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ABSTRACT 

 

c-MET is a receptor tyrosine kinase that, after binding with its ligand, hepatocyte 

growth factor (HGF), activates many signaling pathways, driving proliferation, 

motility, migration and invasion. Although c-MET is important in the control of tissue 

homeostasis under normal physiological conditions, it has also been found to be 

aberrantly activated in human cancers via mutation, amplification or protein 

overexpression. Activating point mutations were identified in the kinase domain of 

MET, either in the germline of patients affected by hereditary papillary renal 

carcinoma (HPRC) or in spontaneously occurring tumors; in particular, nine missense 

mutations (defined METPRC mutations), leading to constitutive activation of MET 

protein, have been identified in HPRC families. Given the importance of MET as a 

target for cancer therapies, clinical trials aimed at inhibiting it through the use of 

tyrosine kinase inhibitors (TKIs) have recently been started.  

The aim of project was: (i) to evaluate if METPRC mutants are sensitive to PHA-

665752 (a small kinase inhibitor of MET), (ii) if some mutants are insensitive to the 

inhibitor, to investigate the mechanisms responsible for resistance, (iii) to check if the 

resistant mutants are still sensitive to other chemicals inhibitors or monoclonal 

antibodies against MET, (iv) to identify activating point mutations in human 

surgically resected lung cancers.  

We have found that some METPRC mutants cannot be inhibited by PHA-665752. 

Treatment with this TKI does not alter either receptor phosphorylation or MET 

mutants-induced biological activities (migration, invasion, anchorage-independent 

growth). We showed that these mutants are insensitive also to JNJ-38877605, a 
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multitargeted tyrosine kinase inhibitor.. When we performed the mutational analysis 

on lung cancer samples, in one tumor we found the presence of one of the 

identified“resistant” mutations.  

To determine whether the mutants resistant to PHA-665752 could be inhibited with 

other strategies, we treated the mutant-expressing cells with the monoclonal antibody 

DN30, directed against the extracellular portion of the receptor. Our results showed 

that DN30 was indeed able to inhibit all the METPRC mutants.  

In conclusion, we have identified some METPRC  mutants which do not respond to the 

ATP competitive kinase inhibitors. Since the identified METPRC mutations are located 

in the kinase domain and alter its conformation; it is likely that the competitive 

inhibitors are unable to interact with the ATP binding site in the context of the 

mutated receptors; this would render these mutants "resistant" to the action of tyrosine 

kinase inhibitors. However, these mutated forms still remain responsive to treatment 

antibodies directed against the MET extracellular portion: This observation is 

important since the use of monoclonal antibodies represent a therapeutic alternative 

for patients with tumors carrying MET mutants resistant to TKIs. 
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The MET (HGF receptor) tyrosine kinase. 

The MET gene, discovered as an oncogene more than two decades ago (Trusolino,L. 

and Comoglio,P.M., 2002; Cooper,C.S. et al. 1984), encodes for a tyrosine kinase 

receptor that binds to, and is activated by, the growth and motility factor HGF (also 

called Scatter Factor 1). The MET receptor is a disulphide-linked heterodimer  

composed of an extracellular 50-kDa  chain and transmembrane 145-kDa  chain. 

The extracellular moiety contains a conserved “Sema” domain of 500 amino acids, 

known to be a protein-protein interaction domain, and a cystein-rich motif of 80 

amino acids, called MET related sequence (MRS). The intracellular portion of the 

receptor can be divided into three functional domains: i) a juxtamembrane domain, 

playing an inhibitory function through a serine residue (S985) phosphorylated by 

protein kinase C or Ca2+/calmodulin-dependent kinases (Gandino,L. et al. 1994) and 

a tyrosine residue (Y1003) that, upon phosphorylation, binds to the E3 ubiquitin 

ligase Cbl which promotes receptor ubiquitinylation, endocytosis and degradation; ii) 

the tyrosine kinase catalytic domain, that contains the major phosphorylation site 

represented by the tyrosine residues 1234 and 1235, whose activity is induced in an 

autocatalytic fashion by receptor trans-phosphorylation (Naldini,L. et al. 1991); and 

iii) a carboxi-terminal tail with a unique docking site responsible for the recruitment 

of a wide spectrum of downstream signaling molecules; among them are the 

phosphatidylinositol 3-kinase (PI3K), the GRB2/SOS complex, the non-receptor 

tyrosine kinase Src, the transcription factor STAT3  and the adaptors Shc and Gab-1, 

that provide additional docking sites for many signaling molecules.  

All the structural features described so far define a receptor family (the “Scatter 

Factor Receptor Family”) comprising, besides MET, also Ron (Macrophage 

Stimulating Protein Receptor) and its chicken orthologue Sea.  
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Fig 1.1 

 MET is a single-pass, disulphide-linked /  heterodimer that is formed by proteolytic processing of a 

common precursor in the post-Golgi compartment. The extracellular portion of MET is composed of 

three domain types. The N-terminal 500 residues fold into a large Sema domain, which encompasses 

the whole -subunit and part of the -subunit, and shares sequence homology with domains found in 

the semaphorin and plexin families. The Sema domain is followed by a PSI domain – also found in  

plexins, semaphorins and integrins,– that spans about 50 residues and contains four disulphide bonds. 

The PSI domain is connected to the transmembrane helix via four IPT domains, which are related to 

immunoglobulin-like domains and are named after their presence in plexins and transcription factors. 

The intracellular portion includes the tyrosine kinase catalytic site flanked by distinctive 

juxtamembrane and carboxy-terminal sequences. Phosphorylation of Tyr1234 and Tyr1235 within the 

catalytic site positively modulates the enzymatic activity, whereas phosphorylation of Ser975 in the 

juxtamembrane segment downregulates the kinase activity. The carboxy-terminal tail includes two 

critical tyrosines (Tyr1349 and Tyr1356) that, once phosphorylated, act as a promiscuous docking site 

for the recruitment of several transducers and adaptors. 

[Adapted from the following article: Comoglio, PM., Giordano, S. Trusolino, L. (2008) Drug 

development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 

7:504-16.] 
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The MET ligand: Hepatocyte Growth Factor (HGF). 

Hepatocyte growth factor is the ligand of the MET tyrosine kinase. This growth factor 

was independently discovered by two groups who identified it through different 

experimental approaches:  the first one characterized it as a potent motility factor and 

thus named it as “scatter factor”; the second one identified the factor for its ability to 

promote growth of hepatocytes,  hence the name of hepatocyte growth factor 

(Naldini,L. et al., 1991; Uehara, Y. et al., 1995). These two factors, later, turned out to 

be the same molecule (Schmidt, C. et al., 1995; Huh, C. G. et al., 2004), which is 

usually known as HGF.  

HGF is secreted by mesenchymal cells and acts mainly on cells of epithelial origin. It 

is secreted as a single inactive polypeptide and it is cleaved by serine proteases into a 

69-kDa alpha-chain and a 34-kDa beta-chain. A disulfide bond between the alpha and 

beta chains is present in the active, heterodimeric molecule. The protein belongs to the 

plasminogen subfamily of S1 peptidases but it has no detectable protease activity.  

 

MET and the Invasive Growth program. 

MET activation evokes pleiotropic biological responses, both in vitro and in vivo, 

often referred to as “invasive growth”. This is a complex genetic program, specifically 

induced by the Scatter Factor Receptors MET and Ron. It consists in a series of 

obligate rate-limiting steps physiologically occurring during embryogenesis and tissue 

repairing. In the first step of this process, cells acquire the ability to dissociate from 

their neighbors, by breaking intercellular adherent junctions (“scattering”) and then 

leave their original environment and reach the circulation (“directional migration” 

and “invasion”). Cell survival in the bloodstream is facilitated by MET-induced 

protection from apoptosis and ability to transiently grow in an anchorage-independent 
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manner. Finally, cells extravasate, face the new environment, proliferate and 

eventually undergo terminal differentiation (Giordano, S. et al., 1993). 

In vivo, MET is expressed in epithelial cells of many organs (Sonnenberg,E. et al., 

1993)  ; under physiologic conditions MET contributes to the establishment of normal 

tissue patterning and to the onset and persistence of normal organ architecture. In fact, 

during embryogenesis, the invasive growth process is an essential step that ensures the 

correct structural tissue organization; in adulthood , when the architectural tissue 

organization is already well established, MET activity becomes dispensable but it is 

still required when tissues are damaged and cells have to reacquire the ability to 

dissociate, migrate and repair the regenerating tissues (Uehara, Y. et al., 1995; 

Schmidt, C. et al., 1995; Huh, C. G. et al., 2004). 
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Fig 1.2  

After ligand-induced dimerization, the tyrosine kinase domain (purple) phosphorylates two key 

tyrosines included in a specific four-residue sequence (red) in the receptor cytoplasmic tail. These 

generate a docking site with specificity for the indicated signal transducers. The specificity of the 

biological response (invasive growth) results from the receptor's individual signaling profile originated 

by combining the nature of the pathways with their intensity, duration and synchrony. Moreover, the 

receptor phosphorylates signal amplifiers at multiple sites, lowering the threshold for the response.  

[From the following article:  Comoglio, PM. (2001) Pathway specificity for Met signalling. Nat Cell 

Biol. 3:E161-2.] 

 

MET and Cancer. 

In transformed tissues, deregulation of the invasive growth program is responsible for 

cancer progression and metastasis. Constitutive MET activation forces neoplastic cells 

to disaggregate from the tumor mass, erode basement membranes, infiltrate stromal 

matrices, and eventually colonize new territories to form metastases, somehow 

recapitulating the physiological invasive growth program (Trusolino,L. and 

Comoglio,P.M., 2002). 
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Fig 1.3  
 
The invasive growth program under physiological and pathological conditions. In both settings, 

invasive growth results from analogous biological processes - cell-cell dissociation and migration, cell 

proliferation and survival - but the endpoints are different. Normal cells exploit invasive growth to 

colonize new territories and build polarized three-dimensional structures, thus forming the parenchymal 

architecture of several organs. Cancer cells implement this program aberrantly to infiltrate the adjacent 

surroundings and form metastases. 

[From the following article:  Comoglio, P.M. and Trusolino, L. (2002) Series Introduction: Invasive 

growth: from development to metastasis. J Clin Invest. 109: 857–862.]  

 

Indeed, data produced by many laboratories provide compelling evidence that HGF-

MET signaling plays an important role in the development and malignant progression 

of tumors. First, cell lines that ectopically overexpress MET or HGF become 

tumorigenic and metastatic in nude mice, while MET down-regulation decreases their 

tumorigenic potential; second, MET or HGF transgenic mice (Wang,R. et al., 2001; 

Takayama,H. et al., 1997) develop metastatic tumors; third, aberrant MET expression 

(usually overexpression) has been found in many kinds of solid tumors and correlates 
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with poor prognosis (Birchmeier,C. et al., 2003). Furthermore, MET signaling is 

involved in the regulation of tumor angiogenesis, either directly, through the pro-

angiogenic activity of HGF that induces the formation of new vessels and the 

sprouting of the pre-existing ones, or indirectly, through the regulated secretion of 

angiogenic factors, such as VEGFA (Gille, J., et al. 1998), interleukin-8 (IL-8) and 

trombospondin-1 (Rosen, E.M. et al., 1993; Zhang, Y.W. et. al, 2003). Moreover, not 

only endothelial cells, but also macrophages (Galimi, F. et al., 2001) and other 

leucocytes (Skibinski, G., 2003) express MET and it has been shown that activation of 

this receptor in these cells can contribute to tumor growth and metastasis formation. 

Several experimental evidences have indeed demonstrated that therapeutic MET 

targeting also impairs the function of inflammatory cells, interfering with the pro-

tumorigenic role of the tumor microenvironment (Zhang, Y. W. et.al, 2003). 

Nowadays, several mutations were founded in the MET gene (Fig 1.4). 
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Fig 1.4 
 
Mutations of MET in human solid tumors. MET receptor is shown in the schematic diagram 

highlighting different functional domains of the receptor: extracellular semaphorin (Sema) domain, PSI 

domain, the four IPT-repeats, transmembrane (TM) domain, juxtamembrane (JM) domain and 

cytoplasmic tyrosine kinase (TK) domain. The MET mutations identified in different human solid 

cancers are represented in the top. Summary of various mutations of MET previously reported in 

human solid cancers, including renal cell carcinomas (both sporadic and hereditary), gastric carcinoma, 

hepatocellular carcinoma, glioma, squamous cell carcinoma of the head and neck, SCLC, NSCLC, 

mesothelioma and melanoma, are shown in the bottom for comparison.  

[From: Ma PC, et al. (2008) Expression and mutational analysis of MET in human solid cancers. 

Genes Chromosomes Cancer. 47:1025-37.] 

 

The main proof that MET is directly involved in tumorigenesis came from the 

identification of germ-line activating mutations in patients with hereditary papillary 

renal carcinoma (HPRC) (Schmidt, L. et al., 1997). 
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Schmidt et al. sequencing the MET gene from affected members of HPRC families 

and from tumor samples of patients with sporadic papillary carcinoma, identified nine 

different mutations (referred to as METPRC mutations) that result in amino acid 

substitutions in the kinase domain of the receptor. Three of these mutations (D1228N, 

D1228H, and M1250T) are located in codons homologous to those mutated in the 

tyrosine kinase receptors Kit and Ret. Mutated Kit alleles are found in patients with 

mastocytosis and acute myeloid leukemia of M2 subtype (Piao, X., Bernstein, A., 

1996; Beghini, A. et al., 1998) and missense mutations in Ret are associated with 

multiple endocrine neoplasia type 2B (MEN2B) (Hofstra, R. M. et al., 1994). This 

suggests that alteration of these residues is a critical event in deregulating tyrosine 

kinase receptors. 

 
Fig 1.5 

Schematic picture of the MET receptor structure. In blue is represented the MET intracellular tyrosine 

kinase domain, and the two tyrosines in the C-terminal region -that are required for interactions with a 

number of effector proteins- were indicated (P). The orange brace bracket recapitulate the list of 

METPRC mutations of the kinase domain (KD) found in HPRC. KD: kinase domain; P: phosphorylation 

site; S▪S: disulfide bond. 
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Mechanisms of MET activation in cancer. 

MET activation in human tumors can be induced through different mechanisms: 

 

1) MET overexpression. 

Overexpression is the most frequent alteration in human tumors. Overexpressed 

receptors undergo spontaneous dimerization and subsequent activation, even in the 

absence of ligand. Increased MET expression can be due to: i) MET gene 

amplification, most common in colorectal tumors (Birchmeier et al., 2003), in 21% of 

lung cancers become resistant to EGFR inhibitors (Bean et al., 2007), gastric cancers, 

where 10–20% of all primary tumors and up to 40% of the scirrhous histological 

subtype have increased MET gene copy numbers (Sakakura et al., 1999; Kuniyasu et 

al., 1992). 

  Recently, it has been shown that gastric and lung cancer cell lines harboring 

amplification of the MET locus are addicted to the constitutive activity of this 

receptor for their growth (Corso et al., 2008; Lutterbach et al., 2007; Smolen et al., 

2006). (ii) Enhanced MET transcription, induced by other oncogenes, such as Ras, 

Ret and Ets or transcription factors such as MACC1 (Stein,U. et al., 2009). (iii) 

Hypoxia-activated transcription, leading to higher amounts of receptor that 

hypersensitize the cells to HGF and promote tumor invasion (Pennacchietti,S. et al. 

2003), (iv)  loss of negative regulators, like  microRNAs (miRNAs), is It is known 

that miRNAs play a role in human cancers where they can act either as oncogenes, 

down-regulating tumor suppressor genes, or as onco-suppressors, targeting molecules 

critically involved in promotion of tumor growth. Regarding the interplay between 

MET and miRNAs, Migliore C. et al. have identified three miRNAs (miR-34b, miR-

34c, and miR-199a*) that negatively regulate MET expression (Migliore  et al., 2008). 
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2) MET structural alterations. 

Sequencing the MET gene from affected members of HPRC families led to the 

identification of missense point mutations in the receptor kinase domain that have 

been shown to be responsible for this hereditary form of cancer. The same and other 

point mutations in the intracellular portion of the receptor have been identified also in 

sporadic occurring tumors, like childhood hepatocellular carcinomas, sporadic 

papillary renal carcinomas, gastric carcinomas (Birchmeier, C. et al., 2003)  and head 

and neck squamous cell carcinomas. In this last case, it has been shown that these 

mutations are selected during the metastatic spread and confer invasive properties to 

expressing cells (Nilkovitch-Miagkova, A. and Zbar, B., 2002). In vitro studies have 

proven what has been observed in human cancers (Soman, N.R. et al., 1991). 

 MET activation can originate also from abnormal post-translational processing, as 

shown in cell lines with a defect in furine activity. In fact, lack of cleavage of the 

single chain MET precursor and failure to originate the two-chains mature 

heterodimer result in a constitutively active molecule (Nilkovitch-Miagkova,A. and 

Zbar,B., 2002).   

Increased MET activation can also derive from impaired receptor down-regulation. 

Mutations that prevent binding of the Cbl ubiquitin ligase, responsible for MET 

ubiquitinylation and endocytosis, lead to increased amount of receptors expressed at 

the cell surface and to enhanced signal transduction (Trusolino,L. and Comoglio,P.M., 

2002). Finally, naturally truncated and active MET receptors have been detected in 

malignant human muscoloskeletal tumors (Nilkovitch-Miagkova,A. and Zbar,B., 

2002).   

 

3) HGF-dependent paracrine/autocrine activation. 
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MET can be activated by its ligand, HGF, either in a paracrine or an autocrine 

manner. Autocrine activation occurs when tumor cells aberrantly express both HGF 

and its receptor, as shown in osteosarcomas and rhabdomyosarcomas, gliomas and 

carcinomas of thyroid, breast, and lung (Birchmeier,C. et al., 2003).  

4)HGF-independent mechanisms.  

MET activation can happen in a HGF-independent manner through its transactivation 

via other membrane receptors, including adhesive receptors, like CD44 and integrins 

(Trusolino, L., et al. 2001; Van, de Wetering et al. 1999), and signal transducing 

receptors, such as Ron, EGF receptor family members, FAS and B Plexins (Kruger, 

R. P., et al., 2005; Giordano, S. et al., 2002). It is interesting to note that all these 

receptors are individually believed to be involved in cancer progression. 

 

On these bases, MET is considered an important target in anti-cancer therapy with a 

possible anti-metastatic potential.  

 

Targeting MET. 

In recent times, molecules targeting MET reached the access to clinical trials. Most of 

them are small molecules tyrosine kinase inhibitors, while few are biological 

antagonists and monoclonal antibodies targeting either the ligand or the receptor (Fig 

1.6). 
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Fig 1.6 

Schematic representation of the structures of human c-MET and its potential signaling inhibition using 

various candidate therapeutic agents.  

[Adapted from: Wang MH, et al. (2010) Potential therapeutics specific to c-MET/RON receptor 

tyrosine kinases for molecular targeting in cancer therapy. Acta Pharmacol Sin. 31:1181-8.]  

 

1) MET/HGF competitors. 

The first attempts to interfere with cancer progression by targeting the HGF/MET 

system came in the late 1990s and aimed at interfering with HGF binding to MET, 

through the use of antagonistic compounds (‘competitors’). 

One of the most promising competitors is NK4, a variant of HGF comprising only the 

four-kringles of the α chain; NK4 binds to MET without inducing receptor activation 

and thus behaves as a full antagonist (Date, K., et al., 1997). Its major limit relies in its 

inability to interfere with the development of tumors in which MET is activated in a 

HGF-independent manner. 
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A chimeric factor containing selected domains of HGF and MSP and able to signal 

through MET/Ron heterodimers was proven to be able to dissociate the trophic 

properties of HGF, such as proliferation and protection against apoptosis, from its 

pro-invasive ability. This opened the possibility of exploiting some ‘favorable’ effects 

of HGF to reduce, for example, chemotherapy-related cytotoxicity (Michieli, P. et al., 

2002).  

Recently, it has been shown that a mutated and uncleavable form of pro-HGF (HGF is 

first produced as a single, inactive precursor that is then cleaved in the two-chains 

mature form) obtained through a single amino acid substitution that prevents the 

cleavage of the single chain precursor in the mature form, can both displace HGF 

from MET and competitively inhibit the proteolytic activation of the endogenous pro-

HGF (Mazzone, M. et al., 2004).  

Another molecule with therapeutic potential is a soluble form of the MET 

extracellular portion (the so-called decoy-MET), a recombinant protein corresponding 

to the entire extracellular domain of MET. This molecule acts both on MET and HGF, 

as it blocks receptor dimerization and sequesters the circulating HGF (Michieli, P. et 

al., 2004). 

 

2) Monoclonal antibodies. 

Monoclonal antibodies are currently used to target other RTKs in cancer and are 

providing good therapeutic results. The best known examples, already approved by 

FDA, are Cetuximab (against EGFR) in head and neck and colorectal cancer, 

Trastuzumab (against HER-2) in locally advanced and metastatic breast cancer and 

Bevacizumab (against VEGF) in metastatic colon cancer and non-small-lung cancer 

(Barni, S., et al., 2007; Rocha-Lima, C.M. et al. 2007). It is important to underline that 
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monoclonal antibodies can interfere with RTKs’ activity either targeting the receptor 

(Cetuximab or Trastuzumab) or the ligand (Bevacizumab). 

Compared to the use of TKIs, one advantage of the monoclonal antibodies is  the high 

target specificity. In addition, some antibodies may elicit immune responses such as 

antibody-dependent cell-mediated cytotoxicity and complement-dependent 

cytotoxicity, which offer different tumor-killing mechanisms in addition to direct 

inhibition of the target.  

Like the c-MET TKIs, the antibodies have also been evaluated preclinically and 

demonstrated significant antitumor activity in HGF/c-MET-dependent tumor models, 

with good tolerability. 

Concerning the MET–HGF system, promising results have been obtained both with 

anti-HGF (one of them has just entered the first phase II clinical trial), and anti-MET 

antibodies. 

Recently, a panel of fully human monoclonal antibodies that bind to and neutralize 

human HGF has been developed (Burgess, T. et al., 2006). Kim and colleagues 

identified another monoclonal antibody, L2G7, active not only in vitro, but also able 

to interfere with tumor growth and to induce tumor regression in mouse models (Kim, 

K. J. et al. 2006).  

The potential use of mAbs targeting MET in human cancer therapy induced the 

production of a growing number of these molecules. As bivalent antibodies exhibited 

both agonistic and antagonistic activity towards the receptor, allowing a partial 

activation of MET downstream pathways (Christensen, J. G., et al. 2005), one 

monovalent antibody (Fab), named 5D5, was engineered to inhibit HGF-dependent 

MET activation (Martens, T. et al., 2006).  
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Finally, our group identified a mAb, named DN30, that efficiently down-regulates 

MET receptor. This specific mAb exploits its effect in inhibiting HGFR signaling by a 

dual mechanism: on one hand it reduces the number of receptor molecules on the cell 

surface; on the other hand it promotes the release of a decoy HGFR (Petrelli, A. et al., 

2006)  which is endowed with a dominant negative activity. Another important 

observation is that the inhibitory mechanism activated by this mAb does not require 

HGFR tyrosine kinase activity. This feature represents a relevant advantage in the 

perspective of a therapeutic approach, because, in clinical practice, it is frequent to 

combine different drugs to improve the effect on the target molecule. In the case of 

HGFR, it would thus be possible to combine kinase inhibitors with the mAb, allowing 

the contemporary action on both HGFR activation and receptor levels; this  is likely to 

enhance the therapeutic efficacy of target therapy in HGFR-overexpressing tumors, 

with the aim of interfering with both tumor growth and the acquisition of an invasive–

metastatic phenotype. 

 

3) Small molecules. 

From a pharmacological point of view, the most promising tools for cancer therapy 

are believed to be the competitors for the ATP binding site of the receptor, the so-

called ‘small kinase inhibitors’ or ‘small molecules’. The reason for the increasing 

interest in the development of these compounds is their good efficacy in clinics (for 

example Gleevec, targeting c-kit and BCR-ABL, Iressa and Tarceva, targeting EGFR 

and Sorafenib, targeting several RTKs) and to their ability to inhibit receptor 

activation due not only to ligand binding but also to over-expression or interaction 

with co-receptors. This last issue is of particular interest dealing with MET, as 

activation due to receptor over-expression is quite frequent in human tumors 
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(Desiderio, M. A., 2007). Moreover, as already discussed, several data strongly 

suggest that MET cross-talk with other membrane receptors may lead to its activation 

in the absence of the ligand For all these reasons, it is important to develop 

compounds able to efficiently switch off MET signal. Despite the potentiality of small 

molecules in cancer therapy, it must be taken into consideration that if, on one hand, 

these molecules are very effective and promising, on the other hand, they may create 

problems for side-effects because ATP analogues are likely not absolutely specific for 

a given tyrosine kinase, and thus, toxicity is a big concern. 

Initial attempts to identify MET-ATP binding site competitors brought to the 

identification and characterization of K252a, a Staurosporine analogue, behaving as a 

broad spectrum kinase inhibitor (Morotti, A.,et al., 2002).  

Searching for more selective compounds, two new small-molecule inhibitors have 

been developed: SU11274 and PHA-665752. At nanomolar concentrations, they both 

strongly inhibit HGF-induced activation of MET in cultured cells and tumorigenicity 

in mouse models (Berthou, S. et al., 2004; Ma, P. C., et al., 2005). 

Recently, Zou and colleagues identified a new small-molecule inhibitor, named PF-

2341066: it is an orally available ATP-competitive compound selective for MET. In 

vivo, this compound showed a good tolerability and a dose-dependent anti-tumor 

activity (Zou, H. Y. et al., 2007).  

Agents that showed encouraging clinical benefit as well as acceptable safety profiles 

in early-stage trials have progressed rapidly in the clinic. These include ARQ197, 

XL184 and PF-2341066, all of which are currently being evaluated in Phase III trials 

(Table 1).  

A novel MET/RON inhibitor (Compound I, from Amgen) has been recently identified 

and characterized. This molecule specifically inhibits both the receptors belonging to 
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the same RTK family and prevents the activation of the invasive growth program in 

response to the interaction with the cognate ligands. Compound I showed specific 

anti-tumor activity in animal models known to be dependent on either MET or Ron 

activation  (Zhang Y, et al., 2007).  

Finally, an indirect approach to interfere with MET activity has been achieved using 

geldanamycin (GA), an anti-tumor drug that binds to and inhibits HSP90 chaperone 

activity by preventing proper folding and functioning of certain oncoproteins and, 

amongst them, MET (Xie, Q. et al., 2005). 

 

4) Clinical trials. 

Recently, some molecules targeting MET reached the access to clinical trials: they all 

share low levels of toxicity but further investigations are required to optimise the 

clinical settings (Table 1). 

 

Table 1. c-MET pathway inhibitors in development.  
Agent Developer Comments   

Selective TKIs  
ARQ197 ArQule/Daiichi 

Sankyo/Kyowa Hakko 
Kirin 

c-MET enzyme K i: 355 nM; cellular IC50: 300 – 
1000 nM 
Phase III (NSCLC), Phase II (CRC, gastric, HCC, 
germ cell and MiT tumors) 
Clinical activity: PR and SD reported in lung, 
neuroendocrine, prostate, testicular, gastric, 
colorectal, ovarian, pancreatic and renal cancers 

  

JNJ38877605 Johnson & Johnson c-MET enzyme IC50: 4 nM; cellular IC50: 50 nM 
Phase I (advanced solid tumors): completed 

  

INCB28060 Novartis/Incyte c-MET enzyme IC50: 0.13 nM; cellular IC50: 1 nM 
Phase I (advanced tumors) 

  

EMD1214063  
EMD1204831 

EMD Serono c-MET enzyme IC50: 1 nM; cellular IC50: 1 – 6 nM 
c-MET enzyme IC50: 12 nM; cellular IC50: 15 nM 
Phase I (advanced solid tumors) 

  

AMG337 Amgen c-MET enzyme and cellular IC50: unknown 
Phase I (advanced solid tumors) 

  

Non-selective TKIs     
PF-2341066 (crizotinib) Pfizer c-MET enzyme IC50: 4 nM; cellular IC50: 11 – 13 

nM  
Also active against ALK: 2-fold less potent 
Phase III (ALK-altered NSCLC), Phase I–II (lung, 
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Table 1. c-MET pathway inhibitors in development.  
Agent Developer Comments   

ALCL and other tumors) 
Clinical activity: PR and SD reported in NSCLC and 
inflammatory myofibroblastic sarcoma patients with 
ALK rearrangement 

XL184 (cabozantinib) Exelixis c-MET enzyme IC50: 1.8 nM; cellular IC50: 8 nM 
Also active against VEGFR, RET, KIT, FLT3 and 
TIE2  
Phase III (medullary thyroid cancer), 
Phase II (glioblastoma/astrocytoma, NSCLC and 
RDT design in nine tumor types: breast, gastric, 
NSCLC, ovarian, pancreatic, prostate, SCLC, liver 
and melanoma) 
Clinical activity: PR and SD reported in various 
tumors including thyroid, carcinoid, neuroendocrine, 
parotid, appendiceal, liver, colorectal, renal, 
melanoma, mesothelioma, renal, liver, lung, 
glioblastoma and cutaneous T-cell lymphoma 

     

GSK1363089/ XL880 
(foretinib) 

GlaxoSmithKline c-MET enzyme IC50: 0.4 nM; cellular IC50: 23 nM 
Also active against VEGFR, AXL, PDGFR, KIT, 
FLT3 and TIE2 
Phase II (breast, NSCLC, papillary renal, gastric and 
head and neck), Phase I (liver) 
Clinical activity: PR and SD reported in thyroid, 
renal, colorectal, carcinoid, melanoma, 
nasopharyngeal, urethral, ovarian, mesothelioma and 
gastric cancers 

     

MGCD265 Methylgene c-MET enzyme IC50: 24 nM; cellular IC50: 40 nM 
Also active against RON, VEGFR1/2/3 and TIE2 
Phase II (NSCLC), Phase I (advanced tumors) 

     

E7050 Eisai c-MET enzyme IC50: 14 nM; cellular IC50: 6 – 37 
nM  
Also active against VEGFR2 
Phase II (HCC), Phase I (advanced solid tumors) 

     

AMG208 Amgen c-MET enzyme IC50: 4 nM; cellular IC50: 10 – 100 
nM  
Also active against RON 
Phase I (various tumors) 

     

MP470 SuperGen c-MET enzyme and cellular IC50: unknown 
Also active against KIT, PDGFR, FLT3, RET and 
RAD51  
Phase I (various tumors): completed 
Clinical activity: PR and SD reported in lung cancer 

     

BMS-777607 Bristol-Myers Squibb c-MET enzyme IC50: 3.9 nM; cellular IC50: 20 – 160 
nM  
Also active against Ron, AXL, TYRO3 and MER 
Phase I–II (advanced solid tumors): completed 

     

MK-2461 Merck c-MET enzyme IC50: 2.5 nM; cellular IC50: 26 – 900 
nM  
Also active against RON, FLT1, 3 and 4, and FGFR1, 
2 and 3 
Phase I–II (various tumors): completed 

     

Therapeutic Abs     
MetMAb (PRO143966) Genentech/Roche Humanized anti-human c-MET monovalent antibody 

Phase II (NSCLC and triple negative breast cancer) 
Clinical activity: CR and SD reported in lung, gastric 
and melanoma cancers 

    



- 25 - 
 

Table 1. c-MET pathway inhibitors in development.  
Agent Developer Comments   

AMG102/(rilotumumab) Amgen Humanized anti-human HGF IgG2 
Phase II (SCLC, NSCLC, CRC, prostate, glioma, 
RCC, gastric or esophagogastric junction 
adenocarcinoma, mesothelioma and gynecologic 
tumors)  
Clinical activity: PR and SD reported in glioblastoma 
and other tumors 

    

AV-299 Aveo Humanized anti-human HGF antibody 
Phase II (lung), Phase I (advanced solid tumors, 
lymphomas and MM) 

    

 

 

Mechanisms of resistance to tyrosine kinase inhibitors. 

In the field of acquired resistance to kinase inhibitors, three major mechanisms of 

resistance have begun to emerge: (i) genetic alterations of the target, such as gene 

amplifications that leads to receptor overexpression and thus render the amount of 

available drug not sufficient to block the target; (ii) mutations in the target kinase  that 

abrogate the inhibitory action of the drug [e.g., T790M in epidermal growth factor 

receptor (EGFR) and T315I in ABL]; (iii) activation of signaling pathways that 

bypass the continued requirement for the original target; (iv) constitutive activation of 

downstream transducers. 

Among the most common mechanisms of resistance, genetic modifications include -

but are not limited- to: point mutations, deletion and amplification of genomic areas. 

As previously reported, unequivocal evidence that implicates MET in human cancer is 

provided by the activating mutations that have been discovered in both sporadic and 

inherited forms of human renal papillary carcinomas (Schmidt, L. et al., 1997). 

Activating mutations have also been described in sporadic tumors such as childhood 

hepatocellular carcinomas (Park, W. S. et al., 1999), sporadic papillary renal 

carcinomas (Schmidt, L. et al., 1997), gastric carcinomas (Lee, J. H. et al., 2000), lung 

carcinomas (Kong-Beltran, M. et al., 2006)  and head and neck squamous cell 
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carcinomas (Di Renzo, M. F. et al., 2000). The table 2 recapitulate that such 

mutations, which alter sequences within the kinase domain, have also been found in a 

large types of cancer and metastatic lesions.  

 

 
 
Tab 2  
Hepatocyte growth factor/scatter factor, MET and cancer references. 
 
[From the following article: Birchmeier, C. et al., (2003) Met, metastasis, motility and more. Nature 

Reviews Molecular Cell Biology 4, 915-925] 
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Targeted cancer therapies are based on the use of drugs that block the growth and 

spread of cancer by interfering with specific molecules involved in tumor growth and 

progression. By focusing on molecular and cellular changes that are specific to 

cancer, targeted cancer therapies may be more effective than other types of treatment, 

including chemotherapy and radiotherapy, and less harmful to normal cells. The 

development of targeted therapies, therefore, requires the identification of good 

targets: in other words, targets that are known to play a key role in cancer cell growth 

and survival. In cancers driven by a dominant oncogene, targeted therapies have led to 

remarkable improvements in response and survival, whereas in others the outcome 

has been more modest. 

Once a target has been identified, a therapy must be developed; most targeted 

therapies are either small-molecule drugs or monoclonal antibodies. Small-molecule 

drugs are typically able to diffuse into cells and can act on targets that are found 

inside the cell. Most monoclonal antibodies cannot penetrate the cell plasma 

membrane and are directed against targets that are outside the cell or on the cell 

surface.  

Many targeted cancer therapies have been approved for the treatment of specific types 

of cancer, others are being studied in clinical trials, and many more are in preclinical 

testing.  

Unfortunately, many patient’s tumor types are refractory to targeted therapies 

(intrinsic resistance). Moreover, even if an initial response to targeted therapies is 

obtained, the vast majority of tumors subsequently become refractory (i.e., acquired 

resistance) and patients eventually progress.  In the majority of cases this is caused by 

expansion of clones containing mutated forms of the target, which confer insensitivity 

to the drug.  
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In addition, multiple factors including pharmacokinetics issues, such as suboptimal 

drug delivery, further contribute to resistance formation. Loss of target dependence 

due to the activation of parallel signaling pathways has also been reported as cause for 

acquired drug insensitivity.  

Taking together, recent basic and clinical research is  trying to improve the efficacy of 

targeted therapies by developing new generations of rationally designed targeted 

agents, and translating this information to the clinic to select patients for appropriate 

therapy. 

However, one key aspect to improve  the potential of targeted therapies is, first of all, 

a better understanding the intrinsic or acquired resistance mechanisms that limit their 

efficacy. 

 

In this scenario, the aim of my PhD project was to evaluate the activity of  some 

available  anti-MET therapies (small molecules and monoclonal antibody) targeting 

the MET receptor harboring mutations in the kinase domain and, if some mutants 

were insensitive to the inhibitor, to investigate the mechanisms responsible for 

resistance. Then, I aimed to evaluate  if the  mutants resistant to small kinase 

inhibitors are still sensitive to other chemicals inhibitors or monoclonal antibodies 

against MET. Finally, since the anti-MET therapies are ongoing in NSCLC patients, I 

also screened surgically resected lung cancers  to identify activating point mutations  
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Evaluation of sensitivity of MET PRC mutants to the MET TKI inhibitor PHA-

665752 

As previously shown, sequencing the MET gene from affected members of HPRC 

families and from tumor samples of patients with sporadic papillary carcinoma 

allowed the identification of nine different MET mutations (referred to as METPRC 

mutations) that result in amino acid substitutions in the protein. All METPRC mutations 

belong to the “gain of function” type and lead to constitutive activation of the protein 

(see Tab 3.1). This results in constitutive tyrosine phosphorylation of the receptor that 

can be experimentally used as a read-out of its activation. 

 

MISSENSE MUTATION 
(AMINOACID 

SUBSTITUTION) 

REFERENCE 
NUMBER OF THE 

MUTANT 
M1131T MET PRC1 
V1188L MET PRC 2 
L1195V MET PRC 3 
Y1230C MET PRC 4 
Y1230H MET PRC 5 
V1220I MET PRC 6 
D1228H MET PRC 7 
D1228N MET PRC 8 
M1250T MET PRC 9 

  
Tab 3.1 

Schematic summary of all METPRC mutants: aminoacid substitution and corresponding reference 

number of the mutant (chosen to make the reading easier). 

 

To evaluate if METPRC mutants are sensitive or resistant to the MET small kinase 

inhibitor PHA-665752, we first transiently transfected MET wt and all the METPRC 

mutants in the COS-7 cell line, derived from the kidney of African green monkey.  
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This cell line is a fibroblast-like cell line established from CV-1 simian cells which 

were transformed by an origin-defective mutant of SV40 encoding for wild-type T-

antigen. This cell line is suitable for high efficient transient transfection (Gluzman, Y., 

1981 ). All the mutants cloned in the plasmidic mammalian expression vector pCEV 

29.1 were available in the laboratory (Giordano, S., et al. 2000). 

 

A 

 

 

 

 

 

B 

 

 

Fig 3.1  
(A) The plasmidic construct pCEV29.1. Wild-type and mutant MET cDNAs were cloned into the 

pCEV29.1 expression vector (Giordano, S., et al. 2000) and the quality of the plasmidic DNA was 

validated by agarose gel electrophoresis (B).  

 

 

 

 

 

pCEV 29.1 
(10 kb) 

MET (4224 bp) 

 

WT    1     2    3     4    5     6      7    8     9 

M-MLV 
LTR 

amp 

SV-40 polyA 

neo 
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Transfections were performed by the DEAE-dextran technique. Briefly, DEAE-

dextran transfection is one of the oldest chemical, nonviral methods developed to 

transfer RNA or DNA to cultured mammalian cells. The standard transfection 

protocol involves pretreatment of cells with chloroquine, followed by exposure of the 

cells to a DEAE-dextran and DNA solution. Sixteen hours after transfection, cells 

were treated with the small molecule tyrosine kinase inhibitor PHA-665752 [250] nM. 

Twenty four hours later, cells were lysed with boiling Laemmli buffer (Laemmli, 

UK., 1970), proteins were quantified by Pierce BCA (bicinchoninic acid) Protein 

Assays and analyzed by western blot (WB). As shown in Fig 3.2, we observed that, 

while phoshorylation of MET wt and of some METPRC mutants (i.e. M1130T, 

V1188L, V1220I, M1250T) was inhibited in presence of PHA-665752, other mutants 

(namely L1195V, Y1230C, Y1230H, D1228H, D1228N) were still phosphorylated. 
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A 

 
 
B 
 

 
 

Fig 3.2 
 
Equal amounts of pCEV 29.1 containing the cDNA of MET wt or of the different MET PRC mutants 

were transfected in COS-7 cells with DEAE-dextran procedure. After transfection, cells were untreated 

(A) or treated (B) with the ATP-competitive tyrosine kinase inhibitor PHA-665752 [250] nM. After 24 

hours of treatment, cells were washed with phosphate-buffer saline (PBS) and lysed with Laemmli 

buffer. Proteins were quantified using the BCA Protein Assay Kit (Pierce, Rockford, IL) and analysed 

by Western Blots. As shown, blots probed with anti-phospho MET antibodies (directed against the 

phosphorylated tyrosines 1349/1356) showed that some METPRC mutants (the red ones namely 

L1195V, Y1230C, Y1230H, D1228H, D1228N, operatively defined as mutants 3, 4, 5, 7 and 8 

respectively) remained phosphorylated, and thus active, also in presence of the inhibitor. GTL16 cells, 

derived from a gastric carcinoma, over-expressing a constitutively phosphorylated receptor, were used 

as positive control for the TKI and antibody functionality. 

 

 WT       1         2        3        4         5         6         7        8         9 

 WT       1         2        3          4         5         6         7        8         9 

Anti MET  

Anti p-MET  
1349-1356 

Anti MET  

Anti p-MET  
1349-1356 

PHA-665752 [250]nM 
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In order to assess whether the lack of receptor inhibition was a dose-dependent effect 

or a real inability to respond to the drug treatment, we repeated the same experiments 

using a dose of PHA-665752 ten times higher than the IC50. As shown in Fig 3.3, 

tyrosine phosphorylation of the MET mutants 4, 5, 7 and 8 was not inhibited even at 

these high doses. MET mutant 3 was only partially inhibited, suggesting the existence 

of a different mechanism of drug resistance.  

 
A 
          PHA-665752 [250] nM                     

 
 
 
B 
        PHA-665752 [500] nM                      

 
 

Fig 3.3  

COS-7 cells transiently transfected with equal amounts of pCEV 29.1 containing the cDNA of MET wt 

or the different METPRC mutants were treated with the PHA-665752 TKI at two different 

concentrations: [250] nM (A) and [500] nM (B). After 24 hrs of drug treatment, cells where lysed in 

boiling Laemmli buffer. WB analysis revealed that MET phosphorylation of the resistant mutants (the 

red ones numbers 3, 4, 5, 7, 8 respectively) was persistent also at higher doses of TKI. 

 

PHA-665752 was identified as a small ATP-competitive molecule, inhibitor of the 

catalytic activity of c-MET kinase (Ki of 4 nM, IC50 of 9 nM). PHA-665752 also 

exhibited >50-fold selectivity for c-MET compared with a panel of diverse tyrosine 

Anti p-MET 1349-1356 

Anti p-MET 1349-1356  
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and serine-threonine kinases. In cellular studies, PHA-665752 potently inhibited 

HGF-stimulated and constitutive c-MET phosphorylation, as well as HGF and c-

MET-driven phenotypes such as cell growth (proliferation and survival), cell motility, 

invasion, and/or morphology of a variety of tumor cells (Christensen, JG., 2003). 

To evaluate if the inability to respond to PHA-665752 was shared also by other ATP-

competitive MET inhibitors, we treated COS-7 cells expressing the different mutants 

with another small molecule tyrosine kinase inhibitor, the JNJ-38877605.  

JNJ-38877605 is an orally bioavailable, highly specific MET inhibitor (selective over 

other 229 kinases tested). This agent inhibits c-MET with IC50 at 4 nmol/L and has a 

different chemical structure than PHA-665752 (see Fig 3.4). 

 

 

 

                         PHA-665752                                          JNJ-38877605 

 

Fig 3.4 

Chemical structure of the small molecules TKIs PHA-665752 and JNJ-38877605. 

 

As shown in Fig 3.5 all the mutants that were responsive to PHA-665752, were also 

responsive to JNJ-38877605, and mutants resistant to PHA-665752 remained active 

also in the presence of JNJ-38877605. 
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A 

 

 

 

 

 

B 

 

 

 

 

 

 

Fig 3.5 

COS-7 cells transiently transfected with MET cDNAs (WT or mutated), were treated with the small 

molecule TKI JNJ-38877605. WB analysis confirmed that mutants responsive to PHA-665752 were 

sensitive also to JNJ-38877605 (A) while mutants resistant to PHA-665752 were resistant also to JNJ-

38877605. GTL16 cells (A) were used as a positive control for the TKI inhibition and antibody 

detection. 
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Generation of stably transfected cell lines expressing the METPRC mutants  

As shown by Jeffers et al., MET receptors containing the different PRC point 

mutations display different abilities to induce transformation in NIH 3T3 fibroblasts 

(Jeffers M, et al., 1997). In fact, only mutations that affect residues located in the 

kinase activation loop efficiently transformed NIH 3T3 mouse fibroblasts (Fig 3.6). 

 

 

 

 

Fig 3.6 

Left part: Map of MET mutations found in Hereditary Papillary renal carcinomas. Schematic 

representation of functional domains of MET tyrosine kinase. The black box depicts the tyrosine kinase 

domain (KD), which can be subdivided into amino- and carboxyl-terminal lobes (N-L and C-L, 

respectively), separated by a large cleft referred to as the activation loop (AL). YY represents the 

receptor multifunctional docking site. Mutations found in PRCs are listed and the homology with 

residues mutated in RET and KIT receptors is indicated. 

Right part: Transforming ability of MET PRC mutants evaluated using the focus formation assay. Values 

reported represent the average of three independent experiments. 

[Data and pictures adapted from the following article: Giordano S. et al., Different point mutations 

in the met oncogene elicit distinct biological properties. FASEB J. 2000 Feb;14(2):399-406.] 
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Furthermore, the METPRC mutant endowed with the highest transforming ability 

(namely MET M1250T) also displayed the highest catalytic activity (Giordano, S. et 

al., 2000).  

In order to evaluate if the cells expressing the METPRC mutants display a different 

biological behavior in the presence or in the absence of PHA-665752, we aimed at 

generating stably transduced NIH 3T3 cells (that express very low levels of 

endogenous MET). We thus chose two representative METPRC mutants: METPRC 8 

(MET D1228N), resistant to PHA-665752, and METPRC 9 (MET M1250T), 

responsive to the drug treatment. 

To optimize the transduction efficiency, we decided to express the MET mutants in 

lentiviral vectors. We thus mutagenized the MET cDNA cloned in the pRLL2 

lentiviral vector, already available in the lab. The two PRC mutants were thus 

obtained performing an in vitro site-directed mutagenesis (Strategene’s QuickChange 

II XL Site-Directed Mutagenesis Kit) that allows to introduce site-specific mutations 

in the double-stranded plasmid pRLL2 containing the MET wild type cDNA. The 

obtained mutagenized cDNAs were validated by direct sequencing (Fig 3.7).  
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Fig 3.7 

Alignment between the MET wild type cDNA sequence and the METPRC mutants number 8 or 9. 

The point mutations are highlighted in red, the mutational analysis was performed using the Mutation 

Surveyor software, the represented alignment was obtained by the program “ClustalW Multiple 

Alignment” available in the web. 

 

To produce stably expressing cells, we used the lentivirus expression systems based 

on HIV-1 that are becoming very popular for gene delivery into host cells, because 

they offer many advantages over both traditional retroviruses and adenoviruses.  

First, we performed the multiplasmid transient transfection (the most widely used 

technique for generation of lentiviral vectors) with the traditional transient 

transfection protocol using 293T adherent cells and calcium phosphate/DNA co-

precipitation followed by ultracentrifugation (Vigna, E. and Naldini, L., 2000).  

The concentrated virus was quantified by the HIV-1 p24 Antigen ELISA (an enzyme 

linked immunoassay used to detect Human Immunodeficiency Virus Type 1 (HIV-1) 

p24 antigen in research specimens), and cell infections were performed using one 

g/ml of concentrated virus for 16 hours in the presence of polybrene (increasing 

virus adhesion to cells). 

Before performing biological assays, we confirmed the expression of the constructs in 

the stably transfected cells (Fig 3.8, bottom panel). We then carried out some 

biochemical experiments (response to HGF ligand and TKI inhibition) by stimulating 
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the cells with HGF (400U/ml for 15 minutes in serum free conditions), in the absence 

or in the presence of either PHA-665752 or JNJ-38877605. The results obtained with 

the two inhibitors were over imposable; figure 3.8 shows those obtained with JNJ-

38877605. As it can be observed, while both MET wt and METPRC 9 were inhibited 

by the TKI, METPRC 8 remained tyrosine phosphorylated, as previously observed in 

COS-7 cells (see Fig 3.5). 

 

 
 

          

 

Fig 3.8 

 Cells expressing the different constructs (MET WT or mutated), were stimulated with HGF (400U/ml 

for 15 min) in the absence (+) or in the presence (++) of JNJ-38877605 [500]nM. 

WB analysis showed that all cells expressing the MET cDNA responded to the ligand HGF; in 

presence of the TKI, the mutant number 8 was not inhibited (red circle) while cells expressing the 

responsive mutant 9 (blue circle) or MET WT lost their phosphorylation. NIH 3T3 cell line wt 

(untransduced) were used as negative control. A549 cells (an adenocarcinomic human alveolar basal 

epithelial cell line expressing an endogenous MET receptor quantitatively comparable to transduced 

NIH 3T3 cells) were used as positive control of the experiment and of anti p-MET antibody detection. 

Expression of the different constructs in stably transduced NIH 3T3 cells was previously evaluated 

using an anti MET antibody (bottom panel). 

 

A549 NIH 3T3 MET WT 

NT       +     ++ NT       +    ++ NT     +       ++ NT     +     ++ NT     +       ++ 

METPRC 8 METPRC 9 

  Anti p-MET  
1349-1356 

Anti MET  
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Biological properties of stably transfected cell lines expressing METPRC mutants  

To evaluate if the different behavior of the METPRC mutants could impact also the 

biological properties of the expressing cells, we decided to analyze some MET-

dependent activities such as cell migration and anchorage-independent growth. 

Concerning the biological responses, treatment with the TKI did not modify either 

receptor phosphorylation or MET-induced biological activities in cells expressing the 

resistant mutant D1228N (mutant 8): this was evident both in the soft agar assay 

(which evaluates the ability to grow in anchorage-independent conditions) and in 

migration/invasion assays, such as wound healing and transwell assays (see Fig 3.9). 

In details, colony formation and viability (both measured by Alamar Blue 

quantification) were not impaired in the presence of JNJ-38877605 in cells expressing 

the mutant number 8, while they were strongly decreased in those expressing MET wt 

or the mutant 9. Untransduced NIH 3T3 cells were used as negative control: as 

shown, these cells were not able to form colonies in soft agar.  
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Fig 3.9  

Anchorage-independent growth assays in soft agar and Alamar Blue quantification of cell viability. In 

the presence of the MET inhibitor, cells expressing either MET wt or the sensitive mutant number 9 

(blue lines) were severely impaired in their ability to grow in anchorage independent conditions, while 

cells expressing the resistant mutant 8 (red line) were unaffected. NIH 3T3 cell line wt (not expressing 

the MET gene) were used as negative control. The experiment was performed in presence of HGF (20 

ng/ml) and in presence or absence of JNJ-38877605. 
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We also performed in vitro biological assays to evaluate cell motility. In the invasion 

assay, cells were seeded in Transwell chamber, on the upper side of a porous 

polycarbonate membrane. The medium in both chambers was supplemented with low 

percentage of serum; the lower chamber was supplemented with  HGF (20 ng/ml) in 

presence or absence of JNJ-38877605. After 16 h, cells attached on the upper side of the 

membrane were mechanically removed. Cells that migrated to the lower side were fixed 

with gluataraldehyde and stained with crystal violet. Stained cells were photographed (see 

Fig. 3.10 A).  

To evaluate the ability to migrate and repair wounds, we performed a Wound Healing 

assay. This method mimics cell migration during wound healing in vivo. The basic 

steps involve creating manually a "wound" in a cell monolayer, capturing the images 

at the beginning and at regular intervals during cell migration and comparing the 

images to quantify the migration rate of the cells. As shown in Fig. 3.10 B, all cells 

increased their ability to migrate in presence of HGF (20 ng/ml) compared to the 

counterpart not treated (NT), but cells transfected with MET wt or with the responsive  

mutant 9 were not able to close the wound in presence of JNJ-38877605. Once again, the 

resistant mutant 8, showed an opposite response and its ability to migrate and close the 

wound was not impaired by the inhibitor. 
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A

 

B 

 

 

Fig 3.10 
Cells expressing MET WT or the mutants 8 and 9 were used to evaluate the ability to invade and migrate. 

The upper panel shows the results of a representative invasion assay in Transwells, in the lower part is 

represented the ability to migrate and repair the  wound by Wound Healing Assay. Both assays were 

performed using low percentage of serum, plus (experimental point named HGF) or minus (named NT) HGF 

(20 ng/ml), or in presence of HGF (20 ng/ml) plus JNJ-38877605 [500] nM.  

In both assays these two mutants showed an opposite response: while cells expressing MET wild type or the 

responsive mutant 9 (green rectangles) were inhibited, the resistant mutant 8 (yellow rectangles) was able to 

migrate also in the presence of inhibitor in both assays.  

HGF+ 
JNJ-38877605 

NT 

HGF 

  

MET WT METPRC 8 METPRC 9 

 

HGF+ 
JNJ-38877605 

NT 

HGF 

MET WT METPRC 8 METPRC 9 

   



- 46 - 
 

Analysis of lung tumors for the presence of MET mutations 

Nowadays pivotal studies in NSCLC (Non-Small Cell Lung Cancer) are ongoing, 

using specific chemical and biological anti-MET inhibitors; three of them (Met MAb, 

Crizotinib, ArQule-197) are in phase III clinical trials. The used drugs fall in two 

different categories: small kinase inhibitors (TKIs) and monoclonal antibodies 

(mAbs). They act with different mechanisms, since small TKIs interact with the 

receptor intracellular portion while mAbs bind to the extracellular domain. It is thus 

very likely that mutations present in diverse parts of the receptor can differentially 

impact on the ability to respond to either of the drugs. For these reasons and since 

METPRC mutations have been found not only in the germline of patients but also in 

sporadic tumors, we decided to analyze the sequence of the MET tyrosine kinase in 

human surgically resected lung cancers. 

As shown in the Tab 3.2, we collected resected lung tumors in collaboration with the 

Oncologic Hospital “A. Businco” of Cagliari (Dr. R. Versace) and Hospital 

“S.Giovanni Battista” of Turin (Prof. E. Ruffini), and we gathered the follow up of all 

patients (unfortunately not complete in all cases). The Classification of Malignant 

Tumors (TNM) is one of the most widely used staging systems. The TNM system is 

based on the extent of the tumor (T), the extent of spread to the lymph nodes (N), and 

the presence of distant metastases (M). A number is added to each letter to indicate 

the size or extent of the primary tumor and the extent of cancer spread. Tumor grade 

is a system used to classify cancer cells in terms of how abnormal they look under a 

microscope and how quickly the tumor is likely to grow and spread. Tumor grade 

should not be confused with the stage of a cancer. Cancer stage refers to the extent or 

severity of the cancer, based on factors such as the location of the primary tumor, 
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tumor size, number of tumors, and lymph node involvement (spread of cancer into 

lymph nodes). 

 

NUMBER OF 

SAMPLE 

 

ISTOLOGY 

 

STAGE 

 

GRADING 

 

 

T 

 

N 

 

M 

3118 Ca pavimentoso G2 

pT1aN0 

I A G2 T1 N0  

2279 Mts polmonari di ca retto 

G2 

IV G2    

119 adenocarcinoma con 

estese aree di necrosi 

IB G2 2 0 0 

280 carcinoma non a piccole 

cellule 

IIA  1 1 0 

285 carcinoma a grandi cellule 

con attività 

neuroendocrina 

IB  2 0 0 

286 Adenocarcinoma 

 

     

288 carcinoma epidermoide   1 0 0 

290 carcinoma bronchiolo 

alveolare mucinoso 

     

 

Tab 3.2 

List of samples used for mutational analysis of the MET gene and corresponding follow up. 

Classification is based on the Classification of Malignant Tumors (TNM), a cancer staging system that 

describes the extent of cancer in a patient’s body: T stands for tumor size and invasiveness.  The T 

number can range from T1 to T4.  T1 and T2 are differentiated primarily on size (<3 cm = T1, >3 cm = 

T2) and if the tumor is visible within a lobar bronchus (T2). T3 tumors involve the chest wall, but may 
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be resectable (operable). T4 tumors are not surgically resectable because they have invaded the 

mediastinum (the area and organs between the lungs) and involve the heart, great vessels, trachea or 

esophagus, or because they involve the pleura (lining of the lung) with a malignant pleural effusion 

(accumulation of fluid around the lining of the lung).  N stands for Nodal involvement (lymph nodes) 

and is staged from N1 to N3. M stands for the presence (1) or absence (0) of metastases (spread to a 

distant site). Grading (1–4) refers to the differentiation of the cancer cells (i.e. they are "low grade" if 

they appear similar to normal cells, and "high grade" if they appear poorly differentiated). About 

staging, Non-small cell lung carcinoma is usually staged from IA (best prognosis) to IV (worst 

prognosis).  

 

We purified total RNA from 16 samples (8 tumors and the corresponding peritumoral 

normal tissues). Upon RNA retrotranscription, we PCR amplified overlapping 

portions of the MET intracellular domain; amplified segments were then purified 

using the chemical method named Solid Phase Reversible Immobilization (SPRI) 

based on speed beads (Agencourt Ampure Xp Kit), and finally sequenced. (see Fig 

3.11). 

In one tumoral sample (but not in the corresponding peritumoral normal tissue) we 

found the presence of a missense mutation (Y1230H) resulting in aminoacid 

substitution (see Fig 3.12 A). The mutated aminoacid corresponds to Y1230H, which 

belongs to the METPRC mutants resistant to treatment with small kinase inhibitors. 

(Fig 3.12 B). Moreover, a very recent study (Qi J., et al., 2011) has shown that this 

mutation destabilizes the conformation of the MET TK domain and contributes to the 

development of acquired resistance to MET inhibitors.  
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B 

 

C 

                                                                                                 

 Fig 3.11 

RNA obtained from the 

different samples was retro-

transcribed; sequences 

comprising the TK domain 

of MET were amplified by 

PCR (A), purified with the 

Agencourt Ampure Xp Kit 

(B) and finally sequenced by 

Sanger’s method (C). 
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Fig 3.12 

The sequence analysis of MET tyrosine kinase domain in human resected lung cancer samples, was 

performed on RNA derived from both the tumors and corresponding normal tissues. In one sample 

(sample number 119 listed in the previous tab) the tumoral counterpart revealed the presence of the 

METPRC mutation Y1230H (the number 5) which was not present in the corresponding peritumoral 

tissue (A). This mutation, as previously reported, induces resistance to PHA-665752 . As shown the 

mutated receptor maintains a persistent phosphorylation also in presence of inhibitor, as highlighted by 

the blue circle in the lower part of the panel (B). 

 

 

 

Tumoral tissue 

Peritumoral 
tissue 

Y1230H 

PHA-665752  
[[550000]]  nnMM  

 
Anti p-MET  
1349-1356 
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In silico structural analysis of the MET tyrosine kinase domain  

Since pharmacological resistance can be due to impaired interaction between the drug 

and the RTK, we performed an in silico analysis of the MET tyrosine kinase domain 

Structures were mutagenized with the PyMol Software starting from the crystal 

structure of the MET TK domain available in the NCBI structure site (NCBI 

STRUCTURE_ PDB 2WKM “X-Ray Structure Of PHA-00665752 Bound To The 

Kinase Domain Of c-MET 

http://www.rcsb.org/pdb/explore/explore.do?pdbId=2WKM). From this analysis it 

was evident that the mutations D1228N (METPRC 8) and Y1230H (METPRC 5, found 

in one lung cancer sample) conferring resistance to TKIs, were located very close to 

the ATP-binding site (Fig 3.13 A, B), while M1250T (METPRC 9), which did not 

induce resistance, was placed away from this site (Fig 3.13 C). For this reason, it is 

likely that -for steric hindrance- the ATP-competitive inhibitors (PHA-665752 and 

JNJ- 38877605) are unable to interact with their binding sites in the context of these 

mutated receptors.  

Analyzing also all the other PRC mutations (Fig 3.13 E), we observed that all the 

mutations conferring resistance were located in the proximity of the PHA-665752 

binding site, while mutated aminoacidic residues of the responsive mutants were far 

from this region. Concerning the METPRC mutant 3, that was only partially inhibited 

in presence of PHA-665752, its localization is outside the ATP binding site (see Fig 

3.13 D), suggesting the existence of a different mechanism of drug resistance.  
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E 

 

 
 
 

 

 

Fig 3.13 

In silico analysis of MET TK domain in presence of the ATP-competitive inhibitor PHA-665752. 

In all the pictures the secondary structure of MET TK domain is green. In A, B, C, D the mutated 

aminoacidic residue is indicated by the yellow arrow and the PHA-665752 molecule is magenta. In A 

and B, red balls indicate the steric hindrance. Panel E shows the TK domain with all the PRC mutants: 

the red ones are the resistant, while the blue ones are those responsive to small molecules PHA-665752 

(the yellow structure, represented by bubbles); the partially resistant PRC 3 is orange. 

 

ALL METPRC 

MUTANTS 



- 55 - 
 

Bypassing resistance: use of an anti-MET specific monoclonal antibody 

As previously mentioned, while the presence of mutations in the intracellular TK 

domain can impair the ability to respond to small kinase inhibitors, it is likely that the 

mutated receptors are still able to respond to the inhibitory activity of monoclonal 

antibodies directed against the extracellular portion.  

One of such mAbs, named DN30, was previously produced and studied in the 

laboratory (Pietronave S, et al., 2010).  This monoclonal antibody is directed against 

the extracellular portion of the receptor and behaves as a partial agonist (Prat, M. et 

al., 1998). In fact, it induces MET activation, although at low levels, followed by  

promotion of MET down-regulation through a molecular mechanism which involves 

cleavage of the extracellular portion (also called “shedding”) of the receptor and 

proteasomal degradation of the intracellular portion (Petrelli, A. et al., 2006), (fig 3.14 

A). To eliminate the partial agonistic activity of this mAb, some colleagues at the 

IRCC have ingegnerized the antibody in order to produce a monovalent form (DN30 

FAb), which maintains only the antagonistic activity (Pacchiana G., et al., 2010). 

To evaluate the inhibitory activity of the DN30 FAb, we grew the transfected COS7 

cells for 72 hours in the presence of this molecule. We then examined the supernatant 

of the cells to look for the presence of the released MET extracellular portion. As we 

observed that FAb DN30 treatment caused “shedding” of extracellular domain in all 

METPRC mutants (fig 3.14 B) we could conclude that the DN30 FAb was indeed 

active on all the mutants. When we analyzed the activation status of the different 

mutants, we found indeed that FAb DN30 treatment resulted in their inhibition, 

independently from their sensitivity to TKIs. An example is shown in figure 3.15 

where all the TKI-resistant mutants were inhibited (and thus lost their tyrosine 

phosphorylation) and the total amount of MET decreased upon DN30 FAb treatment. 
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A 

                           

                                           
 

B

 

 
Fig 3.14 
Mechanism of action of the monoclonal antibody DN30 (A). This monoclonal antibody (DN-30) is 
directed against the extracellular portion of MET  and binds to MET at subnanomolar affinity, inducing 
proteolytic cleavage of the extracellular portion close to the cell membrane and release of a soluble 
receptor in the extracellular space (Petrelli, A. et al., 2006). Following ectodomain shedding, operated 
by a metalloprotease of the ADAM family, the remaining transmembrane fragment becomes substrate 
of a second protease (γ-secretase) that detaches the kinase-containing portion from the membrane and 
rapidly addresses it toward the proteasome degradation pathway (Foveau B, et al. 2009). Therefore, the 
net result of DN-30 binding to MET is (a) the generation of a soluble “decoy” MET that neutralizes 
HGF and forms heterodimers with bona fide MET (Michieli, P. et al., 2004)  and (b) the proteolytic 
degradation of the MET kinase domain. This translates into neutralization of HGF/MET-mediated 
biological activities. In picture 3.10 B is reported the ectodomain shedding of all PRC mutants and 
MET wt after Fab DN30 treatment. Upon 72h of Fab DN30 treatment (24g/ml), cells were starved for 
16hrs, then the medium collected and loaded for the western blot analysis.  As shown, FAb DN30 
treatment caused the ectodomain shedding in all mutants, including the TKI-resistant group. In these 
experiments, GTL16 cell line was used as positive control. 
 

MET 
ECD supernatant 

FAb  -    +       -    +      -    +    -     +     -     +     -    +   
1 2 3 4 WT GTL

-     +      -    +      -   +      -    +     -      +   
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Fig 3.15  

WB analysis on COS-7 cells expressing MET WT and the METPRC mutants. 

Red rectangles highlight that FAb DN30 (28 g/ml) treatment significantly decreased the 

phosphorylation all the resistant mutants (reference numbers 3, 4, 5, 7, 8) . Also the total amount of 

MET, as a direct consequence of ectodomain shedding, was significantly decreased in cells treated with 

the antibody respect the counterpart not treated (NT) or inhibited by PHA-665752. GTL16 cells were 

used as positive control of the experiment. 
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Selective inhibition of protein tyrosine kinases is gaining importance as an effective 

therapeutic approach for the treatment of a wide range of human cancers.  

The fact that the inhibition of a single oncogene can cause the death of cancer cells 

(referred as oncogene addiction) supported the idea of using highly specific inhibitors 

directed against the oncogenic proteins. The paradigm of the clinical success of 

targeted therapies based on oncogenic addiction is represented by the use of Imatinib 

(a small kinase inhibitor directed against the cytoplasmic tyrosine kinase ABL) for the 

treatment of CML (Chronic Myeloid Leukemia) in patients bearing BCR-ABL 

translocation. The oncogenic addiction has been proven also in different biological 

contests and on different targets: Trastuzmab in HER2 over-expressing breast cancers, 

Cetuximab (anti-HER1) in CRC (Colorectal Cancer) and HNSCC (Head and Neck 

Squamous Cell Carcinoma) and Gefitinib and Erlotinib (HER1 inhibitors) in NSCLC 

(Non-Small Cell Lung Cancer) (Petrelli, A. & Giordano, S., 2008). 

However, as extensively documented,  initially successful therapy is often hampered 

by acquired resistance to the drug and subsequent relapse and this could be caused by 

different mechanisms. Nowadays, given that many patients are starting to benefit from 

the discovery of monoclonal antibodies and of small molecules targeting tyrosine 

kinases, the investigators are now trying to understand and unveil the mechanisms 

through which   neoplastic cells lose their ability to respond to these drugs (also 

named secondary resistance or acquired resistance). Luckily, it appears that the 

majority of the resistance models developed in vitro are predictive of what is observed 

in vivo and can thus help researchers in identifying and studying this crucial clinical 

problem.  

 



- 60 - 
 

Many different mechanisms have been demonstrated to sustain resistance to targeted 

therapies. The most common mechanism of resistance, in terms of genetic alterations 

of the target, is the presence or appearance of point mutations impairing or preventing 

the interaction between the target and the drug. The most frequent types of mutations 

are those decreasing the affinity of the drug for the target kinase domain, while 

maintaining the catalytic activity. Mutations that alter the aminoacids surrounding the 

binding site of the drug decrease the availability of the target region towards the 

inhibitor, without interfering with the ATP binding (Zhang et al., 2009). Other 

reported mutations increase the affinity of the kinase for the ATP, decreasing the 

effectiveness of the ATP-competitive inhibitors (Tanaka R, Kimura S., 2008). 

Some reports support the idea that the appearance of mutations in tumors after 

treatment with a specific TKI is the result of a process of selection of a pre-existing 

cell population. Such theory supports the idea that a small population of the tumor 

bulk a priori contains the mutation, which confers a primary resistance to these cells, 

therefore giving them a selective advantage in the presence of the inhibitor. The bulk 

tumor mass is thus killed by the drug, allowing a short period of response, lasting until 

the cells resistant to the TKI become the majority. This theory is supported by the fact 

that some of these “resistance-related mutations” can be found in a small percentage 

of tumor cells in patients that have not undergone targeted therapy (Bachleitner-

Hofmann T., et al., 2008; Kreuzer KA, et al., 2003; Roche-Lestienne C, et al., 2002).  

On the other hand, other investigators believe that the high dependence of a cell on a 

specific oncogenic survival pathway forces genomic instability, allowing the 

induction of mutations that confer resistance to the inhibitor. This genomic instability 

can induce mutations either in the drug target or in other signal transducers that 

activate alternative pathways able to sustain cell viability (Ricci C, et al., 2002). 
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About the MET gene, as previously mentioned, activating mutations have been 

described in sporadic tumors such as childhood hepatocellular carcinomas, sporadic 

papillary renal carcinomas, gastric carcinomas, lung carcinomas and head and neck 

squamous cell carcinomas. The main proof of the direct involvement of MET in 

tumorigenesis was given by the identification of germ-line activating mutations in 

patients with hereditary renal papillary carcinoma (HPRC).  

Nowadays pivotal studies in NSCLC (Non-Small Cell Lung Cancer) are ongoing 

using specific chemical and biological anti-MET inhibitors; three of them (MET 

MAb, Crizotinib, ArQule-197) are in phase III clinical trials. They act with different 

mechanisms and are directed against different portions of the MET receptor: small 

TKIs (crizotinib and ArQule-197) interact with the intracellular portion, while mAbs 

bind to the extracellular domain. It is thus very likely that mutations present in 

different parts of the receptor can differentially impact on the ability to respond to 

either of the drugs.  

Recently, MET mutations have been identified within the sema domain, 

juxtamembrane domain, and intrcellular regions in small cell and non-small cell lung 

cancers, lung adenocarcinomas, gastric cancer, renal carcinomas, and mesotheliomas  

(Ma PC, et al., 2003; Kong-Beltran M, et al. 2006;  Ma PC, et al., 2008; 

Jagadeeswaran R, et al., 2006;  Lee JH, et al., 2000). Thus, mutational activation of 

MET is not restricted to renal cancer and may be a more common mechanism by 

which MET is aberrantly activated during tumorigenesis. A few  studies have shown 

that some of these mutations induce resistance to MET kinase inhibitors (Timofeevski 

SL,  et al., 2009;  Berthou S, et al., 2004; Bellon SF, et al., 2008). Therefore, 

additional studies are required to understand the effect of MET mutations in tumor 

progression and resistance to therapy.  
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From this scenario it is clear the need of choosing the most suitable therapeutic 

approaches in order to avoid the phenomenon of pharmacologic resistance. This 

requires tailoring of the therapy using drugs able to act also in the presence of  

mutations, which could determine pharmacologic resistance to the treatment. On these 

bases, my PhD work was aimed at evaluating the activity of  some available  anti-

MET therapies targeting the MET receptor mutated in the kinase domain.  

First of all, our results demonstrated that it is possible to categorize the METPRC 

mutants in two different groups: the “responsive” group whose phosphorylation was 

inhibited in presence of PHA-665752, and the “resistant” group in which  receptor 

phosphorylation and activation are not affected by the  inhibitor.  

Second, the lack of receptor inhibition was not a dose-dependent effect, but a real 

inability to respond to the drug treatment. In fact, using PHA-665752 at two different 

concentrations: [250] nM and [500] nM (ten times higher than the IC50), tyrosine 

phosphorylation of some METPRC mutants  was not inhibited even at these high doses. 

One mutant (METPCR mutant 3) was only partially inhibited, suggesting the existence 

of a different mechanism of drug resistance.  

We then demonstrated that the phenomenon of resistance is not restricted to PHA-

665752, but is shared also by other ATP-competitive MET inhibitors, such as the JNJ-

38877605. 

To evaluate the biological meaning of these observation, we engineered NIH 3T3 

cells (that express very low levels of endogenous MET) to express METPRC mutated 

forms. We found that while -induced biological activities (such as migration, invasion 

and growth) were impaired by TKIs in cells expressing wt MET or METPRC 

“responsive mutants”, they were not affected in cells MET expressing the “resistant 
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mutants”. These results show that loss of biochemical inhibition was paralleled by 

loss of MET-dependent biological activities. 

 We then asked  how these mutations can impair or prevent the response to TKIs. Our 

results, obtained by in silico analysis, demonstrated that all the mutations belonging to 

the “resistant” group are located very close to ATP binding site. It is likely that, for 

the steric hindrance due to the conformational change in the kinase domain (as a result 

of the aminoacidic change), the ATP-competitive inhibitors -such as PHA-665752 and 

JNJ-38877605- are unable to interact with their binding sites. One other possible 

mechanism of resistance in a mutated receptor can be due to the fact that the mutation 

alters the domain conformation and leads to a decrease in the affinity for the drug: this 

is likely to happen in the case of  the mutant number 3, (which showed dose-

dependent resistance) in which the mutation  is localized outside the drug binding site. 

In the era of targeted therapies, the phenomenon of resistance related to target’s 

genetic mutations is extremely important in order to better treat tumors containing 

mutations.  In the few lung tumors we examined, we found indeed a case presenting a 

METPRC mutation. Most importantly,  the identified  mutation (Y1230H) belongs to 

the “resistant” group. It is thus likely that treatment with a TKI of a patient bearing 

such a mutant receptor will not end with a favorable outcome.  

At this point, we wondered if we could figure a therapeutic approach which  could 

represent an alternative treatment for patients with tumors carrying MET mutants 

resistant to TKIs. Such an approach could be the use of a monoclonal antibody 

directed again the extracellular portion of the receptor, which is in the wild type 

conformation also in the METPRC mutants.  

We thus treated cells expressing the METPRC mutants with the monomeric form of an 

anti-MET monoclonal antibody (FAb DN30). Indeed, we found that the antibody was 
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able to inhibit all TKI mutants, independently from their sensitivity to small TKIs.  

These results indicate that despite some mutated forms are unable to respond to small 

molecule TKIs, they still remain responsive to treatment with antibodies directed 

against the MET extracellular portion, likely because the extracellular domain is in the 

wild type conformation. In clinical terms, these data show that we can “bypass” 

resistance to TKIs by use of mAbs directed against the MET extracellular portion. In 

conclusion, our results  indicate that in tumors harboring MET tyrosine kinase 

mutations that prevent or impair the interaction between the ATP-competitive TKIs 

and the receptor, the use of small molecule TKI could be inappropriate.  

We propose that the use of specific anti-MET monoclonal antibodies (such as FAb 

DN30) can represent, a therapeutic alternative to treat TKIs-resistant tumors harboring 

mutations in the MET tyrosine kinase domain, Our data could thus help in better 

tailoring the anti-MET targeted therapies, thus contributing to increasing their 

effectiveness.  
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Plasmid constructs and mutagenesis 

pCEV29.1 expression vector was available in the lab wt MET cDNA was cloned in 

the vector as described (Giordano et al., 2000)  and  PRC mutations were introduced 

in  by polymerase chain reaction (Bardelli, A. et al., 1998). Human MET residues are 

numbered according to Gene Bank# X54559 (Ponzetto, C. et al., 1991).  

The human MET cDNA cloned in the plasmidic construct pRLL2 was available in the 

lab, then mutagenized by using the QuikChange II XL Site-Directed Mutagenesis Kit 

(Agilent Thechnologies). The QuikChange II site-directed mutagenesis kit is used to 

make point mutations, replace amino acids, and delete or insert single or multiple 

adjacent amino acids. This mutagenesis’ method was performed using PfuUltra high-

fidelity (HF) DNA polymerase for mutagenic primer-directed replication of both 

plasmid strands with the highest fidelity. The basic procedure utilizes a supercoiled 

double-stranded DNA (dsDNA) vector with an insert of interest and two synthetic 

oligonucleotide primers, both containing the desired mutation.  The oligonucleotide 

primers, each complementary to opposite strands of the vector, are extended during 

temperature cycling by PfuUltra HF DNA polymerase, without primer displacement. 

Extension of the oligonucleotide primers generates a mutated plasmid containing 

staggered nicks. Following temperature cycling, the product is treated with Dpn I. The 

Dpn I endonuclease (target sequence: 5´-Gm6ATC-3´) is specific for methylated and 

hemimethylated DNA and is used to digest the parental DNA template and to select 

for mutation-containing synthesized DNA. The nicked vector DNA containing the 

desired mutations is then transformed into competent cells. 
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Transfection, infection 

COS-7 cells were transfected by the DEAE-dextran method. Briefly, plasmid DNA (2 

g/ml) was resuspended in DMEM containing DEAE-dextran and added to a 100-mm 

dish of subconfluent COS 7 cells. Dimethyl sulfoxide shock was performed after 4 h 

of incubation at 37°C.   

Lentiviruses were produced by transient transfection of 293T cells whit the calcium-

phosphate procedure containing the DNA to be transfected, as described elsewhere 

(Vigna and Naldini, 2000). Cell infection was performed over-night and in the 

presence of polybrene (hexadimethrine bromide). Polybrene is a relatively non-toxic 

polymer, that was shown to enhance the adsorption of virus complex onto cells in 

culture (Coelen et al., 1983). 

 

Cell culture 

293T, GTL16, A549, COS-7 and NIH 3T3 cell lines from ATCC were cultivated in 

DMEM (293T, NIH 3T3) or RPMI (GTL16 and A549) supplemented with 1% Q, 

0.1% penicillin (5000U/ml, Faber), 0.1% streptomycin (5mg/ml, Squibb) and with 

10% FBS or Calf Serum deactivated by heating (NIH 3T3), at 37°C in 5% CO2. 

 

Protein extraction and Western blot 

For Western blot analysis, cells were lysed in boiling LB buffer [2% SDS, 0.5 mol/L 

Tris-HCl (pH 6.8)]. Protein concentration of whole-cell lysates was evaluated with the 

BCA Protein Assay kit (Pierce) and equal amounts of total proteins were analyzed by 

SDS-PAGE and Western blotting. Western blots were performed according to 

standard methods. The antibodies used were as follows: anti-MET antibody DL21  

(Prat, M. et al. 1998) and anti-MET Zymed (Invitrogen), anti-phospho MET 
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Tyr1349/1356 (Cell Signaling Technology). Final detection was done with enhanced 

chemiluminescence (ECL) system (Amersham). 

 

Biological assays 

For invasion assays, cells were seeded in Transwell chamber, on the upper side of a 

porous polycarbonate membrane. The medium in both chambers was supplemented 

with low percentage serum; the lower chamber was supplemented with HGF (20 

ng/ml) alone or in presence of JNJ-38877605 (Johnson and Johnson) [500] nM. After 

16 h, cells attached on the upper side of the membrane were mechanically removed. 

Cells that migrated to the lower side were fixed with gluataraldehyde and stained with 

crystal violet. Stained cells were photographed.  

For analysis of colony formation in soft agar, cells were diluted to a concentration of 

7x10
3 

cells/ml in DMEM containing 10% FBS and 0.5% Seaplaque agar, with HGF 

(20 ng/ml), in presence or absence of JNJ-38877605. Cells were seeded in 12-well 

plates (1 ml per well) containing a 1% agar underlay and supplemented twice a week 

with DMEM containing 10% FBS and, where indicated, HGF and JNJ-38877605. 

Colonies were stained with tetrazolium salts three weeks after seeding and the 

viability was evaluated using the alamarBlue® cell viability reagent (Invitrogen). This 

reagent is used to assess cell viability by  adding the 10X, ready-to-use solution to 

cells in culture media, followed by a 1–4 hours incubation at 37ºC (to allow cells to 

convert resazurin to resorufin). The resulting fluorescence was read on a 96-well plate 

reader.  

For the wound healing assay, NIH 3T3 cells were plated to create a confluent 

monolayer. After scraping the cell monolayer with a p200 pipet tip, cells were washed 
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and the media replaced with DMEM 10% serum alone, or HGF (20 ng/ml), or HGF 

(20 ng/ml) in presence of JNJ-38877605. Cells dishes were incubated for 24-48 hrs. 

The migration assay was stopped when the wound was repaired, the cells were fixed 

in glutheraldeide then stained with crystal violet and photographed. 

 

Tumor samples collection 

Tumor samples were obtained in accordance with consent procedures approved by the 

Ethic Committee of Hospital San Giovanni Battista (Turin) and the University Of 

Cagliari.   The follow-up reports, was adapted to the new guidelines in the 7th Edition 

of TNM in Lung Cancer of the International Association for the Study of Lung 

Cancer (IASLC). 

 

RNA extraction, RT-PCR , PCR and sequencing  

Total RNA was extracted from lung tumors using Trizol reagent (Invitrogen) 

according to the manufacturer's instructions. RNA (500 ng)  was retrotranscribed into 

cDNA using the High Capacity cDNA Reverse Transcription Kit containing the 

Multiscribe Reverse Transcriptase (Applied Biosystem). 

The cDNA coding for the MET intracellular domain was amplified by polymerase 

chain reaction (PCR). To increase the PCR specificity, sensitivity and yield, without 

the need for lengthy optimizations and/or the redesigning of primers specificity, we 

performed the Touch Down PCR (TD-PCR) using the TaqGold polymerase 

(Applied). TD-PCR employs an initial annealing temperature above the projected 

melting temperature (Tm) of the primers being used, then progressively transitions to 

a lower, more permissive annealing temperature over the course of successive cycles. 
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Any difference in Tm between correct and incorrect annealing will produce an 

exponential advantage of twofold per cycle ( Korbie &  Mattick, 2008).   

Then amplified segments were purified using the chemical method named Solid Phase 

Reversible Immobilization (SPRI) based on speed beads (Agencourt Ampure Xp Kit), 

and finally sequenced by the Sanger’s method (Sanger F, Coulson AR , 1975).  

The mutational analysis, was performed by using the Mutation Surveyor® DNA variant 

analysis of Sanger Sequencing software,  manufactured by SoftGenetics (Pennsylvania, 

USA). 

 

In silico analysis 

The in silico analysis of the MET tyrosine kinase domain, was performed using the 

software PyMOL. PyMOL is one of a few open source visualization tools available 

for use in structural biology (http://pymol.org/). The Py portion of the software's name 

refers to the fact that it extends, and is extensible by the Python programming 

language. Using PyMOL, the MET TK structure was mutagenized from: “X-Ray 

Structure Of PHA-00665752 Bound To The Kinase Domain Of c-Met”, Source: 

NCBI Structure_ Protein Date Bank (PDB) 2WKM (see 

http://www.rcsb.org/pdb/explore.do?structureId=2wkm). 
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