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Abstract

Computer vision and geometry processing are often see as two different and,
in a certain sense, distant fields: the first one works on two-dimensional data,
while the other needs three dimensional information. But are 2D and 3D data
really disconnected?

Think about the human vision: each eye captures patterns of light, that are
then used by the brain in order to reconstruct the perception of the observed
scene. In a similar way, if the eye detects a variation in the patterns of light,
we are able to understand that the scene is not static; therefore, we’re able to
perceive the motion of one or more object in the scene.

In this work, we’ll show how the perception of the 2D motion can be used in
order to solve two significant problems, both dealing with three-dimensional
data. In the first part, we’ll show how the so-called optical flow, representing
the observed motion, can be used to estimate the alignment error of a set
of digital cameras looking to the same object. In the second part, we’ll see
how the detected 2D motion of an object can be used to better understand its
underlying geometric structure by means of detecting its rigid parts and the
way they are connected.
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Introduction iii

Introduction

The expression Computer Graphics is usually referred to the process of creat-
ing and manipulating images using the computer. Even if computer graphics
exists since 1960s, only in the last two decades it has become a significant field
of study and research, thanks to applications such as medical aid, automatic
surveillance, robotics, but also video-games and movies. However, the expres-
sion Computer Graphics doesn’t fit very well the different types of applications
and purposes of this field.

We can distinguish between two different main areas:

¢ Computer Vision
e Geometry Processing

In this work, we’ll show that computer vision and geometry processing may
not be so distant as one can think. In the first part, we will study if a common
computer vision technique (namely the optical flow), that uses the perceived
motion of the objects in a scene, is suitable to solve a typical geometry pro-
cessing task such as the camera bundle adjustment, while in the second part,
we’ll show how the perception of the motion can be used to perform a geometry
processing task such as the rigid-part segmentation of a deforming shape.

Computer Vision has the aim to estimate properties, geometric and dy-
namic, of the 3-D world from one or more digital images [168]. Using a less
formal and more poetic definition, Computer Vision makes the computer able
to see. Of course, we are not referring to the physical device that handles the
acquisition of the images (the camera); instead, we are referring to the ability of
the machine to correctly understand the image that the computer has acquired,
and eventually use this information in order to take some action. For example,
a robot, equipped with one or more small cameras, can navigate through a
room, avoiding obstacles, using only the information of the surrounding en-
vironment or even in an open space [24, 68,99, 130, 153, 161, 166, 184], using
information obtained by the camera or combining them with other information
obtained by different devices. Most of these works try to emulate the vision of
the insects, particularly of bees, which is probably the simplest biological vision
system. Other fields of computer vision try to emulate the human vision, in
order to accomplish different goals, as for the reconstruction of an object from
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a series of images, or the detection of a specific person in a crowd, and so on.

Figure 1: An example of computer vision application: optical flow for road
navigation.

Digital Geometry Processing is a relatively new field of computer sci-
ence, related to both graphics and geometry, focused on the efficient analysis
and manipulation of three dimensional geometric data [27]. Typical opera-
tions include surface reconstruction from point samples, filtering operations for
noise removal, geometry analysis, shape simplification, geometric modeling, in-
teractive design or even understanding the underlying structure of the object
itself [27,97,105,117,169]. All those applications and techniques have in com-
mon the fact that they work almost exclusively on the geometric information
encoded in the shape, such as the position of the points in the space, or the
normals of the points, without taking into account other information, such as
color information or motion. The reason behind the importance of geometry
processing is the fact that digital objects (so-called polygon meshes) have be-
come increasingly popular in recent years, and are nowadays used intensively
in many areas of computer graphics (computer-aided geometric design, com-
puter games, movie production). The geometry processing techniques overlap,
in some way, the shape analysis field, that is, the field aiming to analyze
geometric shapes, usually performing some statistical analysis on the shape
itself [151,156].

Those two fields, apparently different, may work together in order to solve sev-
eral problems. This is the case of the 3D reconstruction using stereo vision
from images as described in [121] and [102]: given a pair of images represent-
ing the same object from two slightly different points of view, one can use the
correspondence of the significant points in the two images in order to infer
the position of the point in the three dimensional space by triangulation; the
results can be improved adding information about the position of the cameras
where the images have been taken. The stereo reconstruction is one of the few
and classic example of synergy between these two fields, but there are also dif-
ferent problems, such as image-to-geometry registration, or shape from motion
segmentation, that are usually solved in other ways, can be successfully solved
combining techniques and algorithms from both computer vision and geometry
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processing, as it will be shown in the remaining of this work. Before continuing,
we need to spend some more words about the idea of shape and motion, which
links all the section of the work here presented, and about the cultural heritage,
which is the field of interested where this work should be placed.

Figure 2: An example of geometry processing application (mesh denoising,
on the left) and two examples of shape analysis (skeletonization in the mid-
dle, segmentation on the right). Both fields require to manipulate the three-
dimensional data representing a shape.

Shape and motion

When a human being observes a scene, the light from the environment hits its
retina and generates a number of signals that the human brain translate to
a retinal image. When there’s a motion between the observer and the scene,
the moving pattern of lights falls upon the retina, creating the perception of
the motion of the scene. The same principle holds for synthetic non-human
devices, such as cameras and video-cameras: the three dimensional scene is
captured and discretized as a two-dimensional image, and the motion of the
scene is captured by a number of different images. The easiest way to perceive
the motion of a scene is to compare two or more images of the same scene,
taken in different times, in order to capture the absolute motion of the scene,
or from different viewpoints, in order to capture the relative motion between
the observer and the scene. The disparity between images can be represented
as a vector field, describing the motion of the components of the scene, and can
provide a number of information about the structure of both scene and motion.
Computing how the image changes when the observer moves in a given manner
relative to the scene of a specified geometry is not a big deal, but the inverse
problem of inferring the structure of both the scene and the motion from the
apparent motion of the image is not a trivial task. In the next chapter, the
theoretical foundations of the optical flow will be introduced and developed,
and it will be clear how information derived from apparent motion can be used
to reconstruct motion and shape structure.
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Cultural Heritage

The field of digital cultural heritage is one of the applications of Computer
Graphics more specifically, it’s the branch of the Computer Graphics that deals
with the acquisition, processing and visualization of human artifacts having
some kind of historical and cultural value; see [66]. Typically, the aim of DCH
process is to obtain a digital three-dimensional model of the artifact, that has
to be as more detailed and accurate as possible, in order to allow to the user
to perform reliable analysis and measurement. The definition of digital models
includes a large number of artifacts, from Greek vases, to Pompei’s graffiti [13]
to the statues of the Renaissance [50] [150], but also a number of large-scale
models, such as the digital representation of churches, palaces, or even entire
artistic sites (see [39], [41], [22], [62], [14], [42] for examples). The possible ap-
plications of DCH are the automatic classification of an artifact (see [61]), its
virtual inspection and restoration, that can be a useful aid for the real restora-
tion process (such as [43], [17], [63], [40]), or the creation of large databases of
artistic objects (such as [56]), that can be used to create virtual museums [48].
Part of this work has been developed in cooperation with the Visual Comput-
ing Lab, one of the state-of-the-art laboratory in this particular field of research.

Figure 3: Some examples of applications of Cultural Heritage.
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Chapter 1

Background

The goal of this work is to use techniques from Computer Vision in order to
solve (or, at least, try to solve) problems that are strictly related to the field
of Geometry Processing and Shape analysis. Particularly, this work will focus
on two different problems:

e Image-to-geometry registration
e Shape segmentation from motion

In order to better understand the problems of the image-to-geometry reg-
istration, we propose, in the first section of this chapter, a brief survey of the
techniques for the acquisition of three dimensional shapes; then, in the remain-
ing part of this chapter, we will focus with more detail on the problem of the
registration; finally, we will analyze the Computer Vision techniques used for
solving these problems, that is, the optical flow. An introduction to the generic
shape segmentation problem is instead presented in chapter 3.

1.1 The acquisition of three dimensional shapes

The acquisition of three dimensional shapes is the process that aims to cre-
ate a digital version of a real, existing object. It differs from other techniques
like CAD modeling or procedural modeling in the sense that the digital shape
is creating starting from real data (the existing object) and not from scratch
(using some CAD software for example) or from a mathematical description
of the shape. This process of acquisition is carried out by a device called 3D
scanner; 3D scanner is a device that can acquire information about the spa-
tial position of a three dimensional point (see Figure 1.1). Even if exist some
scanner that actually touch the object in order to collect these data, most of
the 3D scanners obtain the information about the points without any actual
contact with the object; this technique is generally cheaper, faster and more
efficient that using a contact scanner, so in this work we’ll focus on the issues
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Figure 1.1: 3D scanner devices.

related to the use of non-contact 3D scanners.

The first step of the pipeline of the digitalization of a real three dimensional
object is the acquisition of the position of the object’s surface points.
This first step has the aim of create a number of array of distance values, usu-
ally called range images or range maps; each range map can be seen as a
m X n grid of distances (range points) that describes a surface in such a way
that each point has three spatial component, two defined by the indices of the
point in the grid, and the third value which is the depth associated with that
specific element. The way to obtain a single range map may vary, depending
on the algorithm or device used in the process. One of the most used and
common technique uses the so-called time-of-flight scanners: the device emits
pulse of light, then measures the time needed for the light to be reflected by
the surface of the object and then be caught by a special detector; knowing
the speed of light and the round-trip time, the device is able to compute the
distance of a number of surface points of the object. Usually, those devices use
infrared light or laser LIDAR (Light Detection and Ranging), depending on
the size and the distance of the object. Alternatively, it’s possible to create a
depth-value map by passive stereo matching: two cameras, placed in different
position, see the object from two different viewpoints; if we are able to identify
precisely the same point on the different images obtained by the two cameras,
then it’s possible to compute the exact position of the point simply using the
information related to the position of the cameras (baseline and angles); in
order to create a dense range map, we need to identify correctly a large num-
ber of corresponding point, which leads to several problems (noise, occlusion,
different light conditions and so on). This technique tends to be too much
prone to errors, but it can be improved using the active stereo matching: in
this case, instead of having two cameras observing the object, we will have one
fixed camera and a special light source emitting several black and white pat-
tern on the object surface over time; identifying the patterns, it’s possible to
compute the distance associate with a specific pixel of the image. In this way,
known as structured light scanning, we can improve the quality of the result in
terms of number of samples, precision running time of the process. Similarly,
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instead of using the structured light, we can use a laser scanning technique:
a device project a laser pattern onto the object, and the camera compute the
depth of the points using the ray-plane intersection. It’s a common thought
that structured light and laser scanners produce the best results. All those
techniques produce a single depth map; in order to create a digital model from
the real object, we need to create a number of depth maps, capturing depth
information all around the object, in a way that is not so different from taking
pictures of the entire surface of the object: we place the scanner in several
points, and collect related depth data (see Figure 1.2 for an example of several
range maps). Usually, the earliest stage of the acquisition pipeline plans how
to place the scanners or cameras around the object, in order to cover the entire
surface, avoiding over-sampling (which can lead to noise) or under-sampling
(which can result in hole on the surface). However, objects with peculiar prop-
erties of the surface (for example, object made by glass) or of the geometry
(object with concavities) are often difficult to acquire and digitalize.

After the completion of the acquisition step, what we have is a number of dif-
ferent range maps; in order to reconstruct the object, these range maps need
to be aligned in a common reference system, in order to create a single point
cloud that can be thought as a first approximation of the shape of the object.
The alignment is not a trivial task: of course, if one knows in advance the cor-
respondences between points in the different range maps, it’s straightforward
to compute the relative roto-translation that brings the maps to be aligned, but
usually those correspondences are not known. In order to solve the problem,
some software asks the user to manually set the correspondences between points
in different range maps, and then, starting from at least four correspondences,
the roto-translation is computed. Also, automatic techniques has been devel-
oped; particularly, one of the most used is the Iterative Closest Point (ICP)
algorithm, developed by Besl and McKay [21]: starting from a sub-sample of
points of one range maps, find the closest points on the second one, and then
compute the rotation and translation that minimize the distance between the
maps. The algorithm proceed iteratively until no significant improvement has
been made. The techniques of Besl and McKay has been improved since 1992,
as can be seen in [147], [152] and [80]; however, the main idea behind the work
still stands. Also this approach can be extended to an arbitrary number of
range maps, solving a global minimization problem, in order to perform a si-
multaneous alignment of all the maps instead of working locally on single pairs,
with the significant improvement of spreading the alignment error all over the
maps, avoiding to accumulate it.

The third and final step of the digitalization process has the goal of creating
an approximation of the surface from the point cloud created in the previous
step (Figure 1.2). This problem can be addressed in several ways, depending on
the desired results and the used technique. First of all, we need to distinguish
between explicit reconstruction methods, that use directly the data encoded in
the scanned points, and implicit reconstruction methods, that use the scanned
data as a guidance for creating the surface of the digital shape. In the first case,
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Figure 1.2: Four different range maps, obtained scanning a real object, and the
digital shape obtained by their merge.

the points of each range map are used to create a polygonal (typical triangu-
lar) approximation of the surface, using algorithms like the Ball-Pivoting [20],
the a shape [69], the active snake [177] or the Delaunay triangulation; then,
the different approximated surfaces are merged into a single object, using the
alignment information obtained in the previous step. This process is called
zippering and has the advantage of use the real scanned data, allowing to ob-
tain a realistic and detailed model, preserve the regular structure of the range
maps, and doesn’t need particular auxiliary data structure. We refer to the
appendix A for more details on the final stage of the acquisition pipeline and
particularly on the zippering algorithm. Unfortunately, it’s a process subject
to a number of problem, especially if the data are noisy or incomplete. On
the other hand, implicit reconstruction methods are more robust to noise, but
doesn’t guarantee a real faithfulness to the real object: small details can be
lost, holes may be filled and so on. The implicit reconstruction techniques uses
the entire point cloud to create an approximation of the object surface, usually
minimizing some distance function in order to obtain a surface that is as closest
as possible to the scanned points. Probably, the most used algorithm is the
well-known Marching Cube technique [117] developed by Lorensen and Cline in
1987, then improved during years (see for example [45,97,132]), which produces
a 2-manifold discrete surface, but is computationally expensive, and, as already
pointed out, there is no guarantee that the result will be the desired one (it
can result in over-tessellation or in highly irregular meshes). Other methods
work directly on the ranges maps (e.g. the volumetric approach proposed by
Curless and Levoy [59] or the Poisson surface reconstruction [105]) but suffer
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of the same problems of the Marching Cubes algorithm.

As can be seen throughout the section, the acquisition pipeline presents several
problems, and usually the final result needs to be refined with some post-
processing phase, such as de-noising or remeshing, in order to create a visually
nice and useful shape. At the moment, a fully automatic acquisition process is
impossible to achieve, since the user is usually involved in the first two steps
of the process.

1.2 The Bundle Adjustment problem

Figure 1.3: An object, characterized by several points P;, is seen by different
cameras. The Bundle adjustment problem has the aim to determine the posi-
tion of each camera by means of the correspondences between feature points
pi.k. See also Figure 2.1.

The acquisition process is able to capture only geometric information
of the object. To create a realistic and detailed digital version of a real three
dimensional object, we usually need to attach to the geometry also information
related to the visual appearance of the object. Assuming that we want to create
a digital model of some particular ancient Greek vase (Figure 1.2: the geometric
information is not enough, because the most of the artistic and cultural value
of the object comes from the painting on the surface of the vase itself.

In order to collect information about color and texture, the user has to
take a number of pictures of the real object, in order to capture the entire
surface, and then project the color information from the images to the surface
of the digital object. Obviously, to achieve a good result, we need to know
the exact position where the picture has been taken, which is an information
usually hard to retrieve. In literature, this process is referred as the bundle
adjustment problem. More formally, the bundle adjustment is the problem
of refining a visual reconstruction to produce both optimal 3D structure and
viewing parameter (camera pose and camera calibration) estimates [167]. In
our case, since we already have the 3D structure obtained by the scanning
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Figure 1.4: The same object (in this case, a vase) captured from several points
of view, and a digital representation encoding only the geometry on the object.
In order to enhance the quality of the digital model, we need to add the color
and texture information to the geometry.

process, we focus on the optimal estimation of the viewing parameter; optimal
means that the camera parameters estimates are found by minimizing some
cost function that quantifies the model fitting error. The name bundle refers
to the bundles of light rays that leave the 3D features of the image and then
converge on each camera center, which are adjusted optimally with respect to
image features and camera position.

1.2.1 The Camera Model

Before discussing in detail the bundle adjustment problem formulation, we need
to spend some words about the geometric aspect of the image formation and
the camera parameters involved in the process. We refer to these information
as the camera model. Here we will give a brief overview, with focus on the
elements of interest, and refer to [168] for a detailed description.

In the following, we refer to the image 1.5 in order to describe the camera
model. The most common geometric model of a camera is called perspective
or pinhole model: it basically consists of a plane 7, called image plane, and
a 3D point O called center or focus of projection. The distance between m
and O is the focal length f. The line passing by O perpendicular to 7 is the
optical azxis; its intercept with 7 is the image center (point O1). As shown
in the image, the camera has its own reference system, called camera frame,
centered in O and having the optical axis as Z-axis. Let a point P(X,T, Z) in
the camera frame; its projection pi(x,y) on the image plane is computed as
follows: x v

a:—fZ,y—fZ. (1.1)
Aside from the perspective camera model, we need to introduce other kinds of
information, allowing to connect the camera position with the world reference
frame, and to translate the coordinates of an image plane point to pizel coor-
dinates, which are the only coordinates directly available from the image. In
vision, those data are referred as extrinsic and intrinsic parameters:
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Figure 1.5: The perspective camera model

Extrinsic parameters define the location and the orientation of the camera
reference frame with respect to a know world reference frame.

Intrinsic parameters link the pixel coordinates of an image point with the
corresponding coordinates in the camera reference frame.

We previously mentioned that the camera has its own reference frame; how-
ever, this frame is usually unknown, and a common problem is determining the
location and the orientation of the camera frame with respect to the world
reference frame; often, this goal has to be achieved using only image informa-
tion. We define the extrinsic parameters as any set of geometric parameters
that identify uniquely the transformation between the camera reference frame
and the known world reference frame. Typically, the transformation between
the two reference frames is described as a combination of a 3D vector T, de-
scribing the relative positions of the origins of the two reference frames, and
an orthogonal 3 x 3 matrix R that encodes the rotation that brings the cor-
responding axes of the two frames onto each other. The relation between the
coordinates of a certain point P expressed in world and camera frame by P,
and P, respectively, can be written as

P.=R(P, - T). (1.2)

The intrinsic parameters are the set of parameters that characterize the opti-
cal, geometric and digital characteristics of the camera. Particularly, we need to
know the focal length f, which encodes the information related to the perspec-
tive projection, the image center (o,,0,) and the pixel size, (s, sy), expressed
in millimeters, which encodes the information related to the transformation
between camera frame and image space. For the sake of completeness, in some
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cases also the radial distortions of the lens, k; and ko, are considered as an in-
trinsic parameter, but in most works they may be simply ignored. A point on
the image plane p = (x,y) can be thought as the point p = (z,y, f) in the cam-
era reference frame; this point corresponds to a certain pixel p; = (z;m, y;m) of
the image I. The transformation between camera and image frame coordinates

is described in the following
x=—(2;m — 0g)Sg, Y= —(Yim — 0y)Sy. (1.3)

The estimation of the parameters of a single camera, usually referred as the

camera calibration problem, is a well-established procedure, that can be
trivially accomplished by means of some predefined calibration pattern (usually
a chessboard) that allows to exactly determine a number of correspondences
between the real world known coordinates of the pattern, and the coordinates
of the camera frame; from these correspondences, a linear system is build and
solved in order to find both extrinsic and intrinsic parameters (see [168] for a
more detailed description of the problem and its solution).
A different and more complex situation arises when we need to calibrate a
number of cameras that are observing the same scene; in this case, we need
to estimate the position of all the cameras with respect to the common world
frame, and, consequently, with respect to all the other cameras. After that we
correctly establish the position of all the cameras, the information encoded in
the images can be used to reconstruct the geometry of the scene, or to enhance
the digital shape projecting onto its surface color and texture information. As
we stated in the very beginning, this process of the parameters estimation of all
the cameras capturing a scene is usually referred as the bundle adjustment
problem.

1.2.2 Error Modeling

The bundle adjustment procedure usually require to know in advance a num-
ber of correspondences between pixels in different images (e.g.: two pixels
representing the same 3D point). These correspondences may be manually
selected by the user that specifies the corresponding pixels, or may be com-
puted using some feature extraction and matching algorithm (see, for exam-
ples, [15,55,129]); in the following, we assume that these features are already
extracted and matched in a number suitable for our purposes. Figure 1.6 show
an example of feature matching between two images

Assume that a three dimensional scene is modeled by individual static 3D
features X,, p = 1...n, imaged in m shots with ; basically, we are assuming
that we know, for a number of real 3D points pictured in the images, the
corresponding pixels in m images. Also, let P;, i = 1...m be the camera poses
and internal calibration parameters (one set for each camera), and let C.,
¢ = 1...k be the calibration parameters constant across several images. As a
matter of fact, the number of cameras is usually lower than the number of
images, and the intrinsic parameters don’t vary, so we can assume that there’s
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Figure 1.6: Feature matching between two of images of Figure 1.2. Each green
line connect a pixel in the left image with the corresponding pixel on the right
image. The feature extraction and matching algorithm is provided by the
OpenCV library [28].

a set of parameters that can be considered constant. We are given uncertain
measurements T;;, of some subset of the possible image features x;;,, which is the
real image feature X,, in image i. For each observation ¥;, we assume to have
a predictive model z;, = 2(C., P;, X,,) that tells us where the X,, feature will
be located in the image taken from a camera having C. and P; as parameters.
We can then derive a feature prediction error:

Al'ip = fip - x(CC7 Pi7 Xp) (14)

The equation 1.4 represents the measurement error between the real ob-
served image feature and the predicted one. The obvious goal is find the pa-
rameters that minimize the error, that is, the camera parameters that best
estimate the position of the feature points.

Usually, the process starts with some initial parameter approximate esti-
mate, and then continues optimizing a non-linear cost function, representing
the total prediction error, over a large non-linear parameter space. The esti-
mates of both image features and camera parameters can be thought as a large
state vector x, while the cost function is a generic £(x) depending from Az;,.
The search for the optimum is usually an iterative process: at the i-th itera-
tion, the estimate x gets updated of a quantity éx in order to move towards
the optimum value. Of course, the goodness of the solution will depend on
the accuracy and correctness of the predictive model, and on the optimization
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strategy chosen. In the remaining part of the chapter, some strategies will be
presented and discussed, focusing more on the modeling part than on the nu-
merical aspects; a detailed description of the numerical aspect is given in [167].
One of the most basic parameter estimation methods if the nonlinear least
squares. Assume that we have vectors of observations z; predicted by a model
z; = z;(x) where x is a vector of model parameters. Then, using the nonlinear
least squares, we search for the parameter values that minimize the weighted
Sum of Squared Error (SSE) cost function:

£(x) = % D Bz (x) Wiz (), 0zi(x) = 7 — 2 (x) (1.5)

In 1.5, Az;(x) represent the feature prediction error and W; is the weight
matrix (symmetric, positive definite). The main advantages of this method are
that optimization methods based on LS solvers allow to stably handle also ill-
conditioned problems, and its insensitivity to the natural boundaries between
observations; the drawback is a high sensitivity to outliers, which makes this
basic method unreliable and often unsuitable.

For a more robust estimates, we need to choose a different model such that
even if one (or more) of the observation is affected by some measurement error
(e.g. mismatching correspondences), the global estimation won’t. The basic
idea is that, if a observation introduces some noise, it can be down-weighted,
or even removed from the process of estimation of the parameters; similarly, if
a group of observation introduces noise, then all the observations of the group
should be treated in the same way, in order to preserve data that are correct.
We can model this behavior modifying the original least squares formulation
in order to write the error using a robustified least squares approach. The
observations are partitioned into independent groups z;, where independent
means that each group can be down-weighted or even rejected independently
of all the other groups. The way we should partition the observation into
different groups depends from the type of errors that affects the observations
(wrong or missing feature correspondences between images, for example). Each
group of observation contributes an independent term £; (x|Z;) to the total cost
function; each term is modeled in a way depending on the expected distribution
of inliers and outliers of the group of observations. The error is now modeling
as

£ = 5 3 P (0m ()W (), b2sx) =Zi - m(x)  (L6)

Here, p;(s) is a weighting function, that can be linear, sub-linear and so on,
depending on how one wants to model the behavior of the function. Obviously,
if p;(s) = s, then the function becomes the common weighted SSE; ideally,
pi(s) should be defined such that p;(s) = inf for the outliers. In [167] Triggs
suggests to use radial distributions to model the independent terms associated
with each group of observations. Both weighted SSE and robustified LS can

Stefano Marras Perception and Motion



Background 11

be used to model the errors related to geometric image features (point-to-point
correspondence between images), but they are also suitable for modeling the
intensity-based image patches matching.

1.2.3 Numerical optimization

Finally, after choosing a suitable quality metric modeled in some way, we need
to optimize it, minimizing (or maximizing, depending on the model). In this
section we’ll have a brief discussion about the suitable methods to perform the
optimization, without entering into details since it’s not the purpose of this
work, and also since, in our final approach, described in the following chapter,
we choose to don’t use any numerical optimization, applying instead a more
heuristic approach.

The basic problem, as previously stated, is to find the parameters x that min-
imize the error function f(x). Starting from an initial estimate x, we need to
find the displacement dx, represented as a vector in the space of the parameters
x, such that x + dx locally minimize (or at least, reduces) the cost function f.
Usually, the function cost is approximated using a local model for the function
(e.g. its Taylor expansion), and then the minimum of the approximation is
found; even if we have no guarantee that the minimum of the approximation
will also be the minimum of £, in most cases this process will lead to the desired
result.

The basic approach, as we mentioned before, uses the Taylor expansion of the
function:

1
f(x+0x) = f(x)+gTox+ 55XTH(SX (1.7)
where g is the gradient vector defined as g = %(x) and H is the Hessian
matrix H= %(x), that we can assume to be positive definite. The model

has a unique global minimum, that can be found by means of the Newton’s
method. First, we define the Newton step as dx = —H g, then we estimated
the new function value as f(x + 0x) ~ £(x) — 16xTHS = £(x) — LgTH 'g; iter-
ating, the method converges to the optimum of the function f, with quadratic
asymptotic convergence. This conceptually easy method has actually some
drawbacks: large computational cost in solving the Newton step equations,
that takes O(n?) for a dense n x n system, the non-trivial computation of the
Hessian matrix for non-trivial cost function, possible failures (function con-
verging to saddle point, inaccurate prediction for large displacements). We can
enforce the method by forcing the Newton step to follow a descent direction
that significantly reduces the value of the function, introducing some form of
step control, a strategy adopted by the damped Newton methods, the trust
region methods and the Levenberg-Marquardt methods.

When the error is modeled using a weighted SSE, as seen before, then the gra-

dient and the Hessian can be expressed in terms of its Jacobian matrix J = g—i:
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dzzi
dx?2

d%f
— T — — 1T T .
=Az"WJ, H= 3 JTWI + Ei (AzTW); (1.8)

%2

The second term of the Hessian can be dropped, in order to obtain the
Gauss-Newton approximation, that leads to the Gauss-Newton equation:

(JTWI)dx = —JTWoz (1.9)

This method is particularly common when dealing with nonlinear least
squares; it solves most of the issues of the Newton method for well-parameterized
bundle problems, and it’s also very accurate. However, since in most cases we
have to deal with outliers, noise and incorrect data, we saw before that the SSE
needs to be robustified introducing a p function; in the same way, the derivative
of p must be introduced in the gradient and in the Hessian definition, in order
to obtain a robustified Gauss-Newton approximation. Obviously, we can add
some constraints to the formulation of the problem, if seeded; in this case, the
problem becomes a constrained minimization problem: find the minimum of
f(x) under the constraints c(x). The formulation of both the problem and the
solution can be revised using the sequential quadratic programming technique,
or using the linearized constraints to eliminate some of the variables of the
problem, obtaining an unconstrained reduced problem to optimize easily.
Minimizing a cost function expressing the error of a bundle adjustment problem
has also a number of issues directly related to the implementation. Probably,
the first and most important issue is that most of the equations contains matrix
that have to be inverted in order to compute the solution; this is a procedure
that is numerically too expansive and has to be avoided as much as possible,
preferring instead some particular decomposition (Cholesky, LU...) depending
from the structure of the problem (e.g. a sparse matrix, or a triangular matrix
and so on). The good choice can improve both speed and precision of the al-
gorithm, while a bad choice can severely affect the result of the computation.
Also the scale of the problem, and its preconditioning (the choice of which pa-
rameters to use) influence the performance of the algorithm, because the wrong
scale can result, for example, in an ill-conditioned Hessian matrix.

1.2.4 Related works

The problem of the bundle adjustment was first tackled in photogrammetry and
aerial cartography, in the late 50’s, by Brown [31], that first used the defini-
tion of bundle adjustment. Initially the method used correspondences between
photos captured by calibrated camera that lead to the construction of a lin-
ear system solved by Gaussian elimination. The original work has then been
improved during years, changing the model of the camera (introducing distor-
tion parameters, for example) and the calibration process, as seen in [32], [33]
and [34]. Subsequently, the problem of the bundle adjustment has been also
investigated in order to reconstruct 3D objects or 3D scenes from a sequence
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of images (a number of pictures, for example or a video sequence, that lead to
the so-called structure from motion reconstruction). Initially, a naive technique
was a good choice: given a small set of images with manually extracted cor-
responding features, finding the position of the cameras required a reasonable
amount of time. However, when the size of the dataset started to grow (more
photos, or photos with higher resolution), the method become unsuitable, and
other approaches have been developed, even if the idea behind most of them
is basically the same, that is, defining some cost function expressing the er-
ror in the estimation of the parameters, and then minimize it in some way.
The main differences between different work are usually the formulation of the
function and the technique adopted to minimize it. A number of works tries
to define the function in a way that its minimization is as cheap as possible:
for example, [119], such as [167], explore the theoretical aspects of the prob-
lem, and propose one (or more, in the second case) efficient solution to it. [119]
for example proposes the so-called Levenberg-Marquardt algorithm, while [118]
proposes as alternative the dog leg algorithm; also [38] and [1] propose several
improvement from a numerical and computational point of view; also [101] pro-
pose some improvements due to the use of the BLAS3 library.

Of course, there’s also a number of other algorithms trying to revise the main
approach. For example, [138] suggests a divide-and-conquer algorithm, opti-
mizing small subset of data in parallel and then use these partial alignment to
obtain the global optimization, in order to recreate a 3D scene and also use
an out-of-core policy that allows to deal with large scale data. [158] introduce
a hierarchical approach to the problem: the set of the images is divided into
segments such that the feature points can be tracked across each segment; then,
bundle adjustment is performed on each segment, in order to create a partial
3D reconstruction of the scene; finally, the resulting models are merged into a
common reference frame. Here the novelty is the hierarchical approach: not
a large problem derived from all the observations, but smaller problem (and,
of course, easier to solve) and then the merging of the solutions. The possible
drawback is a propagation of the error during the merging phase, that needs to
be handled properly, as seen in [73]. A selective approach can be found in [133]
where the 3D structure of a scene is extracted from a video sequence; in this
case, each frame of the video is analyzed, and bundle adjustment is performed
only on significant frames (keyframes) avoiding to add to the problem redun-
dant data (while, for example, [70] perform a new optimization step for each
frame of the sequence). [162] proposes instead an incremental approach: each
image examined is added to an existing solution and the optimization step is
performed adding to the solution only the not redundant information encoded
in the new image. For the sake of completeness, we also mention the work by
Steedly et al. [163] presenting an heuristic technique based on spectral analysis,
the statistical modeling approach described in [72], and the work by Holmes,
Murray et al. [96] that introduces a relative frame representation is introduced
in spite of the global common coordinate system; bundle adjustment is then
performed in this particular frame.

This work shares also some parts with the image-to-geometry registration tech-
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nique. The image-geometry registration problem consists of determining the
parameters of the camera model used to map the 3D model onto the image
plane. The main difference with the bundle adjustment is that, in this partic-
ular case, we work on a single image (that is, a single camera and a single set
of parameters). In [182], a survey of the issue is presented; other approaches
are presented in [57,64,77,113,122].

In the following, we’ll address the problem of the bundle adjustment from a
different point of view, defining a new error function cost, and showing that the
minimization may be achieved using a technique borrowed from the computer
vision field, the computation of the so-called optical flow. Section 1.3 describes
the formulation of the optical flow problem and presents several different ap-
proaches to its computation. Chapter 2 describes, in detail, how this technique
can be used to solve the bundle adjustment problem.

1.3 The computation of the Optical Flow

The Optical Flow computation is one of the fundamental problem in Com-
puter Vision. The optical flow is an approximation of the image motion,
defined by Gibson [85] as the moving patterns of light falling upon the retina,
and by Beauchemin [18] as the projection of velocities of 3D surface points onto
the image plane of a visual sensor. Basically, given a sequence of two or more
image, the optical flow is a convenient way to describe the motion of the objects
of the pictured scene; each object describe a trajectory which is usually repre-
sented as a 2D vector on the image plane. This section is organized as follows:
first, we will give a brief introduction to the problem, with particular focus on
the classic definitions; then we will describe three of the techniques used for
computing the optical flow, try to focus on their advantage and drawbacks. A
comparison between the presented techniques, with special focus on our final
goal, is proposed in chapter 2.

1.3.1 Definitions

In order to compute the optical flow we have to make some initial assumption,
as stated first by Horn and Schunck [98]. Particularly, we assume that the
intensity of local time-varying image regions is approximately constant under
motion for at least a short duration. Formally, we can express this hypothesis
as

I(z,t) ~ I(x + dx,t + dt) (1.10)
where dz is the spatial displacement of the image region at (x,t) after time
0t. The left-hand side of 1.10 can be expanded in a Taylor series, in order to
obtain the following:

I(z,t) = I(z,t) + VI - 5z + 6tI; + O? (1.11)

where VI = (I, I,)) is the image spatial intensity gradient, and I; is the tempo-
ral first order derivative. Starting from 1.11, removing the O?, which represents

Stefano Marras Perception and Motion



Background 15

Figure 1.7: The aperture problem. Suppose that the gray square is moving in
the v direction, but we observe its motion through the W window. Depending
from the position of W, the estimation of the motion change significantly: if
W is inside the square, no motion is detected, due to the poor texture; on the
edges, we can estimate motion only in the gradient direction, while the motion
can be estimated correctly only if W capture the moving corner.

the second and higher order terms and can be assumed as negligible, then sub-
tracting I(x,t) on both sides and finally dividing by ¢, we obtain

VI-v+I,=0 (1.12)

where v = (u,v) is the image velocity. The equation 1.12 is usually known as
the optical flow constraint equation and it’s the starting point for a large
number of solving techniques.

It’s straightforward to notice that our goal is to find the components of the mo-
tion v and v, so we have two different unknowns but only one linear equation to
find them: that means that the problem is ill-posed, and one can estimate only
the motion component in the direction of the local gradient of the image inten-
sity function. We refer to this issue as the aperture problem [172](Figure 1.7).
Following the aperture problem, we can conclude that the optical flow can be
estimated using the constraint equation only at locations where there is suffi-
cient intensity structure, that is, we can estimate correctly the optical flow only
in image regions with enough texture details. In order to estimate correctly
and reliably the optical flow in a certain region of the image, we also need that
other main conditions are satisfied: uniform illumination over the temporal
sequence, Lambertian surface reflectance and pure translation parallel to the
image plane. Typically, it’s impossible to achieve all of these conditions, but
the more we get closest to satisfy them, the better results we obtain. Obviously,
good results means that the optical flow will be a good approximation of the
image motion.

Anyway, there is a number of situations where it’s impossible to compute a
good optical flow. Regions with poor or no texture are basically useless, since
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the spatial gradient is almost zero and doesn’t contain any useful information;
regions with highlights or shadows violates the constraint equation, and may
not be handled correctly (eventually, the equation can be used as a first approx-
imation, to be refined with other techniques). Other issues include occlusions,
due to objects suddenly appearing in the sequence, and non conventional ob-
jects, such as transparent ones, which are difficult to handle and generally lead
to incorrect solutions. Also, when computing the optical flow of a sequence
of images, one could need to have a quality measure for the estimation of the
flow; one of the problems is how to compute the reliability of the flow. Dif-
ferent confidence measure has been proposed; a very simply measure (which
surprisingly is also quite robust and good) has been proposed in [159] and use
the smallest eigenvalue of a least-squares matrix. Other quality measures have
been proposed in [136], [145], [174], [76], [173], [8] and [2]. In the following part
of this section, we will analyze some of the techniques used to compute the op-
tical flow between two or more images, with special regards to the techniques
that allow to compute a so-called dense flow, that is, a flow vector is computed
for each pixel of the reference image; techniques based on feature-tracking, as
the Kalman Filter [55,175], won’t be covered.

In literature, a huge number of different methods computing the optical flow
of a sequence of images have been proposed; we briefly will give on overview of
some general aspects of the different approaches before discuss some of them
in details. Usually, the methods differ for several aspects, including the strat-
egy used to compute the displacement (global approach vs local approach),
the information used (intensity, local derivatives, frequency domain, statistical
inference and so on) and the scale (single resolution vs hierarchical approach).
The images, results and timing here presented are courtesy of the Middlebury
evaluation dataset [12].

Global methods usually compute a dense flow minimizing some function de-
fined over the entire image, while local methods works locally on single regions
of the image or, in some cases, even on single pixels. Usually, global methods
leads to smoother results, since they are more robust to noise in images; more-
over, thanks to the possibility to add easily regulator terms to the objective
function (constraints of smoothness or rigid-motion), it’s generally easier to
achieve the continuity of the motion. Unfortunately, global approaches have
also major drawbacks: usually, it’s impossible handle small displacement, since
the global approach tends to privilege large shifts, so results may not be accu-
rate; secondly, this type of technique is quite expensive in terms of time and
space, and is usually not suitable for real-time applications; they may also ex-
perimented issues when working on high-definition images. On the other side,
local methods are faster and cheaper to implement and to run, and are usually
highly parallelizable, since the motion of one region is usually computed without
any knowledge of the other motions in the image. Working on small regions
allows to achieve a better precision (pixel or subpixel precision), but it has the
disadvantage of making the result to be more sensitive to noise, especially when
working on small sized regions of interest. Also, in some cases it’s impossible
to correctly estimate a dense flow using only local methods, since some regions
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(as we already mentioned) may not have enough texture information. Hybrid
approaches have been proposed in literature like in [35,37], with good results.
Also, there also other approaches that cannot be univoquely classified as local
or global; for example, the so-called SIFT flow [112] based on the detection
and matching of dense feature points, computed over the sequence of the im-
age using the Significant Invariant Feature Transform, or the Bayesian Optical
Flow [178], that uses a-posteriori probability to compute real-time accurate op-
tical flow.

While in the early days of compute vision optical flow were computed using
only one scale of resolution, as in [98], at the moment almost every method
works in a hierarchical coarse-to-fine way, which is a smart way to approach
and, in some cases, simplify the problem, at the cost of spending a little bit
more time and space. In order to work in a hierarchical way, each original im-
age is used as a starting point for a Gaussian pyramid composed by the same
image re-sampled at different resolutions, then OF computation is performed
on low resolution images. Displacement computed at a certain level is the used
as initial estimate for performing the computation at a higher resolution image.
The flow gets refined, iteration after iteration, level after level, until the process
finally reaches the finest level and the flow is computed on the original images.
This process is useful especially for the estimation of large motions, but, as
stated for the global methods, could result in a lack of precision, even if we
can partially get around this problem using a quality measure and recomputing
explicitly the flow to the finest resolution if the previous estimate is not enough
good. This approach is used particularly for local methods, as seen for example
in [8,19,36,94,126,127].

In the following sections, we’ll briefly review some techniques for the com-
putation of the optical flow, belonging to different type of approaches: first
we'll see a differential method (usually referred as the Lucas-Kanade algo-
rithm) and its evolution, followed by the description of a correlation method,
the block matching algorithm; the third approach proposed is the energy
minimization approach, originally proposed by Horn and Schunk. The first
two techniques can be classified as local techniques, while the last one is usually
labeled as global; all of them adopt a hierarchical approach.

1.3.2 Local methods
The Lucas-Kanade algorithm

The first technique presented here is based on the use of the spatial and tempo-
ral first-order derivatives of the image intensities, has been proposed by Lucas
and Kanade [121] and it’s considered one of the first differential methods
for the computation of the optical flow. In the following, we assume that the
image domain is continuous and differential in both space and time. Since
each image is a discretization of a real scene, the first-order derivatives are
actually approximation, computed by simple subtractions of values of adja-
cent pixel, or by using adequate convolution masks (Prewitt, Sobel or Roberts
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operators [86]). Differential techniques are strongly based on equation 1.12:
global methods use 1.12 plus some other constraint (e.g. smoothness regular-
ization) in order to guarantee that the compute optical flow will be dense over
the entire image, while local methods use normal velocity information in local
neighborhoods of a pixel in order to perform a LS minimization and find the
best fit for v. Using an oversimplification, we can say that global methods are
local methods where the neighborhoods of a single pixel is the entire image.

Assume that the constraint equation 1.12 yields a good approximation of the
normal component of the motion field, and that the motion field itself can be
well approximated using a constant vector field within any small patch of the
image plane. Then, for each p; within a small R x R patch @, we can write

(VI)Tv+1, =0 (1.13)

Spatial and temporal derivatives of the image brightness are computed at
P1,P2---PrxR, that is, in the local neighborhood of central pixel p;. Usu-
ally, a small patch @ has a size of 5 X 5 or 7 x 7 pixel, in order to capture
enough information to estimate the motion of its central pixel (Figure 1.8).
The optical flow can be estimated within @ by finding the constant vector v
minimizing the functional

Uv] =) P € QUVD)TV+ L] (1.14)

The solution to the LS problem 1.14 can be found easily by solving the linear
system:
ATAv =ATb (1.15)

A is a column vector containing the spatial derivatives (I, I,,) of the pixels
belonging to @Q:
(1) 1,(p1)

I (p1 P1
L. (p2) I,(p2)
A= ‘ ' (1.16)

I.(PrRxR) Iy(prR)

The vector b contains the temporal derivatives of the pixels belonging to @,
obtained applying some derivative filter to the image of the sequence:

b= : (1.17)

I;(PrxR)

The least square solution of 1.15 is computed as follows:

V= (ATA)'ATb (1.18)
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Figure 1.8: Two patches (or region) @y and @1, selected on an input image,
both having 7 x 7 pixels size. The patch @); contain enough information to
estimate the motion of its pixels, while the patch Qg as poor texture, and
therefore will not produce reliable results.

Computing the approximation of motion is the key-point of the algorithm.
Typically, given a time-varying sequence of n images Iy,...I,, each image is
filtered using both a spatial Gaussian filter (o0 = 1.5 pixels) and a temporal
Gaussian filter (0 = 1.5 frames). Then, for each pixels of each image of the
sequence, A and b are computed, and the displacement vector Vv is obtained
using 1.18. Depending from the size of the temporal filter, some images could
not be correctly processed (for example, the first and the last & images, if the
temporal filter has size of 2k + 1).

The basic version of the Lucas-Kanade tracker can be improved in several
way; for example, assigning a weight to each pixel of the window, in order to
give more importance to the pixels of the patch that are nearest to the central
one p, or carrying in the computation information about derivatives of the first
or second order, in order to keep track not only of the color but also of the
variance of the light of the scene. In the following, we briefly describe some of
the possible improvements to the algorithm.

A naive implementation of the algorithm it’s an easy goal to achieve. Com-
puting V it’s easier than what it seems from 1.18; in fact, it’s straightforward
to see that AT A is non-other than a 2 x 2 matrix computed as

-l e

while ATb can be computed as

ATb = E gﬁ] (1.20)
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In the end, in order to find the vector Vv representing the motion of patch @,
we need to build and invert a 2 x 2 matrix and multiply it by a 2D vector; it’s
a reasonable small amount of computations that doesn’t require large time or
space. Also, the computation of the motion of a given pixel p is completely
unrelated with the motion computed for a different pixel q, and that means
that this process can be easily parallelized and distributed over a number of
processing units, each of them working independently from the others. Two
examples of GPU-distributed implementation can be found in [126,127]: in
both cases, the algorithm is accelerated using the CUDA architecture [142].
Another valuable feature is the fact that the algorithm provides also an easy
way to estimate the goodness of the computed flow. The matrix computed
in 1.19 is, in fact, a Harris matrix, typically used for corner detection in
images [92]. The eigenvalues A1, Ay of the Harris matrix computed over the
neighborhood of a pixel p provide information about the saliency of p:

e if A\ &= 0 and Ay = 0, then p has no feature of interest; this is the case of
the pixels belonging to flat or poor textured regions (see the Qg patch in
Figure 1.8);

e if \; &~ 0 and Ay has a large positive value, then p belongs to an edge of
the image;

e if both A\; and Ay have large positive value, then p is a corner pixel (see
the @1 patch in Figure 1.8).

We can add this information to the Lucas-Kanade framework: if at least one
of the eigenvalues of the Harris matrix is ~ 0, we cannot track the pixel in the
image sequence, since it doesn’t contain enough information, while if both Ay
and A are larger then zero, we can reasonably assume that the patch contains
interesting feature and we can then compute a good estimation of the motion
of its central pixel. Finally, we can add the computation of the eigenvalues
of ATA to our framework, providing at the end of the computation, alongside
with the estimation of a motion vector v for pixel p, a quality measure, given
by the smallest eigenvalue of ATA, eventually normalized in the range [0, 1].
This measure can be extremely useful in order to perform operation such as
flow filtering or flow re-sampling, since it allows to discard not-reliable vectors
and, in some cases, even correct their values using the best ones.

Unfortunately, the Lucas-Kanade algorithm has several drawbacks. Like
almost every other local technique, it is sensitive to noise in the images: even
one or two noisy pixels in the region of interest may dramatically affect the
estimate of the motion for that region, even if the value of the quality measure
is high. Also, the results depend on the size of the neighborhood. Let’s say
that, typically, a 5 x 5 or a 7 x 7 squared window contains enough information
to correctly detect the motion. However, problems can arise when dealing with
complex textures, because a window with bigger size is needed; but the larger
the window, less local is the computation, and the motion could result in a
poor estimate. A naive implementation like the one that has been described
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previously is subject to problems related scene illumination, such as poor il-
lumination, or difference of illumination between images in the sequence (and
we’ll see that those problems are significant especially when one has to deal
with images acquired from different points of view).

However, it’s possible to arrange several improvement to the original tech-
nique, in order to achieve better results. It’s possible to improve the smoothness
of the flow applying a common Gaussian filter on the flow, following the ex-
ample of the image processing technique: since we expect that groups of pixels
corresponding to a common objects move rigidly, we can use the filter to cor-
rect the direction of spurious pixels. We could also improve this technique
using a weighted Gaussian filter, where the weight of each pixel is obtained
from the eigenvalues of 1.20, locally computed on each patch. Even better,
since Gaussian filter tends to smooth the boundaries of the objects and of
their motion, we can apply a different filter, like the bilateral filter, in order
to correct the flow computed on spurious pixels while preserving the rigidness
of the boundaries. If we are following a hierarchical approach, we can sim-
ply add these new steps at the end of each iteration. Doing so, we are not
changing the idea behind the computation of the flow; we are just correcting
the error in the low level in order to improve the results that will be achieved
in the next iteration. Other improvements focus more on the speed-up of the
algorithm ( [126,127]). There are also several approaches that make one step
back, and try to change the original formulation of the problem. For example,
Trucco [168] proposes a weighted Lucas-Kanade algorithm, with both spatial
and temporal Gaussian smoothing on the sequence of image. The work [137]
proposes a revised definition of the optical flow and of the original brightness
constraint equation, in order to integrate radiometric and geometric informa-
tion about the scene. In this formulation, the unknowns of the problems are
not only dx and dy, representing the motion of the pixel during time, but also
ém and dc, two parameters related to the radiometric transformation of the
scene and the smoothness of the motion respectively. The computation of the
optical flow information related to a pixel p then becomes the solution of the
following equation:

2 L1, —I,I -1 [éx 6 — LI,
LI, I* —II —I| |6y| _ §— 1,1,
> => STl (1.21)

o\l L, I { om

I, -1, I o A I

where I, and I, are the first order discrete spatial derivatives, computed
over the window W, I; represents the temporal derivatives and I is the bright-
ness value of the pixel. The equation 1.21 is solved, for less than particular
cases (such as poor texturing regions, where the 4 x 4 matrix is nearly sin-
gular), and the solution contains information about the motion vector (dx, dy)
that will be more reliable whenever §m and dc are small. However, our exper-
imental results show that the improvement in the quality of the output is not
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Algorithm Running time Endpoint error  Angular error
Pyramidal LK 12s 0.3961 13.96
GPU LK [126] 0.35s 0.4572 12.15
FOLKI [108] 1.4s 0.2956 10.56
PGAM-LK [3] 0.37s 0.3759 11.86

Table 1.1: Comparison between the algorithm presented in Figure 1.10. For
each algorithm we provide the running time, the average endpoint error (that
is, the distance between the estimated destination pixel and the correct one)
expressed in pixels, and the average angle error (that is, the angle in space
between the estimated flow vector and the real one) expressed in degrees.

significant, compared to the introduced computation overhead. We conclude
this section showing a selection of different examples of the implementation of
the algorithm in 1.10; the comparison between their running time and average
error is shown in 1.1.

The block matching algorithm

Another popular local technique, used to compute the displacement vectors
between two or more image, is the so-called block matching (or window
matching) algorithm. This technique is particularly suitable for object track-
ing, surveillance system, obstacle detection, but also video compression, au-
tonomous navigation of a robot and so on ( [9,71,82-84,91]). This technique
belongs to the correlation-based methods, since the focus of the algorithm
is the analysis of the gray level (or color) pattern around the point of interest,
and the search for the most similar pattern in the successive image. Formally,
first we define a block (or a window) B;(p) around the pixel p of the image
I; as a n x m window of pixels centered in p, we consider the blocks B; on a
different image I;, obtained shifting the coordinates of p = (zp,y,) by means
of two values 7 and j, with —A <7 < A and —A < j < A. The estimated dis-
placement of p is given by the shift corresponding to the minimum of a distance
function f, or the maximum of a correlation measure ¢, between the intensity
pattern in two corresponding blocks (Figure 1.11). In other words, given the
block B;(p), we search for the block B;(q) that is more similar to B; in image
I;. Of course, the implicit assumption is that the gray level pattern is constant
in the image sequence, as already stated for the Lucas-Kanade technique, and
that the block contains enough texture information for a good estimation of the
motion. Obviously, there’s a number of issues in this definition of the problem:

e the size of the block B;: a small block could result in an uncorrect dis-
placement detection, since the information is computed on too few pixels,
while a large block could perform better but slower, since it involves a
larger number of elements;

e there’s no unique definition of the distance/similarity measure (even if
this, as a matter of fact, can be turned into an advantage, since may give
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Figure 1.9: Color code for flow visualization (HSV model) borrowed from [12].
The direction of the flow is represented by the hue of the color and the magni-
tude by the value.

e ——

I~ &

Figure 1.10: Some examples of different implementation of the Lucas-Kanade
algorithm, performing on the same dataset of images. The first rows show the
original dataset. The other images present, in order, the output of a naive im-
plementation of the pyramidal-LK algorithm, the output of the work proposed
in [126], the result of the algorithm proposed in [108], and finally the output
of the algorithm [3]. Color code in Figure 1.9.
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Figure 1.11: The block matching related to a pixel p = (zp,y,) in image I;.
In the leftmost image, the pixel p and its n x m block B;; in the middle, the
search region obtained shifting p of (¢, j) in the image I;; in the rightmost, the
block Bj, same size of B;, centered in the pixel ¢ € I; and belonging to the
search region.

more versatility to the technique);

e the size of the shifting is not uniquely defined (a smaller A performs less
comparisons, since it takes into account a smaller number of blocks, but
could result in an inaccurate detection, while a larger A can heavily affect
the computation);

e the motion between two blocks may not be represented by means of in-
teger shift values, and, as a result, we should perform non-integer sub-
sampling on the image, in order to perform a more accurate analysis.

Usually, this kind of algorithm performs better on good matchable fea-
ture points, such as corner points; if a correspondence to a feature point p
is found, then the algorithm has a good chance to estimate the motion of p
with high precision (even sub-pixel motion); the drawback is that, similarly to
the Lucas-Kanade technique, it could be difficult to obtain an accurate dense
flow computed over all the pixels of the images, since the feature points are
usually sparse over each image (a problem that we already deal with, in the
previous section). Most of the applications using correlation-based methods
doesn’t need a dense flow, preferring instead to compute a reliable flow only
on those points that are considered of interest. Consider, for example, an ob-
ject tracking algorithm: it’s enough, for the application, to reliably track the
boundary of one specific object in the scene. The ease of the implementation,
its cheap computational cost, and its versatility are major advantage of this
algorithm; also, the technique can be easily extended in order to adapt it to a
large range of different situations, to achieve properties like robustness to noise
or to illumination changes.

The selection of the distance/similarity measure is obviously the first aspect
to analyze when working with the block matching technique, since choosing a
specific measure instead of a different one will surely affect the results, some-
times even dramatically. Let assume that we need to compare two squared
windows, N x N pixels each, the first one centered in (z;,y;) and belonging to
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image Iom and the second one centered in (z;,y;) and belonging to I;. The
simplest choice it just to sum the values of the absolute difference of the
corresponding pixels (SAD):

N/2
SAD(B;,Bj) = Y |Io(wi+k,yi+h) — Li(z; + k,y; + h)].
k,h=—N/2

As usually happens, the simplest way is not the better one, and, in fact, the
SAD is usually prone to errors and is not a reliable measure. Results get better
if we switch from the SAD to the sum of squared difference (SSD):

N/2
SSD(B;, Bj) = z (Io(xi + k,yi + h) = L (z; + k, y; + h))*.
ksh=—N/2

This similarity measure performs well under the assumption that the gray value
is locally constant. Whenever this assumption does not hold, we need to use
a different measure that takes into account also the gray-level variation, using
the global average intensity values (respectively, ip and i1) in order to adjust
the measure:

N/2
ZSSD(BZ',BJ')Z Z (Io(ﬂii-l-k‘,yi—i-h)—io—[1($j+k,yj—|—h)—i1)2
k,h=—N/2
N/2
LSSD(Bi,B;) = > (Io(wi+k,yi+h) —io/ix — In(xj + k,y; + h) — i1)?
k,h=—N/2

Other measure used especially when dealing with video compression are the
Mean Absolute Difference (MAD) and the Mean Squared Error (MSE):

1 N/2
MAD(B;, Bj) = msumké:_Nmﬁo(Jci +kyi+h)— Li(z; + k,y; + )|

MSE(Bi, By) = sigsumi sy o(To(ws + ki + B) — Ta(ay + oy + ).

These different measures compute similarity between B; and B; using only
gray level values of the images, but sometimes, in the computation, we need to
add some terms related to the spatial derivatives of the pixels. Being D, and
D,, the discrete derivatives of image Iy, and D,, and D,, the ones of I, we
could compute the similarity as:

N/2
DSSD(B;, Bj) = Z ((Io(xi +k,yi +h) — I (v + k,yj + h)*+
k,h=—N/2

+(Dwo (xl + k?yi + h) - DI1 (xj + k, Y; + h))2+
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+(Dyo (i + Ky + ) = Dy (2 + b,y + 1)?)

The extension to the SAD is straightforward. Adding two terms for the spatial
derivatives allows to compute similarity even if the assumption of brightness
constancy doesn’t hold. One can also chooses to weight each term of the equa-
tion, either uniformly (each term has a % weight) or giving a largest weight to
the image gray values (for example, giving a weight of 0.5 to the first term of the
equation, and 0.25 to both the others term). We can also add another weight,
related to the position of each pixel in the block: pixels that are nearer to the
center should have a weight that is larger than the one of the pixel nearer to the
boundary of the block, possibly assigning the weights in a Gaussian fashion.
Eventually, we could also use some statistical correlation measure like the
Cross-Correlation, or (even better) the Normalized Cross-Correlation, that
measures the correlation between two blocks, that is, how much the data of
the first block depends from the data in the second one. In general, there isn’t
a measure that performs better than the others in every situation, even if the
SSD and its variants usually lead to better results; the choice depends from the
characteristic of the data and from the desired goal.

Other technical details, like the size of the window or the computation of sub-
pixel flow, haven’t been accurately dealt in literature, and the optimization of
the algorithm is usually performed differently on different applications. How-
ever, those aspects have been partially investigated in [16,81,155,160]. For the
definition of a quality measure of the estimated flow, we remind the reader to
the previous section.

Like any other local method, the block matching technique can be used together
with a hierarchical approach, especially when dealing with large displacements
that should be computationally too heavy to handle when working on the orig-
inal resolution, and that could also introduce noise in the solution. Initially,
the block matching is performed on coarse resolution images, and the resulting
flow is used as starting point for the computation to a finer level; when switch-
ing from a level to a finer one, we could also adjust parameters like the size
of the block, or the A value that determines how many blocks we test. This
is, by far, the most common approach to the block matching technique; the
improvements to this basic approaches has been proposed in a large number of
works. The work by Anandan [8] is based on a Laplacian images pyramid, and
uses a coarse-to-fine SSD-based matching strategy that also detects sub-pixels
motion with a confidence measure derived from the principal curvature of the
SSD surface. The approach by Singh [160], similarly, uses the SSD minimiza-
tion combined with a two-stages computation: the first stage is the estimation
of the displacement, obtained by a combination of SSD values, computed on
triples of adjacent high-pass filtered images, and a probability distribution R,
defined for each pixel, obtained from the SSD surface; the second stage is the
propagation of the estimation to the finer levels using a neighborhood smooth-
ness constraint, achieved by minimizing an appropriate functional. Baglietto
et al. [11] proposed a parallelized version of the block matching, interesting
especially from the implementation point of view. The Full Search Algorithm
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or ezhaustive search compares one block of the first image with all the blocks
of the second image, with the obvious drawback of being quite expensive. The
Three Step Search and its evolution [111] use a predefined pattern in order to
search and evaluate the best block matching. An extension of this algorithm is
the so-called Simple and Efficient Search [120] that, following the idea that the
motion can be represented as a unimodal surface, there can’t be two minimum
in two different directions, and therefore the search pattern can be restricted
to a search in one of four quadrants. Four Step Search [146] and Diamond
Search [47,180,181] use respectively a square-pattern and a diamond-pattern
in their search; first they use a larger pattern, to locate the region of interest,
and then they refine the search using a smaller pattern. The Adaptive Rood
Pattern Search [139] performs a fast search based on statistic information ex-
tracted by a video sequence. We should finally mention the work by Okutomi
and Kanade [144] that uses probability values as weights in the block matching
estimation, the work by Chen [46] that revises the definition of the problem
and the choice of the measure in order to optimize the performances of the
algorithm, the work by Nillius et al. [140] that proposes the using of the NCC
and of the Walsh transforms in order to fast compute the optical flow, and
finally the work of Patras [145] that, instead of improving the algorithm, pro-
pose a metric to evaluate the goodness of the estimated motion field, using a
probabilistic framework and assigning a confidence measure to each estimated
displacement using the a-posteriori probability. In general, block matching
turns out to be a good trade-off in terms of both result and computational
cost; also, its versatility makes it a powerful algorithm, since one needs only to
define the similarity measure and the size of the window of interest.

We present some results of this techniques in Figure 1.12; tests are performed
on the same dataset but with different parameters. It’s easy to notice that
taking into account derivatives performs better than using only color informa-
tion (less noise). In our test, we find that a good trade-off in terms of time
and result is achieved by means of a 9 x 9 search window, combined with a
hierarchical approach and a Gaussian filtering on the flow at the end of each
iteration.

1.3.3 Global methods
The energy-minimization framework and its evolution

The impossibility to compute a dense flow on the whole image can be, in some
applications, a major drawback. In a certain sense, this is a problem shared
with the Lucas-Kanade tracker and, in general, with the local techniques: poor
textured or occluded regions lead to unreliable results and, in general, incor-
rect estimates. This is mainly due to the fact that the estimated motion is
computed locally, using only information related to a neighbors of the region of
interest of a given pixel. Sometimes, even if it’s impossible to compute correctly
the displacement, it’s possible to reasonably estimate it observing the motion
of the other region of the image. In this case, we assume that 1.12 still holds
everywhere on the image, but also we assume that the motion of each object of
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Figure 1.12: The block matching algorithm applied on the same sequence (the
Backyard dataset, in the first two rows). On the left column, we present result
of the DSSD measure, while on the right column we presents the result of
the common SSD measure. Test are performed using a hierarchical approach
and with a block window of 5 x 5 size (third row) and a 9 x 9 windows (last
row). Running time is about 0.5s for each image, since the algorithm has been
implemented using the CUDA GPU acceleration. The average endpoint error
in the less-noisy case is 1.4763 pixels, with an average angular error of 6.75
degrees.
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the scene can be approximate with a rigid and smooth movement. The motion
is then estimated globally, taking into account the information related to the
estimates of the motion of all the pixels, in order to preserve the smoothness of
the final result. Typically, global techniques made an explicit use of the bright-
ness constraint equation 1.12 in the formulation of the problem, combining it
with one or more regularization term encoding the constraints that we want to
preserve in the computation; in this way, they define a functional which is then
minimized over a domain of interest (usually, the entire image domain). In the
first basic version of this global technique, proposed by Horn and Schunk [98],
the regularization term is a smoothness constraint, requiring a slowly varying
optical flow field. The reason for the constraint is conceptually easy to under-
stand: if two pixels belong to the same object of a scene, and we are assuming
that each object moves rigidly, then their motions should be almost identical.
It’s uncorrect to say that each motion should be computed only locally, since,
ideally, the correct estimation of the motion of few, significant pixels of the ob-
jects should indicate the direction of the motion of the entire object. Formally,
equation 1.12 is combined with the smoothness constraint to define an error
functional:

/D ((VI v+ 1)+ AQtr((VV)T(Vv)))dx. (1.22)

D represents the domain of interest, while v, as seen before, represents the two-
dimensional motion field of the domain of interest; if the domain of interest is
the image I then a vector v = (u,v) is defined for each pixel € I. Our goal is
to find the field v that minimizes the functional. As a matter of fact, minimiz-
ing the functional means minimizing each term of the functional: minimizing
the first term implies that the brightness constraint equation is satisfied, while
minimizing the second term has the effect that smoothness is preserved, since
the second term introduce a penalization for abrupt changes of direction of the
motion field vectors.

Since we are working on digital images, that are, for definition, a digitalization
of the real world, we usually cannot compute exactly the field v of 1.22; instead,
what we can do is to build a linear system having n equation and 2n unknowns
(one equation for each pixel of the image, and two unknowns for each pixel, rep-
resenting the motion components u and v); each equation is obtained expanded
the equation 1.22 and isolating the knowns, in order to achieve a formulation
similar to Av = b. The field v is then computed as an approximation of the
solution of the linear system, via least squares solver, or SVD decomposition,
or iteratively and so on, usually depending on the properties of the equations.
The resulting optical flow field will be, in general, smoother than an optical
flow field computed using local methods; unfortunately, there is some major
drawbacks. Particularly, the first drawback is related to the high computational
cost of the global techniques. As a matter of fact, we need to build a system
having an equation for each pixel; even for an image with medium resolution
(e.g. 1024 x 768 = 786342 pixels) the size of the linear system is huge, and
the procedure for the minimization using LS or SVD decomposition could be
quite expensive; the situation gets complicated when we have to work on high
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resolution images (e.g. 2500 x 1600 = 4 Megapixels). Another drawback is
that global techniques produce results that are better in terms of visualization
and understanding of the motion, but that can be less accurate than a local
estimation; for example, small motion could be lost due to the smoothness
constraint. In general, this technique capture very well large displacement and
motion of entire objects, but may perform poorly when we need to detect small
movements (e.g. subpixel precision) occurring in a well-localized region of in-
terest.

The basic approach of Horn and Schunk that led to the formulation of 1.22 it’s
the first one and it’s, someway, too naive; the brightness constancy equation
turned out to be unrealistic in many case, such as the single motion assump-
tion (the assumption that there’s only one moving object in the scene). In a
way that is similar to what we saw for the local technique, the original for-
mulation has been revised in literature, in order to adapt the method to a
large range of different problems. The main idea stays the same: defining and
minimizing some functional formed by a number of constraint, encoding the
characteristic of the scene that we are observing. In the years, a number of reg-
ularization terms different from the original used in 1.22 have been proposed,
starting from Nagel and Enkelmann [135] introducing the oriented smoothness
constraint, forcing the vector field to change only in direction characterized
by small variation of the gray level; in this way, boundaries of the objects,
characterized by high variation of gray level, are detected and their motion is
correctly estimate. Their work has then been improved in [7] with the refor-
mulation of an energy functional that is invariant under brightness changes.
Black and Anandan [25] modify the formulation of 1.22 introducing two new
constraints, the spatial coherence constraint and the temporal coherence con-
straint; in this way, it becomes possible to track multiple objects, in the same
sequence, assuming that they are moving rigidly and their velocity is constant
during time. Subsequently, in [26] they propose to relax the single motion as-
sumption in order to better and robustly estimate the flow, even if there are
several moving objects in the scene, preserving the discontinuities between the
motion of different objects. Other formulations of 1.22 have been discussed,
among others, in [74], that proposes the segmentation of the motion field in
order to guarantee a coherent motion for each object of the scene, [6] that
models and solves the problem as a partial differential equation, [134], where
Mukawa proposes a regularization term that takes into account not only the
smoothness constraint, but also other constraints related to the lighting scene
effects, assuming to have a single moving object in a scene with a light source,
and in [51], by Cohen, that proposes to minimize a non-quadratic functional,
by means of solving iteratively a system of nonlinear differential equation, in
order to preserve the discontinuities of the optical flow on the boundaries of
moving objects.

One of the most significant improvements of the energy minimization frame-
work has been proposed in 2004 by Brox et al. [36]; they propose a global
variational model, derived from the original 1.22. The assumption is that op-
tical flow constraint 1.12 usually does not hold, at least in real-case scenarios,
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but the variations in the gray level could be helpful to determine the displace-
ment vector, assuming that also these variations are invariant in the sequence.
This criterion is referred as the gradient constancy assumption:

ViI(z,y,t) = VI(z +u,y+v,t+1) (1.23)

where V = (0,,0,) denotes the spatial gradient of the image and v = (u,v).
This constraint joins the original brightness constancy equation in order to
create the first terms of the new global equation:

Epata(u,v) = /

) \Il(|I(x +w) — I(x)]> + 4| VI(x +w) — VI(X)|2)dx (1.24)

where ¥ is an increasing concave function that penalize outliers and leads
to a robust formulation. This term represents both brightness and gradient
constancy assumptions and therefore will replace the first term of 1.22. Then,
like in [98], we need to define ad add a second term, representing the optical
flow smoothness constraint, in both spatial and temporal sense. The authors
propose a smoothness energy written as

Bsmoan(u.0) = [ ¥(Vaul +[Vaof*) dx (1.25)
Q

where V3 represents the spatio-temporal gradient, but it can be eventually
replace by the simple spatial gradient. Finally, the total energy is the weighted
sum between the two terms:

E(uv U) = EData + aESmooth (126)

The weight o > 0 is a regularization parameter, and the domain of interest ()
is the whole image. Obviously, the main goal is to find the optical flow field
that minimizes E. The problem is solved using a coarse-to-fine approach that,
level after level, converge to a minimum of a function that is also the minimum
of the original energy function. For an exhaustive discussion about the formu-
lation of the minimization problem and its numerical solution, we refer to the
original work [36]; in this section, we discuss about the characteristic and the
formulation of the problem. This approach has been further developed by the
same authors; in their work [35] they successfully combine this technique with
an image segmentation algorithm in order to achieve a piecewise smooth optical
flow. The energy formulation keeps into account also the different segments of
the image, their correspondences and the possible deformation of each patch.
The energy minimization model has been carefully analyzed and revised by
Black, Sun and Roth in [165], where they discuss the secrets of the compu-
tation of optical flow, giving some interesting suggestion for both formulating
the problem (e.g. choosing carefully the penalty term in the energy formula-
tion) and implementing a solution (pre-processing step, coarse-to-fine strategy,
interpolation methods and so on).

Generally, the energy minimization framework is a powerful and versatile tech-
nique to compute the optical flow. As already seen, the global equation can
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Algorithm Running time Endpoint error  Angular error
Horn-Schunck [98] 49s 1.5156 9.1655
Black and Anandan [25] 328s 1.1145 6.4547
Brox et al. [36] 18s 0.9135 4.6235
2D-CLG [3] 844s 1.3845 6.2945

Table 1.2: Comparison between the algorithms presented in Figure 1.13. For
each algorithm we provide the running time, the average endpoint error (that
is, the distance between the estimated destination pixel and the correct one)
expressed in pixels, and the average angle error (that is, the angle in space
between the estimated flow vector and the real one) expressed in degrees.

be adapted to a large number of situations, changing the terms definition or
defining and adding some more constraint, according to the properties of the
scene and the desired results. A major advantage is its robustness against
noise, the ability to overcome problems of poor texturing and, in some cases,
dealing with occlusions and illumination changes that usually are problematic
when working on local spatial information. As we already mentioned, the ma-
jors drawback are the possible loss of precision (small disparities may be poorly
estimated or even completely lost, because of the smoothness constraint forcing
large regions of the image to have a coherent flow) and the high computational
cost usually required by these techniques, especially when we need to solve
large linear system (or, depending from the functional definition, even nonlin-
ear system); the discretization of the problem and the implementation of its
solution could be also a drawback, compared with the simplicity of implement-
ing a local technique. Sometimes, it’s also possible to use an hybrid approach:
a global method could easily detect with good precision large displacements
of the objects of the scene, and the resulting flow can be then locally refined
using some local technique, in order to preserve also small motions and details.
An example is proposed in [37] where the two classic techniques, developed by
Lucas-Kanade and Horn-Schunck, are combined in order to define an energy
functional that is then minimized locally on the regions of interest of the image.
Some results of global techniques are presented in Figure 1.13, while timings
and error evaluation are presented in table 1.2. It is easy to notice that the
resulting flows are usually quite smooth, since they capture large displacement
of the objects in the scene, but they may fail to capture small movements. A
visual comparison between global and local techniques, performing on the same
test-case, is shown in Figure 1.14, while errors and times are summarized in
table 1.3.
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Figure 1.13: Optical flow computed on a 2-frames test case. We present the
results of the original Horn-Schunck algorithm [98], the algorithm by Black and
Anandan [25], the Brox method [36] and the hybrid approach described in [37].
It’s easy to notice that the global motion of the scene is captured in a smooth
fashion. Small displacements, such the ones related to the head of the green
character, may experience loss of precision in the computation. Color code in
Figure 1.9.

FOLKI [108] Brox [36]
Dataset Time Endpoint Angular Time Endpoint Angular
Grove 1.27s 1.5360 6.1660 17.6s 1.1045 3.7938
Mequon 1.42s 1.5261 20.961 17.3s 0.2731 3.7230
Schefflera 1.31s 1.2358 17.656 18.1s 0.3922 4.9722
Yosemite 0.87s 0.2659 4.6756 14.6s 0.1040 2.2211

Table 1.3: Comparison between the FOLKI algorithm [108] and the Brox
method [36] related to Figure 1.14. The local method is faster, but has gener-
ally an higher error due to the poor results on flat regions. The global method
has a smaller error, but is significantly slower.
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FOLKI [108] Brox et al. [36]

S

Figure 1.14: Visual comparison between the FOLKI algorithm [108] (Lucas-
Kanade tracker with GPU parallelization) and the Brox method [36] on several
datasets. Color code in Figure 1.9.
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Chapter 2

Bundle adjustment via
Optical Flow computation

The work presented here is inspired by the one proposed in [64]; in their work,
DellePiane et al. use the computation of optical flow to determine the dis-
parities between two images of the same scene, and then use this information
to create a texture for the digital model of the scene, obtained warping the
original images. It’s probably the first time that a computer vision technique
has been used to partially solve a geometry processing typical problem, that
is, improving the projection of color and texture information from the images
to the digital surface; however, it’s someway correct to say that their approach
is hybrid, since the optical flow is used to modify the images, shifting pixel
position to best fit the geometry of the object, so it actually doesn’t affect the
geometry of the scene or the camera placement.

The purpose of this work is to understand if the computer vision of the opti-
cal flow may be used to solve other problems usually related to the geometry
processing. Particularly, in this chapter we investigate the use of the optical
flow in the bundle adjustment process. The idea is to use this technique to find
the best placement for our camera, in order to project the color and texture
information on the digital surface removing the artifacts (such as blurring or
ghosting, Figure 2.1) and eventually modifying the underlying geometry of the
digital surface, according to the observed displacements.

The chapter is subdivided as follows: first, an overview of the approach is
given, followed by the description of its naive implementation; we then make a
brief digression in order to explain how to move the cameras according to the
optical flow (determining the egomotion of the camera) and show the prelim-
inary results. The last two sections describe the limitations of the approach
and discuss several possible improvements to it.
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2.1 Overview

Assume that two cameras, Cy and Cq, placed into two different points, are
looking to the same object from two different points of view; we capture two
images of the object, Iy and I;. Assume also that Cy and C; are placed such
that Iy and I; overlap in some part, so that there is a part of the object that
is visible in both images (see Figure 2.1). Assume that both cameras capture
a certain point @ of the object. Casting a ray ro from the center of the camera
Cy, directed to @, we can easily find the intersection gg between rg and I, that
is, the projection of @ onto the image plane of camera Cy. In the same way,
we can cast a ray r; from C7 and find the point ¢; on the image plane I.

Figure 2.1: The same object (in this case, a vase) captured from two different
viewpoints, and a digital representation encoding only the geometry on the
object. Our goal is to find the correct alignment of the cameras in order to
project the color and texture information from the image onto the surface. See
also Figure 1.2 for a similar case.

Suppose now to have a point P of the real object, captured in both the im-
ages Iy and Iy, and suppose that we can univoquely identify the pixels py and
p1 corresponding to P. Ideally, if we cast a ray r passing through Cy and py,
hitting the object and then going back to the camera C, we should find that
the intersection between I; and 7 is exactly the point p;. What actually hap-
pens is that the intersection point is not p;, but it’s instead a different pixel p/,
slightly shifted with respect to p;. This happens because of the discretization
of the process of image acquisition, since the continuous signal (the captured
scene) has to be discretized and quantized in order to obtain a digital image,
introducing some (usually small) error. Since the pixel py has fixed size and
integer coordinates in the image reference frame, it may not correspond to the
actual point identified by the intersection between r¢ and Iy, so the point hit on
the surface may not be the actual P point but a nearest P’ point; then, casting
a ray from P’ to C7 introduce another error, that lead to the identification of
the pixel p} instead of p;. Assume now that we have two images I and I, and
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Figure 2.2: A ghosting artifact due to incorrect alignment of the cameras.

a digital reconstruction of the real object, obtained using a 3D scanner; we have
now another level of error introduced in the process, since also the acquisition
of the object is affected by some quantization and discretization error. The
effect is that, if we want to project the color information from the pixels pg and
p1 to the surface, then the rays ro and r; will probably hit the digital surface
into two different points, even if they correspond to the same real three dimen-
sional point P; the re-projection of the colors back to the cameras is affected by
a possibly significant error that needs to be reduced, in order to be able to add
color and texture information to the object without creating artifacts on the
surface (Figure 2.1), due to the fact that different pixels may project different
color information onto the same point of the digital object. The image 2.1 will
help better understand the process and the errors here described.

Ideally, what we should achieve, in order to reduce the error, is that pro-
jecting color information from pg to the surface and then back-projecting the
information to C1, the intersection point pj is as close as possible to the actual
p1 pixel, corresponding to the same 3D real point P of py. In other words, we
want to minimize the length of the displacement vector v = p| — p1, and we
can do this in two ways:

e moving the camera C in order to make p; and p] overlap;

e modifying the geometry of the object, moving an existing point (or adding
a new one) in order to affect the re-projection of the information to C;
and make p; and p} overlap.

Obviously, the solution isn’t so simple: as a matter of fact, moving the
camera or modifying the geometry may reduce the length of vector v related to
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D(S)
S

Figure 2.3: The alignment error. Images Iy and I; capture the same point P,
lying on the surface S, corresponding to pixels pg and p;. However, the dis-
cretization of the surfaces D(S) introduce some error. If we project information
from pg onto the digital surface D(S) and then back-project onto I, we find
a pixel p] different from p;. Our goal is to get p; and p| as close as possible.
The vector pl_b’l represents the displacement of the back-projection.

P, but may also introduce new error,related to pixels corresponding to different
points of the object. We need to take in account all the displacement vectors
involved into the the process: we don’t project a single pixel pg, but, obviously,
we project the entire image Iy onto the surface of the object, and then back-
projecting onto the image plane I;. We can discard all the information related
to pixels that doesn’t project directly onto the object (the background) and
to pixels that project onto parts of the surface that aren’t vjsible from C;
(occlusions). We then obtain a number of displacement vectors v?, each of them
representing the displacement between the pixel p? and the back-projection of
its corresponding pixel, pj, on image Iy. The goal is now to minimize the
following:

Z [|Vill, @ projected from Iy to I (2.1)

K3

Explicitly, we want find the camera alignment that reduces the global displace-
ment as much as possible; eventually, after the alignment, we can further reduce
the error acting directly on the digital surface of the object.

Even if the analogy is maybe already clear, it’s time to bring into the problem

Stefano Marras Perception and Motion



Bundle adjustment via Optical Flow computation 39

the optical flow technique. Let Iy be the image captured by Cpy; we project
all the pixels of Iy onto the digital object, and then back-project it onto the
image plane of the camera C;. We call then BY the image formed onto the
image plane of C7 by the back-projection, minus the background pixels and
the occluded ones; the indices indicates that the images is obtained the image
Iy onto the image plane of C;. We can computed the displacement vectors v;
simply computing the optical flow between BY and I;: ideally, the flow should
be null, but actually, for each pixel we will have an estimate of its displacement.
This is straightforward: pixel p; corresponds to pixel p}, so it implies that they
share a number of information (color, gradient, behavior of the neighbors), so
applying an optical flow technique it’s equal to identify, for each pixel, the
position of the corresponding one, and the displacement between them. The
goal is finding the camera alignment that minimizes the optical flow between
the back-projected image BY and the actual, image I; captured by Cj. In this
way, the color information should be projected onto the surface smoothly and
reducing the risk of artifacts.

And how can we minimize the flow? Again, the answer is in the optical flow,
that is not only a measure of the displacement, but can also be used in order
to figure out how the camera has to be moved to achieve null flow. To clarify
this point, consider BY and I; as two images of the same scene, took from a
moving into two different instant ¢y and ¢1; which is the motion described by
the camera between ty and ¢;7 The answer to this question also gives us the
trajectory that the camera has to describe in order to minimize the flow, and
this trajectory can be computed using the optical flow. The trajectory of the
camera C' is known as the egomotion of C'. We'll see later, in more detail, how
to estimate the egomotion from the optical flow field of a sequence of images.
However, we usually don’t have only a single pair of images; in order to cover
the entire surface of an object, we usually need to take a number of images,
depending from the size of the object. So let assume to have n different im-
ages, taken from n different points of view; we need to minimize the sum of the
displacement vectors of each possible pair of images. For each couple I; and I,
we take the back-projected image B; and the compute the displacement with

respect to ;. Assume that v? * represent the displacement vector for the pixel
p; from image I; to image Iy; then, the global error can be expressed as

n n

% SV (2.2)

j=1k=j+14€l;

that is, the sum of all the possible displacement vectors involved in the process.
Of course, not every pair of images contributes to the error; couple of images
that has no overlap parts, for example, has no displacement vector to minimize
and they can be discarded. Notice that, since aligning I; to I; and aligning I;
to I; is equivalent, we took it into account only once (this explain the behavior
of indices j and k). Also, we assume to have an initial configuration with
all the cameras C; placed in a good position, in the sense they are more or
less pointed to the object, so that projection and back-projection will produce
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Figure 2.4: Flowchart of the iterative alignment algorithm. Alignment is per-
formed iteratively on each pair of overlapping cameras.

reliable results. We can assume to have an initial configuration obtained using
one of the algorithms previously described in the chapter 1.2, that has to be
refined in order to achieve the best possible precision and coherence, reminding
that the main goal is to align the cameras to project the color information to an
existing digital shape (and, if possible, improving the detail of its geometry);
stereo reconstruction from images is not taken into account. A recap of the
algorithm is presented in Figure 2.1

2.2 Implementation

The preliminary results presented here are obtained using a synthetic frame-
work, built in order to verify the goodness and the correctness of the idea
behind the algorithm. In the 2.5 we will explain which are the problematic
related to the real application of this technique and how to overcome them.

The system consists of two synthetic pin-hole cameras Cy and C7, implemented
using the OpenGL library, placed in a common coordinates frame, a digital ob-
ject, acquired using one of the techniques decried in 1.1, and two synthetic
images Iy and I representing the texture of the object. The images are re-
alized with the goal to achieve maximum accuracy in the computation of the
optical flow, reducing the possible ambiguities; each pixel has a unique color
and unique partial spatial derivatives. Each camera has its own extrinsic and
intrinsic parameters with the exception of the the radial distortion coefficient;
we also assume that cameras are already calibrated, so that intrinsic parame-
ters (focal length, aspect ratio and image center) are known in advance, and
both cameras are looking to the object. The system setup is sketched in Fig-
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Figure 2.5: Synthetic datasets. Each dataset is created starting with the digital
shape; then, two cameras Cy and C; are positioned. One camera, let’s say Cj,
is taken as reference camera; we create the synthetic image Iy such that it
projects perfectly onto the shape. The back-projection of the newly created
image on the other camera image plane is taken as reference image I; for
C7. In the image, we show on the leftmost column the digital shape, then
the reference texture for camera Cjy and two reference images for two different
camera positions.

ure 2.1, while the synthetic dataset composed by two texture images and the
digital shape is shown in Figure 2.5

Each cameras takes a reference image of the object as shown in Figure 2.5.
Then, the position of camera C; is randomly or manually perturbed in order
to achieve a worse alignment. We run the algorithm until it converges and the
position of C is adjusted coherently with the information of the optical flow
between the back-projection of Iy and the reference texture I;. In other words,
the algorithm has the aim to correct the position of the misplaced camera try-
ing to move it back to its original position corresponding to its reference image.
We start projecting the Iy image from the camera position Cjy onto the object
and then back-projecting onto the image plane of camera Cj, obtaining the BY
image; this step is accomplished thanks to the OpenGL library and the graphics
card hardware. We compute the optical flow between the back-projected image
BY (what the camera currently sees) and the reference image I; (what the cam-
era should see, if correctly placed) using the GPU accelerated implementation
of the classic Lucas-Kanade approach, described in [126]. An example of the
resulting flow is shown in Figure 2.6; here, the camera C1 is characterized by a
rigid translation from its original position. It’s straightforward to notice that
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Figure 2.6: The original reference image for the camera C7, on the left; in
the middle, the image BY obtained back-projecting the reference image from
camera Cj onto the image plane of C7; on the right, the optical flow expressing
the displacement between BY and C;. Color code in Figure 1.9.

the direction of the displacement vector is more or less the same for all of the
pixels; the main difference is the magnitude of the displacement. This is mainly
due to both the geometry and the perception of the scene: points that are far
from camera are usually characterized by small displacements, while points
close to the camera that moves in the same way are characterized by a larger
displacement. However, for each pixel we know exactly what is the displace-
ment between the real pixel of the image and its back-projection: we know its
magnitude and its direction. The magnitude gives an indication of the error of
the alignment in this specific pixel but, if we take into account both direction
and magnitude of the flow, we can understand the motion that the camera
should perform in order to reduce the displacement itself. If, for example, we
observe that all the pixels are characterized by displacement vector having the
same direction and the same magnitude, we can assume that we need to apply
a rigid translation to the camera, in the opposing direction of the flow, in order
to move the real image and to fit them with the back-projected one. Unfor-
tunately, it’s quite unusual for every pixel of the image to be characterized by
the same displacement; commonly, vectors follows different direction. This is
mainly due to the fact that the camera could move along a line, rotate around
an axis and also zooming in/out, even if we can consider this movement as a
particular case of motion along a line (specifically, the Z — axis of the camera
reference frame). However, we need a way to estimate the motion that the
camera has to do in order to minimize the flow. The inspiration for the next
step comes from the branches of the robotics that deals with the automatic
navigation.

2.3 Estimating the Egomotion

Assume that we’ve been given the original image I;, the back-projected im-
age BY, and the optical flow OF, represented as a vector field, describing the
displacement between a pixel p?,1 and its Iy corresponding pixel p; 1. The dis-
placement is represented by the vector v;: ideally, if we move p%, 1 of a quantity
equal to ||v;|| along the direction of v; itself, the flow between the two pixels
becomes zero. But we don’t want to modify (warp) the I; image in order to
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Figure 2.7: Reference frame OXY Z. The observer O is placed in the origin
and is looking in the direction of the Z axis. The observer may move by means
of a rigid motion, formed by a translation 7" and a rotation R.

fit the back-projection; also, we need to take into account that different pixel
could be characterized by different displacements. So, the question now is: how
can we minimize the flow? how we should move the image I in order to make
them coincide with BY as much as possible?

Suppose to have a static scene, and to take a video of this scene from a moving
camera; we can then extract a number of frame Fy, Fi....F,, from the video se-
quence. If we compute the optical flow between F; and F;_1, what we compute
is the apparent motion computed by the objects in the scene in the interval
[ti—1,ti]; apparent because the motion is actually performed by the camera it-
self. In robotics, the real-time computation of the optical flow has been largely
use to estimate the so-called egomotion, for the automatic navigation of ve-
hicles, robots and so on. In this section we briefly introduce the concept of
ego-motion and the technique used to estimate it from a sequence of frames;
then, we’ll see how the egomotion estimation can be applied to our framework.
The estimation of egomotion is a problem directly related with the perception
of the motion of a scene, and its interpretation; this problem have been inves-
tigated since the 50s (see for example [85], that first defines the optical flow as
the moving pattern of light that fall upon the retina), since there’s an obvious
relation between the perception of the motion and the understanding of a scene
(see also Ullman and Marr, [123,170,171]). However only in the 80’s, with the
developing of the robotics, this technique has been applied to automatic navi-
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gation system, with the aim of building a vehicle, equipped with one or more
cameras, that should be able to move autonomously inside an environment, us-
ing the information coming from the observation of the surrounding to detect
its own position and eventually modify its current motion to avoid collision,
without any a priori knowledge of the geometry of the scene. In order to eval-
uate its own motion and take a decision, the system has to analyze the motion
perceived by its visual sensor, and use it to understand both the surrounding
environment and its own motion.

The relation between the perceived motion and the instantaneous egomotion
has been first explored in [116] by Longuet and Higgins; various application are
presented in [23,67,68,83,148,149,179,183]. The main idea behind all these
works is the same: computing the apparent motion of the scene by means of the
optical flow between consecutive frames of the captured video sequence, and
use it to compute the instant egomotion of the object and eventually change
the trajectory. The optical flow has to be computed in a reasonable amount of
time (ideally, it should be computed real-time) with usually limited hardware
resources; it’s necessary to find a reasonable trade-off between accuracy of the
flow and computation time. For our purpose, we tend to privilege accuracy
over fast computation time, (even if, of course, we try to keep the running time
as lowest as possible), so we focus on the extraction of the information related
to the ego-motion.

Suppose to have a moving monocular observer (e.g., a pin-hole camera) O, and
assume that it’s the center of a reference frame OXY Z whose Z-axis coincide
with the view direction of O (see Figure 2.7). Assume that the observer O
moves rigidly with respect to the scene: its motion can be divided into the
combination of a translation 7" and a rotation R. The translation is char-
acterized by three components (7},Ty,T.) encoding the motion in the three
direction, while rotation is defined by a rotation R = w X p, where w represent
the angular velocity and p the instantaneous radius of curvature. For the sake
of simplicity, we can neglect the radius of curvature, and represent the rota-
tional part of the motion using only its angular velocity w = (wg, wy,w;). Let
also P = (X,,Y,,Z,) be a point observed by O. Then, the relative motion
between O and P can be described as

V=-T-wxP (2.3)

In components:
Ve =T —wyZ, +w.Y,
Vy=-T) —w. X, +w, 72, (2.4)
V,=-T, —w; Yp + wy X,
From the camera model described in 1.2.1 we know that the projection

p = (2p,Yp) of P onto the image plane of the camera (the digital equivalent of
the retinal image) is computed, using perspective, as:

X Y,
p p
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where f is the focal length of the camera.
The motion of p on the image plane is the optical flow (u,v) describing the
apparent motion of P, can be written using 2.5 and 2.4:
ZV -V, P
v=(u,v)=f 7
We refer to 2.6 as the basic equations of the motion field. We can write 2.6 in
components:

T.x—Txf WaY _ wy?vr‘)
v—(“)—( z el ety f2> @2.7)

(2.6)

sz_Tyf WyTY Wz Y
v —z wxf + Wy + jf - JCT

Notice that the motion field can be seen as the sum of two components, one
depending on the translation only and one on the rotation only. We can finally
write 2.7 in a compact notation that emphasize these two components:

(w1 =f 0 @\, 1 wy  —(fP4a) fy
v=(0)=z (5 ) (e LT )
(2.8)
This equations gives us the relation between the moving camera, a static point
in the space and its apparent motion detected by the camera, e.g the optical
flow. We can use these equations into several situations: for example, if we took
a number of pictures of an object, from different know viewpoints, and then
we compute the optical flow, we could use the displacement vectors and the
positions of the viewpoints in order to reconstruct the geometry of the scene (up
to a scale factor, depending on Z), or we can use the optical flow to estimate
the motion of the camera (up to a scale factor) and computing the collision
time with some object of the scene, and so on. Some example can be fount in
the work by Giachetti et al. [83], that handle mobile navigation based on the
optical flow of a video captured by a camera, or the one by Beyeler [23] that
uses the optical flow captured by a camera to handle the takeoff and landing
of an helicopter. '
Let’s go back to our case. We have the back-projected image B/ and the real
image I;, and we computed the optical flow between them. What we need
to know is how to move the camera C; in order to minimize the flow, so the
unknowns of our problem are, obviously, the translation 7" and the rotation R.
Instead, we know a number of displacement vectors v, each of ones indicating
the motion described by a single pixel of B/. Referring to 2.8, for each v we
know the focal length and the coordinates of a point (x,y) on the image plane,
but since we know also the geometry of the scene, we can easily obtain the
depth value Z associated to each pixel of our image. The relation that we need
to compute T and R from the optical flow and the geometry is then

(=f 0 x ay —(f*+27) fy) —u (2.9)
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T
T

(0 —f y (fP+a2?) -2y —fo) T =v (2.10)

<

33

that leads to the formulation of a linear system having 6 unknowns (the com-
ponents of T and R) and consisting of two equations for each displacement
vector correctly estimated from the images. Since we have 6 unknowns, we
need at least 6 equations, that is, 3 correspondences. Since we usually have
a large number of correspondences, the system is usually overdetermined, and
its solution is computed by means of least-square minimization. Notice that,
after solving the system, it’s possible that we need to rearrange the three com-
ponents of the rotation R in order to obtain three orthogonal vectors. At this
point, we know the translation T and a rotation R that we need to apply to
the camera in order to minimize the flow. In order to avoid errors due to large
displacement, we constrain the magnitude of both 7" and R, so the process
could be eventually repeated for several time before convergence. In this case,
we’ll say that the procedure converges when the global error (the sum of the
norm of the displacement vectors) does not decrease after moving the camera,
that is, no optimization is possible.

This part usually represent one of the bottle-neck of the entire algorithm. Since
we’re dealing with high-resolution images, we have a large number of correspon-
dence vectors; the effect is that the LS minimization involves a N x 6 matrix
where N is quite huge (for a 640 x 480 image, the number of correspondences
vector is over 300000) and computing the approximate solution requires a large
amount of time. We'll see in section 2.6 how we can deal with this problem.

2.4 Preliminary results

In this section, we’ll briefly show some preliminary results, obtained on a series
of synthetic dataset already described in section 2.2 and pictured in Figure 2.5.
Each test case consists of one digital shape and two synthetic images of the
shape, simulating two photos of the object captured from two different view-
points, having a resolution of 640 x 480 pixels. Each image is projected onto
the surface and back to the other camera, then the optical flow is computed
using CUDA acceleration. From the optical flow, we build the linear system
described at the end of section 2.3 and solve it using the Eigen library [89].
For each test case we report in table 2.1 the initial error (the sum of the flow
vectors), the number of iteration needed to converge, the total running time in
seconds and the final global error.
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Initial error Iterations Time  Final error  Error/pixel

Car 1480610 ) 37.868s 12671 0.46
Dragon 505234 6 23.431s 1380 0.0966
Flamingo 186766 5 21.35s 2430 0.2383
Skull 3050110 4 39.774s 157704 5.007

Table 2.1: Table related to several preliminary results of the algorithm for the
bundle adjustment via optical flow. In the test we adjust the position of one
camera using the other camera as reference. Flow error is expressed in pixel;
all the images have a 640 x 480 resolution, but we work only on the subset
of texture pixels. It can be notice that on objects characterized by a smooth
surface, the alignment leads to good result, with a small error for pixel, while
for a more complex object like the skull, the alignment may have a higher
residual error.

2.5 Limitations and known issues

In the previous sections, we described the idea and detail the implementation
behind the algorithm for the bundle adjustment; however, in section 2.4 we have
been able to present only some preliminary results confirming the goodness of
the idea. Obviously, the main answer is now why we wasn’t able to produce
results using a real test-case, with real high-resolution images and a complex
and detailed digital shape. Actually, at the present moment, there are several
issues and limitations that haven’t made possible to obtain satisfactory result
on real data. We'll review these known problems, explaining their effect on the
algorithm, while in the next section we’ll describe possible ways to overcome
them.

The first problem is related to the type of data on which the algorithm must
perform: the images and the digital model. The images are usually high-
resolution pictures of some artifacts (as stated in the introduction). The images
are taken from different points of view; the effect is that, usually, the lighting is
different from one point to another, so even if two images shares some part of the
object, the information related to the color of this part may be different from
one image to the other. This is true especially when it’s not possible to take
pictures in a controlled lighting environment (large artifacts, building, statues
and so on). In this case, the problem is that the selected optical flow technique
should be robust to lighting changes, but introducing this requirements has
some drawback. The obvious choice is to use some global technique, in order
to obtain a smooth and dense flow, taking into account information related to
the color and the derivatives of each pixels, enforced by some other smoothness
constraint. However, since we’re working on high-resolution images (3 or even
4 Megapixel for each image), building and solving a linear system could be
problematic due to the size of the problem. Suppose to have two pictures
with a resolution of 3000 x 2000 pixels; if even only half of the pixel would be
considered as interesting elements, the system to be solved should have about
six millions equations (2 for each pixels) and the solution should consist of
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Figure 2.8: The real Skull dataset. A number of images cover the entire surface
of the object; our goal is to place the cameras in order to project the color
information onto the geometry of a digital shape. Due to several problems (the
texture of the skull is almost flat, the illumination slightly changes from one
image to the other) our algorithm is not completely suitable to work on this
type of data.

about three millions of displacement vectors. Even if, of course, it’s technically
possible to solve a system of this size, time and memory consumption are
extremely high; probably, this choice is not the best one if we want for the
algorithm to perform in a reasonable amount of time. Also, global techniques
allow to detect large displacement, but they often fail when dealing with small
disparities; in our case, even if it’s reasonable to assume that all the pixels
are characterized by similar displacement (since the motion of the camera is
unique), the magnitude of each vector may be different, depending on the
depth value of the original point. The obvious choice seems to implement a
local technique for the computation of the optical flow, but also this choice has
several drawbacks. The first one is related to the type of data we’re working
on.

If the object pictured in our images has poor or flat texture (see for exam-
ple the skull images 2.8), computing a reliable and robust dense flow is quite
complicated, since there’s only a small subset of pixels whose displacement can
be estimated correctly; most of the pixels belong to flat region and they will be
characterized by null displacement vector, with the result that also the global
error function could be biased. Secondarily, local techniques are often prone
to errors, so some displacement could be estimated incorrectly; a number of
bad estimated displacements could affect the solution of the linear system, and
the error could propagate iteration after iteration. In our experiment, we test
several techniques:

e classic block matching algorithm, with multi-scale Gaussian pyramid
of images and taking into account both color and temporal derivatives.
Results were good for regions with high texture, quite poor for the rest
of the image; the quality of the results depends on several parameters
like the size of the block of interest, the (optional) sub-pixel precision
related to interpolation, the weights assigned to derivatives and color. We
enforce the result with some Gaussian smooth filter in order to smooth the
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flow without losing information on small displacement. Block matching
has been implemented on CPU, since the number and the time of the
operations makes it hard to be adapted for a GPU implementation: as a
consequence, times are proportional to the resolution of the input images.

e original Lucas-Kanade tracker, implemented on the GPU as described
in [126]. Time, even for high-resolution images, is sensibly small than the
block matching approach. However, due the problems related to the
lighting condition, the color information often doesn’t match between a
pair of images, and the result is usually unsatisfactory and not suitable for
our purpose, even performing some pre-processing step on the images to
deal with illumination issues (e.g. re-equalization of the image, removal
of lighting artifacts). The quality of the results is affected by parameters
like the number of level of the Gaussian pyramid and the size of the
window of interest. We also tested the implementation of [108] provided
by the authors, without experiencing significant improvements.

e revised Lucas-Kanade tracker, presented in [137], in order to deal
with illumination changes and other artifacts. Results were poor in terms
of both time and quality of the resulting flow; large displacement weren’t
correctly estimated, since most of them were detected as small displace-
ment affected by illumination changes. Small displacement are estimated
slightly better the original Lucas-Kanade tracker.

e SIFT flow [112], implemented using MATLAB@© framework. Good
quality and precision in the result, but large amount of time (> 30 mins
for each couple of images) and space required to perform the computation
makes them unsuitable (and unstable on certain machines).

e Energy minimization proposed by Brox [36], implemented using the
MATLAB@© framework. In this case, the flow was able to detect a
smooth, common large displacement related to all the pixels involved
in the process in about 7 minutes for an high-resolution image, but the
lack of precision for pixel characterized by small movements affect the
estimation of T and R, that are estimated incorrectly (typically, the es-
timated movement is larger than it should be) and the effect is that the
algorithm converges without finding a good minimum: the global final
error is still too large.

e Farneback’s algorithm, detailed in [141] and provided by the OpenCV
library [28]. The results are affected by same problem of the local trackers:
the algorithm is not able to deal with illumination changes in the sequence
of images.

It can be notice that every technique we tested has both advantages and
disadvantages; the best solution will probably be a hybrid technique; we will
describe two possible approaches in the next section.

In general, however, the whole pipeline requires a running time that is signifi-
cantly higher than the state-of-the-art methods for solving the same problem,
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which makes it, at the moment, not suitable. So another factor to take into
account is it’s computational cost: the computation of optical flow between a
pair of image with N x M pixels can require a large amount of time; the same
consideration holds for building and solving the linear system, whose size is
directly related to the resolution of the image. Iterating this process requires
a huge amount of time, that needs to be reduced in some way.

Also, since we have introduced this aspect, the solution of the linear system
could be affected by numerical error in some cases, especially when the ob-
served displacement vectors aren’t reliable, and this usually has two main con-
sequences:

e the estimated values of T and R are incorrect, and has the effect of moving
the cameras in a completely wrong position, such that even iterating the
procedure, it’s impossible to recover its correct position;

e the algorithm may converge at a local minimum of the global function
error 2.2 instead of its global minimum (a problem common to lots of
heuristic approaches).

Both problems can dramatically affect the results of the algorithm, since at the
end of the iterations the camera is placed in a position where, sometimes, it
can’t even see the scene.

Speaking of local minimum that doesn’t allow to recover a good positioning of
the cameras, let assume to have two camera Cy and C; with an initial poor
alignment. Suppose to project image I from Cj onto the digital object: if the
initial alignment is quite poor, the color information projected onto the object
hit the surface in a wrong way. For example, they could be shifted respect to
the real object. We then back-project this information onto C; and use the
obtained image to compute the displacement. The result could be that we find
a rigid motion to apply to C; that brings I; to coincide with a wrong back-
projected image. In other word, the risk is that moving the camera, we’ll find a
position well-fitting for wrong data, without having any way to distinguish this
situation from the expected, correct one. This error affect also the distribution
of the alignment across the different cameras. Assuming that we first align
cameras Cy and C7, then C; and Cs and so on. If the alignment between
Cy and C carries some error, due to one of the previously listed reasons, or
simply because it’s practical impossible to achieve a perfect alignment; the
obvious effect is that this error will affect the computation of Cy and Cs,
whose alignment will, again, be affected by some error, that is accumulated
in the global error function, and so on. The accumulation of the error may
introduce difficulties into the alignment of the last cameras; ideally, it should
be instead distributed over the different cameras, and we should also find a
way to evaluate and eventually correct the initial positioning of the cameras, in
order to be sure that the error affecting the alignment is as small as possible.

The next section presents some hypothetical solutions to these problem. Final
considerations about this chapter are proposed in section 4.1.
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2.6 Improvements and future works

The idea behind the algorithm described so far is someway correct, since, under
certain assumptions and conditions, we have the empirical proof that it can be
used to reduce the global error alignment. However, as we just explained, there
is a number of issues and limitations that must be some way overcome if we
want to make the algorithm robust, versatile and reliable. In the following, we
discuss several possible improvements and their expected impact on the algo-
rithm.

The first possible improvement comes from the observation that we know ex-
actly the geometry of the scene (the digital object) and the current position
of the cameras in the common reference frame. As a consequence, we can add
to the framework also the information provided by the epipolar geometry of
the scene. The epipolar geometry is the geometry describing a stereo system
composed by two cameras, placed in two different points, and a generic three
dimensional point P seen by both cameras. We briefly recall some of the basic
concepts of the epipolar geometry in order to see how them will fit into our
framework; for a more detailed description of the topic, we refer to the book
by Trucco and Verri [168].

Figure 2.9: Essential elements of epipolar geometry: cameras Cy and Ci, a
point P and its projections pg and p; on the image planes, the epipolar plane
mp, the epipoles eg and e; and the epipolar lines e,, and ey, .

Given a pairs of stereo cameras Cy and Cy, and a point P in a 3-D space,
we call epipolar plane the plane wp passing through P and the center of pro-
jection of the cameras (Figure 2.9). The lines where 7p intersects the image
planes are called conjugates epipolar lines (or simply epipolar lines); the im-
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age in one camera of the projection center of the other one is called epipole.
From this data, and knowing the position of a number of 3D points on the two
image planes, we can, for example, estimate the roto-translation that brings
one camera onto the other; we can also estimate extrinsic and intrinsics pa-
rameter of the cameras, up to a scale factor, using the so-called Eight-point
algorithm [115]. However, we are more interesting in the fact that the epipolar
geometry could be used to correct and make easier the computation of the flow
and also the camera adjustment. Starting with a certain point P and its two
corresponding pixels py and p; (as pictured in 2.1); we already know that the
back-projection of pg, p}, could be different from p;, and that their displace-
ment is represented as an optical flow vector. If we examined the optical flow
vector v = p} — p1 with respect to the epipolar line e, related to the point P,
we could write v as the sum of two vectors v,, ve, the first one perpendicular
to ep, that we call orthogonal flow, and the other one corresponding to the
projection of v onto e,, that we call epipolar flow. Moving the camera in order
to minimize the orthogonal flow, the estimation of the displacement between
p1 and p} becomes easier, since it becomes a simple search on a 1D line, that
is, the epipolar line related to the point P. So the first improvement is to move
the cameras in order to minimize the orthogonal flow over the entire image,
using a procedure similar to the one used for the rectification of the image [78].
After this first adjustment, we can easily compute the flow, and use it to move
the camera, but we can also simplify this step, since we now know that, in order
to reduce the flow, we can constrain the translation T on the epipolar plane
related to P, and we can constrain the rotation R to be around the normal of
mp. Computing the solution of the system can be, in a certain sense, simplified
by these assumptions.

The problem of computing the optical flow in a reliable and (possibly) fast way
is another main problem that has to be faced. We already stated that, due to
the type of data we have to work on, we need to choose for a method able to
handle with illumination changes and to estimate sub-pixel flow, but we cannot
apply global techniques directly on the full-resolution images due to an extreme
computational cost. We propose an hybrid approach to the problem, that can
be summarized in using a global technique on a sub-sampled pair of image in
order to estimate the large displacements (the highest levels of the Gaussian
pyramid of images), and then perform the computation on the high-resolution
images (lowest levels) using some local technique. Both procedure should be
able to deal with lighting changes, so they must carry on the derivatives into
their computations, and the estimation of the flow with sub-pixel precision
can be achieved by means of image interpolation. The two selected techniques
could be the flow computed using the Brox energy minimization [35], for the
low-resolution images, and an ad-hoc block matching technique. The global
technique, performed on low resolution images, is less expensive, and using
the block matching technique on the full-resolution images should preserve the
finest level of detail. Eventually, we can add a third step to this pipeline, that
is, after the computation of the low-resolution global flow, use the estimated
flow to compute a first approximate roto-translation, apply it to the camera,
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and then perform the high-resolution block matching on the images obtained
by the new cameras configuration. In this way, large displacement computed
from low resolution images will be used to move cameras in order to remove
the largest vectors, leaving only small displacement that will be estimated by
means of the local technique.

Another essential feature that we need to add to our algorithm is an estima-
tion of the quality (and, consequently, of the reliability) of each displacement
vector computed. We need a way to distinguish between poor estimated vec-
tors and good ones. After performing tests using different quality measure, we
found out that, in this case, we can estimate the quality using the eigenval-
ues of the Harris matrix 1.19, as described in section 1.3.2. The eigenvalues
gives a measure of the reliability of the vector in both the directions; assigning
a quality to each vector allows to improve the efficiency and the stability of
the linear system built using 2.9 and 2.10, reducing the number of entries: we
could select only a subset of pixels of the original image, characterized by the
highest quality values, and then use only them to build a smaller linear sys-
tem, that could be solved faster and in a more robust way, since all the values
are good and we don’t have to deal with noise, incorrect observations and so
on. Eventually, when the quality is good for one direction of the vector only,
we can introduce in the system only partial information deriving from the
or v component of the vector. Eventually, the computational cost of solving
the linear system could be reduced using techniques like the GPU acceleration,
that doesn’t reduce the computational complexity but allows to obtain results
in a smaller amount of time.

Finally, we deal also with the accumulation of the error, re-defining the pipeline
described in Figure 2.1. Instead of working on Cy and C7, then C; and Cs and
so on, we partition the set using a balanced binary tree. Each pair of leaves of
the tree is a camera, and alignment is performed in a bottom-up feature. We
first align leaves with the same father; ideally, we should align Cj and Cy, then
C5 and C3 and so on; there is no overlap between the pairs. Then, we visit the
upper level of the tree: now each node has two children, corresponding to two
pairs of aligned cameras. We then select one camera from each pair in order to
obtain a new pair of cameras having the possible maximum overlap, and use
this new pair to compute the alignment of the two children, eventually moving
the cameras that are already aligned, if needed.

At the end of the alignment process, the error will unlikely be zero; there will
be residual value that cannot be decreased simply adjusting the position of the
cameras. In this case, the alternative way to decrease the global error is to
modify the underlying geometry of the digital object, moving or adding ver-
tices to the object in order to affect the back-projection of an image onto the
other and, as a consequence, reducing the displacement vectors and minimizing
the global error. This technique performs similarly to the stereo reconstruction
techniques [168] that allow to recreate the geometry of a scene from a set of
images, with the difference that, in our case, the geometry already exists and
we already know the correspondences between the pixels, thanks to the optical
flow. The position of the new pixel could be estimated finding the (approxi-
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mate) intersection between the line passing through the camera center C; and
the pixel p;, and the line passing through C; and the pixel p; corresponding
to p; (that is, the pixel such that the back-projection of p; is characterized by
a displacement vector ending in p;). In this way, we should achieve the goal
of improving both the camera alignment and the object geometry, making it
more detailed and precise.

However, only a part of the described improvements has been massively tested,
especially the ones related to the choice of the optical flow technique to be
used; most of them are discussed also to point out that, even solving some
of the problem detailed in the previous technique, the resulting technique will
probably be affected by other, different problems, and in general it’s required
to increase the complexity of the framework. We’ll remind the reader to sec-
tion 4.1 for final consideration about the work presented in this chapter.
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Chapter 3

Motion-based mesh
segmentation

3.1 The mesh segmentation problem

The problem of partitioning a three dimensional object into meaningful parts,
usually known as mesh segmentation, is a challenging problem, with a large
number of applications in geometry processing, shape analysis, shape compres-
sion and so on. The main idea behind the mesh segmentation is to compute
some value on the elements of the three-dimensional mesh (faces, edges or ver-
tices) and then define some measure (curvature, distance, shape-diameter [106],
diffusion distance [30,53] and so on) in order to find similar elements and fi-
nally to partition the mesh in several component, each of them is characterized
by similar elements and it’s distinct from the other parts. However, since the
notion of “meaningful parts” is ambiguous, there’s not a unique solution to
the problem. In literature, a number of different partitioning methods has
been proposed. One of the fundamental work in mesh partitioning has been
proposed by Katz and Tal ( [104]); in this work, each face of the mesh is char-
acterized using geodesic distance from all the other faces, then a number of
significant face is selected and used as seeds for a clustering algorithm. The
idea of classifying the element using some measure and then perform partition-
ing using some clustering technique, such as adaptive k-means clustering, or
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fuzzy clustering, or mean-shift clustering and so on, become in the years the
standard way to proceed in order to solve the problem. The main advantages
of this approach are its versatility, since it’s possible to use the very same ap-
proach with different similarity measure, and the fact that it leads to results
quite good in terms of visual appearance of the different parts. Unfortunately
there may be also some significant drawbacks; for example, in [104], to reduce
the time complexity of the algorithm, the authors build a matrix containing
the distances between pairs of vertices, called all-pair shortest path matrix (or
simply APSP), increasing the expensiveness in terms of space and time; also,
the dependence from parameters does not allow to achieve a fully automatic
technique, and it’s necessary to spend some time on tuning the parameters.
The correct tuning of the parameters can be difficult (and, in a certain sense,
frustrating), and it’s quite rare to find a combination of parameters performing
well for every type of object. However, during the years several improvement
of [104] have been proposed (see for example [103], that use parallelization on
graphics card to optimize the algorithm) alongside with completely different
approaches, such as [79] or [10] that perform a hierarchical clustering on the
mesh: starting from the initial cluster (that is, the whole object), smaller parts
of the object are identified and divided, then each part is, in turn, examined
and subdivided into smaller pieces, until no more splitting is possible. Cohen-
Steiner et al. [52] propose a different k-means clustering approach, based on the
variational properties of the shape. Another interesting technique proposed by
Lai et al. [107], derived from the engineering, uses the random walks; basically,
for each face, we compute the probability of reaching all the other faces of the
mesh, using a probability measure obtained as combination of both geodesic
distance and discrete curvature. A face F, has high probability of reaching the
face Fj if the face F, it’s close to Fj in terms of geodesic distance, and the path
between F, and Fj doesn’t pass through significant changes in mesh curvature.
The main advantages of this technique are the ease of implementation and a
low computational cost, but unfortunately, it’s not so versatile as the previous
described techniques, and it’s affected, in some cases, by numerical instability.
Mesh scissoring (Lee et al., [110]) identifies small groups of significant vertices
on the mesh (that is, vertices where the measure value changes significantly)
and use them as starting points to detect the boundary between relevant parts;
then, the boundaries are computed and refined using the adaptive snakes tech-
nique, borrowed from the image processing field. For a detailed analysis of
these techniques, we refer to the survey by Shamir [156].

3.2 Motion-based Mesh Segmentation

In recent years, a different task rose: the segmentation of a three-dimensional
object, based not on a single, static mesh, but on a given set of different poses
(deformations) of the object, with known point-to-point correspondences. This
task is usually referred as motion-based mesh segmentation, rigid-part mesh
segmentation, or dynamic mesh segmentation; the main goal is to partition the
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mesh into parts that move coherently over the different poses. Such segmenta-
tion problems have important applications in computer vision [54,93,128,151,
154], graphics [60,100,109], mechanical engineering, and biomechanics [5,44].
The main difference with the classic mesh segmentation is that, in this partic-
ular case, the measure characterizing each element of the mesh comes from a
temporal sequence, and not from a single static mesh. For example, instead of
using discrete Gaussian curvature computed on some vertex v, we compute the
variance of the curvature on the same vertex during the sequence, or the av-
erage value, or, again, the maximum difference between curvature value along
the different poses. The elements of the mesh are classified using some measure
that reflects the behavior of the elements over time. Notice that the motion-
based segmentation could lead to a partitioning different from the segmentation
computed on the static object. Assume that we are trying to segment the mesh
of an animal, and suppose that, in the different poses, one leg stays put; then,
that particular leg will be detected as a single rigid part of the object, even
if intuitively it should be probably split in two parts, at knee height, since
there is no motion information in that specific part of the shape. Of course,
hybrid approaches are possible, and information derived from static analysis of
the original object can be combined with the ones coming from the temporal
sequence, but the achieved results does not really solve the problem.

Before going further, we need to formally define the problem of the motion-
based segmentation. Let K = (X, E,T) be an abstract simplicial complex with
a set of n nodes X = {x1,...,x,}, a set of edges E, and a set of triangles T,
such that any edge e = (4,5) € E between nodes z; and x; has exactly two
adjacent triangles t,#' € T. Any mapping ®: X — R? that associates with each
node z; € X a 3D vertex v; then yields a manifold triangle mesh M = (¥, K)
with geometry V.= ®(X) = {v1,...,v,} and topology K. Suppose we are
given N manifold triangle meshes My = (4, K), k = 1,..., N with the same
topology, which represent NV different poses of some shape. We assume that all
poses can be segmented consistently into [ rigid parts and m deformable joints.
Then there exists a decomposition of the set X into disjoint sets Si,...,5;
and Ji,...,Jmy, such that the corresponding patches of the meshes M) with
vertices @y (S;) and ®4(J;) are related by suitable rigid or non-rigid transfor-
mations, respectively. The main goal of motion-based segmentation is to find
the rigid parts S; of the shape, using only the information given by the N
meshes My,..., My.

This problem can be tackled in two opposite ways:

e detect the deformation applied to each node, and then group them into
cluster locally characterized by the same rigid deformation;

e find the nodes where the deformation occurs the most, classify them as
joint regions J; and then extract the rigid part (actually, in most of the
approaches, the joint regions J; are neglected and their nodes distributed
to the nearest rigid part of the shape)

The assumption of the known point-to-point correspondence may appear to
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be too restrictive, but it’s actually a pretty common and reasonable require-
ment in this kind of problem.

James and Twigg [100] try to solve the problem of rigid part segmentation
using the first type of approach. Assuming to have the temporal sequence of n
different poses M, ...M,,. For each face T}, the algorithm estimate a trajectory
obtained as the concatenation of n—1 significant rotation of T} in the sequence.
Each rotation is then projected into a 9-dimensional space, and finally a clus-
tering is performed in order to detect the parts of the object characterized
by similar movement during time. The rigid parts are then used to create a
skeletal representation of the object, where rigid parts corresponds to the bones
and non-rigid parts corresponds to the joints between bones. As a matter of
fact, the algorithm extracts, from the sequence of poses, a sequence of skeletons
encoding the deformation and the motion of the shape in the sequence. A con-
ceptually similar approach has been proposed by Lee et al. in [109]. In their
work, face clustering is performed as the partition of the weighted dual graph G
of a mesh, where the weights of the arcs are computed using both deformation
and geometric information, in order to obtain the connected components rep-
resenting the rigid parts of the shape. A different approach has been proposed
in [60] by de Aguiar et al. In this work, the detection of the rigid parts is
just a single step in a most extensive algorithm; however, de Aguiar had the
intuition of classifying the vertices by examining how a certain vertex v moves
with respect to its neighbors. A special affinity matriz, encoding the relation-
ship between a vertex and its neighbors, is built, and then spectral clustering
is performed on the matrix itself. Notice that, differently from all the other
works here described, [60] is the only one to perform clustering on the vertices
instead of the faces. Rosman et al. [151] represent motion as a group-valued
function on the shape and determine a segmentation by using a total variation-
like functional.

The approach of Wuhrer and Brunton [176] solves the problem as follows.
Given the meshes, it computes the dual graph G of the common simplicial com-
plex K, in which a node corresponds to a triangle of the original mesh, and an
edge connects two adjacent triangles. Each edge of G is then weighted by the
maximum variation of its corresponding dihedral angles across all poses. In this
way, dual edges with small weights correspond to rigid parts of the mesh, while
dual edges with large weights correspond to deformable joints. To determine
the [ rigid parts of the shape, the dual graph G is partitioned by computing its
minimum spanning tree, and then cutting off the dual edges with the [ largest
weights. The number of segments is usually unknown and can be computed at
runtime. The possibility of over-segmentation requires to perform an additional
merging step in order to obtain reasonably sized segments. The complexity of
the first step of the algorithm is O(N?n + nlogn), while the merging step,
which consists of the reinsertion of some of the edges into the spanning tree,
has O(nlogn) complexity. Two examples of motion-based segmentations are
presented in Figure 3.2.
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Figure 3.1: The horse test case, consisting of 10 different poses of the same
shape.

Figure 3.2: Two examples of the motion-based segmentation performed on
the horse test case (Figure 3.1). On the left side of the image, segmentation
computed by [151], on the right the one computed by [176].

The work here presented differs from all the previous approach, since it uses
information from the visual perception of the different poses of the shape to
detect the parts where the deformation occurs. The main motivation for our
approach comes from the following observation. Assume that we are given a
curve going through the rigid parts S and S’ and a joint J connecting them.
Then, if the shape is articulated at this joint, we will observe the two parts of
the curve undergoing a rigid transformation. As a result, the curvature of the
curve at the joint will change, but will remain constant at the rigid parts (see
Figure 3.3). Given a set of curves that cover all rigid parts of the articulated
shape and observing them in different poses, we will be able to segment the
shape according to its motion.

This idea is rooted in Marr and Ullman (see [170], [171] and [123]) and the
perception of the neural motion. In [170], Ullman proves that if a body is rigid,
we can recover its three-dimensional structure from only three frames, up to a
reflection. Starting from this theorem, and assuming that we are dealing with
objects that are locally rigid, it’s possible to formulate the so-called rigidity
assumption, stating that any set of elements undergoing a two-dimensional
transformation that has a unique interpretation as a rigid body moving in space
1s caused by such a body in motion and hence should be interpreted as such. The
rigidity constraint also helps to distinguish between objects moving in the same
scene. Finally, if we consider an object as a collection of smaller object, each of
them moving rigidly (corresponding to the rigid parts), we can take advantage
of the previously mentioned assumption to detect motion of the shape using
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v

Figure 3.3: Motivation for our approach: shown are two poses of the horse
shape and a curve passing through two articulated parts (upper and bottom
part of the leg) connected by a joint (knee). The curve can be easily segmented
into rigid parts (blue).

only the orthographic projections of its boundaries.

3.3 Algorithm

Our approach to the shape segmentation from motion aims to identify the
joints of the shape, and then use this information to detect the rigid parts of
the object. The algorithm can be subdivided in three main step:

1. extract a set of 1D curves, named augmented silhouettes, from different
shape poses and different viewpoints;

2. analyze each curve using motion information, in order to detect where
the deformation occurs the most

3. combine the analysis of the 1D curves to obtain the final segmentation of
the object.

The algorithm is summarized in Figure 3.4. As we see in the following, while
understanding the first two step is straightforward, finding a way to combine the
monodimensional information is a not trivial task . In the following sections, we
will describe in detail each of the steps, providing several unsuitable approaches
for the third step, pointing out their weakness, and finally showing how the
clustering can be efficiently performed.
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INPUT Silhouette Silhouette Detection of Distance OUTPUT
Shape poses extraction analysis joint vertices computation Segmented shape

Figure 3.4: The different stages of the proposed motion-based segmentation
algorithm.

3.3.1 Augmented Silhouette Extraction

Though in principle our approach can work with any set of curves, we use a
specific data structure that contains information about the perceptively rele-
vant edges of the shape, referred to as the augmented silhouette; the first step
of the algorithm is to build this data structure, containing information about
the perceptually significant shape edges.

Figure 3.5: Augmented silhouettes extracted from several shapes.

Given K view points Vi,. .., Vg, the augmented silhouette S; , = (X, Ej x)
of mesh M; with respect to view point V, is a graph with nodes X and edges
E;r C E. An edge (i1,42) € E is an element of E;; if and only if the corre-
sponding mesh edge [v;i,,v;,] is perceptively relevant, that is, exactly one of
the two adjacent faces is visible from view point Vj. Since we do not take oc-
clusion into account, the augmented silhouette usually contains more than just
the silhouette edges of M; with respect to Vi, hence the name (see Figure 3.6
and 3.5).

The classification of edges into perceptually relevant and irrelevant is simple
and can be done in parallel for different edges and for different view points. We
first process all triangles of M; in parallel and determine the signs of the dot
products between each triangle normal and the viewing directions of the view
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Figure 3.6: Examples of several augmented silhouettes extracted from a 3D
shape of the horse for different view points.

points Vi. Then we process all edges of M}, compare the signs of the adjacent
triangles, and classify an edge as perceptively relevant if and only if the signs
are different (see Figure 3.7).

.
POV o

Figure 3.7: A perceptually significant edge. The face fy is visible from the
viewpoint, but its adjacent face f; is not; the shared edge e is then detected as
significant.

The main advantage due to picking perceptually relevant edges without
taking into account the occlusions is that we are able to consider a large number
of edges belonging to a larger number of part of the shape, so we actually need
less silhouettes to detect all the rigid parts of the shape. In Figure 3.8 we
propose a comparison between a silhouette and and augmented silhouette of
the same object.

Figure 3.8: A standard silhouette and an augmented one, captured from the
same point of view.

The algorithm that summarize the extraction of the augmented silhouette
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is described in AugmentedSilhouette.
Algorithm AugmentedSilhouette

1. Input: a three-dimensional mesh S, a point of view POV.

2. Output: a graph containing the perceptually relevant edges of S.
3. Initialize an empty graph G

4. for each edge e; of S

5. do get incident faces f;, and f;,

6. if is_visible(f;,,POV) @ is_visible(f;, ,POV)

7. then get the vertices v;, and v;, of e;

8. if v;, is not linked with G

9. then add a node n;, to G linked to v,

10. else get the node n;, corresponding to vj,.

11. if v;, is not linked with G

12. then add a node n;, to G linked to v;,

13. else get the node n;, corresponding to v;, .

14. Add an arc connecting n;, and n;, to G and link it to e;
15.

In our experiments we use K = 25 view points, with positions taken from
a subdivided icosahedron that circumscribes all poses and viewing directions
towards the center of this icosahedron. Moreover, we use only K’ randomly
chosen augmented silhouettes from all KN possibilities and found a value of
K’ between 50 and 100 to be sufficient for correctly identifying the rigid and
deformable parts. We also found out that increasing the number of POVs
doesn’t affect significantly the final results, since the distribution of the edges
over the silhouettes stays more or less unchanged: most of the vertices will
appear in just a few silhouettes, while only a small subset of them frequently
appears (see Figure 3.9).

Figure 3.9: Distribution of the edges of the same deformation sequence over
the silhouettes. Pictured on the left, the distribution of the edges over 420
silhouettes; on the right, the distribution over 1680 silhouettes.

Typically, each augmented silhouette contains only O(y/n) edges and nodes,
so the overall size of all silhouettes is on the order of K'+/n, which is significantly
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less than the Nn vertices from all N meshes, because K’ < KN < Ny/n,
especially for large meshes.

3.3.2 1D analysis

At this point, we have collected a number of augmented silhouettes data struc-
ture, each of them linked to the elements of the three-dimensional object. Now,
in order to better understand how the shape moves during the temporal se-
quence, we analyze the way the edges of the augmented silhouettes moves along
the different poses. As a matter of fact, there’s a direct correlation between
the movements of the silhouettes and the movements of the objects, since it’s
quite obvious to notice that the movement of a silhouette edge during time is
the result of the movement of the corresponding edge of the object, and vice-
versa (see Figure 3.3); ergo, to each movement of the three dimensional model
corresponds a variation of the silhouette. More precisely, if the move occurs in
a particular vertex v of the shape, it will be visible at least in one silhouette
containing a node linked to v. The task becomes now to detect the subset of
vertices involved into the deformation, labeling them as significant vertices In
order to do so, we consider each of the K’ selected augmented silhouettes from
the first step separately.

Suppose that z; is a node with neighboring nodes z;, and z;, in such an
augmented silhouette S; . All three nodes have corresponding 3D vertices
v = ®(xs), vy, = Pu(wiy), vii, = Pi(z4,) in each of the N meshes M; and
related 2D vertices wy s, wy 4, , Wy i, in the projection with respect to view point
Vi.. We then compute the angles

ap = (Wi, — Wi, Wi, — W)

between the two edges incident to wy, in the 2D projections of the N poses and
assign the maximal difference

max «a; — min g
1=1,...,N 1=1,..,N

of these angles as a deformation weight to the node z;. In this way, the nodes
which are likely to correspond to joint vertices of the shape are the ones with
the largest weights. The deformation measure is similar to the one proposed
in [176] with the difference that we analyze dihedral angles between edges in-
stead of angles between faces. This computation is not carried out for nodes
x; with less than two neighbors in S;;, and for nodes with more than two
neighbors we compute the difference between the maximum and the minimum
of all angles formed by any pair of adjacent edges.

After assigning a deformation weight to each node, we further analyze the
augmented silhouette and identify the significant nodes by iterative adaptive
clustering (more details in algorithm AdaptiveClustering).

Algorithm AdaptiveClustering
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1. Input: an augmented silhouette S and the deformation values def of its
vertices.

2. Output: the augmented silhouette S, where each vertex is labeled as
significant or not significant.

3. seedp := 0, seed; := max{def(v)|visavertexofS},

4. Co=0,C1 =0

5.  while Cy and C; does not stay unchanged

6 do for each vertex v of S

7 if |def(v) — seedy| < |def(v) — seedy]

8. then add v to Cj

9. else add v to Cy

10. seedy := avg(def(v;)),v; € Cy

11. seedy = avg(def(v;)),v; € Cq

12. Label all the vertices of C as significant and all the others as not
significant.

Typically, the process requires 6 or 7 iterations to converge; at the end,
cluster C'; contains the significant vertices of the augmented silhouette. This
process does not require any parameter and leads to better results than using
a simple thresholding, since it’s less sensitive to noise and tends to mark as
significant only few vertices, highlighting the parts of the silhouette where most
of the deformation occurs. Note that a node z € X may be classified differently
in each of the K’ augmented silhouettes: either as significant, as insignificant,
or not classified at all, if it has less than two neighbors; this obviously depends
from the fact that x could be characterized by different neighbors in different
silhouettes. In Figure 3.10, we highlighted in red the significant vertices of the
silhouettes pictured in Figure 3.5.

Figure 3.10: Significant vertices (marked in red) of the augmented silhouettes
of Figure 3.5.

As we compute N angles for each pair of adjacent edges in each augmented
silhouette, the overall complexity of computing all deformation weights is on
the order of K'N+/n < K2N,/n, which is significantly less than the O(N?n)
operations needed in the algorithm of Wuhrer and Brunton to compute the
weights for the edges of the dual graph. The additional computational cost for
the clustering processes is negligible, as it is only on the order of K’ /n.
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3.3.3 Mesh Partitioning

After we collect the information from the 1D data structure, we need to step
back to the original geometry of the shape, and work directly on its original
element in order to find the clusters. This part is the less intuitive, since it
wasn’t immediately clear how the data could be used to produce the clustering.
In the following, we exploit three unsatisfactory approaches, inspired to the
random walks segmentation, the hierarchical face clustering approach and the
Katz-Tal approach, briefly discussing the ideas behind each of them, with focus
on advantages and limitations. Finally, we describe a fourth approach that
performs well in terms of both quality of the segmentation and running time
of the algorithm.

Random Walks

The first approach we tried to partitioning the elements of the mesh is based on
the random walks technique, borrowed from the image processing [87] and first
used in [107] for static mesh segmentation by Lai et al. The idea behind the
basic algorithm is quite simple: given a face of the mesh T}, and a significant
faces (or seed) Ty, what’s the probability that a random path P; starting from
T; will pass through T;? And, given a number of seeds T4, ...T},, which seed
has the highest probability of being reached first by path P;? Obviously, T;
will belong to the cluster C whose seed T, has the highest probability of being
reached by P;. In order to compute the probability of the random walks, each
edge has to be weighted using a probability measure: high-weighted edges have
good chances to be the ones where the walks pass through, while edges with
low probability will block the path, forcing it to pass through a different edge.
Therefore, for each edge e of face T}, we define a probability value p; j, such
that Z?:l ik = 1. The probability that the path P; starting from face T;
reach the face Ty, k # 1, is defined as

3
P*(Ty) = ij,kpk(Tm). (3.1)

Here, T;; is one of the faces adjacent to 7;. The probability that a path
starting from T; reach T; itself is 1. Fixing a number of seed, and using 3.1, we
can build a large sparse linear system whose solution is the vector containing
the probabilities to reach the seed T} randomly walking from each face T;.
Of course, the whole idea requires to careful assign the probabilities values
to the edges, in order to give advantage to path satisfying some particular
conditions: for example, if one wants to privilege paths that don’t pass through
discontinuities in the shape, then probably he will obtain better results if he
assign high probabilities value to edges where the transition from one face to the
other is smooth, and low probability in presence of a discontinuity (e.g. concave
dihedral angles), according to the minima rule for mesh segmentation [95].

In our cases, the extension is straightforward: we want that a random walks
starting from face T; pass through edges characterized by small deformation
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value, avoiding to pass through high deformation regions. The idea, in fact,
is that a seed should be reached only by paths starting from faces that are in
the same rigid parts, that is, paths that don’t pass through high-deformation
regions. First thing that needs to done is then to estimate, in some way, the
amount of deformation for each edge e € E. We simply stated that, given
an edge e;, its deformation is computed as the average of the deformation
value of its vertices v;, and v;, computed as described in section 3.3.2. This
value can be multiply by the number of times that v appears on the silhouette
(occurrences vector) in order to give higher importance to vertices that appear
frequently and are more reliable. We assign probabilities to each edge, keeping
in mind that edges characterized by null deformation are shared between faces
that must be part of the same cluster and therefore must have low probability.
Finally, we build and solve a sparse linear system in order to find, for each face,
the probability to belong to each cluster.

Unfortunately, this approach turned out to be not suitable for several reasons:

1. the number of seeds has to be known at the beginning of the computation,
which is a condition that usually cannot be satisfied.

2. unreliability of the edge deformation value: as a matter of fact, we com-
pute the measure as the average of vertices deformation, but since the
deformation of a vertex may be the consequence of a deformation related
to different edges, we have no guarantee that this is a good estimate for
the edge deformation measure. The edge could actually stay unchanged
and be characterized by a high deformation value even if deformation
occurs only in its neighborhood.

3. numerical instability, that leads this technique to perform well for a lim-
ited number of seed, and to poor result for more than 7-8 seeds, results.
Also, connectivity of clusters is not guarantee, and in some cases results
could be classified as nonsense (e.g., a seed could belong to a cluster
different from its own).

However, it’s quite reasonable to think that, if we correctly characterize each
edge e € E with a reliable deformation measure, this algorithm could lead
to better result, even if we still need to overcome the numerical instability;
however it’s not the best choice for our purpose.

Hierarchical face clustering

A different (and better) approach is inspired to the hierarchical face clustering
technique, first proposed in [79] for static mesh segmentation. Hierarchical clus-
tering is a greedy approach to the mesh clustering process, that reminds of the
region growing approach. Following the description by [156], the hierarchical
face clustering technique can be summarized as described in FaceHierarchical-
Clustering.

We need to define a measure of merging priority, in order to populate @,
and a test condition, in order to distinguish between valid and not valid merg-
ing. The priority is computed in the same way of the previous approach: the
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Algorithm FaceHierarchicalClustering

1. Initialize a priority queue @ of merging candidates.

2. Insert all pairs of adjacent faces in @

3. while @ is not empty

4. do get the next merging candidate (u, v) from @Q if (u,v) can be merged
5 then merge (u,v) into w

6 insert all new merging candidates involving w to @

7

deformation of an edge e is taken as the average deformation of its vertices, in
order to assign high priority to edges characterized by small deformation value.
That follow the intuition that, if there’s no deformation between two adjacent
faces T; and T}, then they likely belong to the same cluster, and therefore the
merging candidate (7;, 7)) must have high value, in order to merge these two
faces as soon as possible. Faces adjacent to an existing cluster should be added
to the cluster if there’s no significant deformation on the shared boundary edge.
On the other hand, if the deformation of e is quite high, then probably the two
adjacent faces will belong to different rigid parts of the shape and therefore
they should not be clustered together. The merging condition can be tested
using a simple threshold on the deformation value.

This approach leads to better results than the previous one; it preserves connec-
tivity of the clusters, it doesn’t need to know apriori the number of significant
clusters, and it’s also quite easy to understand and implement. However there
is also some drawback, in addition to the not completely reliable measure (as
already explained before). We pointed out other two problematic features:

e in most of the cases, deformation doesn’t occur sharply on a single edge,
but it’s spread over a small region, affecting a number of faces and edges.
As a result, edges where deformation occurs may have a measure lower
than the threshold, and their incident faces maybe clustered together
even if, conceptually, they should belong to different parts of the object.

e it frequently happens that boundaries between shapes are not smooth,
for the same reason we mentioned before; some faces is clustered with a
part of the object even if it could be clustered with a different one. In
fact, sometimes the difference of the deformation values of edges incident
to the same face is zero, and the face is add to the first cluster that comes
out from the priority queue, even if it could (and sometimes should) be
clustered differently.

In order to overcome these two limitations, the measure should be computed
locally on group of edges or faces, even if the size of the neighborhood usually
cannot be determined a priori, and also a post-processing boundary refinement
step could be added, in order to smooth the boundaries between clusters, defin-
ing some global optimization term involving not only deformation values, but
also geometrical properties of the object.

Stefano Marras Perception and Motion



Motion-based mesh segmentation 69

Vertex clustering based on Dijkstra’s shortest path

As it can be seen from the previous two approach, one of the conceptual error
was the attempt to characterize edges or faces of the mesh using a deforma-
tion value computed on the vertices. The obvious way to solve this problem
is to switch from a face clustering to a vertex clustering. In this way we also
be more faithful to the definition of the problem introduced in 3.2. We then
present a third approach, that provides better results, partially inspired from
the work by Katz et Tal [104], with the main difference that, instead of per-
forming face clustering, we perform vertex clustering on the shape. The main
idea behind this approach is to identify the significant vertices on the original
shape, starting from the 1D analysis, and use them in order to locate the seeds
of the segmentation and to adjust the size of each cluster. Conceptually, these
significant vertices should be the boundaries between adjacent rigid parts.
The first step of this approach requires to locate the significant vertices on
the shape. For each node x € X, we count the number of times that it has
been classified as significant over all the silhouettes, and call this number the
saliency of the node. After assigning these values to the vertices, we perform an
adaptive clustering on the vertices, in a similar fashion of the algorithm Adap-
tive Clustering, with the obvious exception that the clustering is performed on
the three-dimensional shape. In this way, after a number of iterations, we are
able to identify the regions of the shape where deformation occurs, correspond-
ing to the clusters of significant vertices (the joints). These vertices will be
used to detect the position of the seeds and the boundaries of the clusters;
they will be assigned to the clusters only at the end of the procedure. In order
to identify both the seeds and the elements of the clusters, we add to the ge-
ometric information, approximating the geodesic distance between vertices of
the original shape, the information coming from the 1D curve.

Assume to have correctly detected the significant vertices on the silhouette S.
Conceptually, they identify the regions where the deformation occurs the most
and, at the same time, separate the regions moving rigidly. We can detect the
chains of vertices corresponding to the rigid parts simply cutting the silhouette
graph at the significant vertices and taking the remaining connected compo-
nents. If two vertices z;, x; belong to the same rigid part in each silhouette,
then it’s reasonable to assume that they belong to the same rigid part of the
shape. We summarize this relation between pairs of vertices build a n x n ma-
trix where the (4, j) entry represent the number of times that z; and x; belong
to the same cluster in the silhouette. We call this matrix affinity matriz. It’s
straightforward to notice that the affinity matrix is sparse and symmetric, so
it can be build and stored with low computational cost.

The geometric information is encoded in a pre-computed all-pair shortest path
(APSP) matrix containing, for each couple of vertices z; and x;, the approxi-
mation of their geodesic distance computed performing the Dijkstra’s shortest
path algorithm over a reference pose. Each not significant vertex x is then
characterize by a value d(x) representing its minimum geodesic distance from
a significant vertex. The vertex with the highest distance value is selected as
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the first seed of the clustering step.
In order to evaluate if a vertex x; belongs to the same cluster of the seed x;
we compute a distance value:

B8
of Finity(z;, ;)

distance(xj, x;) = (a geodesic(xj, x;)) + ( ) (3.2)
Here o and B are two normalized user-defined parameters such that o+ = 1.
If the vertex x; has a small distance value respect to seed z;, it means that
its geodesic distance from z; is quite small, or that x; and x; are frequently
clustered in the same rigid parts of the silhouettes; in both cases, it’s reasonable
to assume that z; and x; belong to the same cluster of the shape. We define a
threshold t related to the seed z; as

t=(ad(z;))+e (3.3)

Here « is the same parameter of 3.2 and e is, again, user defined. In other
words, if the distance between x; and the seed z; is lower than ¢, then x; is
closer than the nearest significant vertex, and therefore we assign z; to the
cluster whose seed is x;.

After that a cluster has been populated, we update the values of d(z;) for all the
not clustered vertices, computed as the minimum distance from a significant or
a clustered vertex. Then, a new seed is selected an a new clustering iteration
is performed. The algorithms stops when one of these conditions is met:

1. the number of clusters is equal to the number of cluster desired by the
user;

2. at least k the vertices has been clustered (usually k ~ 80% of n).

Usually, at this point there’s a number of vertices that haven’t been classified;
those vertices are simply assigned to the nearest cluster. Following the common
approach, we also assign the significant vertices to the nearest cluster, instead
of explicitly creating some joints cluster.

This approach, whose results is shown in Figure 3.11, is surely better then
previous one; it keeps track of both 2D and 3D information, since it merges
silhouettes segmentation and geometry of the object. However, it’s still not
good: depends from several parameters, it requires a large amount of time and
space, and the results are not completely satisfactory. This is mainly due to the
poor performance of the approximation of the geodesic distance using Dijkstra’s
shortest path algorithm; also, the need of an explicit APSP matrix makes
problematic to deal with large-sized meshes (e.g. more than 100000 vertices).
In the next section we’ll finally show how these problem can be overcome, and
how we can finally obtain good quality segmentation in a reasonable amount
of time which is about half the time needed by the state-of-the art-methods.

Vertex clustering based on Diffusion Distance

Our final approach moves from premises that are similar to the ones of the clus-
tering based on Dijkstra’s algorithm. Again, For each node x € X, we count
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Figure 3.11: A result of the vertex clustering method based on Dijkstra’s short-
est path algorithm. Results are better than the previous approaches, but com-
putational cost is significantly high.

the number of times that it has been classified as significant (saliency), then
we identify the nodes in X that correspond to the non-rigid joint regions of the
shape by simply thresholding on the saliency, selecting the nodes that appear
to be significant in at least a certain percentage of all augmented silhouettes
(usually 10% to 20%). The final segmentation is found by first computing the
distances of all nodes to these selected nodes and then growing clusters from
the local maxima of this distance function.

The main difference is that, to determine the distance between two nodes x
and z’, we consider the corresponding 3D vertices v and v’ in one of the meshes
and compute the diffusion distance [30,53]

di(v,0") =Y e P (g (v) — 6i(v)))?, (3.4)

i>0

where ¢; are the eigenfunctions and A; the eigenvalues of the discretized Laplace-
Beltrami operator A. As this distance is intrinsic and invariant to isometric
shape deformations, it does not matter which of the N meshes we consider
for the actual computation. This distance is more reliable than the geodesic
approximation, and it’s more suitable for our purpose.

In our experiments, we use the cotangent weight discretization [131] of the
form Af = A='W f, where f is a function defined on the vertices of the mesh,
represented by a vector of size N, A is a diagonal matrix of size N x N that
contains the area elements of each vertex, and W is a N X N zero-mean matrix
with elements

—(cot Bij + cot i) /2, (i, j) € E,
Wij; = _Zk?ﬁi Wik, =7,
0, otherwise.

Here, f8;; and ~;; denote the angles opposite the edge [v;,v;] in the two tri-
angles sharing this edge. The eigenfunctions and eigenvalues of A are found
by solving the generalized eigendecomposition problem W¢; = \;A¢p;. The
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parameter ¢t controls the scale of the diffusion distance and is selected based
on the shape diameter. Since the coefficients e~2*i* decay fast, in practice
it is enough to use the first 5 to 10 eigenpairs to accurately approximate the
diffusion distance (3.4).

As can be seen in Figure 3.4 (fifth column) and in Figure 3.12, this isolated
connected subsets of X that are characterized by similar distance values and
correspond to the rigid parts of the shape. We then perform a region growing
clustering in order to build the different segments of the shape, picking as seeds
the local maxima of the distance function and adding all connected vertices
with a distance value less than some threshold. The clustering stops when
at least 80% of the vertices have been clustered. The remaining vertices are
finally assigned to the nearest cluster. The resulting segmentation is shown in
Figure 3.4 (sixth column).

Figure 3.12: The diffusion distance from the significant vertices, computed on
the horse shape. Red parts correspond to the joints between rigid parts, that
are characterized by yellow/green/blu colors.

The time complexity of this segmentation step is O(n?), due to the pair-
wise distance computation between vertices, which is quite heavy for large
meshes. However, section 3.4 explains how the runtime can be drastically re-
duced thanks to parallelization of the algorithm on the GPU.

3.4 GPU parallelization

Our algorithm is highly parallelizable and can be efficiently implemented on
SIMD-type processors. In our implementation, we parallelize part of the algo-
rithm on the GPU, using the CUDA architecture [142], while other parts are
parallelized on multi-core CPUs.

In the first stage of the algorithm, the extraction of the silhouettes is par-
allelized first launching a CUDA thread for each face of the mesh, testing its
visibility and storing the results in a boolean grid, then launching a CUDA
thread for each edge of the mesh and, using the vector previously populated,
testing if the edge is significant. In this way, we can decrease the running time
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up to 75% of the time needed on a single core CPU. Furthermore, each view-
point can be processed independently from the others.

In the second stage, the analysis of the curves can be distributed on multiple
processing units (e.g., multiple CPU cores), since each silhouette is examined
separately from the others. It’s not possible to use the CUDA architecture
since the operations that has to be performed aren’t suitable to be parallelized
in a SIMD fashion. Each graph is stored using the data structure provided
by the LEMON graph library, while the saliency values are stored in an Eigen
sparse vector.

In the third stage, the computation of the diffusion distance between a vertex v
and all other vertices in V is executed in separate CUDA threads. We use this
feature to speed up the computation of the minimum distance from the selected
vertices of V: we compute the distance between each selected vertex and the
other vertices in V' and then pick, for each vertex, the minimum distance value.
If s is the number of selected vertices, we need to update the minimum distance
of each vertex s times, and the update is performed in parallel for each vertex
in V. Using the same logic, we accelerate also the final part of the algorithm,
that is, assigning significant vertices to the nearest cluster.

3.5 Experimental Results

In this section, we present several results of our algorithm and comparisons with
other methods. The tests have been performed on an Intel QuadCore Q9550
2.83GHz with 4GB onboard memory and using CUDA parallelization on an
NVIDIA GeForce GTX-260 graphics card. We use the LEMON graph library
to store the augmented silhouettes. Shapes are provided by the Aim@Shape
repository and by the Sumner shape dataset [164]. Running times of the algo-
rithm are summarized in table 3.1.

Figure 3.13 shows a comparison between our method, the method of Ros-
man et al. [151], and the results from Wuhrer and Brunton [176], applied to the
same input poses of the horse model with approximately 8 000 vertices. The
segmentation is computed using 50 silhouettes, randomly picked from 10 poses.
The segmentation is consistent with the shape articulations and correctly cap-
tures the rigid parts of the object, except for the hoofs. The boundaries of the
rigid parts are generally smoother than the ones detected by the other algo-
rithms. We also do not detect small patches, as Rosman et al. [151], since they
do not correspond to any visually perceived motion.

Figure 3.14 shows the cat model, segmented using 50 different silhouettes
and 8 input poses. In both tests, the runtime of the algorithm is slightly lower
then [176], but the difference becomes more significant with the increase of the
number of vertices of the input shapes, especially thanks to the massive paral-
lelization. In the elephant model (see Figure 3.15) with approximately 40 0000
vertices and segmented using 100 silhouettes, the legs are clearly separated
from the rest of the body which is almost static. The motion of the front legs
is visible and well captured, while the hind legs moves rigidly, as also detected
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Figure 3.13: Comparison between our method (left), Rosman et al. [151] (mid-
dle), and Brunton and Wuhrer [176] (right). Tests are performed on the horse
dataset shown in Figure 3.1.

by Wuhrer and Brunton [176]. The runtime for this test is 16.3 secs, and thus
significantly smaller than the 46 secs needed by Wuhrer and Brunton to obtain
a comparable segmentation.

The largest test case is the armadillo model (see Figure 3.16) with 166 000
vertices. Segmentation is performed using 5 input poses and capturing 125
silhouettes; the run-time is 144 secs. The result of this test case is discussed in
section 3.6.

n N K Stepl Step2 Step3 total

cat 7207 8 50 1.02 0.51 0.773 2.3

horse 8431 10 50  0.898 0.55 0.643 2.1
elephant 42321 10 100 7.602  4.081 4.58 16.3
armadillo 165954 5 125 79.36  32.446 32.149 144

Table 3.1: Different shapes used in our experiments and runtime (in sec) of
different stages of the algorithm. Step 1 is the extraction of the augmented
silhouettes, step 2 is the 1D analysis and step 3 is the 2D clustering based on
diffusion distance.

3.6 Limitations

There are several main limitations to our algorithm. The first one is that we
don’t have the guarantee that the selected viewpoints will capture every mo-
tion of the shape, even if this is an outside chance. On the other hand, in most
cases we use more silhouettes than the one that we actually need, introducing
redundancy and noise in data; a smarter selection of the silhouettes could affect
the total running time and the results.

As can be seen in Figure 3.16 (the Armadillo model), some of the rigid parts
are not clearly detected. The motion of the left knee, for example, is not cap-
tured, because the surface deformation is distributed over a large number of
vertices and we cannot distinguish clearly where the motion occurs during the
analysis of the augmented silhouettes. This is by far the main limitation of
our approach: since we work computing the deformation value of each single
vertex, we are not able to estimate the deformation of a subset of vertices (a
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Figure 3.14: Segmentation of the cat shape using our method.

Figure 3.15: Segmentation of the galloping elephant shape using our method.
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Figure 3.16: Segmentation of the armadillo shape using our method.

region). If the deformation is spread over a number of vertices, the deformation
value of each single vertex is usually small, but the global deformation of the
region is significantly high. However,our approach is still able to capture the
general structure of the object without resulting in over-segmentation as in the
method of Wuhrer and Brunton [176] and it runs in 144 secs, compared to 349
secs of [176].

For the final remarks on this work and a discussion about possible future im-
provements, we refer to the chapter 4.2.
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Chapter 4

Conclusions

4.1 Bundle Adjustment

In the chapter 2, we presented a possible, novel approach to the problem of the
image-to-geometry registration that take advantage of the optical flow compu-
tation in order to estimate the alignment error and to compute the rigid motion
that we must apply to the cameras in order to minimize the error. As previously
stated, at the present moment the algorithm performs well only on synthetic
dataset, using ad-hoc generated images allowing to compute a dense and re-
liable optical flow, starting with a good initial alignment. The experimental
tests on these datasets show that, under several constraining assumption, it’s
possible to reliably estimate the alignment error and correct it until we reach
its global minimum. We also perform a number of experimental tests on real
datasets, consisting of sequences of high-resolution images of a real object and a
detailed digital model of the object itself. In these cases, the results, as already
mentioned, was unsatisfactory, due to the large number of limitations of the
system. Even the implementation of possible solutions to some issues didn’t
produce satisfactory results, due to lack of precision or increase of amount of
time.

The obvious question is: how far can we go with this method? Also, can this
method actually work better than the existing ones? Unfortunately the answer
isn’t so obvious. The synthetic test cases proves empirically that the theoretical
idea is somehow correct, as seen before, even if the cost, in terms of running
time and spatial resources, is quite high. After all, we are, in a certain sense,
pushing to the limits the classic technique of adjusting camera position from
correspondences between images, with the difference that, in our case, each
pixel of the image has a corresponding one in the other. However, passing
from synthetic to real cases means to add complexity to the problem, affecting
both results and computational cost. Most of the assumption we made in the
previous test case (dense and reliable flow, initial good alignment and so on)
may not hold anymore, and even if we’ll be able to solve the problem (com-
puting the flow, align the cameras etc) we don’t have the guarantee that the
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achieved result will be better that the state-of-the-art method. Moreover, it’s
quite difficult to conciliate good results and good timing, since usually good
results requires much precision and, as consequence, higher times. A system
with good results but high timing could be, again, not suitable, since most
state-of-the-art algorithm performs in a short amount of time. Relaxing the
constraint could be a partial solution (e.g.: using images are captured in the
same illumination condition), but the risk is to lose generality and novelty;
if, for example, we choose to drop some vectors in the optical flow and focus
only on the good quality one, the technique will become not-so-different from
the standard bundle adjustment methods based on correspondences between
images. To summarize, the idea is correct and, under some assumption, will
stand, but it will be quite hard to make it suitable for real applications.

The work presented in [126], describing an implementation of the Lucas-Kanade
optical flow techinque on GPU, has been developed as partial result of this part
of the thesis.

4.2 Motion-based mesh segmentation

In the chapter 3 of this thesis, we introduced a method for motion-based 3D
shape segmentation. Our method is based on extracting 1D silhouette curves
from the shape, segmenting them into rigid parts, and then merging the 1D
segmentation information to obtain the shape segmentation. Basically we fol-
lowed the way that human beings observe the motion of the objects: detecting
the motion from the 2D perceived image (the silhouette) and then use this
information to infer the structure of the object. We found out that the re-
sults were comparable to the state of the art in terms of aesthetic quality. The
method is also computationally efficient and highly parallelizable (especially on
graphics hardware), which makes its running time significantly lower than the
one from the state-of-the-art methods, that also have an higher computational
complexity.

However, as one may notice by reading sections 3.5 and 3.6, there is a number
of cases where our approach is not able to produce result of the expected qual-
ity (the Armadillo case, for example). In general, there is a number of possible
improvements that we can add to our algorithm, in order to deal with these
particular cases.

First of all, the algorithm will benefit from a smarter choice of the viewpoints,
in order to capture the entire motion of the shape with only a minimal set
of silhouettes. Smarter means that each silhouette should contain significant
information about the motion, reducing the redundancy of data as much as
possible. Obviously, since we cannot make any assumption about the motion
of the shape, it’s not possible to know a priori where the cameras should be
placed in order to extract the silhouettes. However, we can try to place the
cameras as a consequence of the spatial alignment of the object, for example
performing the PCA on a reference mesh and then placing the camera subse-
quently. Alternatively, we can start placing only one camera, then observing
the motion from this first camera and choosing a position of the camera that
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allows to capture new motion information (that is, motion occurring in vertices
different from the ones captured from the previous viewpoint). Eventually, one
could assign to each silhouette a weight, based on the captured motion, in order
to discard redundant or noisy data; the weight may be computed as function
of the edge normals and the direction of view, or as a function of the number
of times that an edge has been detected as perceptually relevant in the other
silhouettes. However, the most urgent improvement is related to the non-local,
that is, deformation spread across a number of connected vertices. In this case,
the deformation occurs in a region and not in a single vertex, so our method
is not completely suitable, since we cannot locate precisely the significant ver-
tices. Our algorithm should be able to handle this situation, eventually using
an incremental measure of vertices deformation that takes into account not only
the local variation of the dihedral angle, but also the deformation of the angles
of the connected vertices, weighting the angles in a Gaussian fashion. In this
way, each vertex should be characterized by a deformation value expressing the
behavior of both the vertex and its neighborhood. Finally, different distance
measures, such as geodesics, could be used instead of the diffusion distance,
especially if the computation becomes too expensive; in this way we can save
time and space related to the computation of the eigenvalues of the Laplacian
matrix, that can be expensive for large meshes. However, this is the less urgent
improvement, since this computation is performed once on only the reference
object, and the resulting values are simply inserted in the framework together
with the different poses.

The work presented in this part of the thesis has been conditionally accepted
to the GMP 2012 conference [125].

4.3 Final Remarks

The work here presented has the aim to investigate the relation between the
perception of the motion and the geometry of a scene, and its possible appli-
cations. Human beings are able to infer the characteristics of an object by
simply looking at it; the projection of the object on the retinas, combined with
the capability of the brain to perform automatically a stereo reconstruction,
allows us to create a description of the observed shape. In the same way, the
perception of the motion, corresponding to the perception of the changes in a
scene, allows us to understand how the scene is composed and how the different
objects (or different parts of the same object) behave.

In our work, we explored two possible applications:

e The use of a perceived (but, as a matter of fact, not-existing) motion to
align a set of images to the geometry of a scene;

e The use of a perceived (and real) motion to understand how an object
moves/deforms, or, more generally, how it changes during time.

In the first case, speaking of perceived motion is somehow misleading, since
we introduce the optical flow as a measurement of the alignment error, but ac-
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tually there is no real motion to be perceived in the scene. However, using this
trick and treating the displacement as the motion perceived by a moving cam-
era, it is theoretically possible to determine the exact position of each camera
with respect to the observed geometry. At the moment, however, drawbacks
are more than the advantages; as we already pointed out, the goodness and
the validity of the idea are not in doubt, since the issues are mostly related to
achieving a robust and possibly fast implementation of the alignment pipeline.
We can say that, in this case, the perception of this fake motion is a possible
solution to the problem, but not necessarily the best one.

Instead, the second application of the perceived motion shows definitely good
results. Observing a moving object from a number of different viewpoints gives
the observer some important clues on how the object changes during time and,
subsequently, which the different parts of the objects are, how they move and
the way they are connected. We showed that this can be done by simply
taking into account the projections of the deforming shape onto a number of
different image planes (corresponding to a number of different viewpoints) and
examining how the obtained silhouettes change during time. In this sense, the
perceived motion corresponds to a real motion of the observed object, and it
is helpful to understand the structure of the shape. In general, the way we
perceive an object or a scene can be very useful in order to understand its
static structure and properties, as pointed out by Marr and Ullman [123] and
as proved by experimental results by Livesu et al. [114] that uses the static
silhouettes of the object in order to reconstruct its topological skeleton. Our
work shows that the way the perception changes during time can be a sig-
nificant help in order to understand how the structure of the observed object
changes (that is, which parts move and which ones are static).

The perception of a shape may be used also in order to better understand
and describe an object; examples of possible future applications may be mesh
segmentation from static silhouettes, reconstruction from the perception of a
point cloud ( [90]), and so on. In the author’s opinion, the perception may be
used in order to describe the properties, static or dynamic, of a shape. There’s
a number of characteristics (the curvature, the shape-diameter, the medial axis
and so on) that may be inferred by simply looking at a object from different
vewipoints, without precisely knowing its underlying structure. Working on
perceived data should allow to move the problem from 3D to 2D, since we ba-
sically work on images; the obvious advantage is a reduction of the complexity
in the analysis, partially counterbalanced by an overhead related to the com-
bination of the data derived from the 2D analysis, similarly to our work on the
motion-based segmentation. However, in the author’s opinion, a straightfor-
ward development of this work should be the application of the perception to
the field of the shape analysis (Perceptual Shape Analysis), in order to better
understand if we can use the visual appearance of an object to describe it and
eventually to compare it with other shapes.
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Appendix A

Controlled and adaptive
mesh zippering

During the developing of this work, we had to deal also with problems not
directly related with perception and motion. Particularly, when working on
shape reconstruction by means of range scanners, we had to deal with the
problem of merging range maps produced by different devices, with different
precision and so on. We then developed a novel algorithm for merging the
range maps, named adaptive mesh zippering. In this appendix we’ll present
this novel algorithm, published as [124] and presented during the GRAPP
conference, May 2010.

A.1 Motivation

In section 1.1 we already examined the different stages of the 3D acquisition
pipeline. However, thanks to the improving in the technology for digitizing real
objects, these steps have been refined in several regards, and even if the 3D
acquisition pipeline can be considered as a stable process, further improvements
still can be done (for example in terms of computation time). In this section
we’ll focus on the process of merging aligned range maps, the last step of the
acquisition pipeline. The revisitation of the mesh zippering as a mesh merging
algorithm is mainly motivated by the fact that, thanks to the improvement
of both the software and the hardware involved in the 3D scanning pipeline,
the quality of acquisition and range maps alignment may allow to zip them
together and to obtain the same result as with more costly and sophisticated
methods.

A.2 Background

We recall from section 1.1 that a range map is an image where each pixel stores
a depth value, which means that information contained in a range map is a set
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of points in 3D space. Given the regular distribution of the samples in the
image space, it is possible to triangulate them to obtain a triangle mesh for
each range map.

An early mesh merging approach, called zippering [169], consists in stitching
together the pairs of triangulations that overlap in 3D space by eliminating the
redundant faces in the overlapping regions and then adjusting the mesh con-
nectivity locally. Other approaches work by triangulating union of the point
sets, like the Ball Pivoting [20], which consists of rolling an imaginary ball on
the point sets and creating a triangle for each triplet of points supporting the
ball. This approach is strictly connected to the idea of a-shapes [69], which
may be thought as a ball pivoting where the ball may appear simultaneously
everywhere outside the scanned volume. In other approaches, like in [177],
active contours are used to deform a mesh to fit the sample points. Note that
in these cases the vertices of the final mesh do not coincide with the initial
samples. In fact, the reconstruction of the final representation is also a way to
filter the input data to reduce noise and discard outliers.

Imperfections and noise produced by the scanning devices is one of the rea-
sons for the success of volumetric methods, which convert the range maps in
a volumetric domain (a discrete distance field), well suited for filtering and
merging operations. The Space Carving proposed in [58] uses range maps and
line of sight of the scanner to determine a configuration of the empty voxels
consistent with all the range images. Many of the improvements to volumet-
ric methods consist of enhanced methods for estimating distances and normals
of the surface. The method proposed in [97] uses local estimation of tangent
planes to obtain a signed distance function. More recent approaches uses MLS
local approximations of the surface to address continuity of the distance func-
tion [4,157] which may be then visualized by sampling the isosurface with
points, using contouring techniques [75] to build a polygon mesh or ray tracing
it at rendering time [88]. A quadratic local approximation scheme has been
combined with a hierarchical space subdivision that allows the reconstructions
of the surface for large number of points in [143]. In the same flavor, the Pois-
son Surface Reconstruction algorithm [105] formulates the problem of defining
the surface from a set of point as a Poisson problem, for which a least square
solution can be efficiently found at different scales.

A.3 Algorithm overview

Our zippering algorithm consists of the same steps as the original version pre-
sented in [169], that we summarizes in the following. Given two meshes A and
B that partially overlap, the zippering algorithm proceeds in three phases:

e Border Erosion. Remove faces from the border of the patches to mini-
mize data redundancy.

e Clip a patch against the other. The border of one of the two range
maps is projected on the other range map, the faces intersected by projec-
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Figure A.1: False Positive

tion of A’s border are re-triangulated in order to create a new consistent
connectivity.

e Cleaning. Improve the quality of the mesh in the region when re-
triangulation occurred.

These phases are revisited to extend the zippering to support a user-defined
criterion to eliminate the data redundancy and to robustly support the zipper-
ing of patches with very different resolution.

A.3.1 Border Erosion

In the original zippering algorithm [169] a triangular face is said to be redun-
dant if its 3 vertices project on the surface of the other patch. As it is shown
in Figure A.1 this process may easily create holes of roughly the size of the
face, that will be eventually triangulated after the zippering process. However,
there are situations in which we cannot make the assumption that range maps
to be zippered are similar in terms of size and number of polygons, for example
because more than one device is used to scan the surface and the two produce
range maps with different granularity. This is quite common in scanning Cul-
tural Heritage artifacts, where there are portions of the surface that cannot be
accessed with the device used and are subsequently covered with a different
one [65].

Therefore we compute the distance between a face of a patch and the other
patch by using a uniform sampling of the face, in order to guarantee a bounded
size of the holes that we may create. We say that a point projects on the patch
if it is closer than a given threshold to the patch and the closest point is not
on a border edge (see Figure A.2). Our algorithm classifies a face of patch A
as redundant if all the samples project on the patch B (and vice versa).

The meaning of eliminating redundant faces is to redefine the border of
the patches, in other terms to establish a frontier to divide the region where
faces of the mesh A are taken as valid data from the region where faces of
the mesh B are taken. Figure A.3 shows three different frontiers for the same
pair of range maps. In the original algorithm a single patch is chosen as the
one containing redundant information and therefore only its faces are possibly
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Figure A.2: Three points and a patch A: distance dy between Py and A is
greater than a given threshold e, so Py does not project on A; distance d
between P; and A is lower than e, but the closest point C; is on a border
edge of A, so also P; does not project on A; finally, P, project on A, since its
distance from A is lower than ¢ and closest point does not lie on border of A.

redundant. Conversely, our algorithm chooses to test redundant faces on the
base of a quality value that we may use, for example, to preserve faces with
lower estimated acquisition error, or with a better aspect ratio.

Figure A.4 sketches the erosion algorithm. The queue @ stores the faces
on the border of the two patches in ascending order of quality; the face with
lowest quality will be the first one of the queue. Starting from the first face
in the queue, we check all faces, testing redundancy. Each face is tested once,
and then it is removed from the queue; if the face is redundant, then it will
be also removed from the original mesh, and its neighbors will be added to Q.
The process stops when @ is empty, and all the faces involved in the process
have been tested.

A.3.2 Clipping

At this point, the redundant faces have been removed from A and B and we are
in a situation where there is an overlap between the two meshes so that every
face on the border of a patch is only partially overlapping the other patch.

Our clipping algorithm consist of two steps:

1. refine the faces on the border of the patch A until no border edge projects
on more than one face of B

2. remove from each face of B the part covered by a projection and re-
triangulate the remain.
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Figure A.3: Two patches (a), labeled as A and B, and possible frontiers between
them; the frontier can be made of border faces from A (b) or B (c), or it can
be mixed with part of border from A and part from B (d).

Erosion (Patch A, patch B){
Q = BorderOf(A) + BorderOf(B);
while (! queue.empty ()){
Face f = Q.pop();
if ( Redundant(f,OtherPatch(f))){
RemoveFromThePatch(f);
queue += Adjacents(f);
}
}

Figure A.4: The erosion algorithm selects the lowest priority face until there
is redundancy of data.

Refinement

The first step if carried out as follows. We keep a queue B4 of faces of A to be
processed and initialize it with the border faces of A. Then the following steps
are applied until the queue is empty.

Remove a face F4 from By, project its two border vertices, named vy and
v1, on the surface of B. Let Fy and Fy be the faces of B where projections of
vg and vy lie, and let ey the border edge between vy and v;. Then one of the
followings holds:

e [y and F} are the same face, in this case, the projection of eg lies
completely inside the face, we associate the face Fy with Fy (see Fig-
ure A.5.(a)).

e [} is adjacent to I, that is, they share an edge; we name this
edge eg, in this case we create a vertex on the edge eg positioned at the
closest point of eg to ey and replace the face F4 with two faces as shown
in Figure A.5.(b), which are inserted in B4.
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Figure A.5: (a) projection of both vertices lie in one face; (b) in two adjacent
faces. (c) projections lie on non adjacent faces: the border face is recursively
split.

e [} is not adjacent to F}, in this case we simply split the face F4 along
the middle point of the border edge and insert the resulting faces in B4
(see Figure A.5.(c).

e One of the two vertices does not project on B (see Figure A.6.(a)),
in this case we simply consider the non projecting vertex, say it is vg as
projecting in an ideal face of patch B passing through vy and process the
faces as explained in the previous cases.

e None of the vertices project, in which case there is no action to take
(see Figure A.6.(b)).

In other terms, we refine the faces until the first case is verified (see Fig-
ure A.5.(c)). Note that the last two cases always happen when only a portion
of one patch overlaps the others, while may not be encountered when using a
patch to close a hole.
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Figure A.6: Two additional case: vertex v; is not projectable on mesh, so edge
is split on point p;, then only segment from vy to p; is projected on B; both vg
and v are not projectable, so F4 will not be modified.

Removal and Re-triangulation

At this point each of the projecting faces of A will be associated with a face
of B. What we need to do is to decompose each face of B in a part clipped by
the projection of the faces of A and a part to be re-triangulated accordingly to
such projections. As shown in Figure A.7 for each face Fiz to clip we will have
one or more polylines with ending vertices exactly on the edges of Fz, which
allow to separate the face in non-clipped and clipped part. Then we only need
to discard the clipped parts and to re-triangulate the remaining polygon. Note
that in rare situations we can also have more than one remaining polygon for
the same face (see Figure A.7.(c)).

A.3.3 Cleaning

The quality of the faces is an important part of any reconstruction techniques.
In this sense the zippering bears a clear disadvantage since it uses a constrained
triangulation. On the other hand, we know exactly the region of the resulting
mesh where the quality of the faces tends to be poor and may selectively filter
those parts. Furthermore, we know that the poorly shaped faces are mostly
the result of almost planar subdivision (during the refinement step) or planar
re-triangulations (the final part of clipping).

A.4 Experimental results

In this section, we present some results of the experiments conducted. For
each result we also gave information about time consumed by each stage of the
algorithm. All of the experiments were performed on a Inter Quad-Core Q9550
2.83GHz equipped with a NVidia GeForce GTX 260 and 4,00 GB of on-board
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oA Fp
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Figure A.7: Examples of face clipping. The polygon shaded in gray is to be
removed, the rest of face Fig will be re-triangulated.

memory. Our algorithm has been developed as a plug-in for the MeshLab
system [49]. Figure A.10 shows a model of a car with a large missing part and
the patch that covers the missing part (top row). We applied our algorithm
with three different criteria: by preserving the faces of the model, by preserving
the faces of the patch and by weighting the faces on the base of their distance
from the border, so obtaining a clipping frontier in the middle of the previous
two. Table A.1 reports the timing for the three cases.

The most interesting experiment is the comparison with the Poisson Surface
Reconstruction Algorithm [105] to merge two range maps with 2.5M triangles
each. The range maps, obtained with a Breukmann Smartscan laser scan-
ner [29], are very dense (100 samples per millimeter) and very well aligned.
Figure A.9 shows two range maps merged using PSR (left) and the result or
our zippering algorithm (right). The bottom of the Figure shows the Haus-
dorff distance between the two results mapped as false color on the mesh. As
expected, the result is essentially the same and the sewing regions are not no-
ticeable. However, our zippering algorithm took 1m27s seconds to complete
against the 6m16s of the Poisson Surface Reconstruction. Note that the PSR
is done with the original source code provided by the authors and in the same
hardware setup.

A.5 Final remarks

The improved version of the zippering algorithm we’ve just presented extends
the original version, by enabling enhanced control over the redundancy of data
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Figure A.8: Test case. A hole in a dense mesh (left) is covered with with a
quad (center) and the algorithm produces a conformal mesh.

Figure A.9: Poisson reconstruction, on the left, and zippered range maps on
the right. The bottom of the figure shows Hausdorff distance between the two
results mapped to a ramp between red (0m) and blue(0.001m).

Criteria Erosion | Clipping | Cleaning
Preserving model’s face 938 ms 1018 ms | 79 ms
Preserving patch’s face 1016 ms | 4454 ms | 89 ms
Using distance from border | 962 ms | 1050 ms | 90 ms

Table A.1: Result table for experiment shown in Figure A.10
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Figure A.10: A large hole on the surface of a mesh and zippering with three
different criteria: faces from mesh are preserved, then faces from patch are
preserved and, finally, faces are weighted using their distance from border.
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and supporting merging of meshes with very different granularity. This allows
the user to select which data save and which discard, and we can easily extended
the procedure in order to manage an arbitrary number of range maps (two or
more patches covering a hole, two or more overlapping range maps and so
on). We propose this algorithm as an alternative to the other reconstruction
algorithm since it’s quite efficient, results aren’t affect from precision loss and
the user has the chance to control the way the merging is performed.
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