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Summary

Studies on social systems and human behavior are typically considered do-
main of humanities and psychology. However, it appears that recently these
issues have attracted a strong interest also from the scientific community
belonging to the hard sciences –in particular from physics, computer science
and mathematics. The network theory offers powerful tools to study social
systems and human behavior. In particular, complex networks have gained
a lot of prestige as general framework for representing and analyze real sys-
tems. From an historical perspective, complex networks are rooted in graph
theory –which in turn is dated back to 1736, when Leonhard Euler wrote
the paper on the seven bridges of Königsberg. After Euler’s work, different
mathematicians (e.g. Cayley) focused their research on graphs –opening the
possibility of applying their results to deal with theoretical and real prob-
lems. As a result, complex networks emerged as multidisciplinary approach
for studying complex systems. From a computational perspective, models
based on complex networks allows to extract information on complex sys-
tems composed by a great number of interacting elements. A variety of sys-
tems can be modelled as a complex network (e.g. social networks, the World
Wide Web, internet, biological systems, and ecological systems). To sum-
marize, any such system should give the possibility of viewing its elements as
simple (at some degree of abstraction), while assuming the existence of non-
linear interactions, the absence of a central control, and emergent behavior.
Nowadays, scientists belonging to different communities use complex net-
works as a framework for dealing with their preferred research issues, from
a theoretical and/or pratical perspective. This work is aimed at illustrating
some models, based on complex networks, deemed useful to represent social
behaviors like competitive dynamics, groups formation, and emergence of
linguistics phenomena.
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Preface

This dissertation illustrates the research work done during three years of
Doctorate School at the University of Cagliari. Part of the work has been
made on research topics established by the Dept. of Social and Human Sci-
ences at University of Sassari, also thanks to the financial support given by
Fondazione Banco di Sardegna.

Apart from the introductory chapter on complex networks (see Chap-
ter 1), each chapter is focused on a specific research topic, with the common
aim of illustrating the ability of complex networks to give a support in the
task of analyzing and/or modelling complex systems. In particular:

• Chapter 2 illustrates a model, inspired by quantum statistics, to rep-
resent competitive dynamics (it is focused on quantum-classical tran-
sitions in complex networks);

• Chapter 3 describes a geometrical model to study the dynamics of
social networks (it is aimed at analysing the geometry of social net-
works);

• Chapter 4 illustrates a model for studying the emergence of acronyms
in populations (it is aimed at analysing a linguistics phenomenon);

• Chapter 5 illustrates a framework to clustering multidimensional datasets,
as real datasets that store data of social networks users (it is aimed at
performing clustering according to a complex networks perspective).

The final chapter (Chapter 6) ends the thesis –highlighting, by means
of relevant examples, that complex behaviors can be successfully analysed
and/or modelled using complex networks.
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Chapter 1

Complex Networks

Many natural and man-made complex systems, as biological neural net-
works, social networks and the Web, can be represented as complex net-
works [1] [2]. In recent years, complex networks have been adopted as
general framework in a wide set of studies, ranging from biology to com-
puter science, or from physics to economics. Furthermore, the comparison
of results achieved by analysing networks of different real systems, yielded
surprising outcomes. The main outcome was the identification of a series
of unifying principles and statistical properties common to most of the real
networks considered [3]. For example, it has been found that the degree
distribution of many real complex networks significantly deviates from that
of a Poisson distribution expected for a random graph and, in many cases,
exhibits a power-law tail with an exponent γ ∈ [2, 3] [4]. Moreover, many
real networks showed correlations in the node degrees, relative short paths
between two randomly chosen nodes, and the presence of a large number of
short cycles [3] (all these cited properties will be described later with more
detail). All these findings lead to a strong interest in complex networks.
Further, under the hypothesis that the structure of a system is tightly re-
lated to the dynamical mechanisms which affect the function of the system
itself, many efforts have been focused on developing models to mimic the
growth of a network and to reproduce the structural properties observed
in real topologies [3]. Network theory puts its basis in classical theory of
graphs. In particular, although theory of graphs has been rapidly replaced
by network theory in modelling real world systems, graphs are still useful as
mathematical models of network structures [5]. Hence, before introducing
models and main properties measured in networks, let us spend some words
on some basic concepts of graph theory.
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16 CHAPTER 1. COMPLEX NETWORKS

1.1 Basic Concepts

A complex network is in fact a graph characterized by non-trivial topolog-
ical features. In general, a graph is a mathematical entity that allows to
represent specific relations among a collection of items. More formally, a
graph G is described as G = (N,E), with N set of nodes and E set of
edges. Nodes are usually described by a label and represent elements of a
system, e.g., people of a social network, genes of the DNA, or web-sites.
Edges represent connections among nodes and usually map specific rela-
tions as friendship, gene interactions, links among web-sites. A graph can
be “directed” or “undirected”, i.e., symmetrical relations hold among nodes
or not. In the former case, a simple (undirected) edge is drawn between
two nodes, whereas in the second case the edge takes the form of an arrow.
For example, if two people are friends (then, obviously know each other) a
simple edge is drawn between them. Instead, if a web-site a offers a link
to another web-site b, this relation is represented as an arrow from a to b.
A graph can be “weighted” or “unweighted”. In particular, if a numerical
value is associated to edges, i.e., relations among nodes are weighted in some
way, the graph is weighted. For example, let us consider the airline network,
where each airport is represented as a node and every route among airports
is represented as an edge. We could identify a weight for each edge as the
geographical distance between respective airports. All edges, existing in a
graph with N nodes, are collected in a N × N matrix, called “adjacency
matrix” that characterizes the graph itself. Undirected graphs have a sym-
metric adjacency matrix. Unweighted graphs are represented by a binary
adjacency matrix. In particular, the adjacency matrix A of an unweighted
graph is composed by the elements:

aij =

{
1 if eij is defined

0 if eij is not defined
(1.1)

Instead, a weighted graph is represented by a real matrix.

Degree distribution

Node of a graph can have one or more connections with other nodes. In
graph and in network theory, the number of connections of a node is called
degree, and it is usually denoted as k. An important function, to investigate
the structure of a network, is the degree distribution P (k) [1]. Fundamen-
tally, the P (k) represents the probability that a randomly selected node had
the degree equal to k, i.e., it is linked with k nodes.
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Clustering Coefficient

The clustering coefficient allows to know if nodes of a network tend to cluster
together. This phenomenon is common in many real networks as social
networks, where it is possible to identify circles of friends or acquaintances
in which every person knows all the other people. For example, in social
networks if the node a is connected to the node b and the node b is connected
to the node c, there is a high probability that a be connected to c. The
clustering coefficient can be computed as:

C =
3× Tn
Tp

(1.2)

Tn is the number of triangles in the network and Tp is the number of
connected triples of nodes. A connected triple is a single node with edges
running to an unordered pair of others. The value of C lies in the range 0 ≤
C ≤ 1. Another definition of the clustering coefficient has been developed
by Watts and Strogatz in [6], which defined this quantity as a local value:

Ci =
Tni
Tpi

(1.3)

with Tni number of triangles connected to node i and Tpi number of triples
centered on node i. In this case, the local C of nodes with a degree equal to
0 or 1 is set to 0. In so doing, the global clustering coefficient of a network
is computed as:

C =
1

n

∑
i

Ci (1.4)

This parameter allows to measure the density of triangles in a network, and
can be computed for directed and undirected networks. On the other hand,
the local definition of clustering Ci has been adopted in the sociological
literature, where it is referred to as the “network density”.

Betweenness Centrality

The betweenness centrality measures the centrality of a node in a network [7].
This parameter is quantified as the number of geodetics from all nodes to
all others that pass through that node. In particular, it can be computed
as follows:

Bi =
∑
x 6=i 6=y

σxy(i)

σxy
(1.5)

with σxy total number of geodesics from x-th node to y-th node, σxy(i) total
number of geodesics from x-th node to y-th node passing through the node
i.
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Community structure

A community is a group of highly mutually interconnected nodes in a net-
work [8]. If communities can be easily identified, the network is said to
have community structure. Networks with this property can have non-
overlapping communities or overlapping communities. In the former case,
communities emerge naturally as are composed by groups of nodes with
dense connections internally and sparser connections with nodes of other
groups. In the second case, it is more difficult to identify communities.

Path Length

The distance between two nodes in the same network is defined as the mini-
mum number of edges which connect them. As in other metrical spaces, the
minimal distance is called “geodesic”, whereas if there is not a path between
two nodes, their distance is infinite. There are many different algorithms
to find a geodesic in networks, e.g., the Dijkstra’s algorithm [9] and the
Floyd-Warshall algorithm [10].

Assortativity

The assortativity is a property of networks that allows to evaluate if their
nodes prefer to attach to other nodes that are (not) similar [11]. This
property affects the whole structure of a network, e.g., social networks can
be divided into communities of users speaking the same language or having
same hobbies. In general, the assortativity can be computed as follows:

r =

∑
i eii −

∑
i aibi

1−
∑

i aibi
(1.6)

with eij fraction of edges in a network that connect a node of type i to one
of type j, ai =

∑
j eij and bj =

∑
i eij . A network is assortative when the

assortativity value is positive and, on the contrary, it is disassortative when
this value is negative. The similarity can also refers to the nodes degree, i.e.,
their amount of edges. In this case, Johnson et al. [12] showed a relation
between assortativity and shannon entropy of networks. In particular, they
found that scale-free networks have a high probability to be disassortative.

1.2 Network Structures

Erdös-Renyi graphs

One of the first works about random networks has been developed by Paul
Erdös and Alfred Renyi [13]. These mathematicians defined a famous model
known as Erdös-Renyi graph, or simply E-R graph (as we call hereinafter).
This model considers a graph with N nodes and a probability p to generate
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each edge, hence a E-R graph has around p · N(N−1)
2 edges. E-R graphs have

a binomial degree distribution, defined as follows:

P (k) =

(
N − 1

k

)
pk(1− p)n−1−k (1.7)

If N → inf and np = const, their degree distribution converges to a Poisso-
nian distribution:

P (k) ∼ e−ηn · (ηn)k

k!
(1.8)

To generate these E-R graphs we used the following simple algorithm:

1. Define the number of N of nodes and the probability p for each edge

2. Draw each potential-link with probability p

Figure 1.1 illustrates the P (k) for a E-R graph with N = 25000 and p =
4 · 10−4. The network, whose P (k) is shown in Figure 1.1, has an average

Figure 1.1: P (k) (in loglog scale) of an E-R graph with N = 25000 and
p = 4 · 10−4.

degree 〈k〉 ∼ 10. An example of a small E-R graph with N = 100 is given
in Figure 1.2.

Scale-free networks

Many real complex networks show a P (k) that follows a power-law function
as:

P (k) ∼ c · k−γ (1.9)
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Figure 1.2: A small E-R graph with N = 100.

with c normalizing constant and γ parameter of the distribution known as
the scaling parameter. These networks have a scale-free structure and are
characterized by the presence of few nodes (called hubs) that have many
connections (i.e, a high degree). The most famous model to generate scale-
free networks is the Barabasi-Albert model (BA model hereinafter) [1], which
considers N nodes and m minimum number of edges drawn for each node.
The BA model can be summarized as follows:

1. Define N number of nodes and m minimum number of edges drawn
for each node

2. Add a new node and link it with other m pre-exisisting nodes. Pre-
existing nodes are selected according to the following equation:

Π(ki) =
ki∑
j kj

(1.10)

with Π(ki) probability that the new node generates a link with the
i-th node having a ki degree.

Figure 1.3 illustrates the P (k) for a scale-free network with N = 25000 and
m = 5. The network, whose P (k) is shown in Figure 1.1, has an average
degree 〈k〉 ∼ 10. A small scale-free structure is shown in Figure 1.4. As it
is possible to see in Figure 1.4, all nodes have at least 2 connections and, in
the center of the figure, it is possible to note the presence of few hubs with
a high number of connections.
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Figure 1.3: P (k) (in loglog scale) of a scale-free network with N = 25000
and m = 5.

Figure 1.4: A small scale-free network generated by the BA model with
N = 100 and m = 2.

Small-World networks

Many real complex networks show a small-world character [1], i.e., every
nodes can be reached from any other in a small number of hops. More



22 CHAPTER 1. COMPLEX NETWORKS

formally, small-world networks are characterized by a distance L, between
to randomly chosen nodes, equal to L ∝ lnN . Furthermore, two main
properties allow to identify small-world networks, i.e., a short average path
length and a relatively high clustering coefficient. In particular, the clus-
tering coefficient of a small-world network is higher than that of its related
classical random networks, i.e., the E-R graph generated with the same set
of nodes. One of the first algorithms to generate random networks pro-
vided with a small-world character is the Watts-Strogatz model (WS here-
inafter) [6]. This model can be summarized as follows:

1. Define a regular ring lattice with N nodes, each connected to k neigh-
bors (k/2 on each side)

2. For every node i take every edge (i, j) with i ≤ j and rewire it with
probability β. Rewiring is done by replacing the edge (i, j) with (i, k)
with k chosen with uniform probability from all nodes avoiding loop
and edge duplication

A small-world network with 1000 nodes generates by the WS model is shown
in Figure 1.5. The WS model offers an interesting behavior studying the

Figure 1.5: A small-world network generated by the WS model, with N =
1000 and a rewiring probability β = 0.4.

effect of the rewiring probability β. In particular, this model generates
regular lattices for β = 0 and completely random networks at β = 1, where
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all lattice-like features disappear. At intermediate values of β, the WS
model generates networks that consist of a mixture of random and regular
connections. This behavior is illustrated in Figure 1.6.

Figure 1.6: Small-world networks generated by the WS model. From left to
right: network generated with β = 0, β = 0.5 and β = 1.

1.3 Community Detection

Community detection is the process of finding communities in a graph, also
called “graph partitioning”. From a computational perspective, this is not a
easy task and many algorithms have been proposed, according to three main
categories: divisive, agglomerative, and optimization algorithms. Further-
more, many algorithms adopted in machine learning, e.g., k-means, fuzzy
C-means, and hierarchical (see [14]), are also used to perform community
detection. Some famous algorithms to perform community detection are
briefly discussed.

1.3.1 Louvain Algorithm

The Louvain method [16] is an optimization algorithm based on an objective
function devised to measure the quality of partitions. At each iteration, the
Louvain method tries to maximize the so-called weighted-modularity, defined
as:

Q =
1

2m
·
∑
i,j

[
aij −

kikj
2m

]
· δ(xi,xj) (1.11)

where aij is the generic element of the adjacency matrix, k is the degree of
a node, m is the total “weight” of the network (i.e., the sum of all weighted
links of the network), and δ(xi,xj) is the Kronecker Delta, used to as-
sert whether a pair of samples belong to same community or not. Given
a weighted network with N nodes, this algorithm can be summarized as
follows:
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1. Define a community for each node

2. For each node i consider all its neighbors and compute the gain of
modularity if i is moved to the community of its j-th neighbor

3. Place each node i in the community for which the gain of modularity
is maximum

4. For each new community computed at STEP (3) define a node

5. For each node defined at STEP (4) define weighted links. Each link
has a weight equal to the sum of weights of the links among nodes
in the corresponding two communities; links among nodes of the same
community generate self-loops for this community

6. Repeat from STEP 1 until a global maximum modularity is computed,
then STOP

1.3.2 Girvan-Newmann Algorithm

The Girvan-Newmann algorithm [8], belonging to the family of divisive al-
gorithms, is based on the concept of betweenness. In general, this concept
is related to the frequency of the participation of an element to a process.
It can be computed for nodes, as discussed before, and for edges. In par-
ticular, edge betweenness is the number of shortest paths between all nodes
pairs that run along the considered edge. The Girvan-Newman algorithm,
that makes use of the concept of edge betweenness, can be summarized as
follows:

1. Compute the centrality of each edge

2. Remove the edge with largest centrality

3. The betweenness of all edges affected by STEP (2) is recomputed

4. Repeat STEPS (2) and (3) until all edges are removed

Different variants of this algorithm have been proposed –see [17].

1.3.3 Kernighan-Lin Algorithm

The Kernighan-Lin algorithm [18] is based on a greedy optimization of a
benefit function Q. Once two groups of nodes of a network are defined,
the function Q is computed as the number of edges that lie within the two
groups minus the number of edges that lie between them. The user has
to specify the size of the two groups and the relative configuration. The
algorithm can be summarized as follows:
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1. Define two groups of nodes (randomly or user-chosen)

2. Compute, for all possible pairs of nodes i and j belonging to the two
groups, the ∆Q in the benefit function that would result if i was
swapped with j

3. Select the pair which maximizes this change and perform the swap

4. Repeat from STEP 2 until all nodes in one group have been swapped
once (the same node cannot be swapped twice)

5. Go back over the sequence of performed swaps to find the point during
this sequence at which Q was highest. This is the bisection of the graph.
Then, STOP

In principle, this algorithm computes only two partitions of a network,
but its outcomes can be considered as an input for the algorithm to find
more granular partitions.

1.3.4 Physical Models for Community Detection

Here, we illustrate some models inspired by physics to perform community
detection tasks.

Spin Models

Spin models can be applied for clustering analysis, in particular by using
the famous Potts model –see [19]. The Potts model is widely used in sta-
tistical mechanics for systems of spins that can be in q different states.
The basic idea is that at the ground state, considering ferromagnetic and
antiferromagnetic interactions, there are different spin values that form ho-
mogeneous clusters. To use this representation, a preliminary mapping of
the original model to the network must be performed. In particular, spins
are mapped to nodes and their interactions are mapped to edges. After
this first modelling task, an algorithm of community detection can be ap-
plied to compute partitions (i.e., communities). The algorithm of Reichardt
and Bornholdt [20] implements this model. In particular, this algorithm
considers the Hamiltonian of the described model:

H = −J
∑
i,j

ai,jδ(σi, σj) + γ

q∑
s=1

ns(ns − 1)

2
(1.12)

where ai,j is the adjacency matrix, σi is the spin-state of the node i, δ is
the Kroenecker function, ns is the number of spins in the state s, J and γ
are some coupling parameters. The Hamiltonian (1.12) is composed by two
main components: the classical ferromagnetic Potts model energy and fa-
vors spin alignment. The ratio γ

J describes the relative importance of these
components. Varying this ratio, the system can be analyzed at different lev-
els of modularity, from a single whole community to a community for each
node. This algorithm starts by randomly assigning spins to nodes and using
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an appropriate number of states q, high enough for each considered prob-
lem. The ground state of the Hamiltonian corresponds to the community
structure of the network and it is computed by simulated annealing.

Random Walk

Random walk methods can be easily applied to community detection tasks.
In principle, if a network has a community structure, a random walker will
spend long time inside each community because of the density of internal
edges that they will be passed through. In the following, we illustrate one of
these methods called Zhou algorithm [21]. The Zhou algorithm defines the
distance di,j between two nodes, xi and xj , as follows: di,j is the average
number of steps that a random walker crosses to reach a node xj starting
from a node xi. As a consequence, close nodes have a high probability to
belong to the same community. Zhou defines two kinds of attractors called
global and local. For a node xi, the global attractor is a node xj if di,j ≤ di,k
for any xk node of the network, whereas the local attractor of xi is xj if xj
belongs to Exi , the set of the nearest-neighbors of xi, and di,j ≤ di,l for any
xl belonging to Exi . Finally, the node xi is put in the same community of
its attractor with all nodes for which xi itself is an attractor. Applications
to real networks show that this method allows to find meaningful partitions.

Synchronization

Synchronization is a phenomenon occurring in systems of interacting com-
ponents. In synchronized state, components are in the same or in similar
state(s). Principles at the base of this phenomenon have been used to find
communities in networks. As for other physical models, a preliminary map-
ping of the physical system to the network must be performed. In partic-
ular, each node is mapped to an oscillator, with an initial random phase
and nearest-neighbor interactions. Considering that oscillators in the same
community synchronize first, a full synchronization will take more time. By
analysing the evolution of the process, it is possible to identify clusters of
nodes in the same state. In this work [22], Arenas et al. introduced an
algorithm based on these physical principles. In particular, the proposed
algorithm makes use of the Kuramoto oscillators [23], where the phase Θi

of an oscillator xi evolves according to:

dΘi

dt
= ωi +

∑
j

K sin(Θj −Θi) (1.13)

with ωi natural frequency of xi, K strength of the coupling between oscilla-
tors and the sum is over all oscillators. If the interaction coupling overgrows
a threshold (set depending on the width of the distribution of natural fre-
quencies), the dynamics lead to the synchronization. In this model each
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oscillator is coupled only to its nearest-neighbors. With the aim to com-
pute the effect of local synchronization, authors introduced a local order
parameter:

ρij(t) =< cos(Θi(t)−Θj(t)) > (1.14)

This parameter measures the average correlation between pairs of nodes.
Using the correlation matrix ρ(t) at the time t, it is possible to find clus-
ters of nodes that synchronize together. The clusters are identified by a
binary matrix, computed by thresholding the entries of ρ(t), called dynamic
connectivity matrix Dt(T ). Using the spectrum of Dt(T ) it is possible to
derive the number of disconnected components at time t. Analysing the
number of components as function of time, some plateaus may appear at
some characteristic time scales, indicating structural scales of the network
with robust communities. The presence of plateaus at different time scales
indicates a hierarchical organization of the network. After a large enough
∆t all oscillators are synchronized and the whole systems behaves as a single
component.
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Chapter 2

Fermionic Networks: a
Model for Competitive
Dynamics

In this chapter, we illustrate a theoretical model, based on complex networks
and inspired by quantum statistics, to study competitive dynamics [24][25].
This work shows that the emergence of different structures in complex net-
works, such as the scale-free and the winner-takes-all, can be represented
in terms of a quantum-classical transition for quantum gases. In particular,
we propose a model of fermionic networks that allows to investigate the net-
work evolution and its dependence with the system temperature. In turn,
the network evolution and the system temperature represent, respectively,
the evolution of a social system and its level of competitiveness. Simula-
tions, performed in accordance with the cited model, clearly highlight the
separation between classical random vs. winner-takes-all networks, in full
correspondence with the separation between classical vs. quantum regions
for quantum gases. Consequently, classical random networks represent sys-
tems with a low level of competitiveness, whereas winner-takes-all represent
systems with a high level of competitiveness. After a brief introduction
to basic concepts of quantum statics, we discuss a model of networks that
makes use of quantum statistics of bosons. Finally, we illustrate the pro-
posed model and the results of related simulations.

2.1 Quantum Statistics

Statistical mechanics assumes a central role when dealing with systems com-
posed by many particles, the underlying assumption being that particles are
identical and indistinguishable. Moreover, their quantum energy levels are

29
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extremely closely spaced, with a cardinality much greater then the number
of particles. Energy levels can be grouped in bundles with the approximation
that levels in the same bundle have the same energy. Particles with a sym-
metric wave function, called bosons, obey Bose-Einstein statistics, whereas
particles with an antisymmetric wave function, called fermions, obey to
Fermi-Dirac statistics [26]. Given a system with N particles of the same
type, we can build an N-body wave function, with several admissible states.
For each state α, the corresponding number of particles, say nα (also called
occupation number), is given by the following equation:

nα =

{
0, 1, ...,∞ bosons

0, 1 fermions
(2.1)

and
∑

α nα = N . Considering a gas composed by N bosons, the number of
microstates is computable according to the equation:

Ωb = Πi
(ni + gi)!

ni! gi!
(2.2)

with gi representing the i-th bundle. The distribution of particles follows
the Bose-Einstein statistics:

nbi = gi ·
(
e
εi−µ
kbT − 1

)−1
(2.3)

where εi denotes the energy of the i-th bundle, µ the chemical potential,
and kb the Boltzmann constant. In the event that a gas is composed by
fermions, we must consider also the Pauli exclusion principle. Hence, the
number of microstates is computable according to the equation:

Ωf = Πi
gi!

ni! (gi − ni)!
(2.4)

Here, the distribution of particles follows the Fermi-Dirac statistics:

nfi = gi ·
(
e
εi−µ
kbT + 1

)−1
(2.5)

Both these distributions approximate the classical behaviour in proximity
of the high-temperature limit, showing a quantum-classical transition. This
phenomenon occurs when particles sparsely occupy excited states. In par-
ticular, with λ thermal wavelength and ρ density, the following conditions
hold: {

ρλ3 � 1 classical regime

ρλ3 ≈ 1 onset of quantum effects
(2.6)
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The classical regime is described by the Maxwell-Boltzmann distribution.

In particular, with Z =
∑

j gje
−

εj
kbT partition function, we write:

nmbi =
N

Z
· gi · e

− εi
kbT (2.7)

2.2 Bosonic Networks

In this model, Bianconi and Barabasi [28] compared network evolution to
a phase transition of bosonic gases. Two main structures, i.e., fit-get-rich
and WTA, are identified as two different phases at low temperatures. In
this model, each node is interpreted as an energy level and each link as a
pair of particles. Starting from a fitness parameter η, energy is computed
according to the following equation:

ε = − 1

β
· log η (2.8)

with β = 1
T . Here, the fitness parameter η describes the ability of each node

to compete for new links. In particular, for the i-th node, the probability of
connection with new nodes is proportional to:

Πi =
ηiki∑
j ηjkj

(2.9)

with ki degree of the i-th node. Notably, new nodes tend to link with pre-
existing nodes having high values of (η, k). The generation of a scale-free
network in the fit-get-rich phase is characterized by Eq. (1.9) and entails
the presence of a few nodes with a high degree connected to many others
with low degree. In a bosonic gas, when the temperature decreases, parti-
cles aim to occupy lower energy levels. Then, at a temperature below the
critical temperature Tc, the Bose-Einstein condensation takes place. In this
model, as the temperature decreases, many particles move to lower levels
while keeping the corresponding particles at upper levels. In so doing, links
concentrate on a few nodes, until they condensate in the WTA phase, char-
acterized by the fact that only one node predominates. In [29], Bianconi
discussed the differences between bosonic and fermionic networks, showing
that the former are scale-free, whereas the latter can be represented by
Cayley trees.

2.3 Fermionic Networks

Let us now introduce a novel proposal for modeling network dynamics, in-
spired by the physics of fermions. Given a network G = (V,E), with V non
empty set of nodes and E non empty set of links, let us represent each link
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as a particle and each node as a degenerate bundle of energy levels. Usually,
the number gi of available states in the i-th bundle is much larger than the
number pi of its particles Let us assume that the i-th bundle has an energy
εi. This value can be assigned randomly or depends on a property of the
system –e.g. a fitness parameter η or any other function deemed relevant,
with the trivial constraint that it must be computable for each node of the
network. In the proposed model, lower bundles have more energy levels. In
particular, the first bundle has n− 1 levels, the second has n− 2 levels, and
so on and so forth. Note that the link lij , which connects nodes i and j, is
represented only by a single energy level, i.e., εij , which in turn belongs to
the i-th bundle (under the assumption that the i-th bundle is deeper than
the j-th). In so doing, the last node, say y0, is represented by a bundle
without energy levels, although it can be linked in the event that a particle
stays at the εxy0 level, with x corresponding to one of the other nodes.

2.3.1 Modelling Network Evolution

Let us consider an evolving network, i.e., a network that changes over time.
Almost all real networks evolve over time; examples are social networks
(where people find or lose friends or co-workers) and the web (where web-
sites compete to gain more inlinks). Furthermore, let us consider this net-
work a closed system, so that the number of nodes and the number of links
remain constant over time. As discussed before, for every node, a bundle
is defined –whose energy is computed with Eq. (2.8). In so doing, the rel-
ative position of each bundle depends on the value of its energy, so that
deeper bundles embody more states. Considering the ability of the particles
to jump between energy levels as the temperature varies, at high temper-
atures particles follow the classical Maxwell-Boltzmann distribution, being
spread among the available states according to Eq. (2.7). On the other hand,
as temperature decreases, many particles move to lower energy levels (see
Figure 2.1).

In this work, we consider the evolution of a system caused by cooling
and heating processes. A detailed analysis of both processes follows.

Cooling Process

During a cooling process, a few nodes gain new links and their degree ki is in-
creased. Given the number of particles, it is possible to compute the Fermi
Energy Ef of the system as the energy of the bundle containing the last
particle at T → 0. Hence, as temperature decreases, and assuming that the
number of particles approximates the number of bundles, the WTA phase
takes place (see also [28]). For every variation of the temperature, the prob-
ability for a particle to jump from the i-th to the j-th bundle is computed
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Figure 2.1: On the left, from top to bottom, the evolution of a network with
10 nodes and 9 links from a classical random network to a WTA network. On
the right, their corresponding fermionic models, which result from a cooling
process that pushes particles to low energy levels.

according to the following equation:

p(i→ j) =
∆T

T
· 1

∆B(j, i)
· f(gj) (2.10)

where T denotes the temperature of the system before the variation, ∆T
the variation of temperature, ∆B(j, i) is the distance between the bundles
j and i, and f(gj) is the function:

f(gj) =

{
0 if gj = 0

1 if gj ≥ 1
(2.11)

with gj number of available states in the j-th bundle. Hence, considering
that a particle in the i-th bundle can jump to i−1 underlying bundles, each
with a probability given by Eq. (2.10), the probability pJ to jump from the
i-th to another bundle is:

pJ(i) =
i−1∑
z=1

p(i→ z) (2.12)

and the probability pS to stay in the same bundle is

pS(i) = 1− pJ(i) (2.13)

Then, the final bundle of each particle is chosen by a weighted random
selection among all candidate bundles (including the bundle in which the
particle is located).
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Heating Process

Heating is performed after cooling. Particles can now move to higher energy
levels, gradually generating vacancies at lower levels. Also in this case, for
every variation of the temperature, the probability for a particle in the i-th
bundle to jump to the j-th bundle is computed using a variant of Eq. (2.10),
in which f(gj) is defined as:

f(gj) =

{
0 if gj = 0

1− pj
gj

if gj ≥ 1
(2.14)

with pj number of particles located at the j-th bundle. Eq. (2.14) has been
devised to prevent, at high temperatures, particles from filling high-energy
levels densely. For each particle, the probability to jump is computed by the
following equation:

pJ(i) =

n−1∑
z=i+1

p(i→ z) (2.15)

and the probability to stay by Eq. (2.13). The same criterion adopted in the
cooling process (i.e., weighted random selection) is applied for choosing the
energy level of each particle. In our model, the temperature corresponds to
the level of competitiveness of the system (e.g., a competition for new links
in a social network among users, a competition for new customers among
companies, or a competition for new inlinks among web-sites). To complete
the model, let us assume that each network has the structure of an E-R
graph when generated at time t = 0.

2.3.2 Simulations

The proposed fermionic model has been tested with many simulations. In
particular, we generated networks of different sizes with an E-R graph struc-
ture. These networks have been implemented by connecting nodes randomly
–giving rise to a graph G(n, ζ), where n is the number of nodes and ζ is the
probability of an edge to be drawn (note that an edge is drawn indepen-
dently from other edges). Their degree distribution is binomial, converging
to a poissonian distribution for a large number of nodes–see Eq. (1.8). Sim-
ulations have been performed with a number of nodes ranging from 50 to
10000, ζ = 〈k〉

n−1 with 〈k〉 average degree of the network (see [30]) and an
initial temperature ranging from 100K to 500K. For each simulation the
network evolves until all particles of the model reach their final position, for
both cooling and heating process. At each time step, the temperature is
increased (heating) or decreased (cooling) by 10%, then the algorithm com-
putes new positions of the particles and analyzes the degree distribution,
computing the scaling parameter γ and the normalizing costant c. The scal-
ing parameters were estimated, as suggested in [31], by using the following
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equation:

γ̂ = 1 + n ·

[
n∑
i=1

ln
ki
km

]−1
(2.16)

with km minimum degree estimated. The normalizing constant is computed
as follows:

c =
1

∞∫
km

k−γdk

(2.17)

Figure 2.2 illustrates a transition between the E-R graph structure and the
WTA structure, for a network with 10000 nodes and 〈k〉 = 20, generated
at 100K. As shown in the cited figure, a cooling process in an E-R graph

Figure 2.2: The evolution of the degree distribution of a network, during a
cooling process, with 10000 nodes and 〈k〉 = 20, generated at T = 100K.
Each panel shows the network at different time steps t: a) at t = 0; b) at
t = 4; c) at t = 5; d) at t = 19; e) at t = 28; and f) at t = 50. Note that for
t = 0 the network has an E-R graph structure, whereas for t = 50 it has a
WTA structure. Continuous black and red lines are used to highlight data
interpolation. The corresponding scaling parameter(s) γ is (are) indicated
in each panel.

entails a transition to a scale-free structure after 4 time steps. After 19 time
steps all networks apparently converge to a WTA structure, showing in some
cases composite distributions, which in turn can be identified by a process
of logarithm data binning (see [32]). A small network having a WTA struc-
ture is shown in Figure 2.3, where only a few nodes have a great amount of
links, i.e., their bundles contain the majority of particles. After the cooling
process, the network with 10000 nodes is subject to the heating process and
Figure 2.4 illustrates the evolution of the degree distribution. During the
heating process (see Figure 2.4), the network loses its WTA structure. Then,
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Figure 2.3: A network with n = 300 with a WTA structure, obtained by
cooling an E-R graph until T ≈ 0K. As highlighted by the figure, there are
a few winning nodes (clearly visible in the center of the figure).

Figure 2.4: The evolution of the degree distribution of a network, during
a heating process, with 10000 nodes and 〈k〉 = 20. Each panel shows the
network at different time steps t: a) at t = 0; b) at t = 15; c) at t = 28; d)
at t = 34; e) at t = 40; f) at t = 58; and g) at t = 65. Note that for t = 0
the network has a WTA structure. Continuous black and red lines are used
to highlight data interpolation. The corresponding scaling parameter γ is
indicated in each panel.
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its degree distribution apparently becomes scale-free (see panel d and e of
Figure 2.4). As temperature further increases, it converges to a hybrid dis-
tribution (see panel f of Figure 2.4) characterized by two main distributions:
exponential and gaussian. Eventually, a homogeneous structure (γ = 4.7)
emerges. Similar results have been achieved in all simulations, varying the
number of nodes and considering different initial temperatures. Figure 2.5
shows the number of particles that, at each time step during both processes,
change their energy level. As temperature decreases, particles move to lower

Figure 2.5: Number of particles that change their energy level (indicated as
nr of jumps) along time (considering a network with n = 3000). a During
the cooling process, the number of jumps rapidly decreases. b During the
heating process, at the beginning, all particles are constrained to low-energy
levels. After few time steps particles can find more available states in the
upper bundles and the number of jumps increases. This curve reaches its
maximum when all particles have available upper energy levels to reach, until
these top levels become full and the number of jumps begins to decrease. At
the end, all the particles are mainly arranged in the higher energy levels.

energy levels until they occupy the deeper bundles; then the number of par-
ticles that change their position falls to zero. On the other hand, while
heating the system, particles slowly begin to jump to higher energy levels.
At the beginning of this process, only few particles move, as the majority
of particles are in fact constrained to their level due to the lack of available
(close) upper levels. Then, all particles can move and the number of jumps
get a maximum, until also the upper levels begin to fill. At the end of the
process, all particles mainly occupy the upper energy levels and the number
of jumps falls to zero.

2.3.3 Discussion

Fermionic networks show that the emergence of different structures can be
represented as a quantum-classical transition for quantum gases. In par-
ticular, a WTA structure corresponds to a fermionic gas approximated by
the quantum regime at low temperatures. On the other hand, a classi-
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cal random network corresponds to the same gas in the classical regime at
high temperatures. During a cooling process, at intermediate temperatures,
a scale-free structure emerges. As shown in Figure 2.2, the E-R structure
rapidly changes into a scale-free structure, with a scaling parameter of about
2.1. This parameter decreases to 1.38 and afterwards increases until the net-
work loses a neat scale-free structure (see panel d of Figure 2.2) and begins
to converge to the WTA structure characterized by a high value of the scal-
ing parameter. In particular, a homogeneous structure emerges, with the
presence of hubs (i.e., nodes with high degree). At the end of the cooling pro-
cess, few nodes have a very high degree (∼ n) and the remaining nodes have
low degree. Considering the heating process, we observed that the scaling
parameter slowly decreases at the beginning of the process. During the first
simulation steps the network apparently converges to a scale-free structure,
while for values of the scaling parameter around 3.8− 3.5 the network con-
verges to an hybrid structure, which follows an exponential distribution for
low values of k and a gaussian distribution for high values of k (see panel f
of Figure 2.4). Eventually, a homogeneous structure takes over at high tem-
peratures. Surprisingly we found that the whole process, considering both
cooling and heating, is not reversible when mapped to networks evolution.
Nevertheless, the separation between classical random vs. winner-takes-all
networks finds a full correspondence with the separation between classical
vs. quantum regions for quantum gases. Other analyses about the connec-
tion between classical random and scale-free networks have been reported
in [33]. In the cited paper, the authors show that, for cold regime, their
network is scale-free, but as the temperature increases the network loses its
metric structure and its hierarchical heterogeneous organization, becoming
a classical random network.

Considering that many real complex networks are scale-free while others
are not (see for example [34]), we deem that the proposed fermionic model
can be considered a good candidate for representing their evolution, at low
and high temperatures. As shown in Figure 2.5, we analyzed also the dy-
namics of particles during both processes. In each simulation we observed
that the cooling process takes more time to let particles get their final posi-
tion. During the cooling process, the number of particles changing position
is very high from the first time step. Instead, during the heating process
we found that, at the beginning, this number is small and rapidly increases
after few (usually about 10) time steps. Then, this amount of jumps gets a
maximum and begins to decreases until all particles stop moving. We deem
that this behavior is an effect of the Eq. (2.14), since it has been defined to
avoid that particles occupy densely high energy levels at high temperatures.



Chapter 3

Geometry of Social Networks

In this chapter we study social networks dynamics considering the individ-
ual perception, related to the concept of similarity, of people. Similarity
is a concept investigated in different sciences, including computer science,
cognitive sciences, and mathematics. From a computational perspective,
the similarity is usually codified as a distance measure and different met-
rics can be adopted to compute it. As reported in previous works, some
properties of social networks seem to be deeply influenced by the human be-
havior. For instance, social networks as physics and biology co-authorship
show a degree-degree correlation, in contrast with almost all real complex
networks that are degree-degree anticorrelated. We propose a model to map
the people’s behavior while they generate links, considering both similar-
ity and popularity of people. Moreover, we hypothesize that each person
has her/his own perception of similarity. To represent this difference among
people, we use a hyperbolic model to compute distances, providing each per-
son with individual geometric parameters. Simulations, in accordance with
the proposed model, generate small-world networks that show a community
structure. Before to introduce the proposed model, we illustrate some key-
concepts of hyperbolic geometry and briefly discuss a geometrical approach
to the studying of complex networks [33].

3.1 Hyperbolic Models of Complex Networks

In their seminal work, Krioukov et al. [33] investigated the underlying ge-
ometry of complex networks. Under proper assumptions, they demonstrate
that scale-free networks emerge by connecting points spread in a hyperbolic
space. In this section, after briefly recalling some key-concepts of hyperbolic
geometry [33], we introduce the geometric model of complex networks. Hy-
perbolic geometry is a powerful framework used in different domains. Just
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to cite few, it is possible to find hyperbolic models in physics [41], visual
perception [42], computer science [43], and crystallography [44]. In general,
hyperbolic geometry allows to study isotropic spaces with negative curva-
ture. These spaces are difficult to represent and many models have been
developed, e.g., the Poincare disk and the Hyperboloid model [45]. For each
problem or application, it is possible to choose the most suitable or com-
fortable hyperbolic representation. The geometric model described in [33] is
based on 2D hyperbolic spaces H2

ζ with curvature K = −ζ2 < 0 and ζ > 0.

The authors adopt the native representation of H2
ζ ; hence its the ground

space is R2 and every point p ∈ R2 having polar coordinates (rp, ρp) has a
hyperbolic distance from the origin equal to rp. Furthermore, the length of
the circle L(r) and the disk area A(r) are computed as follows:

L(r) = 2π sinh ζr
A(r) = 2π(cosh ζr − 1)

(3.1)

The distance x between two points (r, θ) and (r
′
, θ
′
) is computed as:

cosh ζx = cosh ζr cosh ζr
′ − sinh ζr sinh ζr

′
cos ∆θ (3.2)

with ∆θ = π−|π−|θ−θ′ || angle between the two points. If ζ → 0, Eq. (3.1)
converge to their Euclidean analogs. This model allows to simulate the
network generation considering the similarity among nodes. Here, as usual,
the concept of similarity is codified as a distance. Simulations are performed
spreadingN points in a 2D hyperbolic disk with constant curvatureK = −1,
assigning each point an angular coordinate θ ∈ [0, 2π] and a radial coordinate
r ∈ [0, R]. The angular distribution density is uniform, whereas the radial
distribution density is exponential:

ρ(r) = α
sinhαr

coshαR− 1
≈ eαr (3.3)

with the exponential exponent α > 0. The simple way to connect these
points is by evaluating their hyperbolic distances using the Heaviside step
function, so that the connections are generated when the distance x sat-
isfy the relation x ≤ R, with R disk radius. Then, a scale-free distribution
emerges. Moreover, the authors show how to generate scale-free networks
with a desired average degree. Further considerations, related to statisti-
cal mechanics models vs their geometric model of complex networks, are
discussed.

3.2 Perception-based Model of Social Networks

Let us now introduce our model to study the dynamics of social networks.
As in [33], we adopt the native representation of H2

ζ . We map each person
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(user hereinafter) to a point in a hyperbolic disk, identified by the coordi-
nates (r, θ), with r ∈ [0, R] (R disk radius) and θ ∈ [0, 2π]. The disk radius is
computed as R = ln(n), with n number of users. To generate a network, we
let users connect considering their similarity and their popularity. In partic-
ular, the similarity is computed as a distance by Eq. (3.2) and the popularity
as the node degree. Users are provided with two individual parameters, ζ
and ε. The curvature ζ allows users to evaluate distances in her/his per-
ceived geometric space (note that all spaces are hyperbolic). The parameter
ε allows users to decide if other users are similar or not. In particular, users
send requests of connection to all other users when the computed distance
is ≤ εR. After the first step, if two users send each other a request, an edge
is drawn between them and they become friends. In so doing, once defined
these connections, a first social network emerges. We hypothesize that users
can be influenced while evaluating the similarity with other users that share
common friends. Under this hypothesis, we let each user decide whether to
define other connections with users linked with their friends. At this step, it
is worth noting that users define a list of potential friend by a network met-
ric, i.e., only one node (the common friend) separates them. After defining
this list of potential friends, each xth user re-computes the distance with
her/his yth potential friend (by Eq. (3.2), using ζx) and verifies whether the
following relation is satisfied:

dxy < ln(f + 2) · εx ·R (3.4)

with f number of common friends. If the constraint imposed by relation (3.4)
is satisfied, the xth user sends a request of connection with probability:

p = 1− 1

2
ln(ζx) (3.5)

Once again, users send and receive requests of connections and, as before,
define new connections for mutual requests. Finally, all users can have a
list of applicants, i.e., users they consider unlike, which sent a request of
connection. Hence, they can accept or decline requests and their decision is
based on the popularity of these applicants, i.e., on the applicants degree.
In particular, at this step, users accept these connections only if applicants
have equal or higher degree. Each user can become an applicant if she/he
sends a request to another user that considers her/him unlike. The proposed
model can be summarized as follows:

1. Define n users and assign them polar coordinates (θ ∈ [0, 2π], r as
defined in Eq. (3.3)), a curvature ζ and a parameter ε

2. Each xth user computes the distance dxy with the yth user, by Eq. (3.2)
using ζx, and sends a request of connection to y if dxy ≤ εxR
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3. If two users send reciprocally a request of connection, an edge is drawn
between them and they become friends

4. Each user generate a list of potential friends, i.e., users linked with
their friends

5. Each user re-computes the distance with her/his potential friend (by
Eq. (3.2) and sends a request of connection, with probability of Eq. (3.5),
if the condition of Eq. (3.4) is satisfied

6. If two users send reciprocally a request of connection, an edge is drawn
between them and they become friends

7. Each user accepts requests of connection from users she/he considers
unlike, if applicants have equal or higher degree

3.3 Simulations

Synthetic social networks generated by the proposed model have been ana-
lyzed considering different parameters, i.e., assortativity, average clustering
coefficient, and average degree. Furthermore, we evaluated if these networks
show a community structure as many real social networks do [8]. We per-
formed many simulations with a number of agents in the range [1500, 5000].
Each agent is mapped to a point on a hyperbolic disk. In particular, we
spread points with uniform angular density ρ(θ) = 1

2π and with exponential
radial density ρ(r) ≈ eαr, having α ∈ [2, 3]. Agents were provided with the
curvature ζ in range (1, lnn3 ), and with the parameter ε in range [0, 75− 1].
Figure 3.1 shows how these parameters influence the concept of similarity
of each agent. Figure 3.2 shows the difference among networks generated
by using different α in the radial distribution. It is worth noting the strong
difference among networks generated with different values of α. Table 3.1
illustrates measured properties of simulated networks. As discussed before,
it is possible to evaluate if simulated networks are small-world. Hence, for
each network, we generated the corresponding E-R graph (i.e., the classical
random network generated on the same set of nodes) and we measured the
shortest path length and the average clustering coefficient. Furthermore, as
the distance between randomly chosen nodes in a small-world network is
≈ ln(n), we computed the average distance between randomly chosen nodes
of simulated network. Results of this comparison are reported in the Ta-
ble 3.2. Finally, we analyzed also the degree distribution of each network.
Figure 3.3 shows the degree distribution of a network with n = 2500. As
shown in Figure 3.3, simulated networks are not scale-free. On the contrary,
for α equal to 2.5 and to 3, we achieved P (k) functions similar to that of
E-R graphs.
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Figure 3.1: From left to right, distribution of 1000 agents in the hyperbolic
disk, with α = 2. In each panel the arrow points a randomly chosen agent,
say x, indicated as a black diamond. Blue points have a hyperbolic distance
less than εR from x. Red points have a hyperbolic distance less than R
from x. ζ and ε values of each x point are indicated under the related panel.
a The x point is far from the disk boundary, hence it has many neighbor
points. b The x point is not far from the disk boundary. c The x point is
almost on the disk boundary, hence it has very few neighbor points.

Figure 3.2: From left to right, distribution of 2500 agents in the hyperbolic
disk varying the value of α (indicated in each panel). The related networks,
generated with the proposed model, are placed below each disk. Each color
identifies a community.

3.3.1 Discussion

Results of simulations clearly highlight that the network structure is deeply
affected by the exponent α. In particular, the density of edges decreases as α
increases. Reducing the density of edges the shortest path length increases,
hence there is a correlation between α and the shortest path length –see
Table 3.1. Also the number of communities depends on α, in particular,
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n α Assortativity avgCC SPL Communities 〈k〉
1500 2.0 −0.12 0.748 2.18 6 92.12
1500 2.5 +0.03 0.74 5.37 11 22.59
1500 3.0 −0.11 0.75 10.71 16 14.16

2500 2.0 −0.15 0.756 2.15 5 131.78
2500 2.5 −0.12 0.77 3.39 11 32.6
2500 3.0 −0.2 0.746 10.7 19 17.28

3000 2.0 −0.126 0.747 2.22 5 138.77
3000 2.5 −0.124 0.761 3.87 13 31.85
3000 3.0 −0.18 0.757 8.7 17 19.1

5000 2.0 −0.17 0.76 2.1 5 231.72
5000 2.5 −0.11 0.781 3.28 10 46.06
5000 3.0 −0.2 0.763 8.05 20 22.5

Table 3.1: Properties of simulated networks. n indicates the number of
nodes, α the exponent of the radial distribution, avgCC the average clus-
tering coefficient, SPL the shortest path length, Communities the number
of identified communities, and 〈k〉 the average degree.

Figure 3.3: From left to right, degree distribution of networks with n = 2500
achieved varying the value of α (indicated in each panel).

this number increases with α. On the other hand, the assortativity and the
average clustering coefficient seem to do not depend on α. It is interesting
to note that the assortativity is almost always negative, then the related
networks are disassortative. Although in [12] authors stated that social
networks use to be assortative, in [34] author reports that there are social
networks as “student relationship” that are disassortative. As observed be-
fore, we found that simulated networks are not scale-free. In particular, for
α = 2.5 and α = 3 the 〈k〉 is at the top of P (k) and the degree distribution
decays exponentially for large values of k. These results are in accordance
with those reported in [1]. Also the parameters ζ and ε play an important
role in the network structure. In [33], simulated networks get a scale-free
structure using a generic α > 0, hence the assigning of different curvatures
ζ to agents yields this difference with the theoretical model of Krioukov
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n α ∆ avgCC ∆ SPL ∆rand. Distance

1500 2.0 0.686 0.245 1.02
1500 2.5 0.733 2.68 2.41
1500 3.0 0.74 7.68 7.05

2500 2.0 0.7 0.21 1.26
2500 2.5 0.75 0.76 0.755
2500 3.0 0.74 7.69 7.63

3000 2.0 0.7 0.27 1.253
3000 2.5 0.75 1.18 0.925
3000 3.0 0.751 5.71 5.61

5000 2.0 0.713 0.154 1.58
5000 2.5 0.772 0.644 0.724
5000 3.0 0.759 5.04 4.68

Table 3.2: Comparison between simulated network and their related E-R
graphs. n and α identifies the simulated network, ∆ avgCC is the difference
between average clustering coefficients, ∆ SPL is the difference between
shortest path length, ∆rand. Distance is the difference between the ex-
pected distance in a small-world network of that size, i.e., ≈ ln(n), and that
computed in simulated networks considering randomly chosen nodes.

et al.. To state that only ζ is responsible for this behavior, we performed
simulations setting ε = 1 for all agents, achieving degree distributions sim-
ilar to that of Figure 3.3. On the other hand, the parameter ε strongly
affects the number of possible friends of each agent, as it can be observed
in Figure 3.1. Both parameters, ζ and ε, contribute to the generation of the
potential friends list. ζ represents the individual perception of similarity,
whereas ε allows to represent the individual maximum distance to consider
someone similar. Results of numerical simulations, shown in Table 3.2, sug-
gest that for α = 2.5 it is possible to achieve small-world networks. In
particular, comparing simulated networks with their related E-R graphs (as
discussed before), the difference of average clustering coefficient is always
quite high (about 2 orders of magnitude). On the other hand, the shortest
path lengths are not always equivalent or quit similar. Furthermore, the
difference in distance between randomly chosen nodes and the theoretical
value of ln(n) strongly increases for α = 3.
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Chapter 4

Emergence of Acronyms

In this chapter we propose a model constructed by the framework of com-
plex networks to study a specific problem in language dynamics [46], i.e.,
the emergence of acronyms in a community of language users. Language is a
complex system that evolves over time, due to several phenomena. In recent
years, new communication media are affecting interpersonal written commu-
nication. In particular, mobile phones and internet-based communication
media are leading people to use a small number of characters when message
writing. Hence, in most cases acronyms or abbreviations are used. For in-
stance, a mobile phone message is usually composed of short phrases, the
social network Twitter only allows 140 characters for each message (called
tweet) and in many online forums users have limited space for each question
or answer. Although the use of acronyms dates back to ancient times, nowa-
days this type of linguistic sign is gaining prestige. In this work, we study the
introduction of acronyms in social systems. In particular, we define a simple
game for the purpose of analysing how the use of an acronym spreads in a
population, considering its ability to create shared meaning. We performed
many numerical simulations using the proposed model, showing the creation
of acronyms to be the result of collective dynamics in a population. After a
brief introduction to the modelling of linguistics phenomena, we discuss two
famous language games. Then, we illustrate the proposed model.

4.1 Modelling Linguistics Phenomena

Language can be considered as a complex system that evolves over time, in-
volving several different phenomena, in every community. In general, studies
of language are strongly interdisciplinary as language can be analysed from
different perspectives, e.g., linguistics, philosophical, cognitive, computa-
tional and also statistical mechanics [47][48][49][50][46]. The relatively new
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field of language dynamics [46] deals with language evolution, mainly us-
ing computational tools and the statistical mechanics framework. One of
the insightful results achieved is modelling the creation of a common lin-
guistic convention in a community of language users as the result of their
interactions in a complex dynamical system. In particular, the creation of
a language is modeled by a game among agents. The first observations in
this direction were developed by Wittgenstein [51] and, later, Steels [52] de-
veloped a model representing the linguistics behavior as a series of language
games. Baronchelli et al. [53] introduced a microscopic model of commu-
nicating autonomous agents inspired by the Naming Game [52]. Following
this, mapping communities of language users to complex networks became
natural, as social relations such as friendship [54][30][55] can be represented
by links among nodes. For example, Dall’Asta et al. [56] studied the dy-
namics of the Naming Game on complex networks. One of the phenomena
involved in language evolution is lexical innovation, i.e., new terms added to
people’s vocabulary. Lexical innovations, or neologisms, have a meaningful
role and usually an aesthetic effect. Furthermore, they are adopted from a
language for different needs, such as for new inventions (e.g., the term tele-
vision), or if a bilingual person introduces a loanword. Nowadays, written
communication takes place largely using mobile phones and internet-based
media. Both categories are leading people to use a small number of char-
acters. Hence, acronyms are commonly used. Acronyms are linguistic signs
(signs, hereinafter) composed of the initial components of other signs or of
a phrase. Each component can be an individual character or part of a sign.
Formally, a sign [47] is the fundamental unit of language and it comprises
two elements, a signifier and a signified. The former is the shape of a word
and its phonic component, whereas a signified is the ideational component,
the meaning or the concept appearing in our mind when we hear or read the
signifier. The signified is related to a referent, the actual object or concept.
Although the creation of acronyms dates back to antiquity, e.g., SPQR (Sen-
atus PopulusQue Romanus) or CEO (Chief Executive Officer), it seems that
nowadays this kind of linguistic sign is gaining prestige. Acronyms such as
ASAP (As Soon As Possible), BTW (By The Way) and LOL (Laughing Out
Loud) commonly appear in web sites, chat-rooms or web-forums. Therefore,
when a new acronym is defined by a writer, it can be regarded as a lexical
innovation. Although acronyms are signs, they were generated and evolved
differently from other signs. Usually, a normal reader is able to recognize
whether a sign is an acronym, so she/he has to think of all possible mean-
ings considering the related context. Therefore, more than one meaning can
be associated with an acronym and, after some time, a common meaning
is shared among people. This latter consideration means that people must
converge to a common opinion. Similar problems have already been studied,
e.g., Starnini et al. defined a Voter Model with a number of states from 2 to
∞ [57], Sood et al. analyzed the Voter Model on graphs [58] and Krapivsky



4.2. LANGUAGE GAMES 49

et al. defined a model of opinion dynamics [59]. In this work we study the
introduction of acronyms in a community of language users. In particular,
we illustrate a model where people, by their interactions, converge to a com-
mon meaning for each new acronym. After a brief theoretical analysis of the
Shannon entropy of acronyms, we show results of numerical simulations to
analyse the average number of meanings related to an acronym and the evo-
lution of the system as its use spreads, up until the definition of a common
meaning. The remainder of the chapter is organized as follows: Section 4.2
gives a brief introduction to the most famous language games. Section 4.3
introduces our model on the emergence of acronyms. Section 4.4 shows a
theoretical analysis of the Shannon entropy of acronyms, and results of the
numerical simulations.

4.2 Language Games

In this section, we briefly introduce two famous models, Naming Game and
Category Game [60], to study the emergence of language in populations.

4.2.1 Naming Game

The Naming Game is played by N players with the aim to define a common
vocabulary for M objects present in their environment. Here, the term
object takes a generic meaning, which includes physical objects, concepts,
and people. Each player has a vocabulary to represent all objects she/he
knows. All vocabularies are empty at t = 0. At each time step, two randomly
selected players interact, one as speaker and one as listener. The following
list of rules governs their interactions:

• the speaker selects an object from the context;

• the speakers searches the word, from its vocabulary, associated with
the object and, if it does not exist, she/he invents a new word;

• the speaker transmits the word to the listener;

• if the listener knows the word and she/he associates it with the in-
tended object, the interaction is a success and both players maintain
in their vocabulary only the winning word;

• if the interaction is a failure, the listener adds the word with that
meaning in her/his vocabulary.

Later on, a simpler model, called the minimal language game, has been
defined by Baronchelli et al. [53] This game is played by N players, arranged
in a fully connected network.
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4.2.2 Category Game

The Category Game is a minimal model for linguistic categorization. This
game involves N players engaged in categorising a single analogic perceptual
channel. Each stimulus is coded as a real number in the range [0, 1]. The
categorisation is identified by partitioning the interval [0, 1], defining sub-
intervals called perceptual categories. Each player has a dynamic inventory
of form-meaning associations, linking perceptual categories to words (forms),
which represent their linguistic counterpart. Perceptual categories and the
corresponding words co-evolve dynamically through elementary interactions
among players. At t = 0, all players have only the perceptual category [0, 1],
with no name associated to it. At each time step, two randomly selected
players interact in front of a set of objects. One player (the speaker) says
the name of one object, while the other player (the listener) tries to guess
the named object. The game is successful when the listener gives the right
answer.

4.3 Acronyms Game

Let us now introduce a novel model to study the emergence of acronyms
in a community of language users. The proposed model, called Acronyms
Game (AG hereinafter), considers a system with N interacting agents which
communicate by a linguistic convention. We assume that this convention is
based on a common vocabulary of signs. Relations among signs are mapped
to a network, that has been given the name of NetSigns. The edges of this
network are generated between signs that can be used together, since their
combination has a logic meaning. Agents can play the role of writer or
reader and, in both cases, they know the rules for generating/codifying an
acronym, i.e., using only the first character of each sign. Provided that more
than one meaning can be associated with an acronym, many different signs
can be created with the same signifier. When agents converge to a common
meaning, only the related sign is kept in their vocabulary. The game com-
prises two main phases: a spreading phase and a converging phase. During
the first phase, the acronym spreads through the system, while during the
second, agents try to converge to a common meaning.

Spreading Phase. This phase begins with an agent, in the role of writer,
sending to a reader a message that contains an acronym. Both players are
randomly selected, on the condition that the reader still does not know the
acronym. In particular, the writer generates a message of random length and
decides to introduce an acronym related to the last z signs. For example, it
wants to send a friend the following message: ”Do not wait for me, because
I’m still working” and it writes: ”Do not wait for me, because I’m sw”.
The reader receives the message and thinks of some possible meanings for
the acronyms. At each step, all agents who know the acronym become
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writers. This process continues until all agents have read and saved the
acronym with a list of possible meanings. Converging Phase. This phase
begins with a random writer which sends a message, containing the acronym,
to a random reader. The writer, before sending the message, chooses the
most appropriate meaning among those saved. If the reader has the same
meaning for that acronym, both agents keep only that meaning and delete
the others. If not, the reader adds the chosen meaning to its list of meanings.
This phase ends when all agents converge to a common meaning for the
acronym. Summarizing, AG can be described as follows:

• Spreading Phase. An agent generates an acronym to be spread through-
out the system.

1. Two agents are randomly selected, one as writer and one as
reader;

2. The writer generates a message (in accordance with the con-
straints defined in NetSigns), which contains an acronym related
the last z signs, and sends it to the reader;

3. The reader reads the message and thinks about some possible
meanings for the acronym;

4. If the reader finds at least one possible meaning, it becomes writer
(and, in this phase, it will never play again the role of reader);

5. Each writer of the system sends a message using the acronym
(choosing the most appropriate meaning among those saved) to
a randomly selected reader. In the event that no reader exists,
the spreading phase is over.

• Converging Phase. All agents know the acronym (with a list of possible
meanings). They can play the role of writer and reader, and must
converge to a common meaning.

1. Two agents are randomly selected, one as writer and one as
reader;

2. The writer generates a message that contains the acronym. To
use the acronym, it must choose the most appropriate meaning
among those saved;

3. The reader reads the message. If it has the chosen meaning in
its list of meanings, the communication is successful and both
agents keep only that meaning and delete the others; otherwise
the reader adds the chosen meaning to its list of meanings;

4. Repeat from (i) until all agents converge to a common meaning
for the acronym.

To complete the model let us assume that agents play AG in a fully-
connected network.
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Figure 4.1: Degree distribution of NetSigns used in simulations: a) Scale-
free structure. b) E-R graph structure.

4.4 Results

We performed many numerical simulations to study the dynamics of AG,
considering a number of agents N ∈ [100, 1600] and acronyms of length
z ∈ [2, 4]. Agents interact in a fully-connected network using a common
vocabulary of 700 signs. In order to make the game as realistic as possible,
we limited the number of solutions (i.e., the saved meanings) for each agent,
as well as the number of attempts to codify it. Thus, when an agent reads a
new acronym, it tries to codify it in at most 100 attempts, saving a maximum
of 5 different possible meanings. If it is not able to find a meaning, it will be
considered again, at the next time step, as a possible reader. As signs must
be linked to one another in a network, we generated NetSigns in accordance
with two main structures: scale-free and Erdos-Renyi graph (E-R graph
hereinafter). The use of a scale-free structure has been inspired from the
works of Motter et al. [61] and from that of i Cancho et al. [62], whereas the
use of E-R graph structures has been chosen for the sake of comparison. To
generate networks with scale-free structure, we adopted the BA model [1],
setting m0 = 10. In so doing, we computed a value of around 2.94 for
the scaling parameter α (related to the degree distribution P (k) ∼ k−α)
and an average degree 〈k〉 ∼ 20 –see panel a of Figure 4.1. Then, we
generated networks with E-R graph structure, provided with the same set
of nodes and with the same density of edges achieved in the related scale-free
networks –see panel b of Figure 4.1. We hypothesize that the structure of
NetSigns can affect the Shannon entropy of generated acronyms. In turn, we
deem that Shannon entropy can affect the spreading phase of AG. Hence,
before studying AG we developed a preliminary analysis of the relations
between the Shannon entropy of acronyms and the structure of NetSigns.
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4.4.1 Shannon entropy of acronyms

This analysis allows to compare the two structures adopted for NetSigns.
To perform this comparison we used a fully-connected network as reference.
Generally speaking, when any such network is used, there exists a very large
set of possible solutions for each acronym, with a cardinality equal to:

|Ωfc| =
z∏
i=1

ωi (4.1)

where z is the acronym length, |Ωfc| is the cardinality of the set of all possible
solutions considering a fully-connected NetSigns, and ωi is the number of
signs having the i-th character as initial character. In the proposed model,
the number of possible solutions can be substantially reduced as we used
scale-free or E-R graph structures. In particular, |Ωsf | ≤ |Ωfc| and |Ωer| ≤
|Ωfc| (with |Ωsf | and |Ωer| cardinality of the set of all possible solutions
considering a NetSigns with the scale-free and E-R graph structure). The
reason of the reported inequalities hold is that not all signs in these network
structures are reciprocally linked. Hence, when one or more characters of
the acronym are initials of signs with low degree (i.e., with few neighbours),
the number of possible solutions decreases. In the case of fully-connected
networks, the Shannon entropy [63] can be computed as follows:

Hfc =
z∑
i=1

hi (4.2)

where hi is the entropy of each character of the acronym, computed as:

hi =

ωi∑
j=1

sj log2
1

sj
= log2 ωi (4.3)

with sj probability of the j-th sign. In the case of a scale-free or E-R graph
structure, the Shannon entropy Hr can be computed as follows:

Hr =
∑
j1

∑
j2

...
∑
jz

sj1,j2,...,jz log2
1

sj1,j2,...,jz
(4.4)

with z acronym length and sj1,j2,...,jz probability of all the signs occurring
together. The utilization of these two structures, playing the AG game,
offers a computational disadvantage in the task of codifying an acronym,
if compared to the utilization of a fully-connected NetSigns. The task of
codifying an acronym entails two steps:

• select signs in agreement with letters of the acronym

• verify that the selected signs are linked (i.e., there is a path in the
network of signs that connects them)
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Figure 4.2: Comparison between Shannon entropies achieved at different
attempts (i.e., random generated acronyms). Red lines indicate acronyms
of length 2, green lines indicate acronyms of length 3 and blue lines indi-
cate acronyms of length 4. The figure reports: a) fully-connected networks
(continuous lines) vs scale-free structure (dotted lines). b) fully-connected
networks (continuous lines) vs E-R graph structure (dotted lines).

As a consequence, when signs are linked in scale-free networks or E-R graph,
agents spend more time to identify sequences of linked signs, whereas in
a fully-connected network a path for any sequence of signs always exists.
Given these considerations, we analysed the Shannon entropy for a set of
randomly generated acronyms, comparing the difference between scale-free
networks or E-R graph and fully-connected networks–see Figure 4.2. Then,
we compared the relative gain, in terms of Shannon entropy of randomly
generated acronyms, achieved by using scale-free or E-R graph structures
instead of fully-connected networks–see Table 4.1. Results achieved in this

length of acronym %G scale-free %G E-R graph
2 55.32 54.44
3 55.95 61.93
4 58.24 64.43

Table 4.1: Average gains, in terms of Shannon entropy of randomly gener-
ated acronyms, obtained between NetSigns with scale-free and E-R graph
structure. The table reports the relative gain of Shannon entropy achieved
by using scale-free “%G scale-free” or E-R graph “%G E-R” structures.

preliminary analysis suggest that performing AG with a NetSigns provided
set with a scale-free structure should be more convenient than using an
E-R graph structure. In particular, the Shannon entropy gain for scale-
free structures is about 55.51%, whereas the gain for E-R graph is about
59.93%. A higher gain implies a lesser Shannon entropy. We hypothesize
that scale-free networks yield acronyms with higher Shannon entropy due to
the presence of hubs, i.e., of signs with many connections. Although from
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Figure 4.3: Average number of meanings for an acronym over time, in a
population of 400 agents during the spreading phase of AG. On top, results
achieved by using a scale-free NetSigns: a) Acronym of 2 characters; b)
Acronym of 3 characters; c) Acronym of 4 characters. At the bottom, results
achieved by using an E-R graph structure for NetSigns: d) Acronym of 2
characters; e) Acronym of 3 characters; f) Acronym of 4 characters.

a computational perspective it is better to manage data with low entropy,
in AG the problem is not to find a particular solution, but to find a generic
fitting solution, i.e., a sequence of linked signs. Hence, higher Shannon
entropy implies a greater amount of potential fitting solutions.

4.4.2 Numerical simulations of AG

As discussed before, AG is composed by two main phases: a spreading
phase and a converging phase. Since agents must codify acronyms during
the spreading phase, we expect during this phase, AG be faster using Net-
Signs with a scale-free structure than using an E-R graph structure. On
the other hand, using scale-free structures, it is less likely that the mean-
ing of the acronym defined by the first random player will be equal to that
defined by the whole population at the end of the game. Once discussed
these theoretical issues, we ran AG considering both structures, scale-free
and E-R graph, for the NetSigns. Figure 4.3 shows results of the spreading
phase of AG for a population of 400 agents. During the spreading phase,
the average number of meanings for an acronym increases over time steps,
as agents can save up to 5 meanings. As shown in Figures 4.3 and 4.4,
theoretical considerations made in the preliminary analysis of Shannon en-
tropy are fundamentally confirmed. The most trivial observations are that
the number of time steps increases with the number of agents, and that the
number of time steps required to complete the spreading phase increases
with the length of the acronym (see panels a-b-c and panels d-e-f of Fig-
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Figure 4.4: Number of time steps (on a logscale) to complete the game,
varying the number of agents from 100 to 1600, with acronyms of length 4.

ure 4.3). Furthermore, apparently the length of acronyms affects also the
first time steps of this phase. In particular, the average number of meanings
increases more slowly than the increasing length of the acronym. This be-
havior can be caused by the increasing difficulties that agents have to dealt
with while trying to identify solutions, as acronyms increase their length.
As a consequence, the average number of meanings increases when more
agents are involved. Notwithstanding this phenomenon, it is worth noting
that the maximum number of average meanings does not seem to depend
on the length of acronyms. Further observations can be made by comparing
the results achieved by using different structures of NetSigns. As expected,
after the Shannon entropy analysis, the duration of the spreading phase is
higher for agents which use a NetSigns with an E-R graph structure, as
the entropy of its acronyms is lower. Furthermore, using the E-R graph
structure more agents must be involved before that the average number of
meanings increases. This last phenomenon is clear shown in panels b-e and
c-f of Figure 4.3. On the other hand, contrary to expectation given by Shan-
non entropy analysis, the maximum average number of meanings does not
seem to depend on the structure of NetSigns, although scale-free networks
offer more fitting solutions. It is worth highlighting that this last achieve-
ment could be affected by the constraint we imposed in the system, i.e.,
each agent can save no more than 5 meanings for each acronym. Figure 4.5
shows results of the whole dynamics of AG. In diagrams of Figure 4.5 the
two phases of AG are well characterized. In particular, the first phase ends
when the curve achieves its maximum (or after few time steps –see panel
b of Figure 4.3).The converging phase of AG is much more faster than the
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Figure 4.5: Average number of meanings for an acronym over time, in a pop-
ulation of 400 agents, considering the spreading and the converging phase.
On top, results achieved by using a scale-free NetSigns: a) Acronym of 2
characters; b) Acronym of 3 characters; c) Acronym of 4 characters. At
the bottom, results achieved by using a E-R graph structure for NetSigns:
d) Acronym of 2 characters; e) Acronym of 3 characters; f) Acronym of 4
characters.

first one and ends when the curve (i.e., the average number of meanings)
is 1. The converging phase has no relations with the Shannon entropy of
acronyms, as each agent knows at least one possible meaning. Furthermore,
there are no relations between the length of acronyms and the duration of
the converging phase. On the other hand, this second phase can be affected
only by the number of agents playing AG. Eventually we found that, in
all simulations, the proposed model allowed agents to converge to a unique
common solution. We then analysed the evolution of the system, as illus-
trated in Figure 4.6. We represented the information that each agent has
about the acronym, e.g., whether it knows it or not, by a color. In particu-
lar, agents are red if they have never heard about the acronym (or have no
meanings for it); black if they know it and have several meanings for it; cyan
if they know it and have only one meaning for it. In the latter case, if the
assigned meaning is equal to that assigned by the acronym’s inventor, the
color is turned to green. It is worth recalling that, despite of the appearance
of Figure 4.6, we analysed AG considering agents linked in a fully-connected
network. In some cases the final meaning adopted is equal to that assigned
by its inventor, but in general we did not observe any particular bias toward
this specific state.
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Figure 4.6: Evolution of a population composed by 900 agents, which use
a scale-free NetSigns, during the introduction of a 3-character acronym.
Colors codify the state of each agent. Red if she/he does not know the
acronym; green if she/he knows the acronym with its initial meaning; black
if the agent assigns more than one meaning and cyan assigns a meaning
different from the original one. a) The system at the beginning of the game;
b) The end of the first phase; c) Second phase after 500 time steps; d)
Second phase after 1000 time steps; e) Second phase after 5000 time steps;
f) The system at the end of the game.



Chapter 5

Clustering Datasets by
Community Detection

In this chapter, we propose a method based on complex networks analysis,
devised to perform clustering on multidimensional datasets [64]. For exam-
ple, datasets containing information about users of a social networks. The
proposed method maps the elements of the dataset in hand to a weighted
network according to the similarity that holds among data. Network weights
are computed by transforming the Euclidean distances measured between
data according to a Gaussian model. Notably, this model depends on a
parameter that controls the shape of the actual functions. Running the
Gaussian transformation with different values of the parameter allows to
perform multiresolution analysis, which gives important information about
the number of clusters expected to be optimal or suboptimal. Solutions ob-
tained running the proposed method on simple synthetic datasets allowed
to identify a recurrent pattern, which has been found in more complex,
synthetic and real, datasets.

5.1 Clustering vs Community Detection

Community detection is one of the most important processes in complex
network analysis, aimed at identifying groups of highly mutually intercon-
nected nodes, called communities [65], in a relational space. From a complex
network perspective, a community is identified after modelling any given
dataset as graph. For instance, a social network inherently contains com-
munities of people linked by some (typically binary) relations –e.g., friend-
ship, sports, hobbies, movies, books, or religion. On the other hand, from
a machine learning perspective, a community can be thought of as a clus-
ter. In this case, elements of the domain are usually described by a set
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of features, or properties, which permit to assign each instance a point in
a multidimensional space. The concept of similarity is prominent here, as
clusters are typically identified by focusing on common properties (e.g., age,
employment, health records).

The problem of clustering multidimensional datasets without a priori
knowledge about them is still open in the machine learning community (see,
for example, [66][67][68]). Although complex networks are apparently more
suited to deal with relations rather than properties, nothing prevents from
representing a dataset as complex network. In fact, the idea of viewing
datasets as networks of data has already been developed in previous works.
Just to cite few, Heimo et al. [69] studied the problem of multiresolution
module detection in dense weighted networks, using a weighted version of the
q-state Potts method. Mucha et al. [70] developed a generalized framework
to study community structures of arbitrary multislice networks. Toivonen et
al. [71] used network methods in analyzing similarity data with the aim to
study Finnish emotion concepts. Furthermore, a similar approach has been
developed by Gudkov et al. [72], who devised and implemented a method for
detecting communities and hierarchical substructures in complex networks.
The method represents nodes as point masses in an N−1 dimensional space
and uses a linear model to account for mutual interactions.

The motivation for representing a dataset as graph lies in the fact that
very effective algorithms exist on the complex network side to perform com-
munity detection. Hence, these algorithms could be used to perform clus-
tering once the given dataset has been given a graph-based representation.
Following this insight, in this paper we propose a method for clustering
multidimensional datasets in which they are first mapped to weighted net-
works and then community detection is enforced to identify relevant clus-
ters. A Gaussian transformation is used to turn distances of the original (i.e.
feature-based) space to link weights of the complex networks side. As the
underlying Gaussian model is parametric, the possibility to run Gaussian
transformations multiple times (while varying the parameter) is exploited
to perform multiresolution analysis, aimed at identifying the optimal or sub-
optimal number of clusters.

The proposed method, called DAN (standing for Datasets as Networks),
makes a step forward in the direction of investigating the possibility of using
complex network analysis as a proper machine learning tool.

5.2 Clustering Datasets

Before to introduce DAN let us spend few words on classical clustering algo-
rithms. Cluster analysis (or simply clustering) is an unsupervised learning
approach, directly exploiting regularities in the data to be analysed, that
builds a higher level representation to be used for reasoning or prediction;
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this higher level description is usually in the form of groups or, in a more
abstract view, it represents a partitioning of the data.

K -means

As centroid-based clustering is one of the most acknowledged clustering
strategies, the k−Means algorithm (e.g., [73]), which belongs to this family,
has been selected as one of the comparative tools. For the sake of complete-
ness, let us briefly summarize it:

1. Randomly place k centroids in the given metric space;

2. Assign each sample to the closest centroid, thus identifying tentative
clusters;

3. Compute the Center of Mass (CM) of each cluster;

4. IF CMs and centroids (nearly) coincide THEN STOP;

5. Let CMs become the new centroids;

6. REPEAT from STEP 2.

The evaluation function of k − Means, called distortion and usually
denoted as J , is computed according to the formula:

J =

k∑
j=1

nj∑
i=1

∣∣∣s(j)i − cj∣∣∣2 (5.1)

where nj is the number of samples that belong to the j-th cluster, s
(j)
i is the

i-th sample belonging to j-th cluster, and cj its centroid. Note that different
outputs of the algorithm can be compared in terms of distortion only after
fixing k –i.e., the number of clusters. In fact, comparisons performed over
different values of k are not feasible, as the more k increases the lower the
distortion is. For this reason, the use of k −Means entails a main issue:
how to identify the optimal number k of centroids (see [74]).

Spectral Clustering

Spectral clustering [15] algorithms use the spectrum of the similarity matrix
to identify relevant clusters (the generic element of a similarity matrix mea-
sures the similarity between the corresponding data). These methods allow
to perform dimensionality reduction, so that clustering can be enforced along
fewer dimensions. Similarity matrices can be generated in different ways –
e.g., ε-neighborhood graph, k-nearest neighbor graphs and fully connected
graph. The main tools for spectral clustering are graph Laplacian matrices.
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In particular, in this work we used the unnormalized graph Laplacian matrix
defined as:

L = D −W (5.2)

where D is the degree matrix (i.e., a diagonal matrix with the degrees
d1, ..., dn on the diagonal) and W is the adjacency (or similarity) matrix
of the similarity graph. The following algorithm has been used to perform
unnormalized spectral clustering:

1. Generate the fully connected similarity graph and let W be its adja-
cency matrix;

2. Compute the unnormalized Laplacian L;

3. Compute the first k eigenvectors u1, ..., uk of L;

4. Let U ∈ <k be the matrix containing the eigenvectors u1, ..., uk as
columns;

5. For i = 1, ..., n, let yi ∈ <k be the vector corresponding to the i-th row
of U ;

6. Cluster the points (yi)i=1,...,n in <k with the k-means algorithm into
clusters C1, ..., Ck.

Notably, also in this case the number k of cluster is required as input.

5.3 Datatasets as Networks

The first step of the DAN method consists of mapping the dataset in hand to
a complex network. The easiest way to use a complex network for encoding
a dataset is to let nodes denote the elements of the dataset and links denote
their similarity. In particular, we assume that the weight of a link depends
only on the distance among the involved elements. To put the model into
practice, we defined a family of Gaussian functions –used for computing the
weight between two elements.

Computing similarity among data

Let us briefly recall that a metric space is identified by a set Z, together
with a distance function d : Z × Z → R, like Euclidean, Manhattan and
Chebyshev distances. In DAN, the underlying assumption is that a sample
s can be described by N features f1, f2, ..., fN , encoded as real numbers. In
other words, the sample can be represented as a vector in an N -dimensional
metric space S. Our goal is to generate a fully connected weighted network
taking into account the distances that hold in S. Conversely, the complex
network space will be denoted as N , with the underlying assumption that
for each sample si ∈ S a corresponding ni ∈ N exists and vice versa. This
assumption makes easier to evaluate the proximity value Lij between two
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ni, nj ∈ N , according to the distance dij between the corresponding elements
si, sj ∈ S.

Without loss of generality, let us assume that each feature in S is nor-
malized in [0, 1] and that a function ψ : R → R exists for computing the
similarity among data in N , starting from the value of the distance function
in S. In symbols:

L(ni, nj) = Lij
4
= ψ(dij) = ψ(d(si, sj)) (5.3)

Evaluating similarity for all pairs of samples in N (i.e., evaluating their
weighted links) allows to generate a fully connected complex network. More-
over, recalling that S is normalized in [0, 1], we expect Lij ≈ 0 when
dij ≈

√
N , N being the number of features of the space S. The value√

N comes from the following inequality, which holds for any pair of sam-
ples si, sj ∈ S (represented by their vector representation in terms of the
given set of features ri, rj):

dij =

√√√√ N∑
k=1

(ri[k]− rj[k])2 ≤
√
N (5.4)

where ri[k] denotes the k-th component of ri.

Multiresolution Analysis

Let us recall that multiresolution analysis is performed with the goal of ex-
tracting relevant information, useful for identifying the optimal or subopti-
mal number of communities (hence, of clusters). To perform multiresolution
analysis on the network space, a parametric family Ψ(λ) : R → R of func-
tions is required, where λ is a parameter that controls the shape of each ψ
function. After setting a value for λ, the corresponding ψ can be used to
convert the distance computed for each pair of samples in the given dataset
into a proximity value. In particular, the following parametric family of
Gaussian functions has been experimented:

Ψ(λ;x) = e−λx
2

(5.5)

As a consequence, Lij , i.e. the weight of the link between two nodes
ni, nj ∈ N , can be evaluated according to Equation 5.5 as follows:

Lij
4
= ψ(λ; dij) = e−λd

2
ij (5.6)

where the λ parameter is used as a constant decay of the link.
Following the definition of Ψ(λ;x) as e−λx

2
, multiresolution analysis

takes place varying the value of the λ parameter. The specific strategy
adopted for varying λ is described in the experimental section. As for now,
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let us note that an exponential function with negative constant decay en-
sures that distant points in an Euclidean space are loosely coupled in the
network space and vice versa. Moreover, this construction is useful only
if Ψ(λ;x) models local neighborhoods, which gives further support to the
choice of Gaussian functions [15].

5.4 Results

Experiments have been divided in three main groups: i) preliminary tests,
aimed at running DAN on few and relatively simple synthetic datasets, ii)
proper tests, aimed at running DAN on more complex datasets, and iii)
comparisons, aimed at assessing the behavior of DAN with reference to
k−Means and spectral clustering. Furthermore, we implemented DAN by
using the Louvain method [16] to perform the community detection.

Almost all datasets used for experiments (except for Iris) are synthetic
and have been generated according to the following algorithm:

Inputs: number of samples (n), dimension in the Euclidean space (N),
number of clusters (k), and radius of a cluster (r)

1. For each cluster j = 1, 2, ..., k, choose a random position cj in the
normalized Euclidean space;

2. Equally subdivide samples among clusters and randomly spread them
around each position cj , with a distance from cj in [0, r].

Preliminary Tests

A first group of 4 synthetic datasets, called TS/1 (i.e., Testing Set 1) here-
inafter, has been generated. Their main characteristics are summarized in
Table 5.1.

Group Dim Ns Nc µr σr

TS/1 2D 1897 5 0.4 0.3
3D 1683 3 0.09 0.04
3D 1500 10 0.42 0.22
4D 1680 6 0.62 0.45

Table 5.1: Features of datasets used for preliminary tests (TS/1 ) – Dim,
Ns, and Nc denote the dimension of datasets, the number of samples, and
the intrinsic number of clusters. Moreover, µr and σr denote the average
radium and the variance of samples.
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Figure 5.1 shows the datasets with 3 and 10 clusters, together with the
optimal solutions achieved by DAN.

Figure 5.1: Second and third datasets of TS/1, together with the solutions
achieved by DAN using log10(λ) = 3 (each cluster has been colored with a
different color).

Multiresolution analysis has been performed varying the value of λ ac-
cording to Equation 5.5. A logarithm scaling has been used for λ, as we
experimentally found that small changes had a negligible impact on the
corresponding algorithm for community detection. In particular, for each
dataset, we calculated the adjacency matrix for all values of λ such that
log10(λ) = 0, 1, 2, 3, 4. It is worth pointing out that the maximum value
of log10(λ) is expected to depend on the cardinality of the dataset in hand
–the greater the cardinality, the greater the value of log10(λ). However, for
most datasets, a value of log10(λ) = 4, i.e., λ = 10, 000, appears to be large
enough to include all relevant information by means of multiresolution anal-
ysis. Table 5.2 shows the results of multiresolution analysis for preliminary
tests.

As for the capability of identifying the optimal or suboptimal solu-
tions1 by means of multiresolution analysis, we observed the following pat-
tern to occur: the optimal number of communities is robust with respect to

1As pointed out by Arenas et al. [75], it may not appropriate to speak of correct vs.
incorrect solutions for multiresolution analysis. In a context of community detection we
deem more appropriate to speak of optimal or suboptimal solutions (see also [76] for more
information on this issue).
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Group Nc Number of Clusters

TS/1 5 2 3 5 5 5
3 3 3 3 3 103
10 2 3 10 10 151
6 2 4 6 6 37

0 1 2 3 4

log10(λ)

Table 5.2: Results of multiresolution analysis achieved during preliminary
tests. The number of communities is reported, calculated for log10(λ) =
0, 1, 2, 3, 4. Optimal values are highlighted in bold.

the values of log10(λ), as highlighted in Table 5.2. Our hypothesis was that
this recurrent pattern could be considered as a decision rule for identifying
the optimal number of communities (and hence of λ).

Proper Tests (TS/2 )

We generated a second group of datasets, characterized by an increasing
complexity with respect to TS/1. This second group of datasets is denoted
as TS/2 (i.e., Testing Set 2) hereinafter. We run DAN also on these new
datasets, with the goal of verifying the validity of the pattern identified
during preliminary tests. Moreover, we performed experiments using Iris,
a well-known multivariate real dataset available at the UCI ML repository
[77]. Iris contains 50 samples (described by 4 attributes) belonging to 3
species of Iris: setosa, virginica and versicolor. Table 5.3 summarizes the
main characteristics of TS/2 and Iris. The corresponding results, obtained
with DAN, are shown in Table 5.4.

Looking at these results, we still observe the pattern identified by pre-
liminary tests. Furthermore, one may note that a correlation often exists
between the cardinality of the dataset in hand and the order of magni-
tude of its optimal λ (typically, the former and the latter have the same
order of magnitude). It is also interesting to note that in some datasets
of TS/1 (i.e., 2nd, 3rd and 4th) and of TS/2 (i.e., 4th, 5th and 6th) the
optimal λ precedes a rapid increase in the number of communities. As a
final note, we found no significant correlation between the optimal λ and
the weighted-modularity parameter, notwithstanding the fact that this pa-
rameter is typically important to assess the performance of the adopted
community detection algorithm.
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Group Dim Ns Nc µr σr

TS/2 3D 350 5 0.35 0.19
3D 2000 20 0.44 0.2
3D 5000 30 0.51 0.24
4D 535 4 0.64 0.46
8D 1680 6 0.86 0.62
12D 930 8 1.22 0.88

Iris 4D 150 3 0.49 0.26

Table 5.3: Characteristics of datasets used for proper tests (TS/2 ), listed
out according to the group they belong to. Dim, Ns, and Nc denote the
dimension of datasets, the number of samples, and the intrinsic number of
clusters. Moreover, µr and σr denote the average radium and the variance
of samples.

Group Nc Pattern Number of Clusters

TS/2 5 X 3 5 5 8 84
20 X 3 4 16 20 21
30 X 4 5 21 30 30
4 X 2 4 4 105 181
6 X 2 4 6 6 1186
8 X 3 5 8 8 875

Iris 3 X 3 3 10 82 147

0 1 2 3 4

log10(λ)

Table 5.4: Results of multiresolution analysis on the selected datasets during
proper tests, listed out according to the group they belong to. The number
of communities is reported, calculated for log10(λ) = 0, 1, 2, 3, 4. Optimal
values are reported in bold. The patterns observed on synthetic datasets
(and reported in the table for the sake of completeness), allows to easily
compute the expected optimal number of communities also for Iris.

Comparison: DAN vs. k-Means and Spectral Clustering

We run the k -Means algorithm (using the Euclidean metric) and the spectral
clustering algorithm on the selected datasets –with the goal of getting new
insights on the results of the partitioning procedure defined in DAN. Both
algorithms used for comparison purposes have been run using the optimal
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values of k identified by means of multiresolution analysis. The comparison
has been performed considering the distortion J computed for each solution.
Figure 5.2 reports comparative results and clearly shows that, in around 72.2
percent of the cases, DAN achieves the best result.

Figure 5.2: Comparison, in terms of distortion, among solutions achieved
by DAN, blue bars, k−Means, red bars and spectral clustering, green bars
(the lesser the better).

These results highlight the validity of the proposed framework, also con-
sidering that DAN computes partitions without any a priori knowledge
about the datasets, as the optimal (or suboptimal) number of clusters is
typically found by applying the previously described pattern. Although
k − Means is faster than DAN, it is important to stress that its results,
at each attempt, depend tightly on the initial position of the k centroids.
Hence, in absence of a strategy for identifying the initial disposal of cen-
troids, k−Means should be (and it is in fact) run several times –the solution
with the smaller distortion being selected as optimal. The spectral cluster-
ing algorithm showed its effectiveness many times, although bad solutions
have been computed with datasets 2 and 3 of TS/2, characterized by 20 and
30 clusters, respectively.



Chapter 6

Conclusions

In this work we illustrate different models of social behaviors as competitive
dynamics, social networks dynamics, and emergence of linguistics phenom-
ena. Furthermore, we introduce a novel framework, based on complex net-
works, to clustering datasets, as real datasets containing information about
social networks users. In Chapter 2 a new theoretical model has been intro-
duced, based on complex networks and inspired by quantum statistics, to
study competitive dynamics. We define a fermionic network model that al-
lows to represent complex networks as quantum gases. Using this model, we
show that network evolution is a temperature-dependent process character-
ized by three main phases: classical random, scale-free and winner-takes-all.
The network evolution and the system temperature represent, respectively,
the evolution of a social system and the level of competitiveness of the system
itself. Performing a cooling process, the transition from classical random to
scale-free networks takes place. Notably, the system achieves equilibrium
when a winner-takes-all structure is reached, despite the non-equilibrium
nature of the network evolution. On the other hand, performing a heating
process which starts from a winner-takes-all structure, the network evolution
follows a slightly different path. In particular, a pure scale-free structure is
not reached, although the actual structure is very similar. Surprisingly, we
found that the whole process, considering both cooling and heating, is not
reversible when mapped to networks evolution. Finally, we observe that clas-
sical random networks (i.e., quantum gases in the classical region) can repre-
sent social systems where components (i.e., people) do not compete among
themselves, scale-free networks (i.e., quantum gases between the classical
and the quantum region) can represent social systems with a medium level of
competitiveness, whereas the winner-takes-all networks (i.e., quantum gases
in the quantum region) can represent social systems characterized by a high
level of competitiveness. In Chapter 3 we study social networks dynamics
considering the individual perception, related to the concept of similarity,
of people. To study these dynamics we developed a hyperbolic model of
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social networks. In particular, we represent the dynamics of link generation
among people, considering both similarity and popularity. Similarity is cod-
ified as a hyperbolic distance between people, which in turn are embedded
in their individual hyperbolic space. This concept has been put into practice
by providing people with an individual space curvature ζ. Furthermore, we
provide people with a coefficient that allows them to evaluate the maximum
distance to consider someone else similar. On the other hand, we codified
the popularity as the number of peoples links, hence it is not subject to
individual evaluation as for similarity. Results of simulations show that the
proposed model yields networks with a community structure, a degree dis-
tribution like that of E-R graphs, and for α ≥ 2.5 with small-world behavior
as many real social networks show. In Chapter 4 we study the emergence of
acronyms in a community of language users. The study of the introduction
of acronyms by means of a statistical mechanics approach makes possible to
represent macroscopic collective dynamics, today (and in the past), existing
in many human languages. We introduce a model, called Acronyms Game,
where agents interact following a set of rules in a fully-connected network.
These simple interactions involve the creation of an acronym with a shared
common meaning. Agents use a common vocabulary of signs that are linked
in a network, with a scale-free structure or E-R graph structure. The use
of a network of signs allows us to represent real scenarios as, usually, when
people try to codify an acronym they do not think of all possible signs for
each character but, where possible, try to consider only signs related to the
specific context of the reading. In this study, we develop a brief analysis of
the Shannon entropy of acronyms. In particular, we highlight the effects of
the structure of a network of signs for agents, during the task of codifying
acronyms. Numerical simulations show that the final adopted meaning of
an acronym is usually different from the one assigned by its inventor. As
for future work, we are planning to analyse the Acronyms Game in social
networks, in particular, examining different network structures and rules
for spreading the acronym and its evolution. In Chapter 5 we describe a
method for clustering multidimensional datasets, able to find the most ap-
propriate number of clusters also in absence of a priori knowledge. We have
shown that community detection can be effectively used also for data clus-
tering tasks, provided that datasets are viewed as complex networks. The
proposed method, called DAN, makes use of transformations between met-
ric spaces and enforces multiresolution analysis. A comparative assessment
with other wellknown clustering algorithms (i.e., k -Means and spectral clus-
tering) has also been performed, showing that DAN often computes better
results. In the light of these results, we deem DAN can be adopted as gen-
eral framework to clustering datasets of social networks users, since each
user is described by a large number of features. Finally, in this thesis we
offered some examples for modelling social behaviors by an interdisciplinary
approach. In particular, we adopted the modern network theory as general



71

framework and, when useful, we used powerful tools of statistical mechanics.
In the light of these results, we deem that the application of “hard sciences”
to social sciences can be useful to represent many complex dynamics and to
achieve important information about social and economical systems.
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List of Publications Related to the Thesis
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Transitions in Complex Networks”, Journal of Statistical Mechanics:
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Fermionic Networks”, 11th International Conference on Adaptive and
Natural Computing Algorithms (ICANNGA13), LNCS Springer 2013
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by Complex Networks Analysis”, Complex Adaptive Systems Model-
ing (CASM), 1:5, 2012
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