that holds the shortest lifetime to be affected by a local state

update due to case (4) corresponds to the time it takes for all the nodes in the path connecting it

with node i to perform a local update and change their state according to case (4). Thus, in the

worst case in which the path from node i to node j is equal to D, it takes at most D(D+1)
2

T units

of time to ensure the propagation of the effect of the state change of node i to node j. Whenever

the minimum network lifetime is improved, due to Proposition 4.3.1 after at most TD units of

time all nodes interested by the change become aware of it. Thus, if any node in the network

does not change its state nor detects a change of state of its neighbors or on its estimation of the

minimum network lifetime for at least D(D+1)
2

T + TD units of time it implies that each node in

the network already attempted a local state update without changing its own state. Therefore, no

further execution of Algorithm 2 may change the state of the network and consequently cannot

improve the current minimum network lifetime. �

4.3.5 Computational Complexity and Energy Cost of the Optimization

The optimization problem defined in 4.3.2 is a MILP. It is known that to solve a MILP problem a

number of operations that grow exponentially with respect to the number of variables is required

in the worst case. Thus, the feasibility of solving problem 4.3.2 in an embedded system such

as a sensor node, depends on the number of available processing tasks that can be activated in

it and in its neighbors. In the worst case, the number of required operations is at most equal

to the number of operations required to perform an exhaustive search between all the possible

combinations of processing assignments. Let Eo denote the energy required to evaluate one

of the objective functions of 4.3.2 for a given assignment of processing tasks and verify that

constraints of 4.3.2 are satisfied. Now, recalling that the columns of matrix D = [d1, . . . ,dn]

are binary vectors whose elements are 1 if the corresponding processing may be activated in
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the corresponding nodes, the number of possible processing assignments in the generic in-

neighborhood Nin,i of node i, when it performs the local update 4.3.2, is

Ni,assignments = 2
1T

∑
j∈Nin,i

⋃
{i} dj .

Thus, in the worst case, the energy cost to perform the local update 4.3.2 on node i is

Êi = Eo ×Ni,assignments = Eo × 2
1T

∑
j∈Nin,i

⋃
{i} dj . (4.14)

Clearly, while sensing, processing tasks and transmission occur continuously in the network,

problem 4.3.2 is solved periodically whenever the local update is triggered. Thus, depending on

the total cost Êi, there is a tradeoff between how often the update is triggered and the increased

consumption of energy due to its execution.

4.4 Performance Analysis

In this Section, the analysis for two completely different scenarios will be presented:

• Scenario A: a rectangular-shaped outdoor environment (e.g., a vineyard, a

seaport, a tourist plaza), where nodes have been positioned randomly follow-

ing a uniform distribution. Each node is equipped with sensors for the mea-

surement of temperature, humidity, PH and light exposure. Data is then sent

to the sink. The application assigned to this scenario consists in collecting the

sensed data every 10 minutes, compute the average value for the entire envi-

ronment, and compute the average value over an hour. Each sensed value is

represented as a double numerical value, which is 64-bit long.

• Scenario B: an urban environment, where nodes have been positioned along

the streets as shown in Figure 4.3. All solid markers represent nodes equipped

with sensors for speed measurement of the vehicles passing through; speed

measurements are sent every 2 minutes, and are represented as double nu-

merical values (64-bit long). Empty markers are more capable nodes which

do not perform any sensing task, but can perform more complex processing

operations. The assigned application consists in a driver, placed in the Start

point, which would like to know which is the fastest way to reach Destination,

based on the speed information collected by sensor nodes.
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Figure 4.3: Example of topology for Scenario B. Solid markers represent nodes equipped with
speed sensors, while empty markers are more capable nodes which do not perform any sensing
task, but can perform more complex processing tasks

Two WSN settings are considered according to some of the most significant realistic sce-

narios considered in past works, such as in [86]:

• UC-UE: uniform energy consumption and uniform initial energy at each node;

• NUC-NUE: non uniform energy consumption and non uniform initial energy

at each node (energy consumption parameters selected randomly in the range

60% to 140% of the values for case UC-UE; battery charge assigned randomly

from 20% to 100% of the total charge).

In both scenarios, nodes communicate using IEEE 802.15.4 radio interfaces on the 2.4GHz ISM

frequency band. To keep things simple, any possible overhead has not been taken into account.

The resulting scenarios have been simulated in a MatLab environment, where the proposed

algorithm was implemented along with three alternative approaches:

• mechanism S: data processed only by the sink so that sensed data is sent to

the sink without any intermediate processing;

• mechanism CH: data processed by every cluster head found in the path to-

wards the sink. Cluster heads are those nodes receiving flows from more than

one node;

• mechanism CO: centralized optimization algorithm described in Chapter 3.

In the following Subsections, the comparisons between results obtained using the DLMA and

those obtained with mechanisms S, CH and CO in terms of lifetime conservation gain will be

presented. These results are referred to respectively as: DLMA-S, DLMA-CH and DLMA-CO.

The main setup parameters are listed in Table 3.3.
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4.4.1 Scenario A

The application assigned to Scenario A can be subdivided in 1 sensing task ts1 - the temperature,

humidity, PH and light exposure sensing - and 2 processing tasks: tp1 is the temporal mean com-

putation, while tp2 is the spatial mean computation. The described tasks are listed in Table 4.1,

and their corresponding graph is shown in Figure 4.4.

Table 4.2 and Figure 4.5 show results for this scenario, considering both deterministic and

stochastic node selection (see Section 4.3.3). The mean and deviation values are computed on

results found for networks with different node densities, different node deployments, differ-

ent energy parameters for case NUC-NUE, and different node sequences for stochastic node

selection.

Results show an average improvement of 80.2% obtained with the proposed strategy with

respect to S and CH in terms of network lifetime. Differently, as it was clearly expected, a

lifetime decrement is observed when making a comparison with the mechanism CO with an

average decrement of 24.4%. As a matter of fact, this is the drawback of the DLMA with respect

to the centralized optimization algorithm, which leads to an optimal task allocation.

Figure 4.4: DG for the tasks of Scenario A

Table 4.1: Tasks for Scenario A

Task Description

ts1 Temperature, humidity, PH and light exposure sensing
tp1 Temporal mean
tp2 Spatial mean

Table 4.2: Percentage values of lifetime conservation deviation for Scenario A

Deterministic node selection
DLMA-S DLMA-CH DLMA-CO

UC-UE 1.2% 6.0% 15.5%

NUC-NUE 2.0% 9.4% 16.8%

Stochastic node selection
DLMA-S DLMA-CH DLMA-CO

UC-UE 2.9% 13.4% 20.4%

NUC-NUE 2.9% 13.3% 23.2%
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(a) Deterministic node selection

(b) Stochastic node selection

Figure 4.5: Percentage values of mean lifetime conservation using DLMA in Scenario A, con-
sidering deterministic (a) and stochastic (b) node selection

The best results are obtained for comparisons S and CH. This is because such mechanisms

assign processing tasks in a fixed way, without taking into account how different allocations

could affect the network lifetime. On the other hand, tasks are assigned by DLMA to those nodes

that actually weight less on the network, in terms of processing and transmission costs. In fact,

network lifetime is improved when tasks are assigned to nodes having lower processing cost

parameters or higher residual battery charge, or when processing data (and therefore, in most
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cases, reducing their amount), before sending them, considerably reduces transmission cost.

This behavior is slightly stressed for heterogeneous networks, which are the most common in

real scenarios. For this reason, results for NUC-NUC case are slightly better than UC-UE case.

It can be noted that deviation values are higher for NUC-NUE case with respect to UC-UE

case because of the randomness intrinsic to the NUC-NUE case.

With respect to node selection, results are quite similar, but, as expected, stochastic node

selection slightly outperforms the deterministic one. Nevertheless, once again the randomness,

introduced by the stochastic method, leads to higher deviation values than the deterministic

node selection.

4.4.2 Scenario B

The application assigned to Scenario B can be subdivided into 11 sensing tasks and 37 process-

ing tasks, as defined in Table 4.3. 11 different speed sensing tasks are distinguished, one for

each stretch of street. A speed sensing task related to a particular stretch is assigned to a sensor

node only if the sensing node is placed in that stretch. Furthermore, since the mean traveling

time for each stretch is required in order to confront them to each other, 11 mean speed comput-

ing processing tasks and 11 mean traveling time computing processing tasks are defined, one

for each stretch of street. To find the best path, i.e. the best combination of stretches of street

that lead from the Start point to Destination, the sum of the mean traveling times of all the com-

bination of stretches that can be driven one after the other are needed in order to confront them.

Therefore, the remaining processing tasks are: 12 different summation of mean traveling times

for different stretches, and 3 different choice of the best path. The relations among tasks are

depicted in Figure 4.6. With reference to Figure 4.3, solid markers represent nodes that are only

allowed to perform the speed sensing and mean speed computing for the stretch of the street

where they are placed. Empty markers are more capable nodes (with an initial battery charge

three times higher than the others), that do not perform any sensing task, but they are able to

perform all the processing tasks for the appropriate stretches.

Table 4.3: Tasks for Scenario B

Task Description

ts1 ÷ tsll Speed sensing
tp1 ÷ t

p
ll Mean speed computing

tpl2 ÷ t
p
22 Mean travelling time computing

tp23 ÷ t
p
34 Summation of mean travelling times for different stretches

tp35 ÷ t
p
37 Choice of the best path



4.4 Performance Analysis 61

Figure 4.6: DG for the tasks of Scenario B

Results are shown in Table 4.4 and Figure 4.7. The mean and deviation values are com-

puted on results found for networks with different node densities, different energy parameters

for case NUC-NUE, and different node sequences for stochastic node selection.

The average improvements for comparisons DLMA-S and DLMA-CH is 91.5%, while the

average decrement for comparison DLMA-CO is 29.2%. With respect to the previous scenario, a

significant improvement of the proposed algorithm when compared with the the CH mechanism

is observed.

Table 4.4: Percentage values of lifetime conservation deviation for Scenario B

Deterministic node selection
DLMA-S DLMA-CH DLMA-CO

UC-UE 0.7% 1.3% 14.3%

NUC-NUE 1.2% 1.8% 11.1%

Stochastic node selection
DLMA-S DLMA-CH DLMA-CO

UC-UE 1.2% 2.3% 15.3%

NUC-NUE 2.4% 3.5% 17.7%
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(a) Deterministic node selection

(b) Stochastic node selection

Figure 4.7: Percentage values of mean lifetime conservation using DLMA in Scenario B, con-
sidering deterministic (a) and stochastic (b) node selection

This is because in Scenario A nodes are placed randomly, and thus it is more likely that

they form clusters that are quite close to each other. In Scenario B, the only nodes that can be

considered cluster heads are those with greater computational power (empty markers in Fig-

ure 4.3). They are far from each other, and since the burden of processing is all upon them, their

lifetime decreases quite fast.

Also in this scenario, the node selection procedure doesn’t heavily influence the final per-
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formance. However, again, the stochastic node selection slightly outperforms the deterministic

one.

4.4.3 Considerations about MLE and DLMA Algorithms

In this Section, some additional considerations about MLE and DLMA algorithms behavior for

both Scenarios A and B are drawn.

Table 4.5 shows the average number of steps for DLMA to come to a solution, which is the

mean number of times each node has to perform DLMA. As foreseen, the deterministic node

selection leads to a result in a lower number of steps than the stochastic node selection. Fur-

thermore, although the application for Scenario B is much more complex than the application

for Scenario A, the average numbers of steps are quite close. Of course, since the optimiza-

tion complexity depends on the number of variables, and therefore it depends on the number

of nodes involved in the optimization and, most importantly, on the number of tasks that those

node are able to perform, each step is more complex for Scenario B than for Scenario A.

This is demonstrated by results in Table 4.6, where the average times tMLE and tDLMA to

perform algorithms MLE and DLMA, and their summation tTOT , are compared to the related

average time tCO to perform centralized algorithm CO. These times are computed taking into

account not only execution time, but also signalling transmission and reception time due to

the algorithms. As expected, execution time to perform DLMA is, on average, 95% higher for

Scenario B than for Scenario A. Nevertheless, the total amount of time for the algorithms to

converge is still low, especially if compared with centralized algorithm CO: since the number

of nodes involved in each optimization is much lower in DLMA than in CO, and the number of

tasks that can be performed by adjacent nodes is low, CO execution weights much more than

DLMA on the network, particularly for complex application scenarios.

Table 4.5: Average number of steps for DLMA

Scenario A
Deterministic selection Stochastic selection

UC-UE 3.6 4.5

NUC-NUE 3.5 4.6

Scenario B
Deterministic selection Stochastic selection

UC-UE 3.8 4.1

NUC-NUE 3.7 4.3
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Table 4.6: Average time (in seconds) to perform MLE and DLMA

Scenario A
Deterministic selection Stochastic selection

UC-UE

tMLE[s] 0.0017 0.0017

tDLMA[s] 0.020 0.043

tTOT [s] 0.022 0.045

tCO[s] 0.089

NUC-NUE

tMLE[s] 0.0017 0.0017

tDLMA[s] 0.019 0.044

tTOT [s] 0.021 0.046

tCO[s] 0.089

Scenario B
Deterministic selection Stochastic selection

UC-UE

tMLE[s] 0.0017 0.0017

tDLMA[s] 0.40 0.79

tTOT [s] 0.40 0.80

tCO[s] 397

NUC-NUE

tMLE[s] 0.0017 0.0017

tDLMA[s] 0.36 0.80

tTOT [s] 0.37 0.81

tCO[s] 433

It needs to be noticed that conditions of Equations 4.13a and 4.13b ensure that the local

optimization algorithm is never started if the expected lifetime decrement due to its execution is

higher than the current node’s lifetime. This means that the local optimization does not run for

high numbers of nodes involved and tasks that can be performed. For this reason, it is unlikely

that a local optimization takes a long time to come to a solution, and therefore it is unlikely that

DLMA takes a long time to converge.

At the same time, conditions of Equations 4.13a and 4.13b guarantee that, at each DLMA

step, the network lifetime cannot decrease with a change in status. This monotonic increase is at-

tested by Figure 4.8(a), where an example of the network lifetime improvement for each DLMA

step is shown. Each step corresponds to the local optimization computed on one node accord-

ing to the local state update rule 4.3.2: at each status change, the expected network lifetime

changes accordingly. The same reference DLMA execution is used to compute the expected

total power consumption changes shown in Figure 4.8(b): although this curve is not monotonic,

the expected total power consumption decreases while DLMA converges.
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(a) Network lifetime

(b) Total Power Consumption

Figure 4.8: Example of network lifetime and total power consumption improvement during
DLMA execution





Chapter 5

Task Allocation Negotiation Algorithm

Due to the drawbacks of a centralized solution such as the one described in Chapter 3, a dis-

tributed algorithm, the DLMA, has been proposed in Chapter 4 to perform task allocation in

WSNs. DLMA reduces the problem complexity, as only local areas are considered rather than

the whole network. The communication overhead caused by packet exchanges between network

nodes and the sink is also avoided. Nevertheless, it does not take into account the execution time

of the application assigned to the network. This might lead to an inconvenient task assignment,

where the application deadline is reached before the application is executed.

In this Chapter, a new distributed algorithm for the allocation of application tasks among

WSN nodes is proposed. This algorithm, named Task Allocation Negotiation (TAN) [87], aims

not only to improve the existing algorithms performance reducing computational complexity,

but also to reduce both network energy consumption and application execution time. The major

contribution is the adoption of the rules of non-cooperative game theory [88]. Sensor nodes

negotiate among each other while setting the application configuration. In doing so, each node

aims at maximizing a node utility function under the constraints set by neighboring nodes. The

scenario under consideration is then proved to be a potential game, which means that every

improvement of the node utility functions corresponds to the same improvement in the utility

perceived by the whole network, which implies that the problem has a unique outcome that is

reachable in a finite time.

This Chapter is organized as follows. Section 5.1 introduces the problem and the adopted

approach. Section 5.2 describes the task assignment model. Section 5.3.2 presents the TAN

algorithm. Section 5.4 shows and discuss simulation results.
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5.1 Problem Formulation

The reference scenario considered in this paper is that of a hierarchical heterogeneous WSN.

This WSN needs to run a required application, which can be divided into smaller tasks that can

be assigned to network nodes to be executed. Due to the heterogeneous node characteristics,

some nodes can perform the same task faster than others, and even spend less energy. The

objective of the proposed algorithm, TAN, is to assign the tasks to suitable nodes, such that the

processing time of the application is as short as possible and the network lifetime is as long

as possible. TAN includes negotiations among nodes to determine task assignments. Whenever

a node receives some data, along with the information on which particular tasks have to be

performed on the data, it decides whether it should perform some tasks or not, depending on

the contribution it could give to the network in terms of faster processing time and lifetime

improvement.

5.1.1 Network Model

The reference network model has already been described in Section 2.2. The scenario under con-

sideration is that of a hierarchical heterogeneous WSN. The network is organized into clusters

of sensor nodes. Each cluster is controlled by a single cluster head, which collects sensory data

from nodes in its cluster. There is a single hop between a sensor node and its corresponding clus-

ter head. At the top of the hierarchy a a sink node, which collects data received from the cluster

heads. Sensors transmit their data to the cluster heads, which then deliver the collected data to

the gateway through a path of cluster heads. Routing paths over the cluster heads is determined

by conventional routing protocols [89], such as Self-Organizing Protocol, Location-Based Rout-

ing Protocol, etc. In this model, Hierarchical Power-Aware Routing protocol is used [90], due to

the fact that it is based on a trade-off between minimizing power consumption and maximizing

the minimal residual power of the network.

Negotiations are performed among neighbor nodes; multihop negotiations do not take

place, and this significantly reduces the number of message exchanges. No communication is

allowed between sensors belonging to different clusters. This means that, given two nodes i and

j, eXij ∈ EX if and only if i and j are in the same cluster. Such an architecture helps reduce the

overhead caused by the negotiations. Figure 5.1 shows the reference architecture of the network

under examination, where SN stands for sensor node, CH stands for cluster head, and GW is

the gateway.
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Figure 5.1: Architecture of the network. Solid lines represent connections formed by the routing
protocol; dashed lines represent connections between negotiation nodes

Figure 5.2: Example of a task DAG.

5.1.2 Task Model

A single large application is considered to be assigned to the network for execution. The appli-

cation is decomposed into a set of tasks, and can be described as a DAG of tasks GT = (T,ET ),

where T = {1, . . . , λ, . . .Λ} is the set of tasks, and ET = (eTvw) is the set of edges, with each

edge eTvw representing a unidirectional data transfer from task v to task w. An example of the

task DAG is depicted in Figure 5.2. The sink initially sends the application graph GT to nodes,

so that each node learns the relations and dependencies between the tasks.

A binary vector s(i) = (s(i, λ)), for λ ∈ T , can be assigned to each node i in the network
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where s(i, λ) is a boolean value representing the current state of node i corresponding to task λ,

i.e. s(i, λ) = 1 when node i is performing task λ. The vector s(i) is called the task assignment

strategy of node i. The state s(i, λ) can only be set to 1 if and only if all its predecessor tasks

have been assigned to a node, i.e. s(i, λ) = 1 if s(j, l) = 1, ∀l ∈ Tin(λ), where Tin(λ) is the

set of input tasks for task λ. With reference to Figure 5.2, Tin(T1) = Tin(T2) = Tin(T3) =

Tin(T5) = {}, hence they are source tasks, Tin(T4) = {T1, T2, T3}, and Tin(T6) = {T4, T5}.

Since not every node may be able to perform each and every task, a binary vector d(i) =

(d(i, λ)) is defined, where d(i, λ) = 1 if node i is able to perform task λ. Note that s(i, λ) = 1

is possible only if d(i, λ) = 1, which means that d(i, λ) ≥ s(i, λ).

During the execution of the proposed algorithm, two sets of tasks are formed: the set of

tasks Tprev = {1, . . . , h, . . . , H} that have been already assigned to nodes and the set Tnext =

{1, . . . , k, . . . , K} of those tasks that are yet to be assigned. This means that, for each task

h ∈ Tprev, there is a node i for which its state s(i, h) is equal to 1. Source tasks are assumed to

be already assigned to the nodes by the sink according to the output required by the application.

For example, if the application requires the temperature measurement for a certain area, source

tasks correspond to the temperature sensing tasks for that area. In this case, the sink assigns

these source tasks to the sensor nodes that are located in that area. Hence, initially, the set Tprev
is only populated with source tasks, i.e. with reference to Figure 5.2, Tprev = {T1, T2, T3, T5}
and Tnext = {T4, T6}.

5.2 The Task Assignment Model

Finding the trade-off which best fits the requirements of both minimizing the application com-

pletion time and maximizing the network lifetime could be exceedingly time and energy con-

suming since this is an NP-hard problem [67],[68]. For this reason, in this Section, a non-

cooperative game model [91] is used for the task allocation problem in WSNs. Neighboring

nodes negotiate in order for each node i to choose a task assignment strategy s(i) that maxi-

mizes its own utility function.

5.2.1 Definitions

A non-cooperative game is defined by the tuple Γ = 〈X, {s(i), ui}i∈X〉, where a utility function

ui is assigned to node i ∈ X for the given strategy vector s(i). The goal of each node is to

maximize its own utility in a rational way. Therefore, a strategy s∗(i) is preferred to a strategy

s(i) if and only if ui(s∗(i)) > ui(s(i)). For simplicity, S =
⋃
i∈X s(i) is denoted as the strategy

of all the nodes in the network.
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5.2.2 Task Utility Function

The TAN algorithm decides which particular node should execute a given task k by maximizing

a task utility function over the set Tnext of unassigned nodes, given by

uk(S) = max
i∈X

{[
Ωt(i, k) +

α

NF (k)
× Ωτ (i, k,S)

]
× s(i, k)

}
(5.1)

where Ωt(i, k) is the task completion time component of task k when it is performed by node

i, Ωτ (i, k,S) is the network lifetime component when task k is performed by node i according

to the strategy S, NF (k) is a normalization factor that eliminates the difference in magnitude

between the task completion time and the network lifetime values, and α > 0 is a weighting

factor.

The maximum operation ensures that the task can only be assigned to the node that maxi-

mizes the utility function uk(S): since the goal of the game is to maximize the utility function

only the node that ensures the best outcome will be chosen to perform task k.

Task Completion Time Component

As defined in Section 5.1, the set Tnext is formed of those tasks that are to be assigned to nodes

for execution. Each task k ∈ Tnext is characterized by two parameters:

1. the deadline for successfully completing a task, td(k);

2. the number of required instructions, I(k).

The task completion time component is expressed as

Ωt(i, k) =
td(k)− tc(i, k)

td(k)
(5.2)

where tc(i, k) is the completion time if task k is performed by node i, which is defined as

tc(i, k) =

{
I(k)× tinstr(i), if tc(i, k) ≤ td(k)

td(k), if tc(i, k) > td(k)

with tinstr(i) time needed by node i to perform a single instruction.

Network Lifetime Component

This component is defined as follows

Ωτ (i, k,S) = Fp(i, k) + Ftx(i, k,S) (5.3)
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where Fp(i, k) is the component related to the change in network lifetime due to the processing

cost needed to perform task k in node i. This component is defined as

Fp(i, k) = −I(k)× einsi
eresi

(5.4)

Note that, since data processing entails a certain amount of energy consumption, Fp(i, k)

cannot increase task k’s utility, and thus it needs to be negative in order to decrement the utility

of node i when task k is executed at node i.

The term Ftx(i, k,S) in Equation 5.3 is related to the change in network lifetime due to

the transmission (and reception) of the necessary data for task k to node i, i.e. it represents

communication costs in the task utility function. Let pi→j = {(i, a), (a, b), . . . , (e, f), (f, j)}
be the routing path that connects node i to node j, and HL be a hierarchically higher-level node

for nodes i and j. The transmission term is then

Ftx(i, k,S) = −Ctx(pi→HL, k)+
∑

l∈Tin(k)

∑
j∈X

{
Ctx(pj→HL, l)−Ctx(pj→i, l)

}
×s(j, l) (5.5)

where

Ctx(pi→j, k) =
∑

(x,y)∈pi→j

(
erxy
eresy

+
etxxy
eresx

)
× n(k) (5.6)

In Equation 5.6, Ctx(pi→j, k) is the cost to transmit (and receive) data from node i to node j,

and n(k) is the number of output bits for task k. The difference operation is due to the fact

that the difference in lifetime between two cases is considered: in the first case, task k is not

performed, and input data for task k are sent directly to the higher-level node. In the second case,

input data for task k are sent to node i where task k is performed, and then the output is sent to

the hierarchically higher-level node. Note that, contrary to the processing component Fp(i, k)

(Equation 5.4) that is always negative, the transmission component Ftx(i, k,S) (Equation 5.5)

may also be positive, increasing the task utility function (Equation 5.1) and making it more

convenient to perform task k at node i rather than delegating the processing job to the higher-

level node.

It may be noted that processing and transmission are not the only mechanisms that affect

the network lifetime. The proposed solution does not take into account other mechanisms such

as sensing or actuation because they are supposed to be already assigned to the nodes. Hence,

they are considered static reasons of lifetime reduction that cannot be changed by a strategic

change, so their contribution to the task utility function is null.



5.2 The Task Assignment Model 73

Normalization factor NF (k)

In Equation 5.1, the normalization factor NF (k) is introduced so as to make the magnitudes

of the network lifetime and task completion time components comparable to each other. Since

NF (k) is independent from the task assignment strategy, its value can be computed offline

before the negotiation starts. The normalization factor is computed by

NF (k) =
Ωτ (k)

Ωt(k)
(5.7)

where Ωτ (k) and Ωt(k) are the mean values of Ωτ (i, k,S) and Ωt(i, k), computed over all nodes

i ∈ X .

Weighting factor α

The parameter α introduced in Equation 5.1 is a coefficient of the network lifetime compo-

nent in the task utility function. If α tends to 0, the utility function is mostly influenced by the

task completion time component; the higher its value is, the more the changes in the network

lifetime component are reflected by the utility function. Clearly, if α tends to 1, the task comple-

tion time component Ωt(i, k) and the network lifetime component Ωτ (i, k,S) have comparable

magnitudes, and therefore comparable influences on the utility function.

Fig. 5.3 shows how different values of α affect the task utility function uk(S). In particular,

it is interesting to note that when α = 0.5, if Ωt(i, k) shrinks by 10% an increase of Ωτ (i, k,S)

of 5% is necessary in order to keep the same value of uk(S); on the other hand, when α = 2,

if Ωt(i, k) shrinks by 10% the same value of uk(S) could only be reached with an increase of

20% of Ωτ (i, k,S).

5.2.3 Network Utility Function

Given the task utility function defined in Equation 5.1, the network utility function is defined as

the sum of all task utility functions for those tasks that are not yet assigned to nodes

ug(S) =
∑

k∈Tnext

uk(S) (5.8)

This Equation implies that the network utility function is maximized when the sum is

maximized. However, this is only possible if all the nodes in the network could communicate

with each other. The communication overhead resulting from a negotiation of this type would

entail an additional transmission cost that would counter the benefit of the maximization itself,

particularly for large networks. For this reason, the TAN algorithm lets each node negotiate only
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Figure 5.3: Network lifetime component Ωτ (i, k,S) with respect to task completion time com-
ponent Ωt(i, k), supposing s(i, k) = 1, for task utility function value of uk(S) = 0.5 and
different values of weighting factor α

with its neighbors, achieving a sub-optimal but computationally more efficient solution. Hence,

the definition of a node utility function is required.

5.2.4 Node Utility Function

The node utility function must be defined in such a way that any increment in its value must

correspond to an equivalent increment in the network utility function of Equation 5.8. In doing

so, an approximation based on local negotiations can be obtained, without the need for network-

wide negotiations. The node utility function ui can then be written as an aggregation of the

marginal contributions umark (s(i)) of node i to each task k (and therefore to the network utility

function) given by

ui(s(i)) =
∑

k∈Tnext

umark (s(i)) (5.9)

The marginal contribution is defined as a Wonderful Life Utility (WLU) in [92]. WLU is

the difference between the task utility for a given node strategy s(i) and the task utility for the

null strategy s0(i), in which all the elements are equal to 0, i.e. the node is not contributing to

any task. The marginal utility umark of node i to task k is then computed by

umark (s(i)) = uk(s(i))− uk(s0(i)) (5.10)
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Note that marginal utility is null when the node is not contributing to the task as a part of its

strategy.

From Equation 5.10 it is possible to infer that the marginal contribution of node i to task

k is not null only if the node is contributing to the task. Furthermore, since the network utility

function in Equation 5.8 is a summation of task utility functions (Equation 5.1), a node con-

tributes to the network utility when it contributes to at least one task. Therefore, a change in

node i’s strategy s(i) that increases its utility entails the same increment in the network utility.

Let s(i) be the strategy of node i at time t and let s∗(i) be the strategy of node i at time t∗ > t

ui(s
∗(i))− ui(s(i)) =

∑
k∈Tnext

muk(s
∗(i))−

∑
k∈Tnext

muk(s(i)) =

=
∑

k∈Tnext

(
uk(s

∗(i))− uk(s(i))
)

= ug(s
∗(i))− ug(s(i))

This property is particularly desirable because it implies that the game under consideration

is a potential game [93], where the potential function is given by the network utility function.

A consequence is that this game has at least one pure Nash equilibrium [93]1. Furthermore, po-

tential games have the Finite Improvement Property: every sequence of changes in the strategy

that improves the network utility converges to a Nash equilibrium in finite time. This prop-

erty ensures that many simple adaptive processes, such as the Distributed Stochastic Algorithm

(DSA) [94], converge to Nash equilibria.

5.3 Task Allocation Negotiation Algorithm

The aim of the TAN algorithm is to maximize the network utility function given by Equa-

tion 5.8. To achieve this purpose, individual node utility functions are maximized by means of a

negotiation accomplished by neighboring nodes. The negotiation is based on a greedy search al-

gorithm, called DSA [94], which is proved [95] to provide a solution more quickly than existing

algorithms such as Distributed Breakout Algorithm (DBA) [94] and Maximal Gain Messaging

(MGM) [96]. Before introducing TAN in detail, it is essential to explain DSA, which is next.

5.3.1 Distributed Stochastic Algorithm

DSA is a synchronous algorithm. At each time step t, each node that is involved in the nego-

tiation and changed its strategy in the previous time step t − 1, sends to all the other involved

nodes a strategy update message (SUM) which contains its new strategy s∗(i). If a node receives

1Pure Nash equilibria are characterized by a unique outcome, contrary to mixed Nash equilibria where the
outcome is stochastically variable.
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Algorithm 1 DSA for node i
1: while counter < twait do
2: if s∗(i) was found at t− 1 < t then
3: broadcast a SUM to all neighbors
4: end if
5: if a SUM has been received then
6: counter ← 0
7: v ← rand()
8: if v > p then
9: find s(i) that maximizes ui(s(i))

10: if ui(s(i)) > ui(s
∗(i)) then

11: s∗(i)← s(i)
12: end if
13: end if
14: else
15: counter ← counter + tstep
16: end if
17: end while

a strategy update message, and if the value v assigned by its random number generator rand()

is higher than a given probability p, then a new strategy s(i) that maximizes its own utility

ui(s(i)) (Equation 5.9) is computed. If the utility is already maximized by the current strategy,

no changes occur. DSA terminates when no new strategy update messages are received within

the last twait seconds. The pseudocode for DSA is given in Algorithm 1.

The probability value p is known as the degree of parallel executions. The value of p af-

fects the performance of DSA: the higher it is, the higher the probability that all the nodes

simultaneously change their strategy, thus increasing the communication costs, and the algo-

rithm’s convergence time. On the other hand, low values may lead to a large convergence time,

due to less frequent changes in node strategies.

5.3.2 Task Allocation Negotiation

The TAN algorithm consists of the whole procedure to assign the tasks in Tnext to the nodes in

X , in order to maximize the network utility function ug(S). At each step of the TAN algorithm,

some nodes in the network hold some data, on which some tasks in Tnext need to be performed.

These nodes first exchange the information required for DSA with their neighboring nodes;

then, all the nodes in the involved neighborhoods run the DSA until a strategy is found. Finally,

the tasks are performed according to the strategy determined with DSA, and processed data are

sent to the higher-level node. The TAN algorithm will be now described in detail.

The pseudo-code of TAN is provided in Algorithm 2. The algorithm starts as soon as source
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Algorithm 2 TAN
1: Source tasks are performed
2: while Tnext 6= {} do
3: for all i ∈ Xdata do
4: send INFO to all nodes in n(i)
5: for all j ∈ n(i) do
6: send INFO to all nodes in {{i, n(i)}\{j}}
7: end for
8: for all nodes in {i, n(i)} do
9: execute DSA

10: end for
11: for all xkproc ∈ Xproc do
12: perform tkproc
13: Tnext ← {Tnext\{tkproc}}
14: Tprev ← {Tprev, {tkproc}}
15: if xk+1

proc 6= xkproc then
16: send DATA to xk+1

proc

17: end if
18: end for
19: send DATA to the higher-level node
20: update Xdata

21: end for
22: end while

tasks are performed, and runs until the set Tnext is empty, i.e. there are no remaining tasks to

be performed. Let Xdata be the set of nodes that have some output data; initially, these are the

nodes that have just performed the source tasks. If the set Tnext is not empty, i.e. if there are

some remaining processing tasks that can be performed on the data, then each node i ∈ Xdata

sends an information message (INFO) to its neighbours, n(i). An INFO message includes:

1. s(i), einsi , etxi , eresi (see Table 2.2);

2. the subset T ′prev ⊆ Tprev of tasks that are already performed on the data that

node i currently holds.

Since initially the only tasks already performed are source tasks, T ′prev is made of the source

tasks that are assigned to i.

All the nodes in n(i) reply sending an INFO message with their own information to their

neighbours.

After all nodes exchange INFO messages with their neighbours, the DSA algorithm is initi-

ated at each node. Once DSA converges, each node will have chosen the strategy that maximizes

the network utility function ug(S) (Equation 5.8).

Let Xproc = {x1proc, . . . , xkproc, . . . } be the set of nodes in n(i), for which the strategy of
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xkproc entails the execution of processing task tkproc, and let Tproc = {t1proc, . . . , tkproc, . . . } be the

related set of processing tasks to be performed. Each node xkproc first performs the task tkproc,

and updates the sets Tnext and Tprev accordingly. Then, if there are no other tasks assigned to

it, node xkproc sends a data message (DATA) to the node xk+1
proc for which tk+1

proc : eTk(k+1) ∈ ET .

DATA messages contain the set Tprev, along with the output data resulting from the processing

tasks.

When all the tasks in Tproc are performed, a DATA message is sent to the higher-level node.

5.3.3 Computational Complexity of the Node Utility Function Maximiza-
tion

The maximization of the node utility function ui(s(i)) defined in Equation 5.9 is a MILP prob-

lem [74]. It is well known that MILP problems are optimally solved using branch-and-bound

algorithms [97], which, in the worst case, have a complexity that grows exponentially with

respect to the number of variables.

The complexity of the node utility function is related with the number of variables a node

uses to compute the function. Note that the tasks in d(i) are node i’s variables used for executing

TAN. Hence, the number of variables Nvars(i) of node i is equal to Ntask(i). A node i can only

perform the tasks that are set in its vector d(i), but not all tasks in Tprev. The number of node

i’s tasks is found by

Nvars(i) =
∑

λ∈Tnext

d(i, λ)

In the worst case, the complexity of maximizing ui(s(i)) is equal to the complexity of per-

forming an exhaustive search among all the possible combinations of processing assignments,

i.e. 2Nvars × Noperations, where Noperations is the number of operations needed to evaluate one

node utility function ui(s(i)). Note that computational complexity can be considerably reduced

using sub-optimal heuristic algorithms, such as genetic or tabu-search algorithms.

5.3.4 Message Complexity of the Node Utility Function Maximization

INFO, SUM and DATA messages are sent during the TAN algorithm execution.

The INFO message is broadcast within the cluster once by each node. Let Ncluster(i) be

the number of nodes within the cluster that node i belongs to, and let n(INFO) be the number of

bits required for an INFO message. Recalling the INFO message structure, n(INFO) consists of:

|s(i)| boolean values, |{eins(i), etxi , eresi }| double values, and |T ′prev| identification values (which
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can be, for example, unsigned chars). The number of transmitted bits due to the exchange of

INFO messages for each negotiation is therefore Ncluster × n(INFO).

During the negotiation, a SUM message consisting of |s(i)| boolean values is broadcast

within the cluster whenever node i changes its strategy. Let Nsteps be the number of steps taken

until the negotiation converges, and let n(SUM) be the number of bits of a SUM message. In

the worst case, at every time step, each node in the cluster changes its strategy. Hence, the worst

case number of transmitted bits for SUM messages during each negotiation isNsteps×Ncluster×
n(SUM).

After the negotiation process has converged, a DATA message of n(DATA, k) bits is sent to

each node xkproc ∈ Xproc (see Section 5.3.2), and then to the higher-level node. The dependence

of n(DATA, k) on k is due to the fact that the number of bits of the output data varies based

on which task tkproc is executed. n(DATA, k) is proportional both to the amount of output data

generated by the processed tasks and to the number |Tprev| of identification values (which can

be, as for T ′prev, unsigned char). In the worst case, each node xkproc ∈ Xproc is different from the

following one xk+1
proc. Therefore, considering that the last DATA message is sent to the higher-

level node, in the worst case, the number of DATA messages is |Xproc| + 1. Thus, the worst

case number of transmitted bits due to DATA messages for each negotiation is (|Xproc| + 1) ×∑
k∈Xproc

n(DATA, k).

As a result, the worst case number of transmitted bits sent during a single negotiation is

n(negotiation) =Ncluster × n(INFO) +Nsteps ×Ncluster × n(SUM)+

|Xproc| ×
∑

k∈Xproc

n(DATA, k) (5.11)

5.4 Performance Analysis

The proposed algorithm has been tested on realistic heterogeneous WSN scenarios, by means

of simulations carried out in a MatLab environment. The main setup parameters of the nodes

in the modelled WSNs are listed in Table 3.3. The heterogeneity has been introduced not only

using sensor nodes with different characteristics from cluster head ones, but also setting node

parameters so that they have:

• a non uniform energy consumption: energy consumption parameters are se-

lected randomly in the range from 60% to 140% of the mean values;

• a non uniform initial energy at each node: battery charge is assigned randomly

from 20% to 100% of the total charge;
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• a non uniform processing speed at each node: processing speed is set ran-

domly from 60% to 100% of the maximum processing speed.

In the following, the performance of the TAN algorithm for two different scenarios will be

presented.

5.4.1 Smart City Scenario

The scenario under examination is that of the urban environment described in Section 4.4.2 and

depicted in Figure 4.3. Every stretch of street is a cluster, where cluster heads are represented

by empty markers. Cluster heads are more capable nodes (with an initial battery charge three

times higher than the others), that do not perform any sensing task, but they are able to perform

all the other tasks for the appropriate stretches.

The application is the same as the one described in Section 4.4.2. 89 different speed sensing

tasks (λ1÷λ89) are identified, one for each sensing node. Since the mean traveling time for each

stretch of street is required in order to compare them to each other, 78 mean speed computing

tasks (λ90 ÷ λ167), and 11 mean travelling time computing tasks (λ168 ÷ λ178) are defined, one

for each stretch of street. To find the best path, i.e. the best combination of stretches of streets

that leads from the Start point to Destination, the sum of the mean traveling times of all the

combination of stretches that can be driven one after the other is needed in order to compare

them. Therefore, the remaining tasks are: 8 different summation of mean travelling times for

differents stretches (λ179 ÷ λ186) and 3 different choice of the best path (λ187 ÷ λ189). With

reference to Figure 4.3, solid markers represent nodes that are only allowed to perform the

speed sensing and mean speed computing for the stretch of the street where they are placed (8

in total). Table 5.1 summarizes the tasks for this scenario.

The described scenario has been simulated, and the performance of the proposed algorithm

have been compared with three alternative approaches:

• all the data sent to the sink and processed only by the sink, that is the Start

Table 5.1: Tasks for Smart City Scenario

Task Description

λ1 ÷ λ89 Speed sensing
λ90 ÷ λ167 Mean speed computing
λl68 ÷ λ178 Mean travelling time computing
λ179 ÷ λ186 Summation of mean travelling times for different stretches
λ187 ÷ λ189 Choice of the best path
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node (mechanism S);

• data processed according to the centralized optimization algorithm described

in Chapter 3 (mechanism CO);

• data processed according to DLMA algorithm described in Chapter 4 (mech-

anism DLMA).

The obtained results for energy consumption and completion time have been compared to

those obtained using TAN algorithm.

(a) Energy conservation

(b) Completion time gain

Figure 5.4: Percentage values of mean energy conservation and completion time gain using
TAN
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Figure 5.4 shows the percentage of energy conservation and completion time gained when

using TAN with respect to the alternative approaches. These comparisons are referred to as

TAN-S, TAN-DLMA and TAN-CO.

Simulations have been run for:

• α = 0: null network lifetime component;

• α = 1: comparable Ωt and Ωτ ;

• α =∞: null task completion time component.

A marked improvement of energy conservation and a good improvement in completion

time gain is observed with respect to the static S mechanism. Good results are also observ-

able both for energy conservation and completion time gain with respect to TAN-DLMA. Of

course, good results could not be expected for energy conservation in comparison TAN-CO, but

a marked improvement in completion time gain is observed, mainly due to the fact that central-

ized algorithm is more complex and needs more time to be accomplished. It has to be noted that

results for α = 0 and α = 1 have been reported just for completeness, but all the algorithms do

not take into account completion time, therefore the most significant results are those obtained

for α =∞.

As expected, when α increases, which means that the utility function is more and more

over-balanced in favor of its network lifetime component, the energy conservation percentage

increases, while the completion time gain decreases; on the contrary, when α decreases, the

utility function is over-balanced in favor of its task completion time component: the energy

conservation percentage decreases, while the completion time gain increases.

5.4.2 Realistic Random Scenarios

Starting from the results obtained for the Smart City Scenario, it has been investigated how

TAN algorithm would work for realistic scenarios with different characteristics. A rectangular-

shaped outdoor environment was studied (e.g., a vineyard, a seaport, a tourist plaza), where

nodes have been positioned randomly following a uniform distribution. The random network

is created taking into account two parameters: the nodes density, i.e. the number of nodes per

square meter, and the cluster numerosity, which is the mean number of nodes inside each cluster.

The application assigned to each scenario is described by a random DAG. This DAG is obtained

by starting with a set of tasks and adding edges among them at random, provided that this

configuration represents a DAG and the number of processing tasks is equal to a fixed value.

The number of single instructions required to perform each task and the number of output bits

are set randomly according to a uniform distribution from 270000 to 330000, and from 720 bits
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Table 5.2: Characteristic Parameters Values for Realistic Random Scenarios

Parameter Min Default Max

Node density [nodes/m2] 0.2 0.3 0.4

Cluster numerosity [nodes/cluster] 5 15 25

Number of processing tasks 10 20 30

Distribution of processing tasks 10% 50% 100%

to 880 bits respectively [98]. The application deadline is fixed and set to 80 ms. The ability

of each node to perform a processing task, that is the values of the elements corresponding to

the processing tasks of each vector d(i) described in Section 5.1, is assigned according to the

processing task distribution parameter, which defines the probability of each node to be able to

perform a given processing task. Table 5.2 shows the different parameter values used to simulate

the described scenario.

Note that the Smart City Scenario studied previously corresponds to a network with a low

nodes density of about 0.15 nodes/m2, a low cluster numerosity of about 8 nodes/cluster, a high

number of processing tasks equal to 100 and a very low task distribution of about 6.9%. Al-

though this task distribution is extremely low if compared with those of the Random Scenarios,

it needs to be noted that, contrary to Random Scenarios, where the ability of each node to per-

form a task is assigned randomly according to the tasks distribution parameter, in the Smart

City Scenario the ability of each node to perform a task is strictly related to that task, i.e. only

the nodes that are more suitable to perform one given task have the ability to execute it. For

this reason, worse results are expected in the Random Scenarios with respect to the Smart City

Scenario, when focusing on the task distribution parameter.

In the following, the performance of TAN algorithm when these parameters change will

be discussed.

Performance Changing Node Density

The first run of simulations regards different node densities, with the aim of observing how

different distances among nodes affect the algorithm performance. Figure 5.5 shows how the

mean overall energy consumption and application completion time change when node den-

sity increases, for different values of α.Since the network lifetime component (Equation 5.3)

depends on the hop distance, an improvement in energy consumption is observed using TAN

when node density increases, particularly when α increases. Of course, when α = 0 the network

lifetime component is not taken into account for choosing the best strategy, and this is reflected

in the flatness of the related curve. Still, there is an energy conservation even in this case. This is
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Figure 5.5: Mean overall energy consumption and application completion time for TAN,
DLMA, CO and S task assignment mechanisms, for different node densities
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Figure 5.6: Mean overall energy consumption and application completion time for TAN,
DLMA, CO and S task assignment mechanisms, for different cluster numerosity parameters
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mainly due to the fact that, even though TAN’s goal is not improving the network lifetime com-

ponent when α = 0, improving the application completion time component entails that tasks

are more likely executed before data arrives to the sink. Since executing tasks, in most cases,

reduces the amount of data to be sent, a reduction in the completion time leads to a reduction in

the transmission cost.

An improvement in the application completion time is noticed when node density in-

creases. The main reason of this is that completion time is influenced both by tasks completion

time and TAN completion time: when node density increases, negotiations among nodes are

quicker, hence TAN completion time decreases.

Performance Changing Cluster Numerosity

The second set of simulations was run changing the cluster numerosity parameter. In Figure 5.6,

the overall energy consumption and application completion time variations are shown with re-

spect to different values of α and different number of nodes per cluster. Note that results are

similar to the previous case, but for different reasons. In fact, when node numerosity increases,

the likelihood that the strategy is chosen in a few negotiations increases, reducing both energy

consumption and completion time.

Performance Changing the Number of Processing Tasks

By changing the number of processing tasks, TAN’s performance has been studied for more

complex applications. Since the application deadline is fixed, increasing the number of tasks

means decreasing the available time for each task, and therefore affecting the task completion

time component. The results for these scenarios are shown in Figure 5.7. A marked improve-

ment of TAN algorithm is observed in both energy consumption and completion time when the

number of processing tasks increases from 10 to 20. This is explainable considering that, for

a low number of processing tasks such as 10, the results for an optimized strategy can not be

much different than the case where all the processing tasks are assigned to the sink. On the

contrary, the difference is significant when the number of processing tasks starts to increase.

Note that TAN with α = 0 is the only algorithm for which, even with 30 tasks, the deadline is

never missed.

Performance Changing Processing Task Distribution

With the last set of simulations, how the processing tasks distribution parameter affects TAN

behavior has been studied. It needs to be noted that the ability of each node to perform a given
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Figure 5.7: Mean overall energy consumption and application completion time for TAN,
DLMA, CO and S task assignment mechanisms, for different numbers of processing tasks
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Figure 5.8: Mean overall energy consumption and application completion time for TAN,
DLMA, CO and S task assignment mechanisms, for different processing task distributions
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processing task is assigned randomly. This means that in most real cases, where these abilities

are assigned more suitably based on the application to be performed, results will be better than

those obtained in these scenarios. Figure 5.8 shows TAN performance with respect to alternative

algorithms for different values of α and different tasks distribution values.

A marked improvement both in overall energy consumption and in application completion

time using TAN is noticed when every node in the network is able to perform every processing

task. In fact, when the processing tasks distribution parameter is equal to 100% TAN algo-

rithm can actually choose the best nodes in the cluster to perform each task, and not just the

best among a small number of them. On the opposite, results for processing tasks distribution

parameters lower than 50% are not much different from each other.





Chapter 6

Conclusions and future works

In this thesis, the problem of efficient dynamic deployment of application tasks into WSNs

with the aim of extending the network lifetime has been studied. The scenario of a multi-hop

network has been analyzed, along with the main components that govern the network dynamics

in terms of energy consumption. Accordingly, the related models have been defined. The three

algorithms proposed are intended to dynamically adapt to the behavior of the network, offering

an energy-efficient task allocation which minimizes the impact of the assigned application on

the network lifetime.

In Chapter 3, a framework based on a centralized algorithm for the reduction of the over-

all energy consumption have been presented. Significant improvements were observed in terms

of energy saving. In particular, the framework resulted to be particularly energy conserving

for networks with high node densities, for complex applications, and for heterogeneous net-

works. However, centralized algorithms suffer from computational complexity, especially for

large WSNs.

In Chapter 4, a decentralized algorithm for the maximization of the network lifetime,

the DLMA, have been described. Contrary to centralized solutions, distributed solutions adapt

quickly to network changes, reduces the control message exchange overhead, and scales well

with the number of nodes. The DLMA is based on the gossip communication paradigm, which

allows neighboring nodes to iteratively and asynchronously perform a local optimization to in-

crease network lifetime. This solution presents good results when compared with other static

task assignment mechanisms. It performs well, even though it is outperformed, when compared

to the centralized solution in Chapter 3. Nevertheless, its computational complexity makes it

suitable even in large scale networks, where a centralized algorithm would not be practically

implemented. Even though DLMA is a better solution, it does not take into account the execu-

tion time of the application assigned to the network. This might lead to an inconvenient task

assignment, where the application deadline is reached before the application is executed.
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The TAN algorithm, proposed in Chapter 5, is a distributed task assignment algorithm

which aims to reduce the overall network energy consumption and the application execution

time contemporarily. This algorithm, implemented for a hierarchical WSN, is based on the

rules of non-cooperative game theory. Its performance resulted in a reduction of both overall

energy consumption and application completion time, particularly for complex scenarios with

high node density and cluster numerosity, for more complex applications, and for more versatile

nodes.

The study done so far has led to the acquisition of the expertise required to widen the re-

search from WSNs to the IoT scenarios. Future work will be focused on the specification of

an interoperability middleware that enables the implementation of multi-objective optimization

methods into heterogeneous networks. Interoperability among different devices will be ensured

by the use of ontologies. Ontologies are needed to describe network devices, their capabili-

ties, available resources, and requirements of the services that the network must be able to

supply. A meta-model of the architecture will then be defined in order for devices to be able

to autonomously cooperate among each other. Hence, the critical challenge of allocation and

management of available resources such as electrical energy, memory, processing, and object

capability to perform a given task, will be analyzed. In this scenario, all nodes need to interop-

erate in order to reason and allocate the available resources in a distributed way, with the aim

of executing the application assigned to the network. Most of these decisions should be taken

autonomously to avoid centralized solutions, which usually limit the flexibility of the systems

and requires intense control data exchanges. The vision is that of a multi-technology scenario

where the adaptive network components cooperate dynamically in order to achieve optimal per-

formance not only from the energy consumption point of view, but also with regards to other

requirements such as time consumption, Quality of Service, and Quality of Information.



Appendix A

Notation used throughout the paper

A.1 Energy Consumption Model

esensi Sensing energy consumption for node i
eprocih Processing energy consumption for node i and task h
Ih Number of instrauction needed to perform task h
einsi Average energy consumption per instruction related to node i
P T
ij Radio frequency power consumption for transmitting from node i to node j
PR
j Radio frequency power consumption for receiving in node j
P T0
i Power consumption related to the transmitting circuitry
PR0
j Power consumption related to the receiving circuitry
PA
i Power consumption related to the PA of node i
δij Distance between node i and node j
P Tx
i Output power at node i antenna
ηi Drain efficiency for node i
αPL Path loss exponent
ϕij Coefficient proportional to the reception power and the characteristic param-

eters of the antennas of the transmitting node i and the receiving node j
R Data rate transmission
etxij Per-bit energy to transmit from node i to node j
erxj Per-bit energy to receive in node j
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A.2 Network Model

GX = (X,EX) DAG representing the network model
X = {1, . . . , i, . . . , N} Set representing the nodes of the network model
EX = (eXij ) Set representing the link of the network, where eXij represents

a connection from nome i to node j
∆ = (δij) Matrix of the pairwise distances (in meters) between adjacent

nodes i and j
Φ = (ϕij) Matrix of pairwise parameters ϕij between adjacent nodes i

and j (see Section 2.1)
esensi Average energy spent by node i to perform a sensing task
eins(i) Average energy spent by node i to perform a single instruction
etxij = (etxij ) Vector of the pairwise per-bit energies to transmit from node i

to node j
erxi Per-bit reception energy at node i
eresi Residual energy of node i
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A.3 Centralized Task Allocation Algorithm

P tot Total cost value for the network, related to the over-
all power consumption executing a given application

GT = {T,ET} DAG representing the application model
T = {t1, . . . , tl, . . . , tL} Set representing the tasks in the application model
ET = (eTuv) Set representing the edges of the application model,

where eTuv represents a unidirectional data transfer
from task u to task v

Di = {di1, . . . , dim, . . . , dili} Set of the tasks the node i is able to perform
si Status of node i that defines which task tl is assigned

to node i
S = {s1, . . . , si, . . . , sN} Set of statuses for the whole network
Θout
i = {θouti1 , . . . , θ

out
ih , . . . , θ

out
iH } Output traffic for node i

Θin
i = {θini1 , . . . , θinih , . . . , θiniH} Input traffic for node i

θoutih = {koutih , f
out
ih } Output traffic flow for node i, related to task h, where

koutih and f outih are the number of transmitted bits and
the transmitting frequency for that flow

θinih = {kinih , f inih } Input traffic flow for node i, related to task h, where
kinih and f inih are the number of received bits and the
receiving frequency for that flow

γi Coefficient in inverse proportion to eresi
P sens
i Sensing cost function for node i
P proc
i Processing cost function for node i
P tx
i Communication cost function for node i
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A.4 Decentralized Lifetime Maximization Algorithm

Ni Neighbors for node i
Nout,i Out-neighbors for node i, i.e. nodes that receive in-

formation from node i
Nin,i In-neighbors for node i, i.e. nodes that send informa-

tion to node i
T s = {ts1, . . . , tsW} Sequence of sensing tasks that have to be executed

by the network
T p = {tp1, . . . , t

p
L} Sequence of processing tasks that have to be exe-

cuted by the network
GT = ({T s, T p}, ET ) DAG representing the application model
ET = (eTuv) Set representing the edges of the application model,

where eTuv represents a unidirectional data transfer
from task u to task v

mi = (miw) Binary state of the sensing tasks assigned to node i,
where miw = 1 if node i performs sensing task w

si = (sil) Binary state of the processing tasks assigned to node
i, where sil = 1 if node i performs processing task l

S = (si) Matrix of the states of all nodes
di = (dil) Binary vector representing the processing tasks that

node i is able to perform, where dil = 1 if node i is
able to perform task l

D = (di) Matrix of all the vectors of the processing tasks that
each node is able to perform

τ Network lifetime
Θout
i = {θouti1 , . . . , θ

out
ih , . . . , θ

out
iH } Output traffic for node i

Θin
i = {θini1 , . . . , θinih , . . . , θiniH} Input traffic for node i

θoutih = {koutih , f
out
ih } Output traffic flow for node i, related to task h, where

koutih and f outih are the number of transmitted bits and
the transmitting frequency for that flow

θinih = {kinih , f inih } Input traffic flow for node i, related to task h, where
kinih and f inih are the number of received bits and the
receiving frequency for that flow

P sens
i Sensing cost function for node i
P proc
i Processing cost function for node i
P tx
i Communication cost function for node i
Pi Overall cost function for node i
Êi Upper bound to the energy spent by solving a local

optimization in node i
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A.5 Task Allocation Negotiation Algorithm

GT = (T,ET ) DAG representing the application model
T = {1, . . . , λ, . . . ,Λ} Set representing the tasks in the application model
ET = (eTuv) Set representing the edges of the application model,

where eTuv is a unidirectional data transfer from task u
to task v

s(i) = (s(i, λ)) Binary task assignment strategy vector of node i, where
s(i, λ) is the state of node i for task λ, such that s(i, λ) =
1 if task λ is assigned to node i

Tin(λ) Set of the input tasks for task λ
d(i) = (d(i, λ)) Binary vector of the tasks that node i is able to perform,

where d(i, λ) = 1 if node i is able to perform task λ
Tprev = {1, . . . , h, . . . , H} Set of already assigned tasks
Tnext = {1, . . . , k, . . . , K} Set of tasks that are yet to be assigned
S = (s(i)) Strategy of all the nodes in the network
uk(S) Task utility function for task k related to the network

strategy S

Ωt(i, k) Task completion time component of task k when it is per-
formed by node i

Ωtau(i, k,S) Network lifetime component when task k is performed
by node i according to the strategy S

NF (k) Task utility function normalization factor for task k
α Weighting factor of the task utility function
td(k) Deadline for successfully completing task k
I(k) Number of required instructions for task k
tc(i, k) Completion time of task k if it is performed by node i
tinstr(i) Time needed by node i to perform a single instruction
Fp(i, k) Term of the network lifetime component related to the

change in network lifetime due to the processing cost
needed to perform task k in node i

Ftx(i, k,S) Term of the network lifetime component related to the
change in network lifetime due to the transmission (and
reception) of the necessary data for task k to node i

Ctx(pi→j, k) Cost to transmit (and receive) data from node i to node j
n(k) Number of output bits for task k
ug(S) Network utility function
ui(s(i)) Node utility function
umark (s(i)) Marginal utility function of node i for task k
p Degree of parallel executions for DSA





Acronyms

µAMPS Micro-Adaptive Multi-domain Power-aware Sensors
ADS Advanced Deployable System
ARPANET Advanced Research Projects Agency Network
BWRC Berkely Wireless Research Center
CCA Cooperative Collision Avoidance
CEC Cooperative Engagement Capability
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
DAG Directed Acyclic Graph
DARPA Defense Advanced Research Projects Agency
DBA Distributed Breakout Algorithm
DG Directed Graph
DLMA Decentralized Lifetime Maximization Algorithm
DSA Distributed Stochastic Algorithm
DSN Distributed Sensor Network
EOFS Environmental Observation and Forecasting System
FDS Fixed Distributed System
FI Future Internet
HR-WPAN High-Rate Wireless Personal Area Network
HVAC Heating, Ventilation and Air-Conditioning
IoT Internet of Things
ITS Intelligent Transport System
LR-WPAN Low-Rate Wireless Personal Area Network
LWIM Low Power Wireless Integrated Microsensor
MAC Medium Access Control
MEMS Micro-Eletro-Mechanical Systems
MGM Maximal Gain Messaging
MILP Mixed Integer Linear Programming
MIT Massachussets Insitute of Technology
MLE Minimum Lifetime Estimation
NFC Near Field Communications
NOAA National Oceanographic and Atmospheric Administration
PA Power Amplifier
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QoS Quality of Service
REMBASS Remote Battlefield Sensor System
RFID Radio-Frequency IDentification
SDAC Sense, Decide, Act, Communicate
SOSUS Sound Surveillance System
TAN Task Allocation Negotiation
TDMA Time Division Multiple Access
TRSS Tactical REmote Sensor System
UCLA University of California at Los Angeles
UGS Unattended Ground Sensor
USN Ubiquitous Sensor Network
VLSI Very Large Scale Integration
WAMPS Wireless Sensor Network Air Pollution Monitoring System
WLU Wonderful Life Utility
WSAN Wireless Sensor and Actuator Network
WSN Wireless Sensor Network
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