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“Mediocristan is where we must endure the tyranny of the collective, the routine, the

obvious and the predicted. Extremistan is where we are subjected to the tyranny of the

singular, the accidentally, the unseen and the unpredicted. ”

Nicholas Nassim Taleb.

The Black Swan: The Impact of the Highly Improbable

(April 2007)



Abstract

Two large databases of daily cumulated rainfall are checked with the tools of the Ex-

ploratory statistics. The analysis allows to discover not common artefacts in the first

database (rounding-off of data with different rounding-off rules) and several errors in the

other one. The best statistical model to fit data is selected using the L-Moments ratio

diagram as a tool to explore the accommodation of each dataset to other alternative

models. This tool suggests the Generalized Pareto Distribution as the best statistical

model for this data, but the application of this distribution requires an estimate of the

optimal threshold for each dataset. A detailed analysis of the present techniques for the

optimal threshold selection is performed and a new approach based on quantile sums is

proposed. Furthermore the performances of the GPD parameters estimators are checked

for robustness against spurious rounded-off data and severe outliers.
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Introduction and Outline of the

Work

Extreme Events are an important research topic in many scientific domains: from Fi-

nance to Meteorology, from Geophysics to Engineering wherever an event largely de-

viates from the average size the theory of Extreme Values (EVT) must be introduced.5

Examples of extreme events in Geophysics are the floods, the wind gusts, the size of

the waves, the earthquakes; in Finance the Stock Exchange crashes, the failure of Big

companies, and the awesome Credit crunch of the last years. All these phenomena are

characterized by a variability across many orders of magnitude.

It is common to observe rainfalls of few mm a day but sometimes the daily cumulated10

rainfalls are of hundreds of mm: in this case it is probable that the river floods the plane.

Conversely other quantities like the weight of an animal population, its lifetime or the

measures of position of the planets respect to the Sun have a limited variability. All

these phenomena are described using a bell shape curve: the Normal distribution. This

mathematical function states that the probability of large deviation is so small that can15

be considered null. In fact a deviation of 3 times the value of the standard deviation

has a probability of only 0.1% while at the same level of probability a distribution of

Extreme value manifests events that are even 30 times or more greater than the median.

In the book ”The Black Swan” the philosopher and economist Nicholas Nassim Taleb

calls the region of Extreme Events as the Extremistan while the region where the Normal20

distribution applies and the events are mild is the Mediocristan (with a little negative

sense). An Extreme Event for Taleb is a Black Swan: an unexpected bird (swans are

white usually) discovered in Australia few centuries ago. The presence of unexpected

values, the severity of the statistics and the impossibility to predict the extreme values

with a good confidence level are the key concepts of the science of the extremes. We25

can deal with the high level of incertitude only developing robust tools. It is well known

that hydraulic operas like dams, and bridges must be conceived to resist not to the

ordinary water flow regimes but to the furious discharge of a flood. This concept would

apply to the statistics too, the classical estimators of the Mediocristan region like the

1
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mean, the standard deviation show their limits when data have severe outliers,or when

data are corrupted. Furthermore the variance - a dispersion index conceived specially

for symmetric distribution, - working with the distribution of extremes that usually are

highly skewed has little sense. We see that a more correct measure is obtained with the

quantile levels but only with large confidence values.5

Before introducing the mathematical models for Extreme Events we need to focus our

attention that the extreme events are not always cause of extreme damages. Instead

extreme damages could result even from mild events if the infrastructure level of a

country is not good. Then the study of the Extremes must be separated from the

evaluation of the risks. The correlation of the two quantities risk and extremes is present10

and usually is positive but the level of risk is not a trivial linear function of the extreme

size such as doubling the extreme size means to double the risk and the consequent

damages.

Finally the Extreme events are not only big but also rare. The concept of rarity is

better understood introducing the return time (or return period), that is the averaged15

time between two events of the same size. It is common to use the return period as an

indicator of the probability of big events: regions with severe extreme have lower return

period for big events.

The Extreme Value Theory (EVT) is the mathematical framework to deal with the

Extremes. It is based on two important theoretical results: the Fisher-Tippet theorem20

and the Balkema-De Haan-Pickands. The first one describes the distribution of maxima

of an unknown dataset providing that maxima be independent and homogeneous. The

second one gives a precise mathematical form to the distribution of the values above an

high threshold. The two approaches (studying the maxima and studying the data above

the threshold) are similar and asymptotically they give the same results while for finite25

samples it is common that the threshold method behaves slightly better than the method

of maxima; indeed it considers more points (less variance). However the Peaks over

threshold method, as it is called in Hydrology and Earth Sciences, is strongly dependent

on the choice of the threshold level: low thresholds are associated to inconsistencies in the

fitting procedure producing bias and other errors, high threshold levels conversely reduce30

the bias but increase the variance of the estimate. Then a correct choice for a threshold

is the balance of Bias and Variance of the estimators. However in real datasets things

are far more complicated. The volatility of the estimators and the sensitivity to data

artefacts like outliers, spurious rounding-off greatly enhances the level of uncertainty.

For this reason we think that the statistical study of the Extreme will never arrive to be35

a precise forecast tool but it will furnish only the probabilities of an event accompanied

with large confidence intervals.
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Note that the problem of finding a good threshold level is similar to distinguish between

extreme and non extreme values: in a real dataset this level is continuously changed

by any new extreme recorded. Each Extreme, like the Black Swans of Taleb, is able to

change the previous estimate of the parameters and the quantile levels. That is in the

Extremistan the statistical models are extremely sensitive to new severe events. In the5

region of Mediocristan where the Normal distribution is a valid tool the estimates are far

more tolerant to the variability of the data. In this case the mean and the variance are

valid estimators of the characteristics of the population and the model requires few data

for a complete description. However even in this world of mild events the presence of

spurious data could be a problem specially for the traditional (non robust) estimators. It10

is a classical and simple exercise to demonstrate how the value of the mean is changed by

the presence of a single outlier while the median is more resistant to data contamination

having a breakdown point level of 50% (we need to modify at least the half of data to

change significantly the median value). The statistical estimators like the median, that

are resistant to data contamination and outliers are called robust estimators and are a15

valid alternative to other traditional tools (mean, variance, linear least square methods

etc.)

In this thesis we analyse two vast datasets of precipitation from the Sardinian Hydrolog-

ical service and from the NOAA-NCDC catalogue of weather data collections. We are

interested in checking the data using Exploratory statistics tools, looking for the best20

statistical model and possibly extending the knowledge associated to these models. We

use a data oriented approach (borrowing an expression from the ICT domain) that is an

analysis framework that starts from the data without any a priori hypothesis and then it

selects the most adapt statistical model using tools of the Exploratory Statistics. Work-

ing with real data we can confirm that the statistical models are powerful but fragile25

tools, they work in the ideal world of pure data, well distributed, homogeneous and with

no artefacts. But real databases have artefacts, many of them was created manually

and transcription errors are commons, furthermore systematic errors like rounding-off

the values (i.e. 5.2 mm truncated to 5 mm, or 4.8 mm to 5 mm) can affect many datasets

with different impacts on the statistical model estimation procedure. For these reasons30

we must start from data, checking them for outliers, for contamination and finally we

can apply the statistical models always remembering that these models are statistical

approximations of the reality and not forecasting tools. This process known as data

quality assessment, is fundamental for the application of the models. At the same time,

we want to stress the models to see if they are robust and efficient. Which is the best35

model ? the best fitting technique ? the best level of the threshold ? and moreover which

are the criteria to establish that a model is good (or bad) ? The threshold selection for

instance must be adapted to the aims of the experimenter, as we see in this work there
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is no single optimal threshold but a set of optimal thresholds depending on our needs.

If we want to describe with the most possible reliability the maxima of a distribution

we can tune the threshold to improve the description of the maxima, vice versa if we

are more interested in catching the behaviour of the central part of the distribution we

can choose other different threshold levels.5

Finally we need to consider the perspective of a changing world where databases of

climatic and geophysical data are easily available, but they are scarcely categorized, and

they are huge for number and size of datasets. We have the opportunity to extract a lot

of information about, for instance, the real world of precipitation but we need tools to

deal with Big Data. Learning from data ( we call it data intelligence ), improving the10

models for automatic optimal adaptation and spurious data description, and reducing

the huge-data complexity it will be in my opinion one of the most important research

topic for the next years.

Outline of the work

Aims15

In this thesis we want to investigate two databases of precipitation using Exploratory

statistics tools, we want to improve the statistical models that best describe the datasets.

We are interested in assessing the quality of data, looking for outliers and other artefacts.

We discovered that the values from the Sardinian database were rounded-off at fixed

levels. This artefact causes a big loss in the quality of the fit with the Generalized20

Pareto Distribution GPD (or other statistical models) and must be fixed modifying GOF

(goodness of fit) tests and using robust statistical tools. In principle we do not make

any hypothesis on the best statistical model for the databases, but using the L-Moments

ratio diagram (a tool introduced by Hosking) we confirmed the optimal performance of

the GPD model. When data are rounded we extensively check the performances of the25

GPD estimators demonstrating how all these ones (included the robust estimators) suffer

from the rounding artefact. For the outliers we introduced a test statistics conceived to

detect the GPD candidate outliers and we checked it against the real databases.

To correctly fit the GPD model an optimal threshold must be determined: we used

for this task several methods from the literature and a new one based on a quality30

function that estimates the differences between the quantiles of the fitted model and of

the true data. This new solution has the notable property to find the optimal threshold

in function of a set of points (the pivots) that can be chosen to select the region of
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interest. In other words we can find the optimal threshold for the tail, for the center of

the distribution or for a mixed subset of points.

All the knowledge developed in the work with hydrological databases will be useful in

future research with the output of climate models. In this case the huge amount of data

must be checked for artefacts and analysed with automatic and expert tools.5

Outline

We briefly sketch here the outline of the work, anticipating the most interesting results

and the main topics of this research. In the next lines we deliberately omit the references

to the literature. These references can be found along the work in the corresponding

chapters.10

Ordinary statistical tools

The simplest and most used statistical tools are probably the mean and the variance. If

data are distributed with a Normal distribution or a Normal-like ( that is a symmetric

and compact distribution ) the mean and the variance are able to catch the most of

the complexity of the data. The situation is different when data come from a skewed15

distribution, in this case the Median and the Mean Absolute Deviation (MAD) and

other quantile based measures are the correct way to describe the distribution.

The Extreme Value Theory (EVT) is the mathematical framework to deal with the

extreme values of a dataset. The Generalized Extreme Value distribution (GEV) is

conceived to work with all the independent maxima of the dataset arising from the true20

unknown distribution of values. The only condition to be respected is that maxima be

independent, and identically distributed (homogeneous).

Working with values above an high threshold is done with a distribution closely related

to the GEV: the Generalized Pareto Distribution (GPD). These two distributions have

the same shape parameter (that is the same slope at the distribution tail). If the data25

above the high threshold are independent and homogeneous the convergence of the GPD

to the data is satisfactory.

To fit the GPD model several methods were developed by the statisticians, the most

notable one is the Maximum Likelihood Estimator that is also the asymptotically best

fitting technique. For small samples and for contaminated data the MLE is outperformed30

by other methods like the Probability Weighted Moments (PWM) that are computa-

tionally more stable specially for small samples.
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Tools for exploratory statistics

The Exploratory statistics aims to check the data before taking any decision on the best

statistical model to apply. Data are plotted in several ways that allow to extract infor-

mations about the presence of outliers, rounded-off values and multivariate populations.

The most common ES tools are the scatter plot, the quantile-quantile plot, the density5

plot and the empirical cumulative distribution, these graphical tools are useful to find

outliers, to detect artefacts and they can be coupled, for instance, with numerical tests

for outlier detection.

To detect the best statistical model for the extreme values we introduce the L-Moments

ratio diagram. This tool explore the position of the real data in the space of two L-10

Moments ( the L-skewness and the L-kurtosis) and it allows to select between several

candidate statistical models. For the Sardinian and the NOAA-NCDC daily cumulated

precipitation databases it is evident that the best statistical model is the Generalized

Pareto Distribution (Figg. 1 and 2 ).
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Fig. 1: L-Moments ratio diagram for the NOAA-NCDC stations. The theoretical
curves are obtained with a polynomial interpolation (references in the 3rd chapter).

Exploratory statistics at work: the Sardinian and the NOAA-NCDC hydro-15

logical databases.

Applying the tools of the Exploratory statistics to the Sardinian and to the NOAA-

NCDC databases we found several artefacts. In the American database several stations
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Fig. 2: L-Moments ratio diagram for the Sardinian stations. The theoretical curves
are obtained with a polynomial interpolation (references in the 3rd chapter).

have spurious datasets derived from transcription errors or mixed data sources (Fig. 3 ).

In the Sardinian database the values are rounded-off to a mix of rounding-off resolutions:

the datasets show a characteristics ”zig-zag” behaviour (Fig. 4 ).

Working with artefacts requires to adapt the statistical tests (like the fit methods that

must be robust to the data contamination ) and the goodness of fit (GOF) tests like the5

Anderson-Darling.

Statistical inference and improvements on the models

We try to stress the performances of the GPD model with the real databases and with

synthetic datasets with added errors (rounding-off or outliers). We want to investigate

the efficiency and the robustness of the GPD parameter estimation techniques in presence10

of rounding-off. We did this task with Monte Carlo simulations with synthetic datasets.

To use the GPD model a suitable threshold must be chosen in advance before to fit the

dataset. If we choose a too low threshold it is common that the estimation is biased,

vice-versa if we choose a too high threshold the bias of the estimation is absent but the

variance is elevated because we are fitting a small residual portion of data above the15

threshold. In the work we explore several techniques, described in literature, for the

optimal threshold selection.
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Fig. 3: The Dugway station from the NOAA-NCDC database shows a spurious pop-
ulation (red circle).

Graphical methods are often used with small databases, Goodness of fit tests and tests

based on the exponentiality of the tails allow to find a range of candidate optimal thresh-

olds for the datasets with numerical methods. However all these techniques estimate

different ranges of the optimal threshold. In other words it seems evident that it not

exist an optimal absolute threshold but it varies in function of the used technique. We5

can generalize this result introducing a quality function based on the sum of quantile

differences between real data and the fitted model at several threshold levels. The opti-

mal threshold will be found in function of a pivoting points set, that is a subset of the

dataset where we focus our attention. For instance, if we choose the ten highest values

as pivoting points the quality function Q(u), where u is the threshold level, shows a10

minimum for a given value of u (Fig. 5 and Fig. 6). This technique allows to improve

the estimation of the GPD model and consequently the determination of the extreme

events.
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Fig. 4: Empirical Cumulative Distribution (in 1-F and log scale) of the Lunamatrona
station from the Sardinian database. Note the presence of anomalous steps in the curve
due to the rounding-off.
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Fig. 5: Quality function Q(u) in function of the threshold u. The pivoting points in
this case are the last 10 greatest points.
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Optimal threshold: NOAA−NCDC database
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Fig. 6: Estimating the optimal threshold with the quality function. We select as
pivoting points the 10 greatest points.

The big data challenge and future researches

The modern climatology is based on the climate models. These numerical tools produce

as output fields of precipitation, vector winds, temperatures and so on. The models can

be used as a prognostic tool if they are conceived for weather forecast, and as a long time

averaged statistical tool for future forecasts of the Earth climate. The output of of these5

models is nowadays of huge dimensions, dozens of TB are produced for single sessions

of simulation. To work with this amount of data we need robust software techniques

and systems able to classify the information, to download and select data and finally

to visualize it in an effective way. Tools from the Exploratory statistics help to assess

the quality of data, to identify artefacts and probably to extract the extremes and the10

trends in the extreme events along countries or continents. The use of climate databases

mixed with ES tools will be the topic of a future research.



Chapter 1

Mathematical theory of the

Extreme events

1.1 Introduction

The Theory of the Extreme Events (EVT) is the mathematical framework that describes5

the occurrence of the events of exceptional size and exceptional rarity. It is based

on strong theoretical results: the Fisher-Tippet theorem and the Balkema-De Haan-

Pickands theorem. These important statements describe two different approaches to

the study of the extreme values: a) studying the maxima of a dataset b) studying all

the values of a dataset above an high threshold. These theorems are analogous to the10

law of large numbers that is a natural introduction to the Gaussian distribution (the

distribution of the means tends asymptotically to the Normal distribution). Theorems of

EVT apply to extreme values as a probability framework. In fact, even if the conditions

of these theorems (data independence and homogeneity of the values) are mild it is

possible to find datasets where the description of the extreme events with this tools15

seems contradictory. The random fluctuations or the presence of outliers or spurious

data impossible to eliminate from the series leads sometimes to values of the distribution

parameters that describe datasets of infinite variance: a non sense in Physics1.

In this chapter we present the mathematical theory of the distribution of maxima or of

the distribution of excesses over a threshold. These techniques in Hydrology are called20

respectively (Annual Maxima AM) and (Partial Duration Series PDS). Then we show

1Note however that if we are working with the non equilibrium physics, like the physics describing the
phase transitions (like solid-liquid, magnetic-non magnetic), the variance of several quantities depending
on the size of the sample are infinite as stated by the renormalization theory

11
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the relationships between the AM and PDS theories, and in next chapter we summarize

the modern methods of fit for the distributions related to these tools.

Intuitively an extreme event is an event that largely deviates from the median of the

sample distribution. But an extreme event could be also an event of exceptional rarity

occurring once in long period of time T . The average time T between two events of5

the same size x is called return period and it is a function of the size of the event: big

events are rare. The correct determination of the return period function T = T (x) is of

fundamental importance for Engineering where the size of a bridge, for instance, must be

chosen keeping in mind the possibilities of severe flooding occurring in probability once

in a T years. The relation between the return period and the probability distribution of10

events of size x can be found in the paragraph 1.3.

In Hydrology several statistical distributions have been applied, and sometimes specifi-

cally conceived, to characterize the behaviour of severe rainfalls and the flood discharge

in rivers, as well as other climatological variables. Among the proposed distributions

we can remember the Lognormal,the Exponential, the Gamma, the Pearson Type III,15

the log-Pearson Type III, the Gumbel and the Weibull, Two Component Extreme Value

TCEV, Generalized Extreme Value GEV and Generalized Pareto Distribution GPD are

all distributions that received consideration in statistical hydrology. Referring the reader

to Chow et al. (1988) and Stedinger et al. (1993) for more details on these statistics and

their applications in hydrology, along this thesis we’ll show the importance of the last20

two distributions, that appear particularly attractive for their asymptotic statistical

properties: namely the GPD and the GEV.

If we define the extreme values as the maxima within time blocks (usually assumed 1-year

long in the Earth Sciences), it can be proved that, if there exists a limit distribution of

these maxima, this distribution belongs to the GEV family (the original seminal papers25

of this theory are Fisher and Tippett (1928) and Gnedenko (1943)). Conversely, when

looking at the exceedances above a threshold, it can be proved that the GPD is the

expected distribution (Pickands, 1975). Moreover, if a process follows a GPD with a

given shape parameter, the block maxima follow a GEV distribution with the same

shape parameter (relation derived by Pickands following by the Balkema - De Haan -30

Pickands theorem). The importance of the GPD / GEV framework is proven empirically

by several authors that describe the performances of the GPD in the study of several

hydrological quantities like the cumulated rainfall and the flood discharge. A detailed

discussion can be found in the work of Madsen et al. (1997).
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1.2 Recalls of probability theory

In this section we briefly recall some concept from probability and statistics, gradually

introducing the notation used in all the thesis.

The axioms of the probability can be expressed using the theory of sets or with the more

intuitive concept of frequency. Basically the probability is a measure of the number of5

the occurrences of an event in the space of all possible events Z. In terms of frequencies

then the probability of an event x is the number of times that x appears in the ensemble

Z divided by the number of events of the entire space Z. If we call P this frequency

then using basic properties of set theory on the space Z we can introduce the probability

axioms:10



































P (A) ⊂ [0, 1] ∀A ⊂ Z

notA = P ′(A) = 1− P (A)

P (A or B) = P (A
⋃

B) = P (A) + P (B)− P (A
⋂

B)

P (A and B) = P (A
⋂

B) = P (A|B)P (B) = P (A)P (B) if A,B are independent

P (A given B) = P (A|B) = P (A
⋂

B)/P (B)

(1.1)

in plain words:

1. the probability is always in the interval [0, 1]]

2. the probability to not find an event A is 1− P (A)

3. the probability to find two events is the sum of the two events probability minus

the intersection that represents the probability to find at the same time A and B15

4. the conditional probability P (A|B) is the probability to find at the same time A

and B divided by the probability to find the event B

Note that if the events are independent (they are sets with no overlap) the total proba-

bility to find the two events is the product of the single probabilities.

If we have n events then the sum of the probabilities is by definition the unity:20

n
∑

i=1

P (xi) = 1

in the limit of n → ∞ the sum can be transformed into an integral sum:
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∫

Z
p(x)dx = 1.

Using this property we can define the cumulative distribution function F (x) as the

integral:

P (x < X) =

∫ X

a
p(x)dx (1.2)

where the integral is computed in the interval [a,X] assuming that the value a = inf(Z)

is the minimum of Z and Z has some kind of metrics. From this rule we can then

define the probability density function p(x) as the derivative of the cumulative density5

function:

p(x) =
dP (x)

dx
(1.3)

To characterize a probability distribution and its behaviour it has been introduced the

concept of the distribution moments. The well known first and the second order moments

are the mean and the variance:

µ =
∫

Z xp(x)dx,

σ2 =
∫

Z(x− µ)2p(x)dx
(1.4)

for higher order moments mn we have10

mn =

∫

Z
(x− µ)np(x)dx, (1.5)

The most famous and probably important distribution is the Normal distribution, usu-

ally indicated with N(σ, µ), its main properties are summarized in the table 1.1

Note that to fit (the process of adapting the theoretical curve to the data) the Normal

distribution we need to compute the variance and the mean of the data. With these

values we have µ and σ valid in the limits where we are confident that our data can be15

described by a Normal distribution. Many tests (called Normality tests ) are present in

literature to assess the correctness of the Normal model.

The normal distribution has the important property to have all moments finite and it is

used as a test toolbox for other distributions. Every time it is possible the statisticians

try to reduce the complexity of the model using the well known properties of that20
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f(x) 1√
2πσ2

e−
(x−µ)2

2σ2

F (x) 1
2

[

1 + erf
( (x−µ)√

2σ2

)]

mean µ

median µ

variance σ2

Tab. 1.1: Normal distribution properties

distribution. For instance the non-parametric methods use the rank of each data of

the sample (distributed with an unknown statistical model) to build tests based on the

normality assumption.

1.3 The T -year level (return period)

In Earth sciences and other disciplines the time between two events of the same magni-5

tude is called return period or T-year level. It represents the probability of having an

event of size u in a period of time T . Following Reiss and Thomas (2007) pag. 12 in a

period of T years there is an average probability equal to 1 to have an event of size u:

E[F (x ≥ u)] = 1 (1.6)

where F (x) is the probability distribution and E the mean value operator. Let F−1(P )

the inverse function of F representing2 the event in function of the probability P , if10

the we expect one event in T years then the probability is by definition 1/T and the

probability to have an event of size u is:

P (X > u) = 1− F (u(t)) =
1

T
(1.7)

hence

u(T ) = F−1(1− 1/T ) (1.8)

the 1.8 links the return level to the inverse of the probability distribution F .

2As we see in detail in the next chapter the F−1(P ) is the quantile function
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1.4 Introducing the extreme values theory from the ordi-

nary distributions

1.4.1 Observing the exceedances over a threshold

Let x1, x2, . . . , xn a set of random variables, if we reorder the set ascending we can

describe the behaviour of the values above a threshold u. The data above the level u5

are the exceedances (or excesses). Using a notation from Hydrology and Earth Sciences

these values are the Peaks over the threshold (POT).

If we have K exceedances then our set is divided in two parts: Xi < u and Xj ≥ u.

Now it is an well known fact that the probability of events having two possible outcome

values (above and below the threshold) can be described using the binomial distribution:10

P (k) =

(

n

k

)

pk(1− p)n−k k = 0, 1, . . . , n (1.9)

where p is the probability to find a value above the threshold and 1− p the probability

to find a value below the threshold. The mean of this distribution is

m = np = n (1− F (u))

and it is a decreasing function: when the threshold increases the number of exceedances

decreases.

The natural approximation for long series of the binomial distribution is the Poisson

distribution. This limit is valid for np = λ and n → ∞, where λ is the parameter of the

following equation:15

Pλ(k) =
λk

k!
e−λ k = 0, 1, 2, 3, . . . (1.10)

the parameter λ is equal to the mean and these two distributions apply to discrete

events. The importance of this tools is linked to the probability of finding a value bigger

than the threshold level k ≡ u. The Poisson equations states that the total set of values

above the threshold decreases exponentially with the threshold level u . That is extreme

events become exponentially rare for high thresholds.20
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1.4.2 Introducing the distribution of the maxima

Suppose to have data from an unknown distribution F , and to be interested in describing

the behaviour of the highest (or the lowest) value from F . Let X1, X2, . . . , Xn some

subset of data from F , if the Xi are independent consider the maxima of each set:

(m1,m2, . . . ,mn) = (max(X1),max(X2), . . . ,max(Xn)) (1.11)

Following the axioms of the probability, the total probability of having all n independent5

maxima is the product of the single probability of each maxima:

G(x) = F (X1)F (X1) . . . F (Xn) = [F (X)]n (1.12)

when n → ∞ the probability G(x) converges toward the unique maximum of the distri-

bution then

G(x) = limn→∞[F (X)]n =



























1 if F (x) = 1

0 if F (x) = 0

(1.13)

this is the degenerate case, the limiting distribution could be obtained if they exists

some constants an and bn that allow to normalize the maxima:10

mn − bn
an

if an > 0 (1.14)

Fisher-Tippet theorem (1928)

Given a set of independent random variables X1, X2, · · · , Xn ∈ F (X) and the distribu-

tion of independent maxima F (X)n = max{X1, X2, · · · , Xn} if they exist the constants

an > 0 and bn then it exists a non degenerate limiting distribution G(X) :

|[F (X)]n −G(anX + bn)| → 0 (1.15)

the equation G(X) is called Generalized Extreme Value (GEV) distribution and has15

three mathematical types (see also Fig. 1.1) :



Chapter 1. Mathematical theory of the Extreme events 18

Type 1.(Gumbel-type distribution)

G(x) = e−e
x−µ
α (1.16)

Type 2. (Fréchet-type distribution)

G(x) =



























0 x < µ

e−(
x−µ

α )
−γ

x ≥ µ

(1.17)

Type 3. (Weibull-type distribution)

G(x) =



























e−(
x−µ
α )

γ

x ≤ µ

0 x > µ

(1.18)

where γ is the shape parameter, µ a location parameter (not to be confused with the

mean) and α > 0 is the scale parameter (it controls the size of the distribution like the5

variance in the Normal distribution).

These three distributions have completely different behaviours: the Gumbel distribution

is unlimited, the Fréchet distribution has a lower limit while the Weibull distribution an

upper one. Note that the Fréchet and the Weibull differ only for a sign, while the first

one is used to study quantities that have a lower bound (like the precipitation that is10

always positive) the second one is used to study phenomena with an upper bound. The

Weibull distribution is often used to study the behaviour of the minima.

The three types of the distributions could be unified in a single one with the Von Mises

transformation ( 1/ξ = −γ ) obtaining the Generalized Extreme Values (GEV) distri-

bution:15

F (x) = exp

{

[

1 + ξ

(

x− µ

α

)]−1/ξ
}

, 1 + ξ

(

x− µ

α

)

> 0 , −∞ < ξ < ∞ , α > 0.

(1.19)

This equation is of fundamental importance in the extreme events theory. The conditions

of the Fisher Tippet theorem 1.14 are wide enough to satisfy a large number of marginal
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Fig. 1.1: The cumulative probability distribution of the GEV shown with different
values of the parameters.

distributions F furnishing the values for the extremes.

Note that the 1.19 has 3 parameters to estimate and only in the degenerate case (

ξ = 0 corresponding to the Gumbel distribution ) the ξ parameter does not need to be

estimated.

1.5 GEV moments and its properties5

The estimation of the moments (mean, variance, skewness etc. ) of the GEV is simplified

using the Gamma function. The general expression of this function is:

Γ(λ) =

∫ ∞

0
xλ−1e−xdx, λ > 0 (1.20)

and its properties useful for our calculations are Γ(λ+ 1) = λΓ(λ) and Γ(1) = 1.

By definition the j -th moment of a distribution (with the location parameter equals to

0 for simplicity) is10

mj,g =

∫

xjg(x)dx



Chapter 1. Mathematical theory of the Extreme events 20

if the g(x) is of Weibull 1.18 or Fréchet type 1.17 it is quite simple to demonstrate

(rearranging the g(x)) that the mean is for the Fréchet distribution:

mf = Γ(1− ξ) (1.21)

and for the Weibull

mw = −Γ(1− ξ) (1.22)

as expected from the symmetry of the two distributions mweib = −mfrec.

The expression for the variance of the GEV is a little bit more complicated. Let

gj = Γ(1− jξ)

then it is possible to demonstrate (see Reiss and Thomas (2007) ) where γ = −1/ξ and5

α = σ that the variance is

V ar =















































α2 g2−g21
ξ2

if ξ 6= 0, ξ < 1/2

α2 π2

6 if ξ = 0

∞ if ξ ≥ 1/2

(1.23)

note that if the shape parameter is high ξ ≥ 1/2 the variance is not a finite quantity.

This possibility is rarely encountered in Physics and Engineering, although it is possible,

as we see, to find datasets where the fitted model has ξ > 1/2, in this case an accurate

check of the data usually allows to find errors in the dataset or more complex features10

like bivariate or multivariate populations 3.

1.6 Convergence and stability of the GEV

The Fisher-Tippet theorem introduces two constants an and bn to normalize the maxima

of the distribution F (X), this condition 1.14 could be expressed as a linear transforma-

tion where the parameters depend only on the size n of the sample and not on value of15

3in this case other populations mixed to the original data can lead to an erroneous estimate of the
distribution parameters
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the variable x:

[F (X)]n = F (anX + bn) (1.24)

Remember that the Fn distribution expresses the distribution of the maxima (it is the

product of the n probabilities of the independent maxima each one described by F ). This

simple formula expresses the max-stability feature: a distribution is called max-stable

when a linear transformation of its maxima does not change the distribution itself. The5

stability postulate is a condition necessary and sufficient to ensure the convergence to the

real maxima distribution. Gnedenko (1943) demonstrated that to obtain the asymptotic

convergence of the maxima to the GEV distribution the following condition needs to be

satisfied. Let l(x) a positive and measurable distribution if

lim
t→∞

l(xt)

l(x)
= 1 ∀ x ∈ ℜ (1.25)

then the function l(x) is a slow varying function. Given now a distribution function10

F (x) if we define the survival function 1− F the Gnedenko condition gives the result:

1− F (x) = x−1/ξl(x), x > 0 (1.26)

in other words if the survival function follows a power law limited by a slow varying

function lF the limiting distribution for its maxima is a GEV.

The 1.26 is a first order condition ensuring the convergence but not giving informations

about the rate of convergence of the limiting distribution. For practical purposes the15

convergence of the maxima distribution to the GEV (or to the Generalized Pareto dis-

tribution) must arise for finite samples and not only at infinity. To ensure an useful rate

of convergence ( see Goegebeur et al. (2008) and for a detailed explication the book of

Beirlant et al. (1996) pag. 90 ) a second order condition for the slow varying function

needs to be introduced:20

lim
x→∞

log l(xt)− log l(x) + log(t)/ξ

b(t)
=

tρ − 1

ρ
(1.27)

where b(x) → 0; as x → ∞, with t ≥ 1 and ρ ≤ 0.

If the 1.27 is respected then the convergence of the limiting distribution to the GEV is

asymptotically Normal.
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1.7 The distribution of the exceedances and the POTmeth-

ods

The GEV distribution is the general framework to work with maxima when the mild

conditions of the Fisher-Tippet theorem are satisfied (data homogeneous and indepen-

dent). In Earth Sciences for instance it is common to consider one maximum per year5

to avoid problems with the seasonality that introduces correlation between data. Using

only one value per year results in short datasets that are generally difficult to fit cor-

rectly, especially using distributions like the GEV that has 3 parameters. For this reason

we can try to simplify our statistical model (using models with a single parameter like

the exponential distribution or the Gumbel function) or we can try to extend the dataset10

considering more than one extreme value per year using a different mathematical model

describing all the values above a given high threshold.

The theory of the excesses over an high threshold is funded on a theorem named on

the discovers Balkema, de Haan, and Pickands. It states a relationship between linear

transformations of the random variable X and the limiting distribution, the enunciate15

of the theorem is:

Balkema-de Haan - Pickands theorem.

Given a probability distribution F (X) if it exists a couple of constants an and bn depend-

ing only on the length n of the dataset X1, X2, · · · , Xn then the limiting distribution of

F (X) as u tends to the right endpoint is20

F (an + bnX > u) → G(ξ, µ, σ) (1.28)

where G(ξ, u, α) is known as the Generalized Pareto distribution (GPD) and ξ,u and α

are parameters: respectively the shape, the location (or threshold) and the scale param-

eter.

The mathematical form of the Generalized Pareto Distribution is the following

F (x;µ, α, ξ) =















































1−
(

1 + ξ
x− u

α

)−1/ξ

ξ 6= 0

1− exp

(

−x− u

α

)

ξ = 0

(1.29)
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where ξ,u, and α are the shape, the location and the scale parameter. Note that some

references uses the −k = ξ parameter for the shape and other ones use the symbol σ for

the scale parameter.

The density function of the 1.29 is given by:

f(x;µ, α, ξ) =















































1

α

(

1 + ξ
x− u

α

)−1/ξ−1

ξ 6= 0

1

α
exp

(

−x− u

α

)

ξ = 0

(1.30)

depending on the value of the shape ξ parameter there are different possibilities (refer5

to Fig.1.2 ):

• ξ > 0 the distribution has a long right tail much bigger than a Normal distribution

tail (distributions with this property are often referred as ”heavy tail distribu-

tions”). In this case, conventional moments of order greater than or equal to 1/ξ

are degenerate (i.e. if |ξ| > 1/2 the ordinary variance is infinite)10

• ξ = 0 the distribution has the ordinary exponential form.

• ξ < 0 the distribution is short tailed with an upper bound value (u− α/ξ)

When the value of the shape parameter is zero then the 1.29 is a simple exponential

distribution; when the shape parameter is not null then there are two different possibil-

ities: a) the shape is negative and the distribution has a right positive endpoint b) the15

shape is positive and the distribution is unbounded Fig. 1.2 .

NOTE. The u location parameter or threshold could be expressed as an upper

order statistics: in the reordered sample

X1 < X1 < · · · < Xk = u < · · · < Xn

the level u coincides with the k -th value of the reordered sample.
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Fig. 1.2: The cumulative probability distribution of the GPD shown with different
values of the parameters scale and shape.

1.8 The GPD threshold

The mathematical form of the GPD distribution 1.29 has a parameter u that plays the

role of a location parameter. However for the GPD, unlike from other distributions as

the GEV, the location parameter is chosen before fitting the curve and not obtained by

the fit procedure of the distribution. Moreover in working frameworks like the Partial5

Duration Series (PDS) or the Peaks Over the threshold (POT)4, the fit of the curve

to data is conducted by a left censoring procedure that discards all data below the

location parameter of the GPD. In this case the location parameter is called threshold.

The procedure of fitting then consists in choosing a value for the threshold and after

estimating the other parameters. How to choose the best threshold level is the argument10

of the Chapter 4: as we see the choice of this value it is not trivial. Here we highlight the

extreme sensitivity of the fit to the choice of the right threshold level. In theory using

the GPD, the threshold does not affect the value of the other parameters (except the

scale parameter that shows a linear transformation with the threshold level see 1.10 )

but for real datasets the sensitivity to the threshold is evident and it affects the quantile15

4PDS and POT methods are the same technique mainly used in Hydrology to study floods and severe
rainfalls and daily cumulated precipitations.
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levels estimated with the GPD model. Erroneous quantile levels mean an imprecise

description of the extreme events.

1.9 Relationship between GPD and GEV

The GPD is linked to the GEV by a simple mathematical transformation as in Reiss

and Thomas (2007) pag. 235

GPD = 1 + log(GEV ) if log(GEV ) > 1 (1.31)

the similarity between GPD and GEV means that the shape and the scale (see 1.29

and 1.19) parameters are the same for both distributions. A good fit for the Pareto

distributions leads to a good fit for the GEV. But unlike the GEV, with the GPD only

the fraction of data below the threshold is discarded, while the GEV considers only the

few independent maxima.10

1.10 Stability of the GPD and POT domain of attraction

The Balkema-De Haan-Pickands theorem introduces stability conditions for the values.

When data are transformed with a linear combination

X ′ = au + buX

where au and bu are evaluated at the u threshold the shape of the distribution does not

change, this fact is important to rescale and transform data and coefficients. Let define

the distribution of the exceedances F [u] as

F [u](X) =
F (X)− F (u)

1− F (u)
(1.32)

where u is the threshold and the factor 1− F (u) is needed to normalize the probability15

distribution. The POT stability condition states that

F [u](au + buX) = F (X) (1.33)

the main consequence of this formula is the property that a GPD distribution shape does

not change selecting different threshold. Moreover it is possible to demonstrate that
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when the threshold u is modified the value of the scale parameter α changes following a

linear transformation (Coles, 2001 pg. 83):

αu = αu0 + ξ(u− u0) (1.34)

Where u0 is the threshold of the level “0” and u a different threshold level.



Chapter 2

Exploratory statistics

2.1 Introduction

In this chapter we focus our attention on the most important statistical tools for the Ex-

ploratory Data Analysis. This statistical set of techniques is of fundamental importance5

in the pre-analysis of data. Looking for outliers, for errors in the datasets, for inconsis-

tency in the results of the numerical estimators (even the widely used mean could have

some problems working with some kind of data) and considering the robustness and the

efficiency of an estimator we can check the data before passing them to a theoretical

model. In Informatics and Engineering this process is known as data quality assessment,10

and for Meteorological databases where data has been collected manually for a long

period of time this check is indispensable.

2.2 Tool and methods for exploratory statistics

The statisticians have invented several tools and techniques to explore data using plots

or statistical indicators. With plots, for instance, it is possible to rapidly check the15

presence of multivariate distributions 1: task not trivial with numerical techniques.

We introduce here the empirical probability density function plot and the empirical

cumulative density plot. In the next lines we’ll call the empirical cdf with the acronym

ECDF; the empirical pdf will be the histogram if the sample is discrete or the density if

the sample is continuous or approximated using continuous functions.20

1usually if the sample arises from a multivariate distribution when plotting the empirical pdf the
graph shows more than one peak

27
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2.2.1 The empirical cumulative distribution

Given a set of random variables xi i = 1, 2, · · · , n < ∞, let Ij(x < xj) the number of

values of x less than xj then the empirical cumulative distribution or simply the sample

distribution is defined as:

F̂n(x) =
1

n

n
∑

j=1

Ij(x < xj) (2.1)

the plot of F̂n(x) is easy to realize with a plotting position rule:5

• reorder the sample in ascending order xsorted ≡ x1 < x2 < · · ·xn

• let j the rank of the xj value, then define a plotting position rule as

pj =
j

n+ 1

• plot the vectors (xsorted,p)

note that the values of the y axis are limited in the interval [0, 1] while the x axis is the

interval [min(x),max(x)].

The plotting position rules are still an active theme of research (see for10

instance Makkonen (2008a)) with a dispute lasting one century from the

first pp-rule introduced by the hydrologist Allen Hazen in 1914. The simple

rule j/n+ 1 produces biased plots if the sample length is odd.

For instance let the sample be of the length of 7 then the positions are

1, 2, 3, 4, 5, 6, 7

; the value 4/7 is not the center of the distribution nor the value 3/7. For

this reason Hazen introduced the rule (j − 0.5)/(n + 1) that is one of the

most used plotting position rules. More generally the pp-rules are members

of the family:

pj =
j − a

n− 2a+ 1

When a = 0.5 this formula gives the Hazen rule, other values of a are pos-

sible. For our purposes working with EV distributions, and following the

suggestions of Gumbel and Weibull (a = 0), we’ll choose the simple form

pj =
j

n+ 1
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2.2.2 Histograms and density plots

The probability distribution of the sample could be investigated using the popular tool

of the histogram , also called frequency plot. To obtain this graph the data must be

organized in this way:

• reorder the sample in ascending order x1 < x2 < . . . < xn5

• classify the values of x in bins, that is divide the interval [min(x),max(x)] in m < n

equal parts a1 < a2 < · · · < am and count the number of xi belonging to each

interval class ( bin )

[ak, ak+1] 1 < k < m

let pj/n this quantity (frequency or empirical probability).

• plot the vectors (a,p)

the classical representation of this tool is the bar plot where each interval is represented

by a vertical bar ( Fig. 2.1).

The common criticism to this tool is the arbitrariness of the bin length l (length of each10

interval [ak, ak+1] ) while depending on the choice of this classification several artefacts

appear. If we choose a too small value for the bin length the plot is confused and

the histogram presents a number of unrealistic peaks, conversely if we choose a greater

interval l the finer details are lost. Moreover if the distribution is symmetric the same

problems seen with the plotting position rule are present (false bias), see for instance15

Fig. 2.1 where the distribution (a Gaussian centred on zero) must be symmetric but

the choice of the number of bins changes the appearance and the symmetry of the plot.

To overcome this problems the statistician invented the density plot obtained with the

continuous kernel functions superimposed to the discrete set of data.

The approximation of the kernel function is based on this simple idea. Observing an20

histogram made of bar plots we note the rough approximation of the y value with

constant values (the bars), if we substitute the bars with continuous functions like the

bell-shape curve with an adjustable width b, we can obtain a smoother representation

of the distribution. This approximation is called density plot and it is a common tool

in many statistical packages (like R, MATLAB, Origin etc).25

Let x1 < x2 < · · ·xn the reordered sample, on every point define a function fn,b(x) of

the form:
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Fig. 2.1: An histogram of a random Normal sample is plotted with different number
of bins.

fn,b(x) =
1

nb

n
∑

i=1

k

(

x− xi
b

)

(2.2)

where the parameter b > 0 is the bandwidth (equivalent to the width of the bin for the

histogram), the k(x) function, centred around the value xi, is the kernel function and

has the following property:
∫

k(x)dx = 1

Note that the contributions of the functions k(xi) evaluated at the point xi are summed

on the entire interval [min(x),max(x)], for this reason where the values x are more

concentrated, the value of fn,b(x) is higher (see Fig. 2.2) and gradually falls down

far from the points xi. This behaviour is different from the histogram where the step

function falls down immediately at the end of each bin. However as in the case of the5

histogram binning width the choice of the bandwidth parameter b is crucial: a too big

value of b leads to a plot loosing many details, a too small value for b produces peaks

and artefacts as in Fig. 2.3 .
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Fig. 2.2: Sum of kernel Gaussian functions. The zones where the points are more
concentrated have a greater sum of kernel functions.

The k(x) function could be of many different types, the most common choice is the Gaus-

sian equation, but it possible even to reproduce the histogram using the step function

for k:

k(xj) =



























pj/n if x ∈ (−b/2 + xj , b/2 + xj)

0 if x /∈ (−b/2 + xj , b/2 + xj)

other choices are triangular functions, polynomials and trigonometric functions in bounded

intervals (to avoid problems with the periodicity). The theory of the kernel function in-5

troduces tools for the automatic optimal bandwidth selection and the most common

statistical packages implement these algorithms, however a visual inspection of the den-

sity function superimposed to the histogram (see Fig. 2.4) is of capital importance to

validate the plot.
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Fig. 2.3: Density plots (pdf) of the same random sample of Fig. 2.1 with different
values of bandwidth. Note the same phenomena of oversampling when the bandwidth
is too small.

2.3 Quantile methods

2.3.1 Definitions

Let x1 < x2 < . . . < xn a reordered sample if we divide the interval [x1, xn] in m classes

the value of x belonging to the class k is called the k -th quantile. For instance consider

the sample

1, 2, 4, 5, 7, 9, 13, 21, 22

divide the interval in 5 parts corresponding to 0%, 25%, 50%, 75%, 100% of the interval

of values: the corresponding quantiles will be 1, 4, 7, 13, 22. Note that the value 7 ≡ 50%

is the median of the distribution, the computed mean is m = 9.33 then the distribution5

is not symmetric (in the case of symmetric distributions the mean is the center of the

distribution and by definition it coincides with the median). Furthermore the value

22 ≡ 100% is the maximum while 1 ≡ 0% is the minimum.

It is common in statistics to characterize a distribution of random variables reporting

not only the mean and the variance but also giving the extreme quantiles (the 95th of10
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Fig. 2.4: Density plot (pdf) and Histogram superimposed of the same random sample
of Fig. 2.1

100, the 99th of 100 and sometimes the 999th of 1000) and the maximum (minimum).

Remember that the 50th ( or 50% ) quantile is the median.

2.3.2 Quantile functions

The quantile level binds the probability (ex. 50% = 0.5) to the value of the random vari-

able x. The mathematical problem is the same of inverting the cumulative probability5

distribution p = F (x), computing the quantile function F−1(p) we obtain:

x = F−1(p) p ∈ [0, 1] (2.3)

where the variable p is the probability or the quantile level (also known as the p-value )

and x is the quantile value. The 2.3 expresses the relationship between the probability

and the values of a distribution.

For the Normal distribution the quantile function is defined by:10

x(p) = µ+ σ
√
2 Z(2p− 1) = N−1(p), ; p ∈ [0, 1] (2.4)
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where Z(p) = erf−1 is the inverse of the error function

erf (x) =
2√
π

∫ x

0
e−t2dt. (2.5)

the numerical (or the analytical) approximation of erf−1 could be found in many text-

books of statistics and probably in every statistical package.

2.3.3 Quantile plots

The quantile plot is the tool to visually check if an empirical distribution belongs to a

known family of theoretical distributions. Suppose for instance to make the hypothesis

that data are distributed like a Normal distribution. The fit of a Normal distribution is

straightforward: just compute the mean m and the standard deviation s of the sample

and substitute them in the quantile function of the Normal N−1 2.4 on the place of the

theoretical mean µ and standard deviation σ. The quantile function allows to create

another set of theoretical values based on the probability levels:

x′j = N−1 (p(xj) , j = 1, . . . , n

where p(xj) is the probability level of xj . The plot of the set of the theoretical (fitted)5

x′ versus the original sorted sample x is the quantile plot (see Fig. 2.5).

The quantile levels by definition increase with the values of x and usually the graph

is displaced around the straight diagonal line dividing the I and III quadrant of the

Cartesian coordinates plane. Observing the quantile plot 2.6 (also called qq-plot) we

can deduce the following properties:10

• If the points are nicely placed on a straight diagonal line then the chosen distri-

bution for the fit is working good.

• The dispersion of data around the diagonal line give us an indication of the good-

ness of the fit and of the sample variance: an elevated variance spreads the points

in the plane, a low variance concentrates the values around the line.15

• In the extreme regions of the graph the points fluctuate more and they leave the

straight line 2.

2this is a common phenomena in exploratory statistics where the incertitude in the tail estimation is
due to the low level of probability of extreme values and it depends also by the choice of ordinary tools
that privilege the core of the distribution. The robust statistical tools could be conceived to work better
with the tails giving a bigger (or a smaller) importance to extremal data if desired.
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Fig. 2.5: Quantile-quantile plot of two Normal random samples with the same param-
eters σ, µ.

The quantile plot is not limited to the Normal distribution but it is possible to apply it

on every CDF that we can invert analytically or numerically. In the next chapter we’all

apply the qq-plot to a database of precipitation making the hypothesis that the GPD

(Generalized Pareto Distribution) is the best (or one of the best) statistical model to

describe the average behaviour of the precipitation.5

2.4 Confidence intervals and bootstrap methods

In Physics, Engineering and Science it is common to give the outcome value of an

experiment with the relative errors: a measure of the incertitude in expressing the

physical quantities. For instance

G = 6.693 · 10−11 ± 0.027 · 10−11m3kg−1s−2

is the latest (Science pag. 74, issue of the 5th January 2007) best known value of the

gravitational constant G. The value of the constant is expressed with a symmetric

confidence interval. In most cases the error of a measure is a symmetric interval, that is

there is the same probability to find the true unknown measure below of the proposed10
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Fig. 2.6: Quantile-quantile plot in case of good fit (top) or bad fit(bottom) of the
statistical model. In the bad case we confront an Exponential dataset with a Normal
one.

value or above of it. In the EV theory quantities like wind absolute speeds, precipitation,

flood levels are strictly positive with monotonic decreasing pdfs then the probability of

greater values around the measure is different than the probability of smaller ones. The

correct representation of a measure for non symmetrical distributions is the interval of

confidence a < X < b with an associated confidence level. This quantity expresses the5

interval (a, b) in terms of probability. Recalling the previous sections on quantiles we

can express the confidence interval as a quantile interval, for instance choosing a ≡ 5%

and b ≡ 95% the interval [a, b] summarizes the 90% of the variability of the sample and

we affirm that the measure X, a < X < b is expressed with the 90% of confidence.

Calculating the confidence interval is not difficult if we can answer in a correct way10

to the question: what is the theoretical distribution of data ? In some case we are

confident of the answer. For instance if our experiment produces values that are the

means m of independent subsets of data xi then these means tend to converge to the

theoretical Normal mean µ and they are distributed as a Normal random variables

whatever be the true unknown distribution of data 3. In this case (data arise from a15

3This result is known as the law of large numbers and has two versions a) the strong version that
affirms the absolute convergence of the empirical mean m to the theoretical value µ b) the weak version
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Normal distribution) we can express the confidence interval using the theoretical result

described in every statistics textbook:

− 2s+X ≃ −2σ +X < x < X + 2σ ≃ X + 2s. (2.6)

where s is the empirical standard deviation that approximates σ the theoretical value.

The relative confidence level is of the 95% (also known as the 2σ rule).

2.4.1 Bootstrap methods5

In many cases it is possible to calculate the confidence interval for the theoretical distri-

butions. Whenever the adaptation of the theoretical distribution to the data distribution

(the fit procedure) is good the theoretical equations for the confidence intervals on esti-

mated parameters (like the mean and the variance) are enough to describe the statistics.

Otherwise if we are not confident on the statistical model to use with we can try to derive10

the confidence interval directly from the data with no other hypothesis than the out-

comes of an experiment (a random variable) can appear more than once in the sample.

In other words we assume the possibility that the empirical random values can be dupli-

cated and replaced (in order to conserve the original length of sample) without changing

the statistical properties of the sample. In this way we create perturbed copies of the15

original sample each one with one or more data randomly replaced. This hypothesis is

the basis of the Bootstrap procedure that belongs to the family of Monte Carlo methods

4.

The bootstrap technique (re-sampling with substitution of the initial set of data ) can

be used to build confidence intervals. For instance, if we need to compute the confidence20

level of the mean for the dataset x = (x1, x2, . . . , xn) we can use the following procedure:

• create k datasets

xj j ∈ [1, k]

by randomly replacing one (or more than one) value xi with another one extracted

from the same dataset xj.

• compute the mean of each perturbed dataset xi, let mi this value.

that affirms that the mean converges in probability to µ. The strong version of this law is followed by
another strong second order hypothesis: the finiteness of the variance of every subset of data. This last
condition is known as Kolmogorov’s strong law see Sen and Singer (1993)

4the Monte Carlo methods use random number generators to simulate statistical phenomena like
random walks, point processes, energy minimization, numerical multidimensional integral calculation
and random variables generation.
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• compute the empirical 5% and 95% quantiles of the distribution of the means

F (m) and use these values as confidence interval.

Note that if the sample originates from a non symmetric distribution then the confidence

interval computed with the bootstrap procedure will be non symmetric too.

The advantage of the bootstrap procedure is that we do not assume any hypothesis5

on the distribution of real data, but we derive the variability directly from the original

dataset. Note that this method in itself is not capable to give us more information than

which contained in the original dataset, that is increasing the number of bootstrapped

datasets we reduce the random fluctuations but we not have any new information on

the true distribution that originates the random variables.10

2.5 Outliers and scatter plots

One of the simplest analysis of an one dimensional dataset that we can perform is the

scatter plot diagram. This technique consists in plotting the data using as abscissa the

index ( not to be confused with the ordered rank position) of each value and as ordinate

the value itself. Data are not rearranged, sorted or modified. The plot is a point plot15

where the position of a point in the dataset is the x coordinate and the value the y

coordinate. On the vertical axis (the axis of values) we can draw a line indicating the

mean and one or more quantile levels (see Fig. 2.7). If we note that several points are

far from the others and stay on the extreme quantiles region we can suspect that these

ones are outliers or even that these values are erroneous (for instance they derive from20

a wrong transcription).

The concept of outlier is an open question of the modern statistics, when a value must

be considered an outlier or conversely a big but ordinary value it is not clear. Sometimes

we are confident about the nature of a point strongly exceeding the other values. For

instance if we have a temperature field on the Earth land surface and in the dataset it25

is present the value 12000 C then we can no doubt consider this point as an error and

correct it. Other examples from Earth Sciences are negative precipitations or values

representing non physical quantities like a daily cumulated rainfall of 10 km.

2.5.1 Tests for outliers

Working with outliers we often have no clear evidence of the nature of these values: we30

cannot simply decide to eliminate them without the risk to loose important informations
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Fig. 2.7: Scatter plot with the 98th quantile and the median level lines superimposed.
The plot shows two possible high outliers.

of the dataset. In this case we can use two different approaches: trying to detect

the outliers and perform further analysis, or ignore them and use statistical techniques

resistant to outliers. The latter solution known as Robust Statistics is briefly presented in

the next section. Here we describe several classical automatic tests for outlier detection.

Note that visual inspection of data is possible only when we work with small databases.5

We follow the suggestion of the NIST (part of the US. commerce department) soft-

ware for statistics and its Engineering Statistics Handbook (freely available online at

http://www.itl.nist.gov/div898/handbook/. They cite the reference Iglewicz and

Hoaglin (1993) . The handbook presents this techniques to work with outliers

• outlier labelling - flag the detected outliers for further investigation (i.e. are the10

potential outliers erroneous data ?, indicative of an inappropriate distributional

model ? and so on).

• outlier accommodation - use robust statistical techniques that are resistant to

the effects of outliers.

• outlier identification - test whether observations are outliers.15

http://www.itl.nist.gov/div898/handbook/


Chapter 2. Exploratory statistics 40

the first approach is known as masking the outliers. If we have clear indications about

the distribution of data (i.e Normal distribution) the outlier detection is simple, just

remove or mask the values that have very low probability (> 3σ). If we do not have

indications about the distribution of data we can still try to accommodate outliers (with

robust statistics methods), in this case outliers are still present but they do not affect5

our estimations. Finally we can decide to perform some test for the deviation of these

values from the centrality measures (mean, median). The idea is that if a value is too

far from the central measure it will be candidate as outlier.

Working with data we can try to mask a single point in order to detect one or more

outliers. This technique is nicely described in the handbook:10

Masking can occur when we specify too few outliers in the test. For exam-

ple, if we are testing for a single outlier when there are in fact two (or more)

outliers, these additional outliers may influence the value of the test statis-

tic enough so that no points are declared as outliers. On the other hand,

swamping can occur when we specify too many outliers in the test. For ex-15

ample, if we are testing for two or more outliers when there is in fact only a

single outlier, both points may be declared outliers (many tests will declare

either all or none of the tested points as outliers). Due to the possibility of

masking and swamping, it is useful to complement formal outlier tests with

graphical methods. Graphics can often help identify cases where masking or20

swamping may be an issue. Swamping and masking are also the reason that

many tests require that the exact number of outliers being tested must be

specified.

Also, masking is one reason that trying to apply a single outlier test sequen-

tially can fail. For example, if there are multiple outliers, masking may cause25

the outlier test for the first outlier to return a conclusion of no outliers (and

so the testing for any additional outliers is not performed).

One of the most practical test for outliers is the Grubbs test (Grubbs, 1950). It is based

on the test statistics:

Zi =
max |xi −m|

s
(2.7)

where xi is the set of data, m the mean and s the standard deviation of the sample.30

The critical levels of Z are tabulated and presented in many statistical software (R,

S-plus for instance). The quantity 2.7 is called Z -score and several authors (Iglewicz

and Hoaglin, 1993) propose to substitute it with a robust version:
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Zi =
0.6745(xi − ν)

MAD
(2.8)

where ν is the median, and MAD the mean absolute deviation 2.10 . A rule of thumb for

the 2.8 is that a value will be considered an outlier if its Z -score value is 3 times greater

than the previous value in the Z -score ordered vector. Note that this test exists in differ-

ent versions (one sided for skewed distributions, two sided for symmetric distributions)

to detect one or more outliers with symmetric and asymmetric distributions.5

2.6 Short notes on Robust Statistics

The Robust Statistics is a discipline of the modern statistics based on the idea that the

statistical tools must be resistant to the presence of outliers or more generally to data

contamination. A classical introductory example of the robust statistics is the different

behaviour of the mean and of the median in response to an outlier (see for instance the10

review paper of Daszykowski et al. (2007)).

2.6.1 The median and other robust estimators

Consider a set of random variables:

1, 2, 4, 5, 7, 9, 13, 21, 22.

with the median ν = 7 and mean m = 9.33. Now let change the value 13 and double

it, the mean is now 10.33 while the median has always the same value 7. A single value

modification has changed the value of the mean while the median remained unchanged.15

The mean then is a non robust estimator in fact it has a breakdown point (percentage

of points to be modified to significantly change the value of the estimator) around 0%

of the sample. Conversely to influence the median one needs to contaminate around the

50% of the values. The breakdown point cannot pass the 50% value because if more

than the half of data is contaminated the original distribution of data is completely lost.20

A common measure of dispersion is the standard deviation

s =

√

1

n− 1

∑

i≤n

(xi −m)2

where m is the mean and n− 1 is a correction for the bias due to the estimation of the

mean m. If the mean is a non robust estimator it is obvious that neither the standard
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deviation could be a robust estimator. For this reason other measures of dispersion were

introduced, the most common ones are:

• The interquartile difference. This estimator is described as the difference from

the 3th and the 1th quartile, a quartile is the 25% quantile, its formula is:

IQ = q3/4 − q1/4 (2.9)

where the q3/4 is the quantile level at 3/4 = 75% of the sample and q1/4 at 25% .5

• The median absolute deviation MAD. This estimator computes the absolute

difference between the values and the median:

MAD(x) =
1

n

n
∑

j=1

|xj − ν| (2.10)

if ν is the median

2.6.2 The trimmed mean

The last robust estimator that we present is the trimmed mean mX% indicating that10

the mean is trimmed at the level X%. The idea of this estimator is to trim the lower

X/2% and the upper X/2% of the sample and then compute the mean. We can express

this estimator with the formula:

mX% =
1

k

k
∑

i=1

xi if xi ∈ [min(x) +X/2,max(x)−X/2] (2.11)

Note that the sum ends at the index k < n, that is the number of x points falling in

the interval [min(x)+X/2,max(x)−X/2]. By construction the breakdown point of the15

trimmed mean is the trim level X%.

2.6.3 The efficiency of an estimator

The robust estimators are attractive, they are able to resist to the outliers and they are

quite simple to calculate. However there is a problem with these estimators: they are

scarcely efficient. To clarify this concept we need to introduce an inequality known as20

the Cramér-Rao inequality (in honour of H. Cramér and C.R. Rao that first derived it

in 1945), this inequality fixes a lower bound to the variance of the estimators. More
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precisely it states that for an unbiased estimator θ the variance is bounded to the Fisher

information function by the inequality

V ar(θ) ≥ 1

I(θ)
(2.12)

where I(θ) is the Fisher Information function:

I(θ) = E

{

(

∂ ln(L)

∂θ

)2
}

(2.13)

where L is the likelihood function (see in the section 2.8 for more details). The infor-

mation function gives the total amount of information that a sample can furnish on an5

unknown estimator θ, and it fixes a limit on the precision of the estimate. Finally we

can define the efficiency of an estimator as the rate of its variance with the inverse of

the Fisher information function:

η =
V ar(θ

1/I(θ)
(2.14)

The rate between the efficiency of two estimators t1 and t2 of an unknown parameter θ

is the relative efficiency and can be expressed as:10

ηr =
E(t1 − θ)2

E(t2 − θ)2
(2.15)

If the variance of the estimator t1 is less than the variance of the estimator t2 then the

first estimator is more performing than the other one. It is possible to demonstrate that

the variance of the MAD and the variance of the median are greater than the respective

measures of dispersion (s standard deviation) and location (m mean): the price to pay

for robustness is a loss of efficiency.15

2.7 Critical remarks on estimators

The tools introduced in this section allow to describe the distribution of data in terms of

robust, efficient, and biased/unbiased estimators. The reader however must be careful

to avoid common mistakes in exploratory analysis. Let consider for instance the sample:

1, 2, 3, 4, 20, 21, 22, 22

the mean of this sample is 11.875, the median (a robust estimator) 12, the standard

deviation 10.07. But it is clear that no one of these estimators have true sense, in fact
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there is no data in the interval (4,20). A simple plot (Fig. 2.8 ) of data shows that the

points are clustered in two subsets centred on 2.5 and on 21, in this case it is possible

(although not certain) that data arise from two different populations one for the lower

values and the other one for upper values. A smarter statistics will divide the sample in

two samples and will give us information about each subset.5

This simple example illustrates the necessity of the exploratory statistics before any

application of even the most robust estimators to the datasets. If we suspect to have

more than one population in our sample several tests to separate the populations in

clusters are available (like the PCA, the principal component analysis).
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Fig. 2.8: Scatter plot of a bivariate sample dataset.

2.8 The Maximum Likelihood function and estimator10

The Maximum Likelihood function (ML) - indicated as L(x, θ) - and the subsequent

Maximum Likelihood Estimator (MLE) technique, are based on the simple idea to find

the best set of parameters θ of a distribution F (x; θ) that maximize the probability to

find again the set of data x. In other words the ML expresses the best parameters for

the given set of data.15
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Let now f(x1; θ), f(x2; θ), . . . , f(xn; θ) the probability levels of x1, x2, . . . , xn where f(x, θ)

is the density function of F . If the values are independent the ML function is the product

of joint probabilities:

L(x; θ) = f(x1; θ) · f(x2; θ) · . . . , ·f(xn; θ) =
n
∏

i=1

f(xi; θ) (2.16)

taking the logarithm of L(x; θ) we can convert the product into a sum:

log (L(x; θ)) = log

(

n
∏

i=1

f(xi; θ)

)

=
n
∑

i=1

f(xi; θ) (2.17)

The logarithm is a monotone increasing function then the maxima of log(L) are the5

same of L. To find the best set of θ that maximize the joint probability L we use the

classical result of analysis defining the score functions as derivatives:

V (θ) =
∂
(

logL(x; θ)
)

∂θ
=

1

L(x; θ)

∂L(x; θ)

∂θ
(2.18)

and imposing the condition V (θ) = 0. Note that to calculate the maxima of 2.17 we need

differentiable Likelihood functions and by consequence differentiable density functions

f(x; θ). This condition is not always respected, we can try to use numerical optimisation10

but sometimes the maxima of the likelihood function are non existent 5. Obtaining the

set of values θ that optimises L is equivalent to perform a good fit of the theoretical

distribution of the data.

The most interesting properties of the estimators based on the Maximum Likelihood

are:15

• Consistency. The parameters estimated with the ML converge in probability to

the true unknown parameters of the distribution.

• Asymptotic Normality. The parameters estimated with the ML tend asymp-

totically to be distributed like a Normal distribution.

• Efficiency. The ML estimators are asymptotically equivalent to the Cramér-Rao20

inequality bound 6 then the MLE is asymptotically the best possible estimator or

5For instance the score function respect to the threshold parameter u of the GPD distribution is
unbounded with no candidate values for the maxima. This is the reason that forces us to use different
techniques than the fit to estimate the optimal threshold level.

6See also the section 2.6.3
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more precisely no asymptotically unbiased estimator has lower asymptotic mean

squared error than the MLE.

these properties are valid in the asymptotic limit: for real datasets it is quite common

that other estimators perform better than the MLE.

2.9 Tools for EV model choice5

In this section we introduce a powerful tool (the L-moments ratio diagram) to guess

the best distribution to describe the data. Indeed we have theoretical results showing

that the limiting distribution of the excesses is the GPD and the limiting distribution

of maxima is the GEV, but in exploratory statistics it is an useful exercise to assess

the nature of a dataset without any prior hypothesis on the data distribution. In the10

next chapter we’ll apply the L-moments ratio diagram to ensure that the GPD is the

best candidate to describe the distribution of the excesses for two different databases

of precipitation. For reference purposes we introduce now other distributions having an

heavy tail,they may be considered competitors of the GPD/GEV in the description of

the extremes.15

2.9.1 Heavy tail distributions

The Generalized logistic distribution

This distribution is used in Hydrology to describe the extremes (see for instance Ashkar

and Mahdi (2006)), it is similar to the GEV. The logistic distribution (a reduced ver-

sion of the GLD) could be obtained studying the differences of two random variables20

distributed as a Gumbel random variable: see Kotz and Nadarajah (2004) and Kotz

and Nadarajah (2001) for a detailed review. The form chosen for the GLD equation is

reported in the web page

http://docs.scipy.org/doc/scipy/reference/tutorial/stats/continuous.html 7.

f(x; c) =
ce−x

[1 + e−x]c+1
c > 0, x > 0 (2.19)

where c is a positive parameter and f(x; c) is the pdf.25

7we choose this page dedicated to an important statistical software since the mathematical form of
the distribution is ready to use for computational purposes.

http://docs.scipy.org/doc/scipy/reference/tutorial/stats/continuous.html
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The Log Normal distribution

The Log Normal distribution is the ordinary Normal distribution where the random

variable x is substituted by the logarithm ln(x), the mathematical form of the pdf is:

f(x;σ, µ) =
1

xσ
√
2π

e−
(ln(x)−µ)2

2σ2 , x > 0 (2.20)

note that in contrast with the Normal distribution the x variable appears outside the

exponential and it is strictly positive.5

The Pearson Type III distribution

This distribution has a skewed shape and its pdf is:

f(x; c, s) = s(x+ c)c
2−1e−xc c ≥ 0. (2.21)

references for this distribution can be found in the page from mathworld (the website of

the creator of the Mathematica software):

http://mathworld.wolfram.com/PearsonTypeIIIDistribution.html10

2.9.2 L-moments theory

Hosking (1990) proposed the use of L-moment ratio diagram for the choice of the distri-

bution that best represent sample data. Sillitto (1969) derived first L-moments ( calling

them with a different name ), as coefficients in the approximation of a quantile function

by polynomials. The probability weighted moments (PWM) defined by Greenwood et al.15

(1979) are precursors of L-moments. Specifically, the PWM’s of a continuous random

variable X with cumulative distribution function F are the quantities:

Mp,r,s = E[Xp {F (X)}r {1− F (X)}s] =
∫ 1

0
{x(F )}p F r {1− F}s dF (2.22)

where x(F ) is the inverse of F and p, r, s are real numbers. When r = s = 0 the 2.22

reduces to the expectation of simple moments of order p. Usually the PWM’s are used

letting p = 1 and one of the other exponents (s or r) equal to zero:20

http://mathworld.wolfram.com/PearsonTypeIIIDistribution.html
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αs = M1,0,s = E[X {1− F (X)}s]

βr = M1,r,0 = E[X {F (X)}r]

(2.23)

When fitting a parametric distribution to a data set, it is a common practice to estimate

parameters by equating the sample moments to those expected for the fitted distribu-

tion. In a similar manner also PWM’s can be used with this aim with many empirical

and theoretical advantages (Hosking et al. (1985); Hosking and Wallis (1987); Hosking

(1990)).5

The following linear combinations have been proposed for unbiased estimation of sample

PWM’s Landwehr et al. (1979); Hosking and Wallis (1995)):

a0 =
1

n

n
∑

j=1

xj ; as =
1

n

n
∑

j=1

(n− j)(n− j − 1) · · · (n− j − s+ 1)

(n− 1)(n− 2) · · · (n− s)
xj

b0 =
1

n

n
∑

j=1

xj ; br =
1

n

n
∑

j=1

(j − 1)(j − 2) · · · (j − r)

(n− 1)(n− 2) · · · (n− r)
xj

(2.24)

where as and br are sample estimators of αs and βr PWM’s respectively, xj are sample

values arranged in increasing order and n the sample size.

Several linear combinations of PWM’s can be directly interpreted as measures of loca-10

tion, scale and shape of probability distribution. These are the L-moments defined by

Hosking (1990). The first sample L-moments can be computed with the following linear

combinations of (sample) PWM’s:

ℓ1 = a0 = b0

ℓ2 = a0 − 2a1 = 2b1 − b0

ℓ3 = a0 − 6a1 + 6a2 = 6b2 − 6b1 + b0

ℓ4 = a0 − 12a1 + 30a2 − 20a3 = 20b3 − 30b2 + 12b1 − b0

(2.25)

whose coefficients are those of the ”shifted Legendre polynomials”.
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The first L-moment ℓ1 is the sample mean, a measure of location, the second L-moment

ℓ2 is (a multiple of) Gini’s mean difference statistics: a measure of the dispersion of

the data values around their mean. By dividing the higher-order L-moments by the

dispersion measure, we finally obtain the L-moments ratios:

τr =
ℓr
ℓ2

(2.26)

As the simple moments ratios, L-moments ratios in equation (2.26) are dimensionless5

quantities that characterize the behaviour of the distribution. Specifically, τ3 is a mea-

sure of skewness and τ4 is a measure of kurtosis: they are respectively referred to as the

L-skewness and L-kurtosis. They take values between -1 and +1 (values smaller than

-1 may exceptionally arise from some even-order L-moment ratios computed from very

small samples).10

The L-moment analogue of the coefficient of variation is the L-CV (it can only take

values between 0 and 1) that is defined by:

τ =
ℓ2
ℓ1

(2.27)

Hosking (1990) derived the first expected L-moments and L-moments ratios as function

of parameters for several distributions. In the next chapter we’ll use this ratio diagram

to identify the best distribution candidate for hydrological datasets.15

2.10 Fit methods for the EV distributions

The following section is dedicated to the methods used to fit the theoretical distribution

on the real data. The fit procedure consists in finding the best values of the distribution

parameters that describe the sample. It is also possible to describe the fit procedure in

terms of probability of finding the best set of parameters θ that model the data; this20

approach is expressed by the theory of the Maximum Likelihood estimator (see 2.8 for

an introduction and below for the GPD/GEV case). We focus our attention on the

fit of the GPD because, as we’ll see in the next chapter, this distribution seems to be

the best candidate to describe our data. However we stress here the concept of best fit

because the fit performances change in function of our needs in exploratory statistics.25

For instance if we are more interested in fitting the tail of the distribution we can use

an weighting function w(x) to add importance to the tails, conversely if we are more

interested in fitting the core of the distribution we can discard (trim) the extreme tails.
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Several tools described below are conceived to be robust (but still quite efficient) in order

to deal with outliers and erroneous data, other like the MLE are the most efficient but

only in the asymptotic limit. We recall again the principle of the exploratory statistics:

never trust naively to data and numerical tools.

2.10.1 Summary of fit methods for the GPD5

In last years many estimators have been developed to improve the efficiency and the

robustness of the fitting techniques. The estimators can be of several classes: tail index

(as Hill or De Haan asymptotic estimators), maximum likelihood functions, simple mo-

ments and probability weighted moments, medians and goodness of fit based estimators.

Every estimator class has some drawbacks and some advantages. The maximum likeli-10

hood estimator MLE is thought on the maximization of the likelihood function L: this

method is very important because it is asymptotically (i.e. for large samples) the best.

Nevertheless when the sample is small or is contaminated by spurious data it could be

very unrealistic. In a classical work Hosking and Wallis (1987) compare the MLE per-

formances of the methods of moments and probability weighted moments. They show15

how the MLE could give inaccurate results for small samples. Juárez and Schucany

(2004) describe the performances of the MLE estimator on contaminated GPD samples

showing that the MLE method lacks of robustness; then they introduce a robustified

MLE method known as minimum divergence power density(MDPD) estimator.

The tail index estimator class finds the asymptotic slope of the distribution tail using a20

plot position rule of log transformed data. The method is useful for a large variety of

distributions like Gamma, Gumbel, Student and GPD. By combining the tail index with

other order statistics it is possible to estimate the GPD parameters as shown in Pickands

(1975). The estimator has generally good performances for large samples of pure data,

but must be tuned using a suitable threshold. Moreover the numerical algorithms for25

tail index estimation of GPD often suffer of convergence problems.

The accuracy of the GPD fit depends on the kind of data and must be demonstrated

every time. In fact, as shown by Rosbjerg et al. (1992), it is possible that, for moderate

tails (values of the shape parameter near zero) and small datasets, the description with

the ordinary exponential distribution may be more accurate of the GPD one. This is30

an expected result since the exponential distribution requires the estimation of a single

parameter, while the GPD needs the estimation of two parameters. Obviously similar

results can be obtained, more generally, by comparing the GPD performances in the

case of ξ known and α unknown with the case of both parameters unknown.
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For the numerical implementation of the first three widely applied methods the reader

is referred to Hosking and Wallis (1987) and Stedinger et al. (1993). For the other (and

more recent) methods, the references are provided in the paragraph of each method.

• Maximum Likelihood Estimator (MLE). The MLE is a standard parameter

estimation technique applicable to any statistical distribution. It is based on the5

idea to find the set of θ parameters that maximize the likelihood function L(X, θ)

evaluated on the sample X ( for more details see 2.8 ) . We remark that the

location parameter u could not be obtained by the MLE, in fact the score function

∂L/∂u is unbounded (no extremes). For the GPD distribution the MLE could

be estimated in different ways leading to slightly different results. The MLE can10

be evaluated in an univariate way (with a smart substitution of scale and shape

parameters: see Grimshaw (1993)) or in the classical bi-variate way. Many authors

proved that the MLE is the best estimator in presence of large samples ((Hosking

and Wallis, 1987)), the asymptotic behaviour of this method is known to be the

best possible. But for small samples (≤ 100 values) the fit is not always good and15

the method is outperformed by other techniques ((Hosking and Wallis, 1987)).

Moreover another problem of the MLE is that sometimes the numerical algorithm

used to estimate the maxima fails to converge to the local maxima. A robust

and powerful computational method must be used to find the maxima avoiding

convergence problems. The MLE estimator is described by the log of the maximum20

likelihood function: L(x;α, ξ) =
∑n

i=1 log f(xi;α, ξ):

L(x;α, ξ) =















































−n logα− (1 + ξ)

ξ

n
∑

i=1

log
(

1 + ξ
xi
α

)

, ξ 6= 0

−n logα− n
x̄

α
ξ = 0

(2.28)

the derivatives by respect to ξ and α for fixed u are the score functions. Solving

the system of equations of the score functions permits to find the values of ξ and α.

Numerical methods are required to maximize the L function. Some numerical im-

provements, useful to estimate parameters with MLE, was proposed by Grimshaw25

(1993).

• Moments estimator (MOMENTS). It represents the simplest GPD estimator,

it is based on the mean and the variance of the distribution. The method is

theoretically applicable only for values of ξ < 1/2 since for ξ → 1/2 the variance

tends to be infinite. Hosking and Wallis (1987) suggest to use the MOMENTS
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estimator for ξ < 1/4 where the estimator is unbiased. When ξ ≈ 0 the accuracy

of the method is close to the MLE estimator. Nevertheless we must note that the

moments method is very sensible to outliers, in fact the mean and the variance

are statistical quantities lacking of robustness: a single outlier could dramatically

change all these quantities. Given the mean

m =
1

n

∑

i

xi

and the variance of data

s2 =
1

n− 1

∑

i

(xi −m)2

the relation with the shape and scale parameters is

ξ =
1

2

[(

m2

s2

)

− 1

]

, (2.29)

α =
1

2
m

[(

m2

s2

)

+ 1

]

(2.30)

The method is useful for values of ξ < 1/4 an valid when ξ < 0.5, outside this

interval the variance s2 is infinite and the method is not applicable. For values of

ξ ≈ 0 the accuracy of the method is comparable to the MLE estimator. Confidence

intervals for ξ and α are given by Hosking and Wallis (1987).5

• Probability Weighted Moments estimators (PWMU and PWMB). The

probability-weighted moments PWM were introduced by Greenwood et al. (1979)

and represent an alternative to the ordinary moments. As for the MOMENTS

estimator, the parameters can be expressed as a function of PWMs. The PWM

estimator is particularly advantageous for small datasets because the probability10

weighted moments have a smaller uncertainty than the ordinary moments. The

best performance is reached for ξ ≈ 0.2 with light breakdown for negative shape

values. Hosking andWallis (1987) give two definitions of PWM, unbiased (PWMU)

and biased (PWMB), but the difference can be detected only for small samples.

The probability-weighted moments PWM are defined by15

Mp,r,s = E{Xp[F (X)]r[1− F (X)]s} =

∫ 1

0
[x(u)]pur(1− u)sdu (2.31)
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where E is the expectation value, and F (X) a distribution of a random variable

X, x(u) is the quantile function. Linear combinations of the quantities

αr = M1,0,r =

∫ 1

0
(1− u)rx(u)du (2.32)

βr = M1,r,0 =

∫ 1

0
(u)rx(u)du (2.33)

are used to define the L moments; introduced by Hosking (1990) they are directly

related to the measures of scale, location and shape of the probability distribution.

For the GPD the L-moments of shape and scale parameters are obtained by the5

simple relations:

ξ =
m

m− 2w
− 2, (2.34)

α =
2wm

m− 2w
(2.35)

where

w =
1

n

n
∑

j=1

(1− πjX(j)), πj =
j + γ

n+ δ
, j = 1, 2, ..., n

and X(1), X(2), ..., X(n) are the order statistics of random variable X. Note that πj

is a plotting position rule. The empirical values γ = −0.35 and δ = 0 are given

by Hosking and Wallis (1987) and they are chosen with the purpose to minimize

the bias of the estimator specially for small samples. The method is usable for10

values of ξ less than 0.5. Confidence intervals can be found in Hosking and Wallis

(1987). In the same paper two versions of the PWM estimators are proposed: the

PWMU (unbiased estimator) and PWMB (biased estimator). The main difference

is in the definition of w:

wr =
1

n

n
∑

j=1

(n− j)(n− j − 1)...(n− j − r + 1)

(n− 1)(n− 2)...(n− r)
Xj

with r = 1. The bias of the estimator is present only for very small samples15

(n < 50 ), asymptotically the PWMU and the PWMB are perfectly equivalent.

• Maximum penalized likelihood (MPLE). Coles and Dixon (1999) introduced

a weight function for the maximum likelihood function L(X, θ) valid for ξ > 0 .

This estimator corrects the tendency of MLE to diverge for small samples.
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The authors introduced a penalizing function for ML defined by:

P (ξ) =























1 if ξ ≤ 0

exp
[

−λ
(

1
1−ξ − 1

)α]

if 0 < ξ < 1

0 if ξ ≥ 1

(2.36)

where the authors suggest α = λ = 1. Note that for ξ ≤ 0 the MPLE corresponds

to the ordinary MLE.

• Minimum density power divergence (MDPD). This robust estimator has

been introduced by Juárez and Schucany (2004) and it is derived from the MLE5

using a special function of divergence between the fitted function and the data. A

constant is introduced to control the trade-off between robustness and efficiency.

This property could be very attractive when the datasets are contaminated. The

robust estimator defines the density power divergence between the densities f =

f(X; θ) and g = g(X) defined as10

dα(g, f) =

∫

χ

{

f1+β(x)−
(

1 +
1

β

)

g(x)fβ(x) +
1

β
g1+β(x)

}

dx (2.37)

where for fixed β > 0 the minimum density power divergence is defined as the

point in the space of parameters θ ∈ Θ that minimizes the distance between

the f function and the empirical density g. The parameter θ could be obtained

minimizing with respect to θ the previous formula expressed for the f family:

Hβ(θ) =

∫

χ
f1+β(x)dx−

(

1 +
1

β

)

1

n

n
∑

i=1

fβ(Xi; θ) (2.38)

finally the estimator for the GPD is obtained minimizing with respect to the shape15

and scale parameters ξ, α the equation:

Hβ(ξ, α) =
1

αβ(1 + β − βξ)
−
(

1 +
1

β

)

1

n

n
∑

i=1

1

αβ

(

1− ξ
Xi

α

)( 1
ξ
−1)β

(2.39)

Juarez and Scuchany proved that the MLE has the highest efficiency when GPD

data are uncontaminated, but when data arise from a combination of different

distributions then the MDPD is more efficient than the MLE. They suggest to use

β = 0.1 for a good estimate of moderate contaminated samples.20

• Likelihood moment estimator(LME).

This method is recent (Zhang, 2007) and was proposed to be a replacement of the

PWM and MOMENTS techniques. It is based on the well known relation for the
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mean of the excesses:

E[(1 + bY )r] =
1

1− rξ
, with 1− rξ > 0 (2.40)

where r is a constant (with r = 1 and b = − ξ
α ) and Y = X − u are the excesses.

Fixing a parameter r this last equation could be solved by respect to b using

numerical methods. Then with the relation derived from the maximum likelihood

score function:

ξest =
1

n

n
∑

i=1

log(1 + bestxi)

and the definition of b we can solve it to obtain α and ξ. The method promises

to be efficient, robust and simple although it is slow (at least in the R POT

implementation). The parameter r must be fixed a priori and Zhang suggests to

use a value of r = 0.5.5

• Median estimator (MED). This estimator is the most CPU time intensive, it

is designed to be resistant to outliers (see Peng and Welsh (2001)). Nevertheless

for pure GPD data its performances are very poor as shown by Juárez and Schu-

cany (2004). References for the median estimator could be found on Peng and

Welsh (2001). They compute the GPD parameter iteratively solving the group of10

equations

α = − ξ

2−ξ − 1
median{xi} (2.41)

z(ξ) = median

{

1

ξ2
log

(

1− ξ
Xi

α

)

− (1− ξ)Xi

αξ − ξ2xi

}

(2.42)

where z(ξ) is subject to several special conditions and can converge if some starting

point ξ, α is provided close to the real values.

Numerical packages containing the implementation of these estimation techniques can

be found in the R package POT created and maintained by M. Ribatet (more references15

in Ribatet (2007)).

2.10.2 Summary of fit methods for the GEV

In this section we’ll expose some remarks on the fit methods available for the GEV

distribution. The methods for fitting the GEV are similar to those used to fit the GPD.

The same theory of PWM and MLE could be found in the cited works of Hosking, or20

with greater detail for the PWM in Diebolt et al. (2008). Note that the fit of the GEV

has not the simple method of Moments, then it is necessary to use numerical tools. For
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instance for the PWM method (page 36 of Diebolt et al. (2008)) one needs to solve the

system:


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








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

β0 = µ− α
ξ [1− Γ(1− ξ)]

2β1 − β0 =
α
ξ Γ(1− ξ)(2ξ − 1)

3β2−β0

2β1−β0
= 3ξ−1

2ξ−1

(2.43)

where the βr must be computed with the estimator

β̂r =
1

n

n
∑

i=1

(

r
∏

l=1

j − l

n− l

)

Xj,n

and Xj,n are the reordered data of the sample. Note that in the 2.43 we have changed

the GEV parameters to be coherent with the notation of this work (in the reference5

ξ = γ and α = σ ).
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Exploring hydrological databases

3.1 Basic Exploratory Statistics

In this chapter we analyse two different hydrological databases of cumulated daily pre-

cipitation. The first one is derived from the former Servizio Idrografico Italiano, section5

of Cagliari Sardegna (Italian Hydrographic service) and consists of 394 stations with

60 years of daily data (from 1920 to 1980) 1 , the second one is an American database

freely available from the web site of the NOAA (National Oceanic and Atmospheric

Administration) and it consists in 1582 stations situated mainly in US and recorded in

a period of 130 years (see below for details).10

Our analysis will be an application of Exploratory Statistics to data, avoiding, if possible,

any a priori hypothesis with a critical approach to estimators and statistical modelling.

The starting point is the description of the databases with basic statistical tools (mean,

median, variance) and ensure the quality of data looking for outliers, artefacts or errors

in the datasets. Then we’ll perform a test to choose the most suitable statistical model.15

We have theoretical arguments to prefer distributions like the GEV and the GPD for

the data description, nevertheless we’ll use a test (L-moment ratio diagram) to find

experimentally the best distribution for the datasets. Finally, in Chapter 4, using the

best stations among these databases we’ll stress the performances of the chosen statistical

model .20

In detail the analysis will follow this schema:

• Basic exploratory statistics (mean, variance, . . . )

• test for GPD/GEV choice

1The national service was dismissed in 2002 and its competences passed to the regional authorities

57
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• Graphing techniques to find outliers and geographical distributions

• Selecting a subset of stations to test some estimator

• test for rounded data, test of GOF

• tests for threshold selection

We’ll try to make our analysis in parallel side by side for the two databases. The reader5

is invited to refer to the previous chapters for the theory of the tools used in the analysis.

3.2 The NOAA-NCDC daily precipitation database

The NOAA-NCDC daily rainfall database (”NOAA-NCDC” or simply ”NCDC” in the

rest of the thesis) is available at

10

http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.DAILY/.FSOD/.PRCP/.

The archive consists of 1582 weather stations of US army/navy mainly from the United

States and parts of South Pacific and Europe. Each station is identified by its WBAN

number (Weather Bureau of Army and Navy), all data samples have the same length:15

N = 47846 days = 131 years starting from 1 Jan 1869 to 31 Dec 1999, but only a few

stations have more than a century of data. The station list, their geographical coordi-

nates and some useful metadata could be found in the file:

http://mi3.ncdc.noaa.gov/mi3report/MISC/wbanmasterlist.xls20

The data format is NetCDF (http://www.unidata.ucar.edu/software/netcdf/), the

precipitation is measured in inches, using units of 0.01 inches. In our analysis we con-

verted the values to mm. Several stations have small series of precipitation data because

they worked only during the world wars and then they were dismissed. However 40325

stations have more than 3000 rainy days. The table (3.1) summarizes some general basic

statistics on the NCDC database.

The NCDC daily precipitation database have the 90% of stations with a median precip-

itation lower than 6 mm, the means are more elevated (the difference between median

and mean is typical of skewed distributions like the GPD). The maximum daily recorded30

rainfall is around 1 m of water. The 90th quantile of the precipitation is around 200

mm of daily cumulated precipitation indicating that strong rainfalls are not unusual in

http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.DAILY/.FSOD/.PRCP/
http://mi3.ncdc.noaa.gov/mi3report/MISC/wbanmasterlist.xls
http://www.unidata.ucar.edu/software/netcdf/
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Qlevel elevation length nozeros mean median 90th quantile max

0% -13.12 675 405 1.31 0.51 11.89 13.21

10% 9.15 1960 613 3.53 1.78 46.18 51.31

20% 18.91 3255 834 4.58 2.03 61.72 68.58

30% 39.04 4843 1199 5.68 2.54 77.04 85.60

40% 84.48 6267 1752 6.63 3.05 91.67 101.85

50% 149.15 8028 2268 7.78 3.56 108.81 120.90

60% 228.14 11381 2910 8.78 4.06 124.13 137.92

70% 311.40 14369 3746 9.69 4.57 141.27 156.97

80% 471.23 17192 4824 10.96 5.08 170.08 188.98

90% 1124.84 18241 6058 12.33 5.84 209.17 232.41

100% 3049.70 37852 15701 27.85 10.41 845.82 939.80

Tab. 3.1: The NOAA-NCDC database quantiles levels (increasing top-down) for the
quantities : the elevation (m) of the stations, the length of the sample and the number
of rainy days, the mean (mm), the median (mm), the 90th quantile and the maximum
of each station (mm).

the NCDC stations. Note that a 10% of stations are in mountain over 1000 m, while

the highest station is at 3050 m.

3.2.1 Outliers check

Following the techniques to find the outliers (cfr. 2.5.1) we perform the check of two

outliers per single dataset using the Z -score value test. The criteria will be finding the5

values that have a Z -score value more than 3 times the previous Z -score value in the

sorted sample 2. For the Z -score computation we use the robust version with median

and MAD estimators on the place of the mean and the standard deviation.

2We can give to this ratio a more precise meaning. If we make some hypothesis on the probability of
the excesses (theoretically a GPD) we can compute, using Monte Carlo techniques the probability that
for finite samples the Z -score ratio between the two greatest values will be more than 3. In the appendix
A we perform this computation and give a table of confidence.
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WBAN rainy days max(mm) value ratio Z -score ratio

13729 1462 857.25 7.09 7.30

13807 2607 534.92 6.42 6.66

14609 2249 812.80 6.30 6.44

14895 889 584.20 6.71 6.89

14911 3162 762.00 3.00 3.01

15620 7406 655.32 6.62 6.81

22604 6838 647.70 3.48 3.51

23072 1044 773.43 14.85 15.42

23160 969 762.00 13.16 13.66

24132 3863 939.80 21.14 21.98

26407 568 121.92 2.96 3.06

34051 1610 226.06 5.46 5.78

3969 1925 762.00 9.26 9.55

94224 6059 375.16 3.09 3.19

94728 5794 685.80 5.35 5.49

Tab. 3.2: The potential outliers of the NOAA-NCDC database. The first column is
the WBAN code of the station, the second the number of rainy days in the time series,
the third the maximum of the station, the fourth the rate of two extreme maxima, and
the fifth the Z -score ratio of the two extreme values

We found 15 potential outliers, however only the values from the stations (23072, 23160,

24132, 3969) are possible outliers; note that the Z -score ratio between the two extreme

values of each time series is greater than 9, that is the outlier is more than 9 times the

rest of the sample.

In a special case (station 24132) we have other informations that allow to confirm that5

the big value (almost 1 m of daily cumulated precipitation) is an error. The station is

in Bozeman Montana, another database (with a graphical output ) at the web page
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http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?mtboze

from the Western Regional Climate Centre reports for this station no more than 2.6

inches = 66 mm in a period of time covering 1892 - 2005. Then we can be confident

that the value exceeding 21 times the mean precipitation (or 14 times the maximum5

data from the other database) is an error (probably a transcription error) and can be

removed (see also the Fig. 3.1).
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Fig. 3.1: Daily cumulated rainfall for the Bozeman (MT) station, with the 939 mm
outlier marked in red. Note that the value is actually 14 times greater than the next
maximum.

A part from these specific cases (4 severe outliers) we are confident that using the entire

database and over 400 station with at least 3000 rainy days, the influence of similar

outliers will be weak, specially using robust tools like median and MAD that not suffers10

of the presence of outliers 3.

3.2.2 Geographical distribution of heavy rainfalls

The geographical distribution of heavy rainfalls ( Fig. 3.2 ) is quite complex but it

is clear that the tropical and oceanic effects (hurricanes in the Gulf of Mexico) are

responsible of the strongest events. In fact the daily cumulated averages are very high15

in the tropical or subtropical region of US decreasing from south to north along the

3 in the rest of the work we will use the median to estimate the shape and the scale parameter for
the GPD model specially in the cases where the correct determination of the threshold it is not a trivial
task.

http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?mtboze
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Mississippi: from Alabama to the Great Lakes region. The Rocky Mountains stop the

rain and in this region there’s no severe events recorded on this database (cfr. also Fig.

3.3 where the 90th quantile identify the rainiest stations). Finally the pacific coast is

more rainy, specially the Washington state and the northern California.

A confrontation with the historical mean annual cumulated precipitation (source Oregon5

Climate Service) in Fig. 3.4 shows that the behaviour of the median daily cumulated

rainfall is similar to the annual averages: rainy regions have high daily precipitation and

this rule is valid also for severe events expressed with the quantiles.

Fig. 3.2: The median (mm/day) of the daily cumulated precipitation for the NOAA
database in the US region. The black points are the stations. Note the geographical
patterns,the rainy regions are near the Gulf of Mexico,while the Rocky mountains stop
the rain.

TECHNICAL NOTE. The geographical plots are obtained using a triangular tessellation

of the plane such as Delaunay triangles. The missing values are interpolated linearly10

from the nearest neighbours available on a regular grid.

3.3 The Sardinian daily precipitation database

The Sardinian database (”SARD” in the the following chapters) is formed by 394 stations

covering all the island with regularity (see the distribution of the black points in the Fig.

3.5). The classes of precipitation for median, quantiles and maxima are in the table 3.3.15

Only the 10% of stations is above 700 m (mountain) with the highest station at 1071 m.

The mean is always greater than the median confirming that the distribution is right
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Fig. 3.3: The 90th quantile (mm/day) of the daily cumulated precipitation for the
NOAA database in the US region.The black points are the stations. The rainiest
stations have also the strongest events but the pattern it is not always respected.

Fig. 3.4: The US averaged precipitation from the Oregon Climate Service. Note that
this plot is the annual average (computed in a century) and not the daily cumulated
average as the other plots.
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Qlevel elevation length nozeros mean median 90th quantile max

0% 1 366 50 4.52 1.20 28.80 32

10% 17 3575 803 6.51 3.20 69.80 77.56

20% 50 6244 1256 7.35 4 80.86 89.84

30% 107.40 7233 1724.60 8.03 4.50 89.06 98.96

40% 186.40 10940 2572.80 8.58 5 97.54 108.38

50% 272 15645 3092 9.27 5.20 108 120

60% 350 17547 3369.60 9.84 6 126 140

70% 438.20 17988 3674.20 10.43 6.30 144.04 160.04

80% 559.80 18197 4212 11.26 7 177.59 197.32

90% 714.20 18263 4684.40 12.33 8 254.30 282.56

100% 1071 21550 7869 15.98 11 489.60 544

Tab. 3.3: The Sardinian database quantiles levels (increasing from top to bottom) for
the quantities : the columns are the elevation of the stations (m), the length of the
sample and the number of rainy days, the mean (mm), the median (mm), the 90th
quantile (mm) and the maximum (mm) of each station.

skewed, like in the NOAA database there is a 10% of stations with daily cumulated

precipitation with more than 200 mm of water. Finally the 90% of the stations have at

least 800 rainy days.

3.3.1 Outliers check and geographical distribution

The check of the outliers follows the same rules of the NOAA analysis. But in this case5

we have a single station with a Z -score ratio greater than 3: the station 47 (Uta (CA))

has the maximum value of 400 mm of daily cumulated and the previous value 134 mm

with a Z -score ratio of 3.01. We do not consider this value a true outlier 4.

The picture of the 90th quantile (see Fig. 3.6 )gives us a clear indication of the climate

in Sardinia. The eastern regions exposed to the influence of the Thyrrenian sea are the10

4The station of Uta, Cagliari was interested in a severe flood in the 12th of November, 1999
when the daily cumulated rain was of 375 mm (see the report compiled by the regional agency
http://www.sar.sardegna.it/pubblicazioni/periodiche/analisi_10.2008-04.2009.pdf)

http://www.sar.sardegna.it/pubblicazioni/periodiche/analisi_10.2008-04.2009.pdf
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rainiest and with the most extreme events. Another place of extreme events is the Gulf

of Cagliari and particularly the region of Capoterra interested in several floods in the

last years with daily cumulated rainfalls greater than 300 mm . Note that the median

daily cumulated rainfall (Fig. 3.5) is not reflecting the climate of the island: in this

case the internal regions have high values of daily cumulated that not coincide with5

the mountains where, as expected, the averaged annual precipitation is greater (see the

report of the regional agency available at

http://www.sar.sardegna.it/pubblicazioni/periodiche/analisi_10.2008-04.2009.pdf

10

for a detailed discussion of the climate in the Sardinia island).

3.4 Empirical cumulative distributions

The empirical cumulative distributions (ECDF) and the probability density plots (cfr. respec-

tively the section 2.2.1 and 2.2.2) are the standard tools to analyse the shape of a probability

distribution. We apply these techniques to both databases but plotting only the most interesting15

cases of the (1976 = 1582 + 394) stations.

3.4.1 NOAA-NCDC database

In the NOAA-NCDC database we check the ECDF using the semilog plot of the survival function

y = 1 − F (x) ( where F (x) is the empirical cumulated frequency ) in order to magnify the

behaviour of the data on the distribution tail. We highlight the following cases of candidate20

errors and candidate outliers.

3.4.1.1 Station 24132 (Bozeman MT)

This station is the one described in the outliers check, the ECDF plot (Fig. 3.7) in y semilog

scale confirms the presence of the outlier on the far right lower region of the plot.

3.4.1.2 Station 13873: Athens Clarke GA25

The station 13973 of Athens Clarke, Georgia has an ECDF semilog plot (Fig. 3.8 ) with a straight

diagonal line. This indicates a low shape parameter, that is the station could be described with

an exponential distribution (in this case the fitted GPD parameter gives ξ = 0.013 close to the

exponential form of the GPD ξ = 0, see the GPD definition on the first chapter).

http://www.sar.sardegna.it/pubblicazioni/periodiche/analisi_10.2008-04.2009.pdf
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Fig. 3.5: The median (mm / day) of daily cumulated rainfalls in Sardinia. The black
points are the stations.
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Fig. 3.6: The 90th quantile (mm/day)of daily cumulated rainfalls in Sardinia. The
black points are the stations.
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Fig. 3.7: ECDF in semilog scale of the Bozeman station with the candidate outlier on
the extreme right region of the plot.

3.4.1.3 Station 24103: Dugway proving grounds UT

The station of Dugway proving grounds ( Utah ) has a quite strange ECDF semilog plot (Fig.

3.9). The plot shows a S curve with a set of detached points on the right of the plot that have

a rapidly decreasing frequency. The form of the ECDF suggests the presence of more than one

population, one for the lower data, the other one for the higher.5

A check of the scatter plot of the station (Fig. 3.10) and the successive detail (Fig. 3.11) helps

to understand the situation. The bigger population forms a cluster of 30 values (Fig. 3.11) with

daily precipitation above 100 mm for 30 consecutive days. The Utah region is semiarid and far

from the tropical zones exposed to Monsoon (not present in the continental US territory) where

strong continuous precipitations are possible. In this case 30 days of consecutive heavy rain are10

certainly an error in the database.
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Fig. 3.8: ECDF in semilog scale of the Athens Clarke station. The GPD model could
be substituted by a simple exponential law (shape parameter close to zero).

3.4.2 Robust statistics on contaminated data: an example

Using the data from the Dugway station we can try to investigate the power of robust estimators:

median and MAD versus mean and standard deviation. We compute the influence of the data

contamination on the estimator introducing the formula:

ηr =
|θc − θ|

θ

where θc is the estimator applied to contaminated data and θ the estimator applied to non-

contaminated data. Note that ηr varies between 0/∞. For values near zero the estimator is

not sensible to the contamination, for high values the estimator is particularly sensible. For the

Dugway station the results are summarized in Tab. 3.4 .5

note that the median is unaffected by the outliers (ηr = 0) while the mean is changed by the

53% and the standard deviation more than 80%.
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Fig. 3.9: ECDF in semilog scale of the Dugway Proving grounds station. Note the S
for of the ECDF that can be interpreted only as a result of two populations one for the
lower part of data and the other one for the higher part.

estimator uncontaminated data contaminated data ηr

median (mm) 1.524 1.524 0%

mean (mm) 2.852 6.08 53%

s (mm) 3.71 22.24 83%

MAD (mm) 1.506 1.883 20%

Tab. 3.4: The result of the data contamination (from the Dugway station) for different
estimators. Note the performances of the median: totally unaffected by the outlier.
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Fig. 3.10: Scatter plot of the Dugway station. The population on the far right is above
100 mm and it forms at this resolution a vertical line.

3.4.3 Sardinian database

The ECDFs of the Sardinian database are interesting for different reasons. While we do not find

any evident artefacts like the Dugway station (Fig. 3.10 ) the plots (Fig. 3.12 and Fig. 3.13)

of the Lunamatrona weather station show some interesting features: the points proceed with a

zig-zag behaviour.5

To understand this non trivial behaviour we need to introduce a fundamental characteristics of

the rain gauges measuring the daily cumulated precipitation. All rain gauges, like pluviometers

and pluviographs have a sensitivity level representing the minimum amount of measurable water.

All measures are multiples of this value (0.1 mm or in the Italian and European devices and 0.01

inches in the US tools). The time series of a rain gauge (and of all measuring instruments) are10

discretized to the sensitivity level.

In the case of the Lunamatrona plots (Fig. 3.12 and Fig. 3.13) we are observing the effect of the

discretization, however the sample is not discretized to the only level of 0.1 mm . As stated by
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Fig. 3.11: Scatter plot of the Dugway station: detail. Note the presence of a suspect
population of high values for 30 consecutive days.

Deidda and Puliga (2006) and Deidda (2007) the values of the dataset were discretized with a

rounding-off rule, rounding the values to multiples of the following vector of rounding-off rules.

∆ = (0.1mm, 0.2mm, 0.5mm, 1.mm, 5mm)

To visually check the discretization of the dataset we can plot a graph (Fig. 3.14) of the fre-

quencies for each possible measure (a multiple of 0.1 mm ) showing, with different symbols, the

multiple values of 0.5 mm and 1 mm by the factor 10 (ex. 1.5 mm, 2.5 mm and so on).5

Every value multiple of 0.5 mm has an anomalous frequency much higher than the theoretical

expected one (Fig. 3.15). Moreover in the theoretical sample the values multiple of the rounding-

off sensitivity (0.1 mm ) are sometimes above the neighbours frequencies, other times below the

neighbours ones (see Fig. 3.15 ). In the sample from the Sardinian database the frequencies of

the ∆ vector multiples are always above the values of their neighbours (Fig. 3.14): this simple10

feature allows to build an easy test to identify the presence of spurious rounding-off in the data

(see next section).
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The presence of the rounding-off is of relevance also for the fit of the statistical models over the

data. We show in the section 3.5 that the most suitable model for the precipitation data is the

GPD. However if we fit the GPD model on the Lunamatrona dataset using different thresholds

we obtain the plot in Fig. 3.16 . In this case the variability of the fitting model is extreme, the

shape parameter varies, with notable spikes, in the interval ξ ∈ (−0.2, 0.6) while for theoretical5

reasons (stability of the GPD distribution) we expect that after an initial transient the shape

parameter must stay almost constant. Indeed a confrontation with the station 235 (Ozieri SS)

( Fig. 3.17 ) shows that the value of the shape is more constant at least for low values of

the threshold (when the threshold is too high the variance of the estimator increases and the

parameter shows a volatile behaviour). Note that neither in this case we can exclude the presence10

of the rounding-off for the dataset.

As a final plot we report the same plot for the shape versus threshold for a station of the

NOAA-NCDC database (Fig. 3.18) in this case the rounding is less evident or perhaps absent.

Fig. 3.12: ECDF plot of the Lunamatrona station. Note the ”zig-zag” behaviour of
the low values.

NOTE. To deal with the rounding-off rules we are forced to use robust estimators and a statistics

obtained fitting the data with a threshold range. This technique described in Begueŕıa (2005)15
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Fig. 3.13: ECDF plot of the Lunamatrona station (semilog scale). The ”zig-zag”
behaviour is more evident.

consists in choosing a range of values as a possible threshold and use them to improve the statistics

of fitted parameters. That is instead to look for the best candidate value of the threshold we

can use a range of values and make a statistics with medians 5 of the estimated parameters at

the different levels of the threshold. Even in the Lunamatrona dataset if we use this approach

we can still obtain valid informations about the fitted parameters .5

3.4.4 Tests for rounding-off

In this section we’ll describe a simple non parametric test to check the presence of anomalous

frequencies in the dataset due to the rounding-off. Our goal is to identify the values of the

precipitation that are artificially rounded-off with the result of an increasing in frequency.

Let

∆ = (k · a, 2k · a, . . . , nk · a) a = 0.1 mm

5The median estimator is specially suitable to deal with rounded-off datasets because it has a low
sensitivity to the contaminated values.
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Fig. 3.14: Anomalous frequencies for the Lunamatrona station (007). The multiples
of 0.5mm have anomalous frequencies.
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Fig. 3.15: Frequency of a synthetic samples rounded at 0.1 mm. The values are
obtained with a simulated GPD distribution with similar parameter of the Lunamatrona
station.
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Fig. 3.16: Shape parameter fitted for the station 007 Lunamatrona at several thresh-
olds. Note the high volatility of the graph specially for values corresponding to values
multiple of 0.5mm.
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Fig. 3.17: Shape parameter fitted for the station 235 Ozieri at several thresholds. Note
that neither in this case we can exclude the presence of rounding-off in the dataset.
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Fig. 3.18: Shape parameter fitted for the NOAA-NCDC station WBAN 12838 at
several threshold levels.

where k ∈ (1, 2, . . . , n), where ∆ is our vector of rounding-off rules. For instance our sample is

rounded-off at multiples of k = 5 or multiples of k = 10 of the sensitivity a = 0.1 mm. We want

to discover the values of k where the sample is artificially rounded.

Our starting point we’ll be a simple observation: the frequency of the values in phenomena like

rainfalls is a monotonic decreasing function, that is the strongest events are less frequent than5

the mild or weak events. Looking to the Fig. 3.14, where we drawn, with different symbols,

the points from the values of the rounding-off rules vector (and its multiples). Note that these

values are peaks: the anomalous frequencies are almost always above the other neighbouring

points (like in the Fig. 3.19 case a). Conversely for points with an ordinary decreasing frequency

function we expect that in probability the point and its two neighbours are disposed like in the10

Fig. 3.19 case b).

We expect that counting the number of the occurrences of the case a) or case b) (refer to Fig.

3.19) to find significant differences for values artificially rounded and for values that are not

rounded.

We can build a simple statistical test in this way:15

1. choose a value of k the multiple factor of the sensitivity level 0.1 mm

2. build the frequency plot with value steps of 0.1 mm , let f1, f2, · · · , fn the correspondent

frequencies
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3. evaluate the two cases of Fig. 3.19: A + C < 2B or A + C > 2B (we can call these two

expressions triangle rule) where











































A = (j − 1) · k

B = j · k

C = (j + 1) · k

(3.1)

4. count the number of cases a) and b) giving the value

ca(j) = −1

and

cb(j) = 1

to each case respectively, then divide the sum of the cases by the number m of multiples

of k counted in the sample, let

Sk =
1

m

m
∑

j=1

ca,b(j)

the value of this sum.

5. repeat from 1) with a different value of k.

If we compute the sums Sk we expect that in correspondence of the values of k artificially rounded5

the sum is negative, while for values of k that are not multiples of the unknown ∆ rounding-off

rules the Sk will be positive. In other words for rounded-off values the most frequent case is A

(see Fig. 3.19 ) while for non rounded-off values the most frequent case is B.

The Fig. 3.20 shows the result of the test applied to different values of the multiple k to the

Sardinian database. It is evident that the values multiple of 5 units (5,10,15 . . . ) have a different10

behaviour than the multiple of 6, and 7. In shaded colours we represent also the curve obtained

using synthetic GPD samples rounded only at the base resolution of 0.1 mm 6. The test is able

to confirm the presence of rounding and to find the values of rounding (in this case every 5mm).

If we apply the same test to the NOAA database we obtain results similar but less evident (Fig.

3.21): it is less probable that data were rounded-off.15

3.5 Choosing the statistical model for data analysis

Until this moment we did not make any explicit hypothesis on the data distribution. Following

the rules of the Exploratory Statistics we checked the outliers, the ECDFs and the presence of

artefacts like the rounding-off of the samples. To choose the most appropriate statistical model

6In the case of a theoretical sample, the frequencies are always decreasing leading to a sum value Sk

statistically positive but with a marginal possibility to be negative.
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Fig. 3.19: Setup of the rounding test: A) the frequency of the rounded value is greater
than frequency of the two neighbours, B) the frequency of the rounded value is lower
than the frequency of the two neighbours
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Fig. 3.20: Distribution of the sums of triangle rules for different values of the multiple
factor k,SARD database.



Chapter 3. Exploring hydrological databases 80

−0.10 −0.05 0.00 0.05 0.10

0
5

10
15

Distributions of the triangle rule sums: NOAA−NCDC database

x

f(
x)

round multiple of 0.6mm
round multiple of 0.5mm
round multiple of 0.7mm
round multiple of 1.mm
theoretical density

Fig. 3.21: Distribution of the sums of triangle rules for different values of the multiple
factor k, NOAA-NCDC database

we can make use of a tool introduced in the previous chapter in the section 2.9: the L-Moments

ratio diagram.

We apply this ratio diagram to the SARD and the NOAA-NCDC database confronting different

distributions like the GLD (Generalized Logistic), the P3 (Pearson type III), the LN (LogNormal

) and the GEV. The theoretical curves could be obtained with Monte Carlo tests (computing the5

L-Moments ratios at different values of the shape parameter) or using polynomial approximations

(as in Deidda and Puliga (2006)).

The results of the test are shown in Fig. 3.22 and Fig. 3.23 for the two databases. The GPD

behaviour is strictly confirmed by the plots. We’ll use this fact as a general indication for the

next analysis, assuming that our databases of daily cumulated rainfall follow a GPD distribution.10

3.6 Applying the GPD model

The first tests to perform with the GPD model are the fits of the distribution parameters (shape

and scale). For the threshold we cannot assume a fixed value, it is most convenient to use a range

of values (as in Begueŕıa (2005)) and make a simple statistics on the estimated parameters. For

practical purposes we evaluate the GPD model in an range of thresholds (10th, 40th quantile),15

this interval is arbitrary (see the section 1.8 for a detailed discussion) but allows to capture most

of the variability of the estimators avoiding the problems at the extreme regions. Applying this
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Fig. 3.22: L-Moments ratio diagram on the Sardinian database for several theoretical
curves.
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Fig. 3.23: L-Moments ratio diagram on the NOAA-NCDC database for several theo-
retical curves.
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Qlevel elevation xi dxi alpha dalpha 90th quantile median MAD

0% -13.12 -0.05 0.01 1.05 0.09 11.89 0.51 0.38

10% 9.15 0.13 0.02 3.54 0.17 46.18 1.78 1.88

20% 18.91 0.16 0.03 4.49 0.21 61.72 2.03 2.26

30% 39.04 0.19 0.03 5.60 0.25 77.04 2.54 3.01

40% 84.48 0.21 0.03 6.56 0.29 91.67 3.05 3.77

50% 149.15 0.23 0.04 7.73 0.34 108.81 3.56 4.52

60% 228.14 0.25 0.05 8.66 0.39 124.13 4.06 4.90

70% 311.40 0.28 0.05 9.36 0.46 141.27 4.57 5.65

80% 471.23 0.33 0.06 10.28 0.56 170.08 5.08 6.40

90% 1124.84 0.42 0.08 11.46 0.71 209.17 5.84 7.16

100% 3049.70 0.98 0.37 22.30 1.79 845.82 10.41 14.31

Tab. 3.5: Quantiles levels (increasing from top to bottom) of the estimated GPD
parameters and errors for the NOAA-NCDC database: elevation (m), shape, error
on shape, scale (mm), error on scale (mm), 90th quantile (mm), median and MAD
estimators (mm).

rule to the dataset we obtain the following tables ( 3.5 and 3.6) summarizing the quantiles for

the GPD parameters of the two databases.

3.6.1 NOAA-NCDC database GPD estimated parameters

The Tab. 3.5 represents the quantiles of the GPD estimated parameters with the threshold u

varying in the interval (10th,40th) quantiles. We note that the 90% of data are distributed with5

a shape parameter less than 0.42 and only a small percentage over 0.5. These values needs to be

investigated because the values of shape above 1/2 indicate an infinite variance (or probably the

presence of errors in the dataset like the case of the Dugway station) or perhaps these samples

are too shorts for a good fit (see the section 3.6.3 for a detailed discussion).
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Qlevel elevation xi dxi alpha dalpha 90th quantile median MAD

0% 1.00 -0.49 0.02 4.99 0.24 28.80 1.20 1.48

10% 17.00 0.01 0.02 7.40 0.29 69.80 3.20 3.85

20% 50.00 0.04 0.02 8.08 0.31 80.86 4.00 4.45

30% 107.40 0.06 0.03 8.49 0.33 89.06 4.50 5.19

40% 186.40 0.08 0.03 8.93 0.36 97.54 5.00 5.78

50% 272.00 0.11 0.03 9.34 0.40 108.00 5.20 5.93

60% 350.00 0.14 0.03 9.73 0.44 126.00 6.00 6.23

70% 438.20 0.19 0.04 10.10 0.50 144.04 6.30 6.67

80% 559.80 0.24 0.05 10.68 0.59 177.59 7.00 7.12

90% 714.20 0.33 0.07 11.63 0.80 254.30 8.00 7.41

100% 1071.00 0.59 0.43 16.84 3.50 489.60 11.00 10.38

Tab. 3.6: Quantiles levels (increasing from top to bottom) of the estimated GPD
parameters and relative errors for the Sardinian database: elevation (m), shape, error
on shape, scale (mm), error on scale (mm), 90th quantile (mm), median and MAD
estimators (mm).

3.6.2 Sardinian database GPD estimated parameters

The table 3.6 represents the quantiles of the GPD parameters estimated on the Sardinian

database. Even in this dataset are present values of shape above 1/2 indicating the possible

presence of errors in the datasets or samples too short for a good fit (see 3.6.3).

3.6.3 Exploring stations with an high shape parameter5

To explore the stations with a shape parameter greater than 1/2 we extract them from the

databases and we proceed in two directions: a) increasing the range of the explored thresholds

b) studying the behaviour of the shape with the size of the dataset. In fact we suspect that a)

the high shape value arises from an incorrect choice of the threshold b) we are fitting stations

with too few points. However we remember that the GPD statistics is only a model of univariate10

data it cannot describe the complexity of the datasets far from the asymptotic limits. In fact in

our analysis we assume that our data are homogeneous (that is they derive from a single type of
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mathematical distribution) but we cannot exclude that in some station several types of climate

are mixing different populations of precipitation.

In the NOAA-NCDC database there are 54 stations with shape parameter greater than 0.5, but

only 34 have more than 1000 positive points and 16 have more than 2000 (in small samples the

natural volatility of the EV values - that fluctuates for several orders of magnitude - can lead to5

inaccurate fits). A further analysis shows that several of high shape stations are the ones cited

for incorrect values (like in Fig. 3.10) reducing the number to 8 candidates in 1582 stations.

This number is small in confront of the total number of stations, then having no other infor-

mations about these datasets regarding other possible problems (like bivariate or multivariate

populations) we are forced to conclude that even non physical GPD models (remember that for10

ξ > 1/2 the variance is infinite) are present in real databases. Note however that it is possible

that longer time series from the same weather stations correct the problem as it can be an effect

of random fluctuations.

In the Sardinian database, where the presence of the rounding make evident the fluctuations in

frequency for low values, we found only 7 stations with shape greater than 1/2. This time the15

series have no evident errors (like the added values of the cited Dugway station), and they are

associated to the rainiest stations in Sardinia (where the maximum daily recorded cumulated

rainfall was greater than 300 mm ). In this case the points are not spurious (they are associated

to real floods reported in literature) then in absence of other indications we conclude that these

values are due to random fluctuations of the extreme quantiles of these dangerous stations. Again20

it is possible that longer time series from these stations decrease the value of the shape parameter

below the physical limit of ξ ≤ 1/2.

3.7 Geographical distribution of GPD parameters

The geographical distribution of the GPD parameters is reported on the Figg. 3.24 - 3.27. Note

that the shape parameter - at least for the Sardinian case - is similar to the distribution of the25

90th quantile indicating that an high value of shape is associated to severe daily precipitations.

3.8 An alternative hypothesis

In this paragraph we explore a simple alternative hypothesis to the GPD distribution for data

analysis. For its simplicity the exponential distribution

f(x, λ) = λe−λx λ, x > 0 (3.2)

is widely used in EV theory. The fit of this distribution is straightforward in fact λ = 1/m if30

m is the mean of the sample. Fitting a single parameter distribution allows to describe even

stations with few data and we do not need to discard any point or to look for a threshold. Here

we want to try a simple confrontation between the GPD and the EXP model in predicting the

maxima of each dataset. For this reason we organized a simple experiment:
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Fig. 3.24: Distribution of the GPD scale parameter in the NOAA-NCDC database.

• Fit the NOAA-NCDC datasets with the GPD and the EXP distributions, at a given

threshold level u = 5 mm, left censoring the data for both distributions in order to fit an

homogeneous sample.

• Compute the quantile of the probability level p = 1− 1/n if n is the length of each sam-

ple. Let qgpd(p), qexp(p), qdata(p) the computed quantile levels for the fitted distribution5

GPD and EXP and for the real data where qdata(p) = max(data). We assume that the

probability varies in the interval [0, 1− 1/n] in steps of 1/n (plotting position rule).

• Plot the distributions of qgpd(p), qexp(p), qdata(p)

the result is summarized in Fig. 3.28 where it appears clear that the GPD is more able than the

EXP distribution to guess the true level of the extremes. Note that the median (or the mean)10

of both methods are similar (with a little positive bias for the GPD distribution). We realized a

table 3.7 for median and mean. Note that median and mean of the EXP distribution are similar

(indicating a symmetric distribution centred around the value of 133 mm), while the GPD and

the data are not symmetric. Finally the GPD distribution overestimates the average value of

the maxima.15

We can conclude that even if the exponential model is not bad in describing the average maxima

of the database the GPD model is more suitable to describe the extreme values of the rainfall

databases. In the next chapter we investigate deeply the problem of the optimal threshold

estimation that is critical to improve the reliability of the model.



Chapter 3. Exploring hydrological databases 86

Fig. 3.25: Distribution of the GPD scale parameter in the SARD database.
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Fig. 3.26: Distribution of the GPD shape parameter in the NOAA-NCDC database.

Method mean (mm) median (mm)

data 155.2 133.3

GPD fit 213.5 164.7

EXP fit 134.3 133.3

Tab. 3.7: Mean and median of the maxima for the GPD and EXP fit methods and
for real data from the NOAA-NCDC database. The GPD overestimate the mean value
(remember that the GPD distribution is specially created for the extremes).

3.9 Final remarks on exploratory statistics

In this chapter we adopted a data oriented approach (borrowing an expression from the profes-

sional informatics) starting from the empirical distribution of data, checking for the outliers and

choosing the model in function of an important tool (the L-Moments ratio diagram) to guess

the most adapt statistical distribution. We noticed how the artefacts can affect the records, how5

they can change the statistics and influence the goodness of fit. The exploratory statistics is a

powerful technique for the analysis of data, but must be used with care. In fact some artefact

could be not evident and the confidence in ordinary tools like the mean and the variance of a

population can lead to errors in the estimate. We suggest every time it is possible to use robust

estimators that are less affected by outliers and other errors or features of the data. However10

even with these tools we still need to check the nature of the high value points. To do that we

need a statistical model otherwise we have no tools to extract the candidate outliers. Finally we

remember that a no doubt proof for detecting an outlier is a parallel check with another different
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Fig. 3.27: Distribution of the GPD shape parameter in the SARD database. Note the
evident orographic effect on the Thyrrenian sea side, where the strongest event appear.
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time series of the same station, lacking this information we can have only a proof in probability

building confidence levels for the suspected data.



Chapter 4

Improving the statistical models

4.1 Introduction

In the previous chapter we explored the hydrological databases to find a good model to describe

the data. We found that the GPD is the best candidate distribution for the datasets at least5

above an high threshold. As an alternative hypothesis we studied the performances of the

simple exponential distribution in predicting the maxima confronting it with the GPD model.

We encountered problems due to artefacts like transcription errors (true outliers) and corrupted

datasets with rounding-off rules. However we left behind some fundamental questions: a) what

are the performances of the estimators in the case of rounded-off data ? b) what is the best10

threshold to choose to apply the GPD model ? To answer to these questions we abandon for

a moment the exploratory approach and assume that data are distributed following a GPD

distribution with an unknown degree of contamination from spurious data or rounding. To

study the performances of the estimators on rounded-off data we generate synthetic samples

with rounding-off rules similar to those seen for real data in the previous chapter. Alternatively15

to find the optimal threshold we’ll use the NOAA dataset (that has a lower level of rounding-

off contamination) applying several tests described in literature. Finally we propose a new

methodology for threshold estimation based on quantiles functions.

4.2 Methods for optimal threshold determination

The methods to determine the optimal threshold of the GPD distribution can be divided in20

categories. We describe first the non parametric methods for optimal threshold selection, these

methods are interesting because they do not assume any hypothesis on the distribution of data,

they simply try to identify the region where the behaviour of the data starts to change from

non extreme to extreme. The graphical methods for threshold estimation are classical in the

theory of the GPD, where the plot of the mean of the excesses and the stability of the GPD25

shape parameter are widely used (for small databases) to find the starting point where the GPD

90
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model is valid. Then we describe the methods based on the goodness of fit statistics built on

the idea to find the optimal threshold in function of a test statistics indicating the validity of

the GPD model over the data . Finally a different category of tests is the kernel test statistics

of the asymptotic tail slope estimators (like the Hill tail slope estimator), this category of tests

checks the exponentiality of the log-transformed GPD data in the asymptotic region where the5

log-tail could be approximated with a straight line.

4.2.1 Non parametric methods

The Gerstengarbe plot (Gerstengarbe and Werner, 1989) is a simple graphical (but also numer-

ical) method to find the region where the GPD could be used. This method does not estimate

the best GPD fit nor uses a GOF statistics, but it divides the data distribution in two parts.10

The lower part is not suitable to be described as an extreme value distribution, while the upper

part could be fitted with extreme values distribution. The Gerstengarbe plot is based on the

sequential Mann-Kendall changing point test (Kendall, 1975).

Given n reordered random variables X1 < X2 < ... < Xn and the rank sum:

ti =

i
∑

j=1

Rj =

i
∑

j=1

rank(Xj) i < n

The Mann-Kendall statistics could be expressed by:15

u(ti) =
ti − E(ti)
√

σ2(ti)
, i = 1, ...n

E(ti) =
i(i− 1)

4

σ2(ti) =
i(i− 1)(2i− 5)

72

(4.1)

where E(ti) and σ2(ti) are respectively the mean and the variance of the sample. The series

of the statistics ui could be computed using an ascending order of the series X or a reversed

one. Calling u
′

i the reversed series the intersection between u
′

i and ui (as in Fig. 4.1 ) defines a

changing point as proposed in Gerstengarbe andWerner (1989). The main interest in this method

is due to the fact that this one does not make any hypothesis on the empirical distribution and20

on the goodness of the fit. However the estimated GPD thresholds are usually lower than other

methods .

4.2.2 Graphical methods

Graphical methods to find the best threshold are widely used in literature, specially when the

analysis is limited to a few samples and data have no outliers or spurious data. The most used one25

is the Mean Excess Plot (also known as mean residual life plot see Fig. 4.2 and the book of Coles
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Fig. 4.1: Gertensgarbe plot for two statistics: u and u′ of rank ascending end descend-
ing samples.

) where the mean of the excess above the threshold is plotted versus the threshold. When the

points start to behave like a straight line the lower abscissa of this line is the correct threshold. In

the same figure the stability plot of the GPD shape parameter shows the characteristic plateau

of the shape at different threshold levels. The plateau starting point coincides with the one

estimated by the mean excess plot. However it is clear that the choice of the correct threshold is5

a bit subjective. To avoid this problem specially when the number of samples to analyse is big

numerical methods must be preferred.

4.2.3 Mean Square Error: the AD and CV statistics

The methods of the Goodness of fit (with the relative test statistics) are based on the idea to find

the lower acceptable value of threshold satisfying the test statistics at the preferred confidence10

level. We introduce the mean square error MSE for an estimated parameter. θ̂ is the sum of the

Bias and the Variance:

MSE(θ̂) = E[(θ − θ̂)2] = V ar(θ̂) +
(

Bias(θ, θ̂)
)2

(4.2)

The MSE and the Bias are measures of the goodness of the fit for a given distribution. In the

GPD model the variance increases with the threshold, while vice-versa the bias decreases (fitting
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Fig. 4.2: Graphical methods for threshold estimation: left, mean excess plot; right,
shape stability versus threshold. Both plots with GPD example data

the tail of the distribution leads to a more accurate estimate of the shape parameter but the

estimation has higher variance).

The Cramér von Mises statistics is based on the MSE and for discretized data is given by:

W 2 =

n
∑

i=1

[F (Xi)− (2i− 1)/(2n)]
2

(4.3)

where F is the empirical cumulative distribution function in the analytical or empirical form

directly obtained from the dataset using plotting position rules.The Anderson Darling statistics5

is similar but introduces an weighting function to improve the tail estimation and uses the

logarithmic differences instead of the quadratic ones:

A2 = −n− 1

n

n
∑

i=1

(2i− 1) [log(F (Xi))− log(1− F (Xn+1−i))] (4.4)

Unfortunately there’s no explicit formula for the limiting distribution of A2
∞

= limn→∞ A2
n

and W 2
∞

= limn→∞ W 2
n although they exist their characteristics complex function ( for details

Anderson and Darling (1952) ).10

In literature there are several numerical approximations, notable the work of Marsaglia and

Marsaglia (2004) that uses a powerful random number generator and a numerical infinite sum
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approximation of the statistics to evaluate A2
∞

with an high precision level. Other simulation

or numerical tables were built using Monte Carlo methods. In this work we used the Monte

Carlo methods described in Choulakian and Stephens (2001) in order to produce the critical

level tables for A2 and W 2 with different confidence levels.

The main details of this simulation are the following:5

1. Generate m GPD samples of length n with fixed scale parameter (the scale parameter is

not acting on the A2 and W 2 statistics) and shape variable in the interval of interest (in

our case ξ ∈ (−0.5, 0.5)).

2. For each m samples compute the estimated (with the preferred fit method) GPD param-

eters ξest and αest, keep these values to build the probability function F (Xi) (obtained10

inverting the GPD function from the values Xi).

3. Compute the A2 and W 2 statistics of each m sample then build the relative quantiles

levels that will become our confidence table.

NOTE. The fit methods must be unbiased unless we want to obtain the test statistics for biased

estimators like the simple moments.15

4.2.4 Monte Carlo methods and Contingency tables of A2 and W 2

We present here the confidence tables obtained with the same procedure of Choulakian and

Stephens (2001). The table (Tab. 4.1) is computed for 4 different confidence levels.

The accuracy of this table is greater for lower quantiles and high levels of ξ rather than for

ξ → −0.5 where the estimated value is less accurate and the relative errors are about 5%. Note20

that in Choulakian and Stephens (2001) the values are corrected with asymptotic methods. For

samples (n > 50) the statistics is satisfactory and the missing ξ values in the table could be

obtained using linear interpolation. A correction for small samples is described in Anderson and

Darling (1952). Finally remember that the procedure described here assumes that we do not

know the two GPD parameters, if we know a value (shape or scale) of the GPD the values of25

the statistics changes and the test must be adapted.

4.2.5 Kernel statistics

The method described here considers the optimal threshold as the lower level of the data where

the log transformed tail could be confused with an exponential distribution. The test, based

on Kernel statistics, computes the region of acceptance of the exponential hypothesis. The30

kernel density statistics approximate the empirical distribution with an weighted sum of kernel

functions (same technique described in the Chapter 2 for the density plots). The most used kernel

function is the Gaussian curve, but the choice of the most appropriate function is suggested by

the experience and by the data distribution.
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A2 W 2

ξ 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99

-0.5 0.738 0.978 1.251 2.058 0.111 0.146 0.184 0.285

-0.4 0.696 0.898 1.120 1.690 0.106 0.138 0.172 0.261

-0.3 0.677 0.863 1.068 1.574 0.103 0.135 0.167 0.250

-0.2 0.656 0.844 1.028 1.492 0.100 0.131 0.162 0.237

-0.1 0.639 0.818 1.010 1.470 0.096 0.126 0.157 0.231

0.0 0.617 0.788 0.966 1.392 0.093 0.120 0.149 0.220

0.1 0.601 0.764 0.927 1.352 0.089 0.116 0.142 0.209

0.2 0.581 0.738 0.898 1.298 0.086 0.111 0.136 0.200

0.3 0.571 0.720 0.877 1.273 0.084 0.107 0.132 0.195

0.4 0.558 0.707 0.855 1.208 0.081 0.104 0.128 0.186

0.5 0.545 0.687 0.833 1.190 0.079 0.101 0.124 0.178

Tab. 4.1: MLE computed table for A2 (left part of the table) and W 2 (right part of
the table) critical values at different confidence level. Note that the sign of the GPD
shape parameter used in Choulakian and Stephens (2001) is positive while we use the
minus sign.

The log-transform of a GPD random variable behaves like an exponential distribution and in

this case the kernel Lewis statistics and the kernel Jackson statistics are useful to test for the

exponentiality of data, see for instance Henze and Meintanis (2002). From the log transformed

data it is possible to define an important estimator of the shape parameter: the Hill estimator

(Hill, 1975):5

1/ξ = Hh,k =
1

k

k
∑

j=1

log(xn−j+1,n)− log(xn−k,n), k = 1, ..., n− 1 (4.5)

where x1, x2, . . . , xn are the reordered data (quantiles). The Hill estimator measures the increase

of mean logarithmic quantile minus the so-called fixed point (lower point of the distribution or

left censoring level). In other words this estimator evaluates the reciprocal of the slope measured

on the tail of the distribution. The approximation is exact in an asymptotic sense.
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When the Pareto model is valid then the survival function 1 − F (x) could be expressed as a

power law with the Hill exponent (1/ξ):

1− F (x) = x−1/ξℓF (x), x > 0 (4.6)

where ℓF (x) denotes a slow varying function at infinity, that is a function with the property

ℓF (λx)

ℓF (x)
→ 1 x → ∞ λ > 0. (4.7)

The kernel GOF tests stress the hypothesis that the Hill approximation of the slow varying

function holds with a given confidence level. In a logarithmic scale the tail of a GPD distribution5

behaves like a straight line, the threshold is selected at the level where the linearity is acceptable.

From this point of view this method is completely different from the other ones, in fact it starts

from the extreme tail of the distribution, lowering the threshold until the chosen confidence level.

Conversely graphical, parametric or quadratic GOF tests start with low or even zero threshold

and rise the level until the GOF statistics is satisfactory. We expect to find higher threshold10

levels with the kernel statistics.

The Jackson statistics is derived from the general kernel estimation formula:

TJ =

∑n
j=1

tj,nYj,n
∑n

j=1
Yj

(4.8)

where Yj = logXj are exponentially distributed random variables and

tj,n =

j
∑

i=1

1

n− i+ 1
(4.9)

is the weighting function. Similarly the Lewis statistics is derived from the 4.8 using the following

transformation:

Vj = (n− j + 1)(Yj,n − Yj−1,n)

and defined by the equation:

TL =

∑n
j=1

1

n+1
Vn−j+1

∑n
j=1

Yj
(4.10)

In the work of Goegebeur et al. (2008) the Jackson (JK) and the Lewis (LW) statistics are used15

to implement a new best fit technique to estimate the optimal threshold. To achieve this goal

the exponential random variables (Yi) were transformed back to Pareto variables Xj then the
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TL and TJ statistics are changed in

T J
k,n =

√
k

1

k

∑k
j=1

KJ

(

j
k+1

)

Zj

Hk,n
,

KJ = −1− log(u) = −1− log

(

j

k + 1

)

,

Zj = j (log(Xn−j+1,n − log(Xn−j,n)) ,

Hk,n =
1

k

k
∑

j=1

Zj .

(4.11)

where Hk,n is the Hill function and KJ the kernel.

The Lewis 4.10 is transformed in the following manner:

TL
k,n =

√
k

1

k

∑k
j=1

KL

(

j
k+1

)

Zj

Hk,n
,

KL = u− 0.5 =
j

k + 1
− 0.5,

(4.12)

The transformations in 4.11 and 4.12 have the notable property that the limiting distribution

is the normal N(µ, σ). For this reason the confidence levels are straightforward. For instance5

to build a two tail test with a 5% of total confidence the critical level is 1.96σ as from the well

known properties of the Normal statistics. A combination of Lewis and the Jackson statistics

could be used to find the best fit (JKLWBF) for the Hill estimator. The method is summarized

in the paper of Goegebeur et al. (2008).

4.3 Evaluating the optimal threshold from the data10

To evaluate the optimal GPD threshold the methods described in the previous section were

applied to the NCDC database. First we computed the table of critical values for the Anderson

Darling and the Cramér von Mises GOF tests Tab. 4.1. Using these critical values we can

avoid to estimate for each threshold level the values of A2 and W 2 given the fitted shape and

scale parameters. When the estimated shape parameter is not present in the table (4.1) a linear15

interpolation is applied. All other methods do not require any critical value table because the

Jackson and Lewis limiting distributions are normal and the Gerstengarbe plot is based on a

non parametric technique while its distribution (the Mann-Kendal statistics) is also normal.

To evaluate the performances of these tests we use several heuristic considerations. All statistics

(except the Gerstengarbe plot) refer to parametric GOF tests evaluating the threshold at the20

lower acceptable value of the MSE (mean square error) or the Exponentiality of the sample.

We do not know the true optimal thresholds then we cannot evaluate the performances of the

estimators using again a MSE (Mean Square Error) criteria, we need other considerations.
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The GPD statistics has the property that if ξ < 0 the distribution is bounded to an upper

value and, if |ξ| > 1/2, the variance is not a finite quantity (Hosking and Wallis, 1987). A part

from statistical fluctuations there is no physical reason to conceive upper bounded distributions

for rainfalls (at least in a region far from the physical limits of the atmospheric evaporation-

precipitation process), while the infinite variance have no physical meaning at all.5

Using these heuristic criteria the Fig. 4.3 ( where the Boxplot for the shape parameters are

plotted at the estimated optimal thresholds ) shows that the only methods that do not have

non-physical values are the AD and the CV tests. They do not have negative values, they have

narrow distributions and no shape values over 0.5. In the same plot the failure of the LWJKBF

method is evident (unrealistic high shape values, high distribution spread). This failure is due10

to the Lewis statistics that shows the same failure pattern.
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Fig. 4.3: Boxplot of the GPD shape parameter computed for NOAA-NCDC database,
using different methods at the best estimated threshold. The acronyms stands for AD
Anderson-Darling, CV Cramér Voin Mises, GERT Gerntensgarbe plot, JK95 Jackson
kernel statistics with 95% confidence, LW95 Lewis kernel statistics with 95% confidence,
JKLWBF Jackson Lewis mixed method for best fit.

The percentage threshold (thrprc in the plots) represents the fraction of data above the optimal

threshold divided by the length of the sample (considering only positive values: i.e. only rainy

days), or equivalently the fraction of discarded data. As shown by the Fig. 4.4 the Gerstengarbe

plot has the lower percentage od discarded data (0.4 ≡ 40%), while the JK and LW have the15

highest values: to pass the test with these two last methods we need to discard the 95% of data.

For the AD and CV statistics the discarded part is around 70% of the total sample.
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Fig. 4.4: Boxplot of the percentage threshold parameter computed for NOAA-NCDC
database, using different methods. The acronyms are AD Anderson-Darling, CV
Cramér Voin Mises, GERT Gerntensgarbe plot, JK95 Jackson kernel statistics with
95% confidence, LW95 Lewis kernel statistics with 95% confidence, JKLWBF Jackson
Lewis mixed method for best fit.

Another criteria to evaluate the performance of the optimal threshold tests is looking at the

distribution spread of the estimated thresholds ( Fig. 4.5). Supposing that all stations are

described in the same correct way by the GPD model then the broader is the distribution of

values the less powerful will be the test and vice-versa. Indeed we expect that the best method

will be the one able to find a narrower interval of optimal thresholds. With this rule the AD and5

CV statistics are the most powerful while the JK and LW are the less accurate.The Gerstengarbe

plot have the lowest mean estimated threshold. The most representative values for the estimated

thresholds are in the interval 4-8 mm of cumulated rainfall (see Fig.4.5 ). As a rule of thumb we

can assume that a good initial threshold for further analysis will be 5 mm ( value given by the

best method the Anderson Darling).10

We are interested in finding non trivial relationships between the threshold and the estimated

GPD parameters, the median, the mean and the variance of data. We look for the linear

correlation between each possible couple of variables (for instance, the mean and the threshold,

the mean and the median and so on). Some linear relationship are trivial like the one between

the mean and the median, other like the relationship between the mean (or the median) with15

the thrprc (percentage of discarded data at the optimal threshold) are more interesting.

We found that there is a negative linear correlation between the percentage of discarded data

(thrpc) and the average daily cumulated rainfall. If we assume that the lower is the percentage
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Fig. 4.5: Boxplot of the best estimated threshold computed for NOAA-NCDC
database, using different methods . The acronyms are AD Anderson-Darling, CV
Cramér Voin Mises, GERT Gerntensgarbe plot, JK95 Jackson kernel statistics with
95% confidence, LW95 Lewis kernel statistics with 95% confidence, JKLWBF Jackson
Lewis mixed method for best fit.

of discarded data (thrprc) the better will be the GPD model in describing the dataset then the

linear dependence with the average daily cumulated precipitation means that the most rainy

stations are better described by the GPD model than the driest one. The values of the correlation

coefficient are in the interval (−0.81,−0.6) where the lower values is the one of the Gerstengarbe

plot, the higher value is of the CV method.5

A plot of the linear relationship between the percentage of discarded data (thrprc) and the

mean daily cumulated rainfall is shown (for the Gertensgarbe statistics) in Fig. 4.6. This linear

relationship proves that the GPD model becomes most effective when a station has an higher

level of precipitation.

4.3.1 Geographical distribution of the best estimated threshold10

The geographical analysis of the shape parameter estimated at the optimal threshold does not

show any special pattern in the US region (Fig. 4.7 and Fig. 4.8 ) . Stations with high shape are

mixed with stations with low shape in a quite uniform way, for the Gerstengarbe plot (Fig. 4.8)

a little pattern is shown with higher shaped stations in the inland regions of the United states.

Conversely an evident geographical pattern is shown in the Fig. 4.9 and in the Fig. 4.10 where15

the percentage of discarded data at the optimal threshold is plotted in the US region. The most
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Fig. 4.6: Linear relationship between the percentage of discarded data (thrprc) and the
averaged daily cumulated rainfall (mm) for the NOAA-NCDC database. The negative
correlation shows that the most rainy stations are the optimally described by the GPD
model.

rainy states of southern US (Louisiana, Georgia, Alabama, Florida ...) are well fitted by the

GPD model and the percentage of discarded data at the optimal level (thrprc) is around the

40%, while in the driest regions it can arrive to the 90%. The pattern for the Gertensgarbe plot

of the same variables (Fig. 4.10) is the same.

4.3.2 Notes on the Hill estimator5

The Hill estimator based methods like the JK and LW kernel statistics discard more than the

90% of data, leading to a great variance of the estimated GPD parameters ( Fig. 4.3). To study

the reasons of this behaviour we briefly analyse the theory of the Hill estimator.

Given a set of i.i.d random variables x1, x2, · · · , xn described by a distribution F . Suppose that

holds the relation:10

1− F (x) = x−1/ξl(x), c > 0, ξ > 0 (4.13)

where l(x) is a slow varying function that has the property:

limt→∞

l(tx)

l(x)
= 1, ∀ t 6= 0

When the condition 4.13 is satisfied and it exists an index k < N it is possible to estimate the

shape parameter ξ using the Hill estimator :
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Fig. 4.7: Geographical distribution of the shape parameter for the optimal threshold
estimated with the AD method. The shape parameter is distributed in a quite uniform
way over the country.

Shape: GERT

0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450

Fig. 4.8: Geographical distribution of the shape parameter for the optimal threshold
estimated with the GERTmethod.The shape parameter is distributed in a quite uniform
way over the country but a little pattern is shown for the inland and central regions.
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Fig. 4.9: Geographical distribution of the fraction of the discarded data (thrpc) at the
estimated optimal threshold level. Medhod AD.

Fig. 4.10: Geographical distribution of the fraction of the discarded data (thrpc) at
the estimated optimal threshold level. Medhod GERT.
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ξk,N =
1

k

k
∑

i=1

(log(xi,N )− log(xk,N )) (4.14)

this equation holds in the asymptotic limits

k < N, k → ∞ and k/N → 0

where the k/N ratio is called truncation parameter and for finite samples it is crucial to find an

optimal value kopt that ensures the correct estimation of the ξ parameter.

The Hill estimator has the serious drawback that it is not location invariant (see for instance

Neves and Alves (2008) ): the estimated shape parameter changes in function of the selected5

threshold. Furthermore the Hill plot in function of the k parameter is extremely volatile, and

the convergence to the exact shape parameter is ensured in probability only if second order

conditions are respected:

limt→∞

log(Q(tx))− log(Q(x))− ξ log(x)

A(t)
=

xρ − 1

ρ
(4.15)

where the Q function is the quantile function of F and A(t) is a slow varying function. The ρ

parameter controls the convergence speed of the Hill parameter: if |ρ| is high the convergence10

is faster. These conditions are exact in the asymptotic limit,that is for finite samples there’s no

clear indication how to find an optimal kopt parameter.

To better investigate the efficiency of the Hill estimator and the relative GOF tests based on the

kernel statistics of log-transformed data, we can perform several simple Monte Carlo simulations.

The main idea is to explore the Normality of the Hill estimator and the Jackson and Lewis GOF15

statistics in the limiting region where the estimators hold k < N, k → ∞ and k/N → 0. The

procedure will be the following:

• Extract data from stations

• Choose an interval ka < kb of upper extremes.

• Compute the Hill estimator or the GOF Lewis/Jackson statistics in the interval ka < kb.20

• Perform a normality test with given confidence level for the Hill estimated parameter.

We use the Anderson Darling normality test ( with both unknown normal parameters σ and

µ) with the confidence level of 95%, see Anderson and Darling (1952). The results for the

NOAA-NCDC stations are summarized in the table Tab. 4.2.

We can observe that25

• the percentage number of stations passing the 95% AD normality test for the Hill estimator

is low (< 60%).
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Estimator k(25;75) % k(25;125) %

Hill estimator 17.8 2.5

Jackson statistics 43.7 28.9

Lewis statistics 52.1 29.8

Tab. 4.2: Percentage of stations passing the normality test for Hill and Kernel GOF
statistics with different sample size intervals

• the smoothing effect of the Kernel functions increases the fraction of the Hill estimate of

the stations following a normal distribution.

• the Lewis statistics is slightly better than the Jackson one in smoothing data toward a

normal distribution

• for finite samples shrinking the interval of upper extremes ka < kb the fraction of stations5

passing the normality test increases, that is lesser variability

To study the convergence speed of the estimator toward the normality condition we can build

simple Monte Carlo tests using samples of different size. We expect that using pure GPD data

and bigger size samples the number of statistic samples of Hill, Lewis, Jackson type, passing the

normality test increases with the size of the sample. In the 4.11 the fraction of pure GPD samples10

passing the normality test increases with the size of the sample but stay below of 50% (for a

given interval ka < kb) even for samples with more than 40’000 points. From these simple tests

we can affirm that for samples of finite size (less than 40’000 points) even pure GPD data show

some problems in converging to a normal statistics for the Hill (or Hill-like) estimators at the tail

of the distribution. Very likely the failure of the kernel statistics in finding the optimal threshold15

is due to this slow convergence to the real estimator value and also to the great volatility of the

Hill estimator.

4.4 Final remarks on optimal threshold estimation

The methods described in the previous sections for optimal threshold estimation show a great

variability. The Gerstengarbe plot give us the lower values of the best threshold while the20

asymptotic methods furnish much higher values. We highlighted the good performances of the

Anderson Darling and Cramér Von Mises GOF techniques in finding a more compact set of

candidate optimal thresholds. In all cases the prediction is depending on the characteristics

focused by the test. If a test, like the JK or LW, gives more importance on the remote tail of

the distribution it is logical to obtain higher thresholds.25

We stress here the fact that the optimal threshold level is strongly dependent by the method

used for the estimation. This concept could be generalized by the proposal of a new method for
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Fig. 4.11: Percentage of Hill statistics passing the normality test. Note the scarce
efficiency of the test. The second order conditions - normality of the estimator sample
- are not respected even for big samples.

optimal threshold estimation. We renounce to find the best absolute threshold, and we look for

an optimal threshold depending on our needs. In the next section we propose a new method

based on the quantile estimation that gives us the possibility to choose the area or areas of major

interest in the distribution: that is we can choose to privilege the extreme values or to give more

importance to the central part of the distribution or even we can choose a mix of extreme or5

moderate values to control.

4.4.1 Proposal for a new method

To find the optimal threshold of a GPD distribution we have to choose first our interest areas

in the data distribution. Let x1, x2, . . . , xn the sample to study with length n. Define a subset

of the xi points:

x̂ = x̂1, x̂2, . . . , x̂m m < n
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we call these points of interest pivots. Let

Q(x̂;u) =
1

m

m
∑

i=1

w(x̂i)|qest,u(x̂i)− q(x̂i)| (4.16)

the averaged sum of the absolute values of the difference between the estimated quantiles qest,u (

with the GPD fitted curve at the threshold u) and the real quantiles q of the data, both quantiles

evaluated at the point x̂i. w(x̂i) is an weighting function. In other words the function Q controls

the distance of the fitted curve from the real data at the preferred pivot points (see Fig. 4.12).5

We define the optimal threshold uopt for the pivot set x̂ as the minimum of the quantile sum:

uopt ≡ min (Q(x̂)) =
dQ(x̂, u)

du
= 0 (4.17)

To estimate the uopt we can take the derivative of the Q quantile sum function or simply, if the

set of pivoting values is a finite quantity, we can check for every u ∈ [a > min(x), b < max(x)]

all the possible values of Q and pick up the minimum value. Remember that the dataset from

rain gauges are discretized to the sensitivity of the instrument ( 0.1 mm or 0.254 mm for our10

databases) then the number of possible values of u to search is limited.

The introduced quantile estimator Q is a measure of the goodness of fit of our EV data in function

of the threshold for a given set of pivoting points. Note that the method is not restricted to the

GPD but could be useful for all distribution having a left censoring parameter.

The choice of the pivots points is critical and depend on the needs of the experimenter. To fit15

the tail of the distribution we can choose the extreme values, to fit the central part we choose

pivots in the central part of the distribution, and we can give to each part a different weight. The

weighting function plays an important role, because it allows to filter the influence of undesired

values. Finally note that the fit technique (MLE, simple moments) must be robust and unbiased,

moreover this tool to find the optimal threshold is not conceived to deal with contaminated data.20

In this case it is possible we need to choose best weighting functions or more robust versions of

the Q and w functions.
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Fig. 4.12: An example of pivoting points (in blue) for the station 306 (Sardinian
Database).

4.4.2 A practical example

As an example of this method we choose the following pivot points:

x̂ = (xn−k, xn−k+1, . . . , xn) with x1 < x2 < . . . < xn

that is the greatest k points of the dataset. We estimate the optimal threshold using the Q

quantile sum 4.16 with the weighting function equals to the unity w(x) = 1 for each threshold u

level.5

The Fig. 4.13 shows the behaviour of Q in function of the threshold for the NOAA-NCDC

station WBAN 94930. The Fig. 4.14 is the distribution of the estimated optimal threshold on

the NOAA-NCDC database with k = 20 pivoting points (the 20 greatest values of each recorded

data ). It is interesting to note that with this rule the optimal threshold of the stations has a

net peak for 3 mm that is the smallest value of threshold among all the proposed methods.10
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Fig. 4.14: Distribution of the optimal threshold for the NOAA database with k = 20
extreme pivoting points.
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4.5 Testing the robustness of the GPD estimator in pres-

ence of rounding

In this section we show how the estimators of the GPD model are influenced by the presence

of the rounding-off. We generate synthetic samples artificially rounded at various resolutions

and then we fit the samples with several techniques in order to evaluate the estimator bias and5

variance in function of the rounding-off magnitude. Our goal is to find the best (and more

robust) estimators.

The fitting techniques are those described in the Chapter 2.

4.5.1 Performance of the estimators

The performances of a parameter estimator depend on many factors: the sample size, the pres-10

ence of spurious, multivariate or trended (not stable) data, the internal dependence (autocor-

relation), the algorithmic stability and the precision of the estimation technique. For instance

the MLE is efficient only for big samples while the PWM estimator is able to estimate the GPD

parameters for samples of few points, but this one has a consistent bias for values of ξ < 0.

In order to compare the performances of the estimating techniques described in the Chapter 2,15

two groups of tests were carried out using Monte Carlo techniques. The first group has the aim

to compare the performances of the estimators on continuous samples, while the second one aims

to evaluate the performances on rounded-off records.

The performances are evaluated by the Bias and the root mean square error RMSE:

Bias = E(θest − θtrue) (4.18)

RMSE =

√

E
[

(θest − θtrue)
2
]

(4.19)

where θest, θtrue are the estimated and the true (i.e. used to generate the synthetic samples)20

values of the parameter respectively. In our case θ can be the ξ and/or the α parameter of the

GPD.

Bias and RMSE are thus computed on synthetic samples generated by the GPD model with

threshold u = 0 and (ξ, α) couples of parameters that can be considered representative of daily

rainfall records, while the size of the synthetic sample is 500.25

In the second group of tests the GPD synthetic samples are rounded off accordingly to differ-

ent discretization magnitudes. In order to reduce the sampling errors in the Bias and RMSE

computation a large number of samples will be necessary for each test (that is for each couple

of ξ and α parameters and for each discretization value). Nevertheless, as a compromise with

the computational time required by the tests, every Monte Carlo simulation is limited to 100030
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synthetic samples. The consequent variability of Bias and RMSE estimates were filtered out by

a Gaussian kernel smoother (Cleveland, 1979), run over the x-axis of each figure.

4.5.2 Tests over continuous GPD samples

In this group of tests, Bias and RMSE (see 4.19) were computed with Monte Carlo tech-

niques on continuous samples generated by GPD with threshold u = 0, parameters α = 75

and ξ ∈ (−0.5, 0.5). In the plots of the Bias 4.15 and of the RMSE 4.16 we can evaluate the per-

formances of the considered methods. For pure GPD data the reference estimator is the MLE,

thus lines close to the MLE one give evidence of good performances. For instance, the MO-

MENTS estimator has a severe breakdown for ξ > 0.3 and a good accuracy for ξ ≈ 0. The LME

estimator fails for ξ < −0.3, but this region is of scarce importance in rainfall and flood time10

series analysis since distributions are usually unbounded. The performance of MDPD is very

good for negative shape values, on the contrary the MED estimator, as highlighted by Juárez

and Schucany (2004), has a poor efficiency (less than 20% of the MLE estimator) and an higher

Bias: it becomes competitive only on contaminated samples. The PWM estimators (biased and

unbiased) perform well for ξ ≈ 0.1 where the efficiency is the best possible, nevertheless below15

this value the RMSE is worse than for the other methods. Finally for the penalized maximum

likelihood MPLE we have good performances close to MLE ones.
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Fig. 4.15: Bias of shape parameter ξ for different GPD estimators. The Bias is
computed with Monte Carlo techniques over continuous samples of size 500, generated
by a GPD with threshold u = 0, α = 7 and ξ in the range (−0.5, 0.5). The final result
is filtered by a robust Gaussian kernel smooth function (Nadaraya, 1964).
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Fig. 4.16: As in Figure 4.15, but for RMSE of the shape parameter ξ.

4.5.3 Tests and performances over rounded-off GPD samples

This group of tests investigates the performances of the estimators over rounded-off samples. We

have already noted the presence of rounded-off records with a mixture of different resolutions

(0.1, 0.2, 0.5, 1.0 and 5.0 mm) in the Sardinian database. To simplify the interpretation of the

results of our analysis we consider here a single rounding-off δ for each test. The magnitude of5

δ explores the entire range from 0 to 5 mm with increments of 0.1 mm. We expect that the

Bias and the RMSE (4.19) increase with the magnitude of the rounding-off. This result could

be explained with geometrical arguments: the empirical cumulative distribution function of a

rounded-off sample displays a step-like behaviour that produces a big uncertainty in the estimate:

then bigger steps will produce greater incertitude in the estimate. To explore parameters in the10

domain of interest of daily rainfall records we tested the Bias and the RMSE for ξ ∈ {0., 0.15, 0.3}
and α ∈ {7., 12.} that are representative of parameter values estimated over the 200 longest

datasets of the Sardinia Region (Deidda, 2007).

Figures 4.17 and 4.18 show the Bias of ξ and α respectively as a function of the rounding-off

resolution: each subplot is obtained by Monte Carlo generations of GPD samples with fixed15

(ξ, α) parameter couples, obtained by the combination of the values reported above. Both for

ξ and α the Bias increases with the magnitude of the discretization. A similar behaviour is

displayed by Figures 4.19 and 4.20 where the RMSE of ξ and α is plotted again versus the

rounding-off resolution. The comparison of RMSE and Bias for rounded-off samples shows

noticeable differences with respect to the continuous case (Figures 4.15 and 4.16 ). The LME20
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estimator has an evident failure in the ξ estimates for rounding-off larger than 1 mm while in

the continuous case it has very good performances close to (or even better than) the MLE ones.

Similar behaviour is displayed by the PWM estimators: we highlight that the tests on rounded

samples are performed with the values ξ ∈ {0., 0.15, 0.3} where the PWM performances in the

continuous case are very close to MLE. In Figures 4.19 and 4.20, displaying the RMSE, we can5

observe that the MOMENTS estimator performs better for high ξ values showing an opposite

behaviour with respect to the continuous case where the MOMENTS efficiency becomes worst

for large ξ values. The MOMENTS efficiency in some cases is even better than the MLE one.
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Fig. 4.17: Bias for the shape parameter ξ estimated with different techniques on
rounded-off samples. Results are presented as a function of rounding-off magnitude
that ranges from 0 to 5 mm. Subplots refer to different couples of shape and scale
parameters (see subtitles) selected in the range of representative values of daily time
series.
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Fig. 4.18: As Figure 4.17, but for Bias of the scale parameter α.
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Fig. 4.19: As Figure 4.17, but for RMSE of the shape parameter ξ.
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Fig. 4.20: As Figure 4.17, but for RMSE of the scale parameter α.

Finally, besides the above considerations on the relative performances of a given estimator with

respect to the others, we highlight that all methods provide parameter estimates affected by

unacceptable errors. In some cases the Bias and the RMSE are larger than the 100% of the

parameter value of the parent distribution, even when we select the best estimator for the

specific case. For instance looking at the RMSE that is the most significant index (it includes5

also the Bias) we can observe from the plots in Fig. 4.19 that even for the best estimator the

error is often around 0.1÷0.2 for the ξ parameter that usually assumes values between 0.0 and

0.5 in hydrological applications. Similar considerations hold also for Fig. 4.20 where RMSE of
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α is often about 4 mm and more, while α estimates for daily rainfall depths are usually of order

of 10 mm.

4.6 Final remarks on GPD estimators for rounded-off val-

ues

The performances of the estimators in presence of rounding-off are not particularly good. Neither5

the robust estimators are safe to the rounding-off: when the amplitude of the rounding increases

the bias and the variance become soon unacceptable. This result encourages the creation of more

specific and resistant (robust) estimators to deal with rounded-off distributions. Remember that

every experimental distribution is rounded at least at the sensitivity level, then we need to

consider this source of moderate/strong bias and perform a check for the presence of rounding10

(as done in the previous Chapter).

Finally we recommend to estimate the optimal threshold and after to fit the distribution deciding

a priori the areas of interest in the dataset. In this way it is possible to filter some undesired

features like the strong influence of the rounding for the lower values. Moreover remember to

prior check the outliers otherwise the extreme quantiles will be overestimated and the pivoting15

method will fail.



Chapter 5

Conclusions and future researches

5.1 Toward Big Data analysis

Climate change is a popular and most debated topic of contemporary research. The datasets of

precipitation, ice coverage, snow falling , temperatures and other physical variables are stored5

in datacenters of several intergovernmental institutions. The most famous one is the IPCC

(Intergovernmental Panel for Climate Change) that collects data from measured weather sta-

tions in the world and data from numerical climatic models. In Europe the EU financed a

project called ENSEMBLES to collect and store the simulations of the climate models aris-

ing from several Universities and Research Institutions of Europe, Japan and USA. After few10

years of data collection these databases became of huge dimensions. Just for the precipitation

datasets, the Regional Climate models (that perform climate simulation on the scale of the

Europe with a spatial resolution around 25 km at the medium latitudes) the ENSEMBLE dat-

acenter http://ensemblesrt3.dmi.dk/ stores almost 180 GB of data. If we consider that the

variables involved in the models are several dozens then the total size of the database passes the15

hundreds of TB and approaches to the fantastic quantity of a PB of total information. Now just

imagine to download, store and analyse even a small fraction of this database, you need days of

continuous download and several days of effective analysis. You have to realize a good system to

extract, load and evaluate this extraordinary amount of data. This is not a cut and paste work

on Excel tables, we need powerful tools, massive parallel computing and smart data extraction20

tools. We need to deal with the Big Data challenge.

Furthermore there is another problem with these datacenter, they have a poor level of data clas-

sification. Each file has its metadata, that is informations about the contents, the climatic model,

the unities of measure, the data structure, and so on but you can access to these informations

only downloading the entire file. Downloading the file to explore the metadata is time consuming25

and for this reason many data center implements a protocol (OpenDap http://opendap.org )

that extracts a single portion of the data or simply display the metadata of each file. However

this effort is not enough, they do not provide a systematic access of the information of the same
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level like the one that you can obtain with a database query tool. From these considerations a

possible new research project will be the realization of a software able to:

• explore the huge datasets of climatic models to collect information

• explore the metadata of the files of the datasets generating reports and searchable cata-

logues5

• generating a map and a comprehensive file list of each file of the models present in the

data center

• downloading only the parts of interest of the data

• performing simple analysis on the data without downloading them to the local hard disk

• mapping the analysis in parallel to several computers and reconstructing the result in a10

final summary

• cutting the climatic data to specific areas of interest like for instance watersheds

Hopefully some prototype of this system will be ready in the next months and as a possible link

with the extremes value research this tool can be used to extract the weather configuration that

generates the extreme events.15

5.1.1 How the Exploratory statistics could be useful to work with sim-

ulated (and real) climatic data

The materials and the knowledge on Exploratory statistics and Hypothesis test accumulated

during the thesis work could be used to provide an analysis framework for the climate data.

Data from models must be checked for possible artefacts, for instance the presence of several20

mixed populations in the precipitation database. A separate tool of analysis could be realized

to perform the following task of data assessment :

• outliers check: candidate points must be further analysed with statistical tools

• confrontations with real data (tools for test of hypothesis)

• trend detection using the variance theory (ANOVA methods)25

• extreme events detection: is it possible to detect extremes in the output of the climate

models ?

• studying the variations in the extreme events during the future

the structure of the software could implement each task in a separate plugin. The starting point

will be the data availability.30
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5.2 Conclusions

In this thesis we analysed two hydrological databases, our approach was data oriented: we

renounced to do too many a priori hypothesis on the quality of data, on their distribution on the

homogeneity and lack of outliers and artefacts. We discovered the problems that a rounded-off

dataset can cause on the estimation of the very sensitive models for EVT. Finally we addressed5

the problem of finding an optimal threshold level for the GPD distribution with a change of

perspective no more an absolute optimal threshold but a threshold chosen to satisfy some desired

features of the studied dataset (i.e. a good fit to the most extreme data). The importance of

this exploratory analysis is now ready to be used in the Big Data challenge where the size of the

databases is so huge that we must be smart enough to consider only the needed data but just10

only after the assessment of the data quality.



Appendix A

Test for GPD outliers

In this section we describe a test to check the candidate GPD outliers with a given confidence

level. The method is based on the idea to find the averaged ratio between the two biggest values

of a GPD distribution, let xmax and xmax−1 these values. We are interested in finding confidence5

levels for the ratio:

r =
xmax

xmax−1

(A.1)

To obtain the confidence levels for r we create a Monte Carlo simulation with the following steps:

• Create m samples of length n and shape parameter varying in the range ξ ∈ [a, b] where

for practical purposes (a, b) = [−0.8, 0.8].

• Compute the m ratios r for each value of ξ, let rξ(i) i = 1, 2, . . . ,m these values.10

• Reorder the distribution of rξ and save the quantile levels, 90th, 95th and 99th. We’ll

obtain a curve for each couple (q, ξ) where q is the quantile level.

The Fig. A.1 shows the curves for the ratio r at several values of the shape ξ. The values are

reported in the table A.1 for use and reference. The missing values for ξ could be interpolated

linearly or cubically.15
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Fig. A.1: Quantile curves of the ratio r of the two biggest values for a GPD distribution
in function of the shape parameter ξ
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ξ 95% 99% 99.9% ξ 95% 99% 99.9%

-0.80 1.00 1.01 1.01 0.05 1.54 1.87 2.42

-0.75 1.01 1.01 1.01 0.10 1.69 2.17 3.03

-0.70 1.01 1.01 1.02 0.15 1.86 2.53 3.67

-0.65 1.01 1.02 1.02 0.20 2.09 2.96 5.05

-0.60 1.02 1.02 1.03 0.25 2.31 3.56 5.99

-0.55 1.02 1.03 1.04 0.30 2.60 4.40 8.57

-0.50 1.03 1.04 1.05 0.35 2.97 5.27 11.40

-0.45 1.04 1.05 1.06 0.40 3.46 6.48 15.92

-0.40 1.05 1.07 1.09 0.45 3.96 7.87 22.00

-0.35 1.06 1.09 1.11 0.50 4.51 10.19 32.03

-0.30 1.08 1.11 1.15 0.55 5.22 12.58 48.61

-0.25 1.11 1.15 1.20 0.60 6.24 15.53 63.14

-0.20 1.15 1.21 1.27 0.65 7.05 20.78 94.15

-0.15 1.19 1.28 1.36 0.70 7.98 24.72 120.02

-0.10 1.25 1.37 1.50 0.75 9.39 30.89 178.32

-0.05 1.33 1.49 1.68 0.80 10.98 38.40 227.83

-0.00 1.42 1.66 2.00

Tab. A.1: Ratio test for the outliers of the GPD distribution in function of the shape
parameter ξ
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[40] Ribatet M. Pot: Modelling peaks over a threshold. R News, (7):34–36 (2007).

[41] Rosbjerg D., Madsen H., and Rasmussen P.F. Prediction in partial duration series with

generalized pareto-distributed exceedances. Water Resour. Res., 28(11):3001–3010 (1992).

[42] Sen P.K. and Singer J.M. Large sample methods in statistics. Chapman & Hall, Inc. (1993).

[43] Sillitto G.P. Derivation of approximants to the inverse distribution function of a continuous25

univariate population from the order statistics of a sample. Biometrika, 56:641–650 (1969).

[44] Stedinger J.R., Vogel R.M., and Foufoula-Georgiou E. Frequency analysis of extreme events.

In D.R. Maidment, editor, Handbook of Hydrology, chapter 18. McGraw-Hill (1993).

[45] Zhang J. Likelihood moment estimation for the generalized pareto distribution. Aust. Nz.

J. Stat., 49(1):69–77 (2007).30


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Mathematical theory of the Extreme events
	1.1 Introduction
	1.2 Recalls of probability theory
	1.3 The T-year level (return period)
	1.4 Introducing the extreme values theory from the ordinary distributions
	1.4.1 Observing the exceedances over a threshold 
	1.4.2 Introducing the distribution of the maxima

	1.5 GEV moments and its properties
	1.6 Convergence and stability of the GEV
	1.7 The distribution of the exceedances and the POT methods
	1.8 The GPD threshold 
	1.9 Relationship between GPD and GEV
	1.10 Stability of the GPD and POT domain of attraction 

	2 Exploratory statistics
	2.1 Introduction
	2.2 Tool and methods for exploratory statistics 
	2.2.1 The empirical cumulative distribution 
	2.2.2 Histograms and density plots 

	2.3 Quantile methods
	2.3.1 Definitions
	2.3.2 Quantile functions
	2.3.3 Quantile plots

	2.4 Confidence intervals and bootstrap methods
	2.4.1 Bootstrap methods

	2.5 Outliers and scatter plots
	2.5.1 Tests for outliers

	2.6 Short notes on Robust Statistics
	2.6.1 The median and other robust estimators
	2.6.2 The trimmed mean
	2.6.3 The efficiency of an estimator 

	2.7 Critical remarks on estimators
	2.8 The Maximum Likelihood function and estimator 
	2.9 Tools for EV model choice
	2.9.1 Heavy tail distributions
	2.9.2 L-moments theory

	2.10 Fit methods for the EV distributions 
	2.10.1 Summary of fit methods for the GPD
	2.10.2 Summary of fit methods for the GEV


	3 Exploring hydrological databases
	3.1 Basic Exploratory Statistics
	3.2 The NOAA-NCDC daily precipitation database
	3.2.1 Outliers check
	3.2.2 Geographical distribution of heavy rainfalls

	3.3 The Sardinian daily precipitation database
	3.3.1 Outliers check and geographical distribution

	3.4 Empirical cumulative distributions
	3.4.1 NOAA-NCDC database
	3.4.1.1 Station 24132 (Bozeman MT)
	3.4.1.2 Station 13873: Athens Clarke GA
	3.4.1.3 Station 24103: Dugway proving grounds UT 

	3.4.2 Robust statistics on contaminated data: an example
	3.4.3 Sardinian database
	3.4.4 Tests for rounding-off

	3.5 Choosing the statistical model for data analysis 
	3.6 Applying the GPD model
	3.6.1 NOAA-NCDC database GPD estimated parameters
	3.6.2 Sardinian database GPD estimated parameters
	3.6.3 Exploring stations with an high shape parameter 

	3.7 Geographical distribution of GPD parameters
	3.8 An alternative hypothesis
	3.9 Final remarks on exploratory statistics

	4 Improving the statistical models
	4.1 Introduction
	4.2 Methods for optimal threshold determination 
	4.2.1 Non parametric methods
	4.2.2 Graphical methods
	4.2.3 Mean Square Error: the AD and CV statistics 
	4.2.4 Monte Carlo methods and Contingency tables of  A2  and  W2 
	4.2.5 Kernel statistics

	4.3 Evaluating the optimal threshold from the data
	4.3.1 Geographical distribution of the best estimated threshold
	4.3.2 Notes on the Hill estimator

	4.4 Final remarks on optimal threshold estimation
	4.4.1 Proposal for a new method
	4.4.2 A practical example

	4.5 Testing the robustness of the GPD estimator in presence of rounding
	4.5.1 Performance of the estimators
	4.5.2 Tests over continuous GPD samples
	4.5.3 Tests and performances over rounded-off GPD samples

	4.6 Final remarks on GPD estimators for rounded-off values

	5 Conclusions and future researches
	5.1 Toward Big Data analysis
	5.1.1 How the Exploratory statistics could be useful to work with simulated (and real) climatic data

	5.2 Conclusions

	A Test for GPD outliers
	Bibliography

