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Thesis’ overview

In the Introduction, some motivations for the use of Unknown Input Observers (UIO) approach

are discussed to state the framework within which this work is developed.

This thesis is divided in two fundamental parts, namely, the Part I, in which the theoretical

background of the UIO, Consensus Algorithms and Decentralized Systems is discussed; after a

collection of algorithms is presented. In the Part II, some important applicative problems are

addressed and solved by means of the proposed approaches.

More specifically, as for the Part I, in Chapter 1 the fundamentals regarding the matrix and

graph theory are recalled. In the subsequent Chapter 2 the attention is focused on the strong

observability approach, and its main features are described. Chapter 3 refers to the presentation

of the Consensus algorithm, while in Chapter 4 an estimation algorithm is recalled, which allows

the estimation of the state in an “overlapped” system also in presence of Unknown Inputs (in

Chapter 5), which are estimated as well.

In the Part II the estimation problems of flow ad infiltration, in open channel hydraulic sys-

tem are solved, using a UIO approach(in Chapters 6). In Chapters 7, considering open channel

hydraulic system, the UIO approach is used to solve a problem of fault detection and compen-

sation.
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Introduction and Motivations

In recent years, motivated by a large amount of important practical problems, the estimation

of uncertain systems has become an important subject of research. As a result, considerable

progresses in estimation techniques, such as the introduction of consensus algorithm, unknown

input observers (UIO) techniques and others, that explicitly account for an imprecise description

of the model of the controlled plant guaranteeing the attainment of the relevant estimation

objectives in the face of modeling error and/or parameter uncertainties, have been attained.

This work analyzes a quite recent development of unknown input observers (UIO) techniques,

which is encountering a growing attention in the control research community.

The objective of this thesis is to survey the theoretical background of the unknown input ob-

servers and consensus based estimation, mainly developed in the last years, to present some new

results, and to show that the UIO approach is an effective solution to the above-cited drawbacks

and may constitute a good candidate for solving a wide range of important practical problems,

like the estimation problem of unknown parameters in hydraulic networks, which is considered

in last chapters of this thesis.
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Part I

Theory
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1 Graph Theory Background

1.1 Preliminaries

The main purpose of this chapter is to provide some mathematical foundations, about graph

theory and nonnegative matrices, to the considered estimation problem.

We shall strive for rigor in presentation and shall not discuss the applicability of the concepts to

real world. This is postponed to later chapters. In this chapter we begin by surveying some basic

notions from graph theory [1], [2] and recall an important result about connectivity of digraphs.

Next, we explore the theory of nonnegative matrices with emphasis on the connections between

nonnegative matrices and directed graphs. An excellent reference on nonnegative matrices is [3].

1.2 Matrix Theory

Here, we present basic notions and results about matrix theory, following the treatments in [5]

and [6]. Let Rn×m and Cn×m denote the set of n ×m real and complex matrices respectivily.

Given a real matrix A and a complex matrix U , we denote with AT and U∗ the transpose of

A and the conjugate transpose matrix of U , respectively. In denotes the n× n identity matrix.

For a square matrix A, we write A > 0, resp. A ≥ 0, if A is symmetric positive definite,

resp. symmetric positive semidefinite. For a real matrix A, we denote with rank(A) the rank

of A, respectively. Given a vector v, we denote with diag(v) the diagonal square matrix whose

diagonal elements are equal to the component v.

1.2.1 Matrix sets

A matrix A ∈ Rn×n with entries aij , (i, j ∈ 1, ..., n), is

(i) Orthogonal if AAT = In, and is special orthogonal if it is orthogonal with det(A) = +1.

The set of orthogonal matrices is a group.

(ii) Nonnegative (resp., positive) if all its entries are nonnegative (resp., positive).

(iii) Row-stochastic (or stochastic for brevity) if it is nonnegative and
∑n

j=1 aij = 1, for all

i ∈ 1, ..., n; in other words, A is rowstochastic if

A1n = 1n. (1)

where 1n denotes the following vector
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1n = [1, 1, ..., 1]T ∈ Rn. (2)

(iv) Column-stochastic if it is nonnegative and
∑n

j=1 aij = 1, for all j ∈ 1, ..., n.

(v) Doubly stochastic if A is both row-stochastic and column-stochastic.

The scalars µ1, ..., µk are convex combination coefficients if µi ≥ 0, for i ∈ 1, ..., k, and
∑k

i=1 µi =

1. (Each row of a row-stochastic matrix contains convex combination coefficients.) A convex

combination of vectors is a linear combination of the vectors with convex combination coeffi-

cients. A subset U of a vector space V is convex if the convex combination of any two elements

of U takes value in U . The set of stochastic matrices and the set of doubly stochastic matrices

are convex.

(vi) Normal if AT A = AAT .

(vii) A is a permutation matrix if A has precisely one entry equal to one in each row, one

entry equal to one in each column, and all other entries equal to zero. The set of permutation

matrices is a group.

(viii) An n× n matrix A = (aij) is said to be dominant diagonal if

|aii| >
n∑

j=1,j 6=i

|aij |, ∀i ∈ N (3)

If, in addition, aii > 0 (aii < 0 for all i ∈ N, then A is dominant positive (negative) diagonal

(ix) An n × n matrix A = (aij) is said to be quasidominant diagonal if there exist positive

numbers dj , j ∈ N, such that either

di|aii| >
n∑

j=1,j 6=i

dj |aij |, ∀i ∈ N (4)

or

dj |aii| >
n∑

i=1,i6=j

di|aij |, ∀j ∈ N (5)

Again, if all aii are positive (negative) and either (4) or (5) is true, then A is quasidominant

positive (negative) diagonal. If in (4) di = 1 for all i ∈ N then it reduces to (3). It will be

shown later that (4) and (5) are equivalent, whereas an analogous statement for (3) is not true

in general.
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(x) An n× n matrix A = (aij) is a Metzler matrix if

aij < 0 ∀i = j, (6)

aij ≥ 0 ∀i 6= j, i, j = 1, 2, ...n. (7)

.

Theorem 1 A Metzler matrix A is Hurwitz if and only if it is quasidominant negative diagonal

[11].

Example 1 Let us consider the following matrices:

A1 =



−2 1 0
2 0 2
3 2 −1


 ;A2 =



−2 1 0
2 −1 2
3 0 −1


 ; A3 =



−2 1 0
2 −4 2
3 0 −4


 ; (8)

First matrix A1 is not Metzler because A1(2, 2) is not < 0.

Matrix A2 is Metzler because all diagonal terms are < 0 and the others are ≥ 0, but it is neither

diagonal nor quasi dominant diagonal. So it is not Hurwitz and in fact,

eig(A2) = [0.8455,−2.4227 + 1.1077i,−2.4227− 1.1077i] (9)

Matrix A3 is Metzler because all diagonal terms are < 0 and the others are ≥ 0, it is not diagonal

dominant but it is quasi dominant diagonal. So it is Hurwitz and in fact,

eig(A3) = [−0.793,−4.6035 + 1.2275i,−4.6035− 1.2275i] (10)

1.2.2 Eigenvalues, singular values, and induced norms

Let us introduce the notion of eigenvalue and of simple eigenvalue, that is, an eigenvalue with

algebraic and geometric multiplicity equal to 1. The set of eigenvalues of a matrix A ∈ Rn×n is

called its spectrum and is denoted by spec(A) ∈ Cn. The singular values of the matrix A ∈ Rn×n

are the positive square roots of the eigenvalues of AT A. We begin with a well-known property

of the spectrum of a matrix.

Theorem 2 (Gersgorin disks). Let A be an n× n matrix. Then

spec(A) ⊂
⋃

i=1,...,n

{z ∈ C|‖z − aii‖C ≤
n∑

j=1,j 6=i

|aij |}. (11)
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For a square matrix A = (aij), around every entry aii on the diagonal of the matrix, draw a

closed disc of radius
∑

j 6=i |aij |. Such discs are called Gershgorin discs. Every eigenvalue of A

lies in a Gershgorin disc.

Example 2 Let us consider the following matrix:

A4 =




0 5 0 0
2 0 0 6
0 3 0 0

1.5 0 0.5 0


 ; (12)

For the matrix A4 in (2), the Gershgorin discs are drawn in Fig.1 and the eigenvalues lie in the

union of these discs, i.e., the largest disc.

Figure 1: Gershgorin discs

Next, we review a few facts about normal matrices, their eigenvectors and their singular values.

Lemma 1 (Normal matrices [15] ). For a matrix A ∈ Rn×n, the following statements are

equivalent:

(i) A is normal;

(ii) A has a complete orthonormal set of eigenvectors; and

(iii) A is unitarily similar to a diagonal matrix, that is, there exists a unitary matrix U such

that U∗AU is diagonal.

Lemma 2 (Singular values of a normal matrix [15]). If a normal matrix has eigenvalues

λ1, ..., λn, then its singular values are |λ1|, ..., |λn|. Real symmetric matrices are normal, are
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diagonalizable by orthogonal matrices, and have real eigenvalues.

We conclude by defining the notion of induced norm of a matrix. For p ∈ [1, 2, ...,∞], the

p-induced norm of A ∈ Rn×n is

x ∈ Cn; x = [x1, x2, ..., xn]; ‖x‖p = (
n∑

i=1

|xi|p)
1
p ; ‖A‖p = max{‖Ax‖p; ‖x‖p = 1}. (13)

One can see that

‖A‖1 = maxj∈{1,...,n}
n∑

i=1

|aij |, (14)

‖A‖∞ = maxi∈{1,...,n}
n∑

j=1

|aij |, (15)

‖A‖2 = max{σ|σ is a singular value of A}. (16)

1.2.3 Spectral radius and convergent matrices

The spectral radius of a matrix A ∈ Rn×n is

ρ(A) = max{‖λ‖C; λ ∈ spec(A)}. (17)

In other words, ρ(A) is the radius of the smallest disk centered at the origin that contains the

spectrum of A.

Lemma 3 (Induced norms and spectral radius [15]). For any square matrix A and in any norm

p ∈ [1, 2, ...,∞]; ρ(A) ≤ ‖A‖p .

We will often deal with matrices with an eigenvalue equal to 1 and all other eigenvalues strictly

inside the unit disk. Accordingly, we generalize the notion of spectral radius as follows. For a

square matrix A with ρ(A) = 1, we define the essential spectral radius

ρess(A) = max{‖λ‖C; λ ∈ spec(A) \ {1}}. (18)

Next, we shall consider matrices with useful convergence properties.
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Definition 1 (Convergent and semi-convergent matrices). A matrix A ∈ Rn×n is

(i) semi-convergent if lim`→+∞A` exists; and

(ii) convergent if it is semi-convergent and lim`→+∞A` = 0 .

These two notions are characterized as follows.

Lemma 4 The square matrix A is convergent if and only if ρ(A) < 1. Furthermore, A is

semiconvergent if and only if the following three properties hold:

(i) ρ(A) ≤ 1;

(ii) ρess(A) < 1, that is, 1 is an eigenvalue and λ1 = 1 is the only eigenvalue on the unit circle;

and

(iii) the eigenvalue λ1 = 1 is semisimple, that is, it has equal algebraic and geometric multiplicity

(possibly larger than one). In other words, A is semi-convergent if and only if there exists a

nonsingular matrix T such that

A = T

[
Ik 0
0 B

]
T−1 (19)

where B ∈ R(n−k)×(n−k) is convergent, that is, ρ(B) < 1. With this notation, we have ρess(A) =

ρ(B) and the algebraic and geometric multiplicity of the eigenvalue λ1 = 1 is k [15].

Example 3 Let us consider the following matrix A:

A =




1 0 0
0 2 −1
0 1 −2


 (20)

A is semi-convergent, in fact its eigenvalues are:

λ1 = 1;λ2 = 0.866i;λ3 = −0.866i; (21)

If we consider the following non-singular matrix T:

T =




1 0 0
0 0 1
0 1 0


 (22)
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we can write matrix A like in (19) where:

Ik = 1;B =
[

0.5 −1
1 −0.5

]
(23)

1.2.4 Perron-Frobenius theory

Positive and nonnegative matrices enjoy useful spectral properties. In what follows, Theorem

amounts to the original Perrons Theorem for positive matrices and the successive theorems , are

the extensions due to Frobenius for certain nonnegative matrices. We refer to [5] for a detailed

treatment.

Theorem 3 (Perron-Frobenius for positive matrices [15]). If the square matrix A is positive,

then

(i) ρ(A) > 0;

(ii) ρ(A) is a simple eigenvalue, of A and ρ(A) is strictly larger than the magnitude of any other

eigenvalue;

(iii) the eigenvalue ρ(A) has an eigenvector with positive components.

Requiring the matrix to be strictly positive is a key assumption that limits the applicability of

this theorem. It turns out that it is possible to obtain the same results of the theorem under

weaker assumptions.

Definition 2 (Irreducible matrix [15]). A nonnegative matrix A ∈ Rn×n is irreducible if, for

any nontrivial partition J ∪K of the index set 1, . . . , n, with J
⋂

K = {.}, there exist j ∈ J

and k ∈ K such that ajk 6= 0.

Remark 1 (Properties of irreducible matrices [15]). An equivalent definition of irreducibility

is given as follows. A matrix A ∈ Rn×n is irreducible if it is not reducible, and is reducible if

either:

(i) n = 1 and A = a11 ∈ <, with a11 = 0 ; or

(ii) there exists a permutation matrix P ∈ Rn×n and an integer number r ∈ {1, ..., n − 1} such

that P T AP is block upper triangular with diagonal blocks of dimensions r×r and (n−r)×(n−r).

It is an immediate consequence that the property of irreducibility depends upon only the patterns

of zeros and nonzero elements of the matrix. We can now weaken the assumption in Theorem

3 and obtain a comparable, but weaker, result for irreducible matrices.
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Theorem 4 (PerronFrobenius for irreducible matrices [15]). If the nonnegative square matrix

A is irreducible, then

(i) ρ(A) > 0;

(ii) ρ(A) is an eigenvalue, and it is simple; and

(iii) ρ(A) has an eigenvector with positive components.

In general, the spectral radius of a nonnegative irreducible matrix does not need to be the only

eigenvalue of maximum magnitude. For example, the matrix
[

0 1
1 0

]
has eigenvalues {1,−1}.

In other words, irreducible matrices do indeed have weaker spectral properties than positive

matrices. Therefore, it remains unclear which nonnegative matrices have the same properties as

those stated for positive matrices in Theorem 3.

Definition 3 (Primitive matrix). A nonnegative square matrix A is primitive if there exists

k ∈ N such that Ak is positive.

It is easy to see that if a nonnegative square matrix is primitive, then it is irreducible. In later

sections we will provide a graph-theoretical characterization of primitive matrices; for now, we

are finally in a position to sharpen the results of Theorem 4.

Theorem 5 (PerronFrobenius for primitive matrices [15]). If the nonnegative square matrix A

is primitive, then it is also irreducible, which means that

(i) ρ(A) > 0;

(ii) ρ(A) is an eigenvalue, it is simple, and ρ(A) is strictly larger than the magnitude of any

other eigenvalue; and

(iii) ρ(A) has an eigenvector with positive components.

We conclude this section by noting the following convergence property that is an immediate

corollary to Lemma 4 and to Theorem 5.

Corollary 1 . If the nonnegative square matrix A is primitive, then the matrix ρ(A)−1A is

semi-convergent [15].

1.3 Digraphs, Neighbors and Degrees

A directed graph, (in short, digraph) of order n is a pair G = (V, E), where V is a set with

n elements called vertices (or nodes) and E is a set of ordered pair of vertices called edges. In

other words, E ⊆ V × V . We call V and E the vertex set and edge set, respectively. When
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convenient, we let V (G) and E(G) denote the vertices and edges of G, respectively. For u,

v ∈ V , the ordered pair (u, v) denotes an edge from u to v.

An undirected graph in short, graph, consists of a vertex set V and of a set E of unordered

pairs of vertices. For u, v ∈ V and u 6= v, the set {u, v} denotes an unordered edge. A digraph

is undirected if (v, u) ∈ E anytime (u, v) ∈ E. It is possible and convenient to identify an

undirected digraph with the corresponding graph; vice versa, the directed version of a graph

(V, E) is the digraph (V ′, E′) with the property that (u, v) ∈ E′ if and only if u, v ∈ E. In what

follows, our convention is to allow self-loops in both graphs and digraphs.

Figure 2: Digraphs.

A digraph (V ′, E′) is a subgraph of a digraph (V, E) if V ′ ⊂ V and E′ ⊂ E; additionally, a

digraph (V ′, E′) is a spanning subgraph if it is a subgraph and V ′ = V . The subgraph of

(V, E) induced by V ′ ⊂ V is the digraph (V ′, E′), where E′ contains all edges in E between two

vertices in V ′. For two digraphs G = (V,E) and G′ = (V ′, E′), the intersection and union of G

and G′ are defined by

G ∩G′ = (V ∩ V ′, E ∩ E′), (24)

G ∪G′ = (V ∪ V ′, E ∪ E′). (25)

Analogous definitions may be given for graphs. In a digraph G with an edge (u, v) ∈ E, u is

called an in-neighbor of v, and v is called an out-neighbor of u. We let N in
G (v) (resp., Nout

G (v))

denote the set of in-neighbors, (resp. the set of out-neighbors) of v in the digraph G. We will

drop the subscript G when the graph G is clear from the context. The in-degree and out-

degree of v are the cardinality of N in(v) and Nout(v), respectively. A digraph is topologically

balanced if each vertex has the same in-and out-degrees (even if distinct vertices have distinct

degrees). Likewise, in an undirected graph G, the vertices u and v are neighbors if {u, v} is an

undirected edge. We let NG(v) denote the set of neighbors of v in the undirected graph G. As

in the directed case, we will drop the subscript G when the graph G is clear from the context.

16



The degree of v is the cardinality of N(v).

Remark 2 (Additional notions [15]). For a digraph G = (V, E), the reverse digraph rev(G)

has vertex set V and edge set rev(E) composed of all edges in E with reversed direction. A

digraph G = (V, E) is complete if E = V × V . A clique (V’,E’) of a digraph (V,E) is a

subgraph of (V,E) which is complete, that is, such that E′ = V ′ × V ′. Note that a clique is

fully determined by its set of vertices, and hence there is no loss of precision in denoting it by

V ’. A maximal clique V’ of an edge of a digraph is a clique of the digraph with the following

two properties: it contains the edge, and any other subgraph of the digraph that strictly contains

(V ′, V ′ × V ′) is not a clique.

1.3.1 Connectivity notions

Let us now review some basic connectivity notions for digraphs and graphs. We begin with the

setting of undirected graphs because of its simplicity. A path in a graph is an ordered sequence

of vertices such that any pair of consecutive vertices in the sequence is an edge of the graph. A

graph is connected if there exists a path between any two vertices. If a graph is not connected,

then it is composed of multiple connected components, that is, multiple connected subgraphs.

A path is simple if no vertices appear more than once in it, except possibly for initial and final

vertex. A cycle is a simple path that starts and ends at the same vertex. A graph is acyclic

if it contains no cycles. A connected acyclic graph is a tree. A forest is a graph that can be

written as the disjoint union of trees. Trees have interesting properties: for example, G = (V, E)

is a tree if and only if G is connected and |E| = |V | − 1. Alternatively, G = (V, E) is a tree if

and only if G is acyclic and |E| = |V | − 1. Figure (3) illustrates these notions.

Figure 3: An illustration of connectivity notions on graphs. The graph has two connected com-
ponents. The leftmost connected component is a tree, while the rightmost connected component
is a cycle.

Next, we generalize these notions to the case of digraphs. A directed path in a digraph is an

ordered sequence of vertices such that any ordered pair of vertices appearing consecutively in

the sequence is an edge of the digraph. A cycle in a digraph is a directed path that starts and

17



ends at the same vertex and that contains no repeated vertex as except for the initial and the

final vertex. A digraph is acyclic if it contains no cycles. In an acyclic graph, every vertex of

in-degree 0 is named a source, and every vertex of out-degree 0 is named a sink. Every acyclic

digraph has at least one source and at least one sink. Figure (4) illustrates these notions.

Figure 4: Illustrations of connectivity notions on a digraph: (a) shows an acyclic digraph with
one sink and two sources; (b) shows a directed path which is also a cycle.

The set of cycles of a directed graph is finite. A directed graph is aperiodic if there exists no

k > 1 that divides the length of every cycle of the graph. In other words, a digraph is aperiodic

if the greatest common divisor of the lengths of its cycles is one. A digraph is periodic if it is

not aperiodic. Figure (5) shows examples of a periodic and an aperiodic digraph.

Figure 5: (a) A periodic digraph. (b) An aperiodic digraph with cycles of length 2 and 3.

A vertex of a digraph is globally reachable if it can be reached from any other vertex by

traversing a directed path. A digraph is strongly connected if every vertex is globally reach-

able. A directed tree (sometimes called a rooted tree) is an acyclic digraph with the following

property: there exists a vertex, called the root, such that any other vertex of the digraph can

be reached by one and only one directed path starting at the root. In a directed tree, every

in-neighbor of a vertex is called a parent and every out-neighbor is called a child. Two vertices
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with the same parent are called siblings. A successor of a vertex u is any other node that can

be reached with a directed path starting at u. A predecessor of a vertex v is any other node such

that a directed path exists starting at it and reaching v. A directed spanning tree, or simply a

spanning tree, of a digraph is a spanning subgraph that is a directed tree. Clearly, a digraph

contains a spanning tree if and only if the reverse digraph contains a globally reachable vertex.

A (directed) chain is a directed tree with exactly one source and one sink. A (directed) ring

digraph is the cycle obtained by adding to the edge set of a chain a new edge from its sink to

its source. Figure (6) illustrates some of these notions.

Lemma 5 (Connectivity in topologically balanced digraphs [15]). Let G be a digraph. The fol-

lowing statements hold:

(i) if G is strongly connected, then it contains a globally reachable vertex and a spanning tree;

and

(ii) if G is topologically balanced and contains either a globally reachable vertex or a spanning

tree, then G is strongly connected and is Eulerian (that is a graph with a cycle that visits all

the graph edges exactly once). Given a digraph G = (V,E), an in-neighbor of a nonempty set of

nodes U is a node v ∈ V \U for which there exists an edge (v, u) ∈ E for some u ∈ U .

Figure 6: From left to right, tree, directed tree, chain, and ring digraphs.

Lemma 6 (Disjoint subsets and spanning trees [15]). Given a digraph G with at least two nodes,

the following two properties are equivalent: (i) G has a spanning tree; and (ii) for any pair of

nonempty disjoint subsets U1, U2 ⊂ V , either U1 has an in-neighbor or U2 has an in-neighbor.

The result is illustrated in Figure (7). We can also state the result in terms of global reachability:

G has a globally reachable node if and only if, for any pair of nonempty disjoint subsets U1, U2 ⊂
V , either U1 has an out-neighbor or U2 has an out-neighbor. The definition of the out-neighbor

of a set can be trivially made analogously.
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Figure 7: An illustration of Last Lemma. The root of the spanning tree is plotted in gray. In
(a), the root is outside the sets U1 and U2. Because these sets are non-empty, there exists a
directed path from the root to a vertex in each one of these sets. Therefore, both U1 and U2

have in-neighbors. In (b), the root is contained in U1. Because U2 is non-empty, there exists
a directed path from the root to a vertex in U2, and, therefore, U2 has in-neighbors. The case
when the root belongs to U2 is treated analogously.

1.3.2 Weighted digraphs

A weighted digraph is a triplet G = (V, E, A), where the pair (V, E) is a digraph with nodes

V = v1, ..., vn, and where the nonnegative matrix A ∈ Rn×n
>0 is a weighted adjacency matrix

with the following property: for i, j ∈ 1, ..., n, the entry aij > 0 if (vi, vj) is an edge of G, and

aij = 0 otherwise. In other words, the scalars aij , for all (vi, vj) ∈ E, are a set of weights

for the edges of G. Note that the edge set is uniquely determined by the weighted adjacency

matrix and it can therefore be omitted. When convenient, we denote the adjacency matrix of a

weighted digraph G by A(G). Figure (8) shows an example of a weighted digraph.

Figure 8: A weighted digraph with natural weights.
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A digraph G = (V, E) can be naturally thought of as a weighted digraph by defining the weighted

adjacency matrix A ∈ {0, 1}n×n as

aij =
{

1 if(vi, vj) ∈ E
0 otherwise

(26)

where V = {v1, ..., vn}. The adjacency matrix of a graph is the adjacency matrix of the directed

version of the graph. Reciprocally, given a weighted digraph G = (V, E,A), we refer to the

digraph (V, E) as the unweighted version of G and to its associated adjacency matrix as the

unweighted adjacency matrix. A weighted digraph is undirected if aij = aji for all i, j ∈
{1, ..., n}. Clearly, G is undirected if and only if A(G) is symmetric.

Numerous concepts introduced for digraphs remain equally valid for the case of weighted di-

graphs, including the connectivity notions and the definitions of in- and out-neighbors. Finally,

we generalize the notions of in- and out-degree to weighted digraphs. In a weighted digraph

G = (V, E,A) with V = {v1, ..., vn}, the weighted out-degree and the weighted in-degree of

vertex vi are defined by, respectively,

dout(vi) =
n∑

j=1

aij , (27)

and

din(vi) =
n∑

j=1

aji, (28)

The weighted digraph G is weight-balanced if dout(vi) = din(vi) for all vi ∈ V . The weighted

out-degree matrix Dout(G) and the weighted in-degree matrix Din(G) are the diagonal matrices

defined by

Dout(G) = diag(A1n), (29)

and

Din(G) = diag(AT1n), (30)

that is, (Dout(G))ii = dout(vi) and (Din(G))ii = din(vi), respectively.
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Example 4 The graph of fig.2(a), in which a weight equal to 1 is considered for each edge, has

the following adjacency, out-degree and in-degree matrices:

A =




0 1 1 0
0 0 0 0
0 1 0 1
1 0 0 0


 ; (31)

Dout = diag(A1n) =




2 0 0 0
0 0 0 0
0 0 2 0
0 0 0 1


 ; (32)

Din = diag(AT1n) =




1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1


 ; (33)

1.3.3 Distances on digraphs and weighted digraphs

We first present a few definitions for unweighted digraphs. Given a digraph G, the (topological)

length of a directed path is the number of the edges composing it. Given two vertices u and v

in the digraph G, the distance from u to v, denoted distG(u, v), is the smallest length of any

directed path from u to v, or +∞ if there is no directed path from u to v. That is,

distG(u, v) = min({length(p)|p is a directed path from u to v} ∪ {+∞}). (34)

Given a vertex v of a digraph G, the radius of v in G is the maximum of all the distances from

v to any other vertex in G. That is,

radius(v, G) = maxdistG(v, u)|u ∈ V (G). (35)

If T is a directed tree and v is its root, then the depth of T is radius (v, T ). Finally, the diameter

of the digraph G is

diam(G) = max{distG(u, v) | u, v ∈ V (G)}. (36)

These definitions lead to the following simple results:

(i) radius(v,G) ≤ diam(G) for all vertices v of G;
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(ii) G contains a spanning tree rooted at v if and only if radius (v,G) < +∞; and

(iii) G is strongly connected if and only if diam(G) < +∞.

The definitions of path length, distance between vertices, radius of a vertex, and diameter of a

digraph can be easily extended to undirected graphs, too. Next, we consider weighted digraphs.

Given two vertices u and v in the weighted digraph G, the weighted distance from u to v,

denoted wdistG(u, v), is the smallest weight of any directed path from u to v, or +∞ if there is

no directed path from u to v. That is,

wdistG(u, v) = min({weight(p) | p is a directed path from u to v} ∪ {+∞}). (37)

Here, the weight of a subgraph of a weighted digraph is the sum of the weights of all the edges

of the subgraph. Note that when a digraph is thought of as a weighted digraph (with the

unweighted adjacency matrix (1.3.2)), the notions of weight and weighted distance correspond

to the usual notions of length and distance, respectively. We leave it the reader to provide the

definitions of weighted radius, weighted depth, and weighted diameter.

1.3.4 Algebraic graph theory

Algebraic graph theory investigates the properties of matrices defined by digraphs. In this

section, we expose two topics. First, we study the equivalence between properties of graphs

and of their associated adjacency matrices. We also specify how to associate a digraph to

a nonnegative matrix. Second, we introduce and characterize the Laplacian matrix of a

weighted digraph. We begin by studying adjacency matrices. Note that the adjacency matrix of

a weighted digraph is nonnegative and, in general, not stochastic. The following lemma expands

on this point.

Lemma 7 (Weight-balanced digraphs and doubly stochastic adjacency matrices [15]). Let G be

a weighted digraph of order n with weighted adjacency matrix A and weighted out-degree matrix

Dout. Define the matrix

F = { D−1
outA, if each out− degree is strictly positive,

(In + Dout)−1(In + A), otherwise
(38)

Then

(i) F is row-stochastic; and

(ii) F is doubly stochastic if G is weight-balanced and the weighted degree is constant for all
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vertices.

Proof 1 Consider first the case when each vertex has an outgoing edge so that Dout is invertible.

We first note that diag(v)−1v = 1n, for each v ∈ (< \ {0})n. Therefore

(D−1
outA)1n = diag(A1n)−1(A1n) = 1n (39)

which proves (i). Furthermore, if Dout = Din = dIn for some d ∈ <>0, then

(D−1
outA)T1n =

1
d
(AT1n) = D−1

in (AT1n) = diag(AT1n)−1(AT1n) = 1n (40)

which proves (ii). Finally, if (V, E, A) does not have outgoing edges at each vertex, then apply

the statement to the weighted digraph (V, E ∪ {(i, i)|i ∈ {1, ..., n}}, A + In).

The next result characterizes the relationship between the adjacency matrix and directed paths

in the digraph.

Lemma 8 (Directed paths and powers of the adjacency matrix [15]).

Let G be a weighted digraph of order n with weighted adjacency matrix A, with unweighted

adjacency matrix A0,1 ∈ {0, 1}n×n, and possibly with selfloops. For all i, j, k ∈ 1, ..., n

(i) the (i, j) entry of Ak
0,1 equals the number of directed paths of length k (including paths with

self-loops) from node i to node j; and

(ii) the (i, j) entry of Ak is positive if and only if there exists a directed path of length k (including

paths with self-loops) from node i to node j.

Proof 2 . The second statement is a direct consequence of the first. The first statement is

proved by induction. The statement is clearly true for k = 1. Next, we assume the statement

is true for some k ≥ 1 and we prove it for k + 1. By assumption, the entry (Ak)ij equals the

number of directed paths from i to j of length k. Note that each path from i to j of length k + 1

identifies (1) a unique node ` such that (i, `) is an edge of G and (2) a unique path from ` to j

of length k. We write Ak+1 = AAk in components as

Ak+1
ij =

n∑

`=1

Ai`(Ak)`j . (41)

Therefore, it is true that the entry Ak+1
ij equals the number of directed paths from i to j of length

k + 1. This concludes the induction argument. Lemma 8 is proven.
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The following proposition characterizes in detail the relationship between various connectivity

properties of the digraph and algebraic properties of the adjacency matrix.

Proposition 1 (Connectivity properties of the digraph and positive powers of the adjacency

matrix [15]).

Let G be a weighted digraph of order n with weighted adjacency matrix A. The following state-

ments are equivalent:

(i) G is strongly connected;

(ii) A is irreducible; and

(iii)
∑n

k=0 Ak is positive.

For any j ∈ 1, ..., n, the following two statements are equivalent:

(iv) the jth node of G is globally reachable; and

(v) the jth column of
∑n−1

k=0 Ak has positive entries.

Stronger statements can be given for digraphs with self-loops.

Figure 9: An illustration of Proposition 1. Even though vertices 2 and 3 are globally reachable,
the digraph is not strongly connected because vertex 1 has no in-neighbor other than itself.
Therefore, the associated adjacency matrix A = (aij) with (a1j) = 13, (a2j) = (a3j) = (0, 1, 1),
is reducible.

Proposition 2 (Connectivity properties of the digraph and positive powers of the adjacency

matrix [15]). Let G be a weighted digraph of order n with weighted adjacency matrix A and with

self-loops at each node. The following statements are equivalent:

(iv) G is strongly connected; and
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(v) An−1 is positive. For any j ∈ 1, ..., n, the following two statements are equivalent:

(iv) the jth node of G is globally reachable; and

(v) the jth column of An−1 has positive entries.

Next, we characterize the relationship between irreducible aperiodic digraphs and primitive

matrices.

Proposition 3 (Strongly connected and aperiodic digraph and primitive adjacency matrix [15]).

Let G be a weighted digraph of order n with weighted adjacency matrix A. The following two

statements are equivalent:

(i) G is strongly connected and aperiodic; and

(ii) A is primitive, that is, there exists k ∈ N such that Ak is positive.

This concludes our study of adjacency matrices associated to weighted digraphs. Next, we

emphasize how all results obtained so far have analogs that hold when the original object is a

nonnegative matrix, instead of a weighted digraph.

Remark 3 (From a nonnegative matrix to its associated digraphs [15]). Given a nonnegative

n × n matrix A, its associated weighted digraph is the weighted digraph with nodes {1, ..., n},
and weighted adjacency matrix A. The unweighted version of this weighted digraph is called the

associated digraph. The following statements are analogs of the previous lemmas:

(i) if A is stochastic, then its associated digraph has weighted out-degree matrix equal to In;

(ii) if A is doubly stochastic, then its associated weighted digraph is weight-balanced and, addi-

tionally, both in-degree and out-degree matrices are equal to In; and

(iii) A is irreducible if and only if its associated weighted digraph is strongly connected.

So far, we have analyzed in detail the properties of adjacency matrices. We conclude this section

by studying a second relevant matrix associated to a digraph, called the Laplacian matrix. The

Laplacian matrix of the weighted digraph G is

L(G) = Dout(G)−A(G). (42)

Some immediate consequences of this definition are the following:

(i) L(G)1n = 0n, that is, 0 is an eigenvalue of L(G) with eigenvector 1n;

(ii) G is undirected if and only if L(G) is symmetric; and
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(iii) L(G) equals the Laplacian matrix of the digraph obtained by adding to or removing from

G any self-loop with arbitrary weight.

Further properties are established as follows.

Theorem 6 (Properties of the Laplacian matrix [15]). Let G be a weighted digraph of order n.

The following statements hold:

(i) all eigenvalues of L(G) have nonnegative real part (thus, if G is undirected, then L(G) is

symmetric positive semidefinite);

(ii) if G is strongly connected, then rank(L(G)) = n − 1, that is, 0 is a simple eigenvalue of

L(G);

(iii) G contains a globally reachable vertex if and only if rank(L(G)) = n− 1;

(iv) the following three statements are equivalent:

(a) G is weight-balanced;

(b) 1T
nL(G) = 0T

n ; and

(c) L(G) + L(G)T is positive semi-definite.

Example 5 Let us consider the graph in fig.(10). It is a weight-balanced graph, in fact any node

the weighted in-degree is equal to the weighted out-degree, 3 for node A, 2 for node B, 1 for node

C.

Figure 10: A weight-balanced graph

The Adjacency matrix is the following:
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A =




0 2 1
2 0 0
1 0 0


 ; (43)

The out-degree and in-degree matrix:

D = Dout = Din =




3 0 0
0 2 0
0 0 1


 ; (44)

The Laplacian matrix:

L(G) = D −A =




3 −2 −1
−2 2 0
−1 0 1


 ; (45)

Let us verify defined properties:

1T
nL(G) = 1T

n




3 −2 −1
−2 2 0
−1 0 1


 = 0T

n ; (46)

Property (b) is verified.

eig(L(G) + L(G)T ) = eig(




6 −4 −2
−4 4 0
−2 0 2


) = (0, 2.54, 9.46); (47)

Property (c) is verified too.

1.4 Conclusions

In this chapter we have provided a mathematical foundation, based on the theory of graphs and

nonnegative matrices.

We have not discussed the applicability of the concepts in the real world. This is postponed for

the later chapters where we apply the results developed here to various aspects of system analysis.

In this chapter we have given some basic notions from graph theory and develop important results

about connectivity of digraphs. We have also explored the theory of nonnegative matrices with

emphasis on the deeper connections between nonnegative matrices and directed graphs.
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2 Observability and Strong Observability in LTI Systems

2.1 Introduction

We’ll limit our analysis to linear and time invariant (LTI) systems. In particular, since observ-

ability depends to the pair of matrices (A,C), in this section we’ll limit to consider autonomous

systems, that is systems in which there is no external inputs.

Definition 4 The autonomous LTI system

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(48)

is said to be observable if and only if, for all initial states x0 = x(0), the value x0 can be recovered

on the basis of the observation of the output evolution y(t) over a finite interval t ∈ [0, tf ], tf <

∞.

Let introduce a simple physical example that allows us to illustrate this concept.

Figure 11: An unobservable network.

Example 6 Let us consider the network of figure (11), where the state variable is the voltage of

the capacitor, that is x(t) = vC(t). Because of the symmetry of the network, it is easy to prove

that, for all initial values x(0) of the capacitor’s voltage, the output voltage y is zero. In fact,

for all t ≥ 0, we can write y(t) = Ri1(t) − Ri2(t) = 0, since i1(t) = i2(t), for all initial value

of the capacitor’s voltage. The measure of the output y(t) for a certain time interval does not

allow us to discover the initial state of the system. This implies that the system is unobservable.

2.2 Verification of Observability

For verification of the observability of a system, we’ll provide two different criteria of analysis,

both based on the calculation of appropriate matrix. The first criterion is based on the verifi-
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cation of the full rank of a matrix called observability grama, the second criterion is based on

the calculation of the rank of observability matrix. The second criterion is more immediate but

the first is more important because it provides a procedure to reconstruct the initial state of the

system, by knowning the output for a finite time interval.

Definition 5 Let us consider system (48), where x ∈ Rn and y ∈ Rp, we define the observability

grama the n× n ti matrix

O(t) =
∫ t

0
eAT τCT CeAτdτ (49)

Theorem 7 System (48) is observable if and only if the observability grama is nonsingular for

all t > 0 [28].

Theorem 8 Let us consider system (48), where x ∈ Rn and y ∈ Rp, we define observability

matrix the (p · n)× n matrix

Λ =




C
CA
CA2

...
CAn−1




(50)

The system (48) is observable if and only if

rank(Λ) = n (51)

[28]

.

2.3 Luenberger Observer

Let us consider the system

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(52)

with x ∈ Rn, u ∈ Rr and y ∈ Rp. The LTI system:

{ ˙̂x(t) = Ax̂(t) + Bu(t) + K0(y(t)− ŷ(t))
ŷ(t) = Cx̂(t)

(53)

with x̂ ∈ Rn, ŷ ∈ Rp where K0 ∈ Rn×p is any matrix for which matrix A −K0C is Hurwitz, is

called a Luenberger Observer with respect to the system (52).
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Figure 12: Luenberger Observer.

Theorem 9 Let us consider system (52). The Luenberger Observer is an asymptotic state ob-

server of that system.

Proof 3 Let us denote with

e(t) = x(t)− x̂(t) (54)

the estimation error which measures the difference between the state x(t) and the estimated state

x̂(t).

Subtracting (53) from (52) we get

ė(t) = ẋ(t)− ˙̂x(t) (55)

= Ax(t) + Bu(t)− Âx̂(t)− B̂û(t)−K0(y(t)− ŷ(t))

= Ae(t) + Bu(t) + K0Cx̂(t)−Bu(t)−K0y(t)

= Ae(t)−K0C(x(t)− x̂(t))

= (A−K0C)e(t)

which means that the error dinamics are governed by the autonomous system

ė(t) = (A−K0C)e(t); e(0) = x(0)− x̂(0) (56)

from which follows the validity of the statement, being A−K0C Hurwitz which implies
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lim
t→∞ ‖e(t)‖ = lim

t→∞ ‖x(t)− x̂(t)‖ = 0 (57)

for all input functions u(t) and initial states x(0) and x̂(0).

The Luenberger Observer is a LTI system with the same order n of the system of whose state

we want estimate the (this is the reason because it is also called ”of full order”); its input is

provided by the system’s input u(t) and output y(t), and its output transformation is the same

as that of the observed system. The scheme of Luenberger Observer is given in fig(12). Of

course not all systems with that structure are asymptotic estimators. Condition (57) or another

statement about eigenvalues of A−K0C must be satisfied.

2.4 Steady-State Kalman Filter

Let us consider system (52) and let us suppose that the pair (A,C) is observable. In the previous

section we have seen that the state x can be asymptotically estimated by the observer (53), where

K0 is designed such that

Re[λ(A−K0C)] < 0 (58)

K0 can also be designed in an optimal way with the following method.

Choose a p × p symmetric and positive-definite matrix V and an n × l matrix Γ such that

V = V T > 0and (AT , ΓT ) is observable. Then

K0 = PeCV −1, (59)

where Pe = P T
e ≥ 0 is the solution of the so called Algebraic Riccati Equation (ARE):

PeA
T + APe + ΓΓT − PeC

T V −1CPe = 0. (60)

Is there a special meaning of this design of K0?

Consider the system

{
ẋ(t) = Ax(t) + Bu(t) + Γw
y(t) = Cx(t) + v

(61)

where w(t) ∈ Rl and v(t) ∈ Rp are uncorrelated white zero-mean Gaussian stochastic processes

34



E{w(t)} = 0; E{w(t)w(t + τ)T } = Ilδ(t− τ), (62)

E{v(t)} = 0; E{v(t)v(t + τ)T } = V δ(t− τ), (63)

E{v(t)w(t)T } = 0, ∀t, τ > 0. (64)

In this case, x̂(t) provided by the observer (53), where K0 is obtained in (59), is the optimal

estimate that minimize

lim
t→∞E{e(t)e(t)T } = 0, (65)

where e is the estimate error defined in the second of (56), and the minimum value is given by

the trace of matrix Pe.

The observer (53) with K0 defined in (59) is called Steady-State Kalman Filter.

2.5 Sliding Mode Observers (SMO) for Linear Systems

The concept of sliding mode (SM) control has been applied to the problem of state estimation for

linear systems, possibly uncertain and some classes of nonlinear systems as well. The observer

trajectories are constrained to evolve, after a finite time, along a suitable sliding manifold by

means of an injection signal designed according to a SM control algorithm. The sliding manifold

is usually given by the difference between the observer and the system outputs, therefore in such

cases we refer to the control signal as output injection signal.

Let us consider the linear system described by

{
ẋ = Ax(t) + Bu(t)
y = Cx(t)

(66)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and p ≥ m. Assume that the matrices B and C are of full

rank and the pair (A,C) is observable. It is convenient to introduce a coordinate transformation

so that the output variables appear as the last p components of the states. One possibility is to

consider the non-singular transformation x → Tcx as

Tc =
[

Nc
T

C

]
(67)
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where the columns of Nc ∈ Rn×(n−p) span the null space of C. This transformation is non-

singular, and defining

Tcx =
[

x1

y

] l n− p
l p

(68)

the transformed system’s dynamics are
{

ẋ1(t) = A11x1(t) + A12y(t) + B1u(t)
ẏ(t) = A21x1(t) + A22y(t) + B2u(t)

(69)

where

Ã = TcATc
−1 =

[
A11 A12

A21 A22

]
; B̃ = TcB =

[
B1

B2

]
; C̃ = CTc

−1 = [0 Ip] (70)

The observer proposed by Utkin [29]-[30] has the form

{ ˙̂x1(t) = A11x̂1(t) + A12ŷ(t) + B1u(t) + Lν
˙̂y(t) = A21x̂1(t) + A22ŷ(t) + B2u(t)− ν

(71)

where (x̂1, ŷ) represent the state estimates for x1 and y, L ∈ R(n−p)×p is a constant feedback

gain matrix and the discontinuous vector ν, of appropriate dimension, is defined componentwise

by

νi = Msgn(ŷi − yi) (72)

where M ∈ R+. Define e1 = x̂1 − x1 and ey = ŷ − y. Then from equations (69) and (71) the

following error dynamics system are
{

ė1(t) = A11e1(t) + A12ey(t) + Lν
ėy(t) = A21e1(t) + A22ey(t)− ν

(73)

that in compact form can be rewritten as follows

ė = Ãe(t) + Γν where Γ =
[

L
−Ip

]
(74)

Since the pair (A, C) is observable, the pair (A11, A21) is also observable. As a consequence,

L can be chosen to make the spectrum of A11 + LA21 lie in C−. Define a further change of

coordinates, dependent on L, by

T =
[

In−p L
0 Ip

]
(75)

it results

ẽ =
[

ẽ1

ẽy

]
= Te =

[
e1(t) + Ley(t)

ey(t)

]
(76)
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and system in compact form (74), with respect to the new coordinates, can be further manipu-

lated as

˙̃e = TÃe(t) + TΓν (77)

From (76), system (77) can be rewritten as
{ ˙̃e1(t) = Ã11ẽ1(t) + Ã12ey(t)

ėy(t) = A21ẽ1(t) + Ã22ey(t)− ν
(78)

where Ã11 = A11 + LA21, Ã12 = A12 + LA22 − Ã11L and Ã22 = A22 −A21L.

It follows from the 2-nd of (78) that in the domain

Ω = {(ẽ1(t), ey) : ‖A21ẽ1(t)‖+
1
2
λmax(Ã22 + ÃT

22)‖ey‖ < M − η} (79)

where η < M is some small positive scalar, the reachability condition

eT
y ėy < −η‖ey‖ (80)

is satisfied. Consequently, an ideal sliding motion will take place on the surface

So = {(ẽ1, ey) : ey = 0} (81)

It follows that after some finite time ts, for all subsequent time, ey = 0 and ėy = 0. Therefore

from equation (78) result

˙̃e1(t) = Ã11ẽ1(t) (82)

which, by choice of L, represents a stable system and so ẽ1 → 0, i.e., e1 → 0 and consequently

x̂1 → x1 asymptotically. Equation (82) represents the reduced order sliding mode error dynam-

ics.

Example 7 Consider now the problem of designing a sliding mode observer for system in (66)

specialized with

A =
[

0 1
−2 0

]
; B =

[
0
1

]
; C =

[
1 1

]
(83)

which represent a simple harmonic oscillator that is observable since (rank([C; CA]) = 2). For

simplicity assume u = 0. Define a nonsingular matrix

Tc =
[

1 0
1 1

]
(84)

and the change of coordinates according to (69)-(75)

C̃ = CTc
−1 = [0 1]; Ã = TcATc

−1 =
[ −1 1
−3 1

]
; B̃ = TcB =

[
0
1

]
(85)
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Figure 13: Utkin Observer

The system (83) is now in the form (69). An appropriate choice of gain in the observer given in

(71) is L = 0.5 which results in an error system governed by Ã11. The simulation results which

follows (13) were obtained setting the gain of the discontinuous output injection term M = 1

and the following initial conditions:

[x1(0), y(0)] = [1 0], [x̂1(0), ŷ(0)] = [0 0].

2.6 Strong observability and UIO design for linear systems with unknown
inputs

Consider the linear time invariant dynamics

ẋ = Ax + Gu + Fξ
y = Cx

(86)

where x(t) ∈ Rn and y(t) ∈ Rp are the state and output variables, u(t) ∈ Rh is a known

input to the system, ξ(t) ∈ Rm is an unknown input term, and A, G,F, C are known constant

matrices of appropriate dimension.

Let us make the following assumptions:

A1. The matrix triplet (A, F, C) is strongly observable

A2. rank (CF ) = rank F = m.

The notion of strong observability has been introduced more than thirty years ago [10, 27] in

the framework of the unknown-input observers theory. Recently it has been exploited to design
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robust observers based on the high-order sliding mode approach [25]. It has been shown in [10]

that the following property holds

Theorem 10 The triplet (A, F, C) is strongly observable if and only if it has no invariant zeros

[10].

If conditions A1 and A2 are both satisfied then it can be systematically found a state coordinates

transformation together with an output coordinates change which decouple the unknown input

ξ from a certain subsystem in the new coordinates. Such a transformation is outlined below.

For the generic matrix J ∈ Rnr×nc with rank(J) = r, we define J⊥ ∈ Rnr−r×nr as a matrix

such that J⊥J = 0 and rank(J)⊥ = nr − r. Matrix J⊥ always exists and, furthermore, it is not

unique1. Let Γ+ = [ΓT Γ]−1ΓT denote the left pseudo-inverse of Γ such that Γ+Γ = Inc , with

Inc being the identity matrix of order nc.

Consider the following transformation matrices T and U :

T =
[

F⊥

(CF )+ C

]
=

[
T1

T2

]
, U =

[
(CF )⊥

(CF )+

]
=

[
U1

U2

]
. (87)

and the transformed state and output vectors

x̄ = Tx =
[

T1x
T2x

]
=

[
x̄1

x̄2

]
, x̄1 ∈ Rn−m x̄2 ∈ Rm (88)

ȳ = Uy =
[

U1y
U2y

]
=

[
ȳ1

ȳ2

]
, ȳ1 ∈ Rp−m ȳ2 ∈ Rm (89)

The subcomponents of the transformed vectors take the form

x̄1 = F⊥x, x̄2 = (CF )+ Cx (90)

ȳ1 = (CF )⊥ y, ȳ2 = (CF )+ y (91)

After simple algebraic manipulations the transformed dynamics in the new coordinates take

the form:
˙̄x1 = Ā11x̄1 + Ā12x̄2 + F⊥Gu
˙̄x2 = Ā21x̄1 + Ā22x̄2 + (CF )+ CGu + ξ
ȳ1 = C̄1x̄1

ȳ2 = x̄2

(92)

1A Matlab instruction for computing Mb = M⊥ for a generic matrix M is Mb = null(M′)′

39



with the matrices Ā11, ..., Ā22, C̄1 such that
[

Ā11 Ā11

Ā21 Ā22

]
= TAT−1, C̄1 = (CF )⊥CT1. (93)

It turns out that the triple (A,C, F ) is strongly observable if, and only if, the pair (Ā11, C̄1) is

observable [10, 27]. In light of the Assumption A1, this property, that can be also understood

in terms of a simplified algebraic test to check the strong observability of a matrix triple, and its

satisfaction opens the route to design stable observers for the state of the transformed dynamics

(92).

The peculiarity of the transformed system (92) is that x̄2 is available for measurements since it

constitutes a part of the transformed output vector ȳ. Hence, state observation for system

(92) can be accomplished by estimating x̄1 only, whose dynamics is not affected by the

unknown input vector.

The observability of the (Ā11, C̄1) pair permits the implementation of the following Luenberger

observer for the x̄1 subsystem of (92):

˙̄̂x1 = Ā11 ˆ̄x1 + Ā12ȳ2 + F⊥Gu + L(ȳ1 − C̄1 ˆ̄x1) (94)

which gives rise to the error dynamics

ė1 = (Ā11 − LC̄1)e1, e1 = ˆ̄x1 − x̄1 (95)

whose eigenvalues can be arbitrarily located by a proper selection of the matrix L. Therefore,

with properly chosen L we have that

ˆ̄x1 → x̄1 as t →∞ (96)

which implies that the overall system state can be reconstructed by the following relationships

x̂ = T−1

[
ˆ̄x1

ȳ2

]
(97)

Note that the convergence of ˆ̄x1 to x̄1 is exponential and can be made as fast as desired.

Remarkably, the above estimation is correct in spite of the presence of unmeasurable, possibly

very large, external inputs.

2.7 Unknown input reconstruction

An estimator can be designed which gives an exponentially converging estimate of the unknown

input vector ξ. Consider the following estimator dynamics

˙̄̂x2 = Ā21 ˆ̄x1 + Ā22ȳ2 + (CF )+ CGu + v(t) (98)
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with the estimator injection input v(t) yet to be specified.

Let it can be found a constant Ξd such that

|ξ̇(t)| ≤ Ξd (99)

Define the estimator ”sliding variable”

σ(t) = ˆ̄x2 − ȳ2 = ˆ̄x2 − x̄2 (100)

By (98) and (92), the dynamics of the sliding variable σ takes the form

σ̇ = f(t)− v(t), f(t) = Ā21ē1(t) + ξ(t). (101)

Considering (95), the time derivative of the uncertain term f(t) can be evaluated as

ḟ(t) = Ā21(Ā11 − LC̄1)e1(t) + ξ̇(t) (102)

where e1(t) is exponentially vanishing. Then, considering (99), by taking any Ψ > Ξd, the next

condition

|ḟ(t)| ≤ Ψ, t > Tf , Tf < ∞ (103)

will be established starting from a finite time instant t = Tf on.

As shown in [31], if the estimator injection input v(t) is designed according to the next ”Super-

Twisting” algorithm

v (t) = λ |σ(t)|1/2 signσ(t) + v1(t) (104)

v̇1 (t) = αsign σ(t), (105)

with the tuning parameters α and λ chosen according to the next inequalities

α > Ψ, λ >
1− θ

1 + θ

√
α−Ψ
α + Ψ

, θ ∈ (0, 1) (106)

then both σ and its time derivative σ̇ tend to zero in finite time. Therefore, condition

v(t) = ξ(t) + Ā21(Ā11 − LC̄1)e1(t), t ≥ T ∗. (107)

holds starting from some finite time instant T ∗ . Since e1(t) is vanishing, it follows that

|v(t)− ξ(t)| → 0 as t →∞ (108)
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and, furthermore, the convergence process takes place exponentially. Therefore, under the con-

dition (99), the estimator (98), (100), (104)-(106) allows one to reconstruct the unknown input

vector ξ acting on the original system (86).

Remark 1 It shall be pointed out that the above procedure of state estimation and unknown

input reconstruction implies that the next conditions involving the system state, output and

unknown input dimensions hold

n > m, p > m (109)

Remark 2 If the vector x̄1 is available for measurements, then a modified estimator can be

implemented as follows

˙̄̂x2 = Ā21x̄1 + Ā22ȳ2 + (CF )+ CGu + v(t) (110)

which, along with the equations (104)-(106),(100),(103) allows for the finite-time exact recon-

struction of the unknown input vector ξ, i.e., given some finite time T ∗ > 0

v(t) = ξ(t), ∀t ≥ T ∗. (111)

The proof can be easily derived by letting e(t) = 0 in the previous treatment, particulary relation

(107)

This is also another way for reconstruct of the unknown input. We can generate the estimator

injection input v(t) in the following manner:

v = kpσ + ki

∫ t

0
σ(τ)dτ (112)

The closed loop system (110)-(112) can be represented as in the Figure 22. It follows from the

scheme in Fig. 22 that the closed loop transfer function between the “input” ξ + Ā21(x1 − x̂1)

and the “output” v is the following

Pi(s) =
kps + ki

s2 + kps + ki
(113)

Then it can be selected the free design parameters kp and ki in order to guarantee that such a

transfer function is close to the unitary value in a prescribed frequency range [0, ωb]. Thus, with

properly selected gains kp and ki the following identity approximately holds

v ≈ ξ (114)
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Figure 14: The equivalent block scheme for the closed loop system (110)-(112).

2.8 Example

Let the linear system under consideration be autonomous and represented by a third order model

with n = 3, m = 1, p = 2, and the next system matrices

A =



−3 2 1
1 −4 1
−1 2 −3


 , F =




1
0
0


 , G =




0
0
0


 (115)

C =
[

1 0 0
0 0 1

]
, (116)

The scalar unknown input is selected as

ξ(t) = (1 + sin(t)) (117)

Let us calculate the transformation matrices (87):

T =
[

F⊥

(CF )+ C

]
=

[
T1

T2

]
=




0 1 0
0 0 1
1 0 0


 , (118)

U =
[

(CF )⊥

(CF )+

]
=

[
U1

U2

]
=

[
0 1
1 0

]
, (119)

Ā11 =
[ −4 1

2 −3

]
, Ā12 =

[
1
−1

]
, Ā21 =

[
2 1

]
, Ā22 =

[ −3
]
, (120)

C̄1 =
[

0 1
]
; C̄2 =

[
1

]
. (121)
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Figure 15: The components of the observation error vector
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Figure 16: The difference between the unknown input and its reconstruction with SM Observer

System (115) is strongly observable, in fact:

rank(Ā11, C̄1) = n−m = 2. (122)

So, we can use the observer (94) for x1. Considering a Luenberger Observer, in which initial

state condition are [3, 3, 3]T , the gain L = [98, 23]T is chose in order to have the eigenvalues of

(Ā11 − LC̄1) in [−10,−20] we obtain the following behavior of the error x− x̂ (see fig.(15)).

Now let us address the reconstruction of the sinusoidal unknown input u(t). According to the

suggested procedure with the SM ”super twisting” observer (98) has been implemented with

λ = 1.5 and α = 1. In the present example we obtain figure (16).

In the next figure (17), still in order to reconstruct the sinusoidal unknown input, it is shown
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Figure 17: The difference between the unknown input and its reconstruction with PI Observer

the behavior of the ”PI observer” (112), in which kp = 1 and ki = 2.
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3 Consensus Algorithms in Networked Systems

3.1 Introduction

This Chapter provides, using the concept of the previous chapters, a theoretical framework for

the analysis of a consensus algorithms for multi-agent networked systems with an emphasis on

the role of directed information flow, robustness to changes in network topology due to link/node

failures, time-delays, and performance guarantees. An overview of basic concepts in information

consensus in networks, methods of convergence and performance analysis for the algorithms are

provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory,

and control theory. We discuss the connections between consensus problems in networked dy-

namic systems and same applications including synchronization of coupled oscillators, flocking,

formation control, fast consensus in small-world networks, Markov processes and gossip-based

algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sen-

sor networks, and belief propagation. We establish direct connections between spectral and

structural properties of complex networks and the speed of information diffusion of consensus

algorithms. A brief introduction is provided on networked systems with nonlocal information

flow that are considerably faster than distributed systems with latticetype nearest neighbor in-

teractions. Simulation results are presented that demonstrate the role of small-world effects on

the speed of consensus algorithms and cooperative control of multi-vehicle formations.

3.2 Consensus in Networks

The interaction topology of a network of agents is represented using a directed graph G = (V, E)

with the set of nodes V = 1, 2, ..., n and edges E ⊆ V ×V . The neighbors of agent i are denoted

by Ni = {j ∈ V : (i, j) ∈ E}. According to [70], a simple consensus algorithm to reach an

agreement regarding the state of n integrator agents with dynamics ẋi(t) = ui can be expressed

as an n-th order linear system on a graph:

ẋi(t) =
∑

j∈Ni

(xj(t)− xi(t)) + bi(t), xi(0) = zi ∈ R, bi(t) = 0 (123)

The collective dynamics of the group of agents following protocol (123) can be written as

ẋ = −Lx (124)

where L = [lij ] is the graph Laplacian of the network, defined in (42), and in the case of
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unweighted graph its elements are defined as follows:

lij =
{ −1 i 6= j,
|Ni| i = j.

(125)

Here, |Ni| denotes the number of neighbors of node i (or out-degree of node i). Fig (18) shows two

equivalent forms of the consensus algorithm in equations (123) and (124) for agents with a scalar

state. The role of the input bias b in Fig(18-(b)) is defined later. According to the definition

of graph Laplacian in (125), all row-sums of L are zero because of
∑

j lij = 0. Therefore, L

has always a zero eigenvalue λ1 = 0. This zero eigenvalues corresponds to the eigenvector

1 = (1, ..., 1)T because 1 belongs to the null-space of L (L1 = 0). In other words, an equilibrium

of system (124) is a state in the form x∗ = (α, ..., α)T = α1 where all nodes agree. Based on

analytical tools from algebraic graph theory [2], we later show that x∗ is a unique equilibrium

of (124) (up to a constant multiplicative factor) for connected graphs.

Figure 18: Two equivalent forms of consensus algorithms: (a) a network of integrator agents in
which agent i receives the state xj of its neighbor, agent j, if there is a link (i, j) connecting
the two nodes; and (b) the block diagram for a network of interconnected dynamic systems all
with identical transfer functions P (s) = 1/s. The collective networked system has a diagonal
transfer function and is a MIMO (multi-input multi-output) linear system.

One can show that for a connected network, the equilibrium x∗ = (α, ..., α)T is globally expo-

nentially stable. Moreover, the consensus value is α = 1/n
∑

i zi that is equal to the average of

the initial values.

This implies that irrespective of the initial value of the state of each agent, all agents reach

an asymptotic consensus regarding the value of the function f(z) = 1/n
∑

i zi. While the

calculation of f(z) is simple for small networks, its implications for very large networks is more
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interesting. For example, if a network has n = 106 nodes and each node can only talk to

log10(n) = 6 neighbors, finding the average value of the initial conditions of the nodes is more

complicated. The role of protocol (123) is to provide a systematic consensus mechanism in such

a large network to compute the average. There are a variety of functions that can be computed

in a similar fashion using synchronous or asynchronous distributed algorithms.

3.3 Information Consensus in Networked Systems

Consider a network of decision-making agents with dynamics ẋi = ui interested in reaching a

consensus via local communication with their neighbors on a graph G = (V, E). By ”reach-

ing a consensus”, we mean asymptotically converging to a one-dimensional agreement space

characterized by the following equation

x1 = x2 = ... = xn (126)

This agreement space can be expressed as x = α1 where 1 = (1, ..., 1)T and α ∈ R is the

collective decision of the group of agents. Let A = [aij ] be the adjacency matrix of graph G.

The set of neighbors of agent i is Ni and defined by

Ni = {j ∈ V : aij 6= 0}; V = {1, ..., n}. (127)

Agent i communicates with agent j if j is a neighbor of i (or aij 6= 0). The set of all nodes and

their neighbors defines the edge set of the graph as E = {(i, j) ∈ V × V : aij 6= 0}. A dynamic

graph G(t) = (V, E(t)) is a graph in which the set of edges E(t) and the adjacency matrix

A(t) are time-varying. Clearly, the set of neighbors Ni(t) of every agent in a dynamic graph is

a time-varying set as well. Dynamic graphs are useful for describing the network topology of

mobile sensor networks and flocks [66]. It is shown in [70] that the linear system

ẋi(t) =
∑

j∈Ni

aij(xj(t)− xi(t)) (128)

is a distributed consensus algorithm, i.e. it guarantees convergence to a collective decision via

local inter-agent interactions. Assuming that the graph is undirected (aij = aji for all i, j), it

follows that the sum of the state of all nodes is an invariant quantity, or
∑

i ẋi = 0. In particular,

applying this condition twice at times t = 0 and t = ∞ gives the following result

α =
1
n

∑

i

xi(0). (129)
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In other words, if a consensus is asymptotically reached, then necessarily the collective decision

is equal to the average of the initial state of all nodes. A consensus algorithm with this specific

invariance property is called an average-consensus algorithm [8] and has broad applications

in distributed computing on networks (e.g. sensor fusion in sensor networks). The dynamics of

system (128) can be expressed in a compact form as

ẋi = −Lx (130)

where L is known as the graph Laplacian of G. The graph Laplacian is defined as

L = D −A (131)

where D = diag(d1, ..., dn) is the degree matrix of G with elements di =
∑

j 6=i aij and zero off-

diagonal elements. By definition, L has a right eigenvector 1 associated with the zero eigenvalue

because of the identity L1 = 0. For the case of undirected graphs, graph Laplacian satisfies the

following sum-of-squares (SOS) property

xT Lx =
1
2

∑

(i,j)∈E

aij(xj − xi)2. (132)

By defining a quadratic disagreement function as

ϕ(x) =
1
2
xT Lx (133)

it becomes apparent that algorithm (128) is the same as

ẋ = −∇ϕ(x) (134)

or the gradient-descent algorithm. This algorithm globally asymptotically converges to the

agreement space provided that two conditions hold:

1) L is a positive semidefinite matrix and

2) the only equilibrium of (128) is α1 for some α.

Both of these conditions hold for a connected graph and follow from the SOS property of graph

Laplacian in (132). Therefore, an average-consensus is asymptotically reached for all initial

states. This fact is summarized in the following Lemma:
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Lemma 9 . Let G be a connected undirected graph. Then, the algorithm (128) asymptotically

solves the average-consensus problem for all initial states.

3.3.1 Algebraic Connectivity and Spectral Properties of Graphs

Spectral properties of Laplacian matrix are instrumental in analysis of convergence of the class

of linear consensus algorithms in (128). According to Gershgorin theorem [5], all eigenvalues

of L in the complex plane are located in a closed disk centered at ∆ + 0j with a radius of

∆ = maxidi, i.e. the maximum degree of a graph. For undirected graphs, L is a symmetric

matrix with real eigenvalues and therefore the set of eigenvalues of L can be ordered sequentially

in an ascending order as

0 = λ1 ≤ λ2 ≤ ... ≤ λn ≤ 2∆ (135)

The zero eigenvalue is known as the trivial eigenvalue of L. For a connected graph G, λ2 > 0

(i.e. the zero eigenvalue is isolated). The second smallest eigenvalue of Laplacian λ2 is called

algebraic connectivity of a graph [1]. Algebraic connectivity of the network topology is a

measure of performance/speed of consensus algorithms [6].

Example 8 . Fig. (19) shows two examples of networks with different topologies. Both graphs

are undirected and have 0-1 weights. Every node of the graph in Fig.(19) (a) is connected to its

4 nearest neighbors on a ring. The other graph is a proximity graph of points that are distributed

uniformly at random in a square. Every node is connected to all of its spatial neighbors within a

closed ball of radius r > 0. Here are the important degree information and Laplacian eigenvalues

of these graphs:

a)λ1 = 0, λ2 = 0.48, λn = 6.24,∆ = 4 (136)

b)λ1 = 0, λ2 = 0.25, λn = 9.37,∆ = 10 (137)

In both cases, λi < 2∆ for all i.

3.3.2 Convergence Analysis for Directed Networks

The convergence analysis of the consensus algorithm (128) is equivalent to proving that the

agreement space characterized by x = α1, α ∈ R is an asymptotically stable equilibrium of

system (128). The stability properties of system (128) is completely determined by the location of
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Figure 19: Examples of networks with n = 20 nodes: a) a regular network with 80 links and b)
a random network with 65 links.

the Laplacian eigenvalues of the network. The eigenvalues of the adjacency matrix are irrelevant

to the stability analysis of system (128), unless the network is k-regular (all of its nodes have the

same degree k). The following lemma combines a well-known rank property of graph Laplacians

with Gershgorin theorem to provide spectral characterization of Laplacian of a fixed directed

network G. Before stating the lemma, we need to define the notion of strong connectivity of

graphs. A graph is strongly connected (SC) if there is a directed path connecting any two

arbitrary nodes of the graph.

Lemma 10 . (spectral localization) Let G be a strongly connected digraph on n nodes. Then

rank(L) = n − 1 and all nontrivial eigenvalues of L have positive real parts. Furthermore,

suppose G has c ≥ 1 strongly connected components, then rank(L) = n− c.

Proof 4 . The proof of the rank property for digraphs is given in [6]. The proof for undirected

graphs is available in the algebraic graph theory literature [2]. The positivity of the real parts of

the eigenvalues follow from the fact that all eigenvalues are located in a Gershgorin disk in the

closed right-hand plane that touches the imaginary axis at zero. The second part follows from the

first part after relabeling the nodes of the digraph so that its Laplacian becomes a block diagonal

matrix.

Remark 4 . Lemma (10) holds under a weaker condition of existence of a directed spanning

tree for G. G has a directed spanning tree if there exists a node r (a root) such that all other

nodes can be linked to r via a directed path. This type of condition on existence of directed

spanning trees have appeared in [3], [4], [7]. The root node is commonly known as a leader

[3]. The essential results regarding convergence and decision value of Laplacian-based consensus

algorithms for directed networks with a fixed topology are summarized in the following theorem.
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Before stating this theorem, we need to define an important class of digraphs that shall appear

frequently throughout this section.

Definition 6 (balanced digraphs [6]) A digraph G is called balanced if
∑

j 6=i aij =
∑

j 6=i aji for

all i ∈ V . In a balanced digraph, the total weight of edges entering a node and leaving the same

node are equal for all nodes. The most important property of balanced digraphs is that w = 1 is

also a left eigenvector of their Laplacian (or1T L = 0).

Theorem 11 . Consider a network of n agents with topology G applying the consensus algorithm

ẋi(t) =
∑

j∈Ni

aij(xj(t)− xi(t)), (138)

x(0) = z (139)

Suppose G is a strongly connected digraph. Let L be the Laplacian of G with a left eigenvector

γ = (γ1, ..., γn) satisfying γT L = 0. Then

i) A consensus is asymptotically reached for all initial states;

ii) The algorithm solves the f-consensus problem with the linear function f(z) = (γT x)/(γT1),

i.e. the group decision is α =
∑

i wixi with
∑

i wi = 1;

iii) If the digraph is also balanced, an average-consensus is asymptotically reached and α =

(
∑

i xi(0))/n.

Proof 5 . The convergence of the consensus algorithm follows from Lemma 2. To show part ii),

note that the collective dynamics of the network is ẋ = −Lx. This means that y = γT x is an

invariant quantity due to ẏ = −γT Lx = 0,∀x. Thus, limt→∞y(t) = y(0), or γT (α1) = γT x(0)

that implies the group decision is α = (γT z)/
∑

i γi. Setting wi = γi/
∑

i γi, we get α = wT z.

Part iii) follows as a special case of the statement in part ii) because for a balanced digraph

γ = 1 and wi = 1/n,∀i.
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4 Decentralized Estimator Based on Consensus Algorithm

4.1 Preliminaries

The previous chapter has been devoted to explore the concept of ”consensus”, and to show some

general cases in which it is possible to achieve it. In this Chapter we show a recent solution

of the problem of decentralized state estimation in which it is used a combination of Kalman

filters, already introduced in chapter 2 and consensus algorithms.

4.2 Introduction

A great deal of attention has been paid among researchers working in field of complex dynamic

systems to the problem of decentralized estimation. This notion should be considered in its

generic sense, since under this term one can consider different structures that are totally or

partially decentralized and/or hierarchical. The key requirement is that the large scale system

has to be modelled as an interconnection of subsystems, and that each subsystem have a local

decision maker (intelligent agent) associated with it. Depending on the available resources,

the agent might have access to different information, such as the characteristics of the sensors,

properties and models of the system and its environment and communication channels between

the agents. One class of decentralized estimators is obtained starting from the parallelization

of the globally optimal Kalman filter; typically, such estimators possess a fusion center which

generates the global estimate (e.g., see [8]). Attempts to provide an insight into basic principles

and structures of decentralized estimation can be found in [13], [11]. One of general design tools

has been found to be the inclusion principle, starting from the expansion/contraction paradigm:

the observed large scale system is expanded, decomposed into subsystems and contracted back

to the original system space after designing local estimators for the extracted subsystems [4].

Successful applications of this approach have been reported in [8]. However, none of the existing

methodologies is able to provide a systematic and general way of designing communication links

between the agents without recurring to a strong fusion center. In the 1980s, important results

were obtained in the area of distributed asynchronous iterations in parallel computation and

distributed optimization (e.g. [1]). On the other hand, a very intensive research has been carried

out recently in the field of multi-agent systems, including coordinated control of multiple vehicle

systems such as unmanned air vehicles (UAV) formation flying, coordinated rendezvous, and

multiple robot coordination, as well as in the field of sensor networks with broad applications in

surveillance and environment monitoring, collaborative processing of information, and gathering

scientific data from spatially distributed sources (e.g., see [8], [15], [11]). These references have a
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common methodology: they all use the consensus strategy, which is found to be beneficial for

solving diverse problems in distributed computation, distributed signal processing and multi-

agent networks. The state estimation problem itself is deeply embedded in this line of thought

either implicitly, through the very definition of consensus algorithms (e.g., see [18]), or explicitly,

where the dynamic consensus strategy between multiple agents is used for obtaining (on the basis

of averaging) estimates of the quantities used subsequently for generating optimal parameter or

state estimates (e.g., see [21], [20]). However, none of these approaches is aimed at establishing

any type of collaboration between local estimators in the overlapping decentralized estimation

problem. In this chapter a recent state estimation algorithm for linear complex systems is

recalled [9] based on:

1) overlapping system decomposition;

2) implementation of local state estimators by intelligent agents according to their sensing and

computing resources;

3) application of a consensus strategy providing the global state estimates to all the agents in

the network. The main definition of the problem is given in Section 4.3. In Section 4.4 the

recalled [9] estimation algorithm is described. The algorithm works in continuous time, and

structurally resembles the distributed computation algorithm recalled in [1]. Formally speaking,

it is composed of overlapping decentralized Kalman filters combined together in a multi-agent

network on the basis of a consensus strategy ([18]). In Section 4.5 stability of the recalled [9]

scheme is discussed. It is proved that it is possible to find, under general conditions concerning

the local estimators with their a priori knowledge and the network topology, such a consensus

scheme which ensures asymptotic stability of the whole estimator. Section 4.6 provides a strategy

aimed at obtaining the gains of the consensus scheme on the basis of optimization: it is shown

how to minimize the total mean-square estimation error with respect to the unknown consensus

gains and to obtain in such a way a general and efficient estimation scheme. Section 4.7 contains

several examples illustrating the main properties of the recalled [9] estimation algorithm.

4.3 Overlapping Decentralized Estimation

Let a continuous-time complex stochastic system be represented by

S :
{

ẋ = Ax + Γe
y = Cx + v

(140)

where x = (x1, ..., xn)T is the state vector, y = (y1, ..., yp)
T is the output vector, e = (e1, ..., eq)

T
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and v = (v1, ..., vp)
T are stochastic noise signals, and A,Γ and C are constant matrices of

appropriate dimension.

It is assumed that e(t) and v(t) are mutually independent stochastic gaussian processes, with

zero-mean and covariance matrices as follows:

E{e(t)e(τ)T } = Qδ(t− τ), E{v(t)v(τ)T } = Rδ(t− τ). (141)

We shall consider the problem of decentralized estimation of the state x of S.

In the decentralized scheme for state vector estimation, we assume to have N autonomous agents

which have the goal to generate their estimates of the state vector x(t) on the basis of locally

available measurements (each agent can measure only a subset of the elements of the output

vector y). More precisely we assume that the i-th agent can measure, with some noise, the pi-

dimensional vector y(i) containing those output variables with indices specified by the so-called

agent’s output index set Ii
y, which is defined as follows:

Iy
i = {li1, ..., lipi

}, li1, ..., l
i
pi
∈ {1, ..., p}, li1 < ... < lipi

, pi ≤ p. (142)

We also define state index set Ix
i of i-th agent as follows.

Ix
i = {li1, ..., lini

}, li1, ..., l
i
ni
∈ {1, ..., n}, li1 < ... < lini

, ni ≤ n (143)

The set Ix
i denotes the indices of the original state variables xi’s that explicitly affect the local

measurement output equation.

The local system model available to the i− th agent is defined as follows

Si :
{

ẋ(i) = A(i)x(i) + Γie

y(i) = C(i)x(i) + v(i) , i = 1, 2, ..., N (144)

where x(i) is a vector of dimension ni ≤ n, y(i) was previously defined as the local output vector

with dimension pi ≤ p, and Ai, Ci, Γi are constant matrices of appropriate dimension. Clearly,

the matrices Ci, that define the local output measurement equations, contain a subset of the

entries of the “complete” output matrix C. More precisely, matric Ci contains the elements of

C having the row and column indexes specified by the set Iy
i × Ix

i . Similarly, matrix Ai contains

those elements of the matrix A with the row and column indexes taken in the set Ix
i ×Ix

i . Matrix

Γi contains a subset of the rows of the complete matrix Γ, with the selected row indexes specified

in the state index set Ix
i . Vector v(i) represents a “reduced-order” measurement noise vector

having zero mean and covariance matrix

E

[
v(i)(t)

(
v(i)(τ)

)T
]

= R(i)δ(t− τ) (145)
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Matrix R(i) contains the elements of the original matrix R having the row and column indexes

taken in the set Iy
i × Iy

i . Note that the noise vectors v(i) correspond to different, uncorrelated,

realizations of the statistical process.

System (144) defines N overlapping local subsystems of the overall plant (140). Note that

the decomposition of (140) into the overlapping subsystems (144) does not rely on any inherent

decomposition of the original plant matrices A in (140). Hence, the agents need not a complete

knowledge of the overall system dynamics, but only of a part of it.

Starting from the model Si and the accessible measurements y(i), each agent is able to generate

autonomously its own local estimate x̂(i) of the vector x(i) using an estimator which can be

designed on the basis of (144). Having in mind the nature of the whole system S, the following

local steady-state Kalman filters will be assumed to be implemented by each agent [1]:

Ei : ˙̂x
(i)

= A(i)x̂(i) + L(i)(y(i) − C(i)x̂(i)) (146)

where L(i) is the steady state Kalman gain given by

L(i) = P (i)C(i)T R(i)−1 (147)

where P (i) is a solution of the algebraic Riccati equation

A(i)P (i) + P (i)A(i)T − P (i)C(i)T R(i)−1
C(i)P (i) + QΓ(i)T = 0. (148)

We shall assume in the sequel that the pairs (A(i),Γ(i)) are stabilizable and the pairs (A(i), C(i))

detectable, so that A(i)−L(i)C(i), the error matrices of the estimators (146), are asymptotically

stable and P (i) > 0, i = 1, ..., N [1].

4.4 Consensus based state observation

As stated in the Introduction, our task is to formulate an estimation strategy which would enable

all the agents in the network to get reliable estimates of the whole state vector x on the basis

of:

(1) local estimates x̂(i) available at each node, and

(2) decentralized communication strategy uniform for all the nodes. We recall in this chapter an

algorithm based on the introduction of a consensus scheme (see e.g. [1], [15], [11], [18]). Namely,

59



the estimate of x generated by the i-th agent is given by

Ei : ξ̇i = Aiξi +
N∑

j=1,j 6=i

Kij(ξ̃i,j − ξi) + Li

(
y(i) − Ciξi

)
, i = 1, ..., N. (149)

Where:

· Ai ∈ Rn×n and whose elements having the row and column indexes in the set Ii
x× Ii

x are equal

to the corresponding entries of A(i), while the remaining elements are zeros,

· Ci ∈ Rpi×n and whose elements having the column index in the set Ii
x are equal to the corre-

sponding entries of C(i), while the remaining elements are zeros,

Furthermore:

· Kij ∈ Rn×n are constant consensus gain matrices,

· ξ̃i,j is the noisy estimate ξj communicated by the j-th agent (j 6= i), i.e., ξ̃i,j = ξj + wij .

· Li ∈ Rn×pi and whose elements having the row index in the set Ii
x are equal to the corresponding

entries of the steady-gain matrix of the local Kalman filter for the system (144), while the

remaining elements are zeros,

It is possible to observe that the algorithm is based on a combination of: a) decentralized

overlapping estimators represented by (146) and b) a consensus scheme with matrix gains Kij ,

[18]. The scheme reduces to the local estimators when the ”consensus part” is eliminated

Kij = 0. When the local estimators are eliminated, the ”consensus part” alone asymptotically

provides ξ(i) = ξ under a proper choice of the matrices Kij when the communication noise

wij can be neglected, where ξ is a weighted sum of the a priori estimates ξ(i)(t0) and t0 is

the initial time instant [18]. Notice that the estimator Ei reminds structurally of the discrete-

time distributed optimization algorithm recalled in [1], it performs ”computation” by evaluating

the updating part described by (146), and enforces the ”agreement” between the agents by

evaluating the remaining terms in (149). Formally, the ”estimation part” of (149) is obtained

simply by rewriting Ei and placing the estimates x̂(i) generated by Ei at the correct positions in

ξ(i). The ”consensus part” requires, however, additional specifications. The second term in the

right hand side of (149) is obtained by generalizing the consensus scheme presented, for example,

in [18]. Having in mind that any analysis of the properties of this scheme is faced with serious

problems in the general case when Kij are full matrices (which could obscure presentation of the
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main properties of the recalled [9] estimation scheme), we shall assume in the sequel that Kij

are diagonal matrices Kij = diag{kij
1 , ..., kij

n }, where kij
ν , ν = 1, ..., n, i, j = 1, ..., N ; moreover,

all theoretical and experimental analyses we have done show that the resulting structure gives

enough freedom for obtaining reliable estimation schemes. We shall assume further that kij
ν =

gij
ν hij

ν where gij
ν directly reflects structural properties of S and Sj and the uncertainty in the

local estimate x̂(j), and hij
ν reflects properties of communication links. For example, gij

ν can be

chosen to be nonzero for ν ∈ Ij
x and inversely proportional to the variance of the local estimate

of the ν − th component of the state vector, and hij
ν = hij to be the scalar communication gain

between node j and the node i. Therefore the whole multi-agent network can be represented

as a a collection of n directed graphs (digraphs) with N nodes corresponding to the particular

agents, and with edges representing transmission of the particular components of the vectors

ξi between the nodes, characterized by the prespecified gains kij
ν . Let Gν and LGν represent,

respectively, the digraph and the Laplacian matrix connected to the ν − th component xν of x

(or ξi
ν ), ν = 1, ..., n.

4.5 Stability

One of the main issues to be addressed in relation with the recalled [9] estimation algorithm is

its asymptotic stability. If Ξ = ((ξ1)T , ..., (ξN )T )T is the vector composed of all the estimates

in the agents network, the following model, with the system output measurements as the known

input and the communication noises as the disturbance input, describes its global behavior:

E: Ξ̇ = AΞΞ + LΞY + KΞΣ (150)

where:

AΞ = Ã + K̃, Ã = diag{A1 − L1C
1, ..., AN − LNCN}, (151)

K̃ =




−∑
j,j 6=i K1j K12 . . . K1N

K21 −∑
j,j 6=i K2j . . .

. . .
KN1 . . . −∑

j,j 6=i KNj


 , (152)

so that
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AΞ =




A1
E K12 . . . K1N

K21 A2
E . . .

. . .
KN1 . . . AN

E


 , (153)

and

Ai
E = Ai − LiC

i −
∑

j,j 6=i

Kij , (154)

LΞ = diag{L1, ..., LN}, (155)

K̃i =
[
Ki1

...Ki2
... . . .

...KiN

]
, Kii = 0, (156)

KΞ = diag{K̃1, ..., K̃N}, Y = ((y1)T , ..., (yN )T )T , (157)

Σ = (wT
11, ..., w

T
1N , wT

21, ..., w
T
2N , ..., wT

N1, ..., w
T
NN )T , wii = 0. (158)

Notice that K̃, the part of AΞ due to consensus, is cogredient (i.e., related by permutation

transformations) to diag{LG1 , ..., LGν , ..., LGn}.

The starting assumption for all our further stability considerations is:

(A.1) the local estimators Ei are asymptotically stable, i.e., the matrices A(i) − L(i)C(i) are

Hurwitz (i = 1, ..., N).

We shall also adopt the following basic assumption related to the network topology:

(A.2) For each Gν , ν = 1, ..., n, there is at least one center node µ satisfying ν ∈ Ix
µ , i.e. each

component of the state vector is updated in at least one node by the local estimator, and all

the remaining nodes are accessible from this node [5]. The following analysis concerns two

different case: in case A (Disjoint subsystems), the main system is separate in different and not

interconnected subsystems; in case B (Overlapping subsystems), subsystems are interconnected

different parts of the main system.

A. Disjoint Subsystems:

We shall first adopt the following simplifying assumptions, allowing a direct insight into the

main structures and the related stability properties:
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(A.3’) the state vectors of the subsystems Si are disjoint, that is

Ix
i

⋂
Ix
j = 0, ∀i, j = 1, ..., N, i 6= j. (159)

(A.4’)
⋃N

i=1 Ix
i = {1, 2, ..., n}.

According to (A.3’) and (A.4’), every state is estimated by one and only one local estimator,

and all the states in x are estimated (
∑N

i=1 ni = n).

(A.5’) The center nodes for all the graphs Gν , ν = 1, ..., n, are at the same time source nodes [5].

Assumption (A.5’) ensures direct distribution of the local estimates to all the remaining nodes

(with no arcs entering the related node).

Theorem 12 [9]. Let the assumptions (A.1), (A.2), (A.3’), (A.4’) and (A.5’) be satisfied, and

let hij
ν = hij ≥ 0 for ν = 1, ..., n. Then the estimator E is asymptotically stable for any selected

hij ≥ 0 and gij ≥ 0, i, j = 1, ..., N, ν = 1, ..., n.

The proof of Theorem 12, together with the proof of Theorem 13, can be derived from that of

Theorem 14 in next chapter.

B. Overlapping Subsystems:

In the general case, the sets Ix
i overlap, implying a more complicated structure of the matrix AΞ.

In this situation, it is not possible to achieve stability of E by an arbitrary choice of consensus

gains, like in Theorem 12. We shall concentrate here on demonstrating that for any set of

stable matrices A(i)−L(i)C(i) the estimator is stabilizable, i.e. there exist such gains Kij which

ensure asymptotic stability of E. In the next section we shall indicate a practical direction for

choosing these gains based on estimator optimization. In order to demonstrate stabilizability of

E by a proper choice of the consensus gains, we shall adopt a slightly more complex structure

of matrices Kij . Namely, we shall assume that hij
ν = h′ij ≥ 0 for ν ∈ Ix

i , and hij
ν = hij” ≥ 0

for ν ∈ Ĩx
i = 1, ..., n \ Ix

i , ν = 1, ..., n. We shall also introduce Gij
1 = diag{gij

νi
1
, ..., gij

νi
ni

} and

Gij
2 = diag{gij

ν̃i
1
, ..., gij

ν̃i
n−ni

} where

νi
1 < ... < νi

ni
∈ Ix

i (160)

and

ν̃i
1 < ... < ν̃i

n−ni
∈ Ĩx

i (161)
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we introduce also

K1,0
ij = h′ijG

ij
1 and K2,0

ij = hij”Gij
2 . (162)

The assumptions (A.3’) and (A.4’) become now:

(A.3”) the state vectors of the subsystems Si are overlapping, that is

⋃

i,j=1,...N,i 6=j

(Ix
i

⋂
Ix
j ) 6= ∅; (163)

(A.4”)
⋃N

i=1 Ix
i = 1, 2, ..., n.

Assumptions (A.3”) and (A.4”) imply that all the components of the state vector x in S are

estimated, and there is at least one component estimated by more than one local estimator.

Theorem 13 . Let the assumptions (A.1),(A.2),(A.3”) and (A.4”) hold. Then, for any given

h”ij ≥ 0 and gij
ν ≥ 0, it is possible to find such h′ij ≥ 0 that the estimator E is asymptotically

stable, i, j = 1, ..., N, ν = 1, ..., n.

Proof: See ([9]).

4.6 Optimization

In the previous section we recalled some results which demonstrate that a stabilizing consensus

scheme exists for the considered overlapping decentralized estimation problem. However, the

practical problem of how to tune the consensus gains remains open. In this section we shall

recall [9] a methodology for the consensus-based estimator design based on minimization of the

steady-state estimation error variance. Recalling the estimator model (150), we can replace Y

for

Y = CΞX + V ; (164)

where

X = (xT , ..., xT )T , CΞ = diag{C1, ...CN}, (165)

and V = ((v(1))T , ..., (v(N))T )T is a white noise term with zero mean and covariance RV , which

can easily derived from R. As a result we have:
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Ξ̇ = AΞΞ + LΞCΞX + LΞV + KΞΣ (166)

Furthermore, we obtain, considering the dynamic’s error of Ξ in respect to X

Ξ̇− Ẋ = AΞ(Ξ−X) + ∆AX + LΞV + KΞΣ− ΓDE (167)

where

∆A = diag{(A1 −A), ..., (AN −A)}, ΓD = diag{Γ, ...,Γ}, ET = (eT , ..., eT )T , (168)

having in mind that K̃X = 0 (K̃ is cogredient to the Laplacian matrix). If we define the new

state vector of the whole system consisting of the system S itself and the decentralized estimator

E as Z = (xT , (Ξ−X)T )T , we obtain the state model

SE : Ż = AZZ + BΨ = AZZ + BΨ, (169)

where

AZ =
[

A 0
A∆ AΞ

]
, A∆ = col{(A1 −A), ..., (AN −A)} (170)

(col{.} denotes the block-column matrix composed of the listed elements),

B = diag{−Γ∆,−LΞ,KΞ}, Γ∆ = col{Γ, ...,Γ}, Ψ = (eT , V T ,ΣT )T . (171)

Obviously, SE represent a stochastic system with the white noise Ψ as a stochastic input. If

we assume that AZ is Hurwitz, the steady-state covariance P of Z is defined by the positive

semi-definite solution of the following Lyapunov equation

AZP + PAT
Z + BRΨBT = 0 (172)

where RΨ = covΨ, which can be easily constructed starting from the definition of the constituent

terms of Ψ under the assumption that these terms are independent. If we define vector θ

containing all the unknown parameters of the consensus scheme in E, we can formulate the

following optimization problem:
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min
θ

J = min
θ
{TrP} (173)

Solution to the problem (173), θ∗ = Arg minθ J , will define the consensus parameters in the

recalled [9] ”optimized” estimation scheme. It is difficult to draw any conclusion about the

nature of the above optimization problem in the general case. As it will be shown in the

experimental part of the chapter, numerical optimization procedures can efficiently be applied

to finding θ∗. Having in mind the adopted structure of the consensus matrix gains Kij , we

shall assume that the above optimization procedure encompasses, as elements of the parameter

vector θ, only scalar weighting parameters hij (or h′ij and hij” ). In general, nonzero parameters

gij
ν , ν = 1, ..., N , which correspond to the indices ν ∈ Ix

j , ensure proper propagation of the local

state estimates through the network; these parameters will be assumed to be specified a priori.

It has been found to be beneficial to adopt that gij
ν is equal to the ν − th diagonal element of

the inverse of the local covariance matrix P (j) in (148).

Remark 5 . One of important and interesting issues is related to the influence of the consensus

strategy on measurement noise suppression resulting from implicit ensemble averaging, in the

case when the number of nodes increases. The basic problem of consensus averaging and asymp-

totic agreement has been studied in [21]. In the case of the recalled [9] algorithm, it is possible to

show, assuming simplified structures of the communication gains, that the elimination of mea-

surement noise influence can be achieved when the number of nodes tends to infinity provided

the network possesses a sufficient connectivity degree [9]. The achieved performance depends

on the absolute value of the real part of the eigenvalues of the Laplacians (characterizing the

underlying scalar digraphs) which are closest to the imaginary axis (in analogy with the Fiedlers

algebraic complexity in the case of undirected graphs). It is interesting to notice that the strong

connectivity alone does not ensure complete asymptotic denoising [9].

4.7 Numerical Illustrations

Some characteristic properties of the recalled [9] estimation scheme will be illustrated by simple

examples. We shall assume that the state of S is represented by a fourth order model with

A =
[

A11 A12

A21 A22

]
, (174)

where
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Figure 20: Optimization Results for Different Measurement Noise Levels

A11 =
[ −1 0
−1 2

]
, A12 =

[
0 0
−1 0

]
, A21 =

[
0 0.1

0.1 0

]
, A22 =

[
0 1
−3 −5

]
. (175)

with Γ = Q = I.

We shall consider several cases differing by the information available to the agents and their a

priori knowledge about the system.

Case A. Agent 1 observes the states using

C1 =
[

1 0 0 0
]
. (176)

with noise variance R1 and Agent 2 using

C2 =
[

0 0 0 1
]
. (177)

with noise variance R2; both agents possess the knowledge of the entire state model, i.e. the

whole matrix A is used within the local estimators. The communication noise is characterized

by variances W12 = 0.01 and W21 = 0.01. It is assumed that the consensus gains are defined

by K12 = h12G12 and K21 = h21G21, where G12 = diag{P (2)−1} and G21 = diag{P (1)−1}, and

h12 ≥ 0 and h21 ≥ 0 represent unknown parameters to be determined by optimization; P (1)

and P (2) are the estimation error covariances of the local Kalman filters. Table (20) shows the

results obtained by the recalled [9] optimization procedure, for R2 = 1 and different values of

R1.

The results show high efficiency of the recalled [9] consensus scheme: the criterion values are

only slightly deteriorated by the increase of R1. It is also evident that both gains h12 and h21

are higher for lower measurement noise levels; however, h21 decreases much more rapidly and

for high values of R1 is close to zero, having in mind that the quality of the first local estimator

E1 becomes low.
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Case B. We consider three agents, the first two being the same as above (with R1 = R2 = 1),

while the third observes the system using

C3 =
[

1 0 0 0
0 0 0 1

]
, (178)

and

R3 =
[

R1 0
0 R2

]
, (179)

Optimization provides now six parameters, (two per agent); the obtained results are: h12 =

0.155, h13 = 0.355, h21 = 0.460, h23 = 0.300, h31 = 0 and h32 = 0, taking, as above, diagonal

matrices Gij equal to the main diagonals of the corresponding local estimation error covariance

inverses. The scheme behaves again as predicted: agent 3, with the globally optimal Kalman

estimator, does not need any help, so that the weights of the edges leading to it are equal to

zero. On the other hand, Agents 1 and 2 take the more accurate estimates obtained from Agent

3 with higher gains.

Case C. In this case we consider Agents 1 and 2 observing the same outputs as above, but we

assume that the agent resources are such that the local estimators are based on the second order

local subsystem models with the state matrices

A1 =
[

A11 0
0 0

]
, A2 =

[
0 0
0 A22

]
, (180)

(see the notation in (149) and the corresponding two-dimensional stochastic inputs. The opti-

mization provides now h12 = 0.6311 and h21 = 0.8088, with J = 2.0271. The consensus scheme

succeeds to efficiently compensate not only for the missing measurements, but also for the mod-

elling imprecision. Figure (21) depicts the form of the criterion function: the function is convex

in the considered two-dimensional case.

Case D. In this case we consider two agents in two situations: in the first, the subsystem models

are disjoint as in the case C, while in the second the subsystem models are of third order, and

are, obviously, overlapping. We assume now that A in S is composed of

A11 =
[

1 1
−1 0.2

]
, A12 =

[
0 0
−1 0

]
, A21 =

[
0.1 0
0 1

]
, A22 =

[ −0.1 1
−0.3 −5

]
, (181)
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Figure 21: Criterion function

and that in situation I Agent 1 utilizes A11, and Agent 2 utilizes A22, as in Case C. In situation

II, we assume overlapping subsystems, so that Agent 1 utilizes

A1 =




1 1 0
... 0

−1 0.2 −1
... 0

0.1 0 −0.1
... 0

. . . . . . . . . . . . . . .

0 0 0
... 0




, (182)

and Agent 2

A2 =




0
... 0 0 0

. . . . . . . . . . . . . . .

0
... 0.2 −1 0

0
... 0 −0.1 1

0
... 1 −0.3 −5




, (183)

With the same noise levels as above, we obtained for situation I h12 = 0.001 and h21 = 0.1791,

with J = 35.43, and for situation II h12 = 2.5421 and h21 = 8.1781, with J = 7.8621. This

example shows possible advantages of overlapping decompositions with respect to the disjoint

ones.

69



4.8 Conclusions

In this chapter a recent algorithm for solving the problem of overlapping decentralized state

estimation of linear complex stochastic systems is recalled [9] based on combining a set of local

Kalman filters with a consensus scheme. Considering local decision makers as multiple agents

in a network with the topology induced by local communications, it has been proved that the

recalled [9] algorithm can always be asymptotically stabilized by a proper choice of the consensus

gains under general conditions related to the overlapping subsystems (resulting from the a priori

knowledge of each agent) and the network topology. This chapter also recalls an optimization

algorithm for obtaining the network gains by minimizing the total steady-state mean-square

estimation error. A set of simple examples illustrate some specific properties of the recalled [9]

algorithm, showing that it can represent a reliable tool for practical implementations.
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5 Decentralized Estimation in Systems with Unknown Inputs.

5.1 Preliminaries

In the previous Chapter we have seen how it is possible to design a decentralized state estimation

when a system is affect by stochastic disturbance. But what can we do if disturbance is also

deterministic input? As it possible to reconstruct the deterministic disturbances, the answer to

these questions is given in this Chapter, in which a new estimation algorithm is proposed. It is

based on the technique of chapter 4, combined with the theory of ”strong observability”, and

related ”robust observation” methodologies, that we have seen in chapter 2.

5.2 Introduction

As we have seen in the previous chapter, decentralized state estimation addresses the problem

of reconstructing the state of a large-scale system under the key requirement that the system

can be modelled as an interconnection of subsystems, and that each subsystem have a decision

maker (an intelligent “agent”) associated with it. The agents might have access to different

informations of local nature, such as local output variables, properties and models of the local

subsystems, the characteristics of the measurements sensors and of the communication channels

between the agents.

Earlier works in the area started from the parallel implementation of the globally optimal Kalman

filter [8]. Attempts to provide an insight into basic principles and paradigms

In the broad area of multi-agent systems, including coordinated control of multi-vehicle systems,

sensor networks, and many other important applications (e.g., see [8, 15, 18, 20]), a common

methodology, the consensus strategy, is becoming more and more popular as a beneficial and

extremely appropriate paradigm for distributed signal-processing or decision making [14, 21].

The problem of state observation for linear time-invariant systems with unknown inputs has

been widely studied during the last two decades. As we saw in chapter 2, it was shown that,

under the condition of observability (see, e.g., [9, 10]) and a special additional requirement about

the absence of invariant zeroes between output and unknown inputs (both conditions together

were shown to be necessary, the first, necessary and sufficient, the second, and denoted in [9]

as “strong observability”), a “decoupling” state transformation can be made such that the

observation error dynamics in the transformed state coordinates is not contaminated by the

unknown inputs. Then, a reduced-order linear observer can be designed which is capable of

reconstructing the overall state vector. Unknown input observers have been widely used in the
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framework of fault detection and isolation [19]. It was discovered that sliding mode observers

allow to reconstruct accurately the unknown input together with the system state, which is an

important requirement in FDI schemes [11, 6]. In [1, 2, 14], second-order sliding-mode observers

were suggested that allows to reconstruct the unknown input in finite time.

However, none of the above approaches is aimed at establishing any type of collaboration between

local estimators in the overlapping decentralized estimation problem. Only recently overlapping

decentralized Kalman filters have been put together in a multi-agent network on the basis of a

consensus strategy, as we saw in chapter 4.

In application of consensus to decentralized state observation problems, N agents possessing

different plant informations provide independent state estimates x̂i which will eventually align

to the same estimate as time grows to infinity, thanks to appropriate communication protocols.

The stabilizability of the collective observation error dynamics is proven by arguments heavily

relying on graph theory, able to properly capture the main features of large-scale inter-agent

communication.

In this chapter we extend the class of plants dealt with in chapter 4 by encompassing determinis-

tic unknown inputs acting on the linear system. Furthermore, we not only aim to reconstruct

the system state but we shall provide as well the approximate reconstruction of the unknown

inputs acting on the system. We address the state observation problems from the perspective

of consensus-based decentralized Kalman estimation. By following a similar approach as in last

chapter 4, we also develop an optimization-based procedure for computing the consensus gain

parameters. Finally, we solve the unknown-input reconstruction problem by means of an appro-

priate proportional-integral (PI) observer. As compared with the method used in [1, 2, 14], the

use of a PI observer allows to relax the amount of prior information required about the unknown

input.

This chapter is structured as follows. The problem formulation, and the combined state-output

transformation that play a fundamental role in the present approach, are discussed in the Section

5.3. The proposed consensus-based decentralized state estimation procedure and a method for

computing optimal values for the consensus gains are explained in the Section 5.4. The problem

of the reconstruction of the unknown inputs is addressed in the Section 5.5. Section 5.6 reports

some simulation results, and in Section 5.7 some concluding remarks are given along with possible

lines of research for future related activities.
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5.3 Problem Formulation

Let us consider the following class of continuous-time linear stochastic systems with unknown

inputs: {
ẋ = Ax + Γe + Bu
y = Cx + v

(184)

where x = (x1, ..., xn)T is the state vector, y = (y1, ..., yp)
T is the output vector, u = (u1, ..., um)T ,

m < p, is an unknown input vector, e = (e1, ..., eq)
T and v = (v1, ..., vp)

T are stochastic noise

signals, and A, Γ, C and B are constant matrices of appropriate dimension.

It is assumed that e(t) and v(t) are mutually independent stochastic gaussian processes, with

zero-mean and covariance matrices as follows:

E{e(t)e(τ)T } = Qδ(t− τ), E{v(t)v(τ)T } = Rδ(t− τ). (185)

In the decentralized scheme for state vector estimation, N autonomous agents have the goal to

generate their estimates of the state vector x(t) on the basis of locally available measure-

ments (each agent can measure only a subset of the elements of the output vector y). More

precisely we assume that the i-th agent can measure, with some noise, the pi-dimensional vec-

tor y(i), with pi > m, containing those output variables with indices specified by the so-called

agent’s output index set Ii
y, which is defined as follows:

Iy
i = {li1, ..., lipi

}, li1, ..., l
i
pi
∈ {1, ..., p}, li1 < ... < lipi

, pi ≤ p. (186)

We also define, like in chapter 4, state index set Ix
i of i-th agent as follows.

Ix
i = {li1, ..., lini

}, li1, ..., l
i
ni
∈ {1, ..., n}, li1 < ... < lini

, ni ≤ n (187)

Vector Ix
i denotes the indices of the original state variables xi’s that explicitly affect the local

measurement output equation.

The local system model available to the i− th agent is defined as follows

ẋ(i) = Aix(i) + Γie + Biu

y(i) = Cix(i) + v(i) , i = 1, 2, ..., N (188)

where x(i) is a vector of dimension ni ≤ n, y(i) was previously defined as the local output vector

with dimension pi ≤ p, and Ai, Bi, Ci, Γi are constant matrices of appropriate dimension.

Clearly, the matrices Ci, that define the local output measurement equations, contain a subset

of the entries of the “complete” output matrix C. More precisely, matric Ci contains the
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elements of C having the row and column indexes specified by the set Iy
i × Ix

i . Similarly, matrix

Ai contains those elements of the matrix A with the row and column indexes taken in the set

Ix
i × Ix

i . Matrices Γi and Bi contain a subset of the rows of the complete matrices Γ and

B, with the selected row indexes specified in the state index set Ix
i . Vector v(i) represents a

“reduced-order” measurement noise vector having zero mean and covariance matrix

E

[
v(i)(t)

(
v(i)(τ)

)T
]

= R(i)δ(t− τ) (189)

Matrix R(i) contains the elements of the original matrix R having the row and column indexes

taken in the set Iy
i × Iy

i . Note that the noise vectors v(i) correspond to different, uncorrelated,

realizations of the statistical process.

System (188) defines N overlapping local subsystems of the overall plant (184). Note that

the decomposition of (184) into the overlapping subsystems (188) does not rely on any inherent

decomposition of the original plant matrices A and B in (184). Hence, the agents need not a

complete knowledge of the overall system dynamics, but only of a part of it.

Concerning the local system models dynamics (i = 1, 2, ..., N) let us make the following assump-

tions:

(A.1) rank
(
CiBi

)
= rankBi.

(A.2) The matrix triplets
(
Ai, Ci, Bi

)
are strongly observable [10]

The notion of strong observability, recalled in chapter 2, has been introduced more than thirty

years ago [10, 9] in the framework of the unknown-input observers theory. Recently it has been

exploited to design robust observers based on the high-order sliding mode approach [1]. It has

been shown in [10] that the following statements 1 and 2 are equivalent

1. The triple
(
Ai, Ci, Bi

)
is strongly observable.

2. The invariant zeros of the triple
(
Ai, Ci, Bi

)
have negative real part.

It is known [3, 2] that if condition A1 is satisfied then it can be systematically found a state

coordinates transformation together with an output coordinates change which decouple the

unknown input u from a certain subsystem in the new coordinates. Such a transformation is

outlined below.

For the generic matrix J ∈ Rnr×nc with rank(J) = r, we define J⊥ ∈ Rnr−r×nr as a matrix
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such that J⊥J = 0 and rank(J)⊥ = nr − r. Matrix J⊥ always exists and, furthermore, it is not

unique for a given J .

Consider the following transformation matrices T i and U i (i = 1, 2, ...N):

T i =
[

Bi⊥
(
CiBi

)+
Ci

]
, U i =

[ (
CiBi

)⊥
(
CiBi

)+

]
=

[
U i

1

U i
2

]
(190)

(
CiBi

)+ =
[(

CiBi
)T (

CiBi
)]−1 (

CiBi
)T (191)

and the transformed state and output vectors

x̄(i) = T ix(i), ȳ(i) = U iy(i) (192)

The transformed dynamics in the new state and output coordinates are

˙̄x(i) = T iAi(T i)−1x̄(i) + T iΓie + T iBiu

ȳ(i) = U iCi(T i)−1x̄(i) + U iv(i)
, i = 1, 2, ..., N (193)

Consider the following partitions of vectors x̄(i) and ȳ(i)

x̄(i) =

[
x̄

(i)
1

x̄
(i)
2

]
, x̄

(i)
1 ∈ Rni−m x̄

(i)
2 ∈ Rm (194)

ȳ(i) =

[
ȳ

(i)
1

ȳ
(i)
2

]
ȳ

(i)
1 ∈ Rpi−m ȳ

(i)
2 ∈ Rm (195)

The partitioned transformed vectors are given by

x̄
(i)
1 = Bi⊥x(i), x̄

(i)
2 =

(
CiBi

)+
Cix(i) (196)

ȳ
(i)
1 =

(
CiBi

)⊥
y(i) ȳ

(i)
2 =

(
CiBi

)+
y(i) (197)

After simple algebraic manipulations the transformed local system models in the new co-

ordinates can be expanded in the form:

˙̄x(i)
1 = Āi

11x̄
(i)
1 + Āi

12x̄
(i)
2 + Bi⊥Γie

˙̄x(i)
2 = Āi

21x̄
(i)
1 + Āi

22x̄
(i)
2 +

(
CiBi

)+
CiΓie + u

ȳ
(i)
1 = C̄i

1x̄
(i)
1 + v

(i)
1

ȳ
(i)
2 = x̄

(i)
2 + v

(i)
2

(198)

with implicit definition of matrices Āi
11, ..., Āi

22 and with
[

v
(i)
1

v
(i)
2

]
= v(i) = U iv(i) =

[
U i

1

U i
2

]
v(i) (199)
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Signals v
(i)
1 and v

(i)
2 are then stochastic terms with zero-mean and, according to (189), the

covariances
E(v(i)

1 (t)v(i)
1 (τ)T ) = [U i

1R
(i)(U i

1)
T ]δ(t− τ)

E(v(i)
2 (t)v(i)

1 (τ)T ) = [U i
2R

(i)(U i
2)

T ]δ(t− τ)
(200)

It turns out that the triple
(
Ai, Ci, Bi

)
is strongly observable if, and only if, the pair (Āi

11, C̄
i
1)

is observable [10, 9]. In light of the Assumption A2, this property, that can be also under-

stood in terms of a simplified algebraic test to check the strong observability of a matrix triple,

opens the way to design stable observers for the transformed dynamics (194)-(198). The strong

observability assumption for the local system models implies the requirements that pi > m and

ni > m (i = 1, 2, ..., N), otherwise the special form (194)-(198) for the transformed dynamics

is no longer obtained and the observer design procedure that is going to be illustrated becomes

unfeasible. The less strict condition pi ≤ m could be possibly allowed, for some i, under the

additional requirement that the corresponding matrix Āi
11 is Hurwitz.

5.4 Consensus based state observation

A peculiarity of the transformed local system models (198) is that vectors x̄
(i)
2 are directly

available to the i-th agent through the (noisy and stochastical) measurement of the trans-

formed output vector components ȳi
2.

Hence, once the expected value of vector x̄
(i)
1 has been made available through appropriate

observation techniques, the expected value of the original local subsystem state x(i) can be

reconstructed by the following relationships

E(x(i)) = (T i)−1

[
x̄

(i)
1

x̄
(i)
2

]
(201)

Note that vector x̄
(i)
1 is of reduced dimension (ni −m) as compared to the original state vector

x, and, furthermore, an important additional peculiarity of x̄
(i)
1 is that the resulting dynamics

are not affected by the unknown input vector.

It can be extracted from (198) the subset of equations involving vector x̄
(i)
1 , that can be simply

manipulated as follows
˙̄x(i)
1 = Āi

11x̄
(i)
1 + Āi

12ȳ
(i)
2 + Diµ(i)

ȳ
(i)
1 = C̄i

1x̄
(i)
1 + v

(i)
1

(202)

where

Di = [Bi⊥Γi − Āi
12], µ(i) =

[
e

v
(i)
2

]
(203)
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By taking into account the statistical properties of signals e and v
(i)
2 , it can be shown that µ(i)

is a zero-mean signal with the covariance matrix V (i)δ(t− τ), with

V (i) =
[

Q 0
0 U i

2R
(i)(U i

2)

]
(204)

By considering (190)–(199), equation (202) can be further rewritten as follows

˙̄x(i)
1 = Āi

11x̄
(i)
1 + Āi

12(C
iBi)+y(i) + Diµ(i)

ȳ
(i)
1 = (CiBi)⊥y(i) = C̄i

1x̄
(i)
1 + v

(i)
1

(205)

We propose a decentralized state estimation algorithm based on the consensus scheme specifying

communications between the agents.

Let us consider, in analogy with (190)-(197), the transformed state vectors of the original

system

x̄ = Tx, T =
[

B⊥

(CB)+ C

]
(206)

and, in particular, the subcomponent x̄1 of x̄

x̄1 = B⊥x, x̄1 ∈ Rn−m (207)

In association with the transformed local system models (198), it is possible to define N ad-

ditional “transformed state index set vectors” Īi
x (i = 1, 2, ..., N) for the local transformed

subsystems which contains ni − m ordered elements taken in the set {1, 2, ..., n − m}. The

transformed state index set vectors specifies the link between any element of vector x̄
(i)
1 and

the corresponding element in the vector x̄1. In other words, vector x̄
(i)
1 can be associated to a

selected subset of the entries of the “overall” transformed vector x̄1.

We assume that the communication between the i-th and j-th agents is corrupted by an additive

noise wij . Such a noise is supposed to be white and uncorrelated from e and v, with zero mean,

and with covariance

E{wij(t)wij(τ)T } = Wijδ(t− τ) (208)

Every agents build its own estimate ξi of x̄1 according to the next collective consensus dynamics

ξ̇i = Ai
11ξ

i + Ai
12(C

iBi)+y(i) +
∑N

j=1,j 6=i Kij(ξ̃i,j − ξi) + Li

[
(CiBi)⊥y(i) − Ci

1ξ
i
]

(209)

Clearly, according to (207), the dimension of vector ξi is n−m. Matrices Ai
11, Ai

12 and Ci
1 are

obtained by “augmenting” the matrices Āi
11, Āi

12 and C̄i
1 with appropriately located zero ele-

ments. Vector Īi
x specifies the locations where the zero elements have to be added, in accordance

with the following description of the structure of matrices Ai
11, Ai

12, Ci
1:

78



· Ai
11 ∈ R(n−m)×(n−m) and whose elements having the row and column indexes in the set Īi

x× Īi
x

are equal to the corresponding entries of Āi
11, while the remaining elements are zeros,

· Ai
12 ∈ R(n−m)×(m) and whose elements having the row index in the set Īi

x are equal to the

corresponding entries of Āi
12, while the remaining elements are zeros,

· Ci
1 ∈ R(pi−m)×(n−m) and whose elements having the column index in the set Īi

x are equal to

the corresponding entries of C̄i
1, while the remaining elements are zeros,

Furthermore:

· Kij ∈ R(n−m)×(n−m) are constant consensus gain matrices,

· ξ̃i,j is the noisy estimate ξj communicated by the j-th agent (j 6= i), i.e., ξ̃i,j = ξj + wij .

· Li ∈ R(n−m)×(pi) and whose elements having the row index in the set Īi
x are equal to the

corresponding entries of the steady-gain matrix of the local Kalman filter for the system

(205), while the remaining elements are zeros,

The decentralized observer dynamics (209) contains three parts:

- the nominal plant model (Ai
11ξ

i + Ai
12(C

iBi)+y(i)),

- the consensus term
∑N

j=1,j 6=i Kij(ξ̃i,j − ξi), and

- the output error injection Li

[
(CiBi)⊥y(i) − Ci

1ξ
i
]
.

It shall be proven that a stabilizing consensus scheme can be implemented which means that

the expected values of all agents’ state would eventually align to a common, correct, estimate,

i.e. E(ξi) = ξ∗, i = 1, 2, ..., N . In other words, it must be demonstrated the stabilizability of

the collective observation error dynamics by proper choice of the consensus gain matrices Kij .

We select the consensus gain matrices to be diagonal:

Kij =




kij
1 0 0 0
0 kij

2 0 0

0 0
. . . 0

0 0 0 kij
n−m


 , i, j = 1, 2, ..., N. i 6= j (210)

The generic element kij
ν is further expressed as follows

kij
ν = hij

ν gj
ν , hij

ν ≥ 0, gj
ν ≥ 0, ν = 1, 2, ..., n−m (211)
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where hij
ν reflects properties of the involved agent communication channel, and gj

ν reflects struc-

tural properties of the j-th local model (188) and the corresponding uncertainty in the local

estimate ξj . If agents i and j do not communicate, then the corresponding elements hij
ν are set

to zero.

For each component ν = 1, 2, ..., n − m we define the directed graph (digraph) Gν , with N

nodes (corresponding to the agents) and edges having the gains kij
ν , specifying transmission of

particular components of the vector ξi between the nodes. Let LGν represent the Laplacian of

Gν , i.e., LGν = [LGν
ij ], with

LGν
ij =

{
kij

ν i 6= j

−∑
j,j 6=i k

ij
ν i = j

, i, j = 1, ...N. (212)

The additional basic assumptions are:

(A.3) the pair Āi
11, C̄

i
1 is observable, and the pair Āi

11, D
iV i1/2

is stabilizable ∀i = 1, ..., N ;

(A.4) For each Gν , ν = 1, ...n −m, there is at least one center node µ (from which every node

is reachable), satisfying ν ∈ Īµ
x .

(A.5)
⋃N

i=1 Īi
x = {1, ..., n−m};

(A.6)
⋃

i,j=1,...,N ;i6=j(Īi
x

⋂
Īj
x) 6= ∅;

Assumptions (A.1)-(A.3) involves structural restrictions about the local subsystem dynamics

(in particular, Assumption A.3 guarantees that the local Kalman estimators are asymptotically

stable [8]).

Assumption (A.4) specifies the constraint on the agents’ communication topology and it is often

referred to as “quasi-strong” connectivity [5]. Assumptions (A.5) and (A.6) imply that all

the components of x̄1 are reconstructed by at least one agent, and that there is at least one

component estimated by more than one local estimator.

The next theorem, whose rationale and proof are similar to that of Theorem 1 in [9], is in force

for the transformed collective observation dynamics in question.

Theorem 14 Consider the decentralized estimation algorithm (209). Under the given assump-

tions (A.1)-(A.6) there exist consensus gain matrices Kij of the form (210)-(211) such that the

expected values of all agents’ state would eventually align to a common estimate which is the
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expected value of the transformed vector component x̄1 according to

E(ξi) = E(x̄1), i = 1, 2, ..., N (213)

Proof of Theorem 14. See the Appendix.

The above theorem is a “feasibility” result that does not offer any guidelines about how to tune

the consensus gain matrices.

In order to fully exploit the properties of the the decentralized estimation it is mandatory to

select them in some optimal way by taking into account the properties of the deterministic

and stochastic parts of the involved subsystems and of the noisy agents communication links.

Consider the vector Z = Ξ−X1, Z ∈ R(n−m)N , where Ξ and X1 are defined as follows

Ξ = [(ξ1)T , ..., ((ξN )T ]T , Ξ ∈ R(n−m)N (214)

X1 = [x̄T
1 x̄T

1 ... x̄T
1 ]T X1 ∈ R(n−m)N (215)

and the associated dynamics, which takes the form

Ż = ΦZ + BZΘ (216)

with the characteristic matrix Φ = {Φij} having the following entries

Φij =
{

Kij i 6= j
Ai

11 − LiC
i
1 −

∑
j,j 6=i Kij i = j

(217)

the stochastic input Θ = (eT , V T ,ΣT )T , with V = ((v1)T , ..., (vN )T )T and Σ defined as follows

Σ = (wT
11, ..., w

T
1N , wT

21, ..., w
T
2N , ..., wT

N1, ..., w
T
NN )T (218)

and the matrix BZ as follows

BZ = [−B
⊥Γ | Λ | KΞ] (219)

B
⊥ = col((Bi)⊥), Λ = diag(Li(CiBi)⊥ + Āi

12(C
iBi)+), i = 1, 2, ..., N (220)

KΞ =




K̃1 0 0 0
0 K̃2 0 0

0 0
. . . 0

0 0 0 K̃N


 , K̃i = [Ki1 Ki2 ..... KiN ] (221)

The matrices Φ and BZ depend on he entries of the consensus gain matrices Kij in the form

(210)-(211), that need to be tuned. Let gj
ν be selected as the ν − th diagonal element of the

inverse of the estimation error covariance matrix of the steady Kalman filter associated to the
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j-th local system model (188). This choice appears to be reasonable and motivated, as discussed

in [9].

Now, define a vector H which contains all the weights hij
ν to be determined. Consider the steady-

state covariance matrix P of vector Z which is defined by the positive semi-definite solution of

the Lyapunov equation

ΦP + PΦT + BZRZBT
Z = 0 (222)

with RZ being the covariance matrix of the stochastic input vector Θ. It can be formulated the

following optimization problem:

Consensus gains optimization:

Find vector H such that the nonnegative optimality index J = Tr P is minimized.

The above choice for H, i.e. for the consensus gain parameters, gives the decentralized estimator

optimal steady state performance. Unfortunately, the above optimization problem is non convex,

hence its solution requires special iterative routines like for example the fmins Matlab function.

A simplified optimization strategy, devoted to reduce the number of free parameters, might be

based on selecting

hij
ν ≡ hij ∀ν (223)

In the simulation example it will be considered the above simplified tuning formula (223).

5.5 Unknown input reconstruction

In order to reconstruct the unknown input u(t), we now refer to the m-dimensional dynamics

of vectors x̄
(i)
2 , which can be extracted from (198)

˙̄x(i)
2 = Āi

21x̄
(i)
1 + Āi

22x̄
(i)
2 + u +

(
CiB

)+
CiΓe (224)

It must be stressed that vector x̄
(i)
2 is available as a ”noisy” part of the transformed output ȳ(i)

(in fact, by(198), one has that E(x̄(i)
2 ) = E(ȳ(i)

2 )). Furthermore, an asymptotically converging

estimate of x̄
(i)
1 is available from the consensus based estimator previously described. Any of the

agents estimates ξ can be used to that purpose, but it appears appropriate to choose the agent

having the minimimun error covariance, i.e., if
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P =




P1 0 ... 0

0
. . . ... 0

0 0 Pi 0
0 0 ... PN


 (225)

we select the agent i∗ such that

i∗ = argmini ‖Pi‖2 (226)

The right hand side of dynamics (224) has a known deterministic part Āi
21x̄

(i)
1 + Āi

22ȳ
(i)
2 , an

unknown deterministic component u(t) that is wanted to be reconstructed, and a stochastic

part
(
CiB

)+
CiΓe. Consider the following observer

˙̄z(i)
2 = Āi

21ξ
i + Āi

22ȳ
(i)
2 + ui, i = i∗ (227)

where ξi is the estimation of x̄
(i)
1 provided by the i-th agent, and ui is an observer injection

input to be designed.

Let us study the dynamics of the error variable εi = x̄
(i)
2 − z̄

(i)
2 . It yields

ε̇i = Āi
21(x̄

(i)
1 − ξi) +

(
CiB

)+
CiΓe + u− ui (228)

which can be further elaborated as follows:

ε̇i = u− ui + ϕi(t) (229)

where

ϕi(t) =
(
CiB

)+
CiΓe + Āi

21γ
i(t) (230)

Remember that γi(t) ≡ x̄
(i)
1 − ξi tends asymptotically to a zero-mean stochastic residual. The

idea is to design the observer injection term ui in such a way that εi and its derivative ε̇i are

steered as close as possible to zero. We select ui in the form of a proportional-integral feedback,

with gains kp and ki as follows:

ui = kpε
i + ki

∫ t

0
εi(τ)dτ (231)

The closed loop system (229)-(231) can be represented as in the Figure 22. It follows from the

scheme in Fig. 22 that the closed loop transfer function between the “input” u + ϕi and the

“output” ui is the following

Pi(s) =
kps + ki

s2 + kps + ki
(232)
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�
Figure 22: The equivalent block scheme for the closed loop system (229)-(231).

Then it can be selected the free design parameters kp and ki in order to guarantee that such a

transfer function is close to the unitary value in a prescribed frequency range [0, ωb]. Thus, with

properly selected gains kp and ki the following identity approximately holds

ui ≈ u + ϕi (233)

If the magnitude of the stochastic term ϕi is small enough with respect to the unknown input

u, i.e. if |ϕi| << |u| then the observer (227)-(232) guarantees that the following condition holds

after the convergence transient

ui ≈ u (234)

which means that the injection term of the observer (227) allows to reconstruct approximately

the unknown input u.

The gains kp and ki should be designed in order to assign the transfer function Pi(s) in (232)

a bandwidth which includes the main spectral contents of the actual unknown input u. But,

the higher the bandwidth of Pi(s) the more statistical noise components will be injected in the

unknown input estimate ui. Hence, a careful tuning of those parameters requires some amount

of a-priori information about the “spectral contents” of the unknown input. The amount of

information required by this method is, however, milder than that required by the approaches

in [1, 2, 14]. As an example, let the unknown input be an harmonic signal of the form u(t) =

Asin(ωt). The effective application of our method requires to know an upperbound ωb to the

signal frequency (ω ∈ [0, ωb]). Under this condition, the reconstruction of the unknown input is

guaranteed for every of value of A. The methods in [1, 2, 14] requires to know a constant M

such that |Aω| ≤ M . Therefore, if the unknown input is large in magnitude (A >> 1), then it

must be ”sufficiently slowly varying” which can be not the case in some situation.

Note that only one observer of the type (227) must be implemented. The property

that all agents converge to the same estimate makes it possible to select the ”best” value i∗ of

i according to (226) and then implement the resulting observer.
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5.6 Example

Let the linear system under consideration be represented by a fourth order model with n = 4,

m = 1, p = 3, and the next system matrices

A =




−1 0 1 0
−1 −2 −1 0
−1 0 −1 0
−0.1 −1 −3 −5


 , Γ = I4, B =




1
0
0
0


 (235)

C =




1 0 0 0
0 0 1 0
0 0 0 1


 (236)

where In represent the n-th order identity matrix. The scalar unknown input is selected as

u(t) = (10 + sin3t) (237)

Assume that N = 2 agents get partial output measurements defined by the respective matrices

C1 =
[

1 0 0 0
0 0 1 0

]
, C2 =

[
1 0 0 0
0 0 0 1

]
(238)

With reference to the first agent, its local system model has dimension n1 = 2, the state index

set I1
x = {1, 3}, the output index set I1

y = {1, 2}, and the next local subsystem matrices A1 and

B1:

A1 =
[ −1 1
−1 −1

]
, B1 =

[
1
0

]
(239)

Concerning the corresponding transformed local subsystem, the transformed state index set

vector is Ī1
x = {2}.

It can be checked that all the underlying assumptions A.1-A.6 are actually satisfied for the

considered local system models.

The system and measurement covariance parameters are Q = I4, R(1) = R(2) = 0.01I2, while the

covariance parameters of the two inter-agent communication channels are W12 = W21 = 0.01I3.

The suggested consensus-based observation scheme takes the following form.

ξ̇1 = A1
11ξ

1 + A1
12(C

1B1)+y(1) + K12(ξ̃1,2 − ξ1) + L1

[
(C1B1)⊥y(1) − C1

1ξ1
]

ξ̇2 = A2
11ξ

2 + A2
12(C

2B2)+y(2) + K21(ξ̃2,1 − ξ2) + L2

[
(C2B2)⊥y(2) − C2

1ξ2
]

(240)

The tuning parameters L1 and L2 (the steady gains of the Kalman filter local) are evaluated

by solving the appropriate Riccati equations. The consensus gains K12 and K21 have been
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evaluated by means of the simplified optimization procedure described in the section IV, that

makes use of the simplified gain tuning relationship (223).

Let P 1
inv and P 2

inv be the inverse of the estimation error covariance matrix of the steady Kalman

filter associated to the first and second local system model, respectively. They can be computed

as follows

P 1
inv = 11.0499, P 2

inv =




3.7818 1.347 0.8959
1.347 4.2799 3.3486
0.8959 3.3486 15.6294


 (241)

According to (223) and to the suggested choice for the gj
ν elements (namely, the diagonal elements

of matrices P 1
inv and P 2

inv) the consensus gains K12 and K21 take the following form

K12 = h12




0 0 0
0 11.0499 0
0 0 0


 (242)

K21 = h21




3.7818 0 0
0 4.2799 0
0 0 15.6294


 (243)

The optimal values for the h12 and h21 coefficients were computed, by means of Matlab, as

h12 = 0.8116, h21 = 1.2381 (244)

which give rise to the following expression for the consensus gain matrices

K12 =




0 0 0
0 8.2686 0
0 0 0


 , K21 =




4.6823 0 0
0 5.2991 0
0 0 19.3511


 (245)

From the estimates ξ1 and ξ2 provided by the two agents, the state vector x can be recovered

according to equation (201). The transformation matrices T 1 and T 2 are:

T 1 = T 2 =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 (246)

which means that the transformed vector to be reconstructed is x̄1 = [x2, x3, x4]. Let ˆ̄x i
1 = Bi⊥ξi

denote the estimate of x̄1 provided by the i-th agent, according to the equation (196). Figure

(23-24) depict the components of the observation errors ē i
1 = ˆ̄x i

1 − x̄1 with i = 1, 2.

In order to highlight the performance improvement due to the suggested consensus scheme, the

estimates of the consensus based scheme are compared with the estimates obtained without

communication between agents (i.e., by setting the consensus gain matrices K12 and K21 to
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Figure 23: The components of the observation error vector ē 1
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Figure 24: The components of the observation error vector ē 2
1
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Figure 25: the observation error vector ē 1
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Figure 26: actual unknown input and its estimate u2

zero.) The figure 25 shows the estimation error for the first agent without consensus. The

benefits introduced by the communication between the agents are apparent.

Now let us address the reconstruction of the sinusoidal unknown input u(t). According to

the suggested procedure the observer (227) has been implemented selecting the agent i which

minimizes ‖ni‖2, i = 1, 2, where ni is the vector which contains the diagonal elements of the

covariance matrix Pi associated to the i-th agent’s estimation error. In the present example we

obtain ‖n1‖2 = 0.5252, ‖n2‖2 = 0.3397, so we select the agent 2. The proportional and integral

gains are selected as kp = p2, ki = 2p, p = 2, in order to assign the transfer function P1(s) the

pair of real negative poles (−p,−p) ≡ (−2,−2). Figure 25 shows the actual and reconstructed

unknown input, the latter which closely matches the actual profile after a short transient. The

residual error is due to the propagation of the stochastic terms, which cannot be eliminated. To

confirm that agent 2 is actually the best one, the estimation error featured by the two agents
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Figure 27: Unknown input estimation error for the agents 1 and 2

has been compared. Figure 27 shows a zoomed plot of signals u1−u and u2−u. The computed

variance of signal u1 − u is 0.396, while the computed variance of signal u2 − u is 0.351, which

confirms the better performance of the second agent.

5.7 Conclusions

The problem of decentralized state estimation for a class of linear time-invariant systems affected

by stochastic disturbances and deterministic unknown input has been addressed via a con-

sensus based multi-agent Kalman estimator. A methodology for optimally tuning the consensus

parameters is illustrated along with a scheme for reconstructing the unknown input vector, and

all the procedures and methodologies have been verified by means of a thoroughly discussed

simulation example.

The main improvement of the presented work over the recent related literature is the explicit

introduction of deterministic, possibly large, unknown inputs in the plant dynamics. An inter-

esting direction for further investigations could aim to relax the strong observability property for,

at least, a subset of the local system models. In the present paper we have limited our attention

to analyzing the consensus-based communication between linear Kalman observers. Consensus

based communication between nonlinear observers, e.g. sliding mode observers, can be an inter-

esting and promising enhancement of the present treatment, which is another challenging task

for next research activities.

APPENDIX

Proof of Theorem 14
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Consider the vector Z̄ = Ξ̄− X̄1, Z̄ ∈ R(n−m)N , where Ξ̄ and X̄1 are defined as follows

Ξ̄ = [E(ξ1)T , ..., E((ξN )T ]T , Ξ̄ ∈ R(n−m)N (247)

X̄1 = [E(x̄1)T E(x̄1)T ... E(x̄1)T ]T X̄1 ∈ R(n−m)N (248)

and the associated dynamics, which takes the form

˙̄Z = ΦZ (249)

with the characteristic matrix Φ = {Φij} having the following entries

Φij =
{

Kij i 6= j
Ai

11 − LiC
i
1 −

∑
j,j 6=i Kij i = j

(250)

We shall also define:

hij
ν =

{
h̄ij ν ∈ Īi

x

h̃ij ν ∈ {1, ...n−m\Īi
x}

, h̄ij , h̃ij > 0 (251)

Gij
1 = diag{gij

νi
1
, ..., gij

νi
ni−m

}, νi
1, ..., ν

i
ni−m ∈ Īi

x (252)

Gij
2 = diag{gij

ν̄i
1
, ..., gij

ν̄i
n−m−ni

}, ν̄i
1, ..., ν̄

i
n−m−ni

∈ {1, ...n−m\Īi
x} (253)

and let

Kij
1,0 = h̄ijGij

1 , Kij
2,0 = h̃ijGij

2 (254)

Stability of the consensus scheme corresponds to the stability of the characteristic matrix Φ.

Let us consider a matrix

Φ
′
=

[
Φ11 Φ12

Φ21 Φ22

]
(255)

where the generic entries of the submatrices in (255) is

Φ11
ij =

{
K1,1

ij i 6= j

Āi
11 − LiC̄i

1 − Σj,j 6=iK
1,0
ij i = j

(256)

Φ12
ij =

{
K1,2

ij i 6= j

0 i = j
, Φ21

ij =
{

K2,1
ij i 6= j

0 i = j
(257)

Φ22
ij =

{
K2,2

ij i 6= j

−Σj,j 6=iK
2,0
ij i = j

(258)

where K1,1
ij ,K1,2

ij ,K2,1
ij and K2,2

ij are submatrices of Kij obtained by deleting some selected

elements as follows:

- For K1,1
ij we delete the elements having row and column indexes specified by {1, ..., n−m\Īi

x}
and {1, ..., n−m\Īj

x}, respectively.
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- For K1,2
ij we delete the elements having row and column indices specified by {1, ..., n−m\Īi

x}
and Īj

x, respectively.

- For K2,1
ij we delete the elements having the row and column indexes specified by Īi

x and

{1, ..., n−m\Īj
x}, respectively;

- For K2,2
ij we delete the elements having the row and column indexes specified by Īi

x and Īj
x,

respectively;

It turns out that matrix Φ
′
is cogredient to Φ in (249).

Let us consider such h̃ij ≥ 0, i, j = 1, ..., N , that (A.4) is satisfied, and look at the submatrix

Φ22 (which depends on h̃ij and not on h̄ij). Let Gν be the digraph as defined in the Section 3.

Assumption (A.4) implies that each digraph Ḡν , opposite to Gν , (ν = 1, ..., n−m, has only one

closed strong component. Therefore, those submatrices of Φ
′

which represents the Laplacian

matrices of Gν , (ν = 1, ..., n − m), are cogredient to lower-block-triangular matrices with two

diagonal blocks, where the first is an irreducible Metzler matrix which has one eigenvalue at the

origin and the remaining ones in the left-half plane, and the second is a diagonally dominant

Meztler matrix, which is therefore stable [5]. The center node of Gν must belong to the set of

nodes of the unique closed strong component of Ḡν ,. Therefore, Φ22 is composed by submatrices

of Φ
′
that are obtained from the irreducible Metzler matrices by deleting their rows and columns

with indices corresponding to the nodes of the strong component of Ḡν . These irreducible

submatrices are, in general, cogredient to

LD
ν =




−∑
j,j 6=1 α1j α12 ... α1Ñ

α21 −∑
j,j 6=2 α2j ... α1Ñ

. . . . . . . . . . . .
αÑ1 αÑ2 ... −∑

j,j 6=Ñ αÑj


 (259)

where Ñ ≤ N, αij ≥ 0, α21 > 0. Deleting the first row and column of the block matrix LD
ν we

obtain a block matrix in which the first row is strictly diagonally dominant, being that α21 > 0

as a consequence of the irreducibility of LD
ν . Consequently, this matrix is Metzler and quasi-

dominant diagonal, which implies that it is Hurwitz [11]. Therefore, the whole matrix Φ22 is

Hurwitz, having in mind assumptions (A.5) and (A.6).

Assuming that hij = 0, ∀i, j; we obtain that Φ12 = 0, and Φ11 is asymptotically stable, having

in mind that the matrices Āi
11 − LiC̄i

1, (i = 1, ..., n − m) are Hurwitz by the assumption A.3.

This implies that the whole matrix Φ is Hurwitz. Now consider some h̃ij as above and choosing

such h̄ij ≥ 0 in accordance with (A.4) we can directly conclude that there exists such ε > 0
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that the system keeps asymptotically stable as long as h̄ij < ε, having in mind the continuous

dependence of the eigenvalues of Φ on the values of h̄ij . Theorem 1 is proved. B.
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6 Unknown-input observation techniques in Open Channel Hy-
draulic Systems

6.1 Preliminaries

This chapter addresses the problem of state and disturbance estimation for an open-channel

hydraulic system. Particularly, a cascade of n canal reaches, joined by gates, is considered.

The underlying Saint-Venant system of PDEs is managed by means a collocation-based finite-

dimensional approximation. The resulting nonlinear systems’ dynamics are linearized around

a subcritical uniform flow condition, and an estimation algorithm is designed by combining a

conventional linear Unknown-Input Observer (UIO) and a nonlinear Disturbance Observer (DO)

based on the sliding mode approach. By using measurements of the water level in three points per

reach, the suggested algorithm is capable of estimating, both, the time varying infiltration and

the discharge variables in the middle point of the reaches. The UIO and DO design procedures

are constructively illustrated throughout the chapter. Simulation results are discussed to verify

the effectiveness of the proposed schemes.

6.2 Introduction

Most open-channel hydraulic systems are currently manually operated by flow control gates or

by means of self regulating gates that maintain either the flow or the level. Current goals in

this field include their automatic operation in order to improve water distribution efficiency and

safety [21]. A key problem is to reconstruct the information needed for control or monitoring

diagnosis purposes (water levels, discharges, and infiltrations), some of which are intrinsically

impossible or difficult to measure, by limiting the number of required sensors in the field.

Flow sensors, in particular, are expensive devices, and it would be desirable to accomplish

the estimation and control tasks by using water level measurement sensors only. From the

perspective of designing model-based control or diagnosis systems, this calls for easily tractable

reduced-order numerical models that can accurately reflect the nonlinear behavior of water flow.

The problem of deriving simple yet accurate models of the open channel systems dynamics is

still an open and active area of investigation.

Open channel hydraulic systems are described by two nonlinear coupled partial differential equa-

tions (Saint-Venant Equations). It is widely recognized that relatively low-order approximation

of the Saint-Venant Equation can provide sufficiently accurate information (see [21]). A num-

ber of finite-difference and finite elements approximation techniques have been suggested in the
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literature (see[27],[6]). Research efforts have been made to develop models’ computationally

simple yet accurate enough to be used for model-based observer or controller design purposes

[18, 12, 31]. The collocation method is a special case of the so-called weighted-residual method,

commonly used in computational physics for solving partial differential equations [13, 9].

For the considered open channel hydraulic systems it has been shown (see [29]) that a three-

point orthogonal collocation model can be used to design a model-based nonlinear controller

with guaranteed properties of closed loop stability. It has also been shown that the response of

the reduced order collocation model is close enough to that obtained using high-accuracy solvers

of commercial dedicated software packages [10, 4].

In [4] a three-point collocation-based nonlinear model of a single-reach irrigation canal was

developed considering the canal begin, middle, and end points, respectively, and a constant

uncertain infiltration was also taken into account. An observer capable of reconstructing the

level variables and the constant infiltration was designed in [4] by measuring the level in the

middle of the reach and the upstream and downstream flows. In [5], the observer considered in

[4] was used to design a stabilizing feedback level control law.

In [26], a Kalman filter approach was developed for reconstructing unmeasured level variables

by employing a discrete-time model of a the canal. In [1], an H∞ observer was developed to

minimize the effect of the unknown inputs on the accuracy of the estimates. In [1], it was

considered a system representation including time-varying delays, and a continuous-time full-

order Unknown Input Observer (UIO) was suggested and used for the detection of certain faults

in the irrigation canal actuators.

6.2.1 Aim, Contribution and structure of the chapter

The aim of this chapter is the development of new observation and estimation algorithms for a

cascade of canal reaches subject to unmeasurable disturbances. Starting from the collocation-

based model presented in [4] for a single-reach canal, here we consider a cascade of n pools,

then the model described in [4] is properly generalized and manipulated. We also relax some of

the standing assumptions made in [4], namely in the present chapter we :

i.) dispense with the need of flow rate measurements by allowing only level measurements;

ii.) consider a time varying infiltration, and

iii.) reduce the number of level sensors in the case of negligible infiltration.

Property ii. is important since the infiltration term also models seepage and evaporation phe-
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nomena, which are subject to seasonal and/or diurnal fluctuations. Section 6.2 recalls the

Saint-Venant equations. Section 6.3 reviews the three-point collocation-based nonlinear model

of a single reach presented in [4]. Additionally, in Subsection 6.3.1, the model is extended to a

cascade of n canal reaches, and in Subsection 6.3.2 the model linearization around the uniform

flow condition is performed.

In Section 6.4, the two estimation problems(named “Problem 1” and “Problem 2”) addressed

in this chapter are stated. Only level measurement are permitted in both. Problem 1 involves

the simplifying assumption of no (or negligible) infiltration, and, as a counterpart, it allows

certain level variables to be not measured. The flow variables are wanted to be estimated, and

the unmeasured level variables are wanted to be reconstructed as well.

Problem 2 deals with the general non-zero infiltration case but requires the measurement of the

level variables in three points per reach. The flow variables are wanted to be estimated too,

along with the unknown infiltrations, after a finite-time estimation transient.

Problem 1 and Problem 2 give rise to distinct observation problems for certain Linear Time-

Invariant System with Unknown Inputs (LTISUI). In Section 6.5 a method for state estimation

and unknown input reconstruction in general LTISUI is recalled. The approach is based on the

assumption of ”Strong Observability” [10, 15, 3], a structural condition on the LTISUI math-

ematical model. Such restriction has different, although equivalent, formulations, the simplest of

which establishes that a certain matrix pair should be observable. Overall, the proposed scheme

combines a linear Unknown-Input Observer (UIO) and a nonlinear Disturbance Observer (DO)

based on the sliding mode approach.

In the Section 6.6, a case study of a canal with rectangular section and three reaches is illustrated.

The parameters of the linearized models previously developed are computed on the basis of

realistic input data.

In the successive Subsections 6.6.1 and 6.6.2 the techniques described in the Section 6.5 are

applied to solve the estimation Problem 1 and Problem 2, respectively. It is shown, in both

cases, that the structural requirement of strong observability holds for the resulting models,

and corresponding simulation results are illustrated and commented, which will confirm the

expected performance of the suggested observers. Section 6.8 states some final conclusion and

draws possible lines for next researches on the topic.
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6.3 Formulation of the Problem

Water flow dynamics in an open channel are governed by the system of Saint-Venant partial

differential equations [2]

∂S

∂t
+

∂Q

∂x
= w (260)

∂Q

∂t
+

∂(Q2/S)
∂x

+ gS

(
∂H

∂x
− I + J

)
=

1
2
(w − |w|)Q

S
(261)

where x ∈ [0, L] is the spatial variable (L being the channel length), t is the time variable, and

S(x, t), Q(x, t) and H(x, t) being the wet section, water flow rate and relative water level, re-

spectively. The term w = w(x, t) in the right-hand side of (260), (261) represents the infiltration.

J represents the friction term, which has the following expression

J =
Q|Q|
Di2

, Di = kS

(
S

P

) 2
3

. (262)

where k is the Strickler friction coefficient, P (x, t) being the transversal wet length and I is the

canal slope. We refer to canals with rectangular section, so if B is the constant canal width one

has that:

S = BH, P = B + 2H. (263)

Thus, on the basis of (263) model (260)-(261) can be rewritten in terms of the Q and H variables

only, and, in particular, eq. (260) modifies as follows

δH

δt
= − 1

B

δQ

δx
+

1
B

w. (264)

If the canal slope is sufficiently low, as it is the case, e.g., in irrigation channels, it can be

assumed subcritical flow condition. This makes it needed to complement (260)-(261) with two

boundary conditions (BCs), one upstream and one downstream (cfr. [2], sect. 2.1.4). Moreover,

since we are going to consider (a cascade of) water channels joined by hydraulic gates, which

allow to deliver a given upstream and downstream discharge, it appears an appropriate choice

that of imposing the discharge at the upstream and downstream boundaries as BCs, rather than

the water depth (cfr. [2], sect. 2.1.4). Then, we complement (264)-(261) with

Q(0, t) = QA(t), Q(L, t) = QB(t), (265)

and with initial conditions

H(x, 0) = H0(x), Q(x, 0) = Q0(x). (266)
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compatible with the considered BCs (265). It shall be noticed that in more complex conditions

(e.g. an intermediate situation where the flow along the channel is partly subcritical and partly

supercritical) one might need to specify more than two BCs and/or to refer to more involved

weak formulations of the BCs (see e.g. [28]), whose treatment appears out of the scope of this

chapter.

6.4 Collocation-based finite-dimensional model

In [10] it was shown that the Saint Venant equation can be effectively approximated by ordinary

differential equations of finite dimension using a collocation point Galerkin method. It has been

also shown that three collocation points placed at the canal upstream, middle, and downstream

points (say points A, M , and B, respectively) leads to a sufficiently accurate representation for

observation and control purposes. Consider the channel depicted in the Fig. 28, interconnecting

the upstream and downstream reservoirs through the adjustable gates #1 and #2, and subject

to uniform water infiltration and withdrawal concentrated in correspondence with the gate. By

evaluating equation (264) at the collocation points, and discretizing by finite-differences the

resulting spatial derivatives of the flow variable, let us recall the following dynamics ([10]) for

the state variables HA(t), HM (t) and HB(t):

ḢA(t) = 1
BL [−4QM (t) + 3QA(t) + QB(t)] + w(t)

B

ḢM (t) = 1
BL [QA(t)−QB(t)] + w(t)

B

ḢB(t) = 1
BL [4QM (t)−QA(t)− 3QB(t)] + w(t)

B .

(267)
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Figure 28: Single canal reach with infiltration loss.

The model can be simplified by expressing the upstream and downstream flow variables QA and
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QB as functions of the water levels and of the opening section of the gates. In the permanent

flow regime the next relations hold [7]:

QA = η1Σ1

√
2g(HB0 −HA) (268)

QB = QC + η2Σ2

√
2g(HB −HA2) (269)

where a withdrawal QC from the users is taken into account in the downstream flow balance,

η1 and η2 are the discharge coefficients of the upstream and downstream gates, respectively, Σ1

and Σ2 are the opening sections of the two gates, and HB0 and HA2 are, respectively, the water

levels within the upstream and downstream reservoirs.

Let us derive the dynamic relationship between the middle point flow variable QM and the

remaining system variables. Such a relation can be derived by applying a collocation based

discretization method to the second Saint Venant equation (261) (see [10, 4]).

Q̇M = ψq(QA, QB, QM ,HA,HM ,HB, w) (270)

The form of the nonlinear function ψq is [10, 4]

ψq(·) = gBHM

(
I +

HA −HB

L

)
+

(
2(QA −QB)

BL

)
QM

HM
(271)

+

(
HB −HA

BLH2
M

− g

K2BHM ( BHM
B+2HM

)
4
3

)
Q2

M

The above model (267)-(271) is going to be generalized in the next subsection 6.4.1 to represent

a cascade of canal reaches.

6.4.1 n-reaches cascade modeling

Now let us consider a cascade of n canal reaches connecting the two upstream and downstream

reservoirs, separated by n+1 adjustable gates, and subject to infiltration losses, spatially uniform

along each canal, as represented in the Figure 29.

By choosing three collocation points for each channel, and using the same notation as before to

denote the resulting points Ai, Mi, Bi (i = 1, 2, ..., n) the model (267)-(269) can be generalized

as follows
ḢAi = 1

BiLi
[−4QMi + 3QAi + QBi] + wi

Bi

ḢMi = 1
BiLi

[QAi −QBi] + wi
Bi

ḢBi = 1
BiLi

[4QMi −QAi − 3QBi] + wi
Bi

(272)

QAi = ηiΣi

√
2g(HBi−1 −HAi) (273)

QBi = QCi + QAi+1 = QCi + ηi+1Σi+1

√
2g(HBi −HAi+1) (274)
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Figure 29: Cascade of n canal reaches with infiltration losses.

where HAi, HMi and HBi (i = 1, 2, ..., n) are the state variables, QAi, QMi and QBi (i =

1, 2, ..., n) denote the flow at the collocation points, wi (i = 1, 2, ..., n) is the infiltration in the

i−th reach, ηj and Σj (j = 1, 2, ..., n + 1) are the discharge coefficients and the opening sections

of the i-th gate, and QCi is the widthdrawal request from the users. HB0 and HAn+1 represent

the constant levels in the upstream and downstream reservoirs.

Considering (273) and (274) into (272) one obtains a more compact expression for the systems’

nonlinear dynamics:

ḢAi = 1
BiLi

[fA(HBi−1,HBi, HAi,HAi+1, Σi,Σi+1)−QMi + QCi] + wi
Bi

ḢMi = 1
BiLi

[fM (HBi−1,HBi,HAi,HAi+1, Σi, Σi+1)−QCi] + wi
Bi

ḢBi = 1
BiLi

[fB(HBi−1,HBi,HAi,HAi+1, Σi, Σi+1) + 4QMi − 3QCi] + wi
Bi

(275)

with implicit definition of the nonlinear functions fA(·), fM (·) and fB(·).

The dynamic relationship between the middle point flow variable QMi and the remaining system

variables can be derived by generalizing the previously given relationship (270), together with

(273)-(274) as follows:

Q̇Mi = ψiq(QAi, QBi, QMi,HAi,HMi, HBi, wi) (276)

ψiq(·) = gBiHM

(
I +

HAi −HBi

Li

)
+

(
2(QAi −QBi)

BL

)
QMi

HMi
(277)

+

(
HBi −HAi

BiLiH2
Mi

− g

K2BiHMi( BiHMi
Bi+2HMi

)
4
3

)
Q2

Mi
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6.4.2 Linearized Model

The nonlinear model (275) can be linearized in a vicinity of the uniform flow condition (see[7]).

Let Qi (i = 1, 2, ..., n), denote the flow in the i-th pool in the uniform flow condition. Let also H i

(i = 1, 2, ..., n) be the corresponding water levels, and Σj (j = 1, 2, ..., n+1) be the corresponding

gates opening sections.

Define the corresponding deviation variables

hAi = HAi −H i, hMi = HMi −H i, hBi = HBi −H i, (278)

qMi = QMi −Qi, σj = Σj − Σj . (279)

where i = 1, 2, ..., n and j = 1, 2, ..., n + 1.

Relation (273)and (274) can be linearized as follows in a vicinity of the uniform flow condition

[7]

QAi = Qi + aiσi(t) + bi[hBi−1(t)− hAi(t)], (280)

QBi = QCi + Qi+1 + ai+1σi+1(t) + bi+1[hBi(t)− hAi+1(t)], i = 1, ...n (281)

with the coefficients

ai = ηi

√
2g(H i−1 −H i); bi = ηiΣi

√
2g√

2(Hi−1−Hi)
(282)

and

hAn+1 = 0, hB0 = 0. (283)

as a consequence of the fact that the water level in the upstream and downstream reservoirs is

supposed to keep constant.

Substituting (280)-(281) into (272)-(274), and considering the continuity conditions

Qi = Qi+1 + QCi, i = 1, ...n (284)

one obtains the linearized dynamics of the deviation level variables:

ḣAi = 1
BiLi

{−4qMi + 3aiσi(t) + 3bi[hBi−1(t)− hAi(t)]
+ ai+1σi+1(t) + bi+1[hBi(t)− hAi+1(t)]}+ wi

Bi

ḣMi = 1
BiLi

{aiσi(t) + bi[hBi−1(t)− hAi(t)]
− ai+1σi+1(t)− bi+1[hBi(t)− hAi+1(t)]}+ wi

Bi

ḣBi = 1
BiLi

{4qMi − aiσi(t)− bi[hBi−1(t)− hAi(t)]
− 3ai+1σi+1(t)− 3bi+1[hBi(t)− hAi+1(t)]}+ wi

Bi

(285)
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Now defining vectors

h = [hA1 hM1 hB1 hA2 ...hAn hMn hBn]T , h ∈ R3n (286)

σ = [σ1 σ2...σn+1]T , σ ∈ Rn+1 (287)

qM = [qM1 qM2...qMn]T , q ∈ Rn (288)

w = [w1 w2...wn]T , w ∈ Rn (289)

it is possible to rewrite the system (285) in the compact state space form

ḣ = Ah + Mσσ + MqqM + Mww (290)

with implicitly defined constant matrices A, Mσ, Mq and Mw of appropriate dimension. Vector

qM is governed by the nonlinear differential equation

q̇M = ψ(h, qM , σ, w) (291)

where

ψ(h, qM , σ, w) = [ψ1q(·), ψ2q(·), . . . , ψnq(·)]T (292)

and the functions ψiq(·) (i = 1, 2, ..., n) given in (277). Note that the nonlinear dynamics (291)-

(292) need not to be linearized since vector qM is going to be treated as an unknown input

of the systems, rather than as a part of the system state.

Since the first and last equation in (285) are not affected by the level variables hMi, it is possible

to consider a reduced-order version of system (290) where the state vector h is replaced by the

reduced-order version

h̃ = [hA1 hB1 hA2 ...hAn hBn]T , h̃ ∈ R2n (293)

The corresponding reduced-order state space model is given by

˙̃
h = Ãh̃ + M̃σσ + M̃qqM + M̃ww, (294)

whose matrices Ã, M̃σ, M̃q, M̃w are easily obtained by removing selected rows and columns with

index (2+3k), k = 0, 1, ..., n−1, from matrix A and rows with the same index from the matrices

Mσ,Mq,Mw of the full-order model (290).

6.5 Flow and infiltration estimation problem statement

In this section we make reference to the linearized dynamics (290) and its reduced-order form

(294), and we address two distinct state and disturbance estimation problems under the common
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constraint that only level measurements are allowed. Vector σ is supposed to be known,

while vectors w and qM are both unmeasurable. We cast the next problems to be tackled:

Problem 1. By measuring only a portion of the reduced-order state vector h̃, and assuming no

infiltrations (w = 0), asymptotically estimate the flow vector qM and the unmeasured elements

of vector h̃.

Problem 2. By measuring the full vector h, reconstruct the infiltration vector w and the flow

vector qM in finite time.

Both Problems 1 and 2 will be solved by making use of unknown-input observers (UIO) under

the requirement of “strong observability” [10, 15] for certain subsystems that shall be specified

later on. An UIO design procedure for general, strongly observable, linear time-invariant systems

with unknown inputs (LTISUI) is used in the next Section 6.6. The successive subsections 6.6.1

and 6.6.2 address the Problem 1 and 2, respectively, by exploiting the presented UIO design

framework.

6.6 Case study and simulation results

In this section we’ll apply statements of chapter 2 to solve the problem formulated in section

6.5. The vector state x of chapter 2 is now the vector h whose components are the deviations

of the water level from the steady state value.

We shall consider a test canal with rectangular section and three reaches with the next realistic

parameters:

- Number of reaches: n = 3;

- Lengths: L1 = 4000m; L2 = 5000m; L3 = 2000m;

- Widths: B1 = B2 = B3 = 2m;

- Discharge coefficient: η = 0.6;

- Roughness coefficient: Ks = 50m
1
3

s ;

- Slope: I = 0, 001;

- Water level in upstream reservoir: HB0 = 3m;

- Water level in downstream reservoir: HA4 = 0.5m;
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- Withdrawals (m3

s ): QC1 = 2, QC2 = 2, QC3 = 1,

The opening section of the 4− th gate is kept constant :

Σ4 = 0.538m2 (295)

The uniform flow condition is characterized by the following values:

- Flow rates (m3

s ): Q1 = 6.017, Q2 = 4.007, Q3 = 1.966.

- Levels (m): H1 = 2, 40, H2 = 1.72, H3 = 0.99

- Opening sections (m2): Σ1 = 2.923, Σ2 = 1.829, Σ3 = 0.866;

The opening sections of the gates 1, 2 and 3 are adjusted according to

Σ1 = Σ1 + 0.8sin[(2π/1000)t]
Σ2 = Σ2 + 0.5sin[(2π/1000)t]
Σ3 = Σ3 + 0.3sin[(2π/1000)t]

(296)

and the infiltration variables are set as

w1 = w2 = w3 = 0.1e−0.001t; (297)

Considering the above mentioned parameters, the matrices of the “full order” linearized model

(290) turn out to be

A = 10−3




−1.9 0 0.4 −0.4 0 0 0 0 0
−0.6 0 −0.4 0.4 0 0 0 0 0
0.6 0 −1.1 1.1 0 0 0 0 0
0 0 0.9 −0.9 0 0.1 −0.1 0 0
0 0 0.3 −0.3 0 −0.1 0.1 0 0
0 0 −0.3 0.3 0 −0.4 0.4 0 0
0 0 0 0 0 1 −1 0 0.3
0 0 0 0 0 0.3 −0.3 0 −0.3
0 0 0 0 0 −0.3 0.3 0 −0.8




(298)

Mσ = 10−3




0.8 0.3 0 0
0.3 −0.3 0 0
−0.3 −0.8 0 0

0 0.7 0.2 0
0 0.2 −0.2 0
0 −0.2 −0.7 0
0 0 1.7 0.5
0 0 0.6 −0.5
0 0 −0.6 −1.4




(299)
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Mq = 10−4




−5 0 0
0 0 0
5 0 0
0 −4 0
0 0 0
0 4 0
0 0 −10
0 0 0
0 0 10




, Mw =




0.5 0 0
0.5 0 0
0.5 0 0
0 0.5 0
0 0.5 0
0 0.5 0
0 0 0.5
0 0 0.5
0 0 0.5




, (300)

The performance of the observer is tested by means of simulations made in the Matlab-Simulink

environment. The system and the observers are integrated by fixed step Runge-Kutta method,

with the integration step Ts = 10−4s. The actual level error variables are initialized to the value

0.1 and all the observer’s initial conditions are set to zero.

The actual QM (t) profiles are generated by solving the corresponding system of nonlinear dif-

ferential equations (291)-(292), with the initial conditions QM (0) = [6.017, 4.007, 1.966].

6.6.1 Flow estimation with partial level measurements and no infiltration (Prob-
lem 1)

Consider the reduced-order linearized dynamics (294) by assuming no infiltration (i.e., w = 0)

according to the statement of Problem 1 (see Section 4):

˙̃
h = Ãh̃ + M̃σσ + M̃qqM , h̃ ∈ R6. (301)

The matrices Ã, M̃q, M̃σ and M̃w of the reduced order model (294) are obtained removing the

rows and column with index 2, 5 and 8 from the matrix A and the rows with the same indexes

from the matrices Mq, Mσ and Mw given in (298)-(300). The third element h̃A2 of vector h̃ is

supposed to be not measured, according to the next output equation

ỹ = [h̃A1, h̃B1, h̃B2, h̃A3, h̃B3] = C̃h̃, (302)

It is worth noting that system (301)-(302) is a special case of the general dynamics (86) with

the modified notation h̃ = x, σ = u, qM = ξ.

The state and output transformation matrices take the following form:

T̃ = 10




−0.05 −0.05 0.05 0.05 0 0
0.04 0.04 0.04 0.04 0.05 0.05
−0.04 −0.04 −0.04 −0.04 0.05 0.05
−100 100 0 0 0 0

0 0 0 250 0 0
0 0 0 0 −50 50




(303)
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Ũ = 10




−0.05 −0.05 0 0.05 0.05
0.05 0.05 0 0.05 0.05
−100 100 0 0 0

0 0 250 0 0
0 0 0 −50 50




(304)

By computing the matrices of the transformed system dynamics, it can be readily verified that

(Ā11, C̄1) is an observable pair, which confirms that the matrix triplet (Ã, M̃q, C̃) is strongly

observable, hence the proposed design method can be applied to reconstruct, both, the unknown

vector qM and the unmeasured level variable hA2. The suggested scheme (94),(98), (104)-(106),

has been implemented with the observer gain matrix

L̃ = 10−3



−1.7 2.1
−0.6 −3.0
−3.3 −0.9


 (305)

that assign the observation error dynamics the desired spectrum of eigenvalues [-0.05,-0.05,-

0.005]. The gain parameters α and λ of the unknown input reconstruction algorithm are set

according to (106) as

α = 1.5
√

5, λ = 5. (306)

The next Figures 41 show the actual and estimated profiles of the unknown flow variable qM1

during the TEST 1, respectively. The left and right plot focus on the transient and long term

behaviour. After a transient of less then twenty seconds, the estimated flow converges towards

the actual profile. The estimation performance for the flow variables qM2 and qM3 is almost

equivalent and it is not depicted for brevity. The reconstruction of of the unmeasured level
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Figure 30: Actual and estimated flow variable qM1 in the TEST 1

variable hA2 is shown in the Figure 31, whose left and right plot show the transient and long

term behaviour, respectively.
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Figure 31: Actual and estimated level variable hA2 in the TEST 1

6.6.2 Flow and infiltration estimation with full level measurements (Problem 2)

We consider in this section the full-order model (290), reported as follows

ḣ = Ah + Mσσ + MqqM + Mww (307)

and we assume the availability for measurement of the full state vector h, (i.e. the considered

output is y = h). The problem here is to reconstruct the unknown flow vector qM and the

infiltration vector w after a finite observation transient time. The matrices of system (307)

were given in (298)-(300). System (307) along with the considered output equation y = h can

be rewritten as

ḣ = Ah + Mσσ + F ·
[

qM

w

]

y = h
, F = [Mq Mw] (308)

Since the state vector is supposed to be fully available, a simplified version of the design method-

ology previously described can be applied to reconstruct the unknown vectors qM and w (see

Remark 2). The state and output transformation matrices T and U are now coinciding and

taking the form:

T = U =
[

F⊥
[
F T F

]−1
F T

]
(309)
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which leads to

T =




0.2 −0.3 0.2 −0.3 0.7 −0.3 0.2 −0.3 0.2
0.2 −0.5 0.2 −0.1 0.1 −0.1 −0.3 0.7 −0.3
0.3 −0.6 0.3 0.2 −0.4 0.2 0.2 −0.3 0.2

−1000 0 1000 0 0 0 0 0 0
0.7 0.7 0.7 0 0 0 0 0 0
0 0 0 −1250 0 −1250 0 0 0
0 0 0 0.7 0.7 0.7 0 0 0
0 0 0 0 0 0 −500 0 500
0 0 0 0 0 0 0.7 0.7 0.7




(310)

By computing the matrices of the transformed system dynamics, it can be readily verified that

(Ā11, C̄1) is an observable pair, that confirms that the matrix triplet (A, [Mq, Mw], I) is strongly

observable.

Since the state vector is already available, only the observer (110), (104)-(106),(100),(103) should

be implemented for reconstructing the unknown input, which provides the finite time esti-

mation condition (111). The gain parameters α and λ of the observation algorithm are set

as

α = 1.5
√

5, λ = 5. (311)

The next Figures 32 shows the actual and estimated profiles of the unknown flow variable qM2

during the TEST 2, of duration 100 seconds. The left and right plot show the transient and long

term behaviour. After a transient of about half a second, the estimated flow converges towards

the actual one. The estimation performance for the flow variables qM1 and qM3 is almost

equivalent and it is not shown for brevity. The reconstruction of of the unknown infiltration
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Figure 32: Actual and estimated flow variable qM2 in the TEST 2

variable w3 is shown in the Figure 33. The left and right plot show the transient and long term

behaviour, respectively.
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Figure 33: Actual and estimated infiltration variable w3 in the TEST 2

6.7 Tests using high accuracy solvers

In the next series of tests (TEST 3), the level measurements have been generated by solving the

original Saint Venant system of PDEs using the Preissmann implicit finite-difference solution

scheme. Implicit schemes which can use large time steps without any stability problem are in

fact more widely applied than more traditional finite difference solvers. The Preissmann scheme

is the most widely applied implicit finite difference method because of its simple structure with

both flow and geometrical variable in each grid point. Following the description of the method

made in [2]) , the solution and its spatial and temporal derivatives are approximated by means

of the next expressions

f(x, t) = θ
[
φfk+1

j+1 + (1− φ)fk+1
j

]
+ (1− θ)

[
φfk

j+1 + (1− φ)fk
j

]
(312)

∂f(x, t)
∂t

= φ
fk+1

j+1 − fk
j+1

∆t
+ (1− φ)

fk+1
j − fk

j

∆t
(313)

∂f(x, t)
∂x

= θ
fk+1

j+1 − fk+1
j

∆x
+ (1− θ)

fk
j+1 − fk

j

∆x
(314)

where f(x, t) is the hydraulic variable of concern (water level or discharge), ∆t and ∆x are

the time and space discretization steps, fk
j = f(j∆x, k∆t) and θ, φ are weighting coefficients.

Parameters φ and θ were both set to 0.5 in our resolution model. The time step was set as

0.1s, and the space discretization step was chosen separately for each canal in order to have ten

spatial solution nodes per canal.

In the TEST 4, the performance of the suggested scheme has been compared with that of an

extended Kalman filter that considers the unmeasurable infiltrations as constant parameters

described by a fictitious dynamic relations ẇi = 0. The resulting nonlinear dynamic model has
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Figure 34: Actual and estimated flow variable qM2 in the TEST3. Left plot: zoom on transient.
Right plot: long term behaviour.
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Figure 35: Actual and estimated infiltration variable w3 in the TEST3. Left plot: zoom on
transient. Right plot: long term behaviour.

been constructed by properly augmenting (275) and (276)-(277). The observer gain matrix has

been selected coinciding with the constant matrix of the steady Kalman filter which considers the

linearized approximation of the underlying dynamics. The implemented EKF has been supplied

with the level measurements provided by the Preissmann solution scheme.

As shown in the figure 36, the flow and infiltration reconstruction performance are acceptable

but slightly less accurate as compared to the previously obtained results with the proposed

methodology. We do not claim, however, any superiority of our method over the EKF as

this would require much deeper investigations. It can be just commented that our method is

provably robust against the presence of time varying unmeasurable infiltration and discharges,

while effectiveness of the EKF relies on their ”slowly varying” nature.
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Figure 36: Actual and estimated flow variable qM2 (left plot) and infiltration variable w3 (right
plot) in the TEST4

In the conclusive TEST 5, parameter uncertainty has been introduced by randomly corrupting

all the parameters of the model so as to introduce a maximal percentage error of 10%. This

has been done by multiplying each parameter by a random coefficient in the interval [0.9, 1.1].

A different coefficient for each model parameter has been used. Within the present TEST 5,

the level measurements computed using the Preissmann solution scheme were used. Figure 37

shows the flow and infiltration reconstruction performance, which is deteriorated, as compared

to the results of TEST 3 where no parameter mismatches were considered, but keep relatively

acceptable.
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Figure 37: Actual and estimated flow variable qM2 (left plot) and infiltration variable w3 (right
plot) in the TEST5
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6.8 Conclusion

A linear UIO and a nonlinear sliding mode disturbance observer have been combined to recon-

struct water level, discharge and infiltration variables in open channel irrigation canals connected

in cascade and subject to unknown time-varying infiltrations. The underlying, collocation based,

nonlinear dynamics are linearized around the subcritical uniform flow condition. The UIO and

DO design procedures are constructively illustrated along this chapter. Simulation results using

realistic data are discussed to verify the effectiveness of the proposed schemes.

The linearization of the model could be possibly avoided by generalizing the the strong-observability

based UIO and SMDO design method to the nonlinear case. This, however, needs further in-

vestigation. Other interesting tasks for next research are the decentralization of the schemes

(e.g. by consensus-based methodologies), and/or their use to address observer-based controller

design problems. Preliminary results were recently presented (see [5]).
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7 Fault Detection and Compensation in Open-Channel Hydraulic
Systems

7.1 Introduction

The main aim of this chapter is the development of a new actuator fault-detection algorithm

for a cascade of canal reaches with control gates. The possibility of compensating the faults is

also investigated. By measuring level variables only, and by assuming a negligible infiltration,

we address the following tasks

i.) finite-time reconstruction of additive gate actuator faults;

ii.) feedback compensation of the faults in the control gates.

iii.) finite-time estimation of the system discharge variables.

In [24], the problem of estimating the discharge and the (possibly time-varying) infiltration was

addressed by a UIO and sliding mode scheme conceptually equivalent to the one presented in

this chapter. In the above work, however, faults in the control gates were not allowed.

This chapter is organized as follows. Section 7.2 recalls the collocation-based model for the

considered cascade of n canal reaches. In Section 7.3 the estimation and fault detection problem

is formulated and a methodology for the finite-time estimation of the discharge variable and

reconstruction of additive faults affecting the control gates is described, along with its application

for compensating the effect of the faults. In Section 7.4 a case study of a canal with rectangular

section and three reaches is illustrated, and the parameters of the corresponding linearized model

are computed on the basis of realistic input data. Simulation results are discussed. Section 7.5

states some final conclusion and draws possible lines for next researches.

7.2 Open channel hydraulic system modeling

Under the assumption of negligible infiltration, water flow dynamics in an open channel are

governed by the system of Saint-Venant partial differential equations [2], as we saw in the

previous chapter.

Let us recalled the linearized dynamics of the deviation level variables, stated in chapter 6:
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ḣAi = 1
BiLi

{−4qMi + 3aiσi(t) + 3bi[hBi−1(t)− hAi(t)]
+ ai+1σi+1(t) + bi+1[hBi(t)− hAi+1(t)]}

ḣMi = 1
BiLi

{aiσi(t) + bi[hBi−1(t)− hAi(t)]
− ai+1σi+1(t)− bi+1[hBi(t)− hAi+1(t)]}

ḣBi = 1
BiLi

{4qMi − aiσi(t)− bi[hBi−1(t)− hAi(t)]
− 3ai+1σi+1(t)− 3bi+1[hBi(t)− hAi+1(t)]}

(315)

Now, let us assume that the control gate deviation variables σi are composed of a nominal,

desired, value σdes
i (normally zero) and an additive unmeasurable fault signal σfault

i , i.e.

σi = σdes
i + σfault

i (316)

Defining vectors

h = [hA1 hM1 hB1 hA2 ...hAn hMn hBn]T , h ∈ R3n (317)

qM = [qM1 qM2...qMn]T , q ∈ Rn (318)

σdes = [σdes
1 σdes

2 ...σdes
n+1]

T , σdes ∈ Rn+1 (319)

σfault = [σfault
1 σfault

2 ...σfault
n+1 ]T , σfault ∈ Rn+1 (320)

it is possible to rewrite the linearized system (315) in state space form

ḣ = Ah + MqqM + Mσσdes + Mσσfault (321)

with implicitly defined constant matrices A, Mσ and Mq of appropriate dimension. Vector qM

is governed by the nonlinear differential equation

q̇M = ψ(h, qM , σ) (322)

where

ψ(h, qM , σ) = [ψ1q(·), ψ2q(·), . . . , ψnq(·)]T (323)

and the functions ψiq(·) (i = 1, 2, ..., n) were given in (277). Note that the nonlinear dynamics

(322)-(323) need not to be linearized since vector qM is going to be treated as an unknown

input to the system, rather than as a part of the system state, hence the relation (322) is only

used for numerical simulation purposes and the underlying parameters of the nonlinear functions

ψiq(·) in the right hand side of definition (323) can be therefore assumed uncertain.

7.3 Problem statement and its solution

In this chapter we make reference to the linearized dynamics (321) of the deviation variables,

which can be rewritten as

ḣ = Ah + Mσσdes + Fξ, F = [Mq Mσ] (324)
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where vector

ξ =
[

qM

σfault

]
∈ R2n+1 (325)

collects all the unknown inputs to the system. We make the next Assumptions

Assumption 1 The state vector h is measured, and the matrices A, Mq, Mσ of system (324)

are known.

Assumption 2 Vector σdes is supposed to be known, while vectors σfault and qM are both un-

measurable.

Assumption 3 Matrix F is full rank.

Assumption 4 There exist known a-priori constants Σd and QMd such that

‖σ̇fault‖1 ≤ Σfault
d , ‖q̇M‖1 ≤ QMd (326)

where ‖ · ‖1 denotes the 1-norm of the respective vector argument.

The task is to reconstruct the fault vector σfault and the discharge variables vector qM in finite

time under the above statements and assumptions.

For the generic matrix ∆ ∈ Rnr×nc with rank ∆ = r, we define ∆⊥ ∈ Rnr−r×nr as a matrix

such that ∆⊥∆ = 0 and rank∆⊥ = nr − r. Matrix ∆⊥ always exists and, furthermore, it is not

unique. Let ∆+ = [∆T ∆]−1∆T denote the left pseudo-inverse of ∆ such that ∆+∆ = Inc , with

Inc being the identity matrix of order nc.

Define

h̄2 = F+h, h̄2 ∈ R2n+1; (327)

The next unknown-input estimator is proposed

ż2 = F+h + F+Mσσdes + v1 + v2 (328)

with the output injection terms v1 and v2 defined as

v1 = k1(h̄2 − z2) + k2

∣∣h̄2 − z2

∣∣1/2
sign (h̄2 − z2) (329)

v̇2 = k3 sign (h̄2 − z2), v2(0) = 0. (330)

where k1, k2, k3 are proper design tuning constants. The convergence properties of the above

unknown-input estimator are established in the next
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Theorem 15 Consider system (324), satisfying the Assumptions 1-4. and the estimator (328)-

(330), based upon the transformations (327), and with the gain parameters k1, k2, k3 satisfying

the next inequalities

k1 > 2
√

ρ k2 > 0 k3 > ρ
√

k1 ρ = Σfault
d + QMd (331)

Then there is a finite T ∗ such that exact reconstruction of the unknown input vector ξ is achieved

by means of the proposed estimator according to

v2(t) = ξ(t), ∀t ≥ T ∗. (332)

Proof of Theorem 15

Consider the error variable ε = h̄2 − z2. By considering the plant and observer dynamics (324),

(328)-(330), the error time derivative takes the form

ε̇ = ξ(t)− v1(t)− v2(t) = ξ(t)− k1ε− k2|ε|1/2sign(ε)− v2(t) (333)

By making the change of variable

π(t) = ξ(t)− v2(t) (334)

one can augment and rewrite (333) as

ε̇ = −k1ε− k2|ε|1/2sign(ε) + π(t) (335)

π̇ = −k3sign(ε) +
d

dt
ξ(t) (336)

Stability of (335)-(336) is more easily analyzed by considering separately the decoupled second-

order dynamics

ε̇i = −k1εi − k2|εi|1/2sign(εi) + πi(t) (337)

π̇i = −k3sign(εi) +
d

dt
ξi(t) (338)

where the subindex i = 1, 2, ..., 2n + 1 denotes the i-th entry of the corresponding vector. The

derivative term d
dtξi(t) can be bounded as follows by virtue of the Assumption 4

∣∣∣∣
d

dt
ξi(t)

∣∣∣∣ ≤ Σfault
d + QMd (339)

Stability of a class of systems including the dynamics (337)-(339) above was already investigated

in the literature (cfr. [3], Th. 5), where, particularly, the global finite time stability of the system

was demonstrated by means of the radially-unbounded non-smooth Lyapunov function

Vi = ξT
i Hξi, i = 1, 2, ..., 2n + 1 (340)
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ξi =



|εi|1/2sign(εi)

εi

πi


H =




(4k3 + k2
2) k1k2 −k2

k1k2 k12 −k1

−k2 −k1 2


 (341)

where εi and zi denote the i-th entry of vector ε and z,respectively. It turns out after the

appropriate computations (cfr. [3], Proof of Th. 5) that the tuning conditions (331) imply the

existence of two positive constants γ1 and γ2 such that

V̇i ≤ −γ1Vi − γ2

√
Vi, γ1, γ2 > 0 (342)

The inequality (342) guarantees the global finite time convergence of Vi to zero, and, hence,

εi and πi to zero starting from some finite moment T ∗i > 0. By the definition (334) of π(t), it

directly follows the condition (332) with

T ∗ = max
i

T ∗i (343)

Theorem 15 is proven. ¤

It follows from Theorem 15 that vector v2, which after a finite time matches the unknown input

vector ξ, should be understood in terms of the decomposition

v2 =
[

q̂M

σ̂fault

]
, q̂M ∈ Rn, σ̂fault ∈ Rn+1 (344)

Thus the first n entries of vector v2 represent the estimates of the discharge variables at the

middle points, and the successive n+1 elements represent the estimates of the actuator additive

faults. Theorem 15 ensures the finite time convergence of both the estimates q̂M and σ̂fault

towards the corresponding actual variables qM and σfault, respectively.

7.3.1 Compensation of the actuator faults

The effect of nonzero actuator faults is that of steering the system away from the uniform flow

condition. We exploit the possibility of compensating the detected faults by adjusting the desired

reference opening deviations σdes in such a way that the effect of the fault is canceled, i.e.

σdes = −σ̂fault (345)

where σ̂fault is the estimated fault provided by the previously proposed scheme. The compen-

sated dynamics is

ḣ = Ah + Mσ(σfault − σ̂fault) + MqqM (346)

The unknown input estimator (328) being specified with the relation (345), it turns out that

Theorem 15 is still is force. In fact, σdes cancels out from the error time derivative (333), and
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thus the convergence properties of Theorem 15 hold irrespectively of σdes. Thus the convergence

σ̂fault → σfault is achieved within a finite time interval, after which the compensated system

becomes

ḣ = Ah + MqqM (347)

being insensitive to the faults.

7.4 Case study and simulation results

We shall consider a test canal with rectangular section and three pools with the realistic param-

eters of the previous chapter:

The opening sections of the four gates are selected as

Σi = Σi + σdes
i + σfault

i (348)

The additive fault vector is set as

σfault
1 = σfault

3 = σfault
4 = 0; (349)

σfault
2 =

{
0 t < 250

0.5− 0.5cos
(

2π
1000(t− 250)

)
t ≥ 250

(350)

and the desired deviations σdes
i preliminarily set to zero.

Considering the above mentioned parameters, the matrices of the linearized model (324) turn

out to be the same of Chapter 6 (298)-(299)-(300).

Matrix F+ is given by

F+ =




−624.9 3041.4 1375.1 −0.3 −0.2 −0.3 −10.3 18.5 −10.3
1405.7 −2342.9 1405.7 −2953.3 −1362.6 −453.3 42.0 −75.6 42.0
1438.5 −2397.6 1438.5 −3487.4 −2789.9 −3487.4 −1083.0 −850.5 −83.0
625.1 2291.5 625.1 −0.2 −0.1 −0.2 −6.1 11.0 −6.1
624.9 −1041.5 624.9 0.2 0.2 0.2 7.1 −12.8 7.1
624.6 −1041.0 624.6 −1514.2 −1211.4 −1514.2 30.2 −54.4 30.2
758.1 −1263.5 758.1 −1837.9 −1470.3 −1837.9 −650.3 −829.4 −650.3




(351)

The performance of the observer is tested by means of simulations made in the Matlab-Simulink

environment. The system and the observers are integrated by fixed step Runge-Kutta method,

with the integration step Ts = 10−3s. The actual level error variables are initialized to the value

0.1 and all the observer’s initial conditions are set to zero.

The actual QM (t) profiles are generated by solving the corresponding system of nonlinear dif-

ferential equations (322)-(323), with the initial conditions QM (0) = [6.017, 4.007, 1.966].
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The gain parameters α and λ of the observation algorithm are set as

k1 = 4.24, k2 = 1, k3 = 9.27. (352)

The next Figure 38 shows the actual and estimated profile of the unknown fault variable σfault
2

during the TEST, of duration 750 seconds. The reconstruction of of the unknown flow variable
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Figure 38: Actual and Estimated fault of σfault
2

QM2 is demonstrated in the Figure 39.
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Figure 39: Actual and Estimated Flow Variable QM2

After the appearance of the fault, the uniform flow condition is lost.

By using the compensation strategy (345) the capability of reconstructing the fault is maintained,

as shown in Figure (40), The system operating point now stays in the uniform regime condition

also after the appearance of the fault, as shown in Figure (41).
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Figure 40: Actual and Estimated fault of σfault
2 after the application of compensation strategy
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Figure 41: Actual and Estimated flow variable QM2 after the application of compensation
strategy

7.5 Conclusion

A linear UIO and a nonlinear sliding mode disturbance observer have been combined to re-

construct discharge and faults of gate variables in open channel irrigation canals connected

in cascade. The underlying, collocation based, nonlinear dynamics are linearized around the

subcritical uniform flow condition. The UIO and DO design procedures are constructively il-

lustrated along this chapter. Simulation results using realistic data are discussed to verify the

effectiveness of the proposed schemes.

The linearization of the model could be possibly avoided by generalizing the the strong-observability

based UIO and SMDO design method to the nonlinear case. This, however, needs further in-
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vestigation. Other interesting tasks for next research are the decentralization of the schemes

(e.g. by consensus-based methodologies), and/or their use to address observer-based controller

design problems.
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8 Conclusions

The first part of the thesis, Chapter 1 - 3, has been devoted to introduce some indispensable

concepts inherent the Unknown Input Observers and Consensus Algorithm. The main method

for estimation in presence of Unknown Input have been described with particular attention to

the concept of Strong Observability, well known in literature. Chapter 4 provides a solution

of the problem of the decentralized estimation using Consensus Algorithm with Distributed

Kalman Filters. Particular attention has been given to the connectivity properties for a system

of subsystems to be stabilizable. In order to be complete from the optimization point of view,

the chapter focuses on those techniques that enable the choice of consensus gains by solving a

Lyapunov equation.

In Chapter 5 a new algorithm for the decentralized estimation in presence of deterministic

Unknown Input was presented. It was proved that in the case in which the property of Strong

Observability for the subsystems and Quasi-Strongly Connectiveness for the Interconnection

Graph, it is possible reconstruct both state and unknown input. The procedure was illustrated

by same numerical illustration.

In Chapter 6, we have focused our attention into the problem of state estimation in Open Channel

Hydraulic System. Firstly, considering a single reach canal, with the measure of the flow up

stream and downstream, supposing a constant infiltration, an algorithm for the estimation of the

flow in the middle of the canal and da infiltration is proposed. After, still in chapter 6, we have

the same problem but with more stringent condition: a cascade of n-canal reach is considered,

with no flow measurements and with time varying infiltration. Here the theory of UIO has

helped us to discover new algorithm in which is possible to estimate flow and infiltration. We

have also showed how is possible to reconstruct unmeasured water levels in the case of absence of

infiltration. Some numerical example has been proposed and simulation results have been shown.

In Chapter 7, in Open Channel Hydraulic Systems, the UIO theory has been used to design the

reconstruction of actuator fault of gates. The proposed observers, which makes use of a sliding

mode controller algorithm, permits the direct reconstruction of the fault and it’s been shown

how the injection of the reconstructed fault determine compensation and allows to maintain

the desired flow rate. Experimental results made on simulation confirm the effectiveness of the

proposed schemes.

Among possible lines for future investigations it appears interesting to embed the suggested

approaches into novel, consensus based, fault tolerant control systems for nonlinear uncertain

processes.
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More significant and practically relevant industrial applications of the developed approaches are

devised in the framework of the previously mentioned PRODI project.
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