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Abstract 

 
In this Thesis a stochastic approach to model antisolvent 

crystallization processes is addressed. The motivations to choice a 

stochastic approach instead of a population balance modeling has 

been developed to find a simple and an alternative way to describe 

the evolution of the Crystal Size Distribution (CSD), without 

consider complex thermodynamic and kinetic aspects of the process. 

An important parameter to consider in crystallization process is the 

shape of the CSD (in terms of variance) and the mean size of 

crystals in order to optimize the filtering of the final product and 

then increase the production. The crystallization processes 

considered in this Thesis are the antisolvent crystallization processes 

used in particular when the solute is weakly temperature-sensitive 

and then a second solvent, properly called antisolvent, is added in 

the solution favoring the crystallization of the solute. In antisolvent 

crystallization processes it is important the consumption of the 

second solvent added, in particular, optimizing the feed-rate and 

coupling the process in synergy with cooling crystallization in order 

to improve the production and the quality of the desired product. 

The stochastic approach used in this Thesis is based on the Fokker 

Plank Equation (FPE), which has allowed finding an analytical 

solution of the model, with some assumptions, and obtaining an 

analytical model able to describe the evolution of the mean size of 

crystals and the variance of the CSD. This analytical solution has 

leaded to develop an analytical relationship between the evolution in 

time of the first two stochastic moments of the FPE, such as mean 

and variance, and the manipulated variables, such as antisolvent 

feed-rate and temperature, obtaining as a result a map showing the 

asymptotic moments obtainable within a certain range of operating 

conditions. 

This Thesis also analyzes the physical-chemical aspects of the 

antisolvent crystallization processes, including the temperature 

effects, finding a strong influence onto the nucleation and growth 



rate of crystals due by the hydrogen bond strength between solvent-

antisolvent molecules despite of the molecular interaction in a 

solvated system. 

The physical-chemical consideration concerning the antisolvent 

crystallization processes allowed to better understand the influence 

of the second solvent added, consequently optimizing the choice for 

the proper antisolvent to use with a proper feed-rate and temperature 

profile, minimizing the energy consumptions, in order to obtain the 

desired product. 

The stochastic model and the physical-chemical considerations have 

been validated with experimental data performed in a laboratory 

scale crystallizer. The experimental samples have been analyzed 

using an optical microscope and then the images taken have been 

manually processed in order to obtain the experimental CSDs. 
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Chapter 1 

 

Introduction 

 
This introductory Chapter starts with the illustration of the 

motivations which lead us to the development of this Thesis. After 

that, a summary of the Thesis is given, by showing how it is 

structured in different Chapters. Finally, a list of publications in 

journals and conference in papers and other activities derived from 

the present work is presented. 

 

1.1 Motivations 

 

Crystallization is a widely used technology for solid-liquid 

separation in the process industry. It is extensively used in the 

production of pharmaceuticals, fertilizers and many more chemical 

and petrochemical fine products to separate the drug from the 

solvent mixture as well as to ensure that the drug crystal product 

conforms to size and morphology specifications. This process 

represents a multi-million dollar industry where any method to 

improve the production of these products would be highly valued. 

The crystal size distribution in crystallization processes is one of the 

most important variables since it influences factors such as filtration 

rate, de-watering rate, dissolution rate and bioavailability, among 

others. Thus, the main objective of this process is to target model-
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based optimal strategies for the crystallization operations. The 

driving force in crystal formation is supersaturation. 

The trend of supersaturation generation during the process has a 

direct and substantial role on crystal characteristics such as size, 

morphology and purity. There is a number of ways to control 

supersaturation and these include temperature and evaporation. In 

the last decade the salting-out method has drawn more attention. In 

this method, which is also known as solventing-out, drowning-out or 

quenching, a substance known as antisolvent or precipitant is added 

to the solution with the goal to reduce the solubility of the solute in 

the original solvent and consequently generating supersaturation. 

The antisolvent crystallization is also combined with the cooling 

crystallization in order to obtain an optimal supersaturation 

trajectory and to optimize the cost of production and the energy 

consumption. 

The development of effective mathematical models describing the 

crystal growth dynamics is a crucial issue towards finding the 

optimal process performance and to control the crystal size and 

distribution. The main approach, so far exploited, is by developing 

population balance models [Ramkrishna, 2000] taking into account 

the evolution of crystal particles across temporal and size domains. 

This method implies first principle assumptions requiring a detailed 

knowledge of the physics and thermodynamics associated with the 

solute and solvent properties to be adequately incorporated in the 

population balances, which sometimes come from empirical 

formulations such as the solute solubility. In addition, population 

balances modeling results in large and complex dynamic models, 

which cannot be easily employed, for instance, in model-based 

process control design or in real-time implementation. 

Recently, direct design, model-free approaches were proposed as an 

alternative efficient way of controlling crystallization processes for 

anti-solvent, cooling and combined processes [Woo et al, 2009; Abu 

Bakar et al, 2009] including the case of polymorphic control [Kee et 

al, 2009]. Along this way, a new approach to model crystallization 

systems characterized by Crystal Size Distribution (CSD) is the 

Fokker-Planck Equation is developed (FPE) [Galan et al, 2010; 
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Grosso et al, 2010; Grosso et al, 2011; Cogoni et al, 2011]. In this 

approach, the time evolution of each element of the population, the 

crystal, is regarded as a possible outcome of a random variable 

driven by a deterministic term. Indeed, each crystal does not grow in 

the same manner and some dispersion, in size, of the population is 

always observed. This random variable will be thus characterized 

uniquely by its Probability Density Function (PDF) whose evolution 

in time can be described in terms of a the FPE. Within this context, 

the FPE could be considered as an alternative way to develop a 

population balance, taking into account the natural fluctuations 

present in the crystallization process, and allowing describing, in a 

compact form, the Crystal Size Distribution (CSD) in time. The 

deterministic contribution driving the crystal growth is modeled by a 

proper model, allowing to describe the mean size behavior in time. 

However, in the FPE formulation, the model behavior is affected by 

both the deterministic and stochastic contribution. Indeed, the 

specific form of the stochastic model may lead to different shapes 

for the predicted probability density function, even being equal the 

nature of the deterministic part. 

In this Thesis, the attention is focused on the proper modeling of the 

stochastic term, and, to this end, the performance of the FPE based 

on different expressions for such stochastic model has been 

formulated and assessed comparatively including also a direct 

comparison with the population balance approach. Later, the 

modeling approach is focused on simplified model able to describe 

the process considered, without losing information about the CSD 

description, but allowing a linear FPE formulation with linear 

coefficients, where an analytical solution is then obtained. From a 

control, optimization and monitoring point of view the availability 

of the analytical solution of the model describing the time evolution 

of the CSD may be valuable for the design of proper off-line and/or 

on-line model based control strategies. 

In order to use the model over the whole operational range proper 

relationships between the parameters of the model and the two 

process variables, namely antisolvent feedrate and temperature, has 

to be developed. This is also extremely important when using the 

model in a model-based control configuration. Consequently, as an 
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additional novelty, the obtained global models are used to define an 

operating map of the crystallization process, where asymptotic iso-

mean and iso-variance curves are reported in an antisolvent feedrate 

– temperature plane. 

The effect of temperature in antisolvent crystallization operation, 

even for system where the solubility is weakly dependent on 

temperature, was shown numerically and experimentally, still there 

is no clear explanation of these effects. One reason about this 

enhancement, caused by the temperature and also by the amount of 

antisolvent used, can be explained by the interaction between 

solvent and the antisolvent. The antisolvent interacts strongly with 

the solvent, mostly because of hydrogen bonding, that is because the 

intrinsic polarity nature of the solvents used, and increasing its 

strength the system is forced to crystallize [Oostorhof et al, 2001; 

Mirmeharabi et al, 2005; Czeslik & Jonas, 1999]. The number of 

hydrogen bonds is also proportional to the antisolvent feedrate and, 

its strength is dependent of the temperature. 

In order to investigate the interaction solvent-antisolvent, solvents-

solute, and thus the influence of hydrogen bonding on the 

supersaturation of the solution, in this thesis have been considered 

different antisolvents, all of them in aqueous solution with a volume 

concentration of 95%, and using different operating conditions. 

 

1.2 Summary 

 

This Thesis is structured in six main chapters subdivided in 

paragraphs for each topic, in order to allow the reader to better 

follow the development of the model, from the physical description 

of the process and the mathematical formulation of the model to the 

comments and conclusions of the results obtained, including a 

detailed description of the experimental procedure and devices used. 

A summary of this Thesis is shown in the following list, where a 

brief description of each chapter is given. 
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Chapter 2. A general overview of the crystallization processes with 

the physical aspects is explained. This chapter introduces the reader 

from the basics of crystallization and all its methods until the 

particular crystallization process used to develop the research for 

this Thesis. The main contribution in this chapter is the hypothesis 

and the formulation about the influence of the hydrogen bonding on 

the supersaturation of the system, influencing the crystal growth and 

the nucleation rates. This hypothesis has been verified using 

different antisolvents with different polarity index and considering 

the effects of temperature and antisolvent feedrate. 

Chapter 3. This chapter is focused on the stochastic model 

development, in which the main contribution is the formulation of 

the Fokker-Planck Equation, FPE, obtaining as a linear PDE with 

non-linear coefficients, suitable for a qualitative design of the 

Crystal Size Distribution, CSD. The FPE is also compared with the 

more common Population Balances, PBM, in which the process is 

based on thermodynamic a kinetic consideration, hence from a solid 

knowledge of the physics, resulting as a more complex equation. 

This Chapter concludes with the formulation of a linear FPE model 

with linear coefficients where an analytical solution is obtained after 

some mathematical assumptions, allowing a better suitability for 

optimizations and control purposes. 

Chapter 4. Here, all the procedure to obtain the experimental data 

used to study and validate all the models is explained as well as all 

the devices used and developed. This chapter also summarizes all 

the experimental runs performed for all the models developed. 

Chapter 5. This Chapter shows all the experimental results and 

further developments of the process modeling obtained a posteriori. 

The main contributions start from the rigorous model development, 

passing to a simplified model, where an analytical solution has been 

founded, the operating map, describing the asymptotic behavior of 

mean size and variance as a function of temperature and antisolvent 

feedrate, and finally concluding with an investigation about the 

influence of the antisolvent-solvent interaction, considering their 

polarity nature and the hydrogen bond behavior. 
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Chapter 6. Conclusions and recommendations for future research 

are given. 

 

1.3 Publications in Journal and Conference Papers 

 

Some of the topics present in this Thesis have been published in 

international journal paper, and national and international 

congress/conferences. 

International Journal Papers: 

Grosso M.; Cogoni G.; Baratti R.; Romagnoli J. A. Stochastic 

Approach for the Prediction of PSD in Crystallization Processes: 

Formulation and Comparative Assessment of Different Stochastic 

Models, Ind. & Eng. Chem. Res., 2011, 50, 2133-2143. 

Cogoni G.; Grosso M.; Baratti R.; Romagnoli J. A. Time evolution 

of the PSD in crystallization operations: An analytical solution 

based on Ornstein-Uhlenbeck process, AIChE Journal, 2012, 

doi:10.1002/aic.13760. 

Not yet published International Journal Papers: 

Cogoni G.; Tronci S.; Mistretta G.; Baratti R.; Romagnoli J. A.; 

Stochastic Approach for the Prediction of PSD in Nonisothermal 

Antisolvent Crystallization Processes, AIChE Journal. [Already 

Submitted] 

Cogoni G.; Baratti R.; Romagnoli J. A.; On the influence of 

hydrogen bond interactions in isothermal and non-isothermal 

antisolvent crystallization processes, Ind. & Eng. Chem. Res. 

[Already Submitted] 

Cogoni G.; Widenski D.; Grosso M.; Baratti R.; Romagnoli J. A.; 

Comparison between population balances and stochastic models for 

crystallization processes, Comp. & Chem. Eng. [To be Submitted] 
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National and International Congresses and Conferences: 

Cogoni G.; Grosso M.; Baratti R.; Romagnoli J. A. Dynamic 

evolution of PSD modelled using an Ornstein-Uhlenbeck process 

approach, 18
th

 World Congress IFAC 2011, Milan - Italy. 

Baratti R.; Cogoni G.; Grosso M.; Mistretta G.; Romagnoli J. A.; 

Tronci S. Modellazione Stocastica di Cristallizzatori, GRICU 2012, 

Montesilvano - Italy. 
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Chapter 2 

 

Crystallization 

 
This Chapter introduces the main concepts concerning the 

crystallization processes from a physical point of view and the 

different techniques used in industry in order to obtain the separation 

of the solute from the liquid solution. This Chapter ends with a 

hypothesized mechanism concerning the precipitation of the solute, 

caused by the influence of the hydrogen bond interactions. This last 

part of this Chapter has been developed in detail in Chapter 4 and 5 

with some ad hoc experiments, and with proper validation runs, in 

order to verify and confirm the hydrogen bond influence on the 

behavior of the process. 

2.1 Phase Equilibrium 

 

Solubility 

The solubility of a substance in a solvent is the maximum 

concentration that can exist at equilibrium at a given set of 

conditions and often increases (which sometimes but rarely 

decreases) with the temperature of the solution. The equilibrium 

phase diagram of solubility or solubility-supersolubility plot [Miers 

and Isaac, 1907] shown in Figure 2.1, provides an useful starting 

point for considering why crystallization occurs and what type of 

process might be more suitable for production of a particular 

substance. It can be divided into three zones (Ostwald, 1897). 
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Figure 2.1: Solubility-Supersolubility curve. 

1) Undersaturated: Crystals present will dissolve; 

2) Metastable: A supersaturated region in which crystals will 

grow; 

3) Labile: A region in which a solution will nucleate 

spontaneously. 

The solubility thus denotes the extent to which different substances, 

in whatever state of aggregation, are miscible in each other. The 

constituent of the resulting solution present in large excess is known 

as the solvent, the other constituent being the solute. 

For a substance to dissolve in a liquid, it must be capable of 

disrupting the solvent structure and permit the bonding of solvent 

molecules to the solute or its component ions. The forces binding the 

ions, atom or molecules in the lattice oppose the tendency of a 

crystalline solid to enter solution. The solubility of a solid is thus 

determined by the resultant of these opposing effects. The solubility 

of a solute in a given solvent is defined as the concentration of that 
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solute in its saturated solution. A saturated solution is one that is in 

equilibrium with excess solute present. 

Supersaturation 

The fundamental, thermodynamic, driving force for crystallization is 

given by the change in chemical potential between standing and 

equilibrium states. This applies whether the particles formed are 

organic or inorganic, biochemical or petrochemical. Chemical 

potential is a quantity that is not easy to measure, however, and the 

driving force is more conveniently expressed in terms of solution 

concentration by the following approximation: 

 










 11ln

***
S

C

C

C

C

C

C
 (2.1) 

where   is the change in chemical potential, C  is the standing 

concentration and *C  the equilibrium saturation concentration, S  is 

the supersaturation ratio and   is the relative or absolute 

supersaturation. It is worth noting that, although commonly used, 

strictly equation 2.1 is valid only for *CC  , but many 

precipitations employ *CC  . Supersaturation can be thought of as 

the concentration of solute in excess of solubility. For practical use, 

however, supersaturation is generally expressed in terms of 

concentration: 

*CCC   (2.2) 

where C  is the concentration of solution, *C  is the saturation 

concentration and C  is sometimes called the “concentration 

driving force”. 
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2.2 Nucleation and Growth 

 

Nucleation is the formation of a new solid phase. There are two 

types, primary and secondary as depicted in Figure 2.2. The two 

types will be described in turn. 

Primary nucleation 

Primary nucleation occurs exclusively due to supersaturation. The 

mechanism for primary nucleation is generally believed to be due to 

a series of bimolecular collisions: 

 

Figure 2.2: Classification of types of nucleation. 

When the size of an aggregate becomes large enough, then 

thermodynamics predicts that it should become stable and grow. 

This size is called the critical nucleus size. This type of nucleation 

requires rather high supersaturations and is generally only applicable 

in precipitation processes. 

The two different types of primary nucleation are homogeneous and 

heterogeneous. In homogeneous nucleation no foreign substances, 

such as dust, are present in solution. In heterogeneous primary 

nucleation some foreign substance is present which provides a 

nucleation site. Generally homogeneous nucleation conditions are 

difficult to achieve and maintain. 
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Secondary nucleation 

Secondary nucleation requires the presence of growing crystals in 

solution. It differs greatly from primary nucleation in that it occurs 

at much lower supersaturations. In general most industrial 

crystallization processes operate under conditions which favor 

secondary over primary nucleation. The most important types of 

secondary nucleation are: 

1) Contact 

It happens when some disturbance occurs at the surface of a 

growing crystal resulting from contact with the crystallizer, 

impeller, or another crystal. 

2) Shear 

It occurs when liquid travels across a crystal at a high speed, 

sweeping away nuclei that would otherwise be incorporated 

into a crystal, causing the swept-away nuclei to become new 

crystals. 

3) Fracture 

It is due to particle impact. 

4) Attrition 

It is due by the synergy of particle impact and fluid flow. 

5) Needle 

It happens when dendrites are formed on the surface of a 

crystal, growing at high supersaturation, and these dendrites 

are removed forming nuclei. 

Over the various mechanisms which are involved in secondary 

nucleation, the most important, from an industrial point of view, is 

contact nucleation. [Jones, 2002]. 
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Growth 

During the crystallization the solute molecules or ions reach the 

surface of the growing crystals by diffusion through the liquid phase. 

After they reach the interface they must reorganize they structure 

into a lattice space in order to be adsorbed. Both processes diffusion 

and interfacial step, can only happen if the solution is 

supersaturated. Crystal growth is the increase in size of crystals as 

solute is deposited from solution. These often competing 

mechanisms ultimately determine the final crystal size distribution. 

The relationship between supersaturation and nucleation and growth 

is defined by the following (somewhat simplified) equations 

[Mullin, 2001]: 

 

Figure 2.3: Solvation of sodium chloride (NaCl) in water (H2O), in which 

the separation of electrostatic charges has been highlighted. 

g

g CkG   (2.3) 
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b

b CkB   (2.4) 

where G is the growth rate, kg is the growth constant, g is the growth 

order, B the nucleation rate, kb is the nucleation constant, b is the 

nucleation order and finally ΔC is the supersaturation expressed in 

terms of concentration (2.2). 

For organic crystallization systems, the value of the growth order is 

typically between 1 and 2 and the value of the nucleation order is 

typically between 5 and 10 [Mullin, 2001]. When we plot what this 

looks like in theory it becomes clear why controlling supersaturation 

is so important. At low supersaturation, crystals can grow faster than 

they nucleate resulting in a larger crystal size distribution. However, 

at higher supersaturation, crystal nucleation dominates crystal 

growth, ultimately resulting in smaller crystals. This diagram, 

relating supersaturation to nucleation, growth and crystal size clearly 

illustrates how controlling supersaturation is vitally important when 

it comes to creating crystals of the desired size and specification. 

 

2.3 Crystallization Techniques 

 

There are several different crystallization techniques currently used 

to generate supersaturation necessary for crystallization. The most 

common techniques are cooling, evaporation, and antisolvent 

addition. All of these techniques cause crystallization due to changes 

in equilibrium solubility. The appropriate technique to use depends 

on the solubility behavior of the compound to be crystallized. 

Cooling Crystallization. The cooling crystallization can be applied 

when the solubility gradient of the solution increases steeply 

decreasing the temperature or when a vaporization of the solvent has 

to be avoided. The operating temperature is usually obtained by 

applying a vacuum to the hot concentrated feed solution, or by 

indirect heat exchange with a cold source (water or thermal fluid). 
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Evaporative Crystallization. This process is suitable for products 

having a solubility which does not vary appreciably with 

temperature. Another application concerns the recovery, or 

elimination, of products from liquid effluents, often very dilute. In 

most cases, the actual crystallization unit is combined with a pre-

concentration stage. 

Antisolvent Crystallization. In the last decade the salting-out 

method has drawn more attention. In this method which is also 

known as solventing-out, drowning-out and quenching, a substance 

known as antisolvent or precipitant is added to the solution which 

reduces the solubility of the solute in the original solvent and 

consequently generating supersaturation. This technique is regarded 

as an energy-saving alternative to evaporative crystallization, 

provided that antisolvent can be separated at low (energy) costs. 

Also in cases where solute is highly soluble or its solubility does not 

change much with temperature, antisolvent crystallization is an 

advantageous method. 

All of these techniques can be combined in order to obtain an 

optimal supersaturation trajectory and in order to optimize the costs 

of production and the energy consumptions. 

 

2.4 Molecular Interactions 

 

In crystallizing systems, especially where solubility is weakly 

dependent on temperature, the effect of temperature is not 

straightforward. Recently it was also shown [Widenski et al., 2012] 

that for these kind of systems temperature also influences the 

supersaturation, which is enhanced at low temperatures and becomes 

weaker as the temperature increases. The overall effect is that 

supersaturation is directly proportional to the antisolvent feedrate 

and concentration of the antisolvent and, inversely proportional to 

the temperature. 
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Although the effects of temperature on antisolvent crystallization 

operation were shown numerically and experimentally, even for a 

system where the solubility is weakly dependent on temperature, 

there is still no clear explanation of for these effects. One reason for 

this enhancement, caused by the temperature and also by the amount 

of antisolvent used, can be explained through the interactions 

between the solvent and the antisolvent. The antisolvent interacts 

strongly with the solvent, mostly through hydrogen bonding caused 

by the intrinsic polarity nature of the solvents used, increasing its 

strength so that the system is forced to crystallize [Oosterhof et al., 

2001]. The number of hydrogen bonds is also proportional to the 

antisolvent feedrate where its strength is dependent on temperature. 

In this section a hypothesis about the influence of solvation and 

hydrogen bond interactions on the supersaturation of the system will 

be explained. In order to formulate this hypothesis, a briefly 

introduction concerning the solvation, hydrogen bonding and 

supersaturation will be presented in the below paragraph. 

Solvation, also called dissolution, is the process of attraction and 

association of solvent molecules with molecules or ions of a solute. 

As ions dissolve in a solvent, they spread out and become 

surrounded by solvent molecules, see Figure 2.4. This is a typical 

ion-dipole interaction, which involves charged ions and polar 

molecules, e.g., water. For a substance to dissolve in a liquid, it must 

be capable of disrupting the solvent structure and permit the bonding 

of solvent molecules to the solute or its component ions. The forces 

binding the ions, atoms or molecules in the lattice oppose the 

tendency of a crystalline solid to enter solution. The solubility of a 

solid is thus determined by the resultant of these opposing effects 

[Jones, 2002]. The magnitude of the interaction energy is between 

40 and 600 KJ/mole and depends upon the ions charge, the dipole 

moment of the molecule and the square of the distance between the 

center of the ion and the midpoint of the dipole. 
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Figure 2.4: Solvation of sodium chloride (NaCl) in water (H2O), in which 

the separation of electrostatic charges has been highlighted. 

Hydrophilic solvents such as water, ethanol and other solvents with 

hydroxyl groups can establish hydrogen bonds within their 

molecules or other similar hydrophilic molecules. The hydrophilic 

nature of a solvent is proportional to the polarity index [Di Martino 

et al., 2007] and represents how much the separation of charges is 

strong in a molecular structure, leading to the hydroxyl groups 

interact with other similar molecules with hydrogen bonds, 

consequently as the polarity index is higher as the hydrogen bonds 

are stronger. Diminishing the hydrophilic nature of the solvent, the 

probability that these polar groups can establish hydrogen bonds 

with the solvent diminishes. The strength of the hydrogen bonds is 

also influenced by temperature, pressure and concentration, in 

particular, increases at low temperature, at high pressure and at high 

concentrations [Czeslik, et al 1999; Dougherty, 1998]. Hydrogen 

bonds are directional and relatively weak, with energy between 10 

and 40 kJ/mol, but strong enough to define the structure and 

properties of water, proteins, and many other materials. The 

competition of these two interactions, ion-dipole and hydrogen 

bonds, affects the supersaturation of the antisolvent crystallization 

processes and consequently influences the shape of the Crystal Size 

Distribution (CSD), the growth and nucleation rate, and the 

morphology of crystals [Di Martino et al., 2007]. 
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Figure 2.5: Hydrogen bonds between water (H2O) and different organic 

polar molecules, respectively: a) within water; b) alcohols; c) aldehydes 

and d) carboxylic acids. 

Supersaturation, as has been expressed on the previous paragraph, is 

represented as the rate between the concentration of the system and 

the equilibrium concentration of the solute in the liquid phase. The 

equilibrium concentration depends onto thermodynamic aspects, in 

which the most important is the activity coefficient that is influenced 

by the polarity nature of the compounds considered; consequently 

hydrogen bonds have an important role on the solubility of the 

system, therefore influence the supersaturation. The growth and 

nucleation rate are both directly proportional to the supersaturation, 

respectively when supersaturation rises up nucleation and growth 

rate rise up as well. For high values of supersaturation, nucleation 

dominates the growth rate, obtaining as a consequence crystals with 

a smaller mean size. 

Considering the antisolvent crystallization processes, the influence 

of the antisolvent feedrate and temperature have been studied in 

previous works [Park & Yeo, 2012; Widenski et al., 2012, Grosso et 
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al., 2010; Grosso et al., 2011; Cogoni et al, 2012] showing that a 

high antisolvent feedrate increase the supersaturation of the system 

as well as decreasing the temperature, favoring the nucleation than 

the growth rate as a result and inducing a large number of nuclei in 

the initial stage of the nucleation process and consequently obtaining 

a narrower CSD. From a physical point of view, increasing the 

antisolvent feedrate and/or decreasing the temperature, we are 

statistically increasing the number of hydrogen bonds in the solution 

and the strength of them, favoring the nucleation of new crystals, 

also considering the dispersion of the CSD, we can obtain a 

narrower distribution as the temperature increase, because we have 

the dissolution phenomena of the smaller particles, leading the big 

ones to keep growing. In antisolvent crystallization, a similar effect 

could be obtained by changing the secondary solvent, in particular 

using one with a higher polarity index or changing the antisolvent 

concentration. 

In this Thesis is hypothesized, applied on antisolvent crystallization 

processes, that higher hydrogen bond strength generates higher 

supersaturation caused by their statistical dominance on ion-dipole 

interactions, consequently influencing the nucleation and the growth 

rates. 

Increasing the nucleation and growth rates induce a fast precipitation 

of the solute and consequently a faster growing, resulting as a wider 

CSD with a smaller mean size caused by the high nucleation of new 

crystals. 

The effect of the temperature generates a high supersaturation as it 

decreases, caused by strengthen of the hydrogen bonds and therefore 

obtaining the same effects keeping a constant antisolvent 

concentration and feedrate. All of these effects can be gathered with 

the polarity nature of the solvents used. If this aspect is correct the 

polarity index of the solvent used increases the supersaturation 

increases as well, keeping constant the temperature, the 

concentration and the feedrate of the antisolvent. 

The effects of supersaturation on the mean size of crystals, 

nucleation and growth rates are qualitatively summarized on Figure 

2.3 [Celikbilek et al, 1999]. From Figure 2.3 one can observe that 

the behavior of the crystal size has a maximum and, after that, starts 
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to decrease as the supersaturation increases, this happens when the 

nucleation rate dominates the growth rate. It should be remarked that 

the functionality of nucleation and growth rates are always 

monotonic growing functions, but the behavior can be different than 

the one showed on Figure 2.3. 

A qualitative summary of the hypothesized effects of hydrogen 

bonding is also shown in Table 2.1, considering the physical aspects 

discussed so far about the effects of temperature, antisolvent 

feedrate and polarity index, on the asymptotic behavior of the mean 

size of crystals, the dispersion of the CSDs and the growth velocity 

based on the physical considerations concerning the hydrogen bond 

strength. 

 

Increasing 
Asymptotic 

mean size 
Dispersion 

Growth 

velocity 

Antisolvent feedrate ↓ ↑ ↑ 
Temperature ↑ ↓ ↓ 
Polarity Index ↓ ↑ ↑ 

 
Table 2.1: Qualitative effects of increasing the antisolvent feedrate, 

temperature and using and antisolvent polarity index on the asymptotic 

mean size, dispersion and growth velocity. 

 

In order to verify and quantify these effects, a set of experimental 

runs selected ad hoc, have been conducted and discussed in Chapter 

4 and 5, where the FPE equation has been used to fit the data. The 

experiments are performed considering different polarity indexes, 

with a constant temperature and antisolvent feedrate and 

concentrations. 
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Chapter 3 

 

Model Development 

 
The development of effective mathematical model describing the 

crystal growth dynamics is a crucial issue toward finding the optimal 

process performance and to control the crystal size and distribution. 

The main approach so far exploited is by developing population 

balance models [Ramkrishna, 2000] taking into account the 

evolution of crystal particles across temporal and size domains. This 

method implies first principle assumptions requiring a detailed 

knowledge of the physics and thermodynamics of the process. Some 

examples of antisolvent crystallization modeling are paracetamol 

[Zhou et al, 2006; Trifkovic et al, 2008] and sodium chloride 

[Nowee et al, 2008a; Nowee et al, 2008b]. Recently, cooling has 

been combined with anti-solvent crystallization and the joint process 

has been modeled for lovastatin [Nagy et al, 2008], and for 

acetylsalicylic acid [Lindenberg et al, 2009]. However, they demand 

a great deal of knowledge on the complex thermodynamic 

associated with the solute and solvent properties to be adequately 

incorporated in the population balances and sometimes these 

properties are correlated with empiric relationships. In addition, 

population balances modeling results in large and complex dynamic 

models, which cannot be easily employed, for instance, in model-

based process control design or in real-time implementation [Nagy 

et al, 2009]. Recently, direct design, model-free approaches were 

proposed as an alternative efficient way of controlling crystallization 

processes for anti-solvent, cooling and combined processes [Woo et 
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al, 2009; Abu Bakar et al, 2009] including the case of polymorphic 

control [Kee et al, 2009]. 

Along this way, a new approach to model crystallization systems 

characterized by PSD is the Fokker-Planck Equation (FPE) [Galan 

et al, 2010; Grosso et al, 2010]. In this approach, the time evolution 

of each element of the population, the crystal, is regarded as a 

possible outcome of a random variable driven by a deterministic 

term. Indeed, each crystal does not grow in the same manner and 

some dispersion, in size, of the population is always observed. This 

random variable will be thus characterized uniquely by its 

Probability Density Function (PDF) whose evolution in time can be 

described in terms of a the FPE. Within this context, the FPE could 

be considered as an alternative way to develop a population balance, 

taking into account the natural fluctuations present in the 

crystallization process, and allowing describing, in a compact form, 

the PSD in time. The deterministic contribution driving the crystal 

growth is modeled by a growth equation. 

However, in the FPE formulation, the model behavior is affected by 

both the deterministic and stochastic contribution. Indeed, the 

specific form of the stochastic model may lead to different shapes 

for the predicted probability density function, even being equal the 

nature of the deterministic part. 

In this Thesis the mathematical models description starts with a brief 

definition of a generic population balance and then the stochastic 

models will be discussed. This Thesis is mainly focused on the 

modeling of nonisothermal antisolvent crystallization processes 

through a stochastic modeling, in particular using the Fokker-Planck 

Equation FPE in order to describe the time evolution of the CSD. 

The main contribution of this chapter is the formulation of the FPE 

for an accurate description of the CSD evolution, considering a 

logistic model to describe the time evolution of the mean size of 

crystals and a Geometric Brownian Motion (GBM) to model the 

noise intensity of the stochastic model. A simplified model is then 

formulated, in order to allow the system to be more suitable for a 

control and an optimization point of view. The simplified model 

leads to an analytical solution able to describe separately the mean 
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and the variance evolution of the CSD, allowing the formulation of 

operating maps, describing the asymptotic condition of the process 

in terms of mean and variance as a function of antisolvent feedrate 

and temperature. 

3.1 Population Balances 

 

A population balance allows for the tracking of a distribution of 

particles as they grow in solution. Traditionally, a complete 

population balance crystallization model is comprised of a 

population balance with corresponding crystallization kinetics, mass 

balance, and solubility model [Mullin, 2001]. Here, the crystal 

growth is assumed as size independent and with negligible attrition 

and agglomeration. As a further assumption, the only internal 

coordinate, which uniquely identifies the crystal, is its size L . 

Within these assumptions the PBE has the following form: 

0B
L

t)n(L,
G

dt

dV

V

t)n(L,

t

t)n(L,










 (3.1) 

where t)n(L,  is the crystal density (# of particles/m
4
), V  is the 

reaction volume (m
3
), G  is the growth rate (m/s), and B  is the 

nucleation rate (# of particles/m
4
/s). 

It should be remarked that Lt)n(L,   is the number of particles in a 

unit volume having size between L  and LL  , thus the zero order 

moment of the distribution  tμ0  (# of particles/m
3
) corresponds to 

the number of crystals in a unit volume. 

   



0

0 dLL,tntμ  (3.2) 

The nucleation and growth rates used in the population balance were 

modeled using Equations 3.3 and 3.4: 
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where 0b  and 1b  are nucleation parameters, and 

543210 gggg,gg ,,,,  and 6g  are growth parameters. C  is the 

crystal density of sodium chloride (kg/m
3
), *C  is the equilibrium 

concentration (kg NaCl/kg solvents), *C-CC   is the absolute 

supersaturation (kg/m
3
), and *C

CS   is the relative 

supersaturation. S  is the solution density (kg/m
3
), w  is the solute 

free mass percent of antisolvent (ethanol) in the solution, R  is the 

ideal gas constant, and T  is temperature (K). For the nucleation 

kinetics, 0b  is the temperature dependent term, and there is no 

explicit antisolvent composition dependence. The growth kinetic is 

explicitly dependent on both temperature and solvent composition. 

The parameter 0g  represents the default growth rate, and parameters 

1g  and 2g  represent the reduction in growth rate due to antisolvent 

addition. Parameters 3g  and 4g  represent the growth rate 

temperature dependence, and 5g  is the supersaturation growth rate 

exponent. Thus, it is hypothesized that crystal growth approaches 

zero at a certain critical ethanol composition for the similar NaCl 

compound. 

In order to evaluate the absolute and relative supersaturation used in 

the kinetic equations, a solubility model is needed to calculate the 

corresponding equilibrium concentration. 
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

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C 32
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1*  (3.5) 

Where, 20.6781c , -59.2942c , and 20.6783c  over solute free 

ethanol mass fractions less than 0.849. On the other hand, solute free 

ethanol mass fractions greater than 0.849 were set to an equilibrium 

solubility of zero. Dependence of the sodium chloride solubility on 

the temperature is assumed to be negligible over the range of 

temperatures used in our experiments. The percent change in 

solubility for NaCl in water of a twenty degree temperature change 

from 30 °C to 10 °C is 1.1% [Mullin, 2001]. 

The mass balance of the solute in solution for fed-batch antisolvent 

crystallization is: 

 
 




0

2

vC
S dLtL,nGLVk3ρ

dt

Cmd
 (3.6) 

where C  is the solute concentration (kg solute/kg solvents), vk  is 

the volumetric shape factor of the crystal, C  is the solid density of 

the crystal, and sm  is the mass of the solvent. For sodium chloride: 

vk , and C  are 1, and 2165 kg/m
3
 respectively [Feldman, 2005]. No 

energy balance was explicitly specified in the crystallization model: 

it is assumed that the control system maintains the reactor 

temperature at the set-point specified. 
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Numerical Methods 

The population balance was solved using the method of lines 

discretization technique. This technique converts the partial 

differential equation into a system of ordinary differential equations 

with corresponding boundary and initial conditions shown in 

Equation Set 3.7. 
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where ζ is the number of discretization intervals, and δ is the length 

of each discretization interval given by: 

ζ1,...,iLLδ 1iii    (3.8) 

The individual discretization lengths are chosen using a geometric 

series: 

ζ

1

0
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i

0i

L

L
b

ζ0,...,ibLL
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
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
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



 (3.9) 

where 0L  is the nucleate size and maxL  is the maximum crystal size 

used in the discretization. 
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3.2 Langevin Equation 

 

Here, it is introduced a simple unstructured population model, where 

the crystals are classified by their size, L . The growth of each 

individual crystal is supposed to be independent by the other crystals 

and is governed by the same deterministic model. In order to take 

into account the growth fluctuations and the unknown dynamics not 

captured by the deterministic term, a random component can be 

introduced [Risken, 1984]. The stochastic model can thus be written 

as a Langevin equation of the following type: 

)()();,( tLgθtLLf
dt

dL
  (3.10) 

where L  is the size of the single crystal, t  is the time, );,( θtLf  is 

the expected rate of growth of L , θ  is the vector parameter defined 

in the model, )(t  is the Langevin force and )(Lg  is the diffusion 

coefficient, assumed to depend also on L . It is further assumed that: 

  )'(])'()([

0)]([

ttLgttE

tE








 (3.11) 

Equation 3.10 implies that the crystal size L  behaves as a random 

variable, characterized by a certain Probability Density Function 

(PDF) ),( tL  depending on the state variables of the system, i.e.: 

the size L  and time t . Incidentally, it should be noted that one can 

regard the probability density ),( tL  as the relative ratio of crystals 

having a given dimension L  in the limit of infinite observations. 

Thus, from a practical point of view, it coincides with the 

normalized Particle Size Distribution experimentally observed. 

The diffusion term )(Lg  determines the random motion of the 

variable L  that takes into account the fluctuation in the particle 

growth process. We focus on formulating )(Lg  as function of the 

FPE diffusivity coefficient D  as well as the crystal size L  as 

follows: 
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LDLg 2)(   (3.12) 

where   is a parameter which allows to introduce some degree of 

flexibility in incorporating the functionality between )(Lg  and the 

particle size L . The specific form of )(Lg  may lead to different 

shapes for the probability density function. 

Substituting this definition on the Langevin equation (Equation 

3.10) we have: 

)(2);,( tLDθtLLf
dt

dL
  (3.13) 

Equation 3.13 can be manipulated to obtain the Langevin equation 

for the new random variable  Ly ln : 

)(2);,(
1 1 tLDθtLf

dt

dL

L
  (3.14) 

that is 

)(2);,(
1

teDθtyh
dt

dy y 
 

  (3.15) 

where );,( θtyh  is the expected growth rate of the crystal in the new 

coordinate y . 

 

3.3 The Fokker-Planck Equation (FPE) 

 

In order to integrate the solution of the Equation 3.10 and find the 

time evolution of the PDF ),( tL , that from now we will call 

Crystal Size Distribution CSD, the Fokker-Planck Equation in 

Stratanovich form has been used. 
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The time evolution of the CSD ),( tL , at any instant of time t , 

follows the linear Fokker-Planck Equation that, in Stratanovich 

form, is given by [Risken, 1984]: 

  ),,(),(),()()(
),(

θtLLftL
L

tLLg
L

Lg
Lt

tL




























 (3.16) 

along the boundary conditions: 
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The reflecting boundary conditions in Equation 3.17a ensures that 

the elements of the population will never assume negative values, 

whereas Equation 3.17b ensures the decay condition on ),( tL  as 

L  goes to infinity, for any time. 

Changing the random variable as  Ly ln , the FPE for the new 

random variable y  can be thus rewritten as a function of   as: 
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In the new variable y , the boundary conditions become: 

  0,  t
y





 (3.20a) 
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  0,  t
y





 (3.20b) 

The initial condition used for the FPE in logarithmic scale is 

Gaussian distribution, based on the initial mean size of crystals and 

the initial variance, defined as  2

00 , yyN  , where 0y  represents 

the initial mean size of crystals, based on the experimental data, and 
2

0y  is the initial variance of the experimental CSD, both evaluated 

at 0tt  . 

It should be pointed out that this variable transformation allows a 

more easy and efficient integration of the FPE. 

We can have a number of alternative formulations depending on the 

value of parameter  . For a purely random process (deterministic 

drift term equal to zero i.e.: 0);,();,(  θtLhθtLf ) the behavior 

of the PDF shapes, ),( tL , as a function of  , can be readily 

analyzed. In this case, the problem may be represented by Equation 

3.21: 
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which has an analytical solution for the probability distribution 

given by: 
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Logarithmic scale: 
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Figure 3.1: PDF for a purely random process ( 1.0Dt ) in the (a) 

logarithmic scale and (b) linear scale, for 0  (dotted line), 5.0  

(blue dashed line), 1  (green solid line), 5.1  red (dashed-dotted 
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line). The skewness of the PDF with respect to   is also reported for the 

logarithmic scale (panel c) and the linear scale (panel d) for 1.0Dt  

(solid line) and 15.0Dt  (dashed line). 

One should notice that, for a purely stochastic equation, the solution 

depends only on the dimensionless parameter group Dt  and the 

initial condition ( 0L  or 0y ). Furthermore the distribution tends to 

indefinitely widen as time increases. 

Figure 3.1 illustrates some properties of the solutions of Equations 

3.22 (left panels: a and c) and 3.23 (right panels b and d). In more 

detail the first row reports some PDF for a range of values of   and 

for a fixed 1.0Dt . In particular, we look at values of 0  

(diffusion term independent of particle size, hereafter referred as 

Linear Brownian Motion, LBM); 1  (diffusion term linearly 

dependent of the particle size, hereafter referred as Geometric 

Brownian Motion, GBM), 5.0  and 5.1  (nonlinear diffusive 

term). The second rows reports the skewness   of the PDF in 

Equation 3.22 (panel c) and Equation 3.23 (panel d) as a function of 

the   parameter for two different values of Dt  ( 1.0Dt  and 

15.0Dt ). One should remind that the skewness is a measure of 

the asymmetry for a given PDF of a generic random variable z  and 

is usually defined as: 
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where   is the z  domain. In the following we refer to L  when the 

skewness is evaluated in the linear scale ( Lz  ), whereas we refer 

to y  for the skewness evaluated in the logarithmic scale 

( Lyz log ). In Equation 3.24, Z  is the expected value of the 

random variable z : 
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As illustrated in Figure 3.1, the selection of   has a strong 

implication on the shape of the PDF: for 0  the typical Wiener 

process can be recovered and the probability distribution obtained 

using the FPE results in a Gaussian asymptotic shape when regarded 

in the L  domain. This is evident in Figure 3.1.c where it is shown 

that 0L  at 0 , for any Dt  parameter value. Conversely, for 

positive values of   Log-normal ( 1 , Geometric Brownian 

Motion, GBM) and stretched Gaussian ( 5.0  or 5.1 ) PDF 

shapes are obtained [Fa, 2005]. The case 1  is again a special 

instance: indeed the lognormal distribution corresponds to a 

Gaussian distribution when regarded in the logarithmic scale, thus 

the solution should appear as Gaussian when evaluated in the 

Ly log  domain. These features are confirmed in Figure 3.1.d 

where 0y  when 1  for any Dt  parameter value. 

Consequently, we will formulate and assess the performance of the 

FPE model to describe the crystal growth process for a range of 

values of   covering a number of cases ranging from Gaussian and 

Stretched Gaussian asymptotic behaviors. 

It is worth pointing out that in the presence of a drift term different 

from zero ( 0);,( θtLf  or 0);,( θtLh ), some distortion of the 

PDF from the pure stochastic situation could be expected. 

In Table 3.1 a brief overview of the Langevin and Fokker-Planck 

equations, corresponding to the cases 0 , 5.0 , 1  and 

5.1 , is reported. 
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Table 3.1: Langevin and FP equations for different   values. 

3.4 Logistic Model 

 

Regarding the deterministic part of the Langevin Equation, and then 

the FPE model, the purpose is to choose a model as simple as 

possible. To this end, the Logistic equation [Tsoulauris and Wallace, 

2002], is possibly the best-known simple sigmoidal asymptotic 

function used to describe the time dependence of growth processes 

in an unstructured fashion: 






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


K

y
yryh 1)(  (3.34) 

This choice is mainly motivated to the requirement for a simple 

model with a parsimonious number of adjustable parameters, i.e., 

the growth rate, r , and the asymptotic equilibrium value K . The 

present growth model can be regarded as one of the simplest model 

taking into account mild nonlinearities. In spite of its simplicity, this 

model provides the main qualitative features of a typical growth 
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process: the growth follows a linear law at low crystal size values 

and saturates at a higher equilibrium value as shown in Figure 3.2. 
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Figure 3.2: Experimental trajectory of the mean size of crystals. 

Substituting the Equation 3.34 on the Equation 3.18 and considering 

a value of the parameter   equal to one, obtained from the 

parameters estimation on experimental CSDs and explained in 

Chapter 5, the FPE can be rewritten as: 
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Finally the evolution in time of the probability density is described 

in terms of a linear, partial differential equation depending on the 

parameters r  (linear Malthusian growth rate), K  (asymptotic 

crystal size) and D  (diffusivity), that are assumed to depend on the 

feeding conditions. 

It should be remarked that the Equation 3.35 is a linear PDE but 

with non-linear coefficients, consequently hard to find an analytical 

solution. For this equation in the next chapter will be used a 

numerical integration for the parameter estimation and for the model 

validation. 
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3.5 Ornstein Uhlenbeck Process 

 

On previous paragraph Equation 3.35 being a linear PDE with non-

linear coefficient, it is not easy to find an analytical solution. As it 

regards the deterministic term );,( θtLf , here a Gompertz model 

(GM) for the crystal growth [Sahoo et al, 2010] is assumed, in 

consideration to the logarithmic scale used for the CSD data: 

0

ln
L

L
L

dt

dL
  (3.36) 

One should remark that, in absence of noise the model tends towards 

a stable stationary solution at 0LL   like the logistic model 3.34. 

Gompertz Equation 3.38 can be further manipulated: 
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Introducing again the new variable Ly ln , one can end up with a 

new stochastic equation for the random variable y : 
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with 0

' ln LK   and 0

' ln Lr  . 

The corresponding FPE equation becomes: 
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Introducing a linear variable transformation 









'K

y
1z , an 

Ornstein-Uhlenbeck Process (OUP) can be obtained, which can be 
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described by the following Fokker-Planck Equation with a 

Gompertz law growth term (FPE-GM): 
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where 2'
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K
DD   and '

'"

K
rr  . 

Equation 3.42 is defined for [,]tt 0   and [,-]z  . The 

initial condition for 0tt   is defined as a normal distribution: 
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3.6 Analytical Solution of the FPE 

 

Analogy with the Kalman Filter 

It can be demonstrated that, when dealing a FPE based on an 

Ornstein-Uhlenbeck Process, Equation 3.42, and the initial 

conditions are assumed to be Gaussian, Equation 3.44, the form of 

the PDF will stay Gaussian at any time [Risken, 1996; Jazwinsky, 

1970]. Thus the first two moments of the distribution: mean,  ty , 

and variance,  ty

2  uniquely identify the probability density 

function ),( ty . 

    ttNty yy

2,),(    (3.42) 

where: 
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The first moment follow the deterministic Gompertz equation (in 

logarithmic scale), and, therefore, the analytical solution is given by 

the following equation: 
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where 'K  is the average asymptotic size of the crystals dimension, 

r  is the growth rate, 0t  is the starting time of the run and y0  is the 

initial mean size of crystals at 0tt  . 

The second moment can be described by considering the analogy 

between the FPE and the Kalman filter [Jazwinsky, 1970] for a 

linear process, and then the Riccati’s equation will describe the 

variance changes in time. Writing the Riccati’s equation for a 

Kalman filter for one single state without measurement, we have: 

 
 tA

dt

td
y

y 22

2

2 


  (3.45) 
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2  is the variance, '2 2D  is the noise intensity, and 
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Thus, the analytical solution of the variance  ty

2  with respect to 

the time is given by: 
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Thus, the analytical solution of the Equation 3.41 is eventually: 
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where the time evolution of )(ty  and )(t2

y  are given in the 

Equations 3.46 and 3.48, respectively. 

Furthermore, it can be noticed that the analytical solution is a log-

normal distribution when rewritten in the linear scale L : 
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The first two moments of the distribution ),( tL  in the linear scale 

can then be evaluated as: 
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Equations 3.46, 3.48 and 3.49 (or conversely Equations 3.50, 3.51 

and 3.52) provide a time evolution of the PSD as function of the 

model parameters in terms of the first two stochastic moments 

(mean size of crystals and variance of the PSD) available in an 

analytical form, which can be a valuable information for the design 

of proper offline and/or online model based control strategies. 

Rigorous Solution 

It is also possible to obtain the analytical solution of the FPE-GM 

using a rigorous mathematical approach, based on the Fourier 

transform properties. 
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Considering the FPE-GM and its initial condition, already linear-

transformed along the variable z, it is possible to apply the Fourier 

transform, which is defined as: 
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where k  is the projection of z  on the Fourier domain. 

The resulting Equations 3.40 and 3.41 on the Fourier domain 

applying the 3.51 are: 
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Now applying the Method of Characteristics (MOC), it is possible to 

transform the equations 3.52 and 3.53 in a system of ODE. In order 

to apply the MOC we need to define the new dependent variable as 

follows: 
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where performing the differential of the 3.54 and dividing both 

members by ds , we have: 
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From the analogy with the 3.52 we can write the following ODE 

system: 
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Solving the system 3.56, applying the initial condition given by the 

last equation on the system, we obtain the following solution, in the 

Fourier domain: 
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Applying the Fourier antitransform defined as follows: 
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Substituting again the definition of the variable z used for the linear 

transformation of the FPE-GZ, it is possible to obtain the same 

solution obtained in Equations 3.48, 3.49 and 3.50. 
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Chapter 4 

 

Experimental Setup 

 
In this Chapter will show all the experimental procedure, considering the 

equipment used and all the different runs performed, in order to realize 

this Thesis. All the experiments used for this Thesis were carried out in a 

bench scale crystallizer. Only purified water, reagent grade sodium 

chloride (99.5%), and 95% in volume for antisolvents were used. In this 

Chapter will be also illustrated the methodology to analyze the 

experimental data, from the experimental samples, until the Crystal Size 

Distribution, CSD, both offline and online. The Chapter concludes with 

the last part of this Thesis, concerning the influence of the hydrogen 

bonding on the supersaturation of the system, illustrating all the 

experiments to validate the hypothesized mechanism. 

 

4.1 The Crystallizer 

 

The experimental rig is made up of one liter glass, jacketed cylindrical 

crystallizer, connected to a heating/cooling bath controller. The 

temperature in the crystallizer is measured using an RTD probe which is 

wired up to a slave temperature control system capable of heating and 

cooling. 
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Figure 4.1: Crystallizer setup. 

 

Figure 4.2: Crystallizer. 
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In similar fashion, the antisolvent addition is carried out by a slave 

peristaltic pump. The master control is performed by a computer control 

system which is wired up to the slave temperature and flow-rate 

controllers respectively. The desired set-points are set by the master 

controller. All relevant process variables are recorded. 

 

 

Figure 4.3: Peristaltic pump with 

the antisolvent reservoir. 

Figure 4.4: Thermostatic bath.  
 

 

4.2 Offline Sampling 

 

During the experimental runs, about 8 ml samples were taken in an 

infrequent fashion using a syringe pump connected by a hose inside the 

crystallizer. Samples were then vacuum-filtered over a filter paper and 

then dried into an oven overnight with a constant temperature of 50 °C 

for further visual inspection (Grosso et. al., 2010). 
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Figure 4.5: Manual vacuum pump connected to a filter flask. 

In order to analyze the previously taken and dried out overnight samples, 

part of the crystals on the filter paper for each sample have been 

analyzed with a light microscopy. In order to analyze the samples of 

crystals, they have been wetted using pure ethanol, in order to spread out 

the crystals onto the microscope slide. For each sample have been 

prepared three slides and for each slide have been taken at least four 

images in order to obtain an independent and an identically distributed 

CSD. All the images have been taken in tiff format in high resolution 

using stereo light microscope (Wild-Heerbrugg, Switzerland) which 

connected to a digital camera (Amscope Model MD500, United States). 

All the images have been analyzed later using the AmScope software 

(iScope, United States), the software allows for the measurement of the 

length or area of particular crystals in units of pixels. Using a supplied 

calibration slide, these lengths and areas can be converted from pixels to 

a micron length scale. The number of crystals measured varied for each 

sample and was fixed by a stabilization criterion of ±2.5% of the mean. 
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4.3 Online Sampling 

 

During the experimental runs an online sampling device has been 

developed and tested out. The device is a flow cell made in 

polycarbonate, slide-like shaped, in which a flow of solution is 

continuously recirculated from the crystallizer using a peristaltic pump. 

The cell has a path, properly studied to allow the crystals to flow in a 

certain section for a better analysis using the optical microscope. Using 

the optical microscope, all the images have been taken using a jpeg 

format and proper resolution in order to allow the image storing to take a 

clear image without any blurry effect or any kind of distortion. The flow 

rate has been also slowed down in order to allow the crystals to 

gradually distribute into the cell in order to take images with a high 

number or particles. Those images have been taken in an infrequent 

fashion during the experimental run, with a number of images varying 

considering the density of crystals in each image. The image processing 

has been obtained using the same method described on the previous 

paragraph, for the offline sampling. 

 

Figure 4.6: Online sampling device with the optical microscope and the 

peristaltic pump. 
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This method will be used for future research in order to develop a soft 

sensor for the online CSD measurement, based on the image processing 

using a wavelet approach, and furthermore used to develop a real time 

crystal size controller. 

 

4.4 Image Analysis and CSD Definition 

 

In order to define the crystal size distribution, or in general the Particle 

Size Distribution (PSD), the first step to do is the image analysis in 

which the particles are manually measured with a software called 

AmScope®, that allows to select the contours of the particles or any 

shape present in the photos. This operation is done for all the samples, 

using the photos taken from the slides until the number of crystals is 

sufficient to obtain a stabilization criterion of ±2.5% of the mean. The 

mean size, obtained considering the diagonal of a squared face shaped 

crystal, is concerted from pixels to micron scale using a proper 

calibration slide. The final result is a histogram representation of the 

CSDs. 

The crystal size sample is further processed in order to estimate the 

related probability density function. To this end, a non-parametric 

method was used and the experimental probability density distribution 

was eventually estimated as a linear combination of kernel basis 

functions: 
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where n is the crystal sample dimension, Li is the i-th observation and 

the bandwidth parameter h is given by [Silverman, 1986]: 

2.0206.1  nsh L  (4.2) 
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In Equation (4.2), sL
2
 is the sample variance. An example of the 

distribution estimation obtained with the crystal sample is reported in 

Figure 4.7: 

 

Figure 4.7: Relative frequency density of the crystal sample at feed rate q = 1.5 

ml/min and t = 0.5 h (bars), compared with the kernel approximation (solid 

line). The n observations of the sample are also reported at the bottom of the 

figure (black dots). 

Figures 4.8 and 4.9 illustrate the experimental PSD evolution (obtained 

using the kernel density estimation) with time for the intermediate feed 

rate, (MFR, 1.5 ml/min) both in the linear and logarithmic scale. 

 

Figure 4.8: Obtained PSD from experimental data for MFR at different 

sampling times during the batch (linear scale). 
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Figure 4.6: Obtained PSD from experimental data for MFR at different 

sampling times during the batch (logarithmic scale). 

The calibration of the proposed models is carried out separately for 

every run. The set of parameters   KrD ,,log10  is inferred using 

two different procedures, i.e., Least Square Method (LS) on the Kernel 

based density function estimation and Maximum Likelihood Estimation 

Method (ML). It should be noted that  D10log is used instead of D  in 

order to reduce the statistic correlation between the parameters [Risken, 

1996; Grosso et al, 2011]. 

In the Least Squares (LS) approach, the parameters in the model are 

estimated searching the minimum of the objective function given by the 

distance between the theoretical PSD )t;Ψ(y,   carried out from 

numerical integration of the model (equations 3.10 and 3.40) where 

  KrD ,,log10  and the experimental PSD (y)Ψ *  estimated through 

kernel density based estimation [Silverman, 1986]: 
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In Equation 4.3 iμ  is the i-th crystal size value observed through visual 

inspection of the images, N  is the crystals sample data dimension and 

  is the bandwidth parameter, to be optimized for a satisfactory 
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description of the distribution [Silverman, 1986]. The distance between 

the distributions is evaluated at n  different spatial location and m  

different time values for every operating condition: 

    




   

m
1i

n
1j ijii t,y*Ψθ;t,yΨΦ(θ)  (4.4) 

Conversely, the Maximum Likelihood (ML) estimation approach, aims 

to determine the θ  values that maximize the probability (likelihood) of 

the sample data. Thus, the parameters are inferred by searching the 

maximum of the log-likelihood function: 

    
 

m

1j

n

1i
jiji

j

θ;t,yΨlogθ;t,ylogL  (4.5) 

ML estimation through equation (4.5) is possible only if the crystal 

observations can be assumed to be independent, that seems a reasonable 

hypothesis. The ML has been already used to infer the parameters 

related to the process steady state [Tronci et al, 2011; Cogoni et al, 

2012] and it is demonstrated to give more efficient parameter estimation, 

that is, a minor number of experimental data are required to carry out an 

effective evaluation of the parameters, at least compared with the LS 

method. Indeed, since it achieves the Cramér-Rao lower bound, no 

asymptotically unbiased estimator has lower asymptotic mean squared 

error than the ML [Papoulis, 1991]. In addition, the introduction of 

possible errors in the evaluation of the experimental distribution (based 

on Equation 4.3) is in this way circumvented. Thus, the onerous step in 

the experimental activity represented by the data acquisition through 

visual inspection can be eventually reduced. 



Chapter 4. Experimental Setup 54 

 

4.5 Antisolvents used and operating conditions 

 

In order to perform all the experimental runs, different temperatures and 

different antisolvents, with different feedrates have been used in order to 

study their influence on the operating conditions. The different 

antisolvents have been chosen by their Polarity Index (PI), in order to 

study the influence of the hydrogen bond strength on the supersaturation 

of the solution and, since the PI involves hydrogen bonds within the 

antisolvent molecules or within antisolvent/solvent molecule, different 

temperatures and different antisolvent feedrates have been used in order 

to enhance this effect. 

Below will be reported all the experimental runs conducted for this 

Thesis, for all the different phenomena considered. 

Model Development: These proposed experimental runs have been used 

to develop the FPE model from the rigorous way until obtain the 

simplified linear model. This set of experiments also includes a 

validation run in isothermal conditions, described in Figure 4.9. 

 

Running 

Time [h] 
Antisolvent (PI) 

Feedrate 

[ml/min] 
Temperature [°C] 

8 Ethanol (4.3) 0.7 20 

8 Ethanol (4.3) 1.5 20 

5 Ethanol (4.3) 3.0 20 

 
Table 4.1: Qualitative effects of increasing the antisolvent feedrate, 

temperature and using and antisolvent polarity index on the asymptotic mean 

size, dispersion and growth velocity. 
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Temperature Effects, global model and Population Balance 

Comparison: This second set of experiments has been used to study the 

temperature effect, to compare the FPE with the population balances and 

to validate a global model. 

 

Running 

Time [h] 
Antisolvent (PI) 

Feedrate 

[ml/min] 
Temperature [°C] 

8 

Ethanol (4.3) 

0.7 10 

8 1.5 10 

5 3.0 10 

8 0.7 20 

8 1.5 20 

5 3.0 20 

8 0.7 30 

8 1.5 30 

5 3.0 30 

 
Table 4.2: Qualitative effects of increasing the antisolvent feedrate, 

temperature and using and antisolvent polarity index on the asymptotic mean 

size, dispersion and growth velocity. 
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Figure 4.10: Qualitative effects of increasing the antisolvent feedrate, 

temperature and using and antisolvent polarity index on the asymptotic mean 

size, dispersion and growth velocity. 

In order to investigate the multiplicity of the asymptotic conditions, with 

different operating condition, an experimental run obtained from the 

global map has been calculated in which the mean and the variance are 

the same of the ones using an antisolvent feedrate equal to 3.0 and a 

constant temperature of 30 °C. 

Global model and operability map: In order to identify the multiplicity 

of the steady state condition, obtained from the operability map, an 

experimental run with the same asymptotic mean size and variance 
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obtained at 3.0 ml/min and 30 °C has been conducted in the following 

conditions, below in the Table 4.3. 

 

Running 

Time [h] 
Antisolvent (PI) 

Feedrate 

[ml/min] 
Temperature [°C] 

6 Ethanol (4.3) 2.25 20 

Table 4.3: Qualitative effects of increasing the antisolvent feedrate, 

temperature and using and antisolvent polarity index on the asymptotic mean 

size, dispersion and growth velocity. 

 

Polarity Influence: The polarity influence has been investigated 

performing two set of experimental runs, one using constant operating 

conditions, such as temperature and antisolvent feedrate, using different 

antisolvents with different polarities (Table 4.4). Then a second set of 

experimental runs has been conducted to proof the hypothesis made 

about the hydrogen bond influence, in which the experiments have been 

performed in order to obtain the highest supersaturation and the lowest 

supersaturation, using the most and the least polar antisolvent in both 

extreme operability conditions. Both conditions have been compared 

with the results obtained in the same conditions, using and middle-polar 

antisolvent (Table 4.5). 

 

Running 

Time [h] 
Antisolvent (PI) 

Feedrate 

[ml/min] 
Temperature [°C] 

8 Acetic Acid (4.8) 1.5 20 

8 Ethanol (4.3) 1.5 20 

8 Isopropanol (3.9) 1.5 20 

 
Table 4.4: Qualitative effects of increasing the antisolvent feedrate, 

temperature and using and antisolvent polarity index on the asymptotic mean 

size, dispersion and growth velocity. 
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Running 

Time [h] 
Antisolvent (PI) 

Feedrate 

[ml/min] 
Temperature [°C] 

4 Acetic Acid (4.8) 3.0 10 

5 Ethanol (4.3) 3.0 10 

8 Isopropanol (3.9) 0.7 30 

8 Ethanol (4.3) 0.7 30 

 
Table 4.5: Qualitative effects of increasing the antisolvent feedrate, 

temperature and using and antisolvent polarity index on the asymptotic mean 

size, dispersion and growth velocity. 
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Chapter 5 

 

Results and discussions 

 
This chapter will show all the results obtained for all the 

mathematical models studied, and then validated with the 

experiments conducted ad hoc. There will be also some a posteriori 

modeling obtained observing the experimental behavior, leading to 

obtain a mathematical correlation between Fokker-Planck Equation, 

FPE, and parameters, considering the operating conditions, allowing 

then to generate an asymptotic map of all the possible mean sizes 

and variances of the CSD allowable within the operating conditions 

window considered. The FPE has been also compared with the most 

known Population Balances PBM, showing an excellent 

performance, both concerning the qualitative description of the CSD 

and quantitative, obtaining a more suitable model for control and 

optimization purposed, despite of the more complex PBMs. The 

Chapter ends with an hypothesized mechanism concerning a close 

relationship between the hydrogen bond strength and the 

supersaturation of the system. The hypothesized mechanism has 

been confirmed with proper experimental runs. 

The experimental results are schematically focused on: 

- The modeling of the FPE with the proper noise intensity, 

allowing an accurate description of the Crystal Size Distribution, 

CSD, evolution; 
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- A simplified FPE model that leads to an analytical solution with 

a separate description of the time evolution of the mean size of 

CSD and its variance; 

- A global model that allows to model the CSD evolution 

considering the temperature and the antisolvent federate, with 

and explicit depency of the FPE parameters; 

- A comparison between the FPE and a Population Balance 

Model, PBM, in nonisothermal conditions; 

- An asymptotic representation of the operating conditions as a 

function of the manipulated variables; 

- An hypothesized mechanism concerning influence of the 

hydrogen bond on the nonisothermal antisolvent crystallization 

processes, considering different solvents with different polarity 

indexes. 

5.1 The Fokker-Planck Equation 

 

The general linear FPE modeled in Chapter 3 (3.16), is represented 

with two important terms: a deterministic term, able to dynamically 

follow the mean of the resulting Probabilistic Density Function, 

CSD, and a diffusivity term that allows the CSD to change 

dynamically its width and shape, accordingly to the noise intensity 

chosen. The first logical step is to find out the proper noise intensity 

to fit the CSDs. In Chapter 3 has been shown the noise intensity as a 

function of a parameter α (3.12), where in the particular case, for a 

pure random process, an analytical solution can be performed, 

obtaining as a result a set of CSD in which, comparing with shape of 

the experimental CSDs (Figure 4.8), the best set of parameters to 

analyze are for α equal to 0, 0.5, 1.0 and 1.5, all of them allow to 

obtain a long-tailed CSD, as reported again in Figure 5.1, in 

stationary state. 
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Figure 5.1: CSD for a purely random process ( 1.0Dt ) in the (a) 

logarithmic scale and (b) linear scale, for 0  (dotted line), 5.0  

(blue dashed line), 1  (green solid line), 5.1  red (dashed-dotted 

line). The skewness of the CSD with respect to   is also reported for the 

logarithmic scale (panel c) and the linear scale (panel d) for 1.0Dt  

(solid line) and 15.0Dt  (dashed line). 

The second step was the choice of a proper deterministic model, a 

simple model, able to describe the evolution in time of the mean size 

of crystals, with an asymptotic plateau (Figure 3.2). Considering the 

experimental behavior, the choice ended up with a simple logistic 

model expressed by the Equation 3.34. 

The FPE model is then represented by three parameters and in order 

to fit the experimental data, and thus find the best FPE model, all the 

four values of α has been considered. 

 

Parameter Estimation: Model calibration for the estimation of 

parameters is carried out separately for every run. The experimental 

CSD exp is numerically evaluated through Equation 5.1 at N = 50 
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different spatial locations yk (when k = 1, … , N) at each sampling 

time tj (j = 1, …M). The parameters to be estimated are:  = 

[log10(D), r, K] (log (D) is used instead of D in order to reduce the 

statistic correlation between the parameters). Parameter inference is 

accomplished by using the least square criterion, thus searching the 

minimum of the objective function: 

        
 


M

j

N

k

jkjk ,tyψ;θ,tyψr,K,DΦθΦ
1 1

2

expmod  (5.1) 

In Equation 5.1, mod(yk,tj) is the probability density function 

evaluated through numerical integration of Equations 3.27, 3.29, 

3.31 and 3.33 (corresponding to the appropriate model selected), at 

time tj and size coordinate yk, while the distribution exp(yk,tj) is the 

experimental observation of the CSD evaluated at the size 

coordinate yk at time ti.  

The point estimation values for the model parameters, together with 

the related Mean Square Errors s
2
 are reported in Table 5.1. 

 Feed Flow r K log(D) s
2
 

=0 

LFR 7.46 10
-2

 7.200 1.169 5.9 10
-2

 

MFR 3.56 10
-2

 7.993 1.134 2.5 10
-2

 

HFR 6.42 10
-2

 8.530 1.328 5.3 10
-2

 

=0.5 

LFR 0.914 4.863 0.952 4.0 10
-3

 

MFR 1.038 4.691 1.025 2.5 10
-3

 

HFR 1.241 4.661 1.026 4.8 10
-3

 

=1 

LFR 1.254 4.840 -0.952 3.9 10
-3

 

MFR 1.354 4.683 -0.859 2.5 10
-3

 

HFR 1.902 4.635 -0.749 4.4 10
-3

 

=1.5 

LFR 1.845 4.821 -2.840 9.5 10
-3

 

MFR 1.765 4.679 -2.756 6.6 10
-3

 

HFR 1.725 4.652 -2.777 1.0 10
-2

 

Table 5.1: Point estimation of the parameters for the different operating 

conditions for the four models investigated. 

The performance of the model calibration is carried out by 

evaluating the Mean Square Error s
2
 here defined as: 
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In Equation 5.2, θ̂  is the vector of parameter values that minimize 

the objective function. 

From the analysis of the results reported in Table 5.1, it is possible 

to notice that the s
2
 values related to the models with  = 1 and  = 

0.5 are lower than the ones observed with the other two models and 

this feature is observed for each run. This indicates that a diffusion 

term that depends on y for the stochastic component of the model 

provides the best fit to the experimental data. Furthermore, indicates 

that the GBM assumption is better suited to represent the crystal 

growth process, thus confirming the results previously obtained in 

the literature for different experimental fixtures and data acquisition 

procedures [Grosso et al, 2010]. In addition, the parameter values 

for the LBM are very different, depending on the diffusive term: the 

pseudo-diffusivity value D, and the K asymptotic equilibrium value 

are much higher in the LBM model. This result was unexpected 

since the diffusive term is supposed to mainly affect the shape of the 

probability distribution while the deterministic part should be less 

influenced. It was instead found that a significant dependence of the 

parameter estimation on the diffusive term is appreciable. The 

parameter inference is further analyzed by exploiting typical tools of 

the statistical inference. In more detail, the parameter confidence 

intervals, the asymptotic correlation matrix for the parameters and 

the parameter joint confidence regions has been addressed. 

Mathematical details for their determination can be found elsewhere 

[Fa, 2005; Tsoularis and Wallace, 2002]. For sake of space the 

statistical analysis is reported only for  = 1. Table 5.2 reports the 

asymptotic correlation matrix estimated for the three experimental 

runs. The parameters are not significantly correlated, thus revealing 

that ill-conditioning in the parameter inference is prevented, at least 

for the current experiments. As a further remark, the correlation 

among the parameter pairs is qualitatively the same, especially for 

the LFR and MFR runs. 
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  log(D) r K 

 

LFR 

log(D) 1 0.5980 0.3384 

r  1 0.6619 

K   1 

 

MFR 

log(D) 1 0.5818 0.3250 

r  1 0.6541 

K   1 

 

HFR 

log(D) 1 0.4911 0.2429 

r  1 0.6158 

K   1 

Table 5.2: Asymptotic correlation matrix of the parameters for the FPE-

GBM model. 

The linear approximations of the confidence intervals are reported in 

Table 5.3, whereas the joint confidence regions in the parameter 

space are shown in Figure 5.2. As it regards the latter analysis, since 

we have three parameters to be estimated, the confidence regions 

will lie in a 3D parameter space and they will be defined by three 

different confidence ellipsoids (for the three different runs). As a 

first comment, it should be noted that both of the confidence 

intervals and regions are relatively small, meaning that the 

parameters are estimated with a small uncertainty. In addition, they 

do not assume negative values, thus meaning that all of them are 

statistically significant in the model. In addition, the confidence 

regions for the three different runs are clearly distinct, thus 

suggesting that the influence of the feeding rate on the parameters 

variation is significant also from a statistical point of view. 

Feed Flow r K log(D) 

LFR 1.221÷1.287 4.793÷4.887 -0.975÷-0.930 

MFR 1.327÷1.380 4.648÷4.719 -0.877÷-0.840 

HFR 1.860÷1.944 4.587÷4.684 -0.774÷-0.723 

Table 5.3: Parameters confidence interval for the FPE-GBM model. 



Chapter 5. Results and discussions 65 

 

 

Figure 5.2: Confidence ellipsoids for the parameter estimation for the 

different feed conditions (blue: LFR; black: MFR; red: HFR) and their 

projections on the three different planes. LFR: solid line; MFR: dashed-

dotted line; HFR: dashed line. 

Model Comparison: Figures 5.3 and 5.4 illustrate (respectively in 

the logarithmic and linear scale) the comparison between the 

predicted particle size distribution using the alternative models for 

the end of the batch and for MFR. 
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Figure 5.3: Comparison between experimental probability density 

functions (green points) and model predictions (black dotted line:  = 0; 

blue dashed line:  = 0.5; green solid line:  = 1; red dash-dotted line:  = 

1.5) for MFR (logarithmic scale). 

In order to compare the CSD predicted by FPE with the one 

resulting from PBE, they should be evaluated with the same scale. 

One should be reminded that the nonlinear transformation adopted 

in the FPE approach is L = g(y) = exp(y), and one can recover the 

probability density function in the linear scale by applying the 

proper inverse nonlinear transformation. From basic definitions of 

probability theory, one can easily demonstrate that Equation 5.3 

eventually gives the CSD, in the linear scale: 

 

 

     ,tLΨ
L

,tLgyΨ

dy

dg
L,tΨ yy

Lgy

L ln
11 1

1

 

 

 (5.3)

 

where the transformation y = g
-1

(L)=ln L has been considered for 

the case at hand.

 
 



Chapter 5. Results and discussions 67 

 

 

Figure 5.4: Comparison between experimental probability density 

functions (green points) and model predictions (black dotted line:  = 0; 

blue dashed line:  = 0.5; green solid line:  = 1; red dash-dotted line:  = 

1.5) for MFR (linear scale). 

It is clear from the figures that the use of  = 1 (GBM) in the 

stochastic component is more appropriate to describe the CSD of the 

crystallization process. The differences on the predictive features of 

the models are even more evident in the normal scale. More insight 

into the descriptive characteristics of the alternative models can be 

obtained by analyzing the time evolution of the experimental 

observations and the corresponding model prediction for first 

moments of the distribution, i.e., the mean,  and the variance 2
, 

evaluated in the linear scale: 
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Figure 5.5: Mean of the Crystal Size Distributions for the three feeding 

rates and for the different models (black dotted line:  = 0; blue dashed 

line:  = 0.5; green solid line:  = 1; red dash-dotted line:  = 1.5). Green 

points are the experimental observations (linear scale). 

 

Figure 5.6: Standard deviation of the Crystal Size Distributions for the 

three feeding rates and for the different models (black dotted line:  = 0; 

blue dashed line:  = 0.5; green solid line:  = 1; red dash-dotted line:  = 

1.5). Green points are the experimental observations (linear scale). 

Figures 5.5 and 5.6 show, respectively, the mean and variance 

experimentally observed (circle points) compared with the 

theoretical predictions (dotted line= 0, dashed line = 0.5; solid 

line = 1 and dotted-dashed line = 1.5) for the three runs and for 
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the four models as a function of time. The agreement again is 

excellent at each time using  = 1 in the stochastic component and 

the FPE model, driven by its deterministic part (the logistic growth 

term), correctly describes the increasing trend of the average crystal 

growth. On the other hand, the performance of the model 

deteriorates when using the alternative models both in terms of the 

mean and variance predictions. It is remarkable that the dynamic 

behavior of the LBM model is quite different: while GBM and 

intermediate case models almost reach the asymptotic equilibrium 

value at the final time of the experimental run, conversely, the LBM 

model seems to be far from the equilibrium solution, and this feature 

is clearly in contrast with the experimental evidence and the physical 

situation. This is also in agreement with the findings reported by 

[Bates and Watts, 2006], in terms that the lognormal CSDs can be 

generated mathematically by the Law of Proportionate Effect (LPE) 

which states that the rate of growth is proportional to linear size 

times a random number, thereby making growth rate size-dependent. 

 

Figure 5.7: Long time behavior: mean and standard deviation behavior 

comparison among the models for MFR. 
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Figure 5.8: Steady state CSD computed for  = 0.5 (blue dashed line), 1 

(green solid line) and 1.5 (red dashed-dotted line) for MFR (linear scale). 

As a further analysis for the model comparison, the time evolution 

of the mean and the variance of the crystal size distributions are 

reported for the four models, in Figure 5.7, over a time window 

much larger than the one used for the experiments. The purpose of 

the analysis is to appreciate the long-time dynamics and check their 

extrapolation capabilities to reasonably describe the asymptotic 

behavior. The four models are integrated at the parameter values 

inferred by the parameter estimation at MFR. For sake of 

completeness, also the experimental values are reported. Keeping in 

mind that the r parameter gives a measurement of the characteristic 

process time, it is clear that the transient time in the LBM model (the 

order of magnitude is  = 1/r ~ 25 h) is clearly overestimated with 

respect to the one obtained with the GBM model (where  = 1/r ~ 

1.0 h). The latter characteristic time is more likely to depict the 

experimental evidence of the process under consideration. As a final 

remark, for these parameter conditions, the steady state regime is 

experimentally reached after a rather short transient (~ 4 h). 

It could be also observed that in the case of  equal to 0.5 the mean 

shows an implausible decrease for high time values thus confirming 

that the GBM ( = 1) is the more appropriate model to describe the 

crystal growth. It is worth stressing out that by considering different 
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noise models it is possible to shape the computed CSD, compare 

Figure 5.8, where the steady state solution of the models for MFR 

and  equal to 0.5, 1 and 1.5 are reported, with Figure 5.1 (and 3.1). 

The curve for  equal to 0 was not reported since not steady state 

solution was obtained after 60 hours of simulation. One should 

remark that, on the contrary of the purely stochastic cases Equation 

3.30, a not trivial asymptotic solution is eventually reached. This 

feature follows from the competition between two different effects: 

the stochastic term, which tends to indefinitely spread the CSD, and 

the deterministic attractive contribution which drives the random 

variable towards the deterministic equilibrium value K. This 

interplay between the two terms produces some distortion as could 

be evidenced by computing the skewness of the CSDs (here 

evaluated in the logarithmic scale) for the different cases as reported 

in Table 5.4. When  = 1, it is found that the skewness assumes the 

value of = -0.15 very close to the experimental one, equal to -0.20. 

 

  = 0.5  = 1.0  = 1.5 Exp. 

y +0.245 -0.147 +0.637 -0.200 

Table 5.4: Skewness evaluations, for the asymptotic CSD predicted 

by models 3.29, 3.31 and 3.33 for MFR, compared with the 

experimental value evaluated at the final time. 
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Figure 5.9: Comparison between model ( = 1) and the experimental 

Particle size distributions at different times for the three antisolvent feed-

rates. Operating conditions:  (a) LFR; (b) MFR: (c) HFR. 

Finally, Figure 5.9 reports the comparison (in terms of time 

evolution) of the CSD experimentally observed and the model 

prediction (using the FPE-GBM model) for the experiment at low, 

medium and high feed rates, at the first and final acquisition time. It 

is evident that there is an excellent quantitative agreement between 

experiments and the predictions from the phenomenological model. 

In particular, the model is able to correctly capture the long-tailed 
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asymmetric shape of the experimental CSD as well as follow the 

dynamic of the crystal growth for a range of operating conditions. 

 

5.2 Maximum Likelihood Optimization and 

Analytical Solution of the FPE 

 

Following the procedure previously outlined, the calibration of the 

proposed models is again carried out separately for every run. The 

set of parameters  = [log10(D), r, K] is inferred this time using the 

Maximum Likelihood Estimation Method (ML). In the Least 

Squares (LS) approach, the model parameters are estimated 

searching the minimum of the objective function given by the 

distance between the theoretical CSD (y,t,;) carried out from 

numerical integration of the model and the experimental CSDs 

processed through a kernel basis function (4.3). 

Conversely, the Maximum Likelihood (ML) estimation approach, 

aims to determine the  values that maximize the probability 

(likelihood) directly from the sample data measurements. Therefore, 

the parameters are inferred by searching the maximum of the log-

likelihood function: 
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The Maximum Likelihood estimation through equation 5.5 is 

possible only if the crystal observations can be assumed to be 

independent, that seems a reasonable hypothesis. The ML has been 

already used to infer the parameters related to the process steady 

state [Tronci et al, 2011] and it is demonstrated to give more 

efficient parameter estimation, that is, a minor number of 

experimental data are required to carry out an effective evaluation of 

the parameters, at least compared with the LS method. Indeed, since 

it achieves the Cramér-Rao lower bound, no asymptotically 

unbiased estimator has lower asymptotic mean squared error than 

the ML [Papoulis, 1991]. In addition, the introduction of possible 
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errors in the evaluation of the experimental distribution (based on 

Equation 4.3) is in this way circumvented. Thus, the onerous step in 

the experimental activity represented by the data acquisition through 

visual inspection can be eventually reduced. 

Another factor that has been considered is the nonlinearity of the 

linear FPE coefficients. In order to obtain a simplified model, able to 

lead an analytical solution, the deterministic term has been 

reformulated as a Gompertz model 3.36. 

LG-LS 
Logistic model with parameters estimated through 

Least Square Method 

LG-ML 
Logistic model with parameters estimated through 

Maximum Likelihood Estimation 

GZ-ML 
Gompertz model with parameters estimated through 

Maximum Likelihood Estimation 

Table 5.11: Acronyms of different models and parameter estimation 

methods used 

In order to address a methodical analysis, the LG model will be 

calibrated and compared via both LS and ML algorithms. Table 5.11 

summarizes the acronyms hereafter used to refer to the model and 

the model calibration procedure. 

 
LG-LS 

 
LG-ML 

LFR MFR HFR LFR MFR HFR 

r 1.254 1.354 1.902 r 1.474 1.755 1.922 

K 4.840 4.683 4.635 K 4.786 4.635 4.607 

D 0.112 0.138 0.178 D 0.125 0.176 0.147 

 

 
GZ-ML 

LFR MFR HFR 

v 4.720 5.180 8.659 

K 4.795 4.631 4.585 

D 0.088 0.106 0.156 

Table 5.12: Inferred model parameters. 



Chapter 5. Results and discussions 75 

 

Table 5.12 reports the results obtained for LG-LS previously 

discussed, together with the LG-ML and the GZ-ML, for the 

different antisolvent feedrate values. It should be noted that the data 

estimation, using both methodologies, leads to slight differences 

among parameter values. In particular, small difference could be 

observed for the growth rate parameter r and for the pseudo-

diffusivity coefficient D. The slight discrepancies can be also due to 

the introduction of the kernel basis function approximation in the 

LG-LS. On the other hand, the K parameter, representing the 

asymptotic value of the mean size of crystals in logarithmic scale, 

appears more robust to the approximation. The parameters show 

small difference between the GZ-ML and the LG-ML, except for the 

growth rate parameters r and v. This disagreement can be explained 

by observing that the growth rate for the GZ model is related defined 

as: v = rln(L0) = rln(K). 

 LFR MFR HFR 

LG-ML 620.28 959.20 266.64 

GZ-ML 674.27 1081.08 298.86 

Table 5.13: AIC (Akaike’s Information Criterion) for LG-ML and GZ-ML 

models. 

Table 5.13 reports the Akaike Information Criterion (AIC) for both 

models studied, which gives a measure of the relative goodness of fit 

of a statistical model [Akaike, 1974]. It is apparent that the 

differences in terms of AIC criterion are relatively small, although 

the GZ-ML model is limited to describe only symmetric 

distributions. This result is encouraging for the development and the 

application of the GZ-ML model in the case of the optimization and 

the control of the crystallization system. 
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Figure 5.10: CSD comparison, in linear scale, for the MFR at the end of 

the experimental run: LG-ML model (dashed blue line); GZ-ML model 

(solid black line) and experimental CSD (vertical bars). 

Figure 5.10 shows the obtained CSD, at the final time (end of the 

run) and at the medium feedrate (MFR) condition, for both LG-ML 

and GZ-ML. It is possible noticing that both models rather well 

describe the experimental distribution but with small difference 

mainly observed in edges of the distributions. 

 

Figure 5.11: CSD comparison, in log-log scale: LG-ML (dashed blue 

line); GZ-ML (solid black line). 
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To better represent this aspect, the same distributions are represented 

in a log-log scale in Figure 5.11, where it is possible to appreciate 

the differences between the two distributions. 

A further comparison between the two models can be accomplished 

by evaluating the distribution skewness for the predicted CSD, at the 

final time for all the operating conditions, whose values are reported 

in Table 5.14. 

 

 Experimental LG-LS GZ-LS 

LFR -0.299 -0.128 0 

MFR -0.200 -0.147 0 

HFR -0.403 -0.139 0 

Table 5.14: Skewness of the CSD in logarithmic scale at the end of run for 

the three operability conditions. 

The skewness values for the GZ-ML are obviously equal to zero, 

since FPE with linear drift term preserves the Gaussianity 

introduced with the initial CSD. On the other hand, experimental 

observations (when regarded in the logarithmic scale) seem to 

suggest that some negative skewness in the data sample is always 

present, and this feature is correctly captured by LG-ML. 

Nevertheless, the quantitative agreement between GZ-LM model 

and experiments is excellent. 

A further test to appreciate the effectiveness of the GZ-ML approach 

is the comparison between the predicted CSD, by LG and GZ 

models (for both models the parameters were estimated through ML 

and they are given in Table 5.14, and the experimental histogram at 

four different sampling times for the MFR case, showed in Figure 

5.12. 
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Figure 5.12: Transitory CSD comparison, in linear scale, for the MFR at 

different times {0.5 h, 1.0 h, 1.5 h, 8.0 h}: LG-ML (dashed blue line); GZ-

ML (solid black line) and represent the experimental CSD (vertical bars). 

The agreement between the experimental and the predicted CSDs 

are rather good with both models, the little difference is due by a 

zero value of the skewness parameter, that suggests the occurrence 

of some asymmetry in the CSD, but in the case studied this 

difference is imperceptible. 

 

Figure 5.13: Linear mean size for LFR (a), MFR (b) and HFR (c): LG-ML 

(dashed blue line); GZ-ML (solid black line) and experimental values 

(white dots). 
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Figure 5.13 shows the mean size of crystals evaluated with the LG 

and GZ models together with the experimental observations. The 

capability of the two models in describing the mean size of crystals 

in time, for the each operating condition, is rather excellent; 

confirming that the proposed model is a valid alternative to the 

linear model with nonlinear coefficients. 

 

5.3 Non Isothermal Global Model and Operating 

Maps 

 

So far it has been discussed the modeling of the FPE equation 

considering three variables, not directly modeled as a function of the 

antisolvent feedrate. In this paragraph will be discussed the 

parameters of both models, FPE with nonlinear and linear 

coefficients, respectively called, from now, Model 1 and Model 2 

and for the sake of simplicity, it has been considering three different 

isothermal conditions, using the three antisolvent feedrates used 

before for the isothermal case. First the parameters will be discussed 

without a direct functionality of both operating condition, and later 

will be discussed an empirical algebraic correlation, in order to 

formulate a global model, in order to be compared with the more 

used Population Balances PBM. 

Parameters estimation for the FPEs describing the crystal growth for 

both nonlinear and linear models (Table 5.15) has been first carried 

out separately for every operating condition and then considering all 

the nine runs, in order to optimize the coefficients of the three 

algebraic relationships of temperature and antisolvent feedrate, for 

the three FPE parameters. The method used is the maximum 

likelihood method, introduced in the previous paragraph. 

Table 5.15 reports the point estimations for the model parameters for 

both Model 1 and Model 2. The following behavior can be 

appreciated, which sounds from a physical point of view: (I) ri 

increases with antisolvent feedrate and decreases with temperature; 

(II) Ki decreases with antisolvent feedrate and increases with 
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temperature and (III) Di increases with antisolvent feedrate and 

decreases with temperature. 

 

 Model 1 Model 2 

r 10ºC 20ºC 30ºC 10ºC 20ºC 30ºC 

0.7 ml/min 1.0646 1.5700 0.7312 4.278 6.938 2.992 

1.5 ml/min 1.9343 1.4029 1.1030 8.837 6.117 5.294 

3.0 ml/min 3.2860 3.4428 1.9420 13.757 14.122 8.629 

K 10ºC 20ºC 30ºC 10ºC 20ºC 30ºC 

0.7 ml/min 4.9303 4.9501 5.0713 4.899 4.897 5.046 

1.5 ml/min 4.8583 4.9298 5.0489 4.816 4.900 5.011 

3.0 ml/min 4.7095 4.7656 4.8659 4.661 4.725 4.835 

D 10ºC 20ºC 30ºC 10ºC 20ºC 30ºC 
0.7 ml/min 0.1957 0.3992 0.1270 0.181 0.399 0.112 

1.5 ml/min 0.3732 0.2163 0.1713 0.371 0.208 0.179 

3.0 ml/min 0.7186 0.6735 0.2912 0.699 0.626 0.281 

Table 5.15: Model parameters calculated at different operating conditions 

for logistic (Model 1) and linear (Model 2) crystal growth law. 

In fact, increasing antisolvent feedrate leads to higher nucleation 

rates (r increases), but reduces the average asymptotic crystal size 

(K decreases). Temperature has an opposite effect as already 

discussed (Widenski et. al., 2012) in the non-isothermal antisolvent 

crystallization of sodium chloride (NaCl). Higher values of 

temperature, decreases r and reduces the driven force for nucleation 

and favors crystal growth (K increases). The operating conditions 

that favor nucleation determine a higher dispersion of the CSD, and 

this aspect has been correctly reconstructed by the behavior of 

coefficient D. 

5.3.1 Stochastic Global Model 

As previously discussed in the beginning of this paragraph, the 

proposed crystallization models based on FPE do not have an 

explicit dependency from operating conditions. Although effective 

results were obtained, the use of linear interpolation can be difficult 
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to use when a continuous input-output relationship is required, as in 

case of model-based control algorithms. 

In this stage, the FPE is generalized in order to take into account an 

explicit dependence of the stochastic model parameters on input 

variables m = (q, T)  

     21
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2
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yy
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
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The main goal is to find simple and parsimonious models that can 

describe the variation of the vector parameter i with q and T, 

coherently with the behavior obtained for the point estimation 

reported in the previous section. From the inspection of the results in 

Table 2 and considering the experimental error, it is possible to 

hypothesize that the model parameters can have a nonlinear or weak 

nonlinear dependence on inputs. For the above considerations, the 

proposed input-parameter models are required satisfy the following 

conditions: (I) simple linear or quadratic dependences have been 

preferred to describe the input-parameter relationships and (II) the 

cross term dependence on T and q should be avoided. In spite of 

these simplifications, each parameter may depend on several 

combinations of T and q. thus leading to a number of alternative 

models. In this work, the following general expressions for the 

parameter dependencies have been considered: 
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 (5.7)

 

Where a and b can be equal to 1 or 2. In this way, the functions 

obtained to correlate the vectors i with the manipulated variables q 

and T have nine parameters.

 

The  vector of i,uv parameters (where 

u = 0, 1, 2 and v = r, K, D) have been again obtained by means of 

the a maximum likelihood estimation approach (cf. Eq. 5.5). 

All the models have been considered with a linear or a quadratic 

dependency of the manipulated variables for simplicity, accordingly 



Chapter 5. Results and discussions 82 

 

to the sets of parameters obtained from the FPE fitting, from each 

experimental run (Figure 5.14). We have considered only the 

asymptotic dimension of crystals K with a quadratic behavior for 

both manipulated variable suggested by the parameters behavior 

shown in Figure 5.14. 

Figure 5.14: FPE parameters estimated from the single experimental runs 

at different temperatures and antisolvent feedrates. On the first row we 

have the iso-thermal curves and on the second row we have the data 

keeping constant the antisolvent feedrate. 

Considering the three FPE parameters, r, K and D, all of them 

dependent from the two manipulated variables, and considering that 

the parameter K has been assumed with a quadratic dependency for 

both variables, we have a total combination of possible models equal 

to 16. 

In order to choose which one is the best model we have considered 

the Akaike index AIC, for a quantitative evaluation of the maximum 
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likelihood fitting of each model and each set of exponents, and a 

qualitative, criterion based on the ability of the model to show a 

multiplicity of the asymptotic conditions, since not all the 

parameters follow the same functionality behavior with the two 

manipulated variables, allowing more than one solution for a 

specified operating condition. 

Table 5.17 summarizes all the results obtained for each of the 

possible global model, in particular, we have included the AIC index 

for Model 1 and 2 with a side column in which is specified if the 

multiplicity of the asymptotic behavior is shown or not. 

Test r K D AIC  

 q T q T q T Model 1 Model 2 Multipl. 

1 1 1 2 2 2 2 10222.9 10422.1 No 

2 1 2 2 2 2 2 10202.0 10427.6 No 

3 1 1 2 2 2 1 10213.4 10430.0 Yes 

4 1 2 2 2 2 1 10220.4 10439.7 Yes 

5 1 1 2 2 1 2 10219.6 10440.8 Yes 

6 1 2 2 2 1 2 10216.0 10446.0 No 

7 1 1 2 2 1 1 10249.0 10448.5 No 

8 2 1 2 2 2 2 10231.3 10450.8 Yes 

9 2 2 2 2 2 2 10230.7 10455.2 No 

10 2 1 2 2 2 1 10236.5 10457.9 No 

11 1 2 2 2 1 1 10229.8 10461.2 No 

12 2 1 2 2 1 2 10232.0 10468.4 Yes 

13 2 2 2 2 2 1 10234.0 10469.1 No 

14 2 2 2 2 1 2 10253.0 10471.1 No 

15 2 1 2 2 1 1 10261.2 10473.5 No 

16 2 2 2 2 1 1 10251.4 10483.5 No 

Table 5.17: AIC for the considered models. 

The model chosen with the minimum AIC value for both Model 1 

and Model 2 is given by the following set of expressions: 
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The coefficients of expressions 5.8 are reported in Table 5.16, where 

it is possible to verify that the behavior shown by the parameter 

obtained performing the estimation for every operating condition are 

maintained by the proposed models. For example, the negative sign 

of i,1K is explainable with the fact that increasing antisolvent 

feedrate makes the asymptotic crystal size to decrease (high q values 

favor nucleation with respect to crystal growth). The same 

unfavorable effect of temperature on crystal growth rate (ri) and 

dispersion (Di) is correctly described being i,2r  and i,2D negative. 

Coefficient Model 1 Model 2 

i,0r 0.5264 5.7639 

i,1r 0.5983 2.8342 

i,2r -6.4588 10
-4

 -0.1584 

i,0K 4.9176 4.8593 

i,1K -0.0238 -0.0244 

i,2K 1.7139 10
-4

 2.0 10
-4

 

i,0D 0.2134 0.3864 

i,1D 0.0277 0.0287 

i,2D -0.0019 -0.0094 

Table 5.16: Values of the model parameters describing the dependence of 

(r, K, D) on antisolvent feedrate and temperature. 
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Figure 5.15: Mean size evolution of the nine experimental runs 

considered. The solid black line represents the Linear FPE, the dotted 

black line the non-linear FPE and the grey dots the experimental values. 
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The capability of the proposed global model to properly describe the 

crystallization system is shown in Figure 5.15, which reports the 

experimental mean crystal size behavior collected during the nine 

runs and the value calculated numerically using Model 1 (dotted 

line) and analytically for Model 2 (solid line). The match between 

calculated L(t) and experimental values is excellent for both 

models, indicating that Equations 5.8 correctly approximate the 

input-parameter relationships. 

The obtained global models have been also validated considering the 

antisolvent feedrate and temperature trajectory reported in Figure 

5.16. 

 

Figure 5.16: Antisolvent feedrate and temperature trajectory used for the 

validation run. 
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The results reported in Figure 5.17, indicates that the models again 

has excellent prediction capabilities, either with logistic (dotted line) 

or linear growth rate (solid line) during the nonisothermal operation 

of the system. The obtained models are again excellent predictors of 

the crystal size distribution as shown in Figure 5.17. 

 

Figure 5.17: Validation results obtained in terms of mean sizes (top 

diagram) and CSDs (plots at the bottom). The results report the Model 1 

and 2 compared with the experimental data. 

It is worth noticing that the results obtained with linear and 

nonlinear growth rate are very close both considering the mean 

crystal size behavior and the CSD. This implies that assumption of 

linearity allows to a very good description of the considered system 

and could offer a more practical tool with respect to the nonlinear 

model, when model-based optimal controller wants to be developed. 

5.3.2 PBM comparison 

This section compares the global FPE obtained in the rigorous way 

with the more common Population Balances, in which the 

formulation is obtained from kinetic and thermodynamic 
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considerations. The paragraph introduces also the method used to 

obtain a numerical solution of the Population Balance Model, PBM. 

Kinetic Parameter Estimation. The kinetic parameters were 

estimated using a maximum likelihood estimation procedure 

implemented with the gPROMS entity gEST. The nine experiments 

were combined for a single parameter estimation step. The 

crystallization size data samples can be reasonably approximated as 

coming from a log-normal distribution: 
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In Equation (5.9) (t) is the log-normal mean and (t) is the log-

normal standard deviation, that are used to represent the crystal size 

distribution of the data. The Sauter mean size (D32) was used as the 

representative mean size for the population balance approach: 
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where    



0

dLL,tnLtμ k

k  is, in general, the k-th moment of the 

CSD. The coefficient of variance (COV) was also used:  
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where µ4, µ3, and µ2 are, respectively, the fourth, third, and second 

order moments of the crystal distribution. When dealing with log-

normal distributions, the coefficient of variation can be 

straightforwardly related to the log-normal variance in the following 

way: 
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1exp 2  σCOV  (5.12)

 
This allows for the comparison between the experimental data and 

the model-generated data for the parameter estimator solver. The 

generated optimum set of parameters is listed in the table: 

b0 8.58∙10
8
 [#/m

4
/s/°C] 

b1 6.25∙10
-3

 [-] 

g0 5.56∙10
-4

 [m/s] 

g1 2.44∙10
-4

 [-] 

g2 12.33 [-] 

g3 1.18∙10
4
 [J/mol] 

g4 0.374 [-] 

g5 1.053 [-] 

g6 1.733 [-] 

Table 5.5: Birth and growth parameter of the PBE model estimated. 

Table 5.5 lists the mean absolute deviation (MAD) of the mean size 

experimentally observed from the model prediction for each 

temperature and feed rate combination, where: 
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MAD 

 LT MT HT 

LFR 8.23 8.89 15.94 

MFR 6.27 4.19 7.46 

HFR 12.37 3.67 7.78 

Table 5.6: Mean absolute deviation of mean size. 

Population Balance modeling by first principle assumption 

represents a rigorous way to describe the crystal growth dynamics 

and assess its definite relationships with the operating conditions. 

However, PBE modeling requires a clear connection of the 
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nucleation and growth phenomena from the driving force of the 

process that is the system supersaturation. Thus, a great deal of 

knowledge on the complex thermodynamics associated with the 

solute and solvent properties is needed. 

Numerical Comparisons. Figure 5.18 reports (in linear scale) the 

comparison of the computed CSD with the two models and the 

available experimental data at different time for three of the nine 

temperature-antisolvent feedrate combinations: high temperature-

and high feedrate; medium temperature-medium feedrate and low 

temperature-low feedrate. It is worth saying that analogous 

behaviour is observed for the other operating conditions. For sake of 

comparison the CSD evaluated through the PBE, Equation 3.1, has 

been normalized ((L,t)=n(L,t)/µ0). The agreement between models 

and observations is rather remarkable, demonstrating that both the 

proposed models are able to quantitatively capture the shape of the 

CSD. This is further confirmed by the small values observed for the 

mean square error, MSE, for all the experimental conditions and for 

both the models, as reported in Table 5.6. 
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Figure 5.18: Model comparison for experimental runs. The solid grey line 

represents the FPE, the solid black line represents the PBM and the grey 

vertical bars represent the experimental distributions in linear scale. 
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The comparison between experiments and model is also carried out 

by reporting, in Figure 5.19, the time evolution of the mean crystal 

size computed, for the PBE using Equation 3.1 and for the FPE 

using Model 1. 

The agreement is rather good for any condition and both the PBE 

and the FPE models correctly describe the increasing trend of the 

average crystal growth even if the mean crystal size predicted by the 

PBE does not reach an asymptotic value, at least in the experimental 

time window, at the lowest feedrate. 

 

Figure 5.19: Mean crystal size experimentally observed, compared (white 

dots) with the theoretical predictions obtained with both approaches (solid 

grey line FPE and solid black line PBM), for the nine runs as a function of 

time. 

In order to validate both models a validation run has been 

performed. In particular, the change in time of the antisolvent 

feedrate and temperature has been changed as shown before in 

Figure 5.16. 
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Figure 5.20: Model comparison for the validation run. The black solid line 

represents the FPE, the dashed black line represents the PBM and the grey 

vertical bars represent the experimental distributions. 

In Figure 5.20, the crystal size distributions for both models for the 

validation experiment are shown at one, two, and seven hours. 

Again both models match the experimental data CSD very well. 

 

Figure 5.21: Mean size of crystals obtained from the validation operating 

conditions. The solid grey line represents the time evolution of the mean 

size, using the FPE, the solid black line represents the time evolution of 

the mean size, obtained by integration of the PBM using the validation 

operating conditions and the grey dots represent the experimental points 

obtained using the validation operating conditions. 

5.3.3 Operational Map 

The obtained global models can be used to define the operating 

conditions of the crystallization process, leading to the desired mean 

and variance of the crystal size distribution. In order to have a 
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functioning tool for designing the proper crystallization runs, a map 

can be constructed where asymptotic iso-mean and iso-variance 

curves are reported in an antisolvent feedrate – temperature plane. In 

this case, the asymptotic CSD for the map construction can be 

analytically obtained also for Model 1, using the approach reported 

in Tronci et al. (2011), which leads to the following expression for 

the stationary solution of Model 1: 
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In particular, the stationary solution for Model 1 is 
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The stationary CSD for Model 2 is easily obtained from a Gaussian 

distribution with mean equal to K2 and variance equal to K2D2/r2 

(c.f., Eqs 3.44, 3.46) 
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For sake of brevity, only the map for Model 2 (linear growth rate) 

has been reported at different operating conditions. As demonstrated 

in the previous section, the behavior of the two models are almost 

overlapping, therefore the results reported in Figure 5.22 are 

representative of both linear and nonlinear case. 

 



Chapter 5. Results and discussions 95 

 

 
Figure 5.22: Iso-means - iso-variances map, reported in function of T and 

q, for the model 2 in logarithmic scale. 
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By inspection of Figure 5.22 it is interesting to note that iso-variance 

curves may intersect iso-mean curves in two points, therefore the 

same distribution in terms of the first two moments can be obtained 

at different operating conditions. Considering Figure 5.22, a CSD 

with mean crystal size (logarithmic scale) equal to 4.818 and 

variance equal to 0.184 is attained at (q, T) = (2.25, ~21.0) and (q, T) 

= (3.0, 30.). This result implies some kind of input multiplicity of 

the system, which is coherent with the opposite effects that 

antisolvent feedrate and temperature have on the crystallization 

process: high asymptotic crystal size can be reached with low q and 

high T, but the same result can be obtained increasing q and, at the 

same time, decreasing T. Figure 5.22 has been also represented in 

linear scale in Figure 5.23, accordingly to the non-linear 

transformation previously explained [Equations 5.4a and 5.4b]. 

To corroborate these findings, an additional experiment was 

conducted at q = 2.25 ml/min and T = 20 ºC (indicated with a circle 

in Figure 5.23). The multiplicity of the considered crystallization 

system with respect to inputs can now be verified by considering the 

time evolution of the experimental mean crystal size at (q, T) = (3.0 

ml/min, 30ºC) and (q, T) = (2.25 ml/min, 20ºC) and that predicted 

by the nonlinear (dotted line) and linear model (solid line), and 

results are reported in Figure 5.24. 
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Figure 5.23: Iso-means - iso-variances map using model 2, in which the 

experimental runs are reported highlighted with circles. The mean sizes are 

represented with a solid black line and the variances with a dotted black 

line. 
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Figure 5.24: Comparison of both, model and the experimental values, in 

the multiplicity points. Black lines and values are referred to the run at 30 

°C and 3.0 ml/min and the grey lines and values are referred to the run at 

20 °C and 2.25 ml/min. With solid lines are represent the trajectory 

obtained using the model 2 and the dotted lines are referred to the model 1. 

Dots represent the experimental data, all in linear scale. 

As can be seen in Figure 5.24, each mean size profile takes a slightly 

different path to reach the same final value (within the tolerance 

error associated with the crystal size measurement). At the 

beginning of the process, higher temperature and antisolvent 

feedrate speed up the crystallization process (white circles), 

therefore the mean crystal size is higher with respect to the values 

obtained at lower q and T. This behavior is also represented by the 

models, which have different initial conditions. As time elapses, the 

values predicted by the two models at different operating conditions 

converge, as well as the experimental mean crystals size values, as 

expected considering the iso-mean and iso-variance map. 

The input multiplicity can be also verified by looking at the 

experimental and calculated CSD at different sampling time (Figure 

5.25). Again, there is a slight mismatch at the beginning sampling 

times, but the asymptotic values predicted by the map are confirmed 

at the end of batch (time = 5-6 h), where there is a significant 

overlapping between the histograms of the crystal size obtained at 
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(q, T) = (2.25 ml/min, 20ºC) and at (q, T) = (3.0 ml/min, 30ºC). 

There is also a perfect match between the two models, evidencing 

that linear assumption does not worsen the description of the 

considered system. This fact is important because a linear 

convective term in the FPE allows solving analytically the Fokker-

Planck equation, giving an effective tool for on-line optimization 

and model-based control of the process. 

 

Figure 5.25: CSDs at the multiplicity points. The dark grey lines and bars 

represent the data at 20 °C and 2.25 ml/min, the light gray lines and bars 

represent the data at 30 °C and 3.0 ml/min. The solid lines are the model 2 

and the dotted lines are the model 1. 
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5.4 Solvent-Antisolvent Interactions and Hydrogen 

Bonding 

 

In order to characterize quantitatively the behavior of the systems 

using different antisolvents with different polarities and/or 

temperature, the linear FPE with nonlinear coefficients has been 

used, Equation 3.35. 

As hypothesized, it is expected that the hydrogen bonds influence 

the supersaturation of the solution; in particular, as hydrogen bonds 

become stronger (using an antisolvent with high PI) the 

supersaturation becomes higher as well, thus decreasing the 

solubility and obtaining crystals with a smaller mean size and a 

narrower CSD. 

 

Figure 5.26: Asymptotic images taken at the end of the experimental runs 

using three different antisolvents: a) acetic acid, b) ethanol and c) iso-

propanol. 

Considering the first set of experimental runs using different 

antisolvents with different polarities, where all the runs were 

conducted at 1.5 ml/min and 20 °C, we can observe from Figure 

5.26 the behavior of the crystals at the end of the run after 8 h, 

considering the same image format and the same magnification 

factor for the microscope analysis. We can notice, from the right to 

the left that as the antisolvent PI increases, the crystals, at 

asymptotic conditions, become smaller as we expected. The higher 

polarity of the antisolvent used inducted stronger hydrogen bonds 

and consequently a higher supersaturation, favoring the nucleation 

of crystals and reducing their asymptotic dimension. To describe 

quantitatively the influence of the different antisolvents on the 
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dynamic and the asymptotic behavior of the crystal size distribution 

(CSD), the parameters of the FPE have been estimated using the 

Maximum Likelihood method as described in the previous 

paragraph. The estimated FPE parameters and the PI of the 

antisolvents used are summarized in Table 5.17. 

T = 20 °C and q = 1.5 ml/min 

Antisolvent Acetic Acid Ethanol Iso-propanol 

Polarity Index (PI) 4.8 4.3 3.9 

r (growth velocity) 1.421 1.403 0.429 

K (asymptotic dimension) 4.895 4.930 5.429 

D (diffusivity) 0.326 0.216 0.090 

Table 5.17: The table above represents the polarity index (PI) for each 

antisolvent used, related to the FPE parameters for first set of experimental 

runs. 

The FPE parameters on Table 5.17 represent respectively the growth 

velocity (r), the asymptotic mean size in logarithmic scale (K) and 

the diffusivity of the FPE (D), proportional to the CSD dispersion. 

Observing the overall behavior of the parameters, they follow the 

trend expected according to the polarity index and hypothesized on 

Table 2.1. The greater the PI, the smaller is the asymptotic mean 

size of crystals (smaller K), reaching quickly the asymptotic 

conditions (higher r). 
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Figure 5.27: Experimental results fitted with the FPE for the runs using a) 

acetic acid, b) ethanol and c) iso-propanol, in isothermal conditions and 

keeping constant the antisolvent feed-rate. The results represent both, the 

asymptotic conditions and the dynamic behavior of the system. 
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Furthermore, in order to appreciate these effects, we have plotted the 

CSDs (asymptotic conditions) and the mean size time evolutions 

obtained using the three different antisolvents with different 

polarities together with the FPE model predictions, Figure 5.27. We 

can observe that the mean size of crystals, when an asymptotic 

behavior is reached, is inversely proportional to the polarity index of 

the antisolvent used. The same trend can be also observed for the 

dispersion of the CSDs, becoming wider (considering the asymptotic 

conditions) as polarity increases (FPE diffusion D). The growth 

velocity, r, has a proportional effect on the dynamic of the system, 

since the most polar antisolvent speeds up the dynamic of the mean 

size evolution according with the effects we have expected and 

reported in Table 2.1. 

Considering the temperature effect, a similar behavior was observed 

during the second set of experimental runs. In this case, ethanol was 

used as the antisolvent at different temperatures, keeping constant 

the antisolvent feedrate. 

P.I. = 4.3 and q = 1.5 ml/min 

Antisolvent Ethanol 

Temperature 10 °C 20 °C 30 °C 

r (growth velocity) 1.934 1.403 1.103 

K (asymptotic dimension) 4.858 4.930 5.049 

D (diffusivity) 0.373 0.216 0.171 

Table 5.18: The table above represents the temperature effects related to 

the FPE parameters for the three antisolvents considered. 

Observing the values of the FPE parameters reported in Table 5.18, 

we can notice the analogy, in terms of temperature changes, with the 

data observed in the previous set of parameters obtained using 

different antisolvents with different polarities. The growth velocity 

decreases as the temperature increases, the same for the diffusivity, 

where the opposite trend has been obtained for the asymptotic mean 

size of crystals. 
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Figure 5.28: Experimental results fitted with the FPE for the runs using 

ethanol, keeping constant the antisolvent feed-rate and varying the 

temperature from 10 to 30 °C. The results represent both, the asymptotic 

conditions and the dynamic behavior of the system. 
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This behavior can be explained in terms of the hydrogen bond 

strength, which is a function of the temperature. Indeed, when 

increasing the temperature we have weaker hydrogen bonds, similar 

to when using a lower polarity antisolvent, and consequently 

generating a lower supersaturation rate. The low values of 

diffusivity at higher temperatures can be explained by the 

dissolution of crystals and thus generating narrower CSDs. These 

last results are also reported in terms of CSDs and mean sizes, in 

order to highlight the asymptotic and the dynamic behavior of the 

system under temperature changes using a constant antisolvent 

feedrate with a medium polarity index. This behavior observed is 

analogous to that observed in Figure 5.27, confirming that as the 

temperature increases the supersaturation and then the nucleation 

decreases as well (Figure 2.3), allowing the crystals to grow 

indefinitely according to the mass of solute introduced on the initial 

solution. Similar behaviors with the temperature have been obtained 

for different systems, using polar solvents [Widenski et al, 2012; 

Galan et al, 2010; Grosso et al, 2010; Grosso et al, 2011; Cogoni et 

al 2012; Park and Yeo, 2012; Tronci et al, 2011]. Again we can see 

that both, temperature and polarity play an important role in 

antisolvent crystallization processes due to the hydrogen bond 

influence (see Table 2.1). Indeed, in using an antisolvent with a 

higher polarity index and keeping constant the antisolvent feedrate 

and temperature, we are favoring, from a statistical point of view, 

the number of hydrogen bonds in the system. On the other hand, 

considering only one antisolvent and keeping a constant antisolvent 

feedrate while adjusting the temperature, we have a similar effect 

since at lower temperatures we are increasing the strength of 

hydrogen bonds, thus increasing the number of hydrogen bonds in 

the solution, and consequently increasing the supersaturation of the 

solution. 

To emphasize the temperature, the feedrate and the polarity effects 

and their influence on the supersaturation of the system, we have 

considered a third set of experimental runs composed of two runs in 

extreme conditions. In first one, using iso-propanol at high 

temperature (30 °C) and low antisolvent feedrate (0.7 ml/min), we 

were expecting, according to Table 2.1, the biggest crystals among 
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all the experimental runs. We have performed the second experiment 

using acetic acid at low temperature (10 °C) and with a high 

antisolvent feedrate (3.0 ml/min) to obtain the maximum 

supersaturation possible within the range of temperature and 

antisolvent feedrate considered. 

 

Figure 5.29: Experimental results fitted with the FPE for the runs using 

ethanol and acetic in the upper extreme condition, when temperature is 

kept constant to 10 °C and the antisolvent feed-rate at 3.0 ml/min. 

The results are shown and compared with the data collected using 

ethanol at the same operating conditions in Figure 5.29. In the case 

of the acetic acid (the most polar antisolvent), when compared with 

the results obtained using ethanol at the same operating conditions, 

we can see a slight difference in terms of the asymptotic CSDs and 

mean size of crystals, with a smaller mean size for the acetic acid 

according to Table 2.1. The same small differences have been 

obtained for the dispersion and the growth rate of the system. This 
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fact can be explained by the high supersaturation of the system, 

which has likely reached a saturation point due to the high hydrogen 

bond strength and prevalence. This result is characterized by an 

explosive nucleation of crystals in the early stages of the run, in 

which the crystals grow slightly, limited by the amount of solute 

introduced at the beginning of the experimental run, and ultimately 

obtaining similar CSDs at the end of the run using both antisolvents. 

 

Figure 5.30: Experimental results fitted with the FPE for the runs using 

ethanol and iso-propanol in lower extreme conditions, when temperature is 

kept constant to 30 °C and the antisolvent feed-rate at 0.7 ml/min. 

In the second experiment, at lower extreme supersaturation 

conditions (Figure 5.30), we can see that the asymptotic CSDs are 

extremely different between mean sizes for both antisolvents. This 

effect is explained by the very small nucleation rate, so that growth 

rate is dominant, resulting in a limited amount of nuclei in the first 

stage of the experimental run and allowing the crystals to grow 
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bigger. Specifically when using iso-propanol as the antisolvent, with 

its low polarity index, the hydrogen bond effect is really weak, 

generating a small supersaturation, and inhibiting even more the 

nucleation of the crystals. Consequently the CSD has not reached an 

asymptotic behavior, growing indefinitely (limited by the amount of 

solute mass in the system) after 8 hours of run, using all the 

antisolvent available for the experiment. 

Summarizing, the overall behavior shows that the crystal size 

increases by increasing the temperature or decreasing the antisolvent 

feedrate or using an antisolvent with a low polarity index. 

Temperature and polarity index are correlated to the hydrogen bond 

strength by physical aspects, thus decreasing the temperature causes 

the hydrogen bonds to become stronger [Czeslik and Jonas, 1999; 

Dougherty, 1998]. This in turn increases the supersaturation, 

enhancing the nucleation rate despite the growth rate, and obtaining 

at the end smaller crystals. The same effect can be obtained keeping 

a constant temperature, using an antisolvent with a higher polarity 

index or using a high antisolvent feedrate since this statistically 

increases the number of hydrogen bonds in the solution. From a 

physical point of view, we have first hypothesized and then 

confirmed there exists a correlation between the hydrogen bond 

strength and the supersaturation of the solution, thus influencing 

nucleation and growth rate. Although hydrogen bond is weaker than 

ion-dipole interactions, it is able to reduce the number of water 

molecules (or in general solvent/antisolvent molecules) that 

surround the solute ions, favoring the crystallization of the solute. 

The hydrogen bond strength is directly proportional to the polarity 

of the solvent/antisolvent considered and also depends on pressure 

and temperature [Czeslik and Jonas, 1999]. 

We have to remark that the results were obtained for a system whose 

solubility is weakly dependent on temperature. Using different 

antisolvents with different polarities, we can obtain different results 

influencing the supersaturation and, as a consequence, obtaining 

different asymptotic and dynamic behaviors of the CSD. 
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Chapter 6 

 

Conclusions and future 

research 

 

6.1 Conclusions 

 

The development of effective mathematical models describing the 

crystal growth dynamics is a crucial issue towards finding the 

optimal process performance and to control the crystal size and 

distribution. The goal of this Thesis was to find an alternative way to 

describe the crystallization processes, circumventing the more 

common Population Balances (PBM). The model had to be simpler, 

considering the mathematical development, but also maintaining a 

good description of the system, allowing also to optimize and 

control the Crystal Size Distribution (CSD) even considering a 

possible online application, avoiding to use excessive computational 

resources. 

In the developed model, the crystal size is considered as a random 

variable, whose probability density evolution in time is described in 

terms of a Fokker-Planck Equation (FPE). It is shown and 

corroborated via experimentation that the best stochastic model is 

given using a Geometric Brownian Motion (GBM) for the stochastic 

term, and a logistic model for the deterministic term of the FPE. 

Excellent quantitative agreement between experiments and the 

predictions from the FPE model are obtained for a wide range of 

conditions, allowing to capture quantitatively the long-tailed 



Chapter 6. Conclusions and future research 110 

 

asymmetric shape of the experimental Crystal Size Distribution, 

CSD. 

Keeping the same stochastic component (GBM noise intensity), the 

deterministic growth term is expressed as a Gompertz model, 

obtaining a Fokker-Planck equation with linear coefficients allowing 

to an analytical solution. The analytical solution of the model 

represents an encouraging way to implement a control system, based 

on the process model. The slight differences obtained in term of 

skewness compared to the FPE based on the logistic model are 

negligible, appearing the FPE with linear coefficients a valuable 

choice when dealing with applications requiring fast calculations, as 

in the case of on-line control schemes. 

The dependencies on the antisolvent feedrate and temperature of the 

model parameters have been obtained in an explicit way, 

guaranteeing simplicity of the global model, while preserving the 

physical consistency of the results. It has been demonstrated that 

excellent results can be obtained for both models, with nonlinear and 

linear coefficients. The obtained global model has been then 

compared with the more common Population Balances (PBM), 

showing that the FPE modeling is a good challenger for the 

representation of the CSD in time, using a parsimonious number of 

parameters and with a phenomenological knowledge of the system, 

despite the more complex PBM that, nonetheless, can describe the 

nucleation of crystals and quantify the obtained product with the 

zero-th order moment. The obtained global model also allowed to 

generate operational maps, representing asymptotically the iso-mean 

and the iso-variance curves with respect to antisolvent feedrate and 

temperature. This representation allows to find multiple asymptotic 

conditions with the same CSD, in terms of mean and variance, using 

different input values. 

There is no clear explanation, in literature and in previous works, 

about the influence of the operating conditions on the antisolvent 

process, in particular when the solute solubility is slight dependent 

on the temperature. It has been found that exist a direct correlation 

between hydrogen bond strength and supersaturation. The results 

obtained are congruent with the hypothesis made, showing that the 

asymptotic mean size of crystals is inversely proportional to the 

hydrogen bond strength, while, controversially, the growth velocity 
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and the dispersion of the CSD are directly proportional. This clearly 

represents an important goal that can be extended in future in order 

to optimize the process, including the optimization and the control 

of the mean size of crystals and/or the CSD dispersion, and also 

finding the best antisolvent to use for the desired product to obtain, 

including economic and energetic aspects. 

Concluding, the FPE represents a valid alternative for the 

description of the CSD, asymptotically and dynamically, allowing to 

a simpler model formulation, requiring a limited number of 

parameters to estimate. 

 

6.2 Future research 

 

According to the results obtained, a possible future research can be 

focused on the development of an internal model-based controller. 

Knowing the exact transfer function of both, mean size of crystals 

and CSD variance, as a function of the antisolvent feedrate and 

temperature, it is possible define a control model to achieve the 

desired CSD characteristics. Moreover, the feasibility of the CSD to 

achieve can be selected using the asymptotic maps. 

Knowing an asymptotic map of all the possible mean sizes and 

variances achievable, it is also possible to optimize the antisolvent 

and the energy consumptions, in case a multiple asymptotic 

condition is present. 

The development of an online method of data sampling can be 

further developed in order to implement a soft-sensor using also an 

image analysis method along the experimental run, in real time. 

Furthermore using a model based control, it is possible to implement 

a feedback control system. 

The last research proposal can be focused on a deep and more 

accurate study of the hydrogen bond interactions in the non-

isothermal antisolvent crystallization systems. The choice of the 

antisolvent can be obtained regarding its properties, such as the 

reaction with other compounds, the safety usage and the separation 

methods. In this way the antisolvent crystallization processes can be 

optimized beyond the operability conditions, considering also the 
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reuse and manage of the proper antisolvent to use for the specific 

solute to crystallize. 
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Appendix A 

 

Nomenclature 

 
Latin 

A Coefficient of the state variable for the Riccati’s 

equation, defined as A = -r’/K’. 

b Ratio used to define the geometric series for the 

discretization length, defined as b = (Lmax/L0)
1/

b0 Pre-exponential nucleation parameter [-]. 

b1 Exponential parameter on the nucleation term for the 

population balance [-]. 

B Nucleation rate expressed on the population balance 

model [# of particles/s/m
4
]. 

c1 First coefficient of the equilibrium concentration 

function. 

c2 Second coefficient of the equilibrium concentration 

function. 

c3 Third coefficient of the equilibrium concentration 

function. 

C Solution concentration [Kg NaCl/Kg solvents]. 

C
*
 Equilibrium concentration of the solution [Kg 

NaCl/Kg solvents]. 

D Fokker-Planck Equation Diffusivity. 

D’ Fokker-Planck Equation Diffusivity for the FPE-

OUP. 

D” Fokker-Planck Equation Diffusivity for the 

independent variable z, used to obtain the analytical 

solution of the FPE-OUP (D” = D’/K’
2
). 
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Dt Dimensionless FPE diffusivity. 

g0 Default growth rate [-]. 

g1 Reduction in growth rate due to antisolvent [-]. 

g2 Exponent of the reduction in growth rate due to 

antisolvent [-]. 

g3 Activation energy for the growth rate [-]. 

g4 Exponent of the temperature dependent term of the 

growth rate [-]. 

g5 First supersaturation exponent of the growth rate [-]. 

g6 Second supersaturation exponent of the growth rate  

[-]. 

G Growth rate expressed on the population balance 

model [m/s]. 

h(y) Deterministic model in logarithmic scale. 

k Projection of the variable z into the Fourier domain. 

kv Volumetric shape factor of crystals (equal to 1). 

K Asymptotic dimension of crystals in logarithmic scale 

for the logistic model. 

K’ Asymptotic dimension of crystals in logarithmic scale 

for the logistic model (K’ = lnL0). 

i Imaginary unit where i
2
 = -1 or i=th element. 

L Characteristic length of crystals in microns [m], for 

the PBM is in meters. 

L0 Initial characteristic length of crystals in microns 

[m] , for the PBM is in meters. 

mS Mass of the solvent. 

ni Discretized crystal density of the PBM [# 

particles/m
4
]. 

n(L,t) Crystal density of the PBM [# particles/m
4
]. 

r Growth velocity for the logistic model in logarithmic 

scale. 

r’ Growth velocity for the Gompertz model in 

logarithmic scale (r’ = lnL0). 

r” Growth velocity for the Gompertz model in 

logarithmic scale for the random variable z (r” = 

r’/K’). 

R Ideal gas constant. 

S Relative supersaturation [-]. 
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t Integration time [h]. 

t0 Initial integration time [h]. 

T Temperature [K]. 

V Reaction volume [m
3
]. 

w Solute free mass percent of ethanol in the solution 

[Kg antisolvent/Kg solution]. 

y logarithm of the characteristic length of crystals, y = 

ln(L). 

y0 Logarithm of the initial characteristic length of 

crystals, y = ln(L). 

z Generic random variable. 

Greek 

 Flexibility degree of the white noise intensity (used as 

exponent). 

 Growth velocity for the Gompertz model in linear 

scale (used as a variable). 

 PDF skewness. 

z PDF skewness for the generic random variable z. 

L PDF skewness for the characteristic length of crystals 

L. 

 Noise intensity for the Riccati’s equation D'. 

i Length of each discretization interval used for the 

PBM, given by iLi-Li-1. 

(L-L0) Initial condition for a purely random variable. 

t White noise. 

 Vector of the FPE parameters. 

z Mean size of the generic random variable z. 

y0 Initial mean size of crystals in logarithmic scale (t = 

t0). 

z0 Initial mean size of crystals in logarithmic scale for 

the variable z (t = t0), defined as z0 = y0/K’. 

0(t) Zero order moment for the PBM [# particles/m
3
]. 

y(t) Dynamic mean size of crystals in logarithmic scale 

for the FPE-GM. 
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C Crystal density of sodium chloride [Kg/m
3
]. 

S Solution density [Kg/m
3
]. 

z0 Initial standard deviation of crystals in logarithmic 

scale for the variable z (t =t0), defined as z0 = y0/K’. 

2
y0 Initial variance of crystals in logarithmic scale (t =t0). 

2
z0 Initial variance of crystals in logarithmic scale for the 

variable z (t =t0), defined as 2
z0 = 2

y0/K’
2
. 

y(t) Dynamic standard deviation of crystals in logarithmic 

scale for the FPE-GM. 

2
y(t) Dynamic variance of crystals in logarithmic scale for 

the FPE-GM. 

 Dependent variable of the FPE. 

(0) Initial PSD for a purely random process. 

z(z) Dependent variable of the FPE along the generic 

random variable z. 

(L,t) Dependent variable of the FPE as a function of L and 

t. 

(y,t) Dependent variable of the FPE as a function of y and 

t. 

(0,t) Lower extreme of the FPE in linear scale. 

(-∞,t) Lower extreme of the FPE in logarithmic scale. 

(+∞,t) Upper extreme of the FPE in linear and logarithmic 

scale. 

t)(k,Ψ
~

 Dependent variable of the FPE represented on the 

Fourier domain. 

)t(k,Ψ 0

~
 Initial condition for the dependent variable of the FPE 

represented on the Fourier domain. 

 Domain for the generic random variable z. 

Other 

ΔC Absolute supersaturation [Kg NaCl/Kg solvents]. 

ΔL Increment of size of crystals used for the PBM [m]. 
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Subindices 

0 Initial conditions. 

C Crystal (for crystal density). 

L Linear scale. 

max Used to define the maximum crystal size used in the 

discretization for the PBM. 

S Solution density. 

v Volumetric. 

y Logarithmic scale. 

 Number of the discretization intervals used for the 

PBM. 

z Random variable or transformed variable for the 

OUP. 

Accents 

~ Fourier domain PDF. 

* Equilibrium concentration. 

Acronyms 

AIC Akaike Index Criterion. 

CSD Crystal Size Distribution. 

FPE Fokker-Planck Equation. 

GBM Geometric Brownian Motion. 

GZ-ML Gompertz Model – Maximum Likelihood. 

HFR High Feed Rate. 

HT High Temperature 

LBM Linear Brownian Motion. 

LE Langevin Equation. 

LFR Low Feed Rate. 

LG-LS Logistic Model – Least Square, 

LG-ML Logistic Model – Maximum Likelihood. 

LT Low Temperature- 

MAD Mean Absolute Deviation. 

MFR Medium Feed Rate. 
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MOC Method Of Characteristics. 

MT Medium Temperature. 

ODE Ordinary Differential Equation. 

OUP Ornstein Uhlenbeck Process. 

PBM Population Balance Model. 

PDF Probabilistic Density Function. 

PI Polarity Index. 

Components 

AcOH Acetic Acid or Ethanoic Acid (C2H4O2). 

Cl
-
 Chlorine ion. 

EtOH Ethanol or Ethyl Alcohol (C2H6O). 

H2O Water. 

Na
+
 Sodium ion. 

NaCl Sodium Chloride. 

IsopOH Isopropanol or 2-Propanol (C3H8O). 

Structures 

E[t] Mean value of the white noise. 

E[tt’] Autocorrelation of the white noise. 

f(L,t;) Deterministic model as a function of the independent 

variable L, the time variable t and the vector of 

parameters 
g(L) Noise intensity of the Langevin equation. 

g(L)(t-t’) Value of the autocorrelation of the white noise. 

h(y,t;) Deterministic model as a function of the independent 

variable y, the time variable t and the vector of 

parameters 
n(Li,t = 0) Initial condition for the discretized PBM, equal to 

zero. 

n(L1,t) Lower boundary condition for the discretized PBM, 

equal to zero. 

n(L,t) Upper boundary condition for the discretized PBM, 

equal to zero.
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n(L,t)ΔL Number of particles in a unit of volume having size 

between L and L+ΔL.

N(y(t),
2

y(t)) Dynamic normal distribution in logarithmic scale. 

N(y0,
2

y0) Normal distribution used as initial condition for the 

FPE in logarithmic scale. 

t(s))(k(s),Ψ
~

 Dependent variable of the FPE in the Fourier domain, 

projected onto the s variable in order to apply the 

MOC. 
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