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Preface 
 

My PhD work has been focused towards four different targets: HIV-1 RT, Candida 

albicans, Monoamine oxidase, and G-Quadruplex. 

Thus in order to give the reader a clearer exposition this report has been divided in 

four different chapters. 

Each of the chapters has his own numbering for pages, figures, schemes, tables 

and references. 

The main part of my work has been dedicated to HIV-1 RT, thus this chapter is the 

major and first one. 

 



 



 

 

 

 

 

I Part: 

 

 

Synthesis and biological activity evaluation of new 

dual inhibitors of both associated functions of HIV-1 

RT 
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1 INTRODUCTION 

 

1.1 Historical overview 

 

In 1980, Michael Gottlieb, an imunologist of the Los Angeles UCLA Medical Center 

analysed three cases of young homosexual men presenting clinical signs such as weight 

loss, mycosis, fever, oral Candida , and pneumonia. 

In early May 1981, local clinicians and the Epidemic Intelligence Service (EIS) Officer 

stationed at the Los Angeles County Department of Public Health, prepared a report of 

five cases of Pneumocystis carinii pneumonia (PCP) among previously healthy young men 

in Los Angeles and submitted it for Morbidity and Mortality Weekly Report (MMWR) 

publication. [1] 

All of the men were described as homosexuals; two had died. 

The editorial note, that accompanied the published report, stated that the case 

histories suggested a cellular-immune dysfunction related to a common exposure and a 

disease acquired through sexual contact. 

In June 1981, the Centers for Disease Control (CDC) developed a team to identify 

risk factors and to develop a case definition for national surveillance. In March 1983, CDC 

issued recommandations for prevention of a sexual, drug related, and occupational 

transmission based infection on these early epidemiologic studies and before the cause of 

the new, unexplained illness was known. 

In 1983, Montagnier and colleagues isolated a T-lymphotropic retrovirus, named 

lymphadenopathy-associated virus (LAV) and, almost simultaneously, Robert Gallo 

published on the frequent detection and isolation of cytopathic retroviruses from patients 

with AIDS or at risk for AIDS. [2, 3] The same year Levy and colleagues isolated from AIDS 

patients in S.Francisco a retrovirus that was named Aids Related Virus (ARV). [4]  

The three viruses were then cloned and characterised and are now known as 

Human Immunodeficiency Virus type 1 (HIV-1). [5] 

1985 is an important year for the proceeding of the AIDS related knowledge 

• Tests to identify the virus are marketed 

• First clinical trials in USA aimed to the identification of drugs to fight 

the virus 

• First ever conference on AIDS was held in Atlanta (USA), where 

interaction between scientific groups from all the world began. 

In 1987, the Food and Drugs Administration (FDA) approved Azidovudine (AZT), the 

first molecule to treat the HIV infection. 
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Between 1995 and 1997, David Ho findings on viral dynamics provide, not only a 

kinetic picture of HIV-1 pathogenesis, but also theoretical principles to guide the 

development of treatment strategies. [6, 7] 

There are more than 20 antiretroviral drugs approved for the clinical treatment of 

HIV infected patients targeting different steps of the HIV replication cycle. [8] These drugs 

can be efficiently associated for the so called highly active antiretroviral therapy (HAART). 

[9] 

Currently we have at our disposal a rich armamentarium of drugs that change the 

prognosis of HIV infected patients from high probability of mortality to a chronic 

infection. 

 

1.2 HIV Pathogenesis and Prevention 

 

Despite rigorous and multifaceted approaches to the prevention of HIV infection, 

∼39.000 new infections occur annually in the United States, a number that has not 

changed significantly in the last years. [10]  

Prevention methods that have been successful in certain populations need to be 

adapted in order to target other groups and must be provided to more people.  

In particular it is important to pursue prevention approaches that are based on our 

growing understanding of the pathogenic mechanisms of HIV disease.  

Such strategies include the identification and treatment of coinfections, including 

sexually transmitted infections; the use of topical microbicides; the circumcision of men; 

the use of antiretroviral drugs for preexposure prophylaxis; the reduction of the viral load 

in order to decrease transmission rates; and the development of vaccines. 

All these modalities focus on the pathogenesis of HIV disease, in the sense that they 

involve preventing the initial entry of HIV into the body, blocking the spread of infection, 

or slowing the progression of disease once infection is established. 

The early events in HIV disease take place rapidly, and once they occur, infection is 

permanently established. [11] The events associated with primary HIV infection are likely 

critical determinants of the subsequent course of HIV disease. 

So far, preventing or interfering with these early events is an important goal of all 

prevention efforts that focus on pathogenic events. 

When HIV is transmitted during sexual activity, dendritic cells at or near the 

mucosal surface of the involved sites play an important role in the initiation of HIV 

infection. [12] 
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These cells bind with high affinity to the HIV envelope glycoprotein gp120 and can 

retain infectious particles for days, thus facilitating the presentation of the virus to 

susceptible cells. 

The replication cycle of HIV in its target cell begins with the binding of viral gp120 to 

the CD4 molecule, its receptor on the host-cell surface. 

Once gp120 binds to CD4, fusion with the host cell membrane follows, and infection 

is established. An early burst of viremia and rapid dissemination of virus to lymphoid 

organs, particularly the gut-associated lymphoid tissue, are major factors in the 

establishment of the chronic and persistent infection that is a hallmark of HIV disease. 

[13–15]  

Despite the vigorous cellular and humoral immune responses seen during primary 

HIV infection, the virus succeeds in escaping immune-mediated clearance. Hence, once 

infection is established, it is never eliminated completely from the body. 

Paradoxically, HIV seems to thrive on immune activation. Chronic immune 

activation results in increased viral replication and immune cell depletion, immune cell 

dysfunction, and aberrant lymphocyte turnover. [13] 

Treating coinfections that potentially increase immune activation and provide a 

permissive environment for HIV replication is a promising, pathogenesis-associated 

approach to preventing HIV disease.  

There is considerable epidemiologic evidence for a link between the presence of 

other sexually transmitted diseases, particularly genital-ulcer diseases, and the risk of HIV 

transmission. [16] 

Recent studies have strengthened the evidence for this association. It has been 

reported that patience with recent or incident syphilis had a >4-fold increased risk for HIV 

acquisition. [17] 

The same authors found that recent incidents of herpes simplex virus–2 (HSV-2) 

infection was associated with a ∼4-fold increased risk of HIV acquisition. [18] 

It had been assumed that the biologic mechanism for an increased risk of HIV 

infection in individuals with sexually transmitted diseases (STDs) was the impaired 

integrity of the mucosa, but, it has been reported that [18] the risk of HIV infection was 

increased for individuals who were asymptomatic for HSV-2 infection (i.e., persons who 

did not have clinically apparent or self-reported genital ulcers), as well as for individuals 

with symptomatic HSV-2 infection.  

This and other studies suggest that additional mechanisms, such as immune 

activation, also may play a role. So far, the prevention and treatment of STDs, both 
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ulcerative and nonulcerative, offers promise as a strategy for preventing HIV infection. 

[16] 

There is an increasing evidence on other infections such as helminthic infections, 

tuberculosis, and malaria increasing susceptibility to HIV infection or worsening 

progression of HIV disease. [19-25] 

Concerning the sexual transmission of HIV, the use of topical microbicides could 

represent a valid approach for HIV infection prevention, in particular for women that are 

subjected to male-controlled modalities of protection. 

These compounds have varying mechanisms of action, but the activities of all of the 

compounds focus on early mucosal events in pathogenesis. 

In this respect, it has been recently reported that medically performed adult male 

circumcision significantly reduced a man’s risk of acquiring HIV through heterosexual 

intercourse. [26, 27] 

Male circumcision could protect against HIV acquisition by several mechanisms. [26, 

27] 

• The highly vascularised inner foreskin tissue contains a high density of 

Langerhans’ cells as well as increased numbers of CD4+ T cells, 

macrophages, and other cellular targets for HIV.  

• In contrast to the dry environment of the keratinized area on the outer 

surface of the foreskin, the moist environment under the foreskin may 

promote the presence or persistence of microbial flora, which, via 

inflammatory modification, may lead to even higher concentrations of target 

cells for HIV in the foreskin and a higher density of HIV-susceptible cells.  

• The inner mucosa of the foreskin is more susceptible to microabrasion, 

providing a portal of entry for HIV, and the higher rates of ulcerative STDs in 

uncircumcised men may also increase susceptibility to HIV infection. 

Hence, eliminating the foreskin diminishes some of the targets for the virus, and 

allows a more protective skin surface barrier against HIV. [28, 29] 

Preexposure and postexposure chemoprophylaxis represent another important 

area of prevention research. It has been reported that tenofovir and emtricitabine have 

good safety profiles. Moreover they exhibit long half-life and, so far, may exert protection 

even if some doses are missed.  

The most direct approach is the treatment of infected individuals with combination 

antiretroviral treatment, which, in a majority of individuals, can reduce plasma levels of 

virus to undetectable levels. [30] 

In an analysis of transmission rates in the Women and Infants Transmission Study, 

the rate of maternal-fetal transmission was 23.4% when the viral load of the mother was 

≥30,000 RNA copies/mL, compared with only 1% when her viral load was <400 RNA 

copies/mL. [31] 
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Thus, although not considered to be “prevention research,” studies of the 

pathogenesis of HIV disease could provide us with important opportunities to develop 

novel preventive measures. 
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1.3 Virus Structure 

 

The genome and proteins of HIV (human immunodeficiency virus) have been the 

subject of extensive research since the discovery of the virus in 1983. [2, 3] Each virion 

comprises a viral envelope and associated matrix enclosing a capsid, which itself encloses 

two copies of the single-stranded RNA genome and several enzymes. The discovery of the 

virus itself was not until two years after the first major cases of AIDS associated illnesses 

were reported in 1981. [1] 

 

 
 

Figure 1. Schematic illustration of HIV structure 

 

HIV structure is different from other retroviruses. It has a icoshedral shape with 120 

nm in diameter (around 60 times smaller than a red blood cell). 

HIV-1 is composed of two copies of single-stranded RNA enclosed by a conical 

capsid comprising the viral protein p24, typical of lentiviruses (Figure 1). The RNA 

component is 9749 nucleotides long. [32, 33] 

This is in turn surrounded by an envelope originating from the host-cell. The single-

strand RNA is tightly bound to the nucleocapsid proteins, p6, p7 and enzymes that are 

indispensable for the development of the virion, such as reverse transcriptase and 

integrase. 

The nucleocapsid (p7 and p6) associates with the genomic RNA (one molecule per 

hexamer) and protects the RNA from digestion by nucleases. 

A matrix, composed of an association of the viral protein p17, surrounds the capsid, 

ensuring the integrity of the virion particle.  

Also enclosed within the virion particle are Vif, Vpr, Nef, p7 and viral Protease 

(Figure 1). 



9 
 

The envelope is formed when the capsid buds from the host cell, taking some of the 

host-cell membrane with it. The envelope includes the glycoproteins gp120 and gp41. 

As a result of its role in virus-cell attachment, the structure of the virus envelope 

spike, consisting of gp120 and gp41, is of particular importance. 

The first model of its structure was compiled in 2006 using cryo-electron 

tomography and suggested that each spike consists of a trimer of three gp120–gp41 

heterodimers. [34] 

However, evidence for a single-stalk “mushroom” model, with a head consisting of a 

trimer gp120 and gp41 stem, which appear as a compact structure with no obvious 

separation between the three monomers, anchoring it to the envelope was published 

shortly after. [35]  

There are various possibilities as to the source of this difference, as it is unlikely that 

the viruses imaged by the two groups were structurally different.[36] 

More recently, further evidence backing up the heterodimer trimer-based model 

has been found. [37] 
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1.4 Organisation of the Viral genome 

 

The integrated form of HIV-1, also known as the provirus, is approximately 9.8 

kilobases in length. [38] 

The provirus genome is flanked by a repeated sequence known as the long terminal 

repeats (LTRs) on each side. The genes of HIV are located in the central region of the 

proviral DNA and encode at least nine proteins (Figure 2). [39] 

These proteins are divided into three classes:  

1. HIV structural proteins, Gag, Pol, and Env 

2. The regulatory proteins, Tat and Rev 

3. The accessory proteins, Vpu, Vpr, Vif, and Nef 

 

 
 

Figure 2. Schematic illustration of HIV genome 
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1.5 HIV structural Proteins 

 

1.5.1 Gag 

 

The gag gene gives rise to the 55-kilodalton (kD) Gag precursor protein, also called 

p55, which is expressed from the unspliced viral mRNA.  

During translation, the N terminus of p55 is myristoylated, [40] triggering its 

association with the cytoplasmic aspect of cell membranes.  

The membrane-associated Gag polyprotein recruits two copies of the viral genomic 

RNA along with other viral and cellular proteins that triggers the budding of the viral 

particle from the surface of an infected cell.  

After budding, p55 is cleaved by the virally encoded protease (a product of the pol 

gene) during the process of viral maturation into four smaller proteins designated MA 

(matrix [p17]), CA (capsid [p24]), NC (nucleocapsid [p9]), and p6. [41] 

The MA polypeptide is derived from the N-terminal, myristoylated end of p55. Most 

MA molecules remain attached to the inner surface of the virion lipid bilayer, stabilizing 

the particle.  

A subset of MA is recruited inside the deeper layers of the virion where it becomes 

part of the complex which escorts the viral DNA to the nucleus. [42] 

These MA molecules facilitate the nuclear transport of the viral genome because a 

karyophilic signal on MA is recognized by the cellular nuclear import machinery. This 

phenomenon allows HIV to infect nondividing cells, an unusual property for a retrovirus. 

[43] 

The p24 (CA) protein forms the conical core of viral particles. Cyclophilin A has been 

demonstrated to interact with the p24 region of p55 leading to its incorporation into HIV 

particles. [44, 45] 

The interaction between Gag and cyclophilin A is essential because the disruption of 

this interaction by cyclosporine A inhibits viral replication. [46] 

The NC region of Gag is responsible for specifically recognizing the so-called 

packaging signal of HIV. [47] 

The packaging signal consists of four stem loop structures located near the 5' end of 

the viral RNA, and is sufficient to mediate the incorporation of a heterologous RNA into 

HIV-1 virions. [48] 

NC binds to the packaging signal through interactions mediated by two zinc-finger 

motifs. NC also facilitates reverse transcription. [49] 

The p6 polypeptide region mediates interactions between p55 Gag and the 

accessory protein Vpr, leading to the incorporation of Vpr into assembling virions. [50] 
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The p6 region also contains a so-called late domain which is required for the 

efficient release of budding virions from an infected cell.  

  

1.5.2 Gag-Pol Precursor 

 

The viral protease (Pro), integrase (IN), and reverse transcriptase (RT) are always 

expressed within the context of a Gag-Pol fusion protein. [51] 

The Gag-Pol precursor (p160) is generated by a ribosomal frame shifting event, 

which is triggered by a specific cis-acting RNA motif [52] (a heptanucleotide sequence 

followed by a short stem loop in the distal region of the Gag RNA).  

When ribosomes encounter this motif, they shift approximately 5% of the time to 

the pol reading frame without interrupting translation. 

The frequency of ribosomal frameshifting explains why the Gag and the Gag-Pol 

precursor are produced at a ratio of approximately 20:1. 

During viral maturation, the virally encoded protease cleaves the Pol polypeptide 

away from Gag and further digests it to separate the protease (p10), RT (p50), RNase H 

(p15), and integrase (p31) activities. 

These cleavages do not all occur efficiently, for example, roughly 50% of the RT 

protein remains linked to RNase H as a single polypeptide (p66).  

  

1.5.3 Pro 

 

The HIV-1 protease is an aspartyl protease [53] that acts as a dimer. Protease 

activity is required for cleavage of the Gag and Gag-Pol polyprotein precursors during 

virion maturation as described previously.  

The three-dimensional structure of the protease dimer has been determined. [54, 

55] 

Knowledge of this structure has led to a class of drugs directed toward inhibiting the 

HIV protease function. These antiviral compounds have greatly improved treatment for 

HIV-infected individuals.  

  

1.5.4 RT 

 

The pol gene encodes reverse transcriptase. Pol has RNA-dependent and DNA-

dependent polymerase activities.  

During the process of reverse transcription, the polymerase makes a double-

stranded DNA copy of the dimer of single-stranded genomic RNA present in the virion.  
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RNase H removes the original RNA template from the first DNA strand, allowing 

synthesis of the complementary strand of DNA.  

Viral DNA can be completely synthesized within 6 hours after viral entry, although 

the DNA may remain unintegrated for prolonged periods. [59] 

Many cis-acting elements in the viral RNA are required for the generation of viral 

DNA.  

For example, the TAR element, a small RNA stem-loop structure located at the 5' 

end of viral RNAs and containing the binding site for Tat, is required for the initiation of 

reverse transcription. [57] 

The predominant functional species of the polymerase is a heterodimer of p66 and 

p51.  

All of the pol gene products can be found within the capsid of free HIV-1 virions. 

Because the polymerase does not contain a proof-reading activity, replication is error-

prone and introduces several point mutations into each new copy of the viral genome. 

The crystal structure of HIV-1 RT has been determined. [58] 

 

1.5.5 Integrase (IN) 

 

The IN protein mediates the insertion of the HIV proviral DNA into the genomic DNA 

of an infected cell. This process is mediated by three distinct functions of IN. [59] 

First, an exonuclease activity trims two nucleotides from each 3' end of the linear 

viral DNA duplex.  

Then, a double-stranded endonuclease activity cleaves the host DNA at the 

integration site.  

Finally, a ligase activity generates a single covalent linkage at each end of the 

proviral DNA. 

It is believed that cellular enzymes then repair the integration site. No exogenous 

energy source, such as ATP, is required for this reaction. 

The accessibility of the chromosomal DNA within chromatin, rather than specific 

DNA sequences, seems to influence the choice of integration sites. [60] 

Sites of DNA kinking within chromatin are thus "hot-spots" for integration, at least 

in vitro. [61] 

It is possible to promote integration within specific DNA regions by fusing integrase 

to sequence-specific DNA binding proteins. [62] 

Preferential integration into regions of open, transcriptionally active, chromatin 

may facilitate the expression of the provirus. Viral genes are not efficiently expressed 

from nonintegrated proviral DNA. [63] 
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1.5.6 Env 

 

The 160 kD Env (gp160) is expressed from singly spliced mRNA. 

First synthesized in the endoplasmic reticulum, Env migrates through the Golgi 

complex where it undergoes glycosylation with the addition of 25 to 30 complex N-linked 

carbohydrate side chains that are added at asparagine residues.  

Env glycosylation is required for infectivity. [64] 

A cellular protease cleaves gp160 to generate gp41 and gp120. 

The gp41 moeity contains the transmembrane domain of Env, while gp120 is 

located on the surface of the infected cell and of the virion through noncovalent 

interactions with gp41. 

Env exists as a trimer on the surface of infected cells and virions. [65] 

Interactions between HIV and the virion receptor, CD4, are mediated through 

specific domains of gp120. [66] 

The structure of gp120 has recently been determined. [67] The gp120 moeity has 

nine highly conserved intrachain disulfide bonds.  

In gp120 fare also present five hypervariable region, designated V1 through V5, 

whose amino acid sequences can vary greatly among HIV-1 isolates.  

One of this regions, called the V3 loop, is not involved in CD4 binding, but is rather 

an important determinant of the preferential tropism of HIV-1 for either T lymphoid cell 

lines or primary macrophages. [68] 

Sequences within the V3 loop interact with the HIV co-receptors CXCR4 and CCR5, 

which belong to the family of chemokine receptors and partially determine the 

susceptibility of cell types to given viral strains. [69, 70] 

The V3 loop is also the principal target for neutralizing antibodies that block HIV-1 

infectivity. [71] 

The gp120 moeity also interacts with the protein DC-SIGN (Dendritic Cell-Specific 

Intercellular adhesion molecule-3-Grabbing Non-integrin) which is expressed on the 

surface of dendritic cells. Interaction with DC-SIGN increases the efficiency of infection of 

CD4 positive T cells. [72] 

Further, it is believed that DC-SIGN can facilitate mucosal transmission by 

transporting HIV to lymphoid tissues. 

The gp41 moiety contains an N-terminal fusogenic domain that mediates the fusion 

of the viral and cellular membranes, thereby allowing the delivery of the virions inner 

components into the cytoplasm of the newly infected cell. [73] 

A new class of antiviral therapeutics, which prevent membrane fusion, are showing 

promise in clinical trials. 
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1.6 Regulatory Proteins 

 

1.6.1 Tat 

 

Tat is a transcriptional transactivator that is essential for HIV-1 replication. [74] The 

72 and 101 amino acid long forms of Tat are expressed by early fully spliced mRNAs or 

late incompletely spliced HIV mRNAs, respectively. Both forms function as transcriptional 

activators and are found within the nuclei and nucleoli of infected cells.  

Tat is an RNA binding protein, unlike conventional transcription factors that interact 

with DNA. [75, 76] Tat binds to a short-stem loop structure, known as the transactivation 

response element (TAR), that is located at the 5' terminus of HIV RNAs. Tat binding occurs 

in conjunction with cellular proteins that contribute to the effects of Tat. The binding of 

Tat to TAR activates transcription from the HIV LTR at least 1000-fold.  

The mechanism of Tat function has recently been elucidated. It acts principally to 

promote the elongation phase of HIV-1 transcription, so that full-length transcripts can be 

produced. [77, 78] In the absence of Tat expression, HIV generates primarily short (>100 

nucleotides) transcripts.  

Stimulation of polymerase elongation is accomplished by the recruitment of a 

serine kinase which phosphorylates the carboxylterminal domain (CTD) of RNA 

polymerase II (Figure 3). 

This kinase, which is known as CDK9, is part of a complex which binds directly to 

Tat. [79]  

Tat function requires a cellular co-factor, known as Cyclin T, which facilitates the 

recognition of the TAR loop region by the Cyclin T-Tat complex. [80]  

 

 
 

Figure 3. Stimulation of polymerase elongation 
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The cellular uptake of Tat released by infected cells has been observed, [78] 

although the impact of this phenomenon on pathogenesis is unknown. 

On the other hand, Tat has been shown to activate the expression of a number of 

cellular genes including tumor necrosis factor beta [81] and transforming growth factor 

beta (TNF-β), [82] and to downregulate the expression of other cellular genes including 

bcl-2 [83] and the chemokine MIP-1 alpha. [84] 

 

1.6.2 Rev 

 

Rev is a 13-kD sequence-specific RNA binding protein. [85] It is produced from fully 

spliced mRNAs, and acts to induce the transition from the early to the late phase of HIV 

gene expression. [86] 

Rev, which is encoded by two exons, accumulates within the nuclei and nucleoli of 

infected cells. It binds to a 240-base region of complex RNA secondary structure, called 

the Rev response element (RRE), that lies within the second intron of HIV. [87] 

Rev binds to a "bubble" within a double-stranded RNA helix containing a non-

Watson-Crick G-G basepair. [88] 

This structure, known as the Rev high affinity binding site, is located in a region of 

the RRE known as stem loop 2.  

The binding of Rev to the RRE facilitates the export of unspliced and incompletely 

spliced viral RNAs from the nucleus to the cytoplasm. Normally, RNAs that contain introns 

(ie, unspliced or incompletely spliced RNA) are retained in the nucleus. 

High levels of Rev expression can lead to the export of so much intron containing 

viral RNA that the amount of RNA available for complete splicing is decreased, which, in 

turn, reduces the levels of Rev expression. 

Therefore, this ability of Rev to decrease the rate of splicing of viral RNA generates a 

negative feedback loop whereby Rev expression levels are tightly regulated. [89])  

Rev has been shown to contain at least three functional domains. [90]  

 

 
 

Figure 4. Rev high affinity binding site 
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An arginine-rich RNA binding mediates interactions with the RRE. A multimerization 

domain is required for Rev to function. [91]  

Rev is believed to exist as a homo-tetramer in solution. [92] It also contains an 

effector domain, which is a specific nuclear export signal (NES). [93, 94]  

The export of the viral RNA by Rev is through a pathway typically used by the small 

nuclear RNAs (snRNAs) and the ribosomal 5s RNA rather than the normal pathway for 

cellular mRNAs. [94] Rev Export is mediated through interactions with the NES receptor 

known as CRM1. NES mutants of Rev are dominant negative. [90] 

Inhibition is caused by the formation of non-functional multimers between NES-

mutant and wild type Rev monomers. [95] 

Rev is absolutely required for HIV-1 replication: proviruses that lack Rev function 

are transcriptionally active but do not express viral late genes and thus do not produce 

virions.  

 

1.7 Accessory Proteins 

 

In addition to the gag, pol, and env genes, contained in all retroviruses, and the tat 

and rev regulatory genes, HIV-1 contains four additional genes: nef, vif, vpr and vpu, 

encoding the so-called accessory proteins. 

HIV-2 does not contain vpu, but instead harbors another gene, vpx. 

The accessory proteins are not absolutely required for viral replication in all in vitro 

systems, but represent critical virulence factors in vivo.  

Nef is expressed from a multiply spliced mRNA and is therefore Rev independent. In 

contrast, Vpr, Vpu, and Vif are the product of incompletely spliced mRNA, and thus are 

expressed only during the late Rev-dependent phase of infection from singly spliced 

mRNAs. 

Most of the small accessory proteins of HIV have multiple functions as described 

below.  

  

1.7.1 Nef 

 

Nef (an acronym for negative factor) is a 27-kD myristoylated protein that is 

encoded by a single exon that extends into the 3' LTR. Nef, an early gene of HIV, is the 

first viral protein to accumulate in detectable levels in a cell following HIV-1 infection. [86] 

Its name is a consequence of early reports, claiming that Nef downregulated 

transcriptional activity of the HIV-1 LTR.  
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However, it is no longer believed that Nef has a direct effect on HIV gene 

expression. 

Nef has been shown to have multiple activities, including the downregulation of the 

cell surface expression of CD4, the perturbation of T cell activation, and the stimulation of 

HIV infectivity.  

Nef acts post-translationally to decrease the cell-surface expression of CD4, the 

primary receptor for HIV. [96] 

It increases the rate of CD4 endocytosis and lysosomal degradation. [97]  

The cytoplasmic tail of CD4, and in particular a dileucine repeat sequence contained 

in its membrane proximal region, is key for the effect of Nef on CD4. [90]  

CD4 downregulation appears to be advantageous to viral production because an 

excess of CD4 on the cell surface has been found to inhibit Env incorporation and virion 

budding. [98, 99] 

Nef also downregulates the cell surface expression of Class I  major 

histocompatibility complex (MHC), albeit to a lesser degree. [100] 

The downregulation of Class I MHC decreases the efficiency of the killing of HIV 

infected cells by cytotoxic T cells.  

Nef perturbs T cell activation. Studies in the Jurkat T cell line indicated that Nef 

expression has a negative effect on induction of the transcription factor NF-kappa B and 

on IL-2 expression. [101] 

In contrast, results obtained in Nef transgenic mice revealed that Nef led to 

elevated T cell signalling. [102]  

The expression of a CD8-Nef chimeric molecule in Jurkat cells had either positive or 

negative effects depending on the cellular localization of the hybrid Nef molecule. [103] 

When the CD8-Nef protein accumulated in the cytoplasm, there was a block in 

normal signaling through the T cell receptor. 

When the CD8-Nef chimera was expressed at high levels on the cell surface, 

however, spontaneous activation followed by apoptosis was detected. 
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Figure 5. Nef activity network 

Together, these observations suggest that Nef can exert pleiomorphic effects on T 

cell activation depending on the context of expression. 

Consistent with this model, Nef has been found to associate with several different 

cellular kinases that are present in helper T lymphocytes.  

Nef also stimulates the infectivity of HIV virions. [104] 

HIV-1 particles produced in the presence of Nef can be up to ten times more 

infectious than virions produced in the absence of Nef. 

Nef is packaged into virions, where it is cleaved by the viral protease during virion 

maturation. [105] 

The importance of this event, however, is not clear. Virions produced in the absence 

of Nef are less efficient for proviral DNA synthesis, although Nef does not appear to 

influence directly the process of reverse transcription. [106] 

The downregulation of CD4 and the effect on virion infectivity by Nef are genetically 

distinct as demonstrated by certain mutations that affect only one of these two activities. 

[107] 

There is compelling genetic evidence that the Nef protein of simian 

immunodeficiency virus is absolutely required for high-titer growth and the typical 

development of disease in adult animals. [108] 

It is possible, however, for Nef-defective mutants of SIV to cause disease in 

newborn animals. [109] 

Further, Nef-defective virions do cause an AIDS-like disease in infected animals 

although onset is delayed. [110] 
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1.7.2 Vpr 

 

The Vpr protein is incorporated into viral particles. Approximately 100 copies of Vpr 

are associated with each virion. [111] 

Incorporation of Vpr into virions is mediated through specific interactions with the 

carboxyl-terminal region of p55 Gag, [56] which corresponds to p6 in the proteolytically 

processed protein.  

Vpr plays a role in the ability of HIV to infect non dividing cells by facilitating the 

nuclear localization of the preintegration complex (PIC). [112] Vpr is present in the PIC. 

However, rather than tethering additional nuclear localization signals to the PIC, Vpr 

may act as a nucleocytoplasmic transport factor by directly tethering the viral genome to 

the nuclear pore. 

Consistent with this model, Vpr expressed in cells is found associated with the 

nuclear pore and can be biochemically demonstrated to bind to components of the 

nuclear pore complex. [113] Vpr can also block cell division. [114] 

Cells expressing Vpr accumulate in the G2 phase of the cell cycle. [115]  

The expression of Vpr has been shown to prevent the activation of the 

p34cdc2/cyclin B complex, which is a regulator of the cell cycle important for entry into 

mitosis. [116, 117] 

Accordingly, expression of a constitutively active mutant of p34cdc2 prevents the 

Vpr-induced accumulation of cells in the G2 phase of the cell cycle.  

Vpr has also been shown to interact with the cellular protein uracil-DNA glycosylase 

(UNG). [118] 

The biological consequences of this phenomenon have yet to be determined. 

Another enzyme involved in the modification of deoxyuracil (dUTP), deoxyuracil 

phosphatase (dUTPase), is expressed by two lentiviruses that do not contain a vpr gene: 

equine infectious anemia virus and feline immunodeficiency virus. 

It is believed that the dUTPase depletes the dUTP within the cell thus preventing 

the deleterious consequences of dUTP incorporation into viral DNA. [119] 

 

1.7.3 Vpu 

 

The 16-kD Vpu polypeptide is an integral membrane phosphoprotein that is 

primarily localized in the internal membranes of the cell. [120] 

It is expressed from the mRNA that also encodes env. Vpu is translated from this 

mRNA at levels tenfold lower than that of Env because the Vpu translation initiation 

codon is not as efficient. [121] 
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The two functions of Vpu, the down-modulation of CD4 and the enhancement of 

virion release, can be genetically separated. [122] 

In HIV-infected cells, complexes formed between the viral receptor, CD4, and the 

viral envelope protein (Env) in the endoplasmic reticulum cause the trapping of both 

proteins in this compartment. 

Thus, the formation of intracellular Env-CD4 complexes interferes with virion 

assembly. 

Vpu liberates the viral envelope by triggering the ubiquitin-mediated degradation of 

CD4 molecules complexed with Env. [123] 

Vpu also increases the release of HIV from the surface of an infected cell. In the 

absence of Vpu, large numbers of virions can be seen attached to the surface of infected 

cells. [124] 

 

1.7.4 Vif 

 

Vif is a 23-kD polypeptide that is essential for the replication of HIV in peripheral 

blood lymphocytes, macrophages, and certain cell lines. [125] 

In most cell lines, Vif is not required, suggesting that these cells may express a 

protein that can complement Vif function. 

These cell lines are called permissive for Vif mutants of HIV. 

Virions generated in permissive cells can infect non permissive cells but the virus 

subsequently produced is non infectious.  

Complementation studies indicate that it is possible to restore the infectivity of HIV 

Vif mutants by expression of Vif in producer cells but not in target cells. [126] 

These results indicate that Vif must be present during virion assembly. Thus, Vif is 

incorporated into virions of HIV. [127] 

This phenomenon, however, might be nonspecific because Vif is also incorporated 

into heterologous retroviruses such as murine leukemia viruses. [128] 

Studies producing HIV from heterokaryons generated by the fusion of permissive 

and non-permissive cells revealed that non-permissive cells contain a naturally occurring 

antiviral factor that is overcome by Vif. [129] 

Further support for a model that Vif is counteracting an antiviral cellular factor 

comes from the observation that Vif proteins from different lentiviruses are species 

specific. [130] 

For instance, HIV Vif can modulate the infectivity of HIV-2 and SIV in human cells 

while SIV Vif protein does not function in human cells. 

This observation suggests that cellular factors, rather than viral components, are 

the target of Vif action. 
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Vif-defective HIV strains can enter cells but cannot efficiently synthesize the proviral 

DNA. [126] 

It is not clear whether the Vif defect affects reverse transcription per se, viral 

uncoating, or the overall stability of the viral nucleoprotein complex. Vif mutant virions 

have improperly packed nucleoprotein cores as revealed by electron microscopic 

analyses. [131] 

 

1.8 HIV life cycle 

 
The HIV life cycle consist of several steps, starting from the attachment of the virus 

to the host cell membrane and finishing with the release of progeny virions from the cell, 

as summarized in Figure 6. 

It starts with a specific interaction of the viral glycoprotein gp120 sited on the outer 

membrane and the CD4 receptor on the host cell surface. 

 

 
 

Figure 6. HIV life cycle 

 

This reaction leads to a conformational change allowing the interaction of gp120 

with the chemokine co-receptors CXCR4 and CCR5. 

This step is then followed by further conformational changes that expose a 

fusogenic peptide, which anchors into the host cell membrane. 
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Once the viral envelope and cell membrane have fused, the virion is decapsidated 

releasing the viral RNA into the host cell’s cytoplasm. 

Through the reverse transcription, the viral RNA is transcribed to viral double-

stranded DNA. 

This process is catalyzed by an RNA-dependent DNA polymerase, known as reverse 

transcriptase (RT), which is encoded by the viral genome. 

Then, the viral DNA is integrated into the host chromosome, and after transcription 

and translation into viral proteins using the cells’ machinery, the assembly of the Gag and 

Gag-Pol polyproteins occurs near the cell membrane. 

During viral assembly, two copies of single-stranded viral RNA are incorporated into 

the virion, which then buds off from the cell, taking with it part of the host cell 

membrane. 

Soon after budding, viral protease cleaves the Gag-Pol polyprotein to generate a 

mature, functional virion. 

Generally, antiviral drugs could, in principle, be targeted at either viral proteins or 

cellular proteins. 

The first approach is likely to yield more specific, less toxic compounds, with a 

narrow spectrum of activity, but a higher likelihood of virus drug resistance development. 

However, the second approach might afford anti-HIV drugs with a broader activity 

spectrum and less chance of resistance but higher likelihood of toxicity. [132-134] 

From the Medicinal Chemistry point of view, each of these steps is a possible 

druggable target to combat the HIV infection (Figure 6). 

In this project I have focused my attention on the design and synthesis of 

unconventional Reverse Transcriptase inhibitors (RTis). 

 

1.9 Reverse Trancription 

 
The retrotranscription process is a key step in the early phases of HIV infection. It 

consists of the conversion of the viral ssRNA genome into integration-competent dsDNA, 

and requires both viral and cellular elements, among which the most important is the 

virus-coded RT protein. 

In each viral particle two copies of (+)ssRNA are enclosed coding both structural and 

non structural proteins and having, in the 5’- and 3’-ends, two identical sequences. [135]  

Proximal to the 5’-end of the viral genome there is a 18 nucleotides long segment, 

termed primer binding site (PBS), which is complementary to the 3’-end 18 nucleotides of 

the human tRNALys3 (Figure 7). 
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Figure 7. Schematic illustration of the retrotranscription process 

 

Once the cellular tRNA is hybridized to the PBS, it serves as RNA primer and the RT 

associated DNA polymerase function can initiate the first (-)strand DNA synthesis using 

the viral RNA genome as a template. 

Then, when tRNA elongation reaches the ssRNA 5’-end a first (-)strand strong-stop 

DNA is encountered. 

The synthesis of the (-)strand DNA generates an RNA:DNA hybrid that is selectively 

degradated by the RT-associated ribonuclease H (RNase H) function. 

Therefore the hydrolysis of the RNA strand of the RNA:DNA hybrid [136] leaves the 

nascent (-)strand DNA free to hybridize with the complementary sequence at the 3’-end 

of one of the two viral genomic ssRNAs.  

A strand transfer therefore occurs from the R region at the 5’-end of the genome to 

the equivalent R region at the 3’-end. 

Once (-)strand transfer has occurred, (-)strand synthesis can continue along the viral 

RNA starting from its 3’-end, while the RNase H function cleaves the RNA strand of the 

RNA:DNA at numerous points. 
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Although most of the RNase H cleavages do not appear to be sequence specific, 

there are two specific purine-rich sequences, known as the polypurine tracts (PPTs), that 

are resistant to the RNase H hydrolysis and remain annealed to the nascent (-)strand 

DNA. 

These two well-defined sites are located in the central part of the HIV-1 genome. In 

particular, the 3’-end PPT defines the 5’-end of the viral coding (+)strand DNA synthesis 

since this PPT serves as primer. [137, 138] 

The (+)strand DNA synthesis continues until it reaches the 5’-end of the (-)strand 

DNA, and also uses the 18 nucleotides PBS sequence of the tRNA as a template. 

Noteworthy, the 19th base from the 3’-end of tRNALys3 is a methyl-A, and the 

presence of such modified base blocks the RT, generating a (+)strand strong-stop DNA. 

Subsequently, the RNase H function cleaves the RNA segment of the tRNA:DNA 

hybrid, freeing the PBS sequence of the (+)strand DNA and allowing it to anneal to the 

complementary site near the 3’-end of the extended (-)strand DNA. [139] 

After this key step, a bidirectional synthesis occurs to complete a viral dsDNA that 

has a 90 nucleotides single-stranded flap at the center. 

In all probability a host mechanism occurs to solve this unusual situation and, most 

likely the flap removal is operated by the flap endonuclease-1 (FEN-1) (Figure 8). [138]  

 

 
 

Figure 8. Flap removal operated by the flap endonuclease-1 (FEN-1) 

 

The process is terminated by a specific cleavage that removes the PPT primers and 

exposes the integration sequence to ease the insertion of the viral dsDNA into the cell 

chromosome.  

On this basis RT has been considered to be a major target for HIV chemotherapy 

and indeed it has been the subject of extensive research through crystal structures 

determinations, biochemical assays and single-molecule analyses. 
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RT consists of two subunits of different length, p66 and p51, generated by a viral 

protease cleavage of a virus-coded polyprotein. 

p66 and p51 share a common amino terminus and are combined in a stable 

asymmetric heterodimer. [140] 

Analysis of the crystal structure of RT reveals that p66 is composed of two spatially 

distinct catalytic domains, polymerase domain and RNase H domain (Figure 9). 

In more detail p66 is composed of the polymerase domain (residues 1-318), the 

connection domain (residues 319-426), and the RNase H domain (residues 427-560). [141, 

142] 

 

 
 

Figure 9. Reverse transcriptase catalitic sites 

 

The polymerase domain shows a characteristic highly conserved structure that 

resembles a right hand, consisting of fingers domain (residues 1-85 and 118-155), palm 

domain (residues 86-117 and 156-237), and thumb domain (residues 238-318). 

Regarding the p51 subunit a different folding is observed, due to the lack of the 

RNase H domain. 

Although with different relative positions, all the other subdomains are identical to 

those of p66, however no enzymatic activity is associated with the p51 subunit which 

performs a merely structural function, keeping the p66 subunit in the proper folding to 

perform all the catalytic functions. 

Several distinct activities, all indispensable for the retrotranscription process, are 

associated to RT: RNA- and DNA-dependent DNA synthesis, RNase H activity, strand 

transfer and strand displacement synthesis. [143] 
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The synthesis of the viral DNA is catalyzed by both RT associated RNA- and DNA 

dependent DNA polymerase activities (RDDP and DDDP, respectively) with a mechanism 

similar to that of all others polymerases. [144] 

The polymerase active site is located in the middle of palm, fingers and thumb 

subdomains. Noteworthy is the palm subdomain which plays a key role for the substrate 

binding since its β12–β13 sheets extensively interact with the phosphate backbone and 

are termed the “primer grip”. [145] Moreover three aspartic acid residues (D110, D185 

and D186), located in the palm subdomain of p66, bind the divalent ion co-factor (Mg2+) 

through their catalytic carboxylates groups, and are essential for catalysis Fig. (1). [146] 

Firstly RT binds to the template primer on the priming binding site; this interaction 

is stabilized by a change of the conformation of the p66 thumb (from closed to open) and 

is an essential step in DNA synthesis. Afterwards, the dNTP binds at the nucleotide 

binding site to form an RT:DNA:dNTP ternary complex. [147] 

Then the dNTP is trapped by a conformational change of the fingers which precisely 

aligns the α-phosphate of the dNTP to the 3’-OH of the primer inside the polymerase 

active site (this is actually the rate limiting step). 

The enzyme is then ready to catalyze the formation of a phosphodiester bond 

between the primer 3’-OH and the dNMP with the release of a pyrophosphate which is 

free to exit from the catalytic site. 

Finally either a translocation of the elongated DNA primer frees the nucleotide-

binding site for the next incoming dNTP or RT can dissociate from the complex. 

The RNase H domain is located on the other side of the p66 subunit, 60 Å from the 

polymerase active site (Figure 9) equivalent to 17 nucleotides of a DNA:DNA hybrid 

and/or 18 nucleotides of a RNA:DNA hybrid. [148] 

RT is able to degrade selectively the RNA portion of an RNA:DNA hybrid and to 

remove the priming tRNA and PPT. This RNase H function is essential for virus replication 

since RNase H deficient viruses are non-infectious. [149] 

It is worthy of note that the strand transfer process is a crucial step in the reverse 

transcription and consists of the annellation of two ssNAs to permit the continuation of 

the DNA synthesis. In both (-) and (+)strand transfers the ssNA develops secondary 

structures: the R region consists of a strong-structured motif TAR hairpin and a poly(A) 

hairpin. [150] 

Furthermore a stable hairpin structure can be formed by the PBS sequence at the 

3’-end of the (-)strand DNA. 

In this respect, the viral-coded nucleocapsid (NC) protein plays a crucial role in 

helping the RT to perform this step and could be considered as a promising target for 

drug design. [151, 152] 

Common to most DNA polymerases, RT can perform the retroreaction of the dNTP 

incorporation.  
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This reaction termed pyrophosphorolysis requires either a pyrophosphate (PPi) or 

an NTP (ie ATP) as acceptor [153, 154] and leads to the formation of a dinucleotide 

tetraphosphate (formed by the excised dNMP and the acceptor ATP substrate) and a free 

3’-OH end as reaction products. 

 

1.10 Reverse Transcriptase Inhibitors 

 

1.10.1 Inhibitors of the RDDP Function 

 

Two classes of RTIs, that target the viral enzyme with two different mechanisms of 

action, are included in the approved combination treatments used for HIV-1 handling. 

The first class comprises compounds known as Nucleoside/Nucleotide RT Inhibitors 

(NRTIs/NtRTIs), while the second class comprises compounds known as Non-Nucleoside 

RT Inhibitors (NNRTIs). NRTIs are analogs of the natural substrate (dNTP) and inhibit RDDP 

function by a competitive mechanism at the active site. 

To act on such a mechanism, these inhibitors must necessarily lack a free OH group 

in 3’position (Figure 10). 

 

 
 

Figure 10. Mechanism of action of NRTIs 

 

Zidovudine (AZT, 3’-azidothymidine) was identified as the first NRTI acting as pro-

drug. It requires successive phosphorylation steps and operates through its triphosphate 

metabolite. [156] 

The active form of the drug is used as a false substrate during reverse transcription 

of viral RNA (Figure 11). 
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Figure 11. Zidovudine structure  

 

Currently eight NRTIs are clinically available, structurally resembling either 

pyrimidine or purine analogues. 

In the pyrimidine nucleoside analogues both thymine and cytosine analogues are 

included.  

Between the most representative thymine analogues 3’-azido-2’,3’-

dideoxythymidine (zidovudine, AZT) and 2’,3’-didehydro-2’,3’-dideoxythymidine 

(stavudine, d4T) are worth noting while cytosine analogues are (-)-2’,3’-dideoxy-3’-

thiacytidine (lamivudine, 3TC), 2’,3’-dideoxycytidine (zalcitabine, ddC) which, however, is 

no longer recommended due to its peripheral neuropathy, (-)-2’,3’-dideoxy-5-fluoro-3’-

thiacytidine (emtricitabine, FTC) and [(-)-2’-deoxy-3’-oxa-4’-thiacytidine) (dOTC) (Figure 

12). 
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Figure 12. Clinically available NRTIs and NtRTIs 

 

Purine nucleoside analogues include (1S-4R)-4-[2-amino-6-(cyclo-propylamino)-9H-

purin-9-yl]-2-cyclopentane-I-methanol (abacavir, ABC) and 2’,3’-dideoxyinosine 

(didanosine, ddI) as guanine and adenine analogues. 

Unfortunately drug resistant viral mutants can gain a competitive advantage over 

wt virus under selective drug pressure, almost becoming the dominant species. 

Generally two different mechanisms lead to HIV-1 resistance to NRTIs. 

The first consists of NRTI discrimination leading to a reduction of the incorporation 

rate, the second consists of NRTI excision that unblocks NRTI-terminated primers. 

Typically, discrimination occurs due to steric hindrance leading to a selective 

alteration of the NRTI binding and/or incorporation rate. 

Regarding NRTI excision it is mostly increased through mutations, located around 

the dNTP binding pocket and also in termed thymidine analogs mutations (TAMs). 

NRTI resistance could also be conferred by mutations in the connection and RNase 

H domains. [158-162] 
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The NtRTIs, such as adefovir [9-(2-phosphonylmethoxyethyl) adenine (PMEA)] and 

tenofovir [(R)-9-(2- phosphonylmethoxypropyl) adenine (PMPA)] are acyclic phosphonate 

analogues of adenine, and, therefore, only need two phosphorylation steps to be 

converted into the active drug. Like the NRTIs they act as obligatory chain terminators. 

[163] 

Along with exploration of the NRTI binding pocket to obtain analogous molecules 

with improved drug-like properties and effective against many NRTI drug-resistant RT 

variants [164], recently, two families of compounds have been reported as new classes of 

“nucleotide-competing RT inhibitors” (NcRTIs).  

The first is represented by indolopyridones (INDOPY) derivatives. Although 

structurally different from classic NRTI it seems that this series can occupy the active site 

of the enzyme (or a site in close proximity) and compete with natural dNTP substrates.  

 

 
 

Figure 13. NcRTI: a) INDOPY binding site: mutational studies suggested that the INDOPY 

binding site is close to M184 and Y115. The DNA template is represented in cartoon and the 

aspartate catalytic triad in sticks (pdb code 1rtd [166]); b) DAVP-1 binding mode (pdbcode 3isn 

[167] ); c) Chemical structures of INDOPY-1 and DAVP. 

 

The observed resistance associated to mutation of Y115 + M184 give support to this 

hypothesis (Figure 13a). [165, 166] 

The second class includes 4-dimethylamino-6-vinylpyrimidine derivatives (DAVP) 

whose binding site is close to the polymerase active site as illustrated in Figure 13b. [167] 

In contrast to the NRTI class, NNRTIs are a family of compounds characterized by a 

high variety of structures (Figure 14). 
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Figure 14. NNRTIs approved for therapy (PDB codes are reported in red) 

 

They act as noncompetitive inhibitors against the substrate and bind close to the 

polymerase active site provoking a distortion of the protein structure and inhibiting the 

polymerase activity.  

Worthnoting they do not need intracelluar activation. 

Many different classes of NNRTIs could be distinguished and 5 drugs, acting as 

NNRTIs, have been approved for HIV-1 treatment so far. 

It should be mentioned that, while in the case of first generation NNRTIs, like 

delavirdine and nevirapine, single mutations (Y181C, K103N and Y188C) could lead to 

drug resistance; in the case of the more bulky second generation NNRTIs, like efavirenz 

and dapivirine, more than one mutation is generally required to induce drug resistance. 

Although resistance and toxicity are some of the most important drawbacks of 

NNRTIs, an intense research activity is focused on this class of compounds and more than 

30 different classes of NNRTIs have been reported. [169, 170] 

More recently molecules with a higher flexibility, although less favored by a 

thermodynamic point of view, have been proposed as NNRTIs. [171, 172]  

Molecules like etravirine and rilpivirine are successful examples of this new 

approach as well as dapivirine which is currently under clinical evaluation. 
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NNRTIs inhibit RT by binding to the enzyme in a hydrophobic pocket (NNIBP) 

located in the palm domain of the p66 subunit of the heterodimeric RT, approximately 10 

Å from the catalytic site of the enzyme.  

This pocket contains the side chains of aromatic and hydrophobic amino acid 

residues Y181, Y188, F227, W229, Y318, P95, L100, V106, V108, V179, L234, and P236 

from the p66 subunit. 

The NNIBP is flexible and its conformation depends on the size, shape, and binding 

mode of the different NNRTI. 

It can accommodate a space of about 620-720 Å, which is approximately more than 

twice the volume occupied by most of the present NNRTIs. (Figure 15). [173]  

This explains the large variety of chemical scaffolds of this class of inhibitors whose 

shapes inspired authors to create imaginative names to describe them (e. g “butterfly” 

[174], “horseshoe” [171], and “dragon” [175]).  

 

 
 

Figure 15. NNBP: a) surface map size and shape of the space available visualized with 

SiteMap [176]; b) hydrophobic (light grey), donor (diagonal stripes), and acceptor (dark grey fine 

stripes) maps. Efavirenz (EFV) is shown in ball and stick and interacting residues in the NNIBP in 

stick (pdbcode 1ikw) 

 

The NNIBP is not present in structures of HIV-1 RT that do not have a bound NNRTI 

(closed pocket form).  

Upon binding of ligands its opening is observed. In most cases the flipping of the 

aromatic side chains of Y181 and Y188 (e. g efavirenz pdbcode1ikw (Figure 16a) [177], or 

etravirine pdbcode 1suq [178] is a binding key feature. 
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For other ligands it is possible to notice the expansion of the pocket (e.g CP94,707 

pdbcode 1tv6 [179]) but not the flipping of tyrosines (Figure 16b) or the flipping of only 

one tyrosine as in the complex RT-TSAO-T (Figure 16c) (pdbcode 3qo9. [175]) 

The binding of NNRTI causes the dislocation of the β12- β13- β14 sheets that results 

in a movement of the primer grip away from the polymerization site sheet. [180] 

TSAO series also act by destabilizing heterodimeric p66/p51 HIV-1 RT. [181] 

Commonly observed resistance mutations in NNRTI-treated patients include L100I, 

K103N, V106A, Y181C, Y188L, and G190A. 

 

 
 

Figure 16. NNRTI binding mode and comparison of NNIBP residues with unbound enzyme 

(pdb code 1dlo[182]). a) Efavirenz; b) CP94,707; c) TSAO-T. Y181, Y188 and W229 are visualized in 

sticks for the comparison. d-e-f) Chemical structure of inhibitors co-crystallized in the complexes 

examined 

 

These mutations occur alone or in combination and cause clinically relevant drug 

resistance, directly, by altering the size, shape, and polarity of different parts of the 

NNIBP or, indirectly, by affecting access to the pocket. 

To overcome this problem several attempts have been made either to optimize 

interactions between drug candidates and highly conserved amino acid residues in the 

NNIBP, such as W229 [183] or to design more flexible drug candidate, as in the case of 

diarylpyrimidine (DAPY). [171] 

In fact, etravirine has the ability to bind in multiple modes and this would permit 

the NNRTI to retain activity evading drug-resistant mutations. 
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Another possibility is to look for structures able to enter the NNIBP but that show 

less hydrophobic interaction and different key contacts. 

A promising example is calanolide A and its derivatives that exhibit enhanced 

activity against HIV-1 isolates most commonly with Y181C and K103N mutations. 

The putative binding mode reported and the biological study support this 

hypothesis. [184] 

 

1.10.2 Inhibitors of the RNase H Function 

 

As reported above RNase H function is essential for the reverse transcription but, 

until now no inhibitors, specific for this enzymatic activity have been introduced in 

therapy. 

Nevertheless, quite recently, some RNase H inhibitors (RNase HI) have been 

designed and studied. 

Generally they act by chelating the Mg2+ ions within the active site. Unfortunately 

this mechanism of action is quite unspecific, due to the possible interaction with other 

divalent ions in cellular enzymes. 

Moreover the RNase H active site is an open pocket that gives very few hints for the 

design of specific inhibitors. 

However several studies have demonstrated that the abolition of the HIV-1 RNase H 

activity stops viral replication. [185, 186] 

The three dimensional (3D) structure of HIV-1 RT including the RNase H domain is 

currently available providing a solid basis for rational drug design and the development of 

inhibitors. 

RNase H fold has a characteristic central beta-sheet which contains five strands. The 

central beta-sheet 4 is flanked by four alpha-helices, three on one side (1-2-3) and one on 

the other. 

Noteworthy, strand 2 is anti-parallel to the others. 

The active site of the RNase H domain is composed of four carboxylate residues 

forming a DEDD motif which binds catalytic Mg2+ ions (Figure 17). 

Most of inhibitors block the active site from binding hybrid DNA:RNA chelating the 

divalent metal ions (Mg2+) which are coordinated by the catalytic pattern D443, E478, 

D498 and D549. 
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Figure 17. RNase H domain a) unbound (pdbcode 1DLO) and b) bound with b-thujaplicinol 

(pdbcode 3IG1) 
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Figure 18. RNAse H inhibitors co-crystallized and relative pdb code 

 

β-thujaplicinol 1 [187] and α-hydroxytropolone 2 [188] are RNase inhibitors acting 

by coordinating the two metal ions in the active site, also pyrimidinol carboxylic acid 

derivatives 3,4,5 and N-hydroxyquinazolinedione 6 show this mechanism (Figure 18). 

[189, 190] 

Others scaffolds such as N-hydroxyimides derivatives [191] and diketo acids provide 

an alternative pharmocophoric solution to chelate the two metal ions in the active 

binding site. [192, 193] 
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Interestingly some RNAse H inhibitors bind the RT in an allosteric pocket to avoid 

duplication of site located between polymerase catalytic region and NNIBP 50 Å from the 

RNAse H catalytic site. 

Both hydrazone 7 [194] and naphthyridinone derivative (MK3) 8 are accommodated 

in this site. 

Moreover, MK3 and other analogous (9-10) were co-crystallized also in the catalytic 

site where in addition to the classic interaction with two Mn2+ ions other residues are 

involved in stabilizing of the complex R448, N474, Q475, S499, A538, H539, V552, and 

S553 (Figure 19). [195] 

It may conceivably be that occupancy of the allosteric pocket would not allow the 

correct anchorage of the RNA:DNA hybrid and its direction toward RNase H domain 

would be modified leading, indirectly, to the RNase H inhibition. [194] 

 

 
 

Figure 19. MK3 binding mode a) in the allosteric binding site (pdbcode 3LP2) and b) in the 

catalytic pocket (pdbcode 3LP3 

 

Moreover, other RT regions proximal to the RNase H domain could represent a 

novel and attractive target for allosteric inhibitory activity. 

Hence there is great attention to the development of vinylogous ureas [196] and 

inhibitors able to bind the area close to residue Q507. 

The binding to an allosteric pocket could cause a conformational change at the 

interface between the RNase H domain and the p51 domain. 

This would modify the orientation of the active site and influence its availability to 

act on the DNA:RNA substrate. [197] 

In addition, the binding of the catalytic pocket requires species able to chelate 

bivalent ions usually characterized by high toxicity. 
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For this reason the development of chelating compounds raises some worries. 

 

1.10.3 Dual Inhibitors 

 

Until now we have analyzed classes of compounds selective towards one of the RT 

associated activities. 

It is easy to understand what advantage there would be in the development of 

compounds inhibiting both RDDP and RNase H activity. 

Indeed dual inhibitors may completely block RT activities and show a new favorable 

drug resistance profile by binding to unexplored protein pockets. 

All known compounds with dual inhibitory activity have the same binding pocket in 

common. 

The allosteric pocket of RNase H is located in a strategic point close to the pocket 

where most of known polymerase inhibitors bind. As it was suggested by Himmel, this 

pocket communicates directly with the NNRTI pocket. [194] 

By binding to this allosteric pocket and to NNIBP residues these compounds seem to 

acquire dual activity. 

Sluis-Cremer was the first who reported the dual inhibitory activity of N-acyl 

hydrazone derivative. [198] A similar compound 7 was later co-crystallized by Himmel, 

confirming the hypothesis of an allosteric pocket. The same author reported that 

analogues of compound 7, bearing bulkier substituent in place of the 3,4-

dihydroxyphenile exhibit dual inhibitory activity. [194] 

However none of these compounds have been co-crystallized. 

Recently, activity data of a series of alizarine derivatives showing dual activity in the 

low micromolar range and also towards mutated RTs, commonly resistant to NNRTI has 

been published. [199] 
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Figure 20. Putative binding mode of K49, best compound of alizarine derivatives serie 

 

The most active alizarine derivatives studied have bulky substituents and are able to 

go right through the allosteric pocket and interact with NNIBP (Figure 20). 

This study confirms the possibility of inhibiting both activities. However the rigidity 

of the scaffold presents some limitation as it does not offer a wide margin of 

improvement. 
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2 Results and Discussion 

 

My research work is focused on the design of new HIV RT inhibitors of the two 

associated functions of the enzyme, RNA and DNA polymerase function and RNase H 

function. 

With the aim of finding new RNaseH inhibitors the medicinal chemistry research 

group of the department of life and environmental sciences, performed a successful 

ligand based virtual screening (VS) [200]: out of 69 compounds selected 26 are active 

towards RNase H and many of them are dual inhibitors. 

In particular hydrazonoindolin-2-one derivative (46, numbered as in the paper) was 

found to be active on RNase H (IC50 ~2 µM) and RDDP (IC50 ~ 1.4 µM). [200] 

Furthermore, compound 46 represents a remarkable new scaffold. 

Moreover it is not mutually exclusive if associated with both NNRTIs and RNase HIs, 

indicating that, in all probability, it does not bind either in the NNIBP or in the RNase HI 

pocket. [200] 

Molecular modeling analysis of the putative binding mode, combined with 

biochemical studies was useful to rationalize the activity.  

Such studies confirmed that the compound binds in an allosteric pocket. 

From the analysis of the binding mode along with its Grid Base Pharmacophore 

Model (GBPM) (Figure 21) [200, 201], the importance of hydrophobic portions 

corresponding to indolinone and thiazole moieties can be highlighted. 

These portions positively interact with hydrophobic residues V208, F227, Y188, 

W229. 

However the wide hydrophobic area suggests that the indolinone moiety could be 

substituted by bulkier groups, in the region exposed to the solvent both donors and 

acceptors are favored. 

The analysis of the pocket with SiteMap [202] allows for a better understanding of 

the degree of complementarities to the receptor and the visualization of unexplored 

regions. 
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Figure 21. GBPM maps and binding mode of compound 46: a) DRY probe, b) N1 probe, c) O probe 

 

Therefore it could be observed that there is space in the left and right bottom 

portions of the pocket (Figure 22).  

Furthermore the flexibility of side chains of NNIBP residues could increase the space 

available.  

 

 
 

Figure 22. Surface map: a) size and shape of the space of the pocket available visualized 

with SiteMap; b) hydrophobic (light grey), donor (diagonal stripes), and acceptor (dark grey fine 

stripes) favourable maps (pdbcode 3lp2) 
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In addition to spatial requirements evaluation, the examination of the distribution 

of hydrophobic, acceptor and donor maps is useful to understand a worthwhile strategy 

of lead optimization. 

It was noticed that there is a wide area where donor groups could have room. The 

donor map is located in the area facing the polymerase catalytic triad, while two acceptor 

maps are at the left and right part of it. This information, together with the 

pharmacophore model, should lead to the design of compounds with increased activity. 

The optimization procedure should be carried out also considering most common NNRTI 

induced mutations. Hence flexibility and care in avoiding key interactions with these 

residues may help the drug optimization process. Furthermore, besides compound 46, 

there are other promising scaffolds coming from VS study which show a similar behavior 

and can be better characterized and optimized. 

Starting from this observation we synthesised new series of compounds (EMAC 

2000-2096) in order to obtain further information on the SARs of these derivatives and to 

identify other possible scaffolds. 

Firstly we synthesised a new series of chalcones (EMAC 2000-2012, EMAC 2013-

2025) whose structures are illustrated in Figure 23, 24. 
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Figure 23. Structure of compounds 2000-2012 
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Figure 24. Structure of compounds 2013-2025 

 

All compounds were synthesised according to literature methods. [203, 204] 

Compounds EMAC 2000-2012 were synthesised by reaction of 1-methoxy-2-

naphtaldehyde with the appropriate methylarylketone in ethanol and 10% NaOH water 

solution.  

In the case of compounds EMAC 2013-2025, different synthetic pathway was 

followed; 1H-indole-3-carboxyaldehyde was reacted with the appropriate 

methylarylketone in ethanol/piperidine solution. 

In both series the expected “E” configuration was obtained as suggested by the 

CH=CH double bond coupling costants that ranges from 15 to 16 Hz. 
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To evaluate their capability to inhibit both functions of HIV RT the RNase H 

polymerase-independent cleavage assay was measured [192] using Poly(dC)-[3H]Poly(rG) 

hybrid as reaction substrate. 

Moreover the RDDP activity of HIV-1 RT was measured according to the procedure 

previously described. [207] 

Regarding compounds EMAC 2000-2012 an interesting activity could be observed 

(Table 1). 
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Table 1. EMAC 2000-2012 activity 

OCH3
H
C C

H

C

O

D

 
“D”-ring  HIV-1 RDDP 

a
IC50 (μM)*

 
HIV-1 RNase H 

b
IC50 (μM)* 

Br
 

EMAC 2000 6 47 

F
 

EMAC 2001 5 23 

OCH3
 

EMAC 2002 6 9 

Cl
 

EMAC 2003 5 76 

NO2  

EMAC 2004 5 31 

 
EMAC 2005 4 6 

NO2
 

EMAC 2006 

CH3
 

EMAC 2007 

 
EMAC 2008 

Cl

Cl

 

EMAC 2009 

F

F  

EMAC 2010 

Cl

Cl  

EMAC 2011 

CN
 

EMAC 2012 

Test in progress 

RDS 1643  > 100 13 
Efavirenz  0,003 > 10 

aCompound concentration required to reduce the HIV-1 RT-associated RNase H activity by 50%. bCompound 

concentration required to reduce the HIV-1 RT-associated RNA-dependent DNA-polymerase activity by 50%. 

The activity was measured together with two known inhibitors of the RDDP and RNase H functions, 

respectively Efavirenz and RDS 1643. * Results are means of 3 experiments. 
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Some of the compounds exhibit comparable activity towards the two associated 

functions of HIV-1 RT. 

In particular, EMAC 2002 and 2005 have an IC50 value in the low µM range. 

To gain a better comprehension of the mechanism of action and to identify the 

binding site of these new compounds we have performed some biochemical and 

computational investigation. 

All the known RNase H inhibitors that binds to the RNase H active site are Mg2+ 

chelating agents. 

Thus to verify if our compounds bind either in the RNase H active site or in an 

allosteric pocket we measured the effect of MgCl2 on the compounds EMAC 2000-2005 

Uv spectrum. 

Results showed that MgCl2 does not significantly change the compounds maximum 

of absorbance, suggesting that these compounds do not act by chelating the magnesium 

ion in the RNase H catalytic site (Figure 25). 

 

 
 

Figure 25. Magnesium chelating assay (in black: absence of Mg2+, in red presence of 6 mM 

MgCl2; a) EMAC 2000, b) EMAC 2001, c) EMAC 2002, d) EMAC 2003, e) EMAC 2004, f) EMAC 2005. 

 

To further confirm that our compounds do not bind to the RNase active site we 

measured the interference between the most active EMAC 2005 and a known inhibitor at 

the RNase H catalytic site (RDS1643) by the Yonetani Theorell plot. [208] 

This is a graphical method to analyze the multiple inhibition of an enzyme by two 

competing inhibitors.  
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This method not only distinguishes whether two inhibitors interact with the same 

site or different sites of the enzyme, but also gives an interaction constant (α) between 

two inhibitors in the enzyme-inhibitor complex. 

 

 
 

Figure 26. Yonetani Theorell plot of increasing concentrations of EMAC 2005 vs RDS 1643;  

●[EMAC 2005] = 0, ○[EMAC 2005] = 2,5µM, ▼[EMAC 2005] = 5µM, ▲[EMAC 2005] = 10µM. 

 

This kinetic analysis quantitatively reconfirmed our previous finding that EMAC 

2005 and RDS 1642 interact independently with different sites of the enzyme and are not 

mutually exclusive. 

To investigate if EMAC 2005 binds to the NNRTIs binding pocket active site we 

performed the same kinetic experiment (Figure 27) with increasing concentrations of 

EMAC 2005 and a known NNRTI (Efavirenz). 
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Figure 27. Yonetani Theorell plot of increasing concentrations of EMAC 2005 vs Efavirenz; 

●[EMAC 2005] = 0, ○[EMAC 2005] = 1,5µM, ▼[EMAC 2005] = 3,5µM, ▲[EMAC 2005] = 10µM. 

 

According to the kinetic analysis EMAC 2005 and Efavirenz are not mutually 

exclusive.  

Thus we can affirm that EMAC 2005 binds neither at the NNRTI binding pocket, nor 

at the RNase active site. 

In order to verify if compound EMAC 2005 binds in the allosteric site close to the 

NNRTIs binding pocket we tested its activity towards both associated activities of 

K103Nsn and Y181C RTs, two NNRTI resistant mutant enzymes, since derivatives which 

have been proposed to interact with the drug pocket, close to both NNRTI binding pocket 

and DNA polymerase active site, have shown a degree of cross resistance with NNRTI 

resistant RTs. 

The results are summarized in Table 2. 
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Table 2. EMAC 2005 activity on mutants 

EMAC 2005 activity on mutants (K103N and Y181C) 

OCH3
H
C C

H

C

O

 

wt RT a IC50 (µM) K103N RT IC50 (µM) Y181C RT IC50 (µM) 
Compound 

RNase H RDDP RNase H RDDP RNase H RDDP 

EMAC 2005 6 ± 2 4 ± 1 59 ± 8 3 ± 1 >100 (79%) 8 ± 5 

EFV > 10 
0,013 ± 

0.008 
ND 0,68 ND 0,40 

 

Results showed that when tested on the K103N RT compound EMAC 2005 was 10 

fold less potent on the RNase H and almost the same active towards RT-associated RDDP. 

As it was expected, this result indicates that EMAC 2005 activity on RNase H activity 

is most likely associated to its binding close to the NNRTI binding pocket. 

On the contrary, no influence of K103N mutation on the RDDP activity was 

observed. 

In the case of Y181C mutation a more dramatic effect, with respect to K103N, can 

be observed. The activity towards RNase H activity is almost suppressed indicating that 

this residue is essential for exerting the inhibition of this function. 

Also in this case the activity towards the RT-associated RDDP is almost not affected, 

indicating that Y181 is not essential for the binding but only for the inhibiton of the RNase 

H function. This behavior might be explained either by two different poses in the 

hydrazones pocket, or by the interaction with an other pocket close to the RNase H site, 

whose structure is affected by the Y181C mutation.  

Prompted by these results we synthesized other series of compounds EMAC 2026-

2096 reported in the figures 28-34. 
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Figure 28. Structure of compounds 2026-2035 
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Figure 30. Structure of compounds 2046-2055 
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Figure 31. Structure of compounds EMAC 2056-2063 
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Figure 32. Structure of compounds EMAC 2064-2071 

 



57 
 

N
H

N

O

H
N

N

S

Cl

N
H

N

O

H
N

N

S

F

N
H

N

O

H
N

N

S

Br

N
H

N

O

H
N

N

S

NO2

N
H

N

O

H
N

N

S

N
H

N

O

H
N

N

S

CN

N
H

N

O

H
N

N

S

F

N
H

N

O

H
N

N

S

N
H

N

O

H
N

N

S

CH3

N
H

N

O

H
N

N

S

OCH3

N
H

N

O

H
N

N

S

N
H

N

O

H
N

N

S

Cl

F

NO2

Cl

EMAC2072 EMAC2073 EMAC2074

EMAC2075 EMAC2076 EMAC2077

EMAC2078 EMAC2079 EMAC2080

EMAC2081 EMAC2082 EMAC2082

 
 

Figure 33. Structure of compounds EMAC 2072-2082 
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Figure 34. Structure of compounds EMAC 2084-2096 
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The synthetic pathway to compounds EMAC 2026-2096 is reported in materials and 

methods (chemistry).  

Generally the appropriate aldehyde, either purchased or synthesized by Suzuki 

coupling reaction (EMAC 2056-2071), was reacted with thiosemicarbazide in isopropyl 

alcohol in the presence of catalytic amounts of acetic acid.  

The obtained thiosemicarbazone is then suspended in isopropyl alcohol in the 

presence of the appropriate α-halogenoarylketone to give the desidered thiazole 

derivative. 

All the compounds were obtained as free bases as revealed by halogen ions test 

with 1M solution of AgNO3. 

Most of the compounds were submitted for biological evaluations and the results 

are summarized in tables 3-7. 

In some cases it has been possible to evaluate the activity in HIV infected cells, 

thanks to the group of Prof. Cheng at the University of Yale. 

In table 3 the activity of compounds EMAC 2026-2035 is reported. 

Interestingly the biphenyl substituents in the position 4 of the thiazole ring (EMAC 

2031) leads to a complete loss of activity while a similar substitution in the chalcone 

series led to the best activity (EMAC 2005). 

However, compounds EMAC 2028, EMAC 2034, and EMAC 2035 exhibit a promising 

activity towards HIV infected cells with an EC50 of <5, 8 and <5 µM respectively. 

These data are comparable with the activity exhibited in the enzymatic assay 

towards RNase H function. 

Moreover these compounds are relatively not toxic and further biological 

experiments are in progress. 

In particular their activity towards the RT associated RDDP function will be 

evaluated and the mechanism and site of action investigated. 



60 
 

 

Table 3. EMAC 2026-2035 activity 

H
C

N
H
N

N

S

D  

“D”-ring 
HIV-1 RNase H 
b
IC50 (μM)* 

HIV-1 RDDP 
a
IC50 (μM)* 

TZM-bl
  

c
CC50 (µM) 

HIV-1 
d
EC50 (µM) 

Cl

Cl  

> 100 35 

F
 

97 11 

Test in progress 

CN
 

16 7 7 < 5 

NO2  

48 15 Test in progress 

Br
 

24 4 > 50 15 

 
51 9 Test in progress 

NO2
 

13 10 14 > 30 

OCH3
 

42 10 > 50 > 30 

Cl
 

14 7 50 8 

CH3
 

28 8 50 <  5 

Efavirenz > 100 0,003   
aCompound concentration required to reduce the HIV-1 RT-associated RNase H activity by 50%. bCompound 

concentration required to reduce the HIV-1 RT-associated RNA-dependent DNA-polymerase activity by 50%. 
cCompound concentration required to reduce MT-2 cell replication by 50% after 4 days incubation. 
dCompound concentration required to reduce the HIV-1replication by 50% in TZM-bl cells after 1 day 

incubation. * Results are means of 3 experiments.
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Also in the case of compounds EMAC 2044 and EMAC 2045 a promising activity 

towards the HIV-1 replication was observed and a deeper investigation on their mode of 

action will be pursued (Table 4). 

 

Table 4. EMAC 2036-2045 activity 

O

O
H
C

N

H
N

N

S

D  

“D”-ring 
HIV-1 RNase H 
b
IC50 (μM) 

HIV-1 RDDP 
a
IC50 (μM) 

TZM-bl
  

c
CC50  (µM) 

HIV-1 
d
EC50  (µM) 

Cl

Cl  

34  31  

F
 

46  21  

CN
 

60 100 

Test in progress 

NO2  

28  28 > 50 > 30 

Br
 

>100 (58%) >100 

 
22 19 

NO2
 

>100 97 

OCH3
 

100 98  

Test in progress 

Cl
 

28  33  > 50 2,5 

CH3
 

29 22 32 >30 

Efavirenz > 100 0,003   
aCompound concentration required to reduce the HIV-1 RT-associated RNase H activity by 50%. bCompound 

concentration required to reduce the HIV-1 RT-associated RNA-dependent DNA-polymerase activity by 50%. 
cCompound concentration required to reduce MT-2 cell replication by 50% after 4 days incubation. 
dCompound concentration required to reduce the HIV-1replication by 50% in TZM-bl cells after 1 day 

incubation. * Results are means of 3 experiments. 
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A similar behavior was observed for the analogous compounds EMAC 2046 and 

EMAC 2050, but introduction of different substituents with respect to previous 

compounds, lead to the best performing compounds (Table 5). 

. 

Table 5. EMAC 2046-2055 activity 

O

O
H
C

N

H
N

N

S

D

H3C

 

“D”-ring 
HIV-1 RNase H 
b
IC50 (μM)* 

HIV-1 RDDP 
a
IC50 (μM)* 

TZM-bl
  

c
CC50 (µM) 

HIV-1 
d
EC50 (µM) 

Cl

Cl  

17 23 35 3 

F
 

24 13 

CN
 

64 56 

NO2  

55 33 

Test in progress 

Br
 

13 40  > 50 2,5 

 
23  10 

NO2
 

40 26  

Test in progress 

OCH3
 

10 6  <2 23 

Cl
 

20  17  Test in progress 

CH3
 

17 17 35 > 30 

Efavirenz > 100 0,003   
aCompound concentration required to reduce the HIV-1 RT-associated RNase H activity by 50%. bCompound 

concentration required to reduce the HIV-1 RT-associated RNA-dependent DNA-polymerase activity by 50%. 
cCompound concentration required to reduce MT-2 cell replication by 50% after 4 days incubation. 
dCompound concentration required to reduce the HIV-1replication by 50% in TZM-bl cells after 1 day 

incubation. * Results are means of 3 experiments. 
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These data needs further investigation to rationalize the SARs of this scaffold and 

more data are needed in order to explain such discontinuous SARs. 

 

Table 6. EMAC 2072-2083 activity 

N
H

N

O

H
N

N

S

D

 

“D”-ring 
HIV-1 RNase H 
b
IC50 (μM)* 

HIV-1 RDDP 
a
IC50 (μM)* 

TZM-bl
  

c
CC50  (µM) 

HIV-1 
d
EC50  (µM) 

Cl
 

11.2 3.3 >50 >50 

F
 

8.2 2.0 >50 >50 

Br
 

13 4.0 >50 >50 

NO2
 

3.8 0.8 >50 >50 

 
3.5 0.8 >50 >50 

CN
 

2.1 5.3 >50 >50 

F

F

 

6.2 1.4 >50 >50 

NO2

 

4.7 0.8 >50 >50 

CH3
 

10.6 1.0 >50 >50 

OCH3
 

23.0 3.0 >50 >50 

 
> 30 11 >50 >50 

Cl

Cl

 

3.9 2.7 >50 >50 

aCompound concentration required to reduce the HIV-1 RT-associated RNase H activity by 50%. bCompound 

concentration required to reduce the HIV-1 RT-associated RNA-dependent DNA-polymerase activity by 50%. 
cCompound concentration required to reduce MT-2 cell replication by 50% after 4 days incubation. 
dCompound concentration required to reduce the HIV-1replication by 50% in TZM-bl cells after 1 day 

incubation. * Results are means of 3 experiments. 
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Table 7. EMAC 2084-2096 activity 

N
H

N

O

H
N

N

S

D

O2N

 

“D”-ring 
HIV-1 RNase H 
b
IC50 (μM)* 

HIV-1 RDDP 
a
IC50 (μM)* 

TZM-bl
  

c
CC50 (µM) 

HIV-1 
d
EC50 (µM) 

Cl
 

4,6  10,5  

F
 

5,1  9,5  

Br
 

4,3  8,5  

NO2
 

7,6  21,0  

 
7,1  12,0  

CN
 

6,0  9,3  

F

F

 

6,0  11,5  

NO2

 

6,5  18,5  

CH3
 

8,5  18,5  

OCH3
 

8,5  14,5  

 
6,0  13,0  

Cl

Cl

 

6,5  11,5  

Cl

Cl

 

3,5  10,5  

Test in progress 

aCompound concentration required to reduce the HIV-1 RT-associated RNase H activity by 50%. bCompound 

concentration required to reduce the HIV-1 RT-associated RNA-dependent DNA-polymerase activity by 50%. 

* Results are means of 3 experiments. 
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Compounds EMAC 2072-2083 exhibit potent activity in the enzymatic assay almost 

all substitutions are well tolerated and moreover most of the compounds exhibit dual 

activity towards the two associated functions of HIV RT (Table 6). 

These results indicate that the combination of the indolinone ring together with the 

hydrazine spacer and the 4-substituted thiazole may constitute the best performing 

scaffold for dual inhibition. 

Prompted by these encouraging findings we performed a deeper characterization of 

these compounds. 

We selected compound EMAC 2077 for mode of action biochemical studies and 

computational investigation. 

Firstly we measured the effect of MgCl2 on EMAC 2077 Uv spectrum in comparison 

with a known inhibitor at the RNase active site that acts by chelating the Mg2+ cofactor 

(Figure 34). 

 

 
 

Figure 35. EMAC 2077 interaction with the Mg2+ RT cofactor: in red absence of Mg2+ and in 

blu presence of 6 mM Mg2+ 
 

 

As previously observed for compounds EMAC 2000-2005, the addition of 6 mM of 

MgCl2 to the solution of EMAC 2077 does not significantly shift the maximum of 

absorbance indicating that this compound does not act by chelating the magnesium ion in 

the RNase H catalytic site. 
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Moreover, we performed kinetic analysis of EMAC 2077 in the presence of known 

inhibitors of both associated functions, RDDP and RNase H, Efavirenz and RDS 1643 

respectively. 

Figure 

36. EMAC 2077 kinetic analysis in the presence of Efavirenz 

 
 

Figure 37. EMAC 2077 kinetic analysis in the presence of RDS 1643 



67 
 

In both cases no interaction was observed. Thus we can assume that EMAC 2077 

neither binds in the same site of Efavirenz nor of RDS1643. 

The activity towards RT mutants K103N and Y181C was also measured, in order to 

verify if EMAC 2077 binds in the allosteric site close to the NNRTIs binding pocket. 

The results are summarized in Table 8. 

 

Table 8. EMAC 2077 activity on mutants (K103N and Y181C) 

 

N
H

N

O

H
N

N

S

D

 

K103N RT IC50 (µM) Y181C RT IC50 (µM) 
“D”-ring 

RNase H RDDP RNase H RDDP 

CN
 

20.16±2.5  4.08±1.4  23.4±0.6  2 ±1  

EFV ND 0,68 ND 0,40 

 

Compound EMAC 2077 activity towards RNase H function is only sliglty affected by 

mutations, while almost no influence of mutation on the RT RDDP function is observed. 

These data are more than encouraging suggesting that this compound could be a 

valid hit compound for the development of new dual inhibitors of both RT associated 

functions. 

Docking experiments also confirmed that the most probable binding site of 

compound EMAC 2077 is the allosteric pocket between the NNRTIs binding pocket and 

the polymerase active site. [194] 

In Figure 38 the most favoured binding mode of compound EMAC 2077 is reported, 

in comparison with DHBNH. [194] 

Both compounds, although with small differences, bind to the same lipophilic 

pocket.  
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Figure 38. Compound EMAC 2077 interactions with RT were analyzed using LigandScout 

[209]: the yellow spheres show hydrophobic contacts, green arrows (HB acceptor) violet circle 

(aromatic interaction) 

 

In the case of compound EMAC 2077, with respect to DHBNH, a deeper contact 

with important residues of the NNRTIs binding pocket is observed. 

This may be the explanation for the dual activity of EMAC 2077 in comparison to 

DHBNH that only inhibit the RNase H function. Moreover, an aromatic interaction 

between the thiazole ring of compound EMAC2077 and TRP229 is observed. This 

interaction is particularly interesting considering that TRP229 is a highly conserve residue 

of HIV-1 RT. 

Indeed more investigation are needed to better clarify the mode of action of such 

compounds and further synthetic effort should be dedicated to the achievement of more 

selective and less toxic derivatives. 
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Nevertheless the results of this research suggest that the allosteric site, between 

the NNRTIs binding pocket and the polymerase active site, is a druggable target to 

achieve a complete block of RT enzymatic activity. 
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3 Materials and methods 

 

3.1 Chemistry  

 

Unless otherwise noted, starting materials and reagents were obtains from 

commercial suppliers and were used without purification. 

All melting point were determined by the capillary method on a Stuart SMP11 

melting point apparatus or on a Büchi-540 capillary melting points apparatus and are 

uncorrected. 

All samples were measured in DMSO-d6 solvent, DMF-d7 solvent and CDCl3 at 278.1 

K temperature on a Varian Unity 500 or with a Varian Unity 300 spectrometer. In the 

signal assignments the proton chemical shifts are referred to the solvent (1H: δ = 7.24 

ppm,). Coupling constants J are expressed in hertz (Hz). 

Elemental analyses were obtained on a Perkin–Elmer 240 B microanalyser. 

Analytical data of the synthesised compounds are in agreement with the theoretical data. 

HPLC-MS/MS analysis was performed using an HPLC-MS/MS Varian (Varian Palo 

Alto, CA, USA) system fitted with a 1200 L triple quadrupole mass spectrometer equipped 

with an electrospray ionization source (ESI). A Varian MS workstation version 6.8 software 

was used for data acquisition and processing. Rapid identification was achieved with 

direct infusion of the purified molecule, dissolved in methanol, on the mass spectrometer 

source.  

TLC chromatography was performed using silica gel plates (Merck F 254), spots 

were visualised by UV light 
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COMPOUNDS EMAC 2000-2025 

 

In all investigated molecules the NMR analysis supports the “E” configuration 

(Figure 39). 

According the double bond protons coupling constants that ranges from 15 to 16 Hz.  

 

Ar H

Ar'H

O

(E)

 
 

Figure 39. (E)-3-aryl-1-arylprop-2-en-1-one 

 

First series: (E)-3-(1-methoxynaphtalen-2-yl)-1-arylprop-2-en-1-one 

 

General synthetic scheme:  

 

O

H

OH3C O

CH3

R OH3C O

R

1-methoxy-2-naphthaldehyde
(E)-3-(1-methoxynaphthalen-2-yl)-1-arylprop-2-en-1-one

Mol. Wt.: 186,21

EMAC 2000-2012

i

R= 4-Br, 4-F, 4-OCH3, 4-Cl, 3-NO2, 4-C6H5, 4-NO2, 4-CH3, H, 3,4-Cl, 2,4-F, 2,4-Cl, 4-CN  
 

Scheme 1. Synthesis of (E)-3-(1-methoxynaphtalen-2-yl)-1-arylprop-2-en-1-one derivatives 

EMAC 2000-2012. Reagents: (i) ethanol, NaOH 10 %. 

 

General procedure for (E)-3-(1-methoxynaphtalen-2-yl)-1-arylprop-2-en-1-one 

 

Chalcones were synthesized via Claisen-Schmidt condensation of substituted 

acetophenone with substituted benzaldehyde under basic conditions in ethanol.  

Crude chalcones were purified by recrystallization from a suitable solvent. [203, 204] 

All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 9 and 10. 
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Table 9. Chemical and physical data of derivatives EMAC 2000-2012 

 

OO
H3C

R

 

Compound R M.W. Mp (C°) % Yield 

EMAC 2000 4-Br 367.24 110-112 67 

EMAC 2001 4-F 306.33 93-95 81 

EMAC 2002 4-OCH3 318.37 137-139 83 

EMAC 2003 4-Cl 322.78 108-109 53 

EMAC 2004 3-NO2 333.34 143-145 64 

EMAC 2005 4-C6H5 364.44 104-105 87 

EMAC 2006 4-NO2 334.34 133-135 63 

EMAC 2007 4-CH3 302.37 91-93 76 

EMAC 2008 H 288.34 108-110 79 

EMAC 2009 3,4-Cl 357.23 135-137 79 

EMAC 2010 2,4-F 324.32 94-96 67 

EMAC 2011 2,4-Cl 357.23 112-114 70 

EMAC 2012 4-CN 313.35 150-152 64 
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Table 10. Analytical data of derivatives EMAC 2000-2012 

 

OO
H3C

R

 

Compound R 
Reaction 

solvent 

Crystallisation 

solvent 
Aspect 

Reaction 

time (h) 

EMAC 2000 4-Br 
Ethanol/NaOH 
10%  

Water/Ethanol 
Crystalline 
yellow solid 

24 

EMAC 2001 4-F 
Ethanol/NaOH 
10% l 

Water/Ethanol 
Crystalline 
yellow solid 

24 

EMAC 2002 4-OCH3 
Ethanol/NaOH 
10% 

Water/Ethanol 
Crystalline 
yellow solid 

24 

EMAC 2003 4-Cl 
Ethanol/NaOH 
10% 

Water/Ethanol 
Crystalline 
yellow solid 

24 

EMAC 2004 3-NO2 
Ethanol/NaOH 
10% 

Water/Ethanol 
Crystalline 
pale orange 
solid 

24 

EMAC 2005 4-C6H5 
Ethanol/NaOH 
10% 

Water/Ethanol  
Crystalline 
yellow solid 

24 

EMAC 2006 4-NO2 
Ethanol/NaOH 
10% 

Water/Ethanol 
Crystalline 
yellow solid 

24 

EMAC 2007 4-CH3 
Ethanol/NaOH 
10% 

Water/Ethanol 
Crystalline 
yellow solid 

24 

EMAC 2008 H 
Ethanol/NaOH 
10% 

Water/Ethanol 
Crystalline 
yellow solid 

24 

EMAC 2009 3,4-Cl 
Ethanol/NaOH 
10% 

Water/Ethanol 
Crystalline 
yellow solid 

24 

EMAC 2010 2,4-F 
Ethanol/NaOH 
10% 

Water/Ethanol 
Crystalline 
yellow solid 

24 

EMAC 2011 2,4-Cl 
Ethanol/NaOH 
10% 

Water/Ethanol 
Crystalline 
yellow solid 

24 

EMAC 2012 4-CN 
Ethanol/NaOH 
10% 

Water/Ethanol 
Crystalline 
yellow solid 

24 

 



74 
 

 

According to this procedure the following compounds have been synthesised: 

 

EMAC 2000 

(E)-1-(4-bromophenyl)-3-(1-methoxynaphthalen-2-yl)prop-2-en-1-one  

 

O

H

O
H3C O

CH3

ethanol / NaOH 10%

O
H3C O

Br

Br

 
 
1H-NMR (300 MHz, DMSO) δH 4.06 (s, 3H, OCH3), 7.33 (d, 1H, J: 9.15, Ar-CH), 7.41 (t, 1H, J: 

7.5, Ar-CH), 7.55 (t, 1H, J: 7.5, Ar-CH), 7.65 (d, 2H, J: 8.3, Ar-CH), 7.82 (d, 1H, J: 7.5, Ar-CH), 

7.85 (d, 1H, J: 15.6, -CH=), 7.9 (d, 1H, J: 9, Ar-CH), 7.93 (d, 2H, J: 8.32, Ar-CH), 8.25 (d, 1H, 

J: 8.65, Ar-CH), 8.51 (d, 1H, J: 15.6, -CH=) 

 

EMAC 2001 

(E)-1-(4-fluorophenyl)-3-(1-methoxynaphthalen-2-yl)prop-2-en-1-one  

 

O

H

O
H3C O

CH3

O
H3C O

F

F

ethanol / NaOH 10%
 

 
1H-NMR (300 MHz, DMSO) δH 4.07 (s, 3H, OCH3), 7.11 (t, 1H, J: 8.65, J: 8.49, Ar-CH), 7.26 

(d, 2H, J: 9, Ar-CH), 7.42 (d, 1H, J: 7.15, Ar-CH), 7.50 (t, 1H, J: 8.49, Ar-CH), 7.57 (d, 1H, J: 

7.15, Ar-CH), 7.78 (d, 1H, J: 15.9, -CH=), 7.93 (d, 1H, J: 8.65, Ar-CH), 8.09 (d, 2H, J: 9, Ar-

CH), 8.18 (d, 1H, J: 8.49, Ar-CH), 8.43 (d, 1H, J: 15.9, -CH=) 
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EMAC 2002 

(E)-3-(1-methoxynaphthalen-2-yl)-1-(4-methoxyphenyl)prop-2-en-1-one  

 

O

H

OH3C O

CH3

O
H3C O

OCH3

H3CO

ethanol / NaOH 10%

 
 
1H-NMR (300 MHz, DMSO) δH 3.9 (s, 3H, OCH3), 4.05 (s, 3H, OCH3), 7.00 (d, 1H, J: 8.99, Ar-

CH), 7.33 (d, 2H, J: 9, Ar-CH), 7.70 (t, 1H, J: 8, Ar-CH), 7.47 (d, 1H, J: 16, -CH=), 7.55 (t, 1H, 

J: 8, Ar-CH), 7.82 (d, 1H, J: 8, Ar-CH), 7.89 (d, 1H, J: 9, Ar-CH), 8.08 (d, 1H, J: 9, Ar-CH), 8.28 

(d, 2H, J: 9, Ar-CH), 8.45 (d, 1H, -CH=) 

 

EMAC 2003 

(E)-1-(4-chlorophenyl)-3-(1-methoxynaphthalen-2-yl)prop-2-en-1-one  

 

O

H

O
H3C O

CH3

O
H3C O

Cl

Cl

ethanol / NaOH 10%
 

 
1H-NMR (300 MHz, DMSO) δH 4.06 (s, 3H, OCH3), 7.33 (d, 1H, J: 9.16, Ar-CH), 7.41 (t, 1H, J: 

7.83, Ar-CH), 7.49 (d, 2H, J: 8.48, Ar-CH), 7.53 (d, 1H, J: 15.65, -CH=), 7.55 (t, 1H, J: 7.82, 

Ar-CH), 7.74 (d, 1H, J: 8.16, Ar-CH), 7.90 (d, 1H, J: 9.65, Ar-CH), 8.01 (d, 2H, J: 8.32, Ar-CH), 

8.25 (d, 1H, J: 8.66, Ar-CH), 8.51 (d, 1H, J: 15.65, -CH=) 

 

EMAC 2004 

(E)-3-(1-methoxynaphthalen-2-yl)-1-(3-nitrophenyl)prop-2-en-1-one  

 

O

H

O
H3C O

CH3

O
H3C O

NO2

O2N

ethanol / NaOH 10%  
 
1H-NMR (300 MHz, DMSO) δH 4.10 (s, 3H, OCH3), 7.35 (d, 1H, J: 8.98, Ar-CH), 7.42 (t, 1H, J: 

7.82, Ar-CH), 7.58 (t, 1H, J: 8.5, Ar-CH), 7.72 (t, 1H, J: 7.82, Ar-CH), 7.83 (d, 1H, J: 8, Ar-CH), 
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7.93 (d, 1H, J:8.5, Ar-CH), 7.94 (d, 1H, J: 15.6, -CH=), 8.25 (d, 1H, J: 8.5, Ar-CH), 8.39 (d, 1H, 

J: 8.5, Ar-CH), 8.44 (d, 1H, J: 8, Ar-CH), 8.60 (d, 1H, J: 15.6, -CH=), 8.89 (s, 1H, Ar-CH) 

EMAC 2005 

(E)-3-(1-methoxynaphthalen-2-yl)-1-(4-biphenyl)prop-2-en-1-one  

 

O

H

O
H3C O

CH3

O
H3C O

ethanol / NaOH 10%

 
 
1H-NMR (300 MHz, DMSO) δH 4.07 (s, 3H, OCH3), 7.34- 7.50 (m, 2H, Ar-CH), 7.56 (t, 1H, J: 

8.1, Ar-CH), 7.69 (d, 2H, J: 7.8, Ar-CH), 7.75 (d, 2H, J: 7.8, Ar-CH), 7.83(d, 1H, J: 8.8, Ar-CH), 

7.88 (d, 1H, J: 8.0, Ar-CH), 7.91 (d, 2H, J: 8.2, Ar-CH), 7.95 (d, 1H, J: 15.9, -CH=), 8.04 (d, 

2H, J: 8.2, Ar-CH), 8.19 (d, 1H, J: 8.8, Ar-CH), 8.29 (d, 1H, J: 8.1, Ar-CH), 8.54 (d, 1H, J: 15.9, 

-CH=) 

 

EMAC 2006 

(E)-3-(1-methoxynaphthalen-2-yl)-1-(4-nitrophenyl)prop-2-en-1-one  

 

O

H

O
H3C O

CH3

O
H3C O

NO2

O2N

ethanol / NaOH 10%
 

 
1H-NMR (500 MHz, DMSO) δH 3.55 (s, 3H, OCH3) 7.34 (d, 1H, J: 9, Ar-CH) 7.42 (t, 1H, J: 7.5, 

Ar-CH), 7.57 (t, 1H, J: 7.5, Ar-CH), 7.89 (d, 1H, J: 15.5, –CH=), 7.93 (d, 1H, J: 9.5, Ar-CH), 

8.18 (d, 2H, J: 9 Ar-CH), 8.23 (d, 1H, J: 9, Ar-CH), 8.36 (d, 2H, J: 8.5, Ar-CH), 8.42 (d, 1H, J:  

9, Ar-CH), 8.57 (d, 1H, J: 16, –CH=) 
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EMAC 2007 

(E)-3-(1-methoxynaphthalen-2-yl)-1-p-tolylprop-2-en-1-one  

 

O

H

OH3C O

CH3

O
H3C O

CH3

H3C

ethanol / NaOH 10%
 

 
1H-NMR (500 MHz, DMSO) δH 2.44 (s, 3H, CH3), 4.05 (s, 3H, OCH3), 7.31 (d, 2H, J: 8.5, Ar-

CH, Ar-CH), 7.33 (d, 1H, J: 9, Ar-CH), 7.39 (t, 1H, J: 7.5, Ar-CH), 7.53 (t, 1H, J: 8, Ar-CH), 7.81 

(d, 1H, J: 8.5, Ar-CH), 7.87 (d, 1H, J: 15.5, -CH=), 7.88 (d, 1H, J: 9, Ar-CH), 7.98 d, 2H, J: 8, 

Ar-CH), 8.26 (d, 1H, J: 8.5, Ar-CH), 8.47 (d, 1H, J: 16, -CH=) 

 

EMAC 2008 

(E)-3-(1-methoxynaphthalen-2-yl)-1-phenylprop-2-en-1-one  

 

O

H

O
H3C

O

CH3

O
H3C O

ethanol / NaOH 10%
 

 
1H-NMR (500 MHz, DMSO) δH 4.06 (s, 3H, OCH3), 7.33 (d, 1H, J: 8.5, Ar-CH), 7.4 (t, 1H, J: 8, 

Ar-CH), 7.52 (d, 2H, J: 7, Ar-CH), 7.54 (t, 1H, J: 8, Ar-CH), 7.58 (t, 1H, J: 7.5, Ar-CH), 7.81 (d, 

1H, J: 8, Ar-CH), 7.88 (d, 1H, J: 7.5, Ar-CH), 7.89 (d, 1H, J: 15.5, -CH=), 8.07 (d, 2H, J: 7.5, Ar-

CH), 8.26 (d, 1H, J: 8.5, Ar-CH), 8.49 (d, 1H, J: 15.5, -CH=) 

 

EMAC 2009 

(E)-1-(4-bromophenyl)-3-(1-methoxynaphthalen-2-yl)prop-2-en-1-one  

 

O

H

O
H3C O

CH3

O
H3C O

Cl

Cl

Cl

Cl

ethanol / NaOH 10%
 

 
1H-NMR (500 MHz, DMSO) δH 4.07 (s, 3H, OCH3), 7.33 (d, 1H, Jm: 2, Jp: 1, Jo: 8, Ar-CH), 7.41 

(t, 1H, Jm: 1, Jo: 8.5, Ar-CH), 7.56 (t, 1H, Jm: 1, Jo: 8.5, Ar-CH), 7.59 (d, 1H, J: 8, Ar-CH), 7.81 
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(d, 1H, J: 8.5, Ar-CH), 7.81 (d,1H, J: 16, -CH=), 7.88 (d, 1H, Jo: 8, Jm:2, Ar-CH), 7.91 (d, 1H, J: 

9), 8.14 (s, 1H, Jm: 2), 8.23 (d, 1H, J: 9, Ar-CH), 8.52 (d, 1H, J: 16, -CH=) 

EMAC 2010 

(E)-1-(2,4-difluorophenyl)-3-(1-methoxynaphthalen-2-yl)prop-2-en-1-one  

 

O

H

O
H3C O

CH3

O
H3C O

F

F

F

F

ethanol / NaOH 10%
 

 
1H-NMR (500 MHz, DMSO) δH 4.04 (s, 3H, OCH3), 7.34 (d, 1H, J: 8.5, Ar-CH), 7.44 (t, 1H, J: 

8.5, Ar-CH ), 7.55 (t, 1H, J: 8.5, Ar-CH), 7.70 (d, 1H, J: 9, Ar-CH), 7.71 (d, 1H, J: 7.5, Ar-CH ), 

7.76 (d, 1H, J: 16, -CH=), 7.81 (d, 1H, J: 8.5, Ar-CH), 7.81 (s, 1H, Ar-CH), 7.89 (d, 1H, J: 9.5, 

Ar-CH), 8.24 (d, 1H, J: 8.5, Ar-CH), 8.48 (d, 1H, J: 15.5, -CH=) 

 

EMAC 2011 

(E)-1-(2,4-dichlorophenyl)-3-(1-methoxynaphthalen-2-yl)prop-2-en-1-one  

 

O

H

O
H3C O

CH3

O
H3C O

Cl

Cl

Cl

Cl

ethanol / NaOH 10%
 

 
1H-NMR (500 MHz, DMSO) δH 4.05 (s, 3H, OCH3), 7.34 (d, 1H, J: 8.5, Ar-CH), 7.44 (t, 1H, 

Ar-CH), 7.54 (t, 1H, Ar-CH), 7.6 (d, 1H, J: 9, Ar-CH), 7.73 (d, 1H, J: 9.5, Ar-CH), 7.8 (d, 1H, 

Ar-CH), 7.87 (s, 1H, Ar-CH), 7.94 (d, 1H, J: 8, Ar-CH), 8.17 (d, 1H, J: 16.5, -CH=), 8.28 (d, 1H, 

J: 8.5, Ar-CH), 8.44 (d, 1H, J: 16.5, -CH=) 
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EMAC 2012 

(E)-4-(3-(1-methoxynaphthalen-2-yl)acryloyl)benzonitrile  

 

O

H

O
H3C O

CH3

O
H3C O

CN

NC

ethanol / NaOH 10%
 

 
1H-NMR (500 MHz, DMSO) δH 4.07 (s, 3H, OCH3), 7.33 (d, 1H, J: 8.5, Ar-CH), 7.42 (t, 1H, J: 

7.5, Ar-CH), 7.56 (t, 1H, J: 7.5, Ar-CH), 7.70 (d, 2H, J: 9, Ar-CH), 7.82 (d, 1H, J: 8.5, Ar-CH), 

7.87 (d, 1H, J: 15.5, -CH=), 7.93 (d, 2H, J: 9, Ar-CH), 8.12 (d, 1H, J: 8.5, Ar-CH), 8.23 (d, 1H, 

J: 8.5, Ar-CH), 8.56 (d, 1H, J: 15.5, -CH=) 
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Second series: (E)-3-indol-3-yl-1-arylprop-2-en-1-one derivatives  

 

General synthetic scheme:  

 

HN

O

CH3

i

R

1H-indole-3-carbaldehyde

HN

H
C

C
H

O

R

(E)-3-(1H-indol-3-yl)-1-arylprop-2-en-1-one

H

Mol. Wt.: 145,16

EMAC 2013-2025

R= 4-Br, 4-F, 4-OCH3, 4-Cl, 3-NO2, 4-C6H5, 4-NO2, 4-CH3, H, 3,4-Cl, 2,4-F, 2,4-Cl, 4-CN

O

 
 

Scheme 2. Synthesis of (E)-3-indol-3-yl-1-arylprop-2-en-1-one derivatives EMAC 2013-2025. 

Reagents: (i) ethanol, piperidine. 

 

General procedure for (E)-3-indol-3-yl-1-arylprop-2-en-1-one derivatives  

 

According to literature method, [205, 206] 3.45 mmol of indol-3-carboxaldehyde 

and 3.45 mmol of suitable acetofenone, in the presence of 2 mmol of piperidine added 

dropwise, were dissolved in 20 ml of ethanol and stirring for 24 h. The reaction mixture 

was neutralized with diluted HCl 10%; the solid was filtered and crystallised from 

appropriate solvent (Scheme 2). 

All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 11 and 12
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Table 11. Chemical and physical data of derivatives EMAC 2013-2025 

 

HN

H
C

C
H

O

R

 

Compound R M.W. Mp (C°) % Yield 

EMAC 2013 4-Br 326.19 194-195 47 

EMAC 2014 4-F 265.28 173-174 30 

EMAC 2015 4-OCH3 277.32 159-160 20 

EMAC 2016 4-Cl 281.74 188-190 52 

EMAC 2017 3-NO2 292.29 194-196 80 

EMAC 2018 4-C6H5 323.39 250-253 82 

EMAC 2019 4-NO2 292.29 227-229 78 

EMAC 2020 4-CH3 261.32 140-144 71 

EMAC 2021 H 247.29 154-156 68 

EMAC 2022 3,4-Cl 316.18 212-214 80 

EMAC 2024 2,4-Ck 316.18 186-188 69 

EMAC 2025 4-CN 272.3 183-185 64 
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Table 12. Analytical data of derivatives EMAC 2013-2025 

 

HN

H
C

C
H

O

R

 

Compound R 
Reaction 

solvent 

Crystallisation 

solvent 
Aspect 

Reaction 

time (h) 

EMAC 2013 4-Br 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline orange 
solid 

24 

EMAC 2014 4-F 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline off-
white solid 

24 

EMAC 2015 4-OCH3 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline yellow 
solid 

24 

EMAC 2016 4-Cl 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline orange 
solid 

24 

EMAC 2017 3-NO2 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline orange 
solid 

24 

EMAC 2018 4-C6H5 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline yellow 
solid 

24 

EMAC 2019 4-NO2 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline red 
solid 

24 

EMAC 2020 4-CH3 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline pale 
orange solid 

24 

EMAC 2021 H 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline yellow 
solid 

24 

EMAC 2022 3,4-Cl 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline orange 
solid 

24 

EMAC 2024 2,4-Ck 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline yellow 
solid 

24 

EMAC 2025 4-CN 
Ethanol/ 
Piperidine 

Ethanol 
Crystalline orange 
solid 

24 
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According to this procedure the following compounds have been synthesised: 

 

EMAC 2013 

(E)-1-(4-bromophenyl)-3-(1H-indol-3-yl)prop-2-en-1-one  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

Br

Br

 
 
1H-NMR (500 MHz, DMSO) δH 7.32 (m, 2H, Ar-CH), 7.46 (m, 1H, Ar-CH), 7.53 (d, 1H, J: 15, 

-CH=), 7.63 (d, 1H, Jm: 2.5, Ar-CH), 7.65 (d, 2H, J: 8.5, Ar-CH), 7.92 (d, 2H, J: 8.5, Ar-CH), 

8.01 (m, 1H, Ar-CH), 8.10 (d, 1H, J:15, -CH=), 8.59 (br.s, 1H, NH) 

 

EMAC 2014 

(E)-1-(4-fluorophenyl)-3-(1H-indol-3-yl)prop-2-en-1-one  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

F

F

 
 
1H-NMR (500 MHz, DMSO) δH 7.18 (t, 1H, J: 8.5, Ar-CH), 7.32 (m, 2H, Ar-CH), 7.46 (m, 1H, 

Ar-CH), 7.49 (d, 2H, J: 8, JH-F: 6, Ar-CH), 7.54 (d, 1H, J: 15.5, Ar-CH), 7.63 (s, 1H, Jm: 2.5, Ar-

CH), 8.00 (d, 2H, J: 8.5, JH-F: 6.5, Ar-CH), 8.11 (d, 1H, J: 15.5, -CH=), 8.57 (br.s, 1H, NH) 
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EMAC 2015 

(E)-3-(1H-indol-3-yl)-1-(4-methoxyphenyl)prop-2-en-1-one  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

OCH3

H3CO

 
 
1H-NMR (500 MHz, DMSO) δH 3.09 (s, 3H, OCH3), 7.18 (m, 1H, Ar-CH), 7.32 (m, 2H, Ar-

CH), 7.46 (m, 1H, Ar-CH), 7.47 (m, 1H, Ar-CH), 7.53 (d, 1H, J: 15, -CH=), 7.63 (d, 1H, Jm: 2.5, 

Ar-CH), 8.08 (m, 3H, Ar-CH), 8.11 (d, 1H, J: 15, -CH=), 8.57 (br.s, 1H, NH) 

 

EMAC 2016 

(E)-1-(4-chlorophenyl)-3-(1H-indol-3-yl)prop-2-en-1-one  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

Cl

Cl

 
 
1H-NMR (500 MHz, DMSO) δH 7.32 (m, 2H, Ar-CH), 7.46 (m, 1H, Ar-CH), 7.48 (d, 2H, J: 8, 

Ar-CH), 7.55 (d, 1H, J: 15.5, -CH=), 7.62 (d, 1H, Jm: 1.5, Ar-CH), 8.00 (m, 3H, J: 8, Ar-CH), 

8.11 (d, 1H, J: 15.5, -CH=), 8.66 (br.s, 1H, NH) 
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EMAC 2017 

(E)-3-(1H-indol-3-yl)-1-(3-nitrophenyl)prop-2-en-1-one  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

O2N

NO2

 
 
1H-NMR (500 MHz, DMSO) δH 7.35 (m, 2H, Ar-CH), 7.47 (m, 1H, J: 9, Ar-CH), 7.56 (d, 1H, J: 

15.5, -CH=), 7.89 (d, 1H, Jm: 2.5, Ar-CH), 7.71 (t, 1H, J: 8, Ar-CH), 8.03 (m, 1H, J: 8, Ar-CH), 

8.19 (d, 1H, J: 15.5, Ar-CH), 8.37 (d, 1H, J: 7.5, Ar-CH),8.42 (d, 1H, J: 8, Ar-CH), 8.59 (br.s, 

1H, NH), 8.87 (s, 1H, Ar-CH) 

 

EMAC 2018 

(E)-3-(1H-indol-3-yl)-1-(4-phenylphenyl)prop-2-en-1-one  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

 
 
1H-NMR (500 MHz, DMSO) δH 7.33 (m, 2H, Ar-CH), 7.40 (m, 1H, Ar-CH), 7.48 (m, 3H, J: 

7.5, Ar-CH), 7.64 (s, 1H, Ar-CH), 7.65 (d, 1H, J: 15.5, -CH=), 7.78 (d, 2H, J: 7.5, Ar-CH), 7.74 

(d, 2H, J: 8, Ar-CH), 8.06 (m, 1H, Ar-CH), 8.15 (d, 2H, J: 7, Ar-CH), 8.14 (d, 1H, J:15.5, Ar-

CH), 8.5 (br.s, 1H, NH) 
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EMAC 2019 

(E)-3-(1H-indol-3-yl)-1-(4-nitrophenyl)prop-2-en-1-one  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

NO2

O2N

 
 
1H-NMR (500 MHz, DMSO) δH 7.34 (m, 2H, Ar-CH), 7.47 (m, 1H, Ar-CH), 7.53 (d, 1H, J: 

15.5, -CH=), 7.67 (d, 1H, Jm: 2.5, Ar-CH), 8.01 (m, 1H, Ar-CH), 8.14 (d, 1H, J: 15.5, -CH=), 

8.17 (d, 2H, J: 8.5, Ar-CH), 8.36 (d, 2H, J: 8.5, Ar-CH), 8.59 (br.s, 1H, NH) 

 

EMAC 2020 

(E)-3-(1H-indol-3-yl)-1-p-tolylprop-2-en-1-one  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

CH3

H3C

 
 
1H-NMR (500 MHz, DMSO) δH 2.44 (s, 3H, CH3), 7.31 (m, 4H, J: 8, Ar-CH), 7.46 (m, 1H, Ar-

CH), 7.60 (d, 1H, J: 15, -CH=), 7.61 (s, 1H, Ar-CH), 7.97 (d, 2H, J: 8, Ar-CH), 8.01 (m, 1H, Ar-

CH), 8.1 (d, 1H, J: 15.5, -CH=), 8.9 (br.s, 1H, NH) 
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EMAC 2021 

(E)-3-(1H-indol-3-yl)-1-phenylprop-2-en-1-one  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

 
 
1H-NMR (500 MHz, DMSO) δH 7.31 (m, 2H, Ar-CH), 7.45 (m, 1H, Ar-CH), 7.52 (t, 2H, J: 7.5, 

J: 7 Ar-CH), 7.57 (t, 1H, J: 7.5, Ar-CH), 7.61 (d, 1H, Jm: 2.5, Ar-CH), 7.6 (d, 1H, J: 15.5, -CH=), 

8.03 (m, 1H, Ar-CH), 8.06 (d, 2H, J: 7, Ar-CH), 8.11 (d, 1H, J: 15.5, -CH=), 8.74 (br.s, 1H, NH) 

 

EMAC 2022 

(E)-1-(3,4-dichlorophenyl)-3-(1H-indol-3-yl)prop-2-en-1-one  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

Cl

Cl
Cl

Cl

 
 
1H-NMR (500 MHz, DMSO) δH 7.34 (m, 2H, Ar-CH), 7.46 (t, 1H, J: 8.5, Ar-CH), 7.48 (d, 1H, 

J: 15.5, -CH=), 7.59 (d, 1H, J: 8.5, Ar-CH), 7.65 (d, 1H, Jm: 2.5, Ar-CH), 7.87 (d, 1H, Jo: 8.5, Jm: 

2, Ar-CH), 8.01 (m, 1H, Ar-CH), 8.13 (d, 1H, Jm: 2, Ar-CH), 8.12 (d, 1H, J: 15.5, -CH=), 8.57 

(br.s, 1H, NH) 
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EMAC 2024 

(E)-1-(2,4-dichlorophenyl)-3-(1H-indol-3-yl)prop-2-en-1-one  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

Cl

Cl

ClCl

 
 
1H-NMR (500 MHz, DMSO) δH 7.18 (d, 1H, J: 15.5, -CH=), 7.3 (m, 2H, Jm: 2, Jo: 7.5, Ar-CH), 

7.35 (d, 1H, Jm: 2, Jo: 8, Ar-CH), 7.43 (d, 1H, Jm: 2, Jo: 8.5, Ar-CH), 7.46 (d, 1H, J: 8, Ar-CH), 

7.49 (d, 1H, Jm: 2, Ar-CH) 7.55 (d, 1H, Jm: 3, Ar-CH), 7.72 (d, 1H, J: 15.5, -CH=), 7.95 (d, 1H, 

J: 8.5, Ar-CH), 8.64 (br.s, 1H, NH) 

 

EMAC 2025 

(E)-4-(3-(1H-indol-3-yl)acryloyl)benzonitrile  

 

HN

O

CH3

ethanol / piperidine

HN

H
C

C
H

OO

H

CN

NC

 
 
1H-NMR (500 MHz, DMSO) δH 7.33 (m, 2H, Ar-CH), 7.47 (m, 1H, Ar-CH), 7.51 (d, 1H, J: 

15.5, -CH=), 7.65 (d, 1H, Jm: 2.5, Ar-CH), 7.8 (d, 2H, J: 8.5, Ar-CH), 8.00 (m, 1H, Ar-CH), 8.13 

(d, 1H, J: 15, -CH=), 8.11 (d, 2H, J: 8, Ar-CH), 8.71 (br.s, 1H, NH) 
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COMPOUNDS EMAC 2026-2035 

 

General synthetic scheme:  

 

C

O

H

NH2
NH

C
S

NH2

C

H

N
NH

C
S

NH2i

C

H

N
NH

N

S

R'

R' O

CH2 X

ii

Mol. Wt.: 206,24
anthracene-9carbaldehyde

Mol. Wt.: 279,36

1-(anthracen-9-yl-methylene)thiosemicarbazide

EMAC 2026-2035

R= 2,4-Cl, 4-F, 4-CN, 3-NO2, 4-Br, 4-C6H5, 4-NO2, 4-OCH3, 4-Cl, 4-CH3  
 

Scheme 3. Synthesis of 1-(anthracen-9-yl-methylene)-2-(4-arylthiazol-2-yl)hydrazine 

derivatives EMAC 2026-2035. Reagents: (i) 2-propanol, AcOH; (ii) 2-propanol, reflux condition. 
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General procedure for 1-(anthracen-9-yl-methylene)-2-(4-arylthiazol-2-

yl)hydrazine derivatives 

 

Anthracene derivative were synthesized by a multi step reaction.  

The first synthetic step leads to the formation of 1-(anthracen-9-yl-

methylene)thiosemicarbazide by reacting antracene-9-carbaldehyde and 

thiosemicarbazide in 2-propanol and acid acetic as catalyst.  

In the second step, the thiazole ring is formed by reaction between 1-(anthracen-9-

yl-methylene)thiosemicarbazide and differently substituted α-halogen-acetophenones as 

outlined in the Scheme 3. 

All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 13 and 14. 
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Table 13. Chemical and physical data of derivatives EMAC 2026-2035 

 

C

H

N
NH

N

S

R

 

Compound R M.W. Mp (C°) % Yield 

EMAC 2026 2,4-Cl 448.37 190 92 

EMAC 2027 4-F 397.47 228 80 

EMAC 2028 4-CN 404.49 243 85 

EMAC 2029 3-NO2 424.7 245 97 

EMAC 2030 4-Br 458.37 250 89 

EMAC 2031 4-C6H5 455.57 246-248 95 

EMAC 2032 4-NO2 424.47 253 99 

EMAC 2033 4-OCH3 409.5 233 83 

EMAC 2034 4-Cl 413.92 260-262 97 

EMAC 2035 4-CH3 393.5 225 70 
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Table 14. Analytical data of derivatives EMAC 2026-2035 

 

C

H

N
NH

N

S

R

 

Compound R 
Reaction 

solvent 

Crystallisation 

solvent 
Aspect 

Reaction 

time (h) 

EMAC 2026 2,4-Cl 2-propanol Ethanol  
Pale yellow 
solid 

10 

EMAC 2027 4-F 2-propanol Ethanol 
Pale orange 
solid 

10 

EMAC 2028 4-CN 2-propanol Ethanol 
Pale orange 
solid 

10 

EMAC 2029 3-NO2 2-propanol Ethanol 
Pale orange 
solid 

12 

EMAC 2030 4-Br 2-propanol Ethanol 
Crystalline 
pale orange 

10 

EMAC 2031 4-C6H5 2-propanol Ethanol 
Crystalline 
yellow solid 

10 

EMAC 2032 4-NO2 2-propanol Ethanol 
Crystalline 
bright orange 
solid 

10 

EMAC 2033 4-OCH3 2-propanol Ethanol 
Crystalline 
orange solid 

12 

EMAC 2034 4-Cl 2-propanol Ethanol 
Crystalline 
yellow solid 

9 

EMAC 2035 4-CH3 2-propanol Ethanol 
Crystalline 
orange solid 

10 
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According to this procedure the following compounds have been synthesised: 

 

1-(anthracen-9-yl-methylene)thiosemicarbazide 

 

C

O

H

H2N
H
N

C
S

NH2

C

H

N

H
N

NH2

S

 
 

M.W.: 279.36 g/mol; R.f.: 0.81 (eluent: DCM:methanol 20:1); M.P.: 200°C; Yield: 90,31% 

 
1H-NMR: (300 MHz, DMSO) δH 11.76 (s,1H, NH) 9.44 (s, 1H, CH=N), 8.83 (s, 1H, Ar-CH ), 

8.68 (d, 2H, J: 8.68, Ar-CH ), 8.44 (brs, 1H, NH2), 8.26 (d, 2H, J: 8.18, Ar-CH ), 7.84 (br.s, 1H, 

NH2), 7.72 (m, 4H, Ar-CH ) 

 

EMAC 2026 

1-(anthracen-9-yl-methylene)-2-(4-(2,4-dichlorophenyl)thiazol-2-yl)hydrazine  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

2-propanol / ∆

O

H2C Cl

Cl

Cl

Cl

Cl

 
 
1H-NMR: (300 MHz, DMSO) δH 12.49 (brs, 1H, NH), 9.29 (s, 1H, CH=N), 8.7 (d+s, 3H, Ar-

CH), 8.17 (d, 2H, J: 8.34, Ar-CH), 7.95 (d, 1H, J: 8.01, Ar-CH), 7.73 (s, 1H, Ar-CH), 7.65 (m, 

4H, Ar-CH), 7.55 (d, 1H, J: 8.01, Ar-CH), 7.44 (s, 1H, thiazole) 
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EMAC 2027 

1-(anthracen-9-yl-methylene)-2-(4-(4-fluorophenyl)thiazol-2-yl)hydrazine  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
F

F

2-propanol / ∆

 
 

1H-NMR: (300 MHz, DMSO) δH 12.51 (brs, 1H, NH), 9.29 (s, 1H, CH=N), 8.7 (d+s, 3H, Ar-

CH), 8.18 (d, 2H, J: 8.34, Ar-CH), 7.95 (t, 2H, Ar-CH), 7.64 (m, 4H, Ar-CH), 7.36 (s, 1H, 

thiazole), 7.28 (t, 2H, Ar-CH) 

 

EMAC 2028 

1-(anthracen-9-yl-methylene)-2-(4-(4-cyanophenylthiazol-2-yl) hydrazine  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
NC

CN

2-propanol / ∆

 
 
1H-NMR: (300 MHz, DMSO) δH 12.52 (brs, 1H, NH), 9.3 (s, 1H, CH=N); 8.71 (d+s, 3H, Ar-

CH), 8.18 (d, 2H, J: 8.17, Ar-CH), 8.10 (d, 2H, J: 8.16, Ar-CH), 7.92 (d, 2H, J: 8.03, Ar-CH), 

7.7 (s, 1H, thiazole), 7.64 (m, 4H, Ar-CH) 
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EMAC 2029 

1-(anthracen-9-yl-methylene)-2-(4-(3-nitrophenyl)thiazol-2-yl)hydrazine  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br

NO2

O2N

2-propanol / ∆

 
 
1H-NMR: (300 MHz, DMSO) δH 12.58 (brs, 1H, NH), 9.29 (s, 1H, CH=N), 8.71(d+s, 3H, Ar-

CH), 8.37 (d, 1H, J: 7.84, Ar-CH), 8.19 (d, 2H, J: 8.01, Ar-CH), 7.68 (m, 8H, Ar-CH) 

 

EMAC 2030 

1-(anthracen-9-yl-methylene)-2-(4-(4-bromophenyl)thiazol-2-yl)hydrazine  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

C
H2

Br
Br

Br

2-propanol / ∆

 
 

1H-NMR: (300 MHz, DMSO) δH 12.46 (s, 1H, NH), 9.29 (s, 1H, CH=N), 8.71 (d+s, 3H, J: 

8.34, Ar-CH), 8.18 (d, 2H, J: 8.35, Ar-CH), 8.42 (d, 2H, J: 8.51, Ar-CH), 7.58 (m, 6H, Ar-CH), 

7.46 (s, 1H, thiazole) 
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EMAC 2031 

1-(anthracen-9-yl-methylene)-2-(-4-(4-phenylphenyl)thiazol-2-yl)hydrazine 

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S
O

H2C Br

2-propanol / ∆

 
 
1H-NMR: (300 MHz, DMSO) δH 12.58 (s, 1H, NH), 9.31 (s, 1H, CH=N), 8.70 (d, 2H, J: 8.18, 

Ar-CH ), 8.72 (s, 1H, Ar-CH), 8.18 (d, 2H, J: 8.35, Ar-CH), 8.01 (d, 2H, Ar-CH), 7.75 (m, 4H, 

Ar-CH), 7.64 (m, 4H, Ar-CH), 7.5 (t, 2H, Ar-CH), 7.44 (s, 1H, thiazole), 7.39 (t, 1H, Ar-CH) 

 

EMAC 2032 

1-(anthracen-9-yl-methylene)-2-(4-(4-nitrophenyl)thiazol-2-yl)hydrazine 

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

C
H2

Br
O2N

NO2

2-propanol / ∆

 
 

1H-NMR: (300 MHz, DMSO) δH 12.56 (brs, 1H, NH)9.3 (s, 1H, CH=N), 8.7 (d+s, 3H, Ar-CH), 

8.31 (d, 2H, J: 8.72, Ar-CH), 8.17 (d, 4H, J: 6.5, Ar-CH), 7.77 (s, 1H, thiazole), 7.63 (m, 4H, 

Ar-CH) 
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EMAC 2033 

1-(anthracen-9-yl-methylene)-2-(4-(4-methoxyphenyl)thiazol-2-yl)hydrazine  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
H3CO

OCH3

2-propanol / ∆

 
 
1H-NMR: (300 MHz, DMSO) δH 9.31 (s, 1H, CH=N), 8.72 (d+s, 3H, J: 8.18, Ar-CH), 8.18 (d, 

2H, J: 8.01, Ar-CH), 7.84 (d, 2H, J: 8.68, Ar-CH), 7.65 (m, 4H, Ar-CH), 7.21 (s, 1H, thiazole), 

7.01 (d, 2H, J: 8.68, Ar-CH), 3.82 (s, 1H, OCH3) 

 

EMAC 2034 

1-(anthracen-9-yl-methylene)-2-(4-(4-chlorophenyl)thiazol-2-yl)hydrazine  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

C
H2

Br
Cl

Cl

2-propanol / ∆

 
 
1H-NMR: (300 MHz, DMSO) δH 12.45 (s, 1H, NH), 9.28 (s, 1H, CH=N), 8.7 (d+s, 3H, Ar-CH), 

8.17 (d, 2H, J: 8.51, Ar-CH), 7.93 (d, 2H, J: 8.68, Ar-CH), 7.63 (m, 4H, Ar-CH), 7.50 (d, 2H, J: 

6.68, Ar-CH), 7.44 (s, 1H, thiazole) 
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EMAC 2035 

1-(anthracen-9-yl-methylene)-2-(4-p-tolylthiazol-2-yl)hydrazine  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
H3C

CH3

2-propanol / ∆

 
1H-NMR: (300 MHz, DMSO) δH 9.28 (s, 1H, CH=N), 8.7 (d+s, 3H, Ar-CH), 8.17 (d, 2H, J: 

8.34, Ar-CH), 7.78, (d, 2H, J: 8.01, Ar-CH), 7.7 (m, 4H, Ar-CH), 7.29 (s, 1H, thiazole), 7.25 (d, 

2H, J: 8.17, Ar-CH), 2.35 (s, 1H, CH3) 
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COMPOUNDS EMAC 2036-2045 

 

General synthetic scheme:  

 

H2N
H
N

C
S

NH2

R' O

H2C X

O

O O

H

O

O

N

H
N

H

NH2

S

4-oxo-4H-chromene-3-carbaldehyde
Mol. Wt.: 174,15

1-((4-oxo-4H-chromen-3-yl)methylene)thiosemicarbazide
Mol. Wt.: 247,27

EMAC 2036-2045

O

O
N

H
N

H

N

S

R

i

ii

R= 2,4-Cl, 4-F, 4-CN, 3-NO2, 4-Br, 4-C6H5, 4-NO2, 4-OCH3, 4-Cl, 4-CH3

 

Scheme 4. Synthesis of 3-[{2-[4-aryl-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4H-

chromen-4-one derivatives EMAC 2036-2045. Reagents: (i) 2-propanol, AcOH; (ii) 2-propanol, 

reflux condition. 

 

General procedure for 3-[{2-[4-aryl-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-

4H-chromen-4-one derivatives  

 

Chromone derivative were synthesized by a multi step reaction.  

The first synthetic step leads to the formation of 1-[(4-oxo-4H-chromen-3-

yl)methylidene]amino]thiourea by reacting 4-oxo-4H-chromene-3-carbaldehyde and 

thiosemicarbazide in 2-propanol and acid acetic as catalyst.  

In the second step, the thiazole ring is formed by reaction between [(4-oxo-4H-chromen-

3-yl)methylidene]amino]thiourea and differently substituted α-halogen-acetophenones 
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as outlined in the Scheme 4.
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All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 15 and 16. 

 

Table 15. Chemical and physical data of derivatives EMAC 2036-2045 

 

C

H

N

H
N

N

S

O

O

R

 

Compound R M.W. Mp (C°) % Yield 

EMAC 2036 2,4-Cl 416.28 260 75 

EMAC 2037 4-F 365.38 212-215 75 

EMAC 2038 4-CN 372.4 275 95 

EMAC 2039 3-NO2 392.39 260 90 

EMAC 2040 4-Br 426.29 270 91 

EMAC 2041 4-C6H5 423.49 237-239 83 

EMAC 2042 4-NO2 392.39 282-284 99 

EMAC 2043 4-OCH3 377.42 230 30 

EMAC 2044 4-Cl 381.84 270 38 

EMAC 2045 4-CH3 361.42 245 74 
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Table 16. Analytical data of derivatives EMAC 2036-2045 

 

C

H

N

H
N

N

S

O

O

R

 

Compound R 
Reaction 

solvent 

Crystallisation 

solvent 
Aspect 

Reaction 

time (h) 

EMAC 2036 2,4-Cl 2-propanol 
Acetonitrile/ 
Water  

Crystalline yellow 
solid 

10 

EMAC 2037 4-F 2-propanol 
Acetonitrile/ 
Water  

Crystalline yellow 
solid 

12 

EMAC 2038 4-CN3 2-propanol 
Acetonitrile/ 
Water  

Crystalline yellow 
solid 

12 

EMAC 2039 3-NO2 2-propanol 
Acetonitrile/ 
Water  

Crystalline pale 
orange solid 

24 

EMAC 2040 4-Br 2-propanol 
Acetonitrile/ 
Water  

Crystalline pale 
yellow solid 

12 

EMAC 2041 4-C6H5 2-propanol 
Acetonitrile/ 
Water  

Crystalline pale 
pink solid 

24 

EMAC 2042 4-NO2 2-propanol 
Acetonitrile/ 
Water  

Crystalline pale 
yellow solid 

24 

EMAC 2043 4-OCH3 2-propanol 
Acetonitrile/ 
Water  

Crystalline pale 
yellow solid 

24 

EMAC 2044 4-Cl 2-propanol 
Acetonitrile/ 
Water  

Crystalline white 
solid 

24 

EMAC 2045 4-CH3 2-propanol 
Acetonitrile/ 
Water  

Crystalline pale 
yellow solid 

24 
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According to this procedure the following compounds have been synthesised: 

 

1-((4-oxo-4H-chromen-3-yl)methylene)thiosemicarbazide  

 

H2N
H
N

C
S

NH2

O

O O

H

O

O

N

H
N

H

NH2

S

 
 

M.W.: 247.27 g/mol; R.f.: 0.3 (DCM: methanol 20:1); M.P.: 235 °C; Yield: 97.42% 

MS (ESI+): 248.04 ([M+H]+) 

 

EMAC 2036 

3-[{2-[4-(2,4-dichlorophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4H-chromen-4-

one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Cl

Cl

Cl

Cl

ClO
O

O
O

2-propanol / ∆

 
 

MS (ESI+): 416.00 ([M+H]+) 

The 
 
NMR analyses are in progress.  
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EMAC 2037 

3-[{2-[4-(4-fluorophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4H-chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
F

F

O O

O O

2-propanol / ∆

 
MS (ESI+): 366.07 ([M+H]+) 

The 
 
NMR analyses are in progress.  

 

EMAC 2038 

3-[{2-[4-(4-cianophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4H-chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
NC

CN

O
O

O
O

2-propanol / ∆

 

MS (ESI+): 373.07 ([M+H]+) 

The 
 
NMR analyses are in progress.  
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EMAC 2039 

3-[{2-[4-(3-nitrophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4H-chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br

NO2

O2N

O O

O O

2-propanol / ∆

 

MS (ESI+): 393.06 ([M+H]+) 

The 
 
NMR analyses are in progress.  

 

EMAC 2040 

3-[{2-[4-(4-bromophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4H-chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
Br

O O

O O

Br

2-propanol / ∆

 

MS (ESI+): 424.98 - 426.98 ([M+H]+) 

The 
 
NMR analyses are in progress.  
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EMAC 2041 

3-[{2-[4-(4-phenylphenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4H-chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br

O
O

O
O

2-propanol / ∆

 

MS (ESI+): 424.11 ([M+H]+) 

The 
 
NMR analyses are in progress.  

 

EMAC 2042 

3-[{2-[4-(4-nitrophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4H-chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
O2N

NO2

O O

O O

2-propanol / ∆

 

MS (ESI+): 393.06 ([M+H]+) 

The 
 
NMR analyses are in progress.  
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MAC 2043 

3-[{2-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4H-chromen-4-

one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
H3CO

OCH3

O O

OO

2-propanol / ∆

 

MS (ESI+): 378.09 ([M+H]+) 

The 
 
NMR analyses are in progress.  

 

EMAC 2044 

3-[{2-[4-(4-chlorophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4H-chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
Cl

Cl

O O

O O

2-propanol / ∆

 

MS (ESI+): 383.03 ([M+H]+) 

The 
 
NMR analyses are in progress.  
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EMAC 2045 

3-[{2-[4-(4-methylphenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4H-chromen-4-

one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

C
H2

Br
H3C

CH3

O O

O O

2-propanol / ∆

 

MS (ESI+): 362.9 ([M+H]+) 

The 
 
NMR analyses are in progress.  
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COMPOUNDS EMAC 2046-2055 

 

General synthetic scheme:  

 

H2N
H
N

C
S

NH2

R' O

H2C X

O

O O

H

O

O

N

H
N

H

NH2

SH3C H3C

O

O

N

H
N

H

H3C

N

S

R

Mol. Wt.: 188,18 Mol. Wt.: 261,3

6-methyl-4-oxo-4H-chromene-3-carbaldehyde 1-((6-methyl-4-oxo-4H-chromen-3-yl)methylene)thiosemicarbazide

EMAC2046-2055

i

ii

R= 2,4-Cl, 4-F, 4-CN, 3-NO2, 4-Br, 4-C6H5, 4-NO2, 4-OCH3, 4-Cl, 4-CH3  
Scheme 5. Synthesis of 3-[{2-[4-aryl-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-

4H-chromen-4-one derivatives EMAC 2046-2055. Reagents: (i) 2-propanol, AcOH; (ii) 2-propanol, 

reflux condition. 

 

General procedure for 3-[{2-[4-aryl-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-

methyl-4H-chromen-4-one derivatives 

 

6-methyl-chromone derivative were synthesized by a multi step reaction.  

The first synthetic step leads to the formation of 1-((6-methyl-4-oxo-4H-chromen-3-

yl) methylene) thiosemicarbazide by reacting 4-oxo-4H-chromene-6-methyl-3-

carbaldehyde and thiosemicarbazide in 2-propanol and acid acetic as catalyst.  

In the second step, the thiazole ring is formed by reaction between (E)-1-((6-methyl-

4-oxo-4H-chromen-3-yl) methylene) thiosemicarbazide and differently substituted α-

halogen-acetophenones as outlined in the Scheme 5. 
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All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 17 and 18. 

 

Table 17. Chemical and physical data of derivatives EMAC 2046-2055 

 

C

H

N

H
N

N

S

O

O

R

H3C

 

Compound R M.W. Mp (C°) % Yield 

EMAC 2046 2,4-Cl 430.31 260 58 

EMAC 2047 4-F 379.41 232 74 

EMAC 2048 4-CN3 386.43 275 62 

EMAC 2049 3-NO2 406.41 273-275 68 

EMAC 2050 4-Br 440.31 244-245 76 

EMAC 2051 4-C6H5 437.51 246-248 95 

EMAC 2052 4-NO2 406.41 265-267 69 

EMAC 2053 4-OCH3 391.44 235 63 

EMAC 2054 4-Cl 395.86 237 74 

EMAC 2055 4-CH3 375.44 249 79 
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Table 18. Analytical data of derivatives EMAC 2046-2055 

 

C

H

N

H
N

N

S

O

O

R

H3C

 

Compound R 
Reaction 

solvent 

Crystallisation 

solvent 
Aspect 

Reaction 

time (h) 

EMAC 2036 2,4-Cl 2-propanol 
Acetonitrile/ 
Water  

Crystalline bright 
yellow solid 

24 

EMAC 2037 4-F 2-propanol 
Acetonitrile/ 
Water  

Crystalline pale 
pink solid 

24 

EMAC 2038 4-CN3 2-propanol 
Acetonitrile/ 
Water  

Crystalline pale 
yellow solid 

24 

EMAC 2039 3-NO2 2-propanol 
Acetonitrile/ 
Water  

Crystalline bright 
yellow solid 

24 

EMAC 2040 4-Br 2-propanol 
Acetonitrile/ 
Water  

Crystalline pale 
yellow solid 

24 

EMAC 2041 4-C6H5 2-propanol 
Acetonitrile/ 
Water  

Crystalline 
paleyellow solid 

24 

EMAC 2042 4-NO2 2-propanol 
Acetonitrile/ 
Water  

Crystalline bright 
yellow solid 

24 

EMAC 2043 4-OCH3 2-propanol 
Acetonitrile/ 
Water  

Crystalline white 
solid 

24 

EMAC 2044 4-Cl 2-propanol 
Acetonitrile/ 
Water  

Crystalline pale 
yellow solid 

24 

EMAC 2045 4-CH3 2-propanol 
Acetonitrile/ 
Water  

Crystalline pale 
pink solid 

24 
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1-((6-methyl-4-oxo-4H-chromen-3-yl)methylene)thiosemicarbazide 

 

H2N
H
N

C
S

NH2

O

O O

H

O

O

N

H
N

H

NH2

SH3C H3C

 
 

M.W.: 261.3 g/mol; R.f.: 0.26 (DCM: methanol 20:1); M.P.: 234 °C; Yield: 80 % 

MS (ESI+): 262.06 ([M+H]+) 

The 
 
NMR analyses are in progress.  

 

EMAC 2046 

3-[{2-[4-(2,4-dichlorophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-4H-

chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Cl

Cl

Cl

Cl

ClO
O

O
O

H3C
H3C

2-propanol / ∆

 

MS (ESI+): 430.01 ([M+H]+) 

The 
 
NMR analyses are in progress.  
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EMAC 2047 

3-[{2-[4-(4-fluorophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-4H-

chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
F

F

O O

O O

H3C H3C

2-propanol / ∆

 

MS (ESI+): 380.08 ([M+H]+) 

The 
 
NMR analyses are in progress.  

 

EMAC 2048 

3-[{2-[4-(4-cianophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-4H-

chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

C
H2

Br
NC

CN

O O

O O

H3C H3C

2-propanol / ∆

 

MS (ESI+): 387.09 ([M+H]+) 

The 
 
NMR analyses are in progress.  
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EMAC 2049 

3-[{2-[4-(3-nitrophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-4H-

chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br

NO2

O2N

O O

O O

H3C H3C

2-propanol / ∆

 

MS (ESI+): 407.08 ([M+H]+) 

The 
 
NMR analyses are in progress.  

 

EMAC 2050 

3-[{2-[4-(4-bromophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-4H-

chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
Br

Br

O O

O O

H3C H3C

2-propanol / ∆

 

MS (ESI+): 439.00 - 441.00 ([M+H]+) 

The 
 
NMR analyses are in progress.  
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EMAC 2051 

3-[{2-[4-(4-phenylphenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-4H-

chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br

O
O

O
O

H3C
H3C

2-propanol / ∆

 

MS (ESI+): 438.13 ([M+H]+) 

The 
 
NMR analyses are in progress.  

 

EMAC 2052 

3-[{2-[4-(4-nitrophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-4H-

chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
O2N

NO2

O O

O O

H3C H3C

2-propanol / ∆

 

MS (ESI+): 407.08 ([M+H]+) 

The 
 
NMR analyses are in progress.  
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EMAC 2053 

3-[{2-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-4H-

chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
H3CO

OCH3

O O

OO

H3C H3C

2-propanol / ∆

 

MS (ESI+): 392.10 ([M+H]+) 

The 
 
NMR analyses are in progress.  

 

EMAC 2054 

3-[{2-[4-(4-chlorophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-4H-

chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

C
H2

Br
Cl

Cl

O O

O O

H3C H3C

2-propanol / ∆

 

MS (ESI+): 396.05([M+H]+) 

The 
 
NMR analyses are in progress.  
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EMAC 2055 

3-[{2-[4-(4-methylphenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-4H-

chromen-4-one  

 

C

H

N

H
N

C
S

NH2

C

H

N

H
N

N

S

O

H2C Br
H3C

C
H3

O O

O O

H3C H3C

2-propanol / ∆

 

MS (ESI+): 376.10 ([M+H]+) 

The 
 
NMR analyses are in progress.  
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COMPOUNDS EMAC 2056-2071 

 

General synthetic scheme:  

 

O
H3C

H

Br

O

B
OH

OH
O

H3C

H

O

H2N
N
H

C

S

NH2

O
H3C

N

H
H
N

C
S

NH2

O

Br

R1

O
H3C

N

H
H
N

S

N

R1

R

R

R R1

EMAC 2056- 2071

i

ii

iii

R: H, 2-CN, 4-F, 2-Br

R': 4-OCH3, 3,4-Cl, 4-Cl, 4-NO2  
 

Scheme 6. Synthesis of 3-[{2-[4-aryl-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-6-methyl-

4H-chromen-4-one derivatives EMAC 2056-2071. Reagents: (i) Dimethoxyethane / argon flow, 

Pd(PPh3)4, Na2CO3 2M, 110°C; (ii) n-propanol, AcOH, R.T.; (iii) n-propanol, R.T. 
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Compounds EMAC 2056-2071 were synthesized by a multi step reaction.  

The first synthetic step leads to the formation of 5-aryl-2-methoxybenzaldehyde by 

reacting 5-bromo-2-methoxybenzaldehyde with differentely substituted phenylboronic 

acids according to slightly modified Suzuky coupling reaction condition. [210]  

In the second step, thiosemicarbazones are formed by reaction between 5-aryl-2-

methoxybenzaldehyde, thiosemicarbazide and catalytic amount of CH3COOH in n-

propanol at room temperature. Finally, in the third step the thiazole ring is formed by 

reaction of the appropriate thiosemicarbazones with substituted α-halogen-

acetophenones, as outlined in the Scheme 6. 

 

All samples were measured in DMSO-d6 solvent at 278.1 K temperature on a Bruker 

AVANCE III spectrometer.  

In the signal assignments the proton and carbon chemical shifts are referred to the 

solvent (1H: δ = 2.49 ppm, 13C dowfield methyl signal: δ=34.89 ppm respectively).  

Melting points were determined on a Büchi-540 capillary melting points apparatus 

and are uncorrected. 

 

These compounds were synthesised and analysed during my research period in 

Budapest under the supervision of Prof. Peter Matyus. 

 

All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 19 and 20. 

 



120 
 

Table 19. Chemical and physical data of derivatives EMAC 2056-2071 

 

O
H3C

N

H
H
N

S

N

R'

R

 

Compound R R’ M.W. Mp (C°) % Yield 

EMAC 2056 H 4-OCH3 415.51 209 decomposition 81.5 

EMAC 2057 H 3,4-Cl 454.37 213 decomposition 92 

EMAC 2058 H 4-Cl 419.93 215 decomposition 91.3 

EMAC 2059 H 4-NO2 430.48 208 decomposition 89.4 

EMAC 2060 2-CONH2 4-OCH3 458.53 203 decomposition 70.5 

EMAC 2061 2-CONH2 3,4-Cl 497.4 221 decomposition 77.7 

EMAC 2062 2-CONH2 4-Cl 462.95 222 decomposition 84.7 

EMAC 2063 2-CONH2 4-NO2 473.5 208 decomposition 89.4 

EMAC 2064 4-F 4-OCH3 433.5 193 decomposition 83.65 

EMAC 2065 4-F 3,4-Cl 472.36 220 decomposition 91.4 

EMAC 2066 4-F 4-Cl 437.92 218 decomposition 98 

EMAC 2067 4-F 4-NO2 448.47 233 decomposition 91 

EMAC 2068 2-Br 4-OCH3 494.4 186 decomposition 82.3 

EMAC 2069 2-Br 3,4-Cl 533.27 225 decomposition 88 

EMAC 2070 2-Br 4-Cl 498.82 235 decomposition 87 

EMAC 2071 2-Br 4-NO2 509.38 237 decomposition 94 
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Table 20. Analytical data of derivatives EMAC 2056-2071 

 

O
H3C

N

H
H
N

S

N

R'

R

 

Compound R R’ 
Reaction 

solvent 

Crystallisation 

solvent 
Aspect 

Reaction 

time (h) 

EMAC 2056 H 4-OCH3 n-propanol Ethanol  
Fluffy yellow 
solid 

4 

EMAC 2057 H 3,4-Cl n-propanol Water/Ethanol  
Pale yellow 
solid 

8 

EMAC 2058 H 4-Cl n-propanol Water/Ethanol 
Pale yellow 
solid 

7 

EMAC 2059 H 4-NO2 n-propanol Water/Ethanol Orange solid 5 

EMAC 2060 2-CONH2 4-OCH3 n-propanol Ethanol Yellow solid 15 

EMAC 2061 2-CONH2 3,4-Cl n-propanol Ethanol 
Pale pink 
solid 

18 

EMAC 2062 2-CONH2 4-Cl n-propanol Ethanol Yellow solid 18 

EMAC 2063 2-CONH2 4-NO2 n-propanol Water/Ethanol Orange solid 18 

EMAC 2064 4-F 4-OCH3 n-propanol Water/Ethanol 
Pale yellow 
solid 

4 

EMAC 2065 4-F 3,4-Cl n-propanol Water/Ethanol 
Pale yellow 
powder 

4 

EMAC 2066 4-F 4-Cl n-propanol Ethanol 
Pale yellow 
solid 

4 

EMAC 2067 4-F 4-NO2 n-propanol Water/Ethanol Gold solid 8 

EMAC 2068 2-Br 4-OCH3 n-propanol Ethanol 
Pale yellow 
solid 

8 

EMAC 2069 2-Br 3,4-Cl n-propanol Ethanol 
Pale yellow 
solid 

4 

EMAC 2070 2-Br 4-Cl n-propanol Water/Ethanol 
Pale yellow 
solid 

10 

EMAC 2071 2-Br 4-NO2 n-propanol Water/Ethanol 
Yellow-
orange solid 

4 
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General procedure for Suzuki cross-coupling reaction. 

 

The ortho-halogen compound (10 mmol) was dissolved in dimethoxyethane (15 

mL), and Pd(PPh3)4 (577.8 mg, 0.50 mmol,) was added to the solution at room 

temperature under argon flow. After stirring the mixture at room temperature for 10 min, 

2-formylphenylboronic acid (2.249 g, 15 mmol,) and aq 2M Na2CO3 solution (10.6 mL) 

were added and the reaction mixture was refluxed at 110 °C (oil temperature). When the 

reaction was complete (monitored by TLC, eluent: n-hexane - ethyl acetate 4:1), the 

reaction mixture was cooled and poured onto ice (100 g). The solution was filtered on 

Celite and washed with ethyl acetate (100 mL). The aqueous phase was extracted with 

ethyl acetate (3×40 mL). The combined organic layers were washed with water (1×20 mL), 

dried over MgSO4, evaporated under reduced pressure. The oily residue was purified by 

flash column chromatography on silica gel (eluent: n-hexane - ethyl acetate 5:1). [210] 

 

According to this procedure the following compounds have been synthesised: 

 

2-methoxy-5-phenylbenzaldehyde 

 

O
H3C

H

Br

O

B
OH

OH

Pd(PPh3)4 / Na2CO3 2M
110°C

O

H

O

DME/ ARGON

 
 

M.W.: 212.24 g/mol; R.f.: 0.82 (exane-ethylacetate 1;1); HPLC: 97.336%; M.P.: 77°C-78°C; 

Yield:98.8% 

 

NMR: 1H-NMR (500 MHz, DMSO) δH 3.97 ( s, 3H, OCH3), 7.34 ( d, 1H, Ar-CH, J: 8.5), 7.36 ( 

m, 1H, J: 8, Ar-CH) 7.46 ( t, 2H, J: 8, Ar-CH) 7.65 ( d, 2H, J: 8, Ar-CH), 7.93 ( s, 1H, J: 2.5, Ar-

CH), 7.98 ( d, 1H, J: 8, J: 2.5, Ar-CH) 10.4 ( s,1H, CHO). 

 
13C-NMR (500 MHz, DMSO) δ 56.2 ( 1C, OCH3 ), 113.5 ( 1C, phenyl), 124.3, ( 1C, phenyl), 

125.6 ( 1C, phenyl), 126.3 ( 2C, phenyl), 127.4 ( 1C, phenyl), 129.0 ( 2C, phenyl), 132.6 ( 

1C, phenyl), 134.5 ( 1C, phenyl), 138.7 ( 1C, phenyl), 161.0 ( 1C, phenyl), 189.1 ( 1C, 

aldheide). 
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2-(3-formyl-4-methoxyphenyl)benzamide 

 

O
H3C

H

Br

O

B
OH

OH

Pd(PPh3)4 / Na2CO3 2M
110°C

O

H

O

CN

NH2

O

O

H

O

CN

DME/ ARGON

 
 

In this particular case, the hydrolysis of CN group into CONH2 group is observed.  

This is probably due to an hydrolysis reaction mediated by the basic reaction media 

according to the following mechanism: 
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B
OH

OH

Na2CO3 2M
110°C

CN

Mol. Wt.: 146,94
2-cyanophenylboronic acid

B
OH

OH

C

HO Na

N

B
OH

OH

C NH

O

H

B
OH

OH

C

O

NH2

 

M.W.: 255.28 g/mol; R.f.: 0.29 (exane-ethylacetate 1:7); HPLC: 98,00%; M.P.: 140°C; Yield: 

87.2% 

 
1H-NMR (500 MHz, DMSO) δH 3.96 ( s, 1H, OCH3), 7.34 ( bs, 2H, NH2), 7.29 ( d, 1H, J: 8.5, 

Ar-CH), 7.37 ( m,1H, Ar-CH), 7.40 ( m,1H, Ar-CH), 7.45 ( m,1H, Ar-CH), 7.48 ( m,1H, Ar-CH), 

7.70 ( m, 1H, J:8.5, J: 2.5, Ar-CH), 7.71 ( bs, 2H, NH2), 7.74 ( d, 1H, J: 2.5, Ar-CH), 10.39 ( 

s,1H, COH). 
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5-(4-fluorophenyl)-2-methoxybenzaldehyde 

 

O
H3C

H

Br

O

B
OH

OH

Pd(PPh3)4 / Na2CO3 2M
110°C

O

H

O

F

F

DME/ ARGON

 
 

M.W.: 230.23 g/mol; R.f.: 0.41 (exane-ethylacetate 2,5:1); HPLC: 99.038%; M.P.: 81°C; 

Yield: 88.60% 

 
1H-NMR (500 MHz, DMSO) δH 3.96 ( s, 3H, OCH3), 7.28 ( m, 2H, J: 9, Ar-CH), 7.33 ( d, 1H, J: 

8.5, Ar-CH), 7.70 ( m, 2H, Ar-CH), 7.90 ( d, 1H, J:2.5, Ar-CH), 7.96 ( dd, 1H, J: 8.5, J: 2.5, Ar-

CH), 10.39 ( s, 1H, CHO). 

 
13C-NMR (500 MHz, DMSO) δ 56.2 ( 1C, OCH3), 113.5 ( 1C, phenyl), 115.8 ( 2C, phenyl), 

124.3 ( 1C, phenyl), 125.6 ( 1C, phenyl), 128.3 ( 2C, phenyl), 131.6 ( 1C, phenyl), 134.4 ( 

1C, phenyl), 135.2 ( 1C, phenyl), 160.9 ( 1C, phenyl), 162.7 ( 1C, phenyl), 189.1 ( 1C, CHO). 
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5-(2-bromophenyl)-2-methoxybenzaldehyde 

 

O
H3C

H

Br

O

B
OH

OH

Pd(PPh3)4 / Na2CO3 2M
110°C

O

H

O

Br
Br

DME/ ARGON

 
 

M.W.: 291.14 g/mol; R.f.: 0.43 (exane-ethylacetate 4:1); HPLC: 94.15%; M.P.: 106°C-

107°C; Yield: 23.36% 

 

NMR: 1H-NMR (500 MHz, DMSO) δH 3.98 ( s, 3H, OCH3), 7.32 ( m, 1H, J: 8, Ar-CH), 7.33 ( d, 

1H, J: 8.5, Ar-CH), 7.40 ( m, 1H, J: 8, J: 2, J: 6, Ar-CH), 7.47 ( m, 1H, J: 2, Ar-CH), 7.69 ( d, 1H, 

J: 2, Ar-CH), 7.71 ( dd, 1H, J: 8.5, J: 2, Ar-CH), 7.74 ( m, 1H, Ar-CH), 10.39 ( s, 1H, COH).  

 
13C-NMR (500 MHz, DMSO) δ 56.2 ( 1C, OCH3), 112.7 ( 1C, phenyl), 121.8 ( 1C, phenyl), 

123.6 ( 1C, phenyl), 128.2 ( 1C, phenyl), 128.3 ( 1C, phenyl),129.6 ( 1C, phenyl), 131.4 ( 1C, 

phenyl), 132.7 ( 2C, phenyl), 133.1 ( 1C, phenyl), 140.4 ( 1C, phenyl), 161.0 ( 1C, phenyl), 

188.9 ( 1C, COH). 
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General method for the synthesis of thiosemicarbazones. 

 

In a flask equipped with a reflux condenser, equimolar amounts of 

thiosemicarbazide and of the appropriate ketone are reacted in n-propanol in the 

presence of a catalytic amount of AcOH. The mixture is allowed to react overnight, and 

the obtain solid is filtered and used without further purification.  

 

According to this procedure the following compounds have been synthesised: 

 

[(2-methoxy-5-phenylphenyl)methylidene]amino]thiourea 

 

O

H

O

H2N
N
H

C

S

NH2

n-propanol
R.T.

CH3COOH

O

N

H
H
N

C
S

NH2

 
 

M.W.: 285.36 g/mol; R.f.: 0.71 (exane-ethylacetate 1:1); HPLC: 95.933%; M.P.: 223.3°-

223.8°C; Yield: 97%  

 

NMR: 1H-NMR (500 MHz, DMSO) δH 3.87 ( s, 3H, OCH3), 7.15 ( d, 1H, J: 8.5, Ar-CH), 7.32 ( 

m, 1H, Ar-CH), 7.44 ( m, 2H, Ar-CH), 7.68 ( dd, 1H, J: 8.15, Ar-CH), 7.72 ( m, 2H, J: 8.5, Ar-

CH) 8.18-8.19 ( brs, 2H, NH2), 8.37 ( d, 1H, Ar-CH), 8.45 ( s, 1H, CH=N), 11.45 ( s, 1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 112.2 ( 1C, phenyl), 122.5 ( 1C, phenyl), 

123,8 ( 1C, phenyl), 126.5 ( 2C, phenyl), 126.9 ( 1C, phenyl), 128.7 ( 2C, phenyl), 129.4 ( 

1C, phenyl), 132.7 ( 1C, phenyl), 137.8 ( 1C, CH=N), 139.4 ( 1C, phenyl), 157.3 ( 1C, 

phenyl), 177.8 ( 1C, NH-CSNH2) 
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2-{3-[(carbamothioylamino)imino]methyl]-4-methoxyphenyl} benzamide 

 

O

H

O

H2N
N
H

C

S

NH2

n-propanol 
R.T.

CH3COOH

O

N

H
H
N

C
S

NH2
O

NH2

O

NH2

 
 

M.W.: 328.39 g/mol; R.f.: 0.26 (exane-ethylacetate 1:4); HPLC: 88.22%; M.P.: 234°-235°C; 

Yield: 82.48% 

 
1H-NMR (500 MHz, DMSO) δH 3.86 ( s,3H, OCH3), 7.09 ( d, 1H, J:8.5, Ar-CH), 7.33 ( bs, 1H, 

NH2), 7.40 ( dd, 1H, Ar-CH), 7.40 ( m, 1H, Ar-CH), 7.41 ( m, 2H, Ar-CH), 7.46 ( m, 1H, Ar-

CH), 7.66 ( bs, 1H, NH2), 7.88 ( bs, 1H, NH2), 8.15 ( d, 1H, J: 2.5), 8.18 ( bs, 1H, NH2), 8.43 ( 

s, 1H, CH=N), 11.46 ( s, 1H, NH-CSNH2). 

 
13C-NMR (500 MHz, DMSO) δ 55.8 ( 1C, OCH3), 111.4 ( 1C, phenyl), 121.9 ( 1C, phenyl), 

125.8 ( 1C, phenyl), 126.7 ( 1C, phenyl), 127.3 ( 1C, phenyl), 129.0 ( 1C, phenyl), 130.0 ( 

1C, phenyl), 131.2 ( 2C, phenyl), 137.5 ( 1C, phenyl), 137.8 ( 1C, CH=N), 138.2 ( 1C, 

phenyl),157.1 ( 1C, phenyl),171.3 ( 1C, CONH2), 177.8 ( 1C, NH-CSNH2) 

 

{[5-(4-fluorophenyl)-2-methoxyphenyl]methylidene}amino]thiourea 

 

O

H

O

H2N
N
H

C

S

NH2

n-propanol
R.T.

CH3COOH

O

N

H
H
N

C
S

NH2

F F  
 

M.W.: 303.35 g/mol; R.f.: 0.63 (exane-ethylacetate 1:1); HPLC: 99.98%; M.P.: 217-218°C; 

Yield: 84% 
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NMR: 1H-NMR (500 MHz, DMSO) δH 3.87 ( s, 3H, OCH3 ), 7.14 ( d, 1H, J: 9, Ar-CH), 7.26 ( 

m, 2H, J: 8.5, Ar-CH), 7.67 ( dd, 1H, J: 8.5, J: 2, Ar-CH), 7.76 ( m, 2H, J: 8.5, J:2, Ar-CH), 8.21-

8.18 ( brd, 2H, NH2 ), 8.35 ( d, 1H, J: 2.5, Ar-CH), 8.44 ( s, 1H, CHN), 11.46 (s, 1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 112.2 ( 1C, phenyl), 115.4 ( 1C, phenyl), 

115.5 ( 1C, phenyl), 122.5 ( 1C, phenyl), 123.7 ( 1C, phenyl), 128.4 ( 1C, phenyl), 128,5 ( 

1C, phenyl), 129.3 ( 1C, phenyl), 131.7 ( 1C, phenyl), 135.8 ( 1C, phenyl), 137.6 ( 1C, 

CH=N), 157.3 ( 1C, phenyl), 161.6 ( 1C, phenyl), 177.8 ( 1C, NH-CSNH2). 

 

(2-methoxy-5-(2-bromo)phenylphenyl)methylidene]amino] thiourea 

 

O

H

O

H2N
N
H

C

S

NH2

n-propanol
R.T.

CH3COOH

O

N

H
H
N

C
S

NH2

Br Br

 
 

M.W.: 364.26 g/mol; R.f.: 0.725 (exane-ethylacetate 1:1); HPLC: 93.98%; M.P.: 219-220°C; 

Yield: 62.45% 

 
1H-NMR (500 MHz, DMSO) δH 3.88 (s, 3H, OCH3), 7.13 (d, 1H, J: 9), 7.39 (m, 1H, J: 1.5), 

7.39 (m, 2H), 7.45 (m, 1H, J: 1), 7.72 ( m, 1H, J: 8, J: 1.5), 8.10-8.06 (brs, 2H, NH), 8.14 ( d, 

1H, J: 2), 8.44 (s, 1H, CH=N), 11.43 (s,1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 (1C, OCH3), 111.2 (1C, phenyl), 121.9 (1C, phenyl), 

122.2 (1C, phenyl), 126.6 (1C, phenyl), 127.8 (1C, phenyl), 129.1 (1C, phenyl), 131.6 (1C, 

phenyl), 132.0 (1C, phenyl), 132.8 (1C, phenyl), 133.2 (1C, phenyl), 137.5 (1C, CH=N), 

141.4 (1C, phenyl), 157.2 (1C, phenyl), 177.8 (1C, NH-CSNH2) 
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General method for the synthesis of compound EMAC 2056-2071 

 

Equimolar amounts of thiosemicarbazone and α-halogen keton are reacted at RT n-

propanol. The mixture is stirred for 4 to 24 hours. Then the formation of a precipitate is 

observed which is filtered. The obtained solid is washed with ethyl ether and crystallised 

from ethanol, water/ethanol. 

 

According to this method, the following listed compounds have been synthesised. 

 

EMAC 2056 

2-[2-[(2-methoxy-5-phenylphenyl)methylidene]hydrazin-1-yl]-4-(4-methoxyphenyl)-1,3-

thiazole  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
H3CO

O
N

H H
N

N

S

OCH3

 
 
1H-NMR (500 MHz, DMSO) δH 3.78 ( s, 3H, OCH3), 3.90 ( s, 3H, OCH3), 6.97 ( m, 2H, J: 9), 

7.15 ( s, 1H, CH thiazole), 7.19 ( d, 1H, J: 9), 7.36 ( m, 1H, Ar-CH), 7.48 (m, 2H, Ar-CH), 7.62 

( m, 2H, J:7.5, Ar-CH), 7.67 ( d, 1H, J: 8.5, J: 2.5, Ar-CH), 7.78 ( m, 2H, J: 9, Ar-CH), 8.03 ( d, 

1H, J: 2.5), 8.42 ( s, 1H, CHN), 11.45 ( brs, 1H, NH) 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 2C, OCH3), 101.7 ( 1C, thiazole), 114.0 ( 3C, phenyl), 

122.6 ( 1C, phenyl), 122.8 ( 1C, phenyl), 126.2 ( 2C, phenyl), 127.0 ( 3C, phenyl), 127.1 ( 

1C, phenl), 129.1 ( 3C, phenyl), 132.8 ( 1C, phenyl), 137.2 ( 1C, CH=N), 139.6 ( 1C, phenyl), 

149.4 ( 1C, thiazole), 156.7 ( 1C, phenyl), 158.9 ( 1C, phenil), 168.2 ( 1C, thiazole). 
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EMAC 2057 

4-(3,4-dichlorophenyl)-2-[2-[(2-methoxy-5-phenylphenyl)methylidene]hydrazin-1-yl]-

1,3-thiazole  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
Cl

O
N

H H
N

N

S

Cl

Cl

Cl

 
 
1H-NMR (500 MHz, DMSO) δH 3.90 ( s, 3H, OCH3), 7.19 ( d, 1H, J: 8.5, Ar-CH), 7.35 ( m, 2H, 

Ar-CH), 7.48 ( m, 2H, Ar-CH), 7.55 ( s, 1H, CH thiazole), 7.62 ( m, 1H, Ar-CH), 7.66 ( d, 1H, J: 

8.5), 7.67 ( dd, 1H, 8.5), 7.84 ( dd, 1H, J: 8.5, J: 2), 8.01 ( d, 1H, J: 2.5), 8.08 ( d, 1H, J: 2), 

8.40 ( s, 1H, CH=N), 12.2 ( brs, 1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 106.0 ( 1C, thiazole), 112.5 ( 1C, phenyl), 

122.6 ( 1C, phenyl), 122.7 ( 1C, phenyl), 125.6 ( 1C, phenyl), 126.2 ( 2C, phenyl), 127.1 ( 

1C, phenyl), 127.2 ( 1C, phenyl), 129.0 ( 2C, phenyl), 129.1 ( 1C, phenyl), 129.7 ( 1C, 

phenyl), 130.9 ( 1C, phenyl), 131.4 ( 1C, phenyl), 132.8 ( 1C, phenyl), 135.2 ( 1C, phenyl), 

136.9 ( 1C, CH=N), 139.6 ( 1C, phenyl), 147.9 ( 1C, thiazole), 156.7 ( 1C, phenyl), 168.5 ( 

1C, thiazole). 
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EMAC 2058 

4-(3-chlorophenyl)-2-[2-[(2-methoxy-5-phenylphenyl)methylidene]hydrazin-1-yl]-1,3-

thiazole  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
Cl

O
N

H H
N

N

S

Cl

 
 
1H-NMR (500 MHz, DMSO) δH 3.90 ( s, 3H, OCH3), 7.19 ( d, 1H, J: 8.5, Ar-CH), 7.36 ( m, 1H, 

Ar-CH), 7.39 ( s, 1H, CH thiazole), 7.46 ( m, 2H, Ar-CH), 7.48 ( m, 2H, Ar-CH), 7.62 ( m, 2H, 

J: 7.5, Ar-CH), 7.67 ( dd, 1H, J: 8.5, J: 2.5, Ar-CH), 7.87 ( m, 2H, J: 8.5, Ar-CH), 8.02 ( d, 1H, J: 

2.5, Ar-CH), 8.40 ( s, 1H, CH=N, Ar-CH), 12.24 ( brs, 1H, NH, Ar-CH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 104.5 ( 1C, thiazole), 112.5 ( 1C, phenyl), 

122.7 ( 1C, phenyl), 122.7 ( 1C, phenyl), 126.3 ( 2C, phenyl), 127.1 ( 1C, phenyl), 127.3 ( 

2C, phenyl), 128.6 ( 2C, phenyl), 129.0 ( 2C, phenyl), 129.1 ( 1C, phenyl), 131.9 ( 1C, 

phenyl), 132.8 ( 1C, phenyl), 133.4 ( 1C, phenyl), 136.8 ( 1C, CH=N), 139.6 ( 1C, phenyl), 

149,1 ( 1C, thiazole), 156.7 ( 1C, phenyl), 168.4 ( 1C, thiazole). 
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EMAC 2059 

4-(4-nitrophenyl)-2-[2-[(2-methoxy-5-phenylphenyl)methylidene]hydrazin-1-yl]-1,3-

thiazole  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
O2N

O
N

H H
N

N

S

NO2

 
 
1H-NMR (500 MHz, DMSO) δH 3.90 ( s, 3H, OCH3), 7.19 ( d, 1H, J: 8.5, Ar-CH), 7.36 ( m, 1H, 

Ar-CH), 7.48 ( m, 2H, Ar-CH), 7.63 ( m, 2H, J: 7.5, Ar-CH), 7.67 ( dd, 1H, J: 8.5, J: 2.5, Ar-CH), 

7.71 ( s, 1H, thiazole), 8.02 ( d, 1H, J: 2.5, Ar-CH), 8.11 ( d, 2H, J: 9, Ar-CH), 8.27 ( d, 2H, J: 

9, Ar-CH), 8.41 ( s, 1H, CH=N), 12.32 ( brs, 1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 108.6 ( 1C, thiazole), 112.5 ( 1C, phenyl), 

122.6 ( 1C, phenyl), 122.8 ( 1C, phenyl), 124.1 ( 2C, phenyl), 126.3 ( 2C, phenyl), 126.3 ( 

2C, phenyl), 127.1 ( 1C, phenyl), 129.0 ( 2C, phenyl), 129.2 ( 1C, phenyl), 132.8 ( 1C, 

phenyl), 137.1 ( 1C, CH=N), 139.6 ( 1C, phenyl), 140.6 ( 1C, phenyl), 146.2 ( 1C, phenyl), 

148.5 ( 1C, thiazole), 156.7 ( 1C, phenyl), 168.7 ( 1C, thiazole). 
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EMAC 2060 

2-{4-methoxy-3-[(1E)-{2-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]hydrazin-1-

ylidene}methyl] phenyl}benzamide  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
H3CO

O
N

H H
N

N

S

OCH3

O

NH2

O

NH2

 
 
1H-NMR (500 MHz, DMSO) δH 3.78 ( s, 3H, OCH3), 3.90 ( s, 3H, OCH3), 6.50 ( bs, 1H, 

CONH2), 6.96 ( d, 2H, J: 9, Ar-CH), 7.13 ( s + d, 2H, thiazole + Ar-CH), 7.30-7.50 ( m, 8H, Ar-

CH), 7.72 ( bs, 1H, CONH2), 7.86 ( d, 1H, J: 2.5), 12.19 ( bs, 1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.2 ( 1C, OCH3), 55.8 ( 1C, OCH3), 106.0 ( 1C, thiazole), 

111.6 ( 1C, phenyl), 122.0 ( 1C, phenyl), 124.8 ( 1C, phenyl), 126.8 ( 1C, phenyl), 127.3 ( 

2C, phenyl), 127.6 ( 1C, phenyl), 128.6 ( 2C, phenyl), 129.3 ( 1C, phenyl), 129.7 ( 1C, 

phenyl), 130.7 ( 1C, phenyl), 131.9 ( 1C, phenyl), 133.1 ( 1C, phenyl), 133.4 ( 1C, phenyl), 

136.9 ( 1C, CH=N), 137.3 ( 1C, phenyl), 138.3 ( 1C, phenyl), 149.1 ( 1C, thiazole), 156.4 ( 

1C, phenyl), 168.4 ( 1C, thiazole), 171.1 ( 1C, CONH2). 
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EMAC 2061 

2-{3-[{2-[4-(3,4-dichlorophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4-

methoxyphenyl}benzamide  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
Cl

O
N

H H
N

N

S

Cl

Cl

Cl
O

NH2
NH2

O

 
 
1H-NMR (500 MHz, DMSO) δH 3.89 ( s, 3H, OCH3), 7.13 ( d, 1H, J: 9, Ar-CH), 7.32 ( bs, 1H, 

NH2), 7.37 ( m, 1H, Ar-CH), 7.39 ( m, 1H, Ar-CH), 7.41 ( m, 1H, Ar-CH), 7.49 ( m, 2H, Ar-CH), 

7.53 ( s, 1H, thiazole), 7.66 ( d, 1H, J: 8.5, Ar-CH), 7,72 ( bs, 1H, NH2), 7.83 ( dd, 1H, J: 8.5, J: 

2, Ar-CH), 7.87 ( d, 1H, J: 2.5, Ar-CH), 8.08 ( d, 1H, J: 2, Ar-CH), 8.38 ( s, 1H, CH=N), 12.21 ( 

bs, 1H, NH).  

13C-NMR (500 MHz, DMSO) δ 55.8 ( 1C, OCH3), 106.0 ( 1C, thiazole), 111.6 ( 1C, phenyl), 

122.0 ( 1C, phenyl), 124.8 ( 1C, phenyl), 125.6 ( 1C, phenyl), 126.8 ( 1C, phenyl), 127.1 ( 

1C, phenyl), 127.6 ( 1C, phenyl), 129.3 ( 1C, phenyl), 129.6 ( 1C, phenyl), 129.7 ( 1C, 

phenyl), 130.7 ( 1C, phenyl), 130.9 ( 1C, phenyl), 131.4 ( 1C, phenyl), 133.1 ( 1C, phenyl), 

135.2 ( 1C, phenyl), 136.9 ( 1C, CH=N), 137.3 ( 1C, phenyl), 138.3 ( 1C, phenyl), 147.9 ( 1C, 

thiazole), 156.4 ( 1C, phenyl), 168.5 ( 1C, thiazole), 171.1 ( 1C, CONH2). 
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EMAC 2062 

2-{3-[{2-[4-(4-chlorophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4-

methoxyphenyl}benzamide  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
Cl

O
N

H H
N

N

S

Cl

NH2

O

NH2

O

 
 
1H-NMR (500 MHz, DMSO) δH 3.89 ( s,3H, OCH3), 7.13 ( d, 1H, J: 9, Ar-CH), 7.32 ( bs, 1H, 

CONH2), 7.37 ( s, 1H, thiazole), 7.37 ( m, 1H, Ar-CH), 7.40 ( m, 1H, Ar-CH), 7.41 ( dd, 1H, 

Ar-CH), 7.44 ( m, 1H, Ar-ch), 7.46 ( m, 2H, Ar-CH), 7.49 ( m, 2H, Ar-CH), 7.72 ( bs, 1H, 

CONH2), 7.86 ( m, 2H, Ar-CH), 7.87 ( d, 1H, Ar-CH), 12.19 ( bs, 1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.8 ( 1C, OCH3), 106.0 ( 1C, thiazole), 111.6 ( 1C, phenyl), 

122.0 ( 1C, phenyl), 124.8 ( 1C, phenyl), 126.8 ( 1C, phenyl), 127.3 ( 2C, phenyl), 127.6 ( 

1C, phenyl), 128.6 ( 2C, phenyl), 129.3 ( 1C, phenyl), 129.7 ( 1C, phenyl), 130.7 ( 1C, 

phenyl), 131.9 ( 1C, phenyl), 133.1 ( 1C, phenyl), 133.4 ( 1C, phenyl), 136.9 ( 1C, CH=N), 

137.3 ( 1C, phenyl), 138.3 ( 1C, phenyl), 149.1 ( 1C, thiazole), 156.4 ( 1C, phenyl), 168.4 ( 

1C, thiazole), 171.1 ( 1C, CONH2). 
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EMAC 2063 

2-{3-[(2-{4-[4-(hydroxynitroso)phenyl]-1,3-thiazol-2-yl}hydrazin-1-ylidene)methyl]-4-

methoxyphenyl}benzamide  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
O2N

O
N

H H
N

N

S

NO2

O

NH2

O

NH2

 
 
1H-NMR (500 MHz, DMSO) δH 3.89 ( s,3H, OCH3), 7.13 ( d, 1H, J: 9, Ar-CH), 7.32 ( bs, 1H, 

CONH2), 7.38 ( m, 1H, Ar-CH), 7.40 ( m, 1H, Ar-CH), 7.41 ( dd, 1H, Ar-CH), 7.44 ( m, 1H, Ar-

CH), 7.49 ( m, 1H, Ar-CH), 7.70 ( s, 1H, thiazole), 7.73 ( bs, 1H, CONH2), 7.88 ( d, 1H, J: 2.5, 

Ar-CH), 8.11 ( m, 2H, J: 9, Ar-CH), 8.27 ( m, 2H, J: 8.5, Ar-CH), 8.39 ( s, 1H, CH=N), 12.28 ( 

bs, 1H, NH). 

13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 108.6 ( 1C, thiazole), 111.7 ( 1C, phenyl), 

121.9 ( 1C, phenyl), 124.1 ( 2C, phenyl), 124.8 ( 1C, phenyl), 126.3 ( 2C, phenyl), 126.8 ( 

1C, phenyl), 127.6 ( 1C, phenyl), 129.3 ( 1C, phenyl), 129.7 ( 1C, phenyl), 130.8 ( 1C, 

phenyl), 133.1 ( 1C, phenyl), 137.1 ( 1C, CH=N), 137.3 ( 1C, phenyl), 138.3 ( 1C, phenyl), 

140.7 ( 1C, phenyl), 146.2 ( 1C, phenyl), 148.5 ( 1C, thiazole), 156.5 ( 1C, phenyl), 168.7 ( 

1C, thiazole), 171.1 ( 1C, CONH2). 
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EMAC 2064 

2-[2-{[5-(4-fluorophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-4-(4-

methoxyphenyl)-1,3-thiazole  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
H3CO

O
N

H H
N

N

S

OCH3

F F  
 

NMR: 1H-NMR (500 MHz, DMSO) δH 3.78 ( s, 3H, OCH3), 3.90 ( s, 3H, OCH3), 6.97 ( m, 2H, 

J: 8.5, Ar-CH), 7.16 ( s, 1H, thiazole), 7.18 ( d, 2H, J: 8.5, Ar-CH), 7.30 ( m, 2H, Ar-CH), 7.64 

(dd, 2H, J: 8.5, J: 2.5, Ar-CH), 7.77 ( m, 2H, J: 8.5, Ar-CH), 7.98 ( d, 1H, J: 2, Ar-CH), 8.41 ( s, 

1H, CH=N), 12.28 ( brs, 1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.2 ( 1C, OCH3), 55.9 ( 1C, OCH3), 101.7 ( 1C, thiazole), 

112.5 ( 1C, phenyl), 114.0 ( 2C, phenyl), 115.7 ( 1C, phenyl), 115.9 ( 1C, phenyl), 122.7 ( 

1C, phenyl), 122.7 ( 1C, phenyl), 126.9 ( 1C, phenyl), 127.0 ( 2C, phenyl), 128.2 ( 1C, 

phenyl), 128.3 ( 1C, phenyl), 129.1 ( 1C, phenyl), 131.8 ( 1C, phenyl), 136.1 ( 1C, phenyl), 

137.1 ( 1C, CH=N), 149.4 ( 1C, thiazole), 156.7 ( 1C, phenyl), 158.9 ( 1C, phenyl), 161.6 ( 

1C, phenyl), 168.2 ( 1C, thiazole). 
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EMAC 2065 

4-(3,4-dichlorophenyl)-2-[-2-{[5-(4-fluorophenyl)-2-methoxyphenyl]methylidene} 

hydrazin-1-yl]-1,3-thiazole  

 

n-propanol  / R.T.

O

N

H
H
N

C
S

NH2

O

Br
Cl

O
N

H H
N

N

S

Cl

Cl

Cl

F F  
 
1H-NMR (500 MHz, DMSO) δH 3.90 ( s, 3H, OCH3), 7.18 ( d,1H, J: 9, Ar-CH), 7.30 ( m, 2H, 

Ar-CH), 7.55 ( s, 1H, thiazole), 7.64 ( dd, 1H, Ar-CH), 7.65 ( m, 2H, Ar-CH), 7.66 ( d, 1H, Ar-

CH), 7.83 ( dd, 1H, J: 8.5, J: 2, Ar-CH), 7.97 ( d, 1H, J: 2, Ar-CH), 8.08 ( d, 1H, J: 2, Ar-CH), 

8.39 ( s,1H, CHN), 12.26 ( brs, 1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 106.0 ( 1C, thiazole), 112.5 ( 1C, phenyl), 

115.7 ( 1C, phenyl), 115.9 ( 1C, phenyl), 122.6 ( 1C, phenyl), 122.7 ( 1C, phenyl), 127.2 ( 

2C, phenyl), 128.2 ( 2C, phenyl), 129.7 ( 2C, phenyl), 130.9 ( 1C, phenyl), 131.4 ( 1C, 

phenyl), 131.8 ( 1C, phenyl), 135.2 ( 1C, phenyl), 136.1 ( 1C, phenyl), 136.9 ( 1C, CH=N), 

147.9 ( 1C, thiazole), 156.7 ( 1C, phenyl), 161.6 ( 1C, phenyl), 168.5 ( 1C, thiazole). 
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EMAC 2066 

4-(4-chlorophenyl)-2-[-2-{[5-(4-fluorophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-

yl]-1,3-thiazole  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
Cl

O
N

H H
N

N

S

Cl

F F  
 
1H-NMR (500 MHz, DMSO) δH 3.90 ( s, 3H, OCH3), 7.18 ( d, 1H, J: 8.5,Ar-CH), 7.30 ( m, 2H, 

J: 8.5, Ar-CH), 7.39 ( s, 1H, thiazole), 7.46 ( m, 2H, J: 9, Ar-CH), 7.64 ( dd, 1H, Ar-CH), 7.65 ( 

m, 2H, Ar-CH), 7.87 ( m, 2H, J: 8.5, Ar-CH), 7.97 ( d, 1H, J: 2, Ar-CH), 8.40 ( s, 1H, CHN), 

12.25 ( brs, 1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 104.6 ( 1C, thiazole), 112.5 ( 1C, phenyl), 

115.7 ( 1C, phenyl), 115.9 ( 1C, phenyl), 122.7 ( 2C, phenyl), 127.3 ( 2C, phenyl), 128.2 ( 

2C, phenyl), 128.6 ( 2C, phenyl), 129.1 .( 2C, phenyl), 131.8 ( 1C, phenyl), 132.0 ( 1C, 

phenyl), 136.1 ( 1C, phenyl), 136.8 ( 1C, CH=N), 149.1 ( 1C, thiazole), 156.7 ( 1C, phenyl), 

161.6 ( 1C, phenyl), 168.4 ( 1C, thiazole). 
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EMAC 2067) 

[(4-{2-[2-{[5-(4-fluorophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-1,3-thiazol-

4-yl}phenyl)nitroso]oxidanol  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
O2N

O
N

H H
N

N

S

NO2

F F  
 
1H-NMR (500 MHz, DMSO) δH 3.90 ( s, 3H, OCH3), 7.18 ( d, 1H, J: 8.5, Ar-CH), 7.30 ( m, 2H, 

Ar-CH), 7.65 ( m, 3H, Ar-CH), 7.72 ( s, 1H, thiazole), 7.97 ( d, 1H, J: 2.5, Ar-CH), 8.11 ( m, 

2H, J: 9, Ar-CH), 8.27 ( m, 2H, J: 9, Ar-CH), 8.40 ( s, 1H, CHN), 12.32 ( brs, 1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 108.7 ( 1C, thiazole), 112.5 ( 1C, phenyl), 

115.7 ( 1C, phenyl), 115.9 ( 1C, phenyl), 122.6 ( 1C, phenyl), 122.7 ( 1C, phenyl), 124.1 ( 

2C, phenyl), 126.4 ( 2C, phenyl), 128.2 ( 1C, phenyl), 128.3 ( 1C, phenyl), 129.1 ( 1C, 

phenyl), 131.8 ( 1C, phenyl), 136.1 ( 1C, phenyl), 137.0 ( 1C, CH=N), 140.6 ( 1C, phenyl), 

146.2 ( 1C, phenyl), 148.5 ( 1C, thiazole), 156.7 ( 1C, phenyl), 161.7 ( 1C, phenyl), 168.6 ( 

1C, thiazole). 
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EMAC 2068 

2-{[5-(2-bromophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-4-(4-

methoxyphenyl)-1,3-thiazole  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
H3CO

O
N

H H
N

N

S

OCH3

Br Br

 
 
1H-NMR (500 MHz, DMSO) δH 3.77 ( s, 3H, OCH3), 3.91 ( s, 3H, OCH3), 6.96 ( m, 2H, J: 9, 

Ar-CH), 7.11 ( s, 1H, thiazole), 7.18 ( d, 1H, J: 8.5, Ar-CH), 7.32 ( m, 1H, Ar-CH), 7.40 ( dd, 

1H, J: 9, Ar-CH), 7.42 ( m, 1H, J: 9.5, Ar-CH), 7.48 ( m, 2H, Ar-CH), 7.75 ( m, 1H, Ar-CH), 

7.76 ( m, 1H, Ar-CH), 7.81 ( d, 1H, J: 2.5), 8.41 ( s, 1H, CH=N), 12.25 ( brs, 1H, NH).  

 
13C-NMR (500 MHz, DMSO) δ 55.1 ( 1C, OCH3), 55.9 ( 1C, OCH3), 101.6 ( 1C, thiazole), 

111.7 ( 1C, phenyl), 114.0 ( 1C, phenyl), 121.9 ( 1C, phenyl), 122.0 ( 1C, phenyl), 124.8 ( 

1C, phenyl), 125.5 ( 1C, phenyl), 127.0 ( 2C, phenyl), 127.6 ( 1C, phenyl), 128.1 ( 1C, 

phenyl), 129.3 ( 1C, phenyl), 131.4 ( 1C, phenyl), 131.5 ( 1C, phenyl), 132.9 ( 1C, phenyl), 

133.1 ( 1C, phenyl), 136.8 ( 1C, CH=N), 141.2 ( 1C, phenyl), 149.5 ( 1C, thiazole), 156.6 ( 

1C, phenyl), 158.9 ( 1C, phenyl), 168.1 ( 1C, thiazole). 
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EMAC 2069 

2-{[5-(2-bromophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-4-(3,4-

dicholophenyl)-1,3-thiazole  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
Cl

O
N

H H
N

N

S

Cl

Br Br

Cl

Cl

 
 
1H-NMR (500 MHz, DMSO) δH 3.91 ( s, 3H, OCH3), 7.18 ( d, 1H, J: 9, Ar-CH), 7.32 ( m, 1H, 

Ar-CH), 7.40 ( dd, 1H, J: 9, J: 2.5, Ar-CH), 7.42 ( m, 1H, J: 7.5, J: 2, Ar-CH), 7.47 ( m,1H, Ar-

CH) 7.51 ( s,1H thiazole), 7,56 ( d, 1H, J: 8.5, Ar-CH), 7.75 ( m, 1H, J:6.5, J: 1.5, Ar-CH), 7.80 

( d, 1H, J: 2.5, Ar-CH), 7.82 ( dd, 1H, J: 6.5, J: 2, Ar-CH), 8.07 ( d, 1H, J: 2, Ar-CH), 8.39 ( 

s,1H, CH=N), 12.24 ( bs,1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 106.0 ( 1C, thiazole), 111.7 ( 1C, phenyl), 

121.9 ( 1C, phenyl), 122.0 ( 1C, phenyl), 125.5 ( 1C, phenyl), 125.6 ( 1C, phenyl), 127.1 ( 

1C, phenyl), 128.1 ( 1C, phenyl), 129.3 ( 1C, phenyl), 129.7 ( 1C, phenyl), 130.9 ( 1C, 

phenyl), 131.4 ( 1C, phenyl), 131.4 ( 1C, phenyl), 131.5 ( 1C, phenyl), 132.9 ( 1C, 

phenyl),133.1 ( 1C, phenyl), 135.2 ( 1C, phenyl), 136.7 ( 1C, CH=N), 141.2 ( 1C, phenyl), 

147.9 ( 1C, thiazole), 156.6 ( 1C, phenyl), 168.4 ( 1C, thiazole). 
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EMAC 2070 

2-{[5-(2-bromophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-4-(4-cholophenyl)-

1,3-thiazole  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
Cl

O
N

H H
N

N

S

Cl

Br Br

 
 
1H-NMR (500 MHz, DMSO) δH 3.91 ( s, 3H, OCH3), 7.18 ( d, 1H, J: 8.5, Ar-CH), 7.32 ( m, 1H, 

Ar-CH), 7.35 ( s, 1H, thiazole), 7.40 ( dd, 1H, J: 8.5, J: 2.5, Ar-CH), 7.42 ( m, 1H, Ar-CH), 7.45 

( m, 2H, J: 8.5, Ar-CH), 7.48 ( m, 1H, J: 1.5, Ar-CH), 7.75 ( m, 1H, J: 8, J: 2, Ar-CH), 7.8 ( d, 

1H, J: 2, Ar-CH), 7.85 ( m, 2H, J: 8.5, J: 2, Ar-CH), 8.4 ( s,1H, CH=N), 12.21 ( bs,1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 104.5 ( 1C, thiazole), 111.7 ( 1C, phenyl), 

121.9 ( 1C, phenyl), 122.0 ( 1C, phenyl), 125.5 ( 1C, phenyl), 127.2 ( 2C, phenyl), 128.1 ( 

1C, phenyl), 128.6 ( 2C, phenyl), 129.3 ( 1C, phenyl), 131.4 ( 1C, phenyl),131.5 ( 1C, 

phenyl), 131.9 ( 1C, phenyl), 131.9 ( 1C, phenyl), 133.1 ( 1C, phenyl), 133.4 ( 1C, phenyl), 

136.6 ( 1C, CH=N), 141.2 ( 1C, phenyl), 149.1 ( 1C, thiazole), 156.6 ( 1C, phenyl), 168.3 ( 

1C, thiazole). 
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EMAC 2071 

2-{[5-(2-bromophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-4-(4-nitrophenyl)-

1,3-thiazole  

 

n-propanol / R.T.

O

N

H
H
N

C
S

NH2

O

Br
O2N

O
N

H H
N

N

S

NO2

Br Br

 
 
1H-NMR (500 MHz, DMSO) δH 3.91 ( s, 3H, OCH3), 7.18 ( d, 1H, J: 8.5, Ar-CH), 7.32 ( m, 1H, 

Ar-CH), 7.40 ( dd, 1H, J: 8.5, J: 2.5, Ar-CH), 7.42 ( m, 1H, Ar-CH), 7.48 ( m, 1H, Ar-CH), 7.68 ( 

s, 1H, thiazole), 7.75. ( m, 1H, J: 8, J: 1, Ar-CH), 7.81 ( d, 1H, J: 2.5, Ar-CH), 8.10 ( m, 2H, J: 

9, Ar-CH), 8.26 ( m, 2H, J: 8.5, Ar-CH), 8.40 ( s, 1H, CH=N), 12.32 ( bs, 1H, NH). 

 
13C-NMR (500 MHz, DMSO) δ 55.9 ( 1C, OCH3), 108.6 ( 1C, thiazole), 111.7 ( 1C, phenyl), 

121.9 ( 1C, phenyl), 122.0 ( 1C, phenyl), 124.1 ( 2C, phenyl), 125.5 ( 1C, phenyl), 126.3 ( 

2C, phenyl), 128.1 ( 1C, phenyl), 129.3 ( 2C, phenyl), 131.4 ( 1C, phenyl), 132.9 ( 1C, 

phenyl), 133.1 ( 1C, phenyl), 136.8 ( 1C, CH=N), 140.6 ( 1C, phenyl), 141.2 ( 1C, phenyl), 

146.2 ( 1C, phenyl), 148.5 ( 1C, thiazole), 156.6 ( 1C, phenyl),168.6 ( 1C, thiazole) 
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COMPOUNDS 2072-2083 

 

General synthetic scheme:  

 

N
H

O

O

H2N
H
N C

S

NH2

N
H

N

O

H
N C

S

NH2

R

N
H

N

O

H
N

N

S

R

O

X

EMAC 2072-2083

i

ii

R: 4-Cl, 4-F, 4-Br, 4-NO2, 4-C6H5, 4-CN, 2,4-F, 3-NO2, 4-CH3, 4-OCH3, H, 2,4-Cl  
 

Scheme 7. Synthesis of (Z)-3-(2-(4-arylthiazol-2-yl)hydrazono)indolin-2-one derivatives 

EMAC 2072-2083. Reagents: (i) 2-propanol, AcOH; (iii) 2-propanol, R.T. 

 

Indolinone derivative were synthesized by a multi step reaction.  

The first synthetic step leads to the formation of 1-(2-oxoindolin-3-

ylidene)thiosemicarbazide by reacting isatin and thiosemicarbazide in 2-propanol and 

acid acetic as catalyst.  

In the second step, the thiazole ring is formed by reaction between 1-(2-oxoindolin-

3-ylidene)thiosemicarbazide and differently substituted α-halogen-acetophenones as 

outlined in the scheme. 

 

NMR spectra were measured during my research period at the Semmelweis 

University in Budapest under the supervision of Prof. Peter Matyus. 
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All samples were measured in DMF-d7 solvent at 278.1 K temperature on a Bruker 

AVANCE III spectrometer. In the signal assignments the proton and carbon chemical shifts 

are referred to the solvent (1H: δ = 8.03 ppm, 13C dowfield methyl signal: δ=34.89 ppm 

respectively). In the 15N chemical shift assignments we applied the spectrometer’s digital 

reference which is calibrated to liq. NH3 δ= 0 ppm. 

For all investigated compound Z configuration was supported by NMR.  

This was based on the selective NOE experiments, where we observed NOE 

interaction between the indole NH and CH protons, while no correlation was seen 

between the indole CH and =N-NH- hydrogens. 

The geometry of the C=N double bond was defined by NOE experiments. In the case 

of the “E” diastereoisomer two NOE effects should be measured as indicated in figure A: 

 

 
 

In our compounds only the NOE effect related to the indolinone protons was 

measured indicating that the proton in the position 4 of the indolinone ring and the 

hydrazine proton are too far to interact.  

This distance is only possible if the configuration is “Z”. (figure B) 

 

All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 21 and 22. 
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Table 21. Chemical and physical data of derivatives EMAC 2072-2083 

 

N
H

N

O

H
N

N

S

R

 

Compound R M.W. Mp (C°) % Yield 

EMAC 2072 4-Cl 354.81 >250 73 

EMAC 2073 4-F 338.36 >250 57 

EMAC 2074 4-Br 399.26 >250 95 

EMAC 2075 4-NO2 365.37 >250 84 

EMAC 2076 4-C6H5 396.46 >250 96 

EMAC 2077 4-CN 345.38 >250 99 

EMAC 2078 2,4-F 356.35 >250 66 

EMAC 2079 3-NO2 365.37 >250 86 

EMAC 2080 4-CH3 334.39 >250 72 

EMAC 2081 4-OCH3 350.39 >250 84 

EMAC 2082 H 320.37 250 92 

EMAC 2083 2,4-Cl 389.26 >250 90 
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Table 22. Analytical data of derivatives EMAC 2072-2083 

 

N
H

N

O

H
N

N

S

R

 

Compound R 
Reaction 

solvent 

Crystallisation 

solvent 
Aspect 

Reaction 

time (h) 

EMAC 2072 4-Cl 2-propanol Water/Ethanol 
Yellow-
orange solid 

24 

EMAC 2073 4-F 2-propanol Water/Ethanol 
Yellow-
orange solid 

12 

EMAC 2074 4-Br 2-propanol Water/Ethanol 
Yellow-
orange solid 

24 

EMAC 2075 4-NO2 2-propanol Water/Ethanol 
Yellow-
orange solid 

24 

EMAC 2076 4-C6H5 2-propanol Water/Ethanol 
Yellow-
orange solid 

12 

EMAC 2077 4-CN 2-propanol Water/Ethanol 
Yellow-
orange solid 

24 

EMAC 2078 2,4-F 2-propanol Water/Ethanol 
Yellow-
orange solid 

24 

EMAC 2079 3-NO2 2-propanol Water/Ethanol 
Yellow-
orange solid 

12 

EMAC 2080 4-CH3 2-propanol Water/Ethanol 
Yellow-
orange solid 

12 

EMAC 2081 4-OCH3 2-propanol Water/Ethanol 
Yellow-
orange solid 

24 

EMAC 2082 H 2-propanol Water/Ethanol 
Yellow-
orange solid 

12 

EMAC 2083 2,4-Cl 2-propanol Water/Ethanol 
Yellow-
orange solid 

12 

 



150 
 

 

1-(2-oxoindolin-3-ylidene)thiosemicarbazide 

 

N
H

O

O

H2N
H
N C

S

NH2

CH3COOH
N
H

N

O

H
N C

S

NH2

2-propanol

 
 
1H NMR (DMF) δ(ppm): 12.72 (s; 1H); 11.34 (s; 1H); 9.21 (s; 1H); 9.05 (s; 1H); 7.66-7.64 (m; 

1H); 7.42-7.34 (m; 1H); 7.17-7.10 (m; 1H); 7.06-7.02 (m; 1H) 

 
13C NMR (DMF) δ(ppm): 180.1; 163.3; 143.1; 132.4; 131.6; 122.8; 121.1; 120.7; 111.5 

 
15N NMR (DMF) δ(ppm): 170.0; 135;6; 110.4 

 

 

N
H

O

N NH S

NH2

7.11

122.8

7.36

131.6
7.04

111.5

7.64

121.1
120.7

143.1

11.34

135.1

132.4

163.3

12.72

170.0

180.1

9.05, 9.21

110.4
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EMAC 2072 

(Z)-3-(2-(4-(4-chlorophenyl)thiazol-2-yl)hydrazono)indolin-2-one  

 

2-propanol / R.T.

O

Br
Cl

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

Cl  
 
1H NMR (DMF) δ(ppm): 13.55 (s, 1H); 11.43 (s; 1H); 8.07-8.02 (m; 2H); 7.82 (s; 1H); 7.63 

(dm; J=7.6 Hz; 1H); 7.58-7.53 (m; 2H); 7.41 (td; J=7.6 Hz; 1.1 Hz; 1H); 7.16 (td; J=7.6 Hz; 

1.0 Hz; 1H); 7.10 (dm; J=7.6 Hz; 1H) 

 
13C NMR (DMF) δ(ppm): 166.9; 164.0; 150.6; 142.1; 133.6; 133.1; 132.7; 130.9; 129.2; 

127.9; 122.8; 120.5; 120.3; 111.5; 107.7 

 
15N NMR (DMF) δ(ppm): 156.2; 135.7 

 

 

N
H

O

N NH S

N

Cl

7.16

122.8

7.41

130.9
7.10

111.5

7.63

120.3
120.5

142.1

132.7

164.0

13.55

156.2

166.9 7.82

107.7

150.6

133.6

8.03

127.9

7.56

129.2

133.1

11.43

135.7
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EMAC 2073 

(Z)-3-(2-(4-(4-fluorophenyl)thiazol-2-yl)hydrazono)indolin-2-one  

 
O

Br
F

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

F

2-propanol / R.T.

 
 

The NMR analysis supports a mixture of two tautomers:  

 

The major compound is: 

 
1H NMR (DMSO) δ(ppm): 13.33 (s; 1H); 11.25 (s; 1H); 7.97-7.90 (m; 2H); 7.60 (s; 1H); 7.53 

(dm; J: 7.5 Hz; 1H); 7.34 (tm; J: 7.5 Hz; 1H); 7.29-7.17 (m; 2H); 7.09 (tm; J: 7.5 Hz; 1H); 

6.99-6.92 (m; 1H) 

 
13C NMR (DMSO) δ(ppm): 166.4; 163.2; 161.9 (d; J= 244.6 Hz); 150.0; 141.3; 132.2; 130.6; 

130.5; 127.8 (d; J= 8.3 Hz) 122.4; 119.9; 119.8; 115.6 (d; J= 21.6 Hz); 111.1; 106.6  

 
15N NMR (DMSO) δ(ppm): 137.1 

 

N
H

O

N NH S

N

F

7.09

122.4

7.34

130.5
6.96

111.1

7.53

119.9
119.8

141.3

132.2

163.2

13.33

166.4

150.0

130.6

7.94

127.8

7.25

115.6

161.9

11.25

137.1

7.60

106.6
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The minor compound is: 

 
1H NMR (DMSO) δ(ppm): 9.85 (s; 1H); 8.19 (dm; J: 7.4 Hz; 1H); 7.97-7.90 (m; 2H); 7.29-

7.17 (m; 2H); 7.15 (s; 1H); 6.99-6.92 (m; 1H); 6.86 (td; J: 7.5 Hz; 1.0 Hz; 1H); 6.72 (dm; J: 

7.5 Hz; 1H) 

 
13C NMR (DMSO) δ(ppm): 182.9; 166.5; 161.4 (d; J: 244.0 Hz); 149.2; 138.1; 132.2; 127.4 

(d; J: 8.0 Hz); 126.9; 124.6; 122.6; 120.0; 120.0; 115.3 (d; J: 21.3 Hz); 107.9; 104.4 

 
15N NMR (DMSO) δ(ppm): 134.1 

 

 

N
H

O

N N S

N
H

F

6.86

120.0

6.95

124.6
6.72

107.9

8.19

122.6
120.0

138.1

126.9

166.5

182.9

149.2

132.2

7.92

127.4

7.21

115.3

161.4

9.85

134.1

7.15

104.4
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EMAC 2074 

(Z)-3-(2-(4-(4-bromophenyl)thiazol-2-yl)hydrazono)indolin-2-one  

 
O

Br
Br

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

Br

2-propanol / R.T.

 
 
1H NMR (DMF) δ(ppm): 13.53 (s; 1H); 11.42 (s; 1H); 7.99-7.93 (m; 2H); 7.82 (s; 1H); 7.71-

7.65 (m; 2H); 7.61 (dm; J: 7.6 Hz; 1H); 7.39 (tm; J: 7.6 Hz; 1H); 7.14 (tm; J: 7.6 Hz; 1H); 7.08 

(dm; J: 7.6 Hz; 1H) 

 
13C NMR (DMF) δ(ppm): 167.0; 164.0; 150.7; 142.1; 133.9; 132.7; 132.1; 130.9; 128.1; 

122.8; 121.6; 120.5; 120.3; 111.5; 107.8 

 
15N NMR (DMF) δ(ppm): 156.1; 135.7 

 

 

N
H

O

N NH S

N

Br

7.14

122.8

7.39

130.9
7.08

111.5

7.61

120.3
120.5

142.1

11.42

135.7

132.7

164.0

13.53

156.1

167.0 7.82

107.8

150.7

133.9

7.96

128.1

7.68

132.1

121.6
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EMAC 2075 

(Z)-3-(2-(4-(4-nitrophenyl)thiazol-2-yl)hydrazono)indolin-2-one  

 
O

Br
O2N

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

NO2

2-propanol / R.T.

 
 
1H NMR (DMF) δ(ppm): 13.55 (s; 1H); 11.42 (s;1H); 8.38-8.32 (m; 2H); 8.30-8.24 (m; 2H); 

8.12 (s; 1H); 7.62 (dm; J: 7.7 Hz; 1H); 7.40 (td; J: 7.7 Hz; 1.2 Hz; 1H); 7.15 (td; J: 7.7 Hz; 0.7 

Hz; 1H); 7.08 (dm; J: 7.7 Hz; 1H) 

 
13C NMR (DMF) δ(ppm): 167.3; 163.9; 149.7; 147.2; 142.2; 140.7; 133.1; 131.1; 127.0; 

124.5; 122.9; 120.4; 120.3; 111.6; 111.6 

 
15N NMR (DMF) δ(ppm): 155.8; 135.7 

 

 

N
H

O

N NH S

N

NO2

7.15

122.9

7.40

131.1
7.08

111.6

7.62

120.3
120.4

142.2

11.42

135.7

133.1

163.9

13.55

155.8

167.3 8.12

111.6

149.7

140.7

8.27

127.0

8.35

124.5

147.2
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EMAC 2076  

(Z)-3-{2-[4-(4-phenylphenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}-2,3-dihydro-1H-indol-2-

one  

 

O

Br

N
H

N

O

H
N S

NH2
N
H

N

O

H
N

N

S

2-propanol / R.T.

 
 
1H NMR (DMF) δ(ppm): 13.56 (s; 1H); 11.41 (s; 1H); 8.13-8.08 (m; 2H); 7.85-7.75 (m; 5H); 

7.63 (d; J: 7.6 Hz; 1H); 7.55-7.49 (m; 2H); 7.44-7.36 (m; 2H); 7.15 (tm; J: 7.6 Hz; 1H); 7.08 

(dm; J: 7.6 Hz; 1H) 

 
13C NMR (DMF) δ(ppm): 166.8; 164.0; 151.6; 142.1; 140.4; 140.3; 133.8; 132.6; 130.9; 

129.4; 127.9; 127.4; 127.0; 126.7; 122.8; 120.5; 120.2; 111.5; 107.1 

 
15N NMR (DMF) δ(ppm): 156.5; 135.7 

 

 

N
H

O

N NH S

N

7.15

122.8

7.08

111.5

7.63

120.2
120.5

142.1

11.41

135.7

132.6

164.0

13.56

156.5

166.8 7.81

107.1

151.6

133.8

8.10

126.7

7.82

127.4

140.3

140.4

7.78

127.0

7.52

129.4

7.41

127.9

7.40

130.9
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EMAC 2077 

4-(2-{2-[(3Z)-2-oxo-2,3-dihydro-1H-indol-3-ylidene]hydrazin-1-yl}-1,3-thiazol-4-

yl)benzonitrile  

 

O

Br
NC

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

CN

2-propanol / R.T.

 
 
1H NMR (DMF) δ(ppm): 13.54 (s; 1H); 11.42 (s; 1H); 8.23-8.17 (m; 2H); 8.04 (s; 1H); 7.97-

7.93 (m; 2H); 7.62 (d; J: 7.6 Hz; 1H); 7.40 (tm; J: 7.6 Hz; 1H); 7.15 (tm; J: 7.6 Hz; 1H); 7.08 

(d; J: 7.6 Hz; 1H) 

 
13C NMR (DMF) δ(ppm): 167.2; 163.9; 150.1; 142.2; 138.8; 133.2; 133.0; 131.0; 126.8; 

122.9; 120.4; 120.3; 119.3; 111.6; 110.8; 110.6 

 
15N NMR (DMF) δ(ppm): 155.9; 135.6 

 

 

N
H

O

N NH S

N

CN

7.15

122.9

7.40

131.0
7.08

111.6

7.62

120.3
120.4

142.2

11.42

135.6

133.0

163.9

13.54

155.9

167.2 8.04

110.6

150.1

138.8

8.20

126.8

7.95

133.2

110.8

119.3
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EMAC 2078 

(Z)-3-(2-(4-(2,4-difluorophenyl)thiazol-2-yl)hydrazono)indolin-2-one  

 

O

Cl
F

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

F

F

F
2-propanol / R.T.

 
 
1H NMR (DMF) δ(ppm): 13.52 (s; 1H); 11.39 (s; 1H); 8.23-8.14 (m; 1H); 7.62 (d; J: 7.6 Hz; 

1H); 7.58(d; J: 2.4 Hz; 1H); 7.45-7.36 (m; 2H); 7.25 (td; J: 8.5 Hz; 2.5 Hz; 1H); 7.15 (td; J: 7.6 

Hz; 0.7 Hz; 1H); 7.07 (dm; J: 7.6 Hz; 1H) 

 
13C NMR (DMF) δ(ppm): 166.4; 164.0; 162.3 (dd; J: 248.0 Hz; 12.4 Hz); 160.4 (dd; J: 251.9 

Hz; 12.3 Hz); 144.7 (dd; J: 2.6 Hz; 0.9 Hz); 142.1; 132.8; 131.2 (dd; J: 9.6Hz; 4.8 Hz); 131.0; 

122.9; 120.5; 120.3; 119.1 (dd; J: 11.3Hz; 3.7 Hz); 112.3 (dd; J: 21.4Hz; 3.4 Hz); 111.5; 

111.2 (d; J: 15.0 Hz); 104.9 (t; J: 26.5 Hz) 

 
15N NMR (DMF) δ(ppm): 155.9; 135.5 

 
19F NMR (DMF) δ(ppm): -110.85; -111.77 

 

 

N
H

O

N NH S

N

F

F

7.15

122.9

7.40

131.0
7.07

111.5

7.62

120.3
120.5

142.1

11.39

135.5

132.8

164.0

13.52

155.9

7.58

111.2

144.7

119.1
162.3

7.35

104.9

160.47.25

112.3

8.18

131.2

166.4
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EMAC 2079 

(Z)-3-(2-(4-(3-nitrophenyl)thiazol-2-yl)hydrazono)indolin-2-one 

 

O

Br

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

O2N

NO2

2-propanol / R.T.

 
 
1H NMR (DMF) δ(ppm): 13.57 (s; 1H); 11.41 (s; 1H); 8.84-8.76 (m; 1H); 8.46 (dm; J: 8.1 Hz; 

1H); 8.26 (dm; J: 8.1 Hz; 1H); 8.09 (s; 1H); 7.80 (t; J: 8.1 Hz; 1H); 7.63 (d; J: 7.6 Hz; 1H); 

7.41 (tm; J: 7.6 Hz; 1H); 7.15 (tm; J: 7.6 Hz; 1H); 7.08 (dm; J: 7.6 Hz; 1H)  

 
13C NMR (DMF) δ(ppm): 167.3; 164.0; 149.5; 149.0; 142.2; 136.3; 133.0; 132.2; 131.0; 

130.7; 122.9; 122.9; 120.6; 120.4; 120.3; 111.5; 109.6 

 
15N NMR (DMF) δ(ppm): 155.9; 135.5 

 

 

N
H

O

N NH S

N

NO2

7.15

122.9

7.41

131.0
7.08

111.5

7.63

120.3
120.4

142.2

11.41

135.5

133.0

164.0

13.57

155.9

167.3 8.09

109.6

136.3

8.80

120.6

149.0

8.26

122.9

7.80

130.7

8.46

132.2

149.5
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EMAC 2080 

(Z)-3-(2-(4-p-tolylthiazol-2-yl)hydrazono)indolin-2-one  

 

O

Br

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

H3C

CH3

2-propanol / R.T.

 
 
1H NMR (DMF) δ(ppm): 13.53 (s; 1H); 11.38 (s; 1H); 7.91-7.86 (m; 2H); 7.66 (s; 1H); 7.62 

(d; J: 7.6 Hz; 1H); 7.39 (td; J: 7.6 Hz; 1.2 Hz; 1H); 7.30-7.25 (m; 2H); 7.15 (td; J: 7.6 Hz; 0.8 

Hz; 1H); 7.07 (dm; J: 7.6 Hz; 1H); 2.35 (s; 3H) 

 
13C NMR (DMF) δ(ppm): 166.6; 164.0; 152.0; 142.0; 138.0; 132.4; 132.1; 130.8; 129.7; 

126.1; 122.8; 120.5; 120.2; 111.5; 106.0; 20.8 

 
15N NMR (DMF) δ(ppm): 156.4; 135.5 

 

 

N
H

O

N NH S

N

CH3

7.15

122.8

7.39

130.8
7.07

111.5

7.62

120.2
120.5

142.0

11.38

135.5

132.4

13.53

156.4

166.6 7.66

106.0

152.0

132.1

7.87

126.1

7.27

129.7

138.0
2.35

20.8

164.0
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EMAC 2081 

(Z)-3-(2-(4-(4-methoxyphenyl)thiazol-2-yl)hydrazono)indolin-2-one 

 

2-propanol / R.T.

O

Br

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

H3CO

OCH3  
 
1H NMR (DMF) δ(ppm): 13.53 (s; 1H); 11.40 (s; 1H); 7.95-7.91 (m; 2H); 7.63-7.59 (dm; J: 

7.7 Hz; 1H); 7.56 (s; 1H); 7.39 (td; J: 7.7 Hz; 1.1 Hz; 1H); 7.15 (td; J: 7.7 Hz; 1.0 Hz; 1H); 

7.08 (dm; J: 7.7 Hz; 1H); 7.06-7.02 (m, 2H); 3.85 (s; 3H) 

 
13C NMR (DMF) δ(ppm): 166.6; 164.0; 159.9; 151.8; 142.0; 132.4; 130.8; 127.5; 127.5; 

122.8; 120.5; 120.2; 114.3; 111.5; 104.7; 55.3 

 
15N NMR (DMF) δ(ppm): 156.6; 135.6 

 

 

N
H

O

N NH S

N

O CH3

7.15

122.8

7.39

130.8
7.08

111.5

7.62

120.2
120.5

142.0

11.40

135.6

132.4

164.0

13.53

156.5

166.6 7.56

104.7

151.8

127.5

7.04

114.3

159.9
3.85

55.3

7.93

127.5
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EMAC 2082 

(Z)-3-(2-(4-phenylthiazol-2-yl)hydrazono)indolin-2-one  

 

O

Br

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

2-propanol / R.T.

 
 
1H NMR (DMF) δ(ppm): 13.54 (s; 1H); 11.41 (s; 1H); 8.01-7.97 (m; 2H); 7.74 (s; 1H); 7.62 

(dm; J: 7.7 Hz; 1H); 7.49-7.44 (m; 2H); 7.42-7.34 (m; 2H); 7.17-7.10 (m; 1H); 7.08 (dm; J: 

7.7 Hz; 1H) 

 
13C NMR (DMF) δ(ppm): 166.8; 164.0; 151.9; 142.1; 134.7; 132.6; 130.9; 129.1; 128.3; 

126.1; 122.8; 120.5; 120.2; 111.5; 106.9 

 
15N NMR (DMF) δ(ppm): 156.2; 135.6 

 

 

N
H

O

N NH S

N

7.15

122.8

7.40

130.9
7.08

111.5

7.62

120.2
120.5

142.1

11.41

135.6

132.6

164.0

13.54

156.2

166.8

151.9

134.7

8.00

126.1

7.47

129.1

7.37

128.3

7.74

106.9
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EMAC 2083 

(Z)-3-(2-(4-(2,4-dichlorophenyl)thiazol-2-yl)hydrazono)indolin-2-one  

 

O

Cl

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

Cl

Cl

Cl

Cl

2-propanol / R.T.

 
 
1H NMR (DMF) δ(ppm): 13.51 (s; 1H); 11.39 (s; 1H); 8.05 (d; J: 8.5 Hz; 1H); 7.85 (s; 1H); 

7.75 (d; J: 2.2 Hz; 1H); 7.63 (dm; J: 7.6 Hz; 1H); 7.58 (dd; J: 8.5 Hz; 2.2 Hz; 1H); 7.40 (td; J: 

7.6 Hz; 1.2 Hz; 1H); 7.15 (td; J: 7.6 Hz; 1.0 Hz; 1H); 7.07 (dm; J: 7.6 Hz; 1H) 

 
13C NMR (DMF) δ(ppm): 166.1; 164.0; 147.1; 142.1; 133.6; 132.6; 132.9; 132.2; 132.1; 

131.0; 130.4; 128.1; 122.9; 120.5; 120.3; 112.9; 111.5 

 
15N NMR (DMF) δ(ppm): 155.6; 135.5 

 

 

N
H

O

N NH S

N
Cl

Cl

7.15

122.9

7.40

131.0
7.07

111.5

7.63

120.3
120.5

142.1

11.39

135.5

132.8

164.0

13.51

155.6

166.1 7.85

112.9

147.1

132.1 132.2

133.6
7.58

128.1

8.05

132.9

7.75

130.4
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COMPOUNDS EMAC 2084-2096 

 

General synthetic scheme: 

 

N
H

O

O

H2N
H
N C

S

NH2

N
H

N

O

H
N C

S

NH2

R'

N
H

N

O

H
N

N

S

R'

O

X

EMAC 2084-2096

O2N O2N

O2N

i

ii

R: 4-Cl, 4-F, 4-Br, 4-NO2, 4-C6H5, 4-CN, 2,4-F, 3-NO2, 3,4-Cl,  4-CH3, 4-OCH3, H, 2,4-Cl  
 

Scheme 8. Synthesis of 3-(2-(4-arylthiazol-2-yl)hydrazono)5-nitroindolin-2-one derivatives 

EMAC 2084-2096. Reagents: (i) 2-propanol, AcOH; (iii) 2-propanol, R.T. 

 

5-nitroindolinone derivative were synthesized by a multi step reaction.  

The first synthetic step leads to the formation of 1-(5-nitro-2-oxoindolin-3-

ylidene)thiosemicarbazide by reacting 5-nitroisatin with thiosemicarbazide in 2-propanol 

and catalytic amount of AcOH.  

In the second step, the thiazole ring is formed by reaction between 1-(5-nitro-2-

oxoindolin-3-ylidene)thiosemicarbazide and differently substituted α-halogen-

acetophenones as outlined in Scheme 8. 

 

All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 23 and 24. 
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Table 23. Chemical and physical data of derivatives EMAC 2084-2096 

 

N
H

N

O

H
N

N

S

R

O2N

 

Compound R M.W. Mp (C°) % Yield 

EMAC 2084 4-Cl 399.81 >250 63 

EMAC 2085 4-F 383.36 >250 56 

EMAC 2086 4-Br 444.26 >250 61 

EMAC 2087 4-NO2 410.36 >250 67.5 

EMAC 2088 4-C6H5 441.46 >250 69.5 

EMAC 2089 4-CN 390.38 >250 69.3 

EMAC 2090 2,4-F 401.35 >250 66 

EMAC 2091 3-NO2 410.36 >250 43 

EMAC 2092 3,4-Cl 434.26 >250 50 

EMAC 2093 4-CH3 379.39 >250 69 

EMAC 2094 4-OCH3 395.39 >250 72 

EMAC 2095 H 365.37 >250 63 

EMAC 2096 2,4-Cl 434.26 >250 54 
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Table 24. Analytical data of derivatives EMAC 2084-2096 

 

N
H

N

O

H
N

N

S

R

O2N

 

Compound R 
Reaction 

solvent 

Crystallisation 

solvent 
Aspect 

Reaction 

time (h) 

EMAC 2084 4-Cl 2-propanol Water/Ethanol 
Crystalline 
orange solid 

24 

EMAC 2085 4-F 2-propanol Water/Ethanol 
Crystalline 
yellow solid 

12 

EMAC 2086 4-Br 2-propanol Water/Ethanol 
Crystalline 
yellow solid 

12 

EMAC 2087 4-NO2 2-propanol Water/Ethanol 
Yellow-orange 
solid 

24 

EMAC 2088 4-C6H5 2-propanol Water/Ethanol 
Yellow-orange 
solid 

12 

EMAC 2089 4-CN 2-propanol Water/Ethanol 
Yellow-orange 
solid 

24 

EMAC 2090 2,4-F 2-propanol Water/Ethanol 
Yellow-brown 
solid 

24 

EMAC 2091 3-NO2 2-propanol Water/Ethanol 
Yellow-orange 
solid 

12 

EMAC 2092 3,4-Cl 2-propanol Water/Ethanol Yellow solid 24 

EMAC 2093 4-CH3 2-propanol Water/Ethanol 
Yellow-orange 
solid 

24 

EMAC 2094 4-OCH3 2-propanol Water/Ethanol Red-orange solid 24 

EMAC 2095 H 2-propanol Water/Ethanol 
Yellow-orange 
solid 

12 

EMAC 2096 2,4-Cl 2-propanol Water/Ethanol Yellow solid 12 
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1-(5-nitro-2-oxoindolin-3-ylidene)thiosemicarbazide 

 

N
H

O

O

H2N
H
N C

S

NH2

2-propanol

CH3COOH
N
H

N

O

H
N C

S

NH2O2N O2N

 
 

M.W.: 265.25 g/mol; R.f.: 0.28 (exane-ethylacetate 1:1); M.P.: >250°C; Yield: 97% 

MS (ESI+): 266.03 ([M+H]+ 

 

EMAC 2084 

3-(2-(4-(4-chlorophenyl)thiazol-2-yl)hydrazono)-5-nitroindolin-2-one 

 

O

Br
Cl

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

Cl

O2N O2N

2-propanol / R.T.

 

 
1H-NMR (500 MHz, DMSO) δH  7.11 ( d, 1H, J: 8.5, Ar-CH), 7.48 ( d, 1H, J: 8.5, Ar-CH), 7.76 

( s, 1H, thiazole), 7.87 ( d, 2H, J: 9, Ar-CH), 7.92 ( d, 2H, J: 9, Ar-CH), 8.6 ( s, 1H, Ar-CH), 

12.22 ( s, 1H, NH), 13.25 ( brs, 1H, NH) 
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EMAC 2085 

3-(2-(4-(4-fluorophenyl)thiazol-2-yl)hydrazono)-5-nitroindolin-2-one  

 
O

Br
F

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

F

O2N O2N

2-propanol / R.T.

 
 
1H-NMR (500 MHz, DMSO) δH 7.11 (d, 1H, J: 8.5, Ar-CH), 7.48 (d, 1H, J: 8.5, Ar-CH), 7.35 

(d, 2H, J: 9, Ar-CH), 7.69 (s, 1H, thiazole), 8.25 (d, 2H, J: 9, Ar-CH), 8.6 (s, 1H, Ar-CH), 12.22 

(s, 1H, NH), 13. 23 (brs, 1H, NH) 

 

EMAC 2086 

3-(2-(4-(4-bromophenyl)thiazol-2-yl)hydrazono)-5-nitroindolin-2-one  

 

O

Br
Br

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

Br

O2N O2N

2-propanol / R.T.

 
 
1H-NMR (500 MHz, DMSO) δH 7.12 (d, 1H, J: 8.5, Ar-CH), 7.50 (d, 1H, J: 8.5, Ar-CH), 7.77 

(s, 1H, thiazole), 7.86 (d, 2H, J: 9, Ar-CH), 8.22 (d, 2H, J: 9, Ar-CH), 8.6 (s, 1H, Ar-CH), 12.22 

(s, 1H, NH), 13.25 (brs, 1H, NH) 
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EMAC 2087 

5-nitro-3-(2-(4-(4-nitrophenyl)thiazol-2-yl)hydrazono)indolin-2-one  

 
O

Br
O2N

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

NO2

O2N O2N

2-propanol / R.T.

 
 
1H-NMR (500 MHz, DMSO) δH 7.2 (d, 1H, J: 8.5, Ar-CH), 7.52 (d, 1H, J: 8.5, Ar-CH), 8.15 (s, 

1H, thiazole), 8.37 (d, 2H, J: 9; Ar-CH), 8.45 (d, 2H, J: 9, Ar-CH), 8.62 (s, 1H, Ar-CH), 12.25 

(s, 1H, NH), 13,55 (brs, 1H, NH) 

 

EMAC 2088 

3-(2-(4-(4-difluorophenyl)thiazol-2-yl)hydrazono)-5-nitroindolin-2-one  

 

O

Br

N
H

N

O

H
N S

NH2 N
H

N

O

H
N

N

S

O2N

O2N

2-propanol / R.T.

 
 
1H-NMR (500 MHz, DMSO) δH 7.21 (d, 1H, J: 8.5, Ar-CH), 7.22 (t, 1H, Ar-CH), 7.32 (d, 2H, 

Ar-CH), 7.48 (m, 3H, Ar-CH), 7.54 (m, 4H, Ar-CH), 7.77 (s, 1H, thiazole), 8.6 (s, 1H, Ar-CH), 

12.25 (s, 1H, NH), 13,55 (brs, 1H, NH) 
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EMAC 2089 

3-(2-(4-(4-cyanophenyl)thiazol-2-yl)hydrazono)-5-nitroindolin-2-one  

 

O

Br
NC

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

CN

O2N
O2N

2-propanol / R.T.

 
 
1H-NMR (500 MHz, DMSO) δH 7.11 (d, 1H, J: 8.5, Ar-CH), 7.48 (d, 1H, J: 8.5, Ar-CH), 8.05 

(s, 1H, thiazole), 8.00 (d, 2H, J: 9, Ar-CH), 8.22 (d, 2H, J: 9, Ar-CH), 8.06 (s, 1H, Ar-CH), 

12.22 (s, 1H, NH), 13,55 (brs, 1H, NH) 

 

EMAC 2090 

3-(2-(4-(2,4-difluorophenyl)thiazol-2-yl)hydrazono)-5-nitroindolin-2-one  

 

O

Cl
F

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

F

F

F

O2N
O2N

2-propanol / R.T.

 
 
1H-NMR (500 MHz, DMSO) δH 7.11 (d, 1H, J: 8.5, Ar-CH), 7.35 (d, 1H, J: 8.5, Ar-CH), 7.45 

(s, 1H, Ar-CH), 7.48 (d, 1H, J: 8.5, Ar-CH), 7.6 (s, 1H, thiazole), 8.28 (d, 1H, J: 8.5, Ar-CH), 

8.6 (s, 1H, Ar-CH), 12.22 (s, 1H, NH), 13,55 (brs, 1H, NH) 
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EMAC 2091 

5-nitro-3-(2-(4-(3-nitrophenyl)thiazol-2-yl)hydrazono)indolin-2-one  

 

O

Br

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

O2N

NO2

O2N O2N

2-propanol / R.T.

 
1H-NMR (500 MHz, DMSO) δH 7.11 (d, 1H, J: 8.5, Ar-CH), 7.48 (d, 1H, J: 8.5, Ar-CH), 7.90 (t, 

1H, J: 8, Ar-CH), 8.1 (s, 1H, thiazole), 8.36 (d, 1H, J: 8, Ar-CH), 8.56 (d, 1H, J: 8, Ar-CH), 8.6 

(s, 1H, Ar-CH), 12.22 (s, 1H, NH), 13,55 (brs, 1H, NH) 

 

EMAC 2092 

3-(2-(4-(3,4-dichlorophenyl)thiazol-2-yl)hydrazono)-5-nitroindolin-2-one  

 

O

Br
Cl

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

Cl

O2N
O2N

Cl

Cl

2-propanol / R.T.

 
 
1H-NMR (500 MHz, DMSO) δH 7.11 (d, 1H, J: 8.5, Ar-CH), 7.48 (d, 1H, J: 8.5, Ar-CH), 7.67 

(d, 1H, J: 8, Ar-CH), 7.72 (s, 1H, thiazole), 8.15 (d, 1H, J: 8, Ar-CH), 8.4 (s, 1H, Ar-CH), 8.6 (s, 

1H, Ar-CH), 12.22 (s, 1H, NH), 13,55 (brs, 1H, NH) 
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EMAC 2093 

5-nitro-3-(2-(4-p-tolylthiazol-2-yl)hydrazono)indolin-2-one  

 

O

Br

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S
H3C

CH3

O2N O2N

2-propanol / R.T.

 
 
1H-NMR (500 MHz, DMSO) δH 2.35 (s, 3H, CH3), 7.11 (d, 1H, J: 8.5, Ar-CH), 7.37 (d, 2H, J: 9, 

Ar-CH), 7.48 (d, 1H, J: 8.5, Ar-CH), 7.76 (s, 1H, thiazole), 7.94 (d, 2H, J: 9, Ar-CH), 8.6 (s, 1H, 

Ar-CH), 12.22 (s, 1H, NH), 13,55 (brs, 1H, NH) 

 

EMAC 2094 

3-(2-(4-(4-methoxyphenyl)thiazol-2-yl)hydrazono)-5-nitroindolin-2-one  

 

O

Br

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

H3CO

OCH3

O2N O2N

2-propanol / R.T.

 
 
1H-NMR (500 MHz, DMSO) δH 3.85 (s, 3H, OCH3), 7.11 (d, 1H, J: 8.5, Ar-CH), 7.14 (d, 2H, J: 

8.5, Ar-CH), 7.48 (d, 1H, J: 8.5, Ar-CH), 7.66 (s, 1H, thiazole), 8.03 (d, 2H, J: 8.5, Ar-CH), 8.6 

(s, 1H, Ar-CH), 12.22 (s, 1H, NH), 13,55 (brs, 1H, NH) 
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EMAC 2095 

5-nitro-3-(2-(4-phenylthiazol-2-yl)hydrazono)indolin-2-one  

 

O

Br

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

O2N O2N

2-propanol / R.T.

 
 
1H-NMR (500 MHz, DMSO) δH 7.11 (d, 1H, J: 8.5, Ar-CH), 7.47 (t, 1H, J: 8.5, Ar-CH), 7.48 (d, 

1H, J: 8.5, Ar-CH), 7.57 (d, 2H, J: 9, Ar-CH), 7.84 (s, 1H, thiazole), 8.1 (d, 2H, J: 9, Ar-CH), 8.6 

(s, 1H, Ar-CH), 12.22 (s, 1H, NH), 13,55 (brs, 1H, NH) 

 

EMAC 2096 

3-(2-(4-(2,4-dichlorophenyl)thiazol-2-yl)hydrazono)-5-nitroindolin-2-one  

 

O

Cl

N
H

N

O

H
N S

NH2

N
H

N

O

H
N

N

S

Cl

Cl

Cl

ClO2N O2N

2-propanol / R.T.

 
1H-NMR (500 MHz, DMSO) δH 7.11 (d, 1H, J: 8.5, Ar-CH), 7.48 (d, 1H, J: 8.5, Ar-CH), 7.68 

(d, 1H, J: 8.5, Ar-CH), 7.85 (s, 1H, Ar-CH), 7.86 (s, 1H, thiazolo), 8.15 (d, 1H, J: 8.5, Ar-CH), 

8.6 (s, 1H, Ar-CH), 12.22 (s, 1H, NH), 13,55 (brs, 1H, NH) 
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3.2 Biology 

 

Protein expression and purification 

 

The recombinant HIV-1 RT protein, whose coding gene was subcloned in the 

p6HRT_prot plasmid, was expressed in E. coli strain M15. [207, 210]  

The bacteria cells were grown up to an optical density (OD600) of 0.8 and induced 

with 1.7 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 5 hrs.  

HIV-1 RT purification was carried out as described [211]. Briefly, cell pellets were 

resuspended in Lyses Buffer (20 mM 4-(2-hydroxyethyl)-1-piperazineethanesolfonic acid 

(Hepes) pH 7.5, 0.5 M NaCl, 5 mM β-mercaptoethanol, 5 mM imidazole, 0.4 mg/mL 

lysozime), incubated on ice for 20 min, sonicated and centrifuged at 30,000 x g for 1 hr.  

The supernatant was applied to a His-binding resin column and washed thoroughly 

with wash buffer (20 mM Hepes pH 7.5, 0.3 M NaCl, 5 mM β-mercaptoethanol, 60 mM 

imidazole, 10% glycerol).  

RT was eluted by imidazole gradient and the enzyme-containing fractions were 

pooled, dialyzed and aliquots were stored at –80 °C.  

 

RNase H polymerase-independent cleavage assay 

 

The HIV-1 RT associated RNase H activity was measured as described [200] in 100 µL 

reaction volume containing 50 mM Tris-HCl pH 7.8, 6 mM MgCl2, 1 mM dithiothreitol 

(DTT), 80 mM KCl, hybrid RNA/DNA (5’-GTTTTCTTTTCCCCCCTGA C-3’-Fluorescein, 5’-

CAAAAGAAAAGG GGGGACUG-3’-Dabcyl) and 3.8 nM RT. The reaction mixture was 

incubated for 1 hr at 37 °C. The enzymatic reaction is stopped with the addition to EDTA 

and measured with Victor3 (Perkin) at 490/528 nm.  

 

DNA polymerase assay 

 

The HIV-1 RT associated (RDDP) activity was measured using Invitrogen EnzCheck 

Reverse Transcriptase Assay Kit, in 50 µL volume containing 60 mM Tris-HCl pH 8.1, 8 mM 

MgCl2, 60 mM KCl, 13 mM Dithiothreitol, 100 µM dTTP, 2 nM HIV-1 RT and poly(A)-

oligo(dT). The reaction mixture was incubated for 30 minutes at 37°C. The enzymatic 

reaction is stopped with the addition to EDTA and measured with Victor3 (Perkin) at 

502/523 nm after the addition to picogreen. 
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1 Introduction 

 

1.1 Historical overview 

 

The range of human infections caused by the yeast C. albicans and several related 

species (spp.) is considerable.  

They range from relatively trivial conditions such as oral and genital thrush to fatal, 

systemic infections in patients who are already seriously ill with other diseases. In recent 

years there has been an increasing interest in Candida infections and in C. albicans in 

particular because fatal infections have become more prevalent and new Candida 

associated disorders have been recognized. 

The medical importance of Candida infections and the scientific value of C. albicans 

as a model for fungal cellular development have stimulated advances in our 

understanding of the epidemiology of candidosis, the pathogenesis of the disease and the 

genetics and biochemistry of C. albicans. 

Oral candidal infections appear to have been described as early as the 2
nd

 century 

AD by GALEN, who described as aphthas albus. 

It was not until the mid-19th century that the clinical nature of oral candidosis (syn. 

oral candidiasis) was defined and the etiologic agent identified. [1] 

There have been a wide variety of synonyms used for members of the genus 

Candida, 166 synonyms being recognized for C. albicans worldwide. [2] 

The genus Candida is within the class Deuteromycetes and has been described as a 

"taxonomic pit" into which yeasts without a known sexual stage or other remarkable 

phenotypic character have been thrown. [3] Its members are biologically diverse and 

include yeasts with ascomycetous and basidiomycetous affinities. 

There are currently between 150 and 200 species recognized in the genus. [3] 

The genus Candida includes characteristically white asporogenous (imperfect) 

yeasts capable of forming pseudohyphae. 

Within the genus, species are characterized primarily by colonial morphology, 

carbon utilization, and fermentation. [4] 

There are seven Candida spp. of major medical importance, the most important 

being C. albicans, the one most frequently isolated. It is believed to be the most virulent 

in man. 

The other Candida spp. encountered in human infections are C. tropicalis, C. 

glabrata, C. parapsilosis, C. stellatoidea, C. krusei, and C. kyfer. [1] 

Due to the relatively high DNA homology between C. albicans and C. stellatoidea, 

the latter has been reclassified as a sucrose-negative variant of C. albicans. [5] 
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A study has shown that there are two distinct types of sucrose-negative C. albicans, 

identified as C. stellatoidea types I and II. [6] 

In a more detailed analysis, these authors have concluded that type II is a sucrose-

negative mutant of C. albicans, whereas type I is indistinguishable from C. albicans. [7] 

C. albicans is a dimorphic yeast and is believed to be an obligate associate of warm-

blooded animals. 

In a review of the biology and genetics of C. albicans [4], it was shown that this 

species are an imperfect yeast having no sexual cycle. It is diploid, having lost the ability 

to undergo meiosis and to form a haplophase yeast. 

 

2 Epidemiology 

 

It has been postulated that most people usually carry a single strain of Candida at 

different body sites for a long time. [3] 

However, it has been shown that a few individuals may harbour more than one 

strain or species of Candida at the same time, and that in hospitalized and 

immunocompromised patients this occurs more commonly. [3] 

The intraoral commensal existence of Candida occurs in at least 50% of the 

population, and if sensitive enough tests were developed, possibly more than 90% of 

healthy individuals would be shown to carry this organism. [3] 

The gastrointestinal (GI) tract is believed to be the major habitat of the commensal 

Candida spp. The wide variation in the types of patients analysed and methods used in 

the analysis of the carriage rate of various sites in the GI tract allows the conclusion that 

Candida spp. are very common gut commensals. [3] 

It has been shown that, if present in sufficiently high numbers, C. albicans can 

spread from the human gut, causing fungaemia and funguria [8], and it is thought that the 

gut is the ultimate source of most forms of Candida infection. [3] 

It has been previously reported that the prevalence and density of C. albicans 

are greater in edentulous patients who wear dentures and who have erythematous 

candidosis than in normal subjects, suggesting that dentures may encourage the growth 

of Candida. 

However, it has been found that, although the occurrence of C. albicans was greater 

in these patients than in healthy controls, there was no difference in the concentration of 

C. albicans when present in these groups. [9] 

These authors [9] showed that it was not possible to equate specific numbers of 

Candida with health and disease, as previously proposed. [10] 

Oral candidosis in all groups of patients has been classified into four main 

categories; acute pseudomembranous, acute atrophic, chronic atrophic, and chronic 

hyperplastic. [11] 



5 

 

Candida induced angular cheilitis was included as another category when the 

association between this particular lesion and its infective etiology was determined. [12] 

The advent of the association of oral candidosis and human immunodeficiency virus 

(HIV) infection has resuited in a modification of this terminology. [13,14] 

In particular, the term "atrophic" has been replaced by the term "erythematous" 

because "erythematous" describes the clinical picture whereas "atrophic" describes the 

histologic picture. 

Furthermore, as lesions are nearly always chronic in HIV infected patients, the 

terms "acute" and "chronic" seem unnecessary. 

 

3 Current Therapy 

 

Invasive fungal infection is a leading cause of morbidity and mortality among 

immunocompromised and debilitated patients, including those with hematological 

malignancy, solid organ or bone marrow transplantation, and neutropenia and those 

receiving systemic corticosteroid therapy. 

Candida species and Aspergillus species are the two predominant causative fungi, 

with the case fatality rates being 30% and 50% among those infected with members of 

these two fungal genera, respectively. [15,16] 

Over the past few decades, amphotericin B has been the mainstay treatment of 

candidiasis and aspergillosis, whereas fluconazole has been extensively used among 

patients with Candida albicans infection.  

After randomized controlled trials showed that extended-spectrum azoles 

(itraconazole, voriconazole, posaconazole) and echinocandins (anidulafungin, 

caspofungin, micafungin) had efficacies similar to those of amphotericin B and 

fluconazole, these newer antifungal agents have been used more frequently for the 

treatment of patients with probable or proven invasive fungal infection. [17-21] 

Current practice guidelines recommend amphotericin B formulations, fluconazole, 

and echinocandins as first-line therapy for patients with candidemia; and amphotericin B 

formulations or voriconazole are the drugs of choice for the primary therapy of invasive 

aspergillosis. [18-21] 

For patients who fail the primary therapy or who have intolerable adverse 

reactions, the common practice is to switch to a different class of antifungal agents. 

[22,23] 

With regard to the safety of antifungal therapies, amphotericin B desoxycholate is 

known for its infusion-related adverse effects and nephrotoxicity; approximately 30% of 

patients developed abnormal renal function, and treatment was discontinued in 5% of 

patients because of toxicity. [24,25] 
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Other amphotericin B formulations, including amphotericin B colloidal dispersion, 

amphotericin B lipid complex, liposomal amphotericin B (Ambisome), and other, newer 

antifungal agents, are associated with substantially fewer infusionrelated and nephrotoxic 

events. 

However, hepatotoxic reactions to antifungal agents were increasingly reported and 

ranged from mild and asymptomatic abnormalities in liver function test results to 

potentially fatal fulminant hepatic failure. [26-31] 

While individual reviews of new antifungal agents have been published [32-43], 

there has been no systematic evaluation of the toxicity associated with these treatments. 

Nevertheless we have a rich armamentarium of antifungal agents as schematized in 

Table 1. 

Table 1. Currently available antifungal drugs 

 

IMIDAZOLES 

TOPICAL: Bifonazole; Butoconazole; 

Clomidazole#; Clomitrazole; Croconazole; 

Econazole; Fenticonazole; Ketoconazole; 

Isoconazole; Miconazole#; Neticonazole; 

Omoconazole; Oxiconazole; Sertaconazole; 

Sulconazole; Tioconazole 

TRIAZOLES 

TOPICAL: Fluconazole#; Fosfluconazole; 

Terconazole 

SYSTEMIC: Fluconazole; Hexaconazole; 

Isavuconazole; Itraconazole; Posaconazole; 

Voriconazole 

Ergosterol 

inhibitors 

Azoles 

(lanosterl 14-

α−demethylase 

inhibitorsd 

THIAZOLES  TOPICAL: Abafungin 

Wall/ 

membrane 

 

Polyene 

antimicotico 

(ergosterol 

binding) 

TOPICAL: Hamycin; Natamycin; Nystatin# 

SYSTEMIC: Amphotericin B#; Hamycin 

  

Allylamines 

(squalene 

monooxygenase 

inhibitors) 

TOPICAL: Amorolfine; Butanefine; Naftifine; Terbinafine 

SYSTEMIC: Terbinafine 

 

β-glucan 

synthase 

inhibitors 

ECHINOCANDINS: Anidafungin, Caspofungin;Micafungin 

Pyrimidine analogues / 

Thymidylate synthase inhibitors 
Flucytosine# 

Intracellular 

Mitotic inhibitors Griseofulvin# 

Others 

Bromochlorosalicylanilide;Methylrosaniline; Tribromometacresol; Undecylenic acid; Polynoxylin; 

Chlorophetanol; Chlorphenesin; Ticlatone; Sulbentine; Ethylparaben; Haloprogin; Salicylic acid 

Selenium sulfide; Ciclopirox; Amorolfine; Dimazole; Tolnaftate; Tolciclate; Sodium thiosulfate; 

Whitfield's ointment; Potassium iodide#; TaurolidineTea tree oil; citronella oil; lemon grass; orange oil; 

patchouli lemon; myrtlePCP: Pentamidine; Dapsone; Atovaquone 

# World Health Organization Essential Medicines (WHO-EM) list. 

 

As reported in Table 1, current fungal therapy is directed towards different cellular 

targets such as wall membrane construction (Ergosterol synthesis inhibitors, b-glucan 

synthase inhibitors) or nucleic acids synthesis (Thymidylate synthase inhibitors, Mitotic 

inhibitors). However the emergence of drug resistance, in particular in the case of 
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immuno-compromised patients and the lack of fungicidal agents with low toxicity, give 

rise to some worries. 

So far there is space for a deeper investigation and for the research of new more 

potent and possibly less toxic compounds. 

In particular the need of new agents with different mechanism/target is now days 

urgent. 
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4 Results and discussion 

 

During my PhD work I have synthesised some cycloakyliden-hydrazothiazoles as 

anti-candida agents. 

The research group of medicinal chemistry of the department of life and 

environmental sciences has already synthesised similar compounds that exhibit potent 

activity towards several species of candida. [44-48] 

Thus, to achieve more information on the SARs of these compounds and to evaluate 

their activity towards Fluconazole resistant Candida species, we have synthesised 

differently substituted cycloalkylidenhydrazo-4-arylthiazoles illustrated in Figure 1-5.  
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Figure 1. Structure of compounds EMAC 2097-2103 
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All the compounds were synthesised by direct reaction of the cyclic ketone (1.2 

mol) with thiosemicarbazide (1 mol) in n-propanol with catalytic amounts of acetic acid 

(10 drops) at reflux condition for 12-24 hours to obtain the corresponding 

thiosemicarbazones that was subsequently reacted with α-halogenoketones to yield the 

4-substituted thiazole ring derivatives as shown in Scheme 1. In the synthesis of final 

compounds water proved to be a more efficient, cheaper, and green solvent for our 

purpose. As a matter of fact, the reaction products precipitate on cooling down and can 

be filtered and when needed purified by crystallization from the appropriate solvent.  
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C
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n

R'

R R

R

i

ii

n = 1, 2
R= H, 2-CH3, 3-CH3, 4-CH3
R'= H, 4-Br, 4-Cl, 4-NO2, 3-NO2, 4-CH3, 4-OCH3, 4-CN, 4-C6H5, 4-F, 2,4-Cl, 2,4-F

EMAC 2097-2142

 

 

Scheme 1. Synthesis of cycloalkylidenehydrazothiazole derivatives EMAC 2097-2142. 

Reagents: (i) n-propanol, AcOH; (ii) H2O or n-propanol 

 

All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 4 and 5. 

By this procedure derivatives EMAC 2097-2142 were prepared and submitted to 

biological tests. 

In particular, our aim was to identify those compounds that were active towards 

Fluconazole resistant C.albicans. 

The preliminary biological results are reported in Table 2 and 3. 
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Table 2. EMAC 2098-2100-2101-2103 activity 

EMAC 2098-2100-2101-2103 activity 

N
H
N

N

S

D
 

CANDIDA albicans 

ATCC 10231 

CANDIDA albicans 25 

Fluconazole resistant “D”-ring 

MIC MCF MIC MCF 

Br
 

EMAC 2098 

0.19 0.39 0.39 50 

NO2
 

EMAC 2100 

0.78 100 0.78 100 

CH3
 

EMAC 2101 

0.39 12.5 >25 >25 

CN
 

EMAC 2103 

3.12 25 >25 >25 

Fluconazole 0.78 >100 >100 >100 

 

In the cyclohexylidene series all tested compounds exhibit a remarkable activity 

towards C.albicans ATCC 10231. MIC values range from 0.19 to 3.12 µg/ml. 

Noteworthy all compounds, with the exception of EMAC 2100, exhibit fungicidal 

activity when tested on C.albicans ATCC 10231. 

A different behavior is observed when compounds were tested against “C.albicans 

25 Fluconazole resistant”. In this case only compound EMAC 2098 and EMAC 2100 show 

remarkable MIC values (0.39 and 0.78 µg/ml respectively), while almost no activity is 

observed for  EMAC 2101 and EMAC 2103. Unfortunately, none of the tested compounds 

have interesting fungicidal activity when tested on “C.albicans 25 Fluconazole resistant”. 

Nevertheless these data are more than encouraging with respect to the activity 

exhibited by Fluconazole (Table 1 and 2).  

The introduction of a methyl substituent in the position 2 of the cyclohexylidene 

moiety leads to a different behavior (Table 2). 
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Table 3. EMAC 2104-2105-2107-2109-2110 activity 

 

EMAC 2104-2105-2107-2109-2110 activity 

N
H
N

N

S

D

H3C

 
CANDIDA albicans 

ATCC 10231 

CANDIDA albicans 25 

Fluconazole resistant “D”-ring 

MIC MCF MIC MCF 

 
EMAC 2104 

0.19 25 0.19 1.56 

Br
 

EMAC 2105 

0.78 25 >25 >25 

NO2
 

EMAC 2107 

0.78 >100 3.12 50 

CN
 

EMAC 2109 

1.56 >25 >25 >25 

F
 

EMAC 2110 

0.78 3.12 1.56 3.12 

Fluconazole 0.78 >100 >100 >100 

 

Compound EMAC 2105, bearing a 4-bromophenyl moiety in the position 4 of the 

thiazole ring is active only towards C. albicans ATCC 10231, and its activity is comparable 

with that of Fluconazole but less potent  than its homologous EMAC 2098. 

It has neither fungicidal activity, nor efficacy against C. albicans 25 Fluconazole 

resistant. 

On the contrary, the 4-nitro-substituted derivative EMAC 2107 exhibits a similar 

activity profile with respect to its homologous EMAC 2100. 

Both compounds only exhibit fungistatic activity on both candida species.  

On the contrary, compounds EMAC 2104 and EMAC 2110 exhibit a very potent 

activity with respect to Fluconazole (Table 2). 

The 4-phenylthiazole derivative EMAC 2104 is particularly active against C.albicans 

25 Fluconazole resistant (MIC 0.19 µg/ml; MFC 1.56 µg/ml). 
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Although slightly less potent, compound EMAC 2110 is active towards both candida 

species. Moreover its fungicidal activity is comparable to that of EMAC 2104. 

These data are preliminary and more experiments are needed to rationalize the 

SARs of this class of compounds. 

In some cases cross–resistance with Fluconazole has been observed indicating that 

a similar mechanism of action might be postulated for EMAC derivatives. 

Nevertheless 5 compounds out of 9 are active against candida and in some cases 

the activity is conserved also against C. albicans 25 Fluconazole resistant. Thus although 

the mechanism of action might be the similar a different specific target is probably 

involved. 

Further studies on the mechanism of action, toxicity, and in vivo efficacy are 

needed. However, these preliminary data indicate the potential of EMAC derivatives as a 

template for the development of new antifungal agents. 
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5 Materials and methods 

 

5.1 Chemistry 

 

COMPOUNDS EMAC 2097-2142 

 

All compounds are characterised by a cycloalkylidenehydrazothiazole core.  

The synthetic pathway is divided in two different step (Scheme 1). 

Unless otherwise noted, starting materials and reagents were obtains from 

commercial suppliers and were used without purification. 

All melting point were determined by the capillary method on a Stuart SMP11 

melting point apparatus and are uncorrected. 

All samples were measured in CDCl3 solvent at 278.1 K temperature on a Varian 

Unity 500 spectrometer. In the signal assignments the proton chemical shifts are referred 

to the solvent (1H: δ = 7.24 ppm,). Coupling constants J are expressed in hertz (Hz). 

Elemental analyses were obtained on a Perkin–Elmer 240 B microanalyser. 

Analytical data of the synthesised compounds are in agreement with the theoretical data. 

HPLC-MS/MS analysis was performed using an HPLC-MS/MS Varian (Varian Palo 

Alto, CA, USA) system fitted with a 1200 L triple quadrupole mass spectrometer equipped 

with an electrospray ionization source (ESI). A Varian MS workstation version 6.8 software 

was used for data acquisition and processing. Rapid identification was achieved with 

direct infusion of the purified molecule, dissolved in methanol, on the mass spectrometer 

source.  

TLC chromatography was performed using silica gel plates (Merck F 254), spots 

were visualised by UV light. 

All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 3 and 4 
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Table 4. Chemical and physical data of derivatives EMAC 2097-2142 

 

R

N
H
N

N

S

R'

 

Compound R R’ M.W. Mp (C°) % Yield 

EMAC 2097 Cyclohexyl [ H 271.38 189-190 [46-47]  79 

EMAC 2098 Cyclohexyl 4-Br 431.19 179-180 79 

EMAC 2099 Cyclohexyl 4-Cl 305.83 121-122 73 

EMAC 2100 Cyclohexyl 4-NO2 316.38 172-173 [48] 83 

EMAC 2101 Cyclohexyl 4-CH3 285.41 183-185 [48] 76 

EMAC 2102 Cyclohexyl 4-OCH3 301.41 152 77 

EMAC 2103 Cyclohexyl 4-CN 296.39 206-207 [48] 83 

EMAC 2104 Cyclohexyl-2-CH3 H 285.41 162-164 [46-47] 79 

EMAC 2105 Cyclohexyl-2-CH3 4-Br 364.3 130-131 [48] 77 

EMAC 2106 Cyclohexyl-2-CH3 4-Cl 319.85 187-188 [45] 71 

EMAC 2107 Cyclohexyl-2-CH3 4-NO2 330.4 163-164  [45] 85 

EMAC 2108 Cyclohexyl-2-CH3 4-OCH3 315.43 128-129 [45] 82 

EMAC 2109 Cyclohexyl-2-CH3 4-CN 391.33 200-201 [45] 79 

EMAC 2110 Cyclohexyl-2-CH3 4-F 303.4 178-180 [45] 79 

EMAC 2111 Cyclohexyl-4-CH3 H 285.41 191-192 [47] 66 

EMAC 2112 Cyclohexyl-4-CH3 4-Br 364.3 158-159 80 
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EMAC 2113 Cyclohexyl-4-CH3 4-Cl 319.85 177-179 [44] 74 

EMAC 2114 Cyclohexyl-4-CH3 4-NO2 330.4 175-177 [48] 75 

EMAC 2115 Cyclohexyl-4-CH3 4-CH3 299.43 158-160 [48] 83 

EMAC 2116 Cyclohexyl-4-CH3 4-OCH3 315.43 96-97 73 

EMAC 2117 Cyclohexyl-4-CH3 4-C6H5 361.5 181-182 70 

EMAC 2118 Cyclohexyl-4-CH3 4-CN 310.42 196-197 [48] 78 

EMAC 2119 Cyclohexyl-4-CH3 4-F 303.4 163-164 [48] 20 

EMAC 2120 Cyclohexyl-4-CH3 2,4-Cl 345.3 135-136 [48] 20 

EMAC 2121 Cyclohexyl-3-CH3 H 285.41 121-123 68 

EMAC 2122 Cyclohexyl-3-CH3 4-Br 364.3 168-169 41 

EMAC 2123 Cyclohexyl-3-CH3 4-Cl 319.85 195-199 [44] 44 

EMAC 2124 Cyclohexyl-3-CH3 4-NO2 303.04 164-165 76 

EMAC 2125 Cyclohexyl-3-CH3 4-CH3 299.43 171-174 [44] 85 

EMAC 2126 Cyclohexyl-3-CH3 4-OCH3 315.43 162-165 [44] 42 

EMAC 2127 Cyclohexyl-3-CH3 4-C6H5 361.5 128-130 79 

EMAC 2128 Cyclohexyl-3-CH3 4-CN 310.42 189-190 [44] 80 

EMAC 2129 Cyclohexyl-3-CH3 4-F 303.4 192-195 [44] 65 

EMAC 2130 Cyclohexyl-3-CH3 2,4-F 321.39 130-132 68 

EMAC 2131 Cyclohexyl-3-CH3 2,4-Cl 354.3 148-151 63 

EMAC 2132 Cyclopentyl  H 257.35 215 [47] 66 

EMAC 2133 Cyclopentyl 4-Br 336.25 213-215 [44] 87 

EMAC 2134 Cyclopentyl 4-Cl 291.8 223-225 [44] 84 
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EMAC 2135 Cyclopentyl 4-NO2 302.35 219-220 [44] 71 

EMAC 2136 Cyclopentyl 3-NO2 302.35 187-190 [44] 74 

EMAC 2137 Cyclopentyl 4-CH3 271.38 218-220 [44] 85 

EMAC 2138 Cyclopentyl 4-OCH3 287.38 214-217 [44] 77 

EMAC 2139 Cyclopentyl 4-CN 282.36 207-208 [44] 70 

EMAC 2140 Cyclopentyl 4-C6H5 333.45 235-237 [44] 69 

EMAC 2141 Cyclopentyl 2,4-F 293.33 183-185 [48] 49 

EMAC 2142 Cyclopentyl 2,4-Cl 326.24 162-164[48] 60 
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Table 5. Analytical data of derivatives EMAC 2097-2142 

R

N
H
N

N

S

R'

 

Compound R R’ 
Reaction 

solvent 

Crystallisation 

solvent 
Aspect 

Reaction 

time (h) 

EMAC 2097 Cyclohexyl H Water Water/ethanol  Brown solid 32  

EMAC 2098 Cyclohexyl 4-Br Water Ethanol  
Pale yellow 

solid 
32 

EMAC 2099 Cyclohexyl 4-Cl Water Water/ethanol  
Crystalline 

orange solid 
28 

EMAC 2100 Cyclohexyl 4-NO2 Water Ethanol 
Crystalline 

orange solid 
26 

EMAC 2101 Cyclohexyl 4-CH3 Water Ethanol 

Crystalline 

pale brown 

solid 

26 

EMAC 2102 Cyclohexyl 4-OCH3 n-propanol  Ethanol  
Crystalline 

white solid 
5 

EMAC 2103 Cyclohexyl 4-CN Water Ethanol  
Crystalline 

pale red solid 
26 

EMAC 2104 Cyclohexyl-2-CH3 H Water Water/ethanol  
Pale brown 

solid 
26 

EMAC 2105 Cyclohexyl-2-CH3 4-Br Water Hexane  

Crystalline 

pale orange 

solid 

48 

EMAC 2106 Cyclohexyl-2-CH3 4-Cl Water Ethanol  
Brown orange 

solid 
48 

EMAC 2107 Cyclohexyl-2-CH3 4-NO2 Water Water/ethanol  
Crystalline 

yellow solid 
24 

EMAC 2108 Cyclohexyl-2-CH3 4-OCH3 n-propanol Ethanol 
Crystalline 

white solid 
6 

EMAC 2109 Cyclohexyl-2-CH3 4-CN Water Water/ethanol  Red solid 28 

EMAC 2110 Cyclohexyl-2-CH3 4-F n-propanol Ethanol 
Crystalline 

white solid 
28 

EMAC 2111 Cyclohexyl-4-CH3 H Water Water/ethanol  
Pale brown 

solid 
26 

EMAC 2112 Cyclohexyl-4-CH3 4-Br Water Water/ethanol  Pale red solid 26 
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EMAC 2113 Cyclohexyl-4-CH3 4-Cl Water Water/ethanol  Brown solid 26 

EMAC 2114 Cyclohexyl-4-CH3 4-NO2 Water Water/ethanol  Yellow solid 24 

EMAC 2115 Cyclohexyl-4-CH3 4-CH3 Water Water/ethanol  
Pale brown 

solid 
26 

EMAC 2116 Cyclohexyl-4-CH3 4-OCH3 Water Water/ethanol  Pale red solid 26 

EMAC 2117 Cyclohexyl-4-CH3 4-C6H5 Water Water/ethanol  
Pale brown 

solid 
26 

EMAC 2118 Cyclohexyl-4-CH3 4-CN Water Water/ethanol  Yellow solid 26 

EMAC 2119 Cyclohexyl-4-CH3 4-F Water Ethanol Yellow solid 24 

EMAC 2120 Cyclohexyl-4-CH3 2,4-Cl Water Water/ethanol  Brown solid 24 

EMAC 2121 Cyclohexyl-3-CH3 H Water Ethanol 
Pale brown 

solid 
26 

EMAC 2122 Cyclohexyl-3-CH3 4-Br Water Acetonitrile  Brown solid 24 

EMAC 2123 Cyclohexyl-3-CH3 4-Cl Water Ethanol  
Pale brown 

solid 
26 

EMAC 2124 Cyclohexyl-3-CH3 4-NO2 Water Water/ethanol  Yellow solid 26 

EMAC 2125 Cyclohexyl-3-CH3 4-CH3 Water Water/ ethanol  
Pale brown 

solid 
26 

EMAC 2126 Cyclohexyl-3-CH3 4-OCH3 Water Ethanol 
Pale yellow 

solid 
26 

EMAC 2127 Cyclohexyl-3-CH3 4-C6H5 Water Water/ethanol ì 
Pale brown 

solid 
24 

EMAC 2128 Cyclohexyl-3-CH3 4-CN Water Ethanol 
Pale brown 

solid 
26 

EMAC 2129 Cyclohexyl-3-CH3 4-F Water Water/ethanol ì Pale red solid 26 

EMAC 2130 Cyclohexyl-3-CH3 2,4-F Water Water/ethanol ì Pale red solid 24 

EMAC 2131 Cyclohexyl-3-CH3 2,4-Cl Water Water/ethanol ì  
White-brown 

solid 
26 

EMAC 2132 Cyclopentyl  H Water Water/ ethanol  
Pale brown 

solid 
24 

EMAC 2133 Cyclopentyl 4-Br Water Water/ ethanol  
Pale yellow 

solid 
24 

EMAC 2134 Cyclopentyl 4-Cl Water Water/ethanol  
Pale brown 

solid 
24 
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EMAC 2135 Cyclopentyl 4-NO2 Water Water/ethanol  
Crystalline 

orange solid 
24 

EMAC 2136 Cyclopentyl 3-NO2 Water Water/ethanol  
Pale yellow 

solid 
24 

EMAC 2137 Cyclopentyl 4-CH3 Water Water/ethanol  
Pale brown 

solid 
24 

EMAC 2138 Cyclopentyl 4-OCH3 Water Water/ethanol  
Pale brown 

solid 
24 

EMAC 2139 Cyclopentyl 4-CN Water Water/ethanol  
Pale yellow 

solid 
24 

EMAC 2140 Cyclopentyl 4-C6H5 Water Water/ethanol  Yellow solid 24 

EMAC 2141 Cyclopentyl 2,4-F Water Water/ethanol  
Pale brown 

solid 
24 

EMAC 2142 Cyclopentyl 2,4-Cl Water Water/ethanol  
Pale brown 

solid 
24 
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Synthesis of starting thiosemicarbazones 

 

The starting thiosemicarbazones have been synthesised by slightly modifying the 

procedures reported in the literature. [49] 

In a flask equipped with a reflux condenser, equimolar amounts of 

thiosemicarbazide and of the appropriate ketone are reacted in n-propanol in the 

presence of a catalytic amount of AcOH. The mixture is then refluxed for all the night, and 

the obtain solid is filtered and used without further purification.  

 

According to this procedure the following compounds have been synthesised: 

 

1-cyclohexylidenethiosemicarbazide  

 

O
H2N N

H

C

S

NH2 N
N
H

S

NH2

2-propanol
CH3COOH
∆  

 

M.W.: 171.26 g/mol; RF: 0.82 (eluent: ethyl acetate-hexane 20:1 ); Mp: 155°-156°C; Yield: 

87%, Aspect: crystalline pale yellow solid 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.55 (br s, 6H, CH2, cyclohexyl), 2.19-2.23 (m, 2H, CH2, 

cyclohexyl), 2.38 (br s, 2H, CH2, cyclohexyl), 7.50 (br s, 1H, NH2), 7.93 (br s, 1H, NH2), 10.13 

(br s, 1H, NH). 

 

1-(2-methylcyclohexylidene)thiosemicarbazide  

 

O
H2N NH

C

S

NH2 N
N
H

S

NH2

2-propanol
CH3COOH
∆

CH3 CH3

 

 

M.W.: 185.29 g/mol; RF: 0.77 (eluent: ethyl acetate-hexane 20:1); Mp: 154°-156°C; Yield: 

87%, Aspect: crystalline pale yellow solid 
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1
H-NMR: (500 MHz, CDCl3) 1.08-1.10 (d, J: 6.57, 3H,CH3); 1.77-2.62 (m, 9H, cyclohexyl); 

6.30 (s, 2H, NH2, D2O exch); 8.75 (s, 1H, NH, D2O exch.)



26 

 

 

1-(4-methylcyclohexylidene)thiosemicarbazide  

 

O
H2N N

H

C

S

NH2 N
N
H

S

NH2

H3C H3C2-propanol
CH3COOH
∆  

 

M.W.: 185.29 g/mol; RF: 0.61 (eluent: ethyl acetate-hexane 20:1); Mp: 161°-162°C; Yield: 

66%, Aspect: light yellow powder 

 
1
H-NMR: (500 MHz, CDCl3) δH 0.94 (d, 3H, J: 6.5, CH3), 1.16 (m, 2H, CH2, cyclohexyl), 1.68 

(m, 1H, CH2, cyclohexyl),1.92 (m, 3H, CH2, cyclohexyl),2.19 (m, 1H, CH2, cyclohexyl), 2.28 

(m, 2H, CH2, cyclohexyl),2.71 (m, 1H, CH2, cyclohexyl), 6.53 (br.s, 1H, NH2), 7.27 (br.s, 1H, 

NH2), 8.87 (s, 1H, NH) 

 

1-(3-methylcyclohexylidene)thiosemicarbazide  

 

O

H2N NH

C

S

NH2 N
N
H

S

NH2

H3C H3C

2-propanol
CH3COOH
∆  

 

M.W.: 185.29 g/mol; RF: 0.57 (eluent: ethyl acetate: hexane 20:1); Mp: 108°-110°C; Yield: 

65%, Aspect: pale yellow powder . 

 
1
H-NMR: (500 MHz, CDCl3) δH

 
 0.92 (m, 3H, CH3), 1.13 (m, 1H, CH2, cyclohexyl), 1.35 (m, 

1H, CH2, cyclohexyl), 1.57 (m, 2H, CH2, cyclohexyl), 1.69 (m, 1H, CH2, cyclohexyl), 1.81 (m, 

2H, CH2, cyclohexyl), 2.28 (m, 1H, CH2, cyclohexyl), 2.91 (m, 1H, CH2, cyclohexyl), 7.48 (s, 

1H, NH2), 7.93 (s, 1H, NH2), 10.13 7.48 (s, 1H, NH)  
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1-cyclopentylidenethiosemicarbazide 

 

O

H2N N
H

C

S

NH2 N
N
H

S

NH2

2-propanol
CH3COOH
∆  

 

M.W.: 157.24 g/mol; RF: 0.60 (DCM-ethyl acetate-hexane 10:10:1); Mp: 151°-153°C; Yield: 

80%, Aspect: light yellow powder . 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.73 (m, 2H, J: 9, J: 17.5, CH2, cyclopropyl), 1.84 (m, 2H, J: 9, 

J: 17.5, CH2, cyclopropyl), 2.25 (t, 2H, J: 9, J: 9.5, CH2, cyclopropyl), 2.35 (t, 2H, J: 9, J: 9.5, 

CH2, cyclopropyl), 6.42 (br.s, 1H, NH2), 7.13 (br.s, 1H, NH2), 8.42 6.42 (br.s, 1H, NH) 
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General method for the synthesis of compound EMAC 2097-2142 

 

Equimolar amounts of cycloalkylthiosemicarbazone and α-halogen keton are 

reacted at RT in water or2 -propanol. The mixture was stirring for a period ranging 

between 24-32 hours and, a forming product was formed. The mixture was stopped and 

the solid filtered. The product was washed with ethyl ether and crystallised from ethanol, 

water/ethanol; acetonitrile or hexane. 

 

According to this method, the following listed compounds have been synthesised. 

 

EMAC 2097  

1-cyclohexylidene-2-(4-phenylthiazol-2-yl)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

 

 
1
H-NMR: (500 MHz, CDCl3 ) δH 1.67 (m, 2H, CH2, cyclohexyl), 1.78 (m, 4H, CH2, 

cyclohexyl), 2.40 (t, 2H, J: 6.3, CH2, cyclohexyl), 2.64 (t, 2H, J: 6.5, CH2, cyclohexyl), 6.68 (s, 

1H, CH, thiazole), 7.48 (m, 3H, CH, Phenyl), 7.72 (m, 2H, CH, Phenyl), 12.51 (br.s, 1H, NH, 

D2O exch.) 

 

EMAC 2098  

1-(4-(4-bromophenyl)thiazol-2-yl)-2-cyclohexylidenehydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

Br

Br  
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1
H-NMR: (500 MHz, CDCl3 ) δH 1.67 (m, 2H, CH2, cyclohexyl), 1.78 (m, 4H, CH2, cyclohexyl), 

2.40 (t, 2H, J: 6.3, CH2, cyclohexyl), 2.63 (t, 2H, J: 6.5, CH2, cyclohexyl), 6.69 (s, 1H, CH, 

thiazole), 7.60 (m, 4H, CH, Phenyl), 12.45 (br.s, 1H, NH, D2O exch.) 

EMAC 2099  

1-(4-(4-chlorophenyl)thiazol-2-yl)-2-cyclohexylidenehydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

Cl

Cl

 
1
H-NMR: (500 MHz, CDCl3 ) δH 1.67 (m, 2H, CH2, cyclohexyl), 1.72 (m, 4H, CH2, cyclohexyl), 

2.37 (m, 4H, CH2, cyclohexyl), 6.79 (s, 1H, CH, thiazole), 7.36 (d, 2H, J: 8.5, CH, Phenyl), 

7.70 (d, 2H, J: 8.5, CH, Phenyl), 12.55 (br.s, 1H, NH, D2O exch.) 

 

EMAC 2100 

1-(4-(4-nitrophenyl)thiazol-2-yl)-2-cyclohexylidenehydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

O2N

NO2  

 
1
H-NMR: (500 MHz, CDCl3) δH 1.70 (m, 6H, CH2, cyclohexyl), 2.31 (m, 2H, CH2, cyclohexyl), 

2.38 (m, 2H, CH2, cyclohexyl), 7.07 (s, 1H, CH, thiazole), 7.93 (d, 2H, J: 9.0, CH, Phenyl), 

8.24 (d, 2H, J: 8.9, CH, Phenyl), 8.40 (s, 1H, NH, D2O exch) 
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EMAC 2101 

1-(4-(4-methylphenyl)thiazol-2-yl)-2-cyclohexylidenehydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

H3C

CH3  
1
H-NMR: (500 MHz, CDCl3) δH 1.67 (m, 2H, CH2, cyclohexyl), 1.78 (m, 4H, CH2, cyclohexyl), 

2.39 (m, 5H, CH2, cyclohexyl + CH3), 2.64 (m, 2H, CH2, cyclohexyl), 6.60 (s, 1H, CH, 

thiazole), 7.28 (d, 2H, J: 7.8, CH, Phenyl), 7.60 (d, 2H, J: 8.2, CH, Phenyl), 12.49 (br.s, 1H, 

NH, D2O exch) 

 

EMAC 2102 

1-(4-(4-methoxyphenyl)thiazol-2-yl)-2-cyclohexylidenehydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

2-propanol / R.T.

H3CO

OCH3

 
1
H-NMR: (500 MHz, CDCl3) δH 1.67 (m, 2H, CH2, cyclohexyl), 1.77 (m, 4H, CH2, cyclohexyl), 

2.39 (t, 2H, J: 6.3, CH2, cyclohexyl), 2.63 (t, 2H, J: 6.5, CH2, cyclohexyl), 3.85 (s, 3H, OCH3), 

6.50 (s, 1H, CH, thiazole), 6.99 (d, 2H, J: 8.8, CH, Phenyl), 7.65 (d, 2H, J: 8.8, CH, Phenyl), 

12.40 (br.s, 1H, NH) 
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EMAC 2103 

1-(4-(4-cyanophenyl)thiazol-2-yl)-2-cyclohexylidenehydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

NC

CN  

 
1
H-NMR: (500 MHz, CDCl3) δH 1.65 (m, 4H, CH2, cyclohexyl), 1.74 (m, 2H, CH2, cyclohexyl), 

2.28 (m, 2H, CH2, cyclohexyl), 2.37 (m, 2H, CH2, cyclohexyl), 7.00 (s, 1H, CH, thiazole), 7.65 

(d, 2H, J: 8.3, CH, Phenyl), 7.87 (d, 2H, J: 8.4, CH, Phenyl), 8.54 (s, 1H, NH) 

 

EMAC 2104 

1-(2-methylcyclohexylidene)-2-(4-phenylthiazol-2-yl)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T.CH3

CH3

 

 
1
H-NMR: (500 MHz, CDCl3 ) δH 1.19 (s, 3H, CH3), 1.33 (m, 1H, CH, cyclohexyl), 1.51 (m, 2H, 

CH2, cyclohexyl), 1.79 (m, 1H, CH , cyclohexyl), 1.86 (m, 1H, CH, cyclohexyl), 1.95 (m, 2H, 

CH2, cyclohexyl), 2.37 (m, 1H, CH, cyclohexyl), 2.60 (m, 1H, CH, cyclohexyl), 6.84 (s, 1H, 

CH, thiazole), 7.29 (m, 1H, CH, Phenyl), 7.38 (d, 2H, J: 7.7, CH, Phenyl), 7.79 (d, 2H, J: 6.6, 

CH, Phenyl), 8.44 (br.s, 1H, NH) 

 



32 

 

 

EMAC 2105 

1-(4-(4-bromophenyl)thiazol-2-yl)-2-(2-methylcyclohexylidene)hydrazine 

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.CH3

CH3

Br

Br

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.18 (s, 3H, CH3), 1.32 (m, 1H, CH, cyclohexyl), 1.51 (m, 2H, 

CH2, cyclohexyl), 1.90 (m, 4H, CH2, cyclohexyl), 2.37 (m, 1H, CH, cyclohexyl), 2.58 (m, 1H, 

CH, cyclohexyl), 6.84 (s, 1H, CH ,thiazole), 7.49 (d, 2H, J: 8.5, CH, Phenyl), 7.66 (d, 2H, J: 

8.5, CH, Phenyl), 8.46 (br.s, 1H, NH, D2O exch.) 

 

EMAC 2106 

1-(4-(4-chlorophenyl)thiazol-2-yl)-2-(2-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.CH3

CH3

Cl

Cl

 
1
H-NMR: (500 MHz, CDCl3) δH 1.17 (s, 3H, CH3), 1.32 (m, 1H, CH, cyclohexyl), 1.54 (m, 2H, 

CH2, cyclohexyl), 1.80 (m, 1H, CH, cyclohexyl), 1.89 (m, 1H, CH, cyclohexyl), 1.99 (m, 2H, 

CH2, cyclohexyl), 2.39 (m, 1H, CH, cyclohexyl), 2.70 (m, 1H, CH, cyclohexyl), 6.79 (s, 1H, 

CH, thiazole), 7.37 (d, 2H, J: 8.5 CH, Phenyl), 7.70 (d, 2H, J: 8.5 CH, Phenyl), NH not 

detected 
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EMAC 2107 

1-(2-methylcyclohexylidene)-2-(4-(4-nitrophenyl)thiazol-2-yl)hydrazine 

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.CH3

CH3

NO2

O2N

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.19 (s, 3H, CH3), 1.33 (m, 1H, CH, cyclohexyl), 1.55 (m, 2H, 

CH2, cyclohexyl), 1.81 (m, 1H, CH, cyclohexyl), 1.91 (m, 1H, CH, cyclohexyl), 1.98 (m, 2H, 

CH2, cyclohexyl), 2.39 (m, 1H, CH , cyclohexyl), 2.62 (m, 1H, CH, cyclohexy), 7.07 (s, 1H, 

CH, thiazole), 7.94 (d, 2H, J: 8.9, CH, Phenyl), 8.24 (d, 2H, J: 8.9, CH, Phenyl), 8.41 (br.s, 1H, 

NH) 

 

EMAC 2108 

1-(4-(4-methoxyphenyl)thiazol-2-yl)-2-(2-methylcyclohexylidene)hydrazine 

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

CH3

CH3

OCH3

H3CO

2-propanol / R.T.

 
1
H-NMR: (500 MHz, CDCl3 ) δH 1.16 (s, 3H, CH3), 1.34 (m, 1H, CH, cyclohexyl), 1.55 (m, 2H, 

CH2, cyclohexyl), 1.80 (m, 1H, CH, cyclohexyl), 1.98 (m, 2H, CH2, cyclohexyl), 2.19 (m, 1H, 

CH, cyclohexyl), 2.44(m, 1H, CH, cyclohexyl), 3.02 (m, 1H, CH, cyclohexyl), 3.85 (s, 3H, 

OCH3), 6.50 (s, 1H, CH, thiazole), 6.99 (d, 2H, J: 8.4, CH, phenyl), 7.66 (d, 2H, J: 8.4, CH, 

phenyl), 12.46 (s, 1H, NH) 
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EMAC 2109 

1-(4-(4-cyanophenyl)thiazol-2-yl)-2-(2-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.CH3

CH3

CN

NC

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.18 (s 3H, CH3), 1.29 (m, 1H, CH, cyclohexyl), 1.52 (m, 2H, 

CH2, cyclohexyl), 1.88 (m, 4H, CH2, cyclohexyl), 2.37 (m, 1H, CH, cyclohexyl), 2.60 (m, 1H, 

CH, cyclohexyl), 7.00 (s, 1H , CH, thiazole), 7.65 (d, 2H, J: 8.3, CH, phenyl), 7.88 (d, 2H, J: 

8.3, CH, phenyl), 8.50 (br.s, 1H, NH) 

 

EMAC 2110 

1-(4-(4-fluorophenyl)thiazol-2-yl)-2-(2-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

CH3

CH3

F

F

2-propanol / R.T.

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.16 (s, 3H, CH3), 1.35 (m, 1H, CH, cyclohexyl), 1.58 (m, 2H, 

CH2, cyclohexyl), 1.81 (m, 1H, CH, cyclohexyl), 1.99 (m, 2H, CH2, cyclohexyl), 2.20 (m, 1H, 

CH, cyclohexyl), 2.44 (m, 1H, CH, cyclohexyl), 3.01 (m, 1H, CH, cyclohexyl), 6.62 (s, 1H, CH, 

thiazole), 7.18 (m, 2H, CH, phenyl), 7.72 (dd, 2H, J: 4.9, J: 8.8, CH, phenyl), 12.45 (br.s, 1H, 

NH) 
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EMAC 2111 

1-(4-methylcyclohexylidene)-2-(4-phenylthiazol-2-yl)hydrazine 

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T.H3C

H3C

 
1
H-NMR: (500 MHz, CDCl3) δH 0.92 (d, 3H, J: 6.5, CH3), 1.04 (m, 1H, CH2, cyclohexyl), 1.21 

(m, 1H, CH2, cyclohexyl), 1.63 (m, 1H, CH2, cyclohexyl), 1.77 (m, 1H, CH2, cyclohexyl), 1.85 

(m, 2H, CH2, cyclohexyl), 2.21 (m, 1H, CH2, cyclohexyl), 2.51 (m, 1H, CH2, cyclohexyl), 2.63 

(m, 1H, CH2, cyclohexyl), 6.81 (s, 1H, thiazole), 7.27 (t, 1H, J: 7.5, Ar-CH ), 7.36 (t, 2H, J: 7.5, 

Ar-CH), 7.75 (d, 2H, J: 7.5, Ar-CH), 12,22 (s, 1H, NH, D2O exch.) 

 

EMAC 2112 

1-(4-(4-bromophenyl)thiazol-2-yl)-2-(4-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T.H3C

H3C

Br

Br

 

 
1
H-NMR: (500 MHz, CDCl3) δH 0.97 (d, 3H, J: 7, CH3), 1.20 (m, 2H, CH2, cyclohexyl), 1.70 

(m, 1H, CH2, cyclohexyl), 1.90 (m, 2H, CH2, cyclohexyl), 2.00 (m, 1H, CH2, cyclohexyl), 2.26 

(m, 1H, CH2, cyclohexyl), 2.54 (m, 1H, CH2, cyclohexyl), 2.79 (m, 1H, CH2, cyclohexyl), 6.78 

(s, 1H, thiazol ), 7.53 (d, 2H, J: 8.5, Ar-CH), 7.63 (d, 2H, J: 8.5, Ar-CH), NH not detected 
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EMAC 2113 

1-(4-(4-chlorophenyl)thiazol-2-yl)-2-(4-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T.H3C

H3C

Cl

Cl

 

 
1
H-NMR: (500 MHz, CDCl3) δH 0.98 (d, 3H, J: 6.5, CH3), 1.23 (m, 2H, CH2, cyclohexyl), 1.72 

(m, 1H, CH2, cyclohexyl), 1.94 (m, 2H, CH2, cyclohexyl), 2.09 (m, 1H, CH2, cyclohexyl), 2.78 

(m, 1H, CH2, cyclohexyl), 2.54 (m, 1H, CH2, cyclohexyl), 2.93 (m, 1H, CH2, cyclohexyl), 6.73 

(s, 1H, thiazole), 7.41 (d, 2H, J: 8.5, Ar-CH), 7.67 (d, 2H, J: 8.5, Ar-CH),  

 

EMAC 2114 

1-(4-(4-chlorophenyl)thiazol-2-yl)-2-(4-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.H3C

H3C

NO2

O2N

 

 
1
H-NMR: (500 MHz, CDCl3) δH 0.97 (d, 3H, J: 6.5, CH3), 1.15 (m, 1H, CH2, cyclohexyl), 1.25 

(m, 1H, CH2, cyclohexyl), 1.70 (m, 1H, CH2, cyclohexyl), 1.94 (m, 3H, CH2, cyclohexyl), 2.26 

(m, 1H, CH2, cyclohexyl), 2.54 (m, 1H, CH2, cyclohexyl), 2.66 (m, 1H, CH2, cyclohexyl), 7.06 

(s, 1H, thiazole), 7.93 (d, 2H, J: 8.5, Ar-CH), 8.24 (d, 2H, J: 8.5, Ar-CH), 8.59 (br.s, 1H, NH) 
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EMAC 2115 

1-(4-methylcyclohexylidene)-2-(4-p-tolylthiazol-2-yl)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T.H3C

H3C

CH3

H3C

 
1
H-NMR: (500 MHz, CDCl3) δH 0.97 (d, 3H, J: 6.5, CH3), 1.21 (m, 2H, CH2, cyclohexyl), 1.71 

(m, 1H, CH2, cyclohexyl), 1.92 (m, 2H, CH2, cyclohexyl), 2.05 (m, 1H, CH2, cyclohexyl), 2.27 

(m, 1H, CH2, cyclohexyl), 2.37 (s, 3H, CH3), 2.54 (m, 1H, CH2, cyclohexyl), 2.90 (m, 1H, CH2, 

cyclohexyl), 6.69 (s, 1H, thiazole), 7.23 (d, 2H, J: 8, Ar-CH), 7.63 (d, 2H, J: 8, Ar-CH), 12.52 

(br.s, 1H, NH) 

 

EMAC 2116 

1-(4-(4-methoxyphenyl)thiazol-2-yl)-2-(4-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T.H3C

H3C

OCH3

H3CO

 

 
1
H-NMR: (500 MHz, CDCl3) δH 0.94 (d, 3H, J: 6.5, CH3), 1.08 (m, 1H, CH2, cyclohexyl), 1.23 

(m, 1H, CH2, cyclohexyl), 1.66 (m, 1H, CH2, cyclohexyl), 1.86 (m, 3H, CH2, cyclohexyl), 2.23 

(m, 1H, CH2, cyclohexyl), 2.53 (m, 1H, CH2, cyclohexyl), 2.68 (m, 1H, CH2, cyclohexyl), 3.83 

(s, 3H, OCH3 ), 6.67 (s, 1H, thiazole), 6.92 (d, 2H, J: 9, Ar-CH), 7.69 (d, 2H, J: 9, Ar-CH), NH 

not deteced 
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EMAC 2117 

1-(4-(4-biphenyl)thiazol-2-yl)-2-(4-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

N

N
H N

S

H20 / R.T.H3C

H3C

O

Br

 

 
1
H-NMR: (500 MHz, CDCl3) δH 0.95 (d, 3H, J: 6.5, CH3), 1.12 (m, 1H, CH2,, cyclohexyl), 1.24 

(m, 1H, CH2, cyclohexyl), 1.67 (m, 1H, CH2, cyclohexyl), 1.89 (m, 3H, CH2, cyclohexyl), 2.25 

(m, 1H, CH2, cyclohexyl), 2.54 (m, 1H, CH2, cyclohexyl), 2.69 (m, 1H, CH2, cyclohexyl), 6.87 

(s, 1H, thiazole), 7.35 (t, 1H, J: 7, Ar-CH), 7.45 (t, 2H, J: 7.5, Ar-CH), 7.63 (d, 4H, J: 8, Ar-CH), 

7.85 (d, 2H, J: 8, Ar-CH), NH not detected 

 

EMAC 2118 

1-(4-(4-cyanophenyl)thiazol-2-yl)-2-(4-methylcyclohexylidene)hydrazine (EMAC 2118) 

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T.H3C

H3C

CN

NC

 
1
H-NMR: (500 MHz, CDCl3) δH 0.98 (d, 3H, J: 7, CH3), 1.23 (m, 2H, CH2, cyclohexyl), 1.73 

(m, 1H, CH2, cyclohexyl), 1.95 (m, 2H, CH2, cyclohexyl), 2.09 (m, 1H, CH2, cyclohexyl), 2.28 

(m, 1H, CH2, cyclohexyl), 2.55 (m, 1H, CH2, cyclohexyl), 2.89 (m, 1H, CH2, cyclohexyl), 6.92 

(s, 1H, thiazole), 7.72 (d, 2H, J: 8.5, Ar-CH), 7.86 (d, 2H, J: 8.5, Ar-CH), 12.45 (s, 1H, NH, 

D2O exch.) 
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EMAC 2119 

1-(4-(4-fluorophenyl)thiazol-2-yl)-2-(4-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T.H3C

H3C

F

F

 
1
H-NMR: (500 MHz, CDCl3) δH 0.98 (d, 3H, J: 7, CH3), 1.24 (m, 2H, CH2, cyclohexyl), 1.73 

(m, 1H, CH2, cyclohexyl), 1.96 (m, 2H, CH2, cyclohexyl), 2.15 (m, 1H, CH2, cyclohexyl), 2.29 

(m, 1H, CH2, cyclohexyl), 2.55 (m, 1H, CH2, cyclohexyl), 3.02 (m, 1H, CH2, cyclohexyl), 6.63 

(s, 1H, thiazole), 7.17 (d, 2H, J: 8.5, Ar-CH), 7.70 (d, 2H, J: 8.5, Ar-CH), 12.75 (s, 1H, NH, 

D2O exch.) 

 

EMAC 2120 

1-(4-(2,4-chlorophenyl)thiazol-2-yl)-2-(4-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Cl
N

N
H N

S

H20 / R.T.H3C

H3C

Cl

Cl

Cl

Cl

 

 
1
H-NMR: (500 MHz, CDCl3) δH 0.97 (s, 3H, CH3), 1.24 (m, 2H, CH2, cyclohexyl), 1.73 (m, 1H, 

CH2, cyclohexyl), 1.96 (m, 2H, CH2, cyclohexyl), 2.17 (m, 1H, CH2, cyclohexyl), 2.29 (m, 1H, 

CH2, cyclohexyl), 2.54 (m, 1H, CH2, cyclohexyl), 3.04 (m, 1H, CH2, cyclohexyl), 6.97 (s, 1H, 

thiazole), 7.41 (s, 1H, Ar-CH), 7.57 (m, 2H, Ar-CH), 12.86 (s, 1H, NH, D2O exch.) 
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EMAC2121 

1-(3-methylcyclohexylidene)-2-(4-phenylthiazol-2-yl)hydrazine 

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

H3C

H3C

 

 
1
H-NMR: (500 MHz, CDCl3) δH 0.98 (m, 3H, J: 6.5, J: 13, CH3), 1.17 (m, 1H, CH2, cyclohexyl), 

1.56 (m, 2H, CH2, cyclohexyl), 1.85 (m, 3H, CH2, cyclohexyl), 2.15 (m, 1H, CH2, cyclohexyl), 

2.51 (m, 1H, CH2, cyclohexyl), 2.64 (m, 1H, CH2, cyclohexyl), 6.82 (d, 1H, J: 2.5, thiazol), 

7.31 (t, 1H, J: 7.5, Ar-CH), 7.39 (t, 2H, J: 7.5, Ar-CH), 7.78 (d, 2H, J: 8, J: 2.5, Ar-CH), NH not 

detected 

 

EMAC 2122 

1-(4-(4-bromophenyl)thiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

Br

Br
H3C

H3C

 
1
H-NMR: (500 MHz, CDCl3) δH 1.10 (m, 3H, J: 6, CH3), 1.26 (m, 1H, CH2, cyclohexyl), 1.57 

(m, 1H, CH2, cyclohexyl), 1.83 (m, 2H, CH2, cyclohexyl), 2.08 (m, 3H, CH2, cyclohexyl), 2.57 

(m, 1H, CH2, cyclohexyl), 3.03 (m, 1H, CH2, cyclohexyl), 6.70 (s, 1H, thiazole), 7.59 (d, 2H, J: 

8.5, Ar-CH), 7.63 (d, 2H, J: 8.5, Ar-CH), NH not detected 
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EMAC 2123 

1-(4-(4-chlorophenyl)thiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

Cl

Cl

H3C

H3C

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.07 (m, 3H, J: 6.5, CH3), 1.26 (m, 1H, CH2, cyclohexyl), 1.56 

(m, 1H, CH2, cyclohexyl), 1.82 (m, 2H, CH2, cyclohexyl), 2.08 (m, 3H, CH2, cyclohexyl), 2.52 

(m, 1H, CH2, cyclohexyl), 3.04 (m, 1H, CH2, cyclohexyl), 6.69 (s, 1H, thiazole), 7.47 (d, 2H, J: 

8.5, Ar-CH), 7.66 (d, 2H, J: 8.5, Ar-CH), NH not detected 

 

EMAC 2124 

1-(4-(4-nitrophenyl)thiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

NO2

O2N

H3C

H3C

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.01 (m, 3H, J: 6, CH3), 1.21 (m, 1H, CH2, cyclohexyl ), 1.56 

(m, 1H, CH2, cyclohexyl), 1.64 (m, 2H, CH2, cyclohexyl), 1.82 (m, 1H, CH2, cyclohexyl), 1.93 

(m, 1H, CH2, cyclohexyl), 2.18 (m, 1H, CH2, cyclohexyl), 2.49 (m, 1H, CH2, cyclohexyl), 2.61 

(m, 1H, CH2, cyclohexyl), 7.07 (s, 1H, thiazole), 7.93 (d, 2H, J: 8.5, Ar-CH), 8.24 (d, 2H, J: 

8.5, Ar-CH), 8.71 (br.s, 1H, NH) 
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EMAC 2125 

1-(3-methylcyclohexylidene)-2-(4-p-tolylthiazol-2-yl)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

CH3

H3C

H3C

H3C

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.05 (m, 3H, J: 6, CH3), 1.21 (m, 1H, CH2, cyclohexyl), 1.53 

(m, 1H, CH2, cyclohexyl), 1.71 (m, 1H, CH2, cyclohexyl), 1.82 (m, 1H, CH2, cyclohexyl), 1.91 

(m, 1H, CH2, cyclohexyl), 2.01 (m, 1H, CH2, cyclohexyl), 2.09 (m, 1H, CH2, cyclohexyl), 2.38 

(s, 3H, CH3), 2.53 (m, 1H, CH2, cyclohexyl), 2.99 (m, 1H, CH2, cyclohexyl), 6.64 (s, 1H, 

thiazole), 7.26 (d, 2H, J: 8, Ar-CH), 7.61 (d, 2H, J: 8, Ar-CH), NH not detected 

 

EMAC 2126 

1-(4-(4-methoxyphenyl)thiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

OCH3

H3CO

H3C

H3C

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.08 (m, 3H, J: 6.5, CH3), 1.23 (m, 1H, CH2, cyclohexyl), 1.54 

(m, 1H, CH2, cyclohexyl), 1.75 (m, 1H, CH2, cyclohexyl), 1.83 (m, 1H, CH2, cyclohexyl), 1.93 

(m, 1H, CH2, cyclohexyl), 2.04 (m, 1H, CH2, cyclohexyl), 2.12 (m, 1H, CH2, cyclohexyl), 2.51 

(m, 1H, CH2, cyclohexyl), 3.05 (m, 1H, CH2, cyclohexyl), 3.85 (s, 3H, OCH3), 6.52 (s, 1H, 

thiazole), 6.69 (d, 2H, J: 9, Ar-CH), 7.65 (d, 2H, J: 9, Ar-CH), 12.41 (br.s, 1H, NH) 
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EMAC 2127 

1-(4-(4-phenylphenyl)thiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

N

N
H N

S

H20 / R.T.

O

Br

H3C

H3C

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.00 (m, 3H, J: 6.5, CH3), 1.15 (m, 1H, CH2, cyclohexyl), 1.41 

(m, 1H, CH2, cyclohexyl), 1.72 (m, 1H, CH2, cyclohexyl), 1.78 (m, 1H, CH2, cyclohexyl), 1.83 

(m, 1H, CH2, cyclohexyl), 1.87 (m, 1H, CH2, cyclohexyl), 1.88 (m, 1H, CH2, cyclohexyl), 2.54 

(m, 1H, CH2, cyclohexyl), 2.63 (m, 1H, CH2, cyclohexyl), 6.88 (s, 1H, thiazole), 7.36 (t, 1H, J: 

7.5, Ar-CH), 7.45 (t, 2H, J: 7.5, Ar-CH), 7.63 (m, 4H, J: 7.5, J: 8.5, Ar-CH), 7.86 (d, 2H, J: 8.5, 

Ar-CH), 8.97 (br.s, 1H, NH) 

 

EMAC 2128 

1-(4-(4-cyanophenyl)thiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

CN

NC

H3C
H3C

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.02 (m, 3H, J: 6.5, CH3), 1.20 (m, 1H, CH2, cyclohexyl), 1.52 

(m, 1H, CH2, cyclohexyl), 1.83 (m, 4H, CH2, cyclohexyl), 2.18 (m, 1H, CH2, cyclohexyl), 2.51 

(m, 1H, CH2, cyclohexyl), 2.69 (m, 1H, CH2, cyclohexyl), 6.97 (s, 1H, thiazol), 7.69 (d, 2H, J: 

8, Ar-CH), 7.87 (d, 2H, J: 8, Ar-CH), NH not detected 
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EMAC 2129 

1-(4-(4-fluorophenyl)thiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazine 

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

F

F

H3C

H3C

 
1
H-NMR: (500 MHz, CDCl3) δH 1.05 (m, 3H, J: 6.5, CH3), 1.22 (m, 1H, CH2, cyclohexyl), 1.52 

(m, 1H, CH2, cyclohexyl), 1.94 (m, 4H, CH2, cyclohexyl), 2.17 (m, 1H, CH2, cyclohexyl), 2.50 

(m, 1H, CH2, cyclohexyl), 3.00 (m, 1H, CH2, cyclohexyl), 6.63 (s, 1H, thiazole), 7.16 (m, 2H, 

J: 8.5, Ar-CH), 7.71 (m, 2H, J: 8.5, Ar-CH), NH not detected 

 

EMAC 2130 

1-(4-(2,4-fluorophenyl)thiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazine 

 

N
N
H

S

NH2

O

C
H2

Cl

N

N
H N

S

H20 / R.T.
F

F

F

F
H3C

H3C

 
1
H-NMR: (500 MHz, CDCl3) δH 1.05 (m, 3H, J: 6.5, CH3), 1.24 (m, 1H, CH2, cyclohexyl), 1.56 

(m, 1H, CH2, cyclohexyl), 1.77 (m, 1H, CH2, cyclohexyl), 1.83 (m, 1H, CH2, cyclohexyl), 1.93 

(m, 1H, CH2, cyclohexyl), 2.11 (m, 2H, CH2, cyclohexyl), 2.51 (m, 1H, CH2, cyclohexyl), 2.97 

(m, 1H, CH2, cyclohexyl), 6.94 (s, 1H, thiazole), 6.97 (m, 1H, Ar-CH), 7.07 (m, 1H, J: 8, Ar-

CH), 7.88 (m, 1H, J: 8, Ar-CH), 12.69 (br.s, 1H, NH) 
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EMAC 2131 

1-(4-(2,4-chlorophenyl)thiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Cl

N

N
H N

S

H20 / R.T.
Cl

Cl

Cl

Cl
H3C

H3C

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.05 (m, 3H, J: 6.5, CH3), 1.23 (m, 1H, CH2, cyclohexyl), 1.54 

(m, 1H, CH2, cyclohexyl), 1.75 (m, 1H, CH2, cyclohexyl), 1.82 (m, 1H, CH2, cyclohexyl), 1.92 

(m, 1H, CH2, cyclohexyl), 1.99 (m, 1H, CH2, cyclohexyl), 2.15 (m, 1H, CH2, cyclohexyl), 2.50 

(m, 1H, CH2, cyclohexyl), 2.98 (m, 1H, CH2, cyclohexyl), 6.98 (s, 1H, thiazole), 7.41 (d, 1H, J: 

8.5, J: 2; Ar-CH), 7.53 (s, 1H, J: 2, Ar-CH), 7.62 (m, 1H, J: 8.5, Ar-CH), 12.84 (br.s, 1H, NH) 

 

EMAC 2132 

1-cyclopentylidene-2-(4-phenylthiazol-2-yl)hydrazine  

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T.
 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.78 (m, 2H, J: 6.5, J: 13.5, CH2, cyclopropyl), 1.88 (m, 2H, J: 

7, J: 14, CH2, cyclopropyl), 2.28 (t, 2H, J: 7.5, J: 14.5, CH2, cyclopropyl), 2.29 (t, 2H, J: 7, J: 

14.5, CH2, cyclopropyl), 6.80 (s, 1H, thiazole), 7.29 (t, 1H, J: 7.5, J: 1.5 Ar-CH), 7.38 (t, 2H, J: 

8, J: 7.5, J: 1.5 Ar-CH), 7.76 (d, 2H, J: 8, J: 1.5, Ar-CH), NH not detected 
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EMAC 2133 

1-(4-(4-bromophenyl)thiazol-2-yl)-2-cyclopentylidenehydrazine 

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T.
Br

Br

 
1
H-NMR: (500 MHz, CDCl3) δH 1.83 (m, 2H, J: 6.5, J: 13.5, CH2, cyclopropyl), 1.92 (m, 2H, J: 

7, J: 13.5, CH2, cyclopropyl), 2.47 (t, 2H, J: 7.5, J: 14.5, CH2, cyclopropyl), 2.51 (t, 2H, J: 7.5, 

J: 14.5, CH2, cyclopropyl), 6.76 (s, 1H, thiazole), 7.55 (d, 2H, J: 8.5, Ar-CH), 7.61 (t, 2H, J: 8, 

Ar-CH), NH not detected 

 

EMAC2134 

1-(4-(4-chlorophenyl)thiazol-2-yl)-2-cyclopentylidenehydrazine  

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T. Cl

Cl

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.82 (m, 2H, J: 6.5, J: 13.5, CH2, cyclopropyl), 1.92 (m, 2H, J: 

7, J: 14, CH2, cyclopropyl), 2.47 (t, 2H, J: 7.5, J: 14.5, CH2, cyclopropyl), 2.51 (t, 2H, J: 7.5, J: 

14.5, CH2, cyclopropyl), 6.74 (s, 1H, thiazole), 7.40 (d, 2H, J: 9, Ar-CH), 7.67 (t, 2H, J: 8.5, 

Ar-CH), NH not detected 
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EMAC 2135 

1-(4-(4-nitrophenyl)thiazol-2-yl)-2-cyclopentylidenehydrazine (EMAC 2135) 

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

NO2

O2N

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.81 (m, 2H, J: 7, J: 14, CH2, cyclopropyl), 1.92 (m, 2H, J: 7, J: 

14, CH2, cyclopropyl), 2.57 (t, 2H, J: 7, J: 14, CH2, cyclopropyl), 2.50 (t, 2H, J: 7, J: 14, CH2, 

cyclopropyl), 7.04 (s, 1H, thiazol), 7.92 (d, 2H, J: 9, Ar-CH), 8.24 (t, 2H, J: 8.5, Ar-CH), 

 

EMAC 2136 

1-(4-(3-nitrophenyl)thiazol-2-yl)-2-cyclopentylidenehydrazine  

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.

NO2

O2N

 
1
H-NMR: (500 MHz, CDCl3) δH 1.82 (m, 2H, J: 7, J: 13.5, CH2, cyclopropyl), 1.92 (m, 2H, J: 7, 

J: 14, CH2, cyclopropyl), 2.35 (t, 2H, J: 7, J: 14, CH2, cyclopropyl), 2.51 (t, 2H, J: 7, J: 14, CH2, 

cyclopropyl), 6.98 (s, 1H, thiazole), 7.56 (t, 1H, J: 8, Ar-CH), 8.10 (d, 2H, J: 7.5, Ar-CH), 8.14 

(d, 1H, J: 8, Ar-CH), 8.61 (s, 1H, Ar-CH), NH not detected 
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EMAC 2137 

1-(4-(4-methylphenyl)thiazol-2-yl)-2-cyclopentylidenehydrazine 

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.
CH3

H3C

 
1
H-NMR: (500 MHz, CDCl3) δH 1.84 (m, 2H, J: 7, J: 14, CH2, cyclopropyl), 1.93 (m, 2H, J: 7, J: 

14, CH2, cyclopropyl), 2.38 (s, 3H, CH3) 2.52 (t, 2H, J: 7, J: 14, CH2, cyclopropyl), 2.56 (t, 2H, 

J: 7, J: 14, CH2, cyclopropyl), 6.65 (s, 1H, thiazole), 7.26 (d, 2H, J: 8, Ar-CH), 7.62 (d, 2H, J: 8, 

Ar-CH), 11.06 (br.s, 1H, NH) 

 

EMAC 2138 

1-(4-(4-methoxyphenyl)thiazol-2-yl)-2-cyclopentylidenehydrazine 

 

N
N
H

S

NH2

O

C
H2

Br

N

N
H N

S

H20 / R.T.
OCH3

H3CO

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.83 (m, 2H, J: 7, J: 14, CH2, cyclopropyl), 1.93 (m, 2H, J: 7, J: 

14, CH2, cyclopropyl), 2.52 (t, 2H, J: 7, J: 14, CH2, cyclopropyl), 2.57 (t, 2H, J: 7, J: 14, CH2, 

cyclopropyl), 3.84 (s, 3H, OCH3), 6.55 (s, 1H, thiazole), 6.97 (d, 2H, J: 8, Ar-CH), 7.66 (d, 2H, 

J: 8, Ar-CH), 11.00 (br.s, 1H, NH) 
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EMAC 2139 

1-(4-(4-phenylphenyl)thiazol-2-yl)-2-cyclopentylidenehydrazine  

 

N
N
H

S

NH2

N

HN

N

S

H20 / R.T.

O

Br

 

 
1
H-NMR: (500 MHz, CDCl3) δH 1.83 (m, 2H, J: 7, J: 14, CH2, cyclopropyl), 1.93 (m, 2H, J: 7, J: 

14, CH2, cyclopropyl), 2.47 (t, 2H, J: 7, J: 14, CH2, cyclopropyl), 2.52 (t, 2H, J: 7, J: 14, CH2, 

cyclopropyl), 6.79 (s, 1H, thiazol), 7.37 (t, 1H, J: 7, Ar-CH), 7.46 (t, 2H, J: 7.5, Ar-CH), 7.62 

(d, 2H, J: 7, Ar-CH), 7.67 (d, 2H, J: 8.5, Ar-CH), 7.83 (d, 2H, J: 8, Ar-CH), 9.84 (br.s, 1H, NH) 

 

EMAC 2140 

1-(4-(4-cyanophenyl)thiazol-2-yl)-2-cyclopentylidenehydrazine  

 

N
N
H

S

NH2

O

C
H2

Br
N

N
H N

S

H20 / R.T.
CN

NC

 
1
H-NMR: (500 MHz, CDCl3) δH 1.80 (m, 2H, J: 7, J: 14, CH2, cyclopropyl), 1.90 (m, 2H, J: 7, J: 

14, CH2, cyclopropyl), 2.28 (t, 2H, J: 7, J: 14, CH2, cyclopropyl), 2.50 (t, 2H, J: 7, J: 14, CH2, 

cyclopropyl), 6.99 (s, 1H, thiazole), 7.66 (d, 2H, J: 8, Ar-CH), 7.87 (d, 2H, J: 8.5, Ar-CH), NH 

not detected 
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EMAC 2141 

1-(4-(2,4-fluorophenyl)thiazol-2-yl)-2-cyclopentylidenehydrazine 

 

N
N
H

S

NH2

O

C
H2

Cl
N

N
H N

S

H20 / R.T. F

F

F

F

 
1
H-NMR: (500 MHz, CDCl3) δH 1.85 (m, 2H, J: 7, J: 14, CH2, cyclopropyl), 1.94 (m, 2H, J: 7, J: 

14, CH2, cyclopropyl), 2.53 (t, 2H, J: 7, J: 14, CH2, cyclopropyl), 2.62 (t, 2H, J: 7, J: 14, CH2, 

cyclopropyl), 6.94 (s, 1H, thiazole), 6.97 (m, 1H, JH-F : 5.5, Ar-CH), 7.06 (m, 1H, J: 8.5, J: 2.5, 

Ar-CH), 7.87 (m, 1H, J: 8.5, J: 2.5, Ar-CH), 12.32 (br.s, 1H, NH) 

 

EMAC 2142 

1-(4-(2,4-chlorophenyl)thiazol-2-yl)-2-cyclopentylidenehydrazine  

 

N
N
H

S

NH2

O

C
H2

Cl
N

N
H N

S

H20 / R.T. Cl

Cl

Cl

Cl

 
1
H-NMR: (500 MHz, CDCl3) δH 1.85 (m, 2H, J: 7, J: 14, CH2, cyclopropyl), 1.93 (m, 2H, J: 7, J: 

14, CH2, cyclopropyl), 2.53 (t, 2H, J: 7, J: 14, CH2, cyclopropyl), 2.63 (t, 2H, J: 7, J: 14, CH2, 

cyclopropyl), 6.98 (s, 1H, thiazol), 7.41 (d, 1H, J: 8.5, J: 1.5, Ar-CH), 7.63 (s, 1H, J: 1.5, Ar-

CH), 7.63 (d, 1H, J: 8, Ar-CH), 12.62 (br.s, 1H, NH) 
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5.2 Microbiology  

 

5.2.1 Antifungal agents 

 

EMAC 2097-2142 (Figure 1-5) belongs to a series of isothiosemicarbazone cyclic 

analogues they are obtained by the reaction of equimolar amounts of 

cycloalkylthiosemicarbazone and α-halogenoketone in water or 2-propanol. A foaming 

product is formed which is filtered. The obtained solid is crystallized from water/ethanol. 

Amphotericin B was purchased from Sigma Chemicals Co. (St Louis, MO, USA). 

Fluconazole was obtained from a commercially available iv formulation (Diflucanw, Pfizer 

Italia S.p.A.) at 200 mg/100 mL in saline. EMAC compounds and amphotericin B 

were dissolved in dimethyl sulphoxide at 10 mg/mL, for antifungal susceptibility studies, 

and stored at 20°C. The working solution were prepared in the same medium employed 

for the tests. To avoid interference from the solvent, [50] the highest DMSO 

concentration was 1%. 

 

5.2.2 Antifungal susceptibility studies 

 

MIC assays 

 

MICs were determined by the broth microdilution method according to the NCCLS 

reference document M27-A. [51] RPMI 1640 medium (Sigma Chemicals) without sodium 

bicarbonate, supplemented with L-glutamine (Gibco, Invitrogen) and buffered with 0.165 

M MOPS (Sigma Chemicals) at pH 7.0 was used as test medium. Two-fold dilutions of the 

drugs with concentrations in the range 0.008–200 mg/L were obtained in RPMI 1640 and 

dispensed into the wells of plastic microdilution trays. Starting inoculum suspensions 

were obtained by the spectrophotometric method of inoculum preparation, adjusted to 

10
6
 cfu/mL and then diluted in test medium to 2 x 10

4
 cells/mL. A 100 mL yeast inoculum 

was added to each well of the microdilution trays to obtain final concentrations of the 

drugs ranging between 0.004–100 mg/L and final inocula of 10
4
 cells/mL. The inoculated 

plates were incubated overnight at 35°C in a humid atmosphere. After agitation, plates 

were read visually with the aid of a reading mirror and spectrophotometrically with an 

automatic plate reader (Sunrise Tecan, Grödig/Salzburg, Austria) set at 450 nm. For EM-

01D2 and amphotericin B, MICs were determined at the lowest concentration at which a 

100% inhibition of growth compared with drug-free control wells was observed. The MICs 

of fluconazole were read as the lowest concentration of drug that inhibits growth by 80%. 
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MICs determined either visually or by spectrophotometric evaluation showed excellent 

agreement. 

 

Minimum fungicidal concentration assays.  

 

After the MIC determination, a 100 mL sample from each well was seeded on plates 

of Sabouraud dextrose agar. Plates were incubated for 72 h at 35°C. The minimum 

fungicidal concentration (MFC) was defined as the minimum concentration of compound 

that resulted in the growth of less than two colonies representing the killing of > 99% of 

the original inoculum.  
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1 Introduction 

 

1.1 Historical overview 

 

Monoamine oxidase are key role enzymes in the catabolism of amines like 

dopamine (DA), norepinephrine (NE), epinephrine, serotonin (5HT), and 2-

phenylethylamine (PEA). [1] 

 
 

Figure 1. Representation of MAO-B homodimer bound on mitochondrial membrane 

 

Two isoforms of the enzyme, differing for substrates and selectivity of inhibitors [2], 

are known, named MAO-A and MAO-B. 

5HT and NE are preferentially deaminated by the A isoform, while β-

phenylethylamine and benzylamine are MAO-B substrates.  

Moreover, in mammals the inhibition of MAO-B leads to an increase of the DA and 

5HT levels as well as to a neuroprotective effect. [3] 

Both MAO isoforms are important in the metabolism of monoamine 

neurotransmitters and, as a result, MAO inhibitors (MAOi) are studied for the treatment 

of several psychiatric and neurological disorders.  
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In particular, MAO-B inhibitors are coadjuvant in the treatment of both Parkinson’s 

(PD) [4] and Alzheimer’s diseases (AD) [5], while MAO-A inhibitors are used as 

antidepressant and anxiolytic drugs. [6] 

Furthermore, the activity of MAO-B is enhanced by aging and in AD patients. [3,5]  

In addition to this, the deamination reaction, promoted by MAO-B, leads to the 

production of hydrogen peroxide and to other reactive oxygen species responsible for 

neurological damaging. [7-9] 

Also, in the case of PD, a correlation between free radical production and 

development of the pathology has been observed. [10] 

On the basis of the above we can assume that neurodegenerative disorders are 

associated with the production of oxidative stress, with an increased MAO-B activity, and 

with a decrease in the elimination rate of free radical species. [5-14] 

On the contrary, MAO-A does not increase with age, suggesting that a totally 

independent mechanism regulates the expression of the two enzymatic isoforms. [12,14] 

We have recently designed and synthesised some 1-thiocarbamoyl-3,5-diaryl-4,5-

dihydro-(1H)-pyrazole (I), 2-thiazolyl hydrazones (II), and series of 1-(N-

methyl)thiocarbamoyl-3-aryl-4,5-dihydro-1(H)-pyrazoles (III) and 1-thiocarbamoyl-3-aryl-

4,5-dihydro-1(H)-pyrazoles both, highly active and selective towards MAO-B isoform 

(Figure 2). [15-17]  

The synthesis, the MAO inhibition, and the pharmacophoric features of a series of 

1-acetyl-3-aryl-4,5-dihydro-1(H)-pyrazoles have been reported by Chimenti and 

colleagues. [18]  

In particular, it has been observed that the absence of substituents in position 5 of 

the heterocyclic ring, generally leads to a decrease of MAO-A inhibition potency. [15-18] 
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Figure 2. Previously studied MAO inhibitors 
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More recently we reported on the synthesis and biological assessment of novel 2-

thiazolylhydrazones and the computational analysis of their recognition by monoamine 

oxidase B. [19] 

In particular it was highlighted the importance of fluorine atom interacting with the 

water close to the cofactor and the influence of steric bulkiness of substituents in the 

arylidene moiety. Free energy perturbation (FEP) analysis confirmed experimental data. 

 

2 Results and Discussion 

 

Recently, rasagiline, (N-propargyl-1-R-aminoindan,Azilect), a novel selective and 

irreversible MAO-B inhibitor, has been approved for PD therapy [20] while safinamide, a 

selective and reversible MAO-B inhibitor, is currently undergoing clinical phase III for the 

treatment of early stages of PD. [21] 

On this basis, as part of my PhD project, I focused my interest on the synthesis of 

potential MAO-B inhibitors. 

Firstly I have synthesized a series of chalcones EMAC 2143-2154 bearing a 3,4-

dichloro moiety. This substitution demonstrated to be particularly efficient in a series of 

3-Acetyl-2,5-diaryl-2,3-dihydro-1,3,4-oxadiazoles. [22] 

All compounds were characterized with the usual analytic and spectroscopic 

methods and submitted to biochemical assay. 

The structures of EMAC 2143-2154 derivatives are reported in Figure 3. 
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Figure 3. Structures of compounds EMAC 2143-2154 

 

We have, also, synthesized a series of 3,5-dihydropyrazole-1-carbothioamide, 

keeping the same aryl substituents  as in the chalcone series. 

The synthesis was accomplished by reacting chalcones EMAC 2143-2154 with 

thiosemicarbazide in ethanol and KOH alcoholic solution.  

By this method dihydropyrazoles EMAC 2155-2164 were obtained (Figure 4). 
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The synthetic pathway is divided in two different step as reported in Scheme 1 

 

i

ii

R= H, 4-CH3, 3-CH3, 4-OCH3, 4-OH, 3-OH, 4-Cl, 4-Br, 4-NO2, 3-NO2,  3,4-Cl, thiophene

EMAC 2155-2164

Cl

Cl

H

O
CH3

O

R Cl

Cl

O

R

H2N

NH2

H
N S

Cl

Cl

H2N

S

R

EMAC 2143-2154

 

 

Scheme 1. Synthesis of (E)-3-(3,4-dichlorophenyl)-1-arylprop-2-en-1-one derivatives EMAC 

2143-2154. Reagents: (i) ethanol, NaOH 10 %; Synthesis of 5-(3,4-dichlorophenyl)-3-aryl-4,5-

dihydropyrazole-1-carbothioamide EMAC 2155-2164. (ii) thiosemicarbazide, ethanol, KOH  EtOH 

5% 

 

The first step consist of the formation of the chalcone derivative, synthesized via 

Claisen-Schmidt condensation of substituted acetophenone with 3’,4’-

dichlorobenzaldehyde under basic conditions in ethanol. Crude chalcones were purified 

by recrystallization from a suitable solvent. [23, 24]. 

All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 3-6. 

All samples were measured in CDCl3 solvent at 278.1 K temperature on a Varian 

Unity 500 spectrometer and on a Varian Unity 300 spectrometer- 

In the signal assignments the proton chemical shifts are referred to the solvent (1H: 

δ= 7.24 ppm,).  
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In all investigated molecules the NMR analysis supports the “E” configuration 

(Figure 3), according to the double bond protons coupling constants that ranges from 15 

to 16 Hz.  

 

Ar H

Ar'H

O

(E)

 

 

Figure 3. (E)-3-(3,4-dichlorophenyl)-1-arylprop-2-en-1-one 

 

The second step of the synthetic route is the reaction of the chalcone compound 

with thiosemicarbazide under basic condition ( KOH 5% in ethanol) to generate the 

required pyrazolines (Figure 4).  

 

N N

H2N

S

Hc Hb

Ha

Cl

Cl

 

 

Figure 4. 5-(3,4-dichlorophenyl)-3-aryl-4,5-dihydropyrazole-1-carbothioamide 

 

NMR spectroscopy was particularly efficient in the characterization of all the 

compounds. 

In the case of pyrazolines three sets of double doublets signals, in the region of 3.00 

and 6.05 ppm are diagnostic not only of the formation of the pyrazoline ring, but also of 

the exact position of the double bond within the dihydropyrazole nucleus. 

In fact, the two protons (B and C), on the carbon 4 of the pyrazoline ring, couple in 

cis and in trans with different vicinal constants with the proton of carbon 5 (A) (JA-B, JA-C) 

and between them with a geminal characteristic constant (JB-C), giving rise to the 

characteristic fine structure of three double doublets in the 
1
H-NMR spectrum (Figure 5). 
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Figure 5. Schematic representation of the coupling network of H
a
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b
, H

c 
protons 

 

The activity of compounds EMAC 2143-2154 and EMAC 2155-2164 was measured 

on both isoforms of the enzyme (Table 1 and 2).  
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Table 1. EMAC 2143-2154 IC50 values and MAO-B selectivity ratios [IC50 (MAO-A]/[ IC50 

(MAO-B] for the inhibitory effects of the test drugs on the enzymatic activity of human 

recombinant MAO isoforms expressed in baculovirus infected BTI insect cells. 

Cl

Cl
H
C C

H

C

O

D

 

“D”-ring  MAO-A ( IC 50) MAO-B ( IC 50) RATIO 

 
EMAC 2143 ** 44.24 ± 0.07 nM 2.260

#
 

CH3
 

EMAC 2144 ** 3.03 ± 0.04 nM >33.003
#
 

CH3

 

EMAC 2145 ** 8.11 ± 0.17 nM >12.330
#
 

OCH3
 

EMAC 2146 ** 9.44 ± 0.32 nM >10.593
#
 

OH
 

EMAC 2147 5.46 ± 0.43 μM
a
 1.15 ± 0.08 nM 4.748 

OH

 

EMAC 2148 12.31 ± 0.73 μM
a
 59.98 ± 3.63 nM 205 

Cl
 

EMAC 2148 ** 15.45 ± 1.26 nM 6.472
#
 

Br
 

EMAC 2150 ** 9.78 ± 0.63 nM >10.225
#
 

NO2
 

EMAC 2151 4.48 ± 0.47 μM
a
 4.42 ± 0.21 nM 1.014 

NO2  

EMAC 2152 ** 0.93 ± 0.05 nM 107.527 

Cl

Cl

 

EMAC 2153 *** 3.78 ± 024 nM 26.738 

S

 

EMAC 2154 ** 60.97 ± 4.73 nM 1.640 

R-(-)-deprenyl 67.25 ± 1.02 µM
a
 19.60 ± 0.86 nM 3431.12 

All IC50 values shown in this table are the mean ± S.E.M. from five experiments. Level of statistical significance: 
a
P < 0.01 versus the corresponding IC50 values obtained against MAO-B, as determined by ANOVA/Dunnett´s. 

** Inactive at 100 µM (highest concentration tested). 

*** 100 µM inhibits the corresponding MAO activity by approximately 40-50%. At higher concentration the 
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compounds precipitate. 
# 

Values obtained under the assumption that the corresponding IC50 against MAO-A or MAO-B is 100 µM. 

All compounds exhibited good activity towards the B isoform of the enzyme 

corroborating the hypothesis that the introduction of the 3,4-dichloro moiety leads to the 

selectivity towards MAO B (Table 1). 

According to these results also the nature of the “D” ring seems to play a key role in 

determining both activity and selectivity. 

When a hydroxyl substituent is introduced, either in the position 4 or in the position 

3 of the D ring, a decrease in the isoform selectivity was observed. This behavior is also 

observed in the case of the 4-nitro substitution. 

Surprisingly when a nitro group is introduced in the position 3 of the D ring the best 

selectivity and activity are observed. Moreover, also the introduction of methyl or 3,4-di-

chloro substitution leads to active and selective compounds (ie EMAC 2144, EMAC 2145, 

and EMAC 2153). 

Generally all compounds are more active and/or selective with respect to R-(-)-

deprenyl that has been used as standard for the biochemical assay. 

Compounds EMAC 2155-2164 were characterized and submitted to biochemical 

assay. Surprisingly none of the compounds exhibit activity towards MAO B. 
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Table 2. EMAC 2155-2164 IC50 values and MAO-B selectivity ratios [IC50 (MAO-A]/[ IC50 

(MAO-B] for the inhibitory effects of the test drugs on the enzymatic activity of human 

recombinant MAO isoforms expressed in baculovirus infected BTI insect cells. 

N N

D

H2N

Cl

Cl

S

 
“D”-ring  MAO-A ( IC 50) MAO-B ( IC 50) RATIO 

 
EMAC 2155 ** **  

CH3
 

EMAC 2156 ** **  

CH3

 

EMAC 2157 ** **  

OCH3

 

EMAC 2158 ** **  

OH
 

EMAC 2159 31.60 ± 1.98 μM *** <0.32
#
 

OH

 

EMAC 2160 ** ** ** 

Cl
 

EMAC 2161 ** **  

Br
 

EMAC 2162 ** **  

Cl

Cl

 

EMAC 2163 *** ***  

S

 

EMAC 2164 ** **  

R-(-)-deprenyl 67.25 ± 1.02 M 19.60 ± 0.86 nM 3431.12 

All IC50 values shown in this table are the mean ± S.E.M. from five experiments. Level of statistical 

significance: 
a
P < 0.01 versus the corresponding IC50 values obtained against MAO-B, as determined by 

ANOVA/Dunnett´s. 

** Inactive at 100 µM (highest concentration tested). 

*** 100 µM inhibits the corresponding MAO activity by approximately 40-50%. At higher concentration 

the compounds precipitate. 
# 

Values obtained under the assumption that the corresponding IC50 against MAO-A or MAO-B is the 
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highest concentration tested (100 µM). 

Only compound EMAC 2159 is weakly active towards the A isoform of the enzyme.  

It might be conceivable that the 3,4-phenyl moiety in the position 5 of the 

dihydropyrazole ring is constrained in an unfavourable position to interact with the 

enzyme with respect to previously studied analogous compounds. [22] 

In all probability, in the case of derivatives EMAC 2143-2154, an optimal orientation 

of the two aryl substituents, with respect to the pyrazoline compounds, and a higher 

flexibility concur to the observed high activity and selectivity. 

To achieve a better comprehension of this behaviour we performed the alignment 

of the lowest energy conformers of compound EMAC 2144 and of the two enantiomers of 

compound EMAC 2156. 

 

 
Figure 6. A Pharmacophoric alignment of compounds EMAC 2144, (S) and (R)-EMAC 2156; B 

alignment of compounds EMAC 2144, (S) and (R)-EMAC 2156 based on 3,4-dichlorophenyl moiety 

superimposition 

 

In both cases a different orientation of the 4-methylphenyl substituent is observed 

and, in all probability, this leads to the decrease of activity of the pyrazoline derivatives 

with respect to the chalcone series. 

However we are performing docking experiments and dynamic simulations in order 

to achieve a more detailed picture of the behaviour of such compounds and to rationalise 

these data. 

Meanwhile we are concentrating our efforts on the synthesis of other heterocyclic 

rings (ie dihydroisoxazoles) bearing similar substitutions whit the aim of obtaining new 

data that might be helpful in rationalising the SARS of this class of inhibitors. 
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3 Materials and methods 

 

3.1 Chemistry 

 

EMAC 2143-2164 

 

The synthetic pathway is divided in two different step (Scheme 1). 

Unless otherwise noted, starting materials and reagents were obtains from 

commercial suppliers and were used without purification. 

All melting point were determined by the capillary method on a Stuart SMP11 

melting point apparatus and are uncorrected. 

All samples were measured in CDCl3 solvent at 278.1 K temperature on a Varian 

Unity 500 spectrometer and on a Variant Unity 300 spectrometer. In the signal 

assignments the proton chemical shifts are referred to the solvent (1H: δ = 7.24 ppm,). 

Coupling constants J are expressed in hertz (Hz). 

Elemental analyses were obtained on a Perkin–Elmer 240 B microanalyser. 

Analytical data of the synthesised compounds are in agreement with the theoretical data. 

HPLC-MS/MS analysis was performed using an HPLC-MS/MS Varian (Varian Palo 

Alto, CA, USA) system fitted with a 1200 L triple quadrupole mass spectrometer equipped 

with an electrospray ionization source (ESI). A Varian MS workstation version 6.8 software 

was used for data acquisition and processing. Rapid identification was achieved with 

direct infusion of the purified molecule, dissolved in methanol, on the mass spectrometer 

source.  

TLC chromatography was performed using silica gel plates (Merck F 254), spots 

were visualised by UV light. 

All synthesized compounds were characterised by analytical and spectral data as 

listed in Table 3-6 
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Table 3. Chemical and physical data of derivatives EMAC 2143-2154 

 

D

O

Cl

Cl  

Compound “D” ring M.W. Mp (C°) % Yield 

EMAC 2143 
 

277.15 93-95 95 

EMAC 2144 CH3
 

291.17 127-129 93 

EMAC 2145 

CH3

 

291.17 111-113 94 

EMAC 2146 OCH3
 

307.17 125 93 

EMAC 2147 OH
 

293.14 196 92 

EMAC 2148 

OH

 

293.14 135-136 92 

EMAC 2149 Cl
 

311.59 119-120 96 

EMAC 2150 Br
 

356.04 143-144 97 

EMAC 2151 NO2
 

322.14 221-222 95.5 

EMAC 2152 

NO2  

322.14 204-205 94 

EMAC 2153 

Cl

Cl

 

346.04 157-158 94 

EMAC 2154 
S

 

283.17 145 94 
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Table 4. Analytical data of derivatives EMAC 2143-2154 

 

D

O

Cl

Cl  

Compound “D” ring 
Reaction 

solvent 

Crystallisation 

solvent 
Aspect 

Reaction 

time (h) 

EMAC 2143 
 

Ethanol/ 

NaOH 10%  

Water/ethanol 

(1:1) 

Crystalline 

yellow solid 
24 

EMAC 2144 CH3
 

Ethanol/ 

NaOH 10% 

Water/ethanol 

(1:1) 

Crystalline 

yellow solid 
24 

EMAC 2145 

CH3

 

Ethanol/ 

NaOH 10% 

Water/ethanol 

(1:1) 

Crystalline 

yellow solid 
24 

EMAC 2146 OCH3
 

Ethanol/ 

NaOH 10% 

Water/ethanol 

(1:1) 

Crystalline 

yellow solid 
24 

EMAC 2147 OH
 

Ethanol/ 

NaOH 10% 

Water/ethanol 

(1:1) 

Crystalline 

white solid 
24 

EMAC 2148 

OH

 

Ethanol/ 

NaOH 10% 

Water/ethanol 

(1:1) 

Crystalline 

white solid 
24 

EMAC 2149 Cl
 

Ethanol/ 

NaOH 10% 

Water/ethanol 

(1:1) 

Crystalline 

pale-yellow 

solid 

24 

EMAC 2150 Br
 

Ethanol/ 

NaOH 10% 

Water/ethanol 

(1:1) 

Crystalline 

pale-yellow 

solid 

24 

EMAC 2151 NO2
 

Ethanol/ 

NaOH 10% 

Water/ethanol 

(1:1) 

Crystalline 

orange solid 
24 

EMAC 2152 

NO2  

Ethanol/ 

NaOH 10% 

Water/ethanol 

(1:1) 

Crystalline 

pale-orange 

solid 

24 

EMAC 2153 

Cl

Cl

 

Ethanol/ 

NaOH 10% 

Water/ethanol 

(1:1) 

Crystalline 

pale-yellow 

solid 

24 

EMAC 2154 
S

 

Ethanol/ 

NaOH 10% 

Water/ethanol 

(1:1) 

Crystalline 

pale-yellow 

solid 

24 
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Table 5. Chemical and physical data of derivatives EMAC 2155-2164 

 

N N

D

H2N

S

Cl

Cl

 

Compound “D” ring M.W. Mp (C°) % Yield 

EMAC 2155 
 

350.27 165-166 75 

EMAC 2156 CH3
 

364.29 242-243 85 

EMAC 2157 

CH3

 

364.29 182-183 86 

EMAC 2158 OCH3
 

380.29 215-216 85.5 

EMAC 2159 OH
 

366.26 >250 85.5 

EMAC 2160 

OH

 

366.26 229-230 85.5 

EMAC 2161 Cl
 

384.71 242-243 87 

EMAC 2162 Br
 

429.16 >250 85.5 

EMAC 2163 

Cl

Cl

 

419.16 189-191 84 

EMAC 2164 
S

 

356.19 199-200 90 
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Table 4. Analytical data of derivatives EMAC 2155-2164 

 

N N

D

H2N

S

Cl

Cl

 

Compound “D” ring 
Reaction 

solvent 

Crystallisation 

solvent 
Aspect 

Reaction 

time (h) 

EMAC 2155 
 

Ethanol/ 

KOH EtOH 5% 

Water/ethanol 

(1:1) 

Crystalline 

yellow solid 
24 

EMAC 2156 CH3
 

Ethanol/ 

KOH EtOH 5% 

Water/ethanol 

(1:1) 

Crystalline 

pale-yellow 

solid 

24 

EMAC 2157 

CH3

 

Ethanol/ 

KOH EtOH 5% 

Water/ethanol 

(1:1) 

Crystalline 

yellow solid 
24 

EMAC 2158 OCH3
 

Ethanol/ 

KOH EtOH 5% 

Water/ethanol 

(1:1) 

Crystalline 

pale-yellow 

solid 

24 

EMAC 2159 OH
 

Ethanol/ 

KOH EtOH 5% 

Water/ethanol 

(1:1) 

Crystalline 

white solid 
24 

EMAC 2160 

OH

 

Ethanol/ 

KOH EtOH 5% 

Water/ethanol 

(1:1) 

Crystalline 

yellow solid 
24 

EMAC 2161 Cl
 

Ethanol/ 

KOH EtOH 5% 

Water/ethanol 

(1:1) 

Crystalline 

yellow solid 
24 

EMAC 2162 Br
 

Ethanol/ 

KOH EtOH 5% 

Water/ethanol 

(1:1) 

Crystalline 

yellow solid 
24 

EMAC 2163 

Cl

Cl

 

Ethanol/ 

KOH EtOH 5% 

Water/ethanol 

(1:1) 

Crystalline 

yellow solid 
24 

EMAC 2164 
S

 

Ethanol/ 

KOH EtOH 5% 

Water/ethanol 

(1:1) 

Crystalline 

yellow solid 
24 
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Synthesis of starting (E)-3-(3,4-dichlorophenyl)-1-arylprop-2-en-1-one derivatives. 

 

The starting (E)-3-(3,4-dichlorophenyl)-1-arylprop-2-en-1-one derivatives have been 

synthesised by according to the procedures reported in the literature. [23,24] 

In a flask equipped with a reflux condenser, a mixture of acetophenone (1.2 mol) 

was dissolved in ethanol and treated with a solution of sodium hydroxide in water 10%. 

After stirring the mixture for 10 min, a solution of 3,4-dichlorobenzaldehyde (1 mol) was 

added. The mixture was stirred at room temperature for 24 h and and the precipitate that 

formed was filtered off. The filtrate was washed with ethyl ether and recrystallized from 

water/ethanol (1:1) to offer pure compounds. 

 

According to this procedure the following compounds have been synthesised: 

 

EMAC 2143 

(E)-3-(3,4-dichlorophenyl)-1-phenylprop-2-en-1-one 

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl  

 
1
H-NMR (500 MHz, DMSO) δH 7.5 ( m, 5H, Ar-CH + CH=CH), 7.61 ( t, 1H, J: 7.5, Ar-CH), 

7.69 ( d, 1H, J: 15.5, CH=CH), 7.73 (s, 1H, Ar-CH), 8.02 ( d, 2H, J: 7, Ar-CH) 

 

EMAC 2144 

(E)-3-(3,4-dichlorophenyl)-1-p-tolylprop-2-en-1-one  

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl

H3C

CH3  

 
1
H-NMR (500 MHz, DMSO) δH 2.45 ( s, 3H, CH3 ), 7.31 ( d, 2H, J: 7.5, Ar-CH), 7.45 ( d, 1H, J: 

8, Ar-CH), 7.49 ( d, 1H, J:8.5, Ar-CH), 7.5 ( d, 1H, J: 16, CH=CH), 7.68 ( d, 1H, J: 16, CH=CH), 

7.73 ( s, 1H, Ar-CH), 7.93 ( d, 2H, J: 8.5, Ar-CH) 

 



21 

 

 

EMAC 2145 

(E)-3-(3,4-dichlorophenyl)-1-m-tolylprop-2-en-1-one  

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl

H3C

CH3

 

 
1
H-NMR (500 MHz, DMSO) δH 2.45 ( s, 3H, CH3), 7.41 ( m, 2H, Ar-CH), 7.48 ( m, 3H, Ar-CH 

+ CH=CH), 7.68 ( d, 1H, J: 16, CH=CH), 7.73 ( s, 1H, Ar-CH), 7.81 ( d, 2H, J: 8.5, Ar-CH) 

 

EMAC 2146 

(E)-3-(3,4-dichlorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one  

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl

H3CO

OCH3  

 
1
H-NMR (500 MHz, DMSO) δH 3.90 ( s, 3H, OCH3), 6.99 ( d, 2H, J: 8.5, Ar-CH), 7.45 ( d, 1H, 

J: 8, Ar-CH), 7.49 ( d, 1H, J:9, Ar-CH), 7.51 ( d, 1H, J: 15.5, CH=CH), 7.67 ( d, 1H, J: 16, 

CH=CH), 7.73 ( s, 1H, Ar-CH), 8.03 ( d, 2H, J:9, Ar-CH) 

 

EMAC 2147 

(E)-3-(3,4-dichlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one  

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl

HO

OH  

 
1
H-NMR (500 MHz, DMSO) δH 6.93 ( d, 2H, J: 8.5, Ar-CH), 7.27 ( s, 1H, OH), 7.48 ( m, 4H, 

Ar-CH + CH=CH), 7.23 ( s, 1H, Ar-CH), 8.00 ( d, 2H, J: 8.5, Ar-CH) 
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EMAC 2148 

(E)-3-(3,4-dichlorophenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one  

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl

HO

OH

 

 
1
H-NMR (500 MHz, DMSO) δH 7.15 ( d, 1H, J: 8, J: 2.5, AR-CH), 7.41 ( t, 1H, J: 8, Ar-CH), 

7.58 ( s, 1H, J: 2), 7.68 ( m, 2H, Ar-CH), 7.73 ( d, 1H, J: 15.5, CH-CH), 7.83 ( d, 1H, J: 8.5, J: 

2), 7.93 ( d, 1H, J: 16, CH-CH), 8.12 ( s, 1H, Ar-CH), 8.71 ( s, 1H, OH) 

 

EMAC 2149 

(E)-3-(3,4-dichlorophenyl)-1-(4-chlorophenyl)prop-2-en-1-one  

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl

Cl

Cl  

 
1
H-NMR (500 MHz, DMSO) δH 7.47 (m, 5H, Ar-CH + CH=CH), 7.7 ( d, 1H, J: 15.5, CH=CH), 

7.23 ( s, 1H, Ar-CH), 7.96 ( d, 2H, J: 8.5, Ar-CH) 

 

EMAC 2150 

(E)-3-(3,4-dichlorophenyl)-1-(4-bromophenyl)prop-2-en-1-one  

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl

Br

Br  

 
1
H-NMR (500 MHz, DMSO) δH 7.47 (m, 3H, J: 15.5, Ar-CH + CH=CH), 7.66 ( d, 2H, J: 8.5, Ar-

CH), 7.7 ( d, 1H, J: 16, CH=CH), 7.73 ( s, 1H, Ar-CH), 7.85 ( d, 2H, J: 8.5, Ar-CH) 
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EMAC 2151 

(E)-3-(3,4-dichlorophenyl)-1-(4-nitrophenyl)prop-2-en-1-one  

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl

O2N

NO2  

 
1
H-NMR (500 MHz, DMSO) δH 7.5 ( m, 3H, J: 15.5, Ar-CH + CH=CH), 7.76 ( m, 2H, J: 15.5, 

Ar-CH + CH=CH), 8.15 ( d, 2H, J: 8, Ar-CH), 8.37 ( d, 2H, J: 8, Ar-CH) 

 

EMAC 2152  

(E)-3-(3,4-dichlorophenyl)-1-(3-nitrophenyl)prop-2-en-1-one  

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl

O2N

NO2

 

 
1
H-NMR (500 MHz, DMSO) δH 7.5 ( d, 1H, J: 8, Ar-CH), 7.52 ( d, 1H, J: 8, Ar-CH), 7.53 ( 

d,1H, J: 16, CH=CH), 7.74 ( t, 1H, J: 8), 7.77 ( s, 1H, Ar-CH), 7.78 ( d, 1H, J: 16, CH=CH), 8.35 

( d, 1H, J: 8, Ar-CH), 8.46 ( d, 1H, J:8, Ar-CH), 8.83 (s, 1H, Ar-CH) 

 

EMAC 2153 

(E)-1,3-bis(3,4-dichlorophenyl)prop-2-en-1-one  

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

 

 
1
H-NMR (500 MHz, DMSO) δH 7.42 ( d, 1H, J: 15.5, CH=CH), 7.47 ( d, 1H, J: 8, Ar-CH), 7.52 

( d, 1H, J: 8.5, Ar-CH), 7.6 ( d, 1H, J: 8, Ar-CH), 7.72 ( d, 1H, J: 15.5, CH=CH), 7.74 ( s, 1H, Ar-

CH), 7.85 ( d, 1H, J: 8.5, Ar-CH), 8.1 ( s, 1H, Ar-CH)  
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EMAC 2154 

(E)-3-(3,4-dichlorophenyl)-1-(thiophen-2-yl)prop-2-en-1-one  

 

O

H

O

CH3

ethanol / NaOH 10%

O

Cl

Cl

Cl

Cl

S

S

 

 
1
H-NMR (500 MHz, DMSO) δH 7.2 ( t, 1H, J: 4, J: 5, thiop.), 7.38 ( d, 1H, J: 15.5, CH=CH), 

7.45 ( d, 1H, J: 8.5, Ar-CH), 7.5 ( d, 1H, J: 8.5, Ar-CH), 7.72 ( d, 1H, J: 5, thiop.), 7.72 ( d, 1H, 

J: 15.5, CH=CH), 7.73 ( s, 1H, Ar-CH), 7.87 ( d, 1H, J: 4, thiop.) 
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Synthesis of 5-(3,4-dichlorophenyl)-3-aryl-4,5-dihydropyrazole-1-carbothioamide. 

 

5-(3,4-dichlorophenyl)-3-aryl-4,5-dihydropyrazole-1-carbothioamide was synthe- 

sised by reacting 1 mol of chalcone 1.2 mol of thiosemicarbazide and KOH in ethanol as 

depicted in Scheme 1. After 24 hours the precipitate that formed was filtered off. The 

filtrate was washed with ethyl ether and recrystallized from water/ethanol (1:1) to offer 

pure compounds. 

 

According to this procedure the following compounds have been synthesised: 

 

EMAC 2155 

5-(3,4-dichlorophenyl)-3-phenyl-4,5-dihydropyrazole-1-carbothioamide 

 

ethanol / KOH EtOH5%

O

Cl

Cl

H
N

H2N
S

NH2

N N

H2N

S

Cl

Cl

 

 
1
H-NMR (300 MHz, DMSO) δH 3.17 ( dd, 1H, J: 4, J: 17.9; pyr), 3.86 ( dd, 1H , J: 12, J: 17.9, 

pyr), 5.99 ( dd; 1H, J: 4, J: 15, pyr), 6.08 (brs, 2H, NH2 ), 7.08 (d, 1H, J: 2.16, J: 8.32, Ar-CH), 

7.30 (s, 1H, J: 2.16, Ar-CH), 7.40 ( d, 1H, J: 8.32, Ar-CH), 7.46 ( m, 3H, Ar-CH), 7.72 ( d, 2H, 

J: 2, J: 8.16, Ar-CH) 
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EMAC 2156 

5-(3,4-dichlorophenyl)-3-p-tolyl-4,5-dihydropyrazole-1-carbothioamide  

 

ethanol / KOH EtOH5%

O

Cl

Cl

H
N

H2N
S

NH2

N N

H2N

S

Cl

Cl

CH3

H3C

 

 
1
H-NMR (300 MHz, DMSO) δH 2.46 ( s, 3H, CH3), 3.32 ( dd, 1H, J: 4, J: 18, pyr), 3.99 ( dd, 

1H , J: 12, J: 18, pyr), 6.03 ( dd; 1H, J: 4, J: 12, pyr), 7.22 (d, 1H, J: 2, J: 8.32, Ar-CH), 7.39 ( 

d, 2H, J: 8.32, Ar-CH), 7.49 (s, 1H, Ar-CH), 7.70 ( d, 1H, J: 8.34, Ar-CH), 7.88 ( d, 2H, J: 8.01, 

Ar-CH), 8.05 ( brs, 1H, NH2), 8.23 (brs,1H, NH2) 

 

EMAC 2157 

5-(3,4-dichlorophenyl)-3-m-tolyl-4,5-dihydropyrazole-1-carbothioamide  

 

ethanol / KOH EtOH5%

O

Cl

Cl

H
N

H2N
S

NH2

N N

H2N

S

Cl

Cl

CH3

H3C

 

 
1
H-NMR (300 MHz, DMSO) δH 2.40 ( s, 3H, CH3), 3.16 ( dd, 1H, J: 4, J: 18, pyr), 3.84 ( dd, 

1H , J: 11.6, J: 18, pyr), 5.98 ( dd; 1H, J: 4, J: 11.6, pyr), 6.10 (brs, 2H, NH2), 7.07 (d, 1H, J: 

2.17, J: 8.32, Ar-CH), 7.32 (m, 3H, Ar-CH), 7.39 ( d, 1H, J: 8.32, Ar-CH), 7.5 ( m, 1H, Ar-CH), 

7.54 ( s, 1H, Ar-CH)  
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EMAC 2158 

5-(3,4-dichlorophenyl)-3-4-methoxyphenyl-4,5-dihydropyrazole-1-carbothioamide  

 

ethanol / KOH EtOH5%

O

Cl

Cl

H
N

H2N
S

NH2

N N

H2N

S

Cl

ClH3CO

OCH3

 

 
1
H-NMR (300 MHz, DMSO) δH 3.31 ( dd, 1H, J: 3, J: 18, pyr), 3.92 (s, 3H, OCH3), 3.98 ( dd, 

1H , J: 11.5, J: 18, pyr), 6.02 ( dd; 1H, J: 3, J: 11.5, pyr), 7.12 (d, 2H, J: 8, Ar-CH), 7.21 ( d, 

1H, J: 8, Ar-CH), 7.48 (s, 1H, Ar-CH), 7.70 ( d, 1H, J: 8.6, Ar-CH), 7.93 ( d, 2H, J: 8.6, Ar-CH), 

8.05 ( brs, 1H, NH2), 8.23 (brs, 1H, NH2) 

 

EMAC 2159 

5-(3,4-dichlorophenyl)-3-(4-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide  

 

ethanol / KOH EtOH5%

O

Cl

Cl

H
N

H2N
S

NH2

N N

H2N

S

Cl

ClHO

OH

 

 
1
H-NMR (300 MHz, DMSO) δH 3.26 ( dd, 1H, J: 3, J: 18, pyr), 3.45 ( dd, 1H , J: 11.2, J: 18, 

pyr), 6.00 ( dd; 1H, J: 3, J: 11.2, pyr), 6.93 (d, 2H, J: 8.5, Ar-CH), 7.21 (d, 1H, J: 1.8, J: 8.34, 

Ar-CH), 7.47 ( s, 1H, Ar-CH), 7.70 ( d, 1H, J: 8.34, Ar-CH), 7.82 ( d, 2H, J: 8.5, Ar-CH) 7.93 ( 

brs, 1H, NH2), 8.14 (brs, 1H, NH2), 10.16 ( s,1H, OH) 
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EMAC 2160 

5-(3,4-dichlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazole-1-carbothioamide  

 

ethanol / KOH EtOH5%

O

Cl

Cl

NH
NH2

S

NH2

N N

NH2

S

Cl

Cl
OH

OH

 

 
1
H-NMR (300 MHz, DMSO) δH 3.27 ( dd, 1H, J: 3, J: 18, pyr), 3.99 ( dd, 1H , J: 11.6, J: 18, 

pyr), 6.02 ( dd; 1H, J: 3, J: 11.6, pyr), 7.00 (d, 1H, J: 8, Ar-CH), 7.22 (d, 1H, J: 8, Ar-CH), 7.38 

( m, 3H, Ar-CH), 7.48 ( s, 1H, Ar-CH), 7.70 ( d, 1H, J: 8, Ar-CH) 8.02 ( brs, 1H, NH2), 8.24 

(brs, 1H, NH2), 9.76 ( s,1H, OH) 

 

EMAC 2161 

5-(3,4-dichlorophenyl)-3-(4-chlorophenyl)-4,5-dihydropyrazole-1-carbothioamide  

 

ethanol / KOH EtOH5%

O

Cl

Cl

H
N

H2N
S

NH2

N N

H2N

S

Cl

ClCl

Cl

 

 
1
H-NMR (300 MHz, DMSO) δH 3.34 ( dd, 1H, J: 4, J: 18, pyr), 4.00 ( dd, 1H , J: 11.5, J: 18, 

pyr), 6.04 ( dd; 1H, J: 4, J: 11.5, pyr), 7.22 (d, 1H, J: 8.5, Ar-CH), 7.49 (s, 1H, Ar-CH), 7.70 ( 

d, 2H, J: 8.3, Ar-CH), 7.78 ( d, 1H, J: 8.5, Ar-CH), 7.79 ( d,2H, J: 8.3, Ar-CH), 8.16 ( brs, 1H, 

NH2), 8.30 (brs, 1H, NH2) 
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EMAC 2162 

5-(3,4-dichlorophenyl)-3-(4-bromophenyl)-4,5-dihydropyrazole-1-carbothioamide  

 

ethanol / KOH EtOH5%

O

Cl

Cl

H
N

H2N
S

NH2

N N

H2N

S

Cl

ClBr

Br

 

 
1
H-NMR (300 MHz, DMSO) δH 3.34 ( dd, 1H, J: 4, J: 18, pyr), 4.00 ( dd, 1H , J: 11.5, J: 18, 

pyr), 6.04 ( dd; 1H, J: 4, J: 11.5, pyr), 7.22 (d, 1H, J: 8.5, Ar-CH), 7.49 (s, 1H, Ar-CH), 7.70 ( 

d, 2H, J: 8.3, Ar-CH), 7.78 ( d, 1H, J: 8.5, Ar-CH), 7.79 ( d,2H, J: 8.3, Ar-CH), 8.16 ( brs, 1H, 

NH2), 8.30 (brs, 1H, NH2) 

 

EMAC 2163 

3,5-bis(3,4-dichlorophenyl)-4,5-dihydropyrazole-1-carbothioamide  

 

ethanol / KOH EtOH5%

O

Cl

Cl

H
N

H2N
S

NH2

N N

H2N

S

Cl

Cl

Cl

Cl

Cl

Cl

 

 
1
H-NMR (300 MHz, DMSO) δH 3.38 ( dd, 1H, J: 4, J: 18.5, pyr), 3.99 ( dd, 1H , J: 12, J: 18.5, 

pyr), 6.05 ( dd; 1H, J: 4, J: 12, pyr), 7.22 (d, 1H, J: 8.5, Ar-CH), 7.50 (s, 1H, Ar-CH), 7.70 ( d, 

1H, J: 8.34, Ar-CH), 7.84 ( d, 1H, J: 8.34, Ar-CH), 7.91 ( d, 1H, J: 8.5, Ar-CH), 8.32 (m, 3H, 

NH2 + Ar-CH) 
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EMAC 2164 

5-(3,4-dichlorophenyl)-3-(thiophen-2-yl)-4,5-dihydropyrazole-1-carbothioamide  

 

ethanol / KOH EtOH5%

O

Cl

Cl

H
N

H2N
S

NH2

N N

H2N

S

Cl

Cl

S
S

 

 
1
H-NMR (300 MHz, DMSO) δH 3.38 ( dd, 1H, J: 4, J: 18, pyr), 4.05 ( dd, 1H , J: 11.4, J: 18, 

pyr), 6.07 ( dd; 1H, J: 4, J: 11.4, pyr), 7.22 (d, 1H, J: 8.4, Ar-CH), 7.27 (t, 1H, J: 3.8, J: 4.7, 

thiofene), 7.50 ( s, 1H, Ar-CH), 7.60 ( d, 1H, J: 3.8, thiofene), 7.71 ( d, 1H, J: 8.4, Ar-CH), 

7.78 ( brs, 1H, NH2), 7.90 (d, 1H, J: 4.7, thiofene), 8.24 (brs, 1H, NH2) 
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3.2 Pharmacologic studies 

 

3.2.1. Determination of MAO isoform activity 

 

The potential effects of the test drugs on human monoamineoxidase (hMAO) 

activity were investigated by measuring their effects on the production of hydrogen 

peroxide H2O2 from p-tyramine (a common substrate for both hMAO-A and hMAO-B), 

using the Amplex®Red MAO assay kit (Molecular Probes, Inc., Eugene, Oregon, USA) and 

microsomal MAO isoforms prepared from insect cells (BTI-TN-5B1-4) infected with 

recombinant baculovirus containing cDNA inserts for hMAO-A or hMAO-B (SigmaeAldrich 

Química S.A., Alcobendas, Spain). The production of H2O2 catalysed by MAO isoforms can 

be detected using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex®Red reagent), a non-

fluorescent, highly sensitive and stable probe that reacts with H2O2 in the presence of 

horseradish peroxidase to produce a fluorescent product: resorufin. In this study, hMAO 

activity was evaluated using the above method following the general procedure described 

previously by us. [25] 

Briefly, 0.1 ml of sodium phosphate buffer (0.05 M, pH 7.4) containing the test 

drugs (new compounds or reference inhibitors) in various concentrations and adequate 

amounts of recombinant hMAO-A or hMAO-B required to oxidize (in the control group) 

165 p mol of p-tyramine/min were incubated for 15 min at 37 °C in the corresponding 

wells from a 96-well flatbottom microtiter plate (BD, Franklin Lakes, NJ, USA) placed in 

the dark fluorimeter chamber. After this incubation period, the reaction was started by 

adding (final concentrations) 200 mM Amplex®Red reagent, 1 U/ml horseradish 

peroxidase and 1 mM p-tyramine as a common substrate for both hMAO-A and hMAO-B. 

The production of H2O2 and, consequently, of resorufin was quantified at 37°C in a Multi-

Detection microplate fluorescence reader (FLX800TM, Bio-Tek®Instruments, Inc., 

Winooski, VT, USA) based on the fluorescence generated (excitation 545 nm, emission 

590 nm) over a 15 min period, a period in which the fluorescence increased linearly from 

the beginning. Control experiments were carried out simultaneously by replacing the test 

drugs (new compounds and reference inhibitors) with appropriate dilutions of the 

vehicles. In addition, the possible ability of the above test drugs to modify the 

fluorescence generated in the reaction mixture due to non-enzymatic inhibition (e.g., for 

directly reacting with Amplex®Red reagent) was determined by adding these drugs to 

solutions containing only the Amplex®Red reagent in a sodium phosphate buffer. The 

specific fluorescence emission (used to obtain the final results) was calculated after 

subtraction of the background activity, which was determined from vials containing all 
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components except the MAO isoforms, which were replaced by a sodium phosphate 

buffer solution.  

3.2.2 Data presentation and statistical analysis 

 

Unless otherwise specified, results shown in the text and table are expressed as 

mean ± standard error of the mean (S.E.M.) from n experiments. Significant differences 

between two means (P < 0.05 or P < 0.01) were determined by one-way analysis of 

variance (ANOVA) followed by the Dunnett’s post-hoc test.  

To study the possible effects of the test drugs (new compounds or reference 

inhibitors) on MAO isoform enzymatic activity, the variation of fluorescence per unit of 

time (fluorescence arbitrary U/min) and, indirectly, the rate of H2O2 production and, 

therefore, the p mol/min of resorufin produced in the reaction between H2O2 and 

Amplex®Red reagent was evaluated. For this purpose, several concentrations of resorufin 

were used to prepare a standard curve with X = p mol resorufin and Y = fluorescence 

arbitrary U. Note that the value of resorufin production is similar to the p mol of p-

tyramine oxidized to p-hydroxyphenylacetaldehyde per min since the stoichiometry of 

the reaction (p-tyramine oxidized by MAO isoforms/resorufin produced) is 1:1.  

In these experiments, the inhibitory activity of the tested drugs (new compounds 

and reference inhibitors) is expressed as IC50, i.e. the concentration of these compounds 

required to reduce by 50% the control MAO isoform enzymatic activity, estimated by 

leasts-quares linear regression, using the Origin
TM

 5.0 program (Microcal Software, Inc., 

Northampton, MA, USA), with X = log of tested compound molar concentration and Y = 

the corresponding percentage of inhibition of control resorufin production obtained with 

each concentration. This regression was performed using data obtained with 4-6 different 

concentrations of each tested compound which inhibited the control MAO isoform 

enzymatic activity by between 20 and 80%. In addition, the corresponding MAO-B 

selectivity ratios (SI A/B) [IC50 (MAO-A)]/[IC50 (MAO-B)] were calculated. 

 

3.2.3  Drugs and chemicals 

 

The drugs used in the experiments were the new compounds, moclobemide (a 

generous gift from F. Hoffmann-La Roche Ltd., Basel, Switzerland), R-(-)-deprenyl 

hydrochloride, iproniazid phosphate (purchased from SigmaeAldrich, Spain), resorufin 

sodium salt, clorgyline hydrochloride, p-tyramine hydrochloride and horseradish 

peroxidase (supplied in the Amplex® Red MAO assay kit from Molecular Probes). 

Appropriate dilutions of the above drugs were prepared every day immediately 

before use in deionized water from the following concentrated stock solutions kept at -20 

°C: the new compounds (0.1 M) in dimethylsulfoxide (DMSO); R-(-)-deprenyl, 
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moclobemide, iproniazid, resorufin, clorgyline, p-tyramine and horseradish peroxidase 

(0.1 M) in deionized water. 

Due to the photosensitivity of some chemicals (e.g., Amplex®Red reagent), all 

experiments were performed in the dark. In all assays, neither deionized water (Milli-Q®, 

Millipore Ibérica S.A., Madrid, Spain) nor appropriate dilutions of the vehicle used (DMSO) 

had significant pharmacological effects.  
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1 Introduction 

 

1.1 Historical overview 

 

In a recent study published in Nature Chemistry a method to quantitatively visualize 

DNA G-quadruplex structures in human cells has been reported.  

This work clear links between concentrations of four-stranded quadruplexes and 

the process of DNA replication, which is pivotal to cell division and production. 

Furthermore, it corroborates the application of stabilizing ligands in a cellular 

context to target G-quadruplexes and interfere with their function. [1] 

G-quadruplex structures are nucleic acid arrangements assumed by guanine-rich 

sequences and stabilized by the planar pairing of four guanines through eight Hoogsteen 

hydrogen bonds. 

 

 
Figure 1. Chemical structure of the G-quartet that is formed by Hoogsteen base pairs of 

four guanine bases 

 

The space between G-tetrads is well suited to coordinate monovalent cations (K
+
 

and occasionally Na
+
) which are required to stabilize the structure through their 

coordination to the guanyl oxygens. The overlapping of G-quartet tetrads leads to the 

formation of more complex structures called G-quadruplexes. These sequences are found 

in crucial positions of the genome, such as telomeric ends, ribosomal DNA (rDNA), RNA or 

gene promoter regions (for es. c-myc, bcl-2 or c-kit). [2] 

Their composition and location is conserved through evolution and, additionally, 

several proteins are devoted to recognize or resolve them, [3] thus indicating regulatory 

roles of these structures in multiple biological processes. [4]  
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In normal cells the telomeric DNA is gradually shortened after each replication cycle 

until a critical limit is reached (“Hayflick Limit”), leading to cellular senescence and, 

ultimately, to apoptosis. The enzyme telomerase, which has a reverse transcriptase 

subunit (hTERT) and an RNA component (hTERC), adds TTAGGG repeats to telomeres 

providing their elongation and, subsequently, cell immortalization (Figure 2). [5] 

 

 
Figure 2. Telomerase mechanism of action 

 

A number of studies highlighted that immortality of cancer cells is due, at least in 

part, to constitutive expression of telomerase, while somatic cells either entirely lack 

telomerase or exceptionally express low levels. Its action is detected in most primary 

human tumour specimens and tumour-derived cell lines, such as those of the prostate, 

breast, colon, lung and liver.  

Hence, inhibition of this enzyme can selectively prevent cancer cells growth.  

Several small molecule inhibit telomerase directly, e.g GRN163L, BIBR1532 and AZT 

(Figure 3). [6, 7] 

 

 

Figure 3. Agents targeting hTERC and hTERT of telomerase enzyme 
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A different approach is the stabilization of G-quadruplex-DNA. 

G-quadruplex-DNA stabilizers preclude the binding of telomerase and its associated 

proteins to telomeres and, thereby, stop the elongation process of telomerase indirectly.  

Equally important is the stabilization of G-quadruplex in promoter regions or in 

rDNA and rRNA to achieve selective gene regulation. [8-10]
  

Quadruplexes can be formed from one, two or four separate strands of DNA (or 

RNA) and can show a wide variety of topologies, depending on combinations of strand 

orientation, loops size and glycoside conformation sequence.  

These different arrangements are dictated not only by the nucleic acid sequence, 

but, as in the case of the human telomeric DNA, a given sequence can fold into a variety 

of different conformations according to environmental transitions. [11] 

Indeed, whereas the crystal structure of the DNA G-quadruplex assumed by wild 

type Tel22 AG3[T2AG3]3 in K
+
 is parallel stranded, [12] multiple G-quadruplex 

conformations (Figure 4) have been reported in solution. [4, 11] 

 

 

 

Figure 4. Schematic and 3D representation of the a) antiparallel or basket-type (PDB code 

143D), [13] b) parallel or propeller-like (PDB code 1KF1),[12] c) hybrid type-1 (PDB code 2HY9) 

[14] and d) hybrid type-2 (PDB code 2JPZ)[15] DNA G-quadruplex conformations of d(AG3[T2AG3]3) 

sequence 

Several studies have been devoted to develop novel G-quadruplex binders (Figure 

5). [16]  
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The common structural feature of all these ligands is an extended polyaromatic 

(often heteroaromatic) planar chromophore, generally composed of three or four fused 

rings, bearing one or more positive charge(s). 

The natural product telomestatine, composed of one thiazoline and seven oxazole 

rings, was reported to be a potent nanomolar telomerase inhibitor, with evidence 

indicating that its mechanism of action also involves a G-quadruplex complex. [17]  

 

 

Figure 5. Some of the human telomeric DNA G-4 binders available in literature 

 

An essential requirement for telomerase inhibition and antitumor effect is the low 

concentration of inhibitor, which needs to be below acute toxicity levels, otherwise 

generalized cytotoxic effect outside tumours will take place.  

In some cases, it was reported that antitumor agents that bind to duplex DNA, may 

develop their cytotoxic activity by interfering with transcription or with the correct 

function of DNA topoisomerases or other enzymes involved in DNA replication. 

G4-binders may be accommodated in multiple sites of the structure: mainly they 

can stack on the G-tetrads, but they can also be located into the grooves or can interact 

with the loop bases (Figure 6). [18] 
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Figure 6. Binding modes: a) Schematic representation of possible ligand-quadruplex binding 

modes a) stacking or intercalation between internal tetrads b) groove recognition; c) interaction 

with single strand loops d) simultaneously end stacking and loop interaction or simultaneously 

end stacking and binding into the grooves b) stacking (BRACO-19, pdbcode 3CDM [19]); c) groove 

and loop interaction (distamycin, pdbcode 2KVY [20]) 

 

Although some of them achieved preclinical and clinical phase, none reached the 

market so far. The major limitations associated to their questionable biological use are 

the poor selectivity for quadruplex DNA, the propensity to aggregate in aqueous media, 

the poor water-solubility, and the chemical instability. [21] 

To address this issue, a large synthetic effort have been merged to computational 

methods.  
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2 Fluorenone derivatives 

 

A small series of fluorenone derivatives demonstrated to selectively bind the human 

telomeric repeated sequence d[AG3[T2AG3]3] with respect to duplex and triplex 

sequences. [22] 

 

 

O

RHNOC

 

compound R compound R 

1 -(CH2)2OH 6 -(CH2)2N(CH3)2 

2 -(CH2)3OH 7 -(CH2)3N(CH3)2 

3 -CH2CH(OH)CH3 8 -(CH2)2N(CH2CH3)2 

4 -(CH2)OH 9 -(CH2)2-Morph 

5 -(CH2)O(CH2)2OH 10 -(CH2)3-Morph 

 

Figure 7. Chemical structures of first series of fluorenones compounds 1–10 

 

Among them the most interesting were the compounds 9 and 10 substituted with 

morpholino side-chain able to interact selectively with the DNA G-quadruplex (Figure 7). 

Consistent differential effects on the binding preferences of the morpholino 

derivatives 9 and 10 were confirmed by molecular modeling, demonstrating a major role 

in the length of the linker between the aromatic and heterocyclic rings (Figure 8). 
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Figure 8. Best docking pose of compound 10 into G-quadruplex with parallel conformation 

(pdbcode 1KF1) 

 

Considering these preliminary interesting results, an optimization of the fluorenone 

analogues was performed using the GRID method. [23] 

On the basis of the GRID MIFs (Molecular Interaction Fields) [24] visualization 

results, it was decided to insert a quaternary nitrogen at the morpholino side chain 

because NM3 (Trimethyl Ammonium cation) probe mapped as energetically favoured 

several areas in the grooves and loops of G-quadruplex. 
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Figure 9. NM3 (quaternary nitrogen) MIFs maps obtained with GRID software in the G-

quadruplex with parallel conformation 

 

A series of nine novel compounds were designed and synthesized with the following 

chemical features: 

-quaternary nitrogen at the morpholino side chain; 

-variable linker between the morpholino and fluorenone rings (from 0 to 3 

methylenes); 

-alternative positions 2 and 4 in the side chain substitution onto the fluorenone ring 

(Figure 10) 
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Figure 10. Second series of fluorenone derivatives 11-19 
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O

CONHR

 

                     IC50 [µM] 
compound 

M14 A549 

11 >200 183±5.3 

12 >200 >200 

13 79.5±3.2 70.5±2.9 

14 72.2±4.6 45±3.9 

15 >200 123±4.8 

16 >200 >200 

17 145±5.5 94.16±4.5 

18 105±4.9 61.5±4.9 

19 >200 >200 

 

Table 1. Summary of the in vitro results of compounds 11–19 against melanoma (M14) and 

lung (A549) cancer cell lines 

 

Docking experiments coupling opensource AutoDock[25] with our collaborators in-

house docking code MolInE [26] were performed and a good correlation with 

experimental data was achieved (Table 2). 

 

Lig MolInE    AutoDock   Consensus  A549 

 1KF1 143D 2HY9 2JPZ 1KF1 143D 2HY9 2JPZ MolInE AD Both IC50 (μM) 

13 -41.9 -36.2 -34.5 -40.4 -41.4 -37.1 -40.6 -43.8 -38.3 -40.7 -39.5 70.5 

14 -46.3 -37.6 -45.5 -43.8 -41.3 -41.0 -39.6 -48.7 -43.3 -42.7 -43.0 45.0 

17 -41.1 -36.3 -34.3 -41.0 -31.2 -33.8 -32.4 -40.6 -38.2 -34.5 -36.3 94.0 

18 -39.6 -35.7 -39.5 -45.5 -36.0 -36.9 -41.7 -38.1 -40.1 -38.2 -39.1 61.5 

 

Table 2. Docking results obtained with the X-ray (1KF1), NMR (143D) and hybrid optimized 

(2HY9 and 2JPZ) PDB models in complex with the most active compounds 

 

Computational results indicated that the 2-substituted derivatives (13, 14, 17, and 

18) perform better than their 4-substituted analogues. Moreover the quaternarisation of 

the morpholinium nitrogen is well tolerated. 
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A small increment of G-quadruplex melting point was registered. 

 
Figure 11. Competition dialysis results for compounds 11–19 against three polymorphforms 

of DNA: duplex, triplex, and G-quadruplex as indicated 

 

Furthermore compound 18 induced an appealing stabilization of pu24-l, a portion of 

the c-myc promoter that assumes a parallel arrangement in solution [27] (Figure 12). 

 

 
 

Figure 12. Relative variations of G-quadruplex structure melting temperatures with 

reference to human telomeric sequence at K+50 mm concentration. Data refer to 30 mM ligand 

concentrations of compound 18 
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3 Results and Discussion 

New derivatives were designed and their ability to stabilize G-quadruplex structures 

was simulated by carrying out docking experiments following the same protocol applied 

before. The DNA G-quadruplex polymorphism including parallel, anti-parallel and hybrid 

conformations of the human telomeric repeated sequence was considered (Figure 4). 

Furthermore it has been investigated also the ability of the new series to stabilize the c-

myc promoter region (Figure 13). 

 

 
Figure 13. a) Sequence and b) Schematic and c) 3D representation of c-myc (1XAV[28]) 

 

All combinations of double substitution were investigated and the most promising 

compounds resulted to be the 2,7 substituted.  

 

Thus a synthetic route was set (Scheme 1): the first step consists of the formation of 

the dichloride of the 9-oxo-9H-fluorene-2,7-dicarboxylic acid. Then the acid dichloride is 

reacted with the morpholinomethyleneamine side-chain to obtain compounds EMAC 

2165-2166. The last step consists of a quaternization of morpholiniun nitrogen with CH3I 

and K2CO3 in DMF to obtain the compounds EMAC 2167-2168 (Figure 14) 
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Scheme 1. Synthetic pathway to compounds EMAC 2165-2172. Reagents: (i) SOCl2, reflux 

condition; (ii) CHCl3, reflux condition; (iii) CH3I, K2CO3, DMF 
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Figure 14. Structure of compounds EMAC 2165-2168 

 

The first four compounds synthesized (Figure 14) were submitted to biological tests 

(Figure 15). 

 

 
Figure 15. Screening of selected compounds by fluorescence melting experiment 

performed using different sequences of target G-quadruplex at a fixed concentration (30µM). 
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The good ability to stabilize the G-quadruplex both telomeric and promoter 

confirms the results obtained by the computational studies.  

In particular compounds EMAC 2166 and EMAC 2168 show a remarkable and 

selective effect on the stabilization of pu24 C-myc promoter, indicating that the optimal 

length of the methylene spacer for this specific target is three. 

Moreover, as it was previously observed, the introduction of the positive charge on 

the morpholine nitrogen is well tolerated and may constitute an advantage for the water-

solubility of these series of ligands.  

In order to understand the binding mode of these derivatives, preliminary docking 

experiments have been performed (Figure 16). 

 

 
Figure 16. Best pose complex structure of the unimolecular G-quadruplex formed by the c-

myc-Pu-24 in K+ solution and EMAC 2168 
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4 Conclusion 

 

The conformational polymorphism of the G-quadruplex DNA human telomeric 

repeated sequence is an issue to face with in structure-based research projects. 

The fluorenone scaffold has been used as starting point for lead optimization 

workflow. This was carried out with different computational approaches.  

The new synthesized derivatives are able to induce increments not only of the DNA 

human telomeric sequence melting temperature but also of the c-myc promoter 

intramolecular G-quadruplex portion (∆Tm ~19 °C).  

Therefore 2,7 functionalized fluorenone could represent a promising scaffold for 

the development of potent stabilizers of c-myc promoter G-quadruplex as antineoplastic 

agents. In fact the overexpression of mutated c-myc protoncogene is often associate with 

a significant number of human malignancies, including colon and cervical cancers, 

myeloid leukemias, B and T cell lymphomas, and glioblastomas (8).  

At the moment we are synthesizing new 2,7 substituted fluorenone derivatives 

which will be soon subjected to biological tests according to the Scheme 2. 
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Scheme 2: Synthetic pathway to new fluorenone EMAC 2169-2172. Reagents: (i) CHCl3, 

reflux condition; (ii) CH3I, K2CO3, DMF
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5 Chemistry 

COMPOUNDS EMAC 2165-2168 

 

Unless otherwise noted, starting materials and reagents were obtains from 

commercial suppliers and were used without purification. 

All melting point were determined by the capillary method on a Stuart SMP11 melting 

point apparatus and are uncorrected. 

All samples were measured in CDCl3 solvent at 278.1 K temperature on a Varian 

Unity 500 spectrometer. In the signal assignments the proton chemical shifts are referred 

to the solvent (1H: δ = 7.24 ppm,). Coupling constants J are expressed in hertz (Hz). 

Elemental analyses were obtained on a Perkin–Elmer 240 B microanalyser. 

Analytical data of the synthesised compounds are in agreement with the theoretical data. 

HPLC-MS/MS analysis was performed using an HPLC-MS/MS Varian (Varian Palo 

Alto, CA, USA) system fitted with a 1200 L triple quadrupole mass spectrometer equipped 

with an electrospray ionization source (ESI). A Varian MS workstation version 6.8 software 

was used for data acquisition and processing. Rapid identification was achieved with 

direct infusion of the purified molecule, dissolved in methanol, on the mass spectrometer 

source.  

TLC chromatography was performed using silica gel plates (Merck F 254), spots 

were visualised by UV light. 
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General method for the synthesis of 9-oxo-9H-fluorene-2,7-dicarbonyl dichloride 

 

O

O

OH

HO

O
O

S
Cl Cl

∆∆∆∆

O

O

Cl

Cl

O

 

 

In a flask equipped with a reflux condenser 9-oxo-9H-fluorene-2,7-dicarboxylic acid 

( 7.46 mmol) was dissolved in sulfuryl dichloride that was added in excess (15 ml). The 

reaction was monitored with TLC (eluent ethyl acetate:hexane 1:1,5). After 24 hours 

under vigorous stirring at reflux condition, the precipitate that formed was filtered off. 

The filtrate was washed with isopropyl ether to offer pure compounds that appeared like 

a yellow crystalline solid. 

 

M.W.: 305.11 g/mol; R.F.: 0.1 ( eluent: ethyl acetate:hexane 1:1,5); M.P.: >250°C; Yield: 

80% 

 
1
H-NMR (500 MHz, DMSO) δH 8.04 (d, 2H, J: 7,5, CH-Ar), 8.07 (s, 2H, CH-Ar), 8.23 (d, 2H, J: 

7.5) 

 

EMAC 2165 

N2,N7-bis(2-morpholinoethyl)-9-oxo-9H-fluorene-2,7-dicarboxamide  
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Cl

Cl
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N O
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O N

O

CHCl3
∆∆∆∆  

 

In a flask equipped with a reflux condenser 1g of 9-oxo-9H-fluorene-2,7-dicarbonyl 

dichloride (7.46 mmol) was dissolved in 10 ml of chloroform. 

After vigorous stirring for 3 minute, 2-morpholinoethanamide was added in excess (9.84 

mmol). The reaction was heated under reflux and monitored by TLC (eluent: ethyl 

acetate:hexane 1:1.5). After 2 hours the reaction was completed . A solid was filtered off 

and crystallised from ethanol. The desired pure compound appeared like a gold crystalline 

solid.  
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M.W.: 492.57 g/mol; R.F.: 0.47 ( eluent: ethyl acetate:hexane 1:1,5); M.P.: 270 °C; Yield: 

60% 
1
H-NMR (300 MHz, CDCl3) δH 2.57 ( m, 8H, morpholino), 2.67 ( m, 4H, CH2), 3.61 ( m, 4H, 

CH2), 3.77 ( m, 8H, morpholino), 7.02 ( brs, 2H, NH), 7.59 ( d, 2H, J: 7.7, Ar-CH), 7.96 ( s, 

2H, Ar-CH), 8.05 ( d, 2H, Ar-CH) 

 

EMAC 2166 

N2,N7-bis(2-morpholinopropyl)-9-oxo-9H-fluorene-2,7-dicarboxamide 
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In a flask equipped with a reflux condenser 1g of 9-oxo-9H-fluorene-2,7-dicarbonyl 

dichloride ( 7.46 mmol) was dissolved 10 ml of chloroform. After vigorous stirring for 3 

minute, 2-morpholinopropylamide was added in excess ( 9.84 mmol). The reaction was 

heated under reflux and monitored by TLC ( eluent: ethyl acetate:hexane 1:1.5). After 2 

hours the reaction was completed .and solvent removed under vacuum. A greasy solid 

was obtain, which was friabilysed in acetone. 

The desired pure compound appeared like a yellow crystalline solid.  

 

M.W.: 520.62 g/mol; R.F.: 0.32 ( eluent: ethyl acetate:hexane 1:1,5); M.P.: >250 °C; Yield: 

40% 

 
1
H-NMR (500 MHz, DMSO) δH 1.71 ( m, 4H, CH2), 2.37 ( m, 8H, morpholino), 3.31 ( m, 8H, 

CH2 morpholino), 3.58 ( m, 8H, CH2), 7.98 ( d, 2H, J: 7.5, Ar-CH), 8.12 ( s, 2H, Ar-CH), 8.15 ( 

d, 2H, J: 8, Ar-CH), 8.71 ( brs, 2H, NH) 
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EMAC 2167 

4-methyl-4-{2-[(7-{[2-(4-methylmorpholin-4-ium-4-yl)ethyl]carbamoyl}-9-oxo-9H-

fluoren-2-yl)formamido]ethyl}morpholin-4-ium 
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0.3 g of N2,N7-bis(2-morpholinoethyl)-9-oxo-9H-fluorene-2,7-dicarboxamide ( 0.61 

mmol), K2CO3 ( 2.4mmol), CH3I ( 2.4 mmol) and DMF were introduced in a flask equipped 

with a reflux condenser. The reaction was heated under reflux and after 3 hours it can be 

observe the colour changes from yellow to orange. The reaction was monitoreted with 

TLC ( eluent: ethyl acetate:hexane 1:1.5) and after 4 hours it was completed. At R.T. it can 

be observed the formation of a crystalline yellow solid. A solid was filtered off and 

characterised. 

 

M.W.: 522.63 g/mol; R.F.: 0.59 ( eluent: ethyl acetate:hexane 1:1.5); M.P.: >250°C; Yield: 

60% 

 
1
H-NMR (400 MHz, DMSO) δH 3.08 ( s, 8H, morpholino), 3.3 ( m, 14H, CH3 + CH2 

morpholino), 4.00 ( m, 4H, CH2),4.45 ( m, 4H, CH2), 8.00 ( d, 2H, J: 7.5, Ar-CH), 8.01 ( s, 2H, 

Ar-CH), 8.13 ( d, 2H, J: 7.5 Ar-CH), NH not detected 

 

EMAC 2168 

4-methyl-4-{3-[(7-{[3-(4-methylmorpholin-4-ium-4-yl)propyl]carbamoyl}-9-oxo-9H-

fluoren-2-yl)formamido]propyl}morpholin-4-ium 
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N2,N7-bis(2-morpholinopropyl)-9-oxo-9H-fluorene-2,7-dicarboxamide (0.61 mmol, 

0.33 g), K2CO3 (2.4mmol), CH3I (2.4 mmol) and DMF were introduced in a flask equipped 

with a reflux condenser. The reaction was heated under reflux and after 3 hours it can be 

observed the colour changes from orange to dark green. The reaction was monitoreted 

with TLC ( eluent: ethyl acetate:hexane 1:1.5) and after 4 hours it was completed. At R.T. 
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it can be observed the formation of a crystalline yellow solid. The solid was filtered off 

and characterised. 

M.W.: 522.63 g/mol; R.F.: 0.59 ( eluent: ethyl acetate:hexane 1:1.5); M.P.: >250°C; Yield: 

60% 

 
1
H-NMR (500 MHz, DMSO) δH 1.71 ( m, 4H, CH2), 2.36 ( m, 8H, morpholino), 3.31 ( m, 

14H, CH3 + CH2 morpholine), 3.58 ( m, 8H, CH2), 7.98 ( d, 2H, J: 7.5, Ar-CH), 8.12 ( s, 2H, Ar-

CH), 8.15 ( d, 2H, J: 8, Ar-CH), 8.71 ( brs, 2H, NH) 
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5.1 WORK IN PROGRESS:  

 

Synthetic scheme: 
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Scheme 3. Synthetic pathway to compounds EMAC 2169-2172. Reagents: (i) CHCl3, reflux 

condition; (ii) CH3I, K2CO3, DMF 
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Figure 15. Structure of compounds EMAC 2169-2172 
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Synthesis of 1-(3-aminiopropyl)-4-methylpiperazine 
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Scheme 4: Synthesis of 1-(3-aminiopropyl)-4-methylpiperazine. Reagents: (i) Xylene, reflux 

condition; (ii) Hydrazine monohydrate, ethanol/methanol, reflux condition 

 

 

Synthesis of N-(3-(4-methylpiperazin-1-yl)propyl)phthalimide 
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A solution of N-(3-bromopropyl)phthalimide (15 mmol), in xylene (30 ml), was 

added dropwise to a solution of 1-methylpiperazine (33 mmol), in xylene at 70°C. the 

mixture was heated under reflux for 20 hours, precipitate was removed by filtration and 

the filtrate was concentrated. The crude product was purified by silica gel 

chromatography with CH2Cl2:MeOH 9:1 to give the desired pure compound, that 

appeared as an dark yellow oil.  

 

M.W.: 287.36 g/mol; Yield: 72% 

MS (ESI+): 288.17 ([M+H]
+
) 

 



28 
 

 

Synthesis of 1-(3-aminopropyl)-4-methylpiperazine 
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A solution of N-(3-(4-methylpiperazin-1-yl)propyl)phthalimide (10.8 mmol) and 

hydrazine monohydrate ( 13 mmol) in ethanol ( 30 ml) and methanol ( 30 ml) was 

refluxed for 4 hours. After cooling to R.T., concentrated HCl ( 1,2 ml) was added and the 

mixture heated under reflux for another hours. After removing the solvent, water ( 50 ml) 

was added, the mixture stirred and insoluble material removed by filtration. 

Solid K2CO2 ( 0.6 eq) and CH2Cl2 ( 50 ml) was added to the aqueous layer; the mixture was 

stirred and filtered. The organic layer was washed with water (3x20ml). The combined 

aqueous layer were washed with ethanol. Water was removed from the organic layer, 

which were then dried and evaporated to give the pure desired compound as an oil.  

 

M.W.: 157.26 g/mol; Yield: 39% 

MS (ESI+): 158.1 ([M+H]
+
) 

The 
 
NMR analyses are in progress.  
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Synthesis of 1-(3-aminioethyl)-4-methylpiperazine 
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Scheme 5: Synthesis of 1-(3-aminioethyl)-4-methylpiperazine. Reagents: (i) Xylene, reflux 

condition; (ii) Hydrazine monohydrate, ethanol/methanol, reflux condition 

 

Synthesis of N-(3-(4-methylpiperazin-1-yl)propyl)phthalimide 
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A solution of N-(2-bromoethyl)phthalimide ( 15 mmol), in xylene (30 ml), was added 

dropwise to a solution of 1-methylpiperazine ( 33 mmol), in xylene at 70°C.  

The mixture was heated under reflux for 20 hours, precipitate was removed by filtration 

and the filtrate was concentrated. 

The crude product was purified by silica gel chromatography with CH2Cl2:MeOH 9:1 to 

give the desired pure compound, that appeared as a pale pink solid.  

 

M.W.: 273.33 g/mol; M.P.: 199°-220°C; Yield: 62% 

MS (ESI+): 274.15 ([M+H]
+
) 
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Synthesis of 1-(2-aminoethyl)-4-methylpiperazine 
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A solution of N-(2-(4-methylpiperazin-1-yl)ethyl)phthalimide (10.8 mmol) and 

hydrazine monohydrate (13 mmol) in ethanol (30 ml) and methanol (30 ml) was refluxed 

for 4 hours. After cooling to R.T., concentrated HCl (1,2 ml) was added and the mixture 

heated under reflux for another hours. After removing the solvent, water (50 ml) was 

added, the mixture stirred and insoluble material removed by filtration. Solid K2CO2 (0.6 

eq) and CH2Cl2 (50 ml) was added to the aqueous layer; the mixture was stirred and 

filtered. The organic layer was washed with water (3x20ml). The combined aqueous layer 

were washed with ethanol. Water was removed from the organic layer, which were then 

dried and evaporated to give the pure desired compound as a brown yellow solid.  

 

M.W.: 143.23 g/mol; Yield: 34% 

MS (ESI+): 144.1 ([M+H]
+
) 

The 
 
NMR analyses are in progress.  

 

EMAC 2169 

2-N,7-N-bis[2-(4-methylpiperazin-1-yl)ethyl]-9-oxo-9H-fluorene-2,7-dicarboxamide  
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1g of 9-oxo-9H-fluorene-2,7-dicarbonyl dichloride (3.28 mmol) was introduced in a 

flask equipped with a reflux condenser with 10 ml of chloroform. After stirring for 3 

minute, 1-(2-aminoethyl)-4-methylpiperazine was added in excess (9.84 mmol). The 

reaction was heated under reflux and monitored by TLC (eluent: ethyl acetate:hexane 

1:1.5). After 2 hours the reaction was completed. A solid was filtered off and the desired 

pure compound appeared like a yellowish crystalline solid  

 

M.W.: 518.65 g/mol; M.P.: >250 °C; Yield: 83% 

MS (ESI+): 519.30 ([M+H]
+
) 
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The 
 
NMR analyses are in progress.  

EMAC 2170 

2-N,7-N-bis[3-(4-methylpiperazin-1-yl)propyl]-9-oxo-9H-fluorene-2,7-dicarboxamide 
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1g of 9-oxo-9H-fluorene-2,7-dicarbonyl dichloride (3.28 mmol) was introduced in a 

flask equipped with a reflux condenser with 10 ml of chloroform. After stirring for 3 

minute, 1-(2-aminoethyl)-4-methylpiperazine was added in excess (9.84 mmol). The 

reaction was heated under reflux and monitored by TLC (eluent: ethyl acetate:hexane 

1:1.5). After 2 hours the reaction was completed. A solid was filtered off and the desired 

pure compound appeared like a yellowish crystalline solid  

 

M.W.: 546.7 g/mol; M.P.: >250 °C; Yield: 83% 

MS (ESI+): 547.34 ([M+H]
+
) 

The 
 
NMR analyses are in progress. 

 

EMAC 2171 

1-{2-[(7-{[2-(1,4-dimethylpiperazin-1-ium-1-yl)ethyl]carbamoyl}-9-oxo-9H-fluoren-2-

yl)formamido]ethyl}-1,4-dimethylpiperazin-1-ium  
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0.32 g of 2-N,7-N-bis[2-(4-methylpiperazin-1-yl)ethyl]-9-oxo-9H-fluorene-2,7-

dicarboxamide (0.61 mmol), K2CO3 (2.4mmol), CH3I (2.4 mmol) and DMF were introduced 

in a flask equipped with a reflux condenser. The reaction was heated under reflux and 

after 3 hours it can be observed the colour changes  from yellow to orange. The reaction 

was monitoreted with TLC ( eluent: ethyl acetate:hexane 1:1.5) and after 4 hours it was 

completed. At  R.T. it can be observed the formation of a yellow crystalline solid. A solid 

was filtered off and characterised. 

 

M.W.: 548.72 g/mol; M.P.: >250°C; Yield: 60% 

MS (ESI+): 549.35 ([M+H]
+
) 
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The 
 
NMR analyses are in progress.  

EMAC 2172 

1-{3-[(7-{[3-(1,4-dimethylpiperazin-1-ium-1-yl)propyl]carbamoyl}-9-oxo-9H-fluoren-2-

yl)formamido]propyl}-1,4-dimethylpiperazin-1-ium  
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0.33 g of 2-N,7-N-bis[3-(4-methylpiperazin-1-yl)propyl]-9-oxo-9H-fluorene-2,7-

dicarboxamide ( 0.61 mmol), K2CO3 ( 2.4 mmol), CH3I ( 2.4 mmol) and DMF were 

introduced in a flask equipped with a reflux condenser The reaction was heated under 

reflux and after 3 hours it can be observed the colour changes  from orange to dark 

green. The reaction was monitoreted with TLC ( eluent: ethyl acetate:hexane 1:1.5) and 

after 4 hours it was completed. At  R.T. it can be observed the formation of  a yellow 

crystalline solid. A solid was filtered off and characterised. 

 

M.W.: 576.77 g/mol; M.P.: >250°C; Yield: 70% 

MS (ESI+): 577.38 ([M+H]
+
) 

The 
 
NMR analyses are in progress.  
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