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DETECTING TECHNOLOGICAL CATCH-UP
IN ECONOMIC CONVERGENCE

Abstract: Our aim is to address the problem of measuring how much of the
convergence that we observe is due to convergence in technology versus
convergence in capital-labour ratios, in the absence of data on the level of
technology. To this aim, we first develop a growth model where technology
accumulation in lagging economies depends on their propensity to innovate and
on technological spillovers, and convergence is due both to capital deepening and
to catch-up. We study the transitional dynamics of the model to show how to
discriminate empirically among the following three hypotheses: (i) convergence
due to capital deepening with technology levels uniform across economies, as in
Mankiw, Romer and Weil (1992); (ii) convergence due to capital deepening with
stationary differences in individual technologies, as in Islam (1995); (iii)
convergence due to both catch-up and capital deepening (non-stationary
differences in individual technologies. We show that, in the absence of TFP
data, hypotheses (ii) and (iii) may be difficult to distinguish in cross-section or
panel data. We suggest that discrimination can be nevertheless obtained by
exploiting the fact that if heterogeneity is the source of catch-up, technology
growth is not uniform across countries and the initial differences in technology
levels may tend to decrease over time.  Given this implication, one way to
discriminate between (ii) and (iii) would be to test whether estimates of fixed-
effects in sub-periods show the pattern implied by either hypothesis.
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1. Introduction

Technology differences and diffusion are likely to be important
factors in convergence. As recent evidence shows, cross-country
differences in total factor productivity (TFP) are wide in the
Summer and Heston (1991) data set, so that “changes in relative
TFP levels can have important effects on the steady-state income
distribution” [Jones (1997), p. 148].1 Testing whether relative TFP
levels are changing – and whether these changes generate
technology convergence, as implied by the catch-up hypothesis
[Abramoviz(1986)] – is therefore of great practical importance.

In spite of this, one shortcoming of the empirical literature on
growth concerns precisely the analysis of the impact of technology
heterogeneity on convergence, as Bernard and Jones (1996),
among others2, have underlined. In particular, there are two
important lines of research on convergence in which the joint role
of technology heterogeneity and diffusion is neglected.  The first is
associated with the influential paper by Mankiw, Romer and Weil
(1992), in which systematic cross-country parametric heterogeneity
of the production function is ruled out by assumption3.  In the
following we will refer to this assumption as “hypothesis (i)” about
technology and convergence.

The second line of research is associated to Islam (1995).  This
paper represents a step forward on how to obtain reliable evidence
on the role of technology differences in convergence using Solow’s
growth framework, in the absence of data on technology levels.

                                               
1 See also Hall and Jones (1999).
2 On the importance of considering technology diffusion in convergence, see
also Parente and Prescott (1994), Jones (1997), de la Fuente (1997) and Lee,
Pesaran and Smith (1998).
3 More in detail, Mankiw, Romer and Weil assume that country-specific (non
strictly technological) shocks exist, but they can be regarded as random
disturbances independent of the explanatory variables that control for the
differences in the steady-state values of per-capita income. For critical
viewpoints on the role of technology in the convergence analysis of Mankiw,
Romer and Weil (1992), see also Islam (1998) and Paul Romer’s comment in
Snowdown and Vane (1999).
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Islam uses panel data estimates to test the hypothesis of
homogeneity versus heterogeneity of the productivity shift
parameter4, and finds evidence in favour of the latter hypothesis.
In Islam’s paper, however, current technological differences are
treated as if they were stationary ones, so that the hypothesis that
they might be a source of technological catch-up is not explicitly
considered or tested. We label this approach as “hypothesis (ii)”.

As a consequence, we simply do not know enough about “how
much of the convergence that we observe is due to convergence in
technology versus convergence in capital-labour ratios” [Bernard
and Jones (1996), p. 1043]: in the current convergence literature,
this important question does not seem capable to attract the
attention it deserves.5 One reason behind this insufficient attention
is perhaps due to the fact that it is difficult to distinguish
empirically between those two sources of convergence6, especially
when reliable data on technology levels are not available7.

In this paper we search for a solution to this specific problem –
how to distinguish between capital deepening and technology
catch-up in convergence analysis, in the absence of TFP data.  The
strategy we adopt is to develop a simple model built around a
more general (but often neglected, as we have seen) “hypothesis

                                               
4 See also Islam (1998).
5 A further confirmation of this is given by a third, separate line of research, in
which technology diffusion is regarded as the crucial source of convergence [for
instance, Dowrick and Nguyen (1989) and Fagerberg and Verspagen (1996)].
Again, the whole observed convergence is assigned to one source (catch-up, in
this case) in a context where the other (capital deepening) is neglected on a
priori grounds, rather than tested.
6 As it is well known, simple models of catch-up (in which the sources of
technology accumulation are left unexplained) and the Solow model may turn
out to yield predictions that are indistinguishable in cross-section and panel data
[Barro and Sala-i-Martin (1995), p. 275].
7 As de la Fuente puts it, “there are few econometric studies in the convergence
literature dealing with [the catch-up hypothesis], probably because it is difficult
to come up with a reliable index of technical efficiency” [de la Fuente (1997), p.
63n].
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(iii)” about convergence and technology8 –  namely, the hypothesis
that convergence might be due to both technology catch-up and
capital deepening.  An advantage of using this type of model is that
the other hypotheses can be easily obtained as special cases and
therefore evaluated empirically within the same framwork.

In the model developed in this paper capital accumulation
proceeds as in Solow’s growth model, while technology
accumulation depends on a propensity to innovate, which may
vary across economies. Stationary technology gaps can emerge as
the result of such differences. During the transition to balanced
growth, technology diffusion is a function of the difference
between stationary and current gaps. The influence exerted by
capital deepening and catch-up in convergence along the
transitional path can be identified.

While several growth models based on endogenous innovation
exist in the literature9, they are not generally concerned with
obtaining simple transitional dynamics in which convergence is
due to the simultaneous presence of capital deepening and
technological catch-up10. A different and simpler approach has
been recently proposed in de la Fuente (1995) and Bernard and
Jones (1996), in which a model with decreasing returns to capital is
augmented with exogenous differences in the countries’ ability to
adopt new technology. Our model differs from de la Fuente’s in
two major respects. First, as in Shell (1966)11, the flow of new
technology in each period is proportional to the amount of
resources endogenously allocated to innovation.  Second, the

                                               
8 Other formulations are of course possible in which catch-up plays an
important role in generating convergence in the absence of diminishing returns
to capital [see Pugno (1995) for a useful comparison of different models].
9 Aghion and Howitt (1998) for a recent exhaustive survey.
10 See for instance Barro and Sala-i-Martin (1997).
11 The growth model we use to characterise the “leader” economy is similar to
the model developed in Shell’s seminal paper. As is well known, that model does
not have a balanced growth path. Moreover, its stable branch leading to the
steady state has unrealistic economic implications. Both shortcomings are
avoided in our model by adopting labour-augmenting technological progress.
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impact of any given technology gap on technology growth in a
follower country is proportional to its propensity to innovate (or
imitate). In this respect, our formulation is closer to the one used
in Benhabib and Spiegel (1994) to assess the impact of the stock of
human capital on the diffusion of technology.  As for Bernard and
Jones (1996), the main differences are that in our model the
growth rate of the leader economy is endogenous, and that we
make specific statements on what determines a country’s ability to
adopt new technology. Moreover, and crucially for our aims, we
study the transitional dynamics explicitly.

We use this model to specify what evidence we need in order to
distinguish among the three hypotheses listed above, in the
absence of reliable indexes of individual technology levels.12  The
transitional dynamics of our model shows the following. While
distinguishing between hypothesis (i) (no technological
heterogeneity) v hypotheses (ii)-(iii) is a relatively simple task,
assessing the precise role played by technological heterogeneity –
that is, distinguishing between hypotheses (ii) and (iii) – turns out
to be far less simple.  In particular, detecting a positive correlation
between growth rates of per-capita income and propensities to
innovate does not yield unambiguous evidence in favour of
hypothesis (iii). The reason is that if individual propensities to
innovate determine stationary technological differences, the
former may act as a proxy for the latter whenever catch-up is
absent or exhausted. More generally, we show that the panel data
formulations corresponding to the two hypotheses might yield
very similar results13. To the best of our knowledge, this problem

                                               
12 De la Fuente (1995) discusses how to discriminate between the competing
hypotheses using several variables as proxies of the initial technology levels. He
does not discuss how to interpret the evidence when technology levels are
unobservable and reliable proxies are not available.
13 Islam (1995) has shown that estimating a convergence equation by means of a
fixed-effect panel data estimator such as LSDV allows for testing for the
presence of technology heterogeneity. In such a formulation, the individual
intercepts are regarded as an indirect measure of the unobservable technology
levels.
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has not received the attention it deserves in the empirical literature
on convergence.14

We also show how identifying other testable implications can
solve this problem. In particular, under hypothesis (iii) technology
growth is not uniform across countries so that the initial level
differences may tend to decrease over time. Therefore, the
variance of the individual technology levels is likely to be different
from its steady-state value during the transition. On the contrary,
under hypothesis (ii) the prediction is instead that such a variance
is constantly at its stationary value – abstracting from random
disturbances.  Therefore, as long as the variance of the individual
intercepts obtained by means of panel data estimates yields an
approximate measure of the degree of technology heterogeneity,
the pattern of such a variance over subsequent periods could be
used to distinguish between hypothesis (ii) and (iii). Other
discriminating implications do exist. For instance, hypothesis (iii)
alone implies the existence of an increasing positive correlation
between the individual technology levels and the propensity to
innovate along the transitional path. Moreover, the correlation
between the individual intercepts and the growth rates of per-
capita income is positive under hypothesis (ii) [Islam (1995)], and
negative under hypothesis (iii). We conclude that in the absence of
data on technology levels a carefull analysis of the estimated
individual intercepts should significantly enhance our chances of
discriminating between the two hypotheses.

                                               
14 An implication of this problem is that, on one hand, the evidence of the type
discussed in Islam (1995) should not be regarded as conclusive evidence that
technology differences across economies are semi-permanent. On the other
hand, hypothesis (ii) is not necessarily rejected by the existence of a positive
correlation between growth rates and some index based on R&D and patents
data, which may approximate the propensity to innovate. See Fagerberg,
Verspagen and Caniels (1997), among many others, for examples in which this
type of evidence is interpreted as corroborating the hypothesis that convergence
is due to catch-up, the strength of which in turns depend on the innovative
efforts of each economy. See also Fagerberg, Verspagen (1996).



7

The rest of the paper is organised as follows.  In section 2 we
discuss our model. In section 3 we study its transitional dynamics
and discuss how to discriminate among the competing hypotheses
about the sources of convergence. Conclusions are in section 4.

2. A growth model with exogenous propensity to innovate

In this section we develop a model in which the long run growth
rate of the leader economy depends on its propensity to innovate,
and in which the technological catch-up of the follower depends
on its own propensity to innovate.  The model is extremely simple
in its characterisation of the activity of innovation, but still detailed
enough as far as our aim is concerned.  Stationary differences in
technology levels emerge as long as propensity to innovate differs
across economies. Similarly to de la Fuente (1995), these
differences are taken as given, and no attempt is made to explain
how they come about and what policies can modify a given
situation.  Since our aim is to evaluate the consequences of
technology heterogeneity on convergence, this limited approach
suits us well enough.

Our model differs from de la Fuente’s (1995) in several
respects. In de la Fuente’s model, accumulation of technology
takes place according to bAA ηγθ +=& , where AA&  is the

growth rate of technology, θ  is the proportion of GDP invested
in R&D, and b is a measure of the technology gap, γ  and η  are
constants.  We modify this formulation in two ways. The first
concerns the relation between the growth rate and the propensity
to innovate both in the leader and in the follower countries. We
put this relation on what we regard to be more solid economic
grounds by making the flow of innovation proportional to a
measure of the amount of resources endogenously allocated to
R&D in each period (see section 2.1 below). In this respect, our
model is close to Shell (1966). The second concerns the
mechanism of catch-up. In the above formulation, the impact of a
given gap on a country’s rate of innovation is independent of the
resources used to innovate (or imitate).  This formulation conflicts
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with a large literature on catch-up, where strong emphasis is placed
on how some characteristics of the follower economies determine
how much of the potential catch-up is actually achieved
[Abramovitz (1986)]. We propose a different formulation, similar
to the one Nelson and Phelps (1966) have used to analyse the role
of the stock of human capital in the catch-up process [see also
Benhabib and Spiegel (1994), who use a similar idea in a context in
which endogenous growth is allowed for]. We address this point in
details in section 2.2.

In the following, we first describe growth in the leader country,
and then we turn to the mechanism of catch-up.

2.1 The leader economy

We assume that good Y is produced by means of a Cobb-Douglas
technology:

(2.1) ( ) αα −= 1ALKY ,

where K is capital, L labour and A an index of technology. Some
definitions associated with this production function will be used
often in the following. They are as follows:

αααα zAyyAzAkLYyALKzLKk =≡′==≡≡≡ −   ,, , 1 .
As for how innovation is accumulated, a propensity to innovate
exists defined as YR≡θ , where R is the total amount of the

existing resources allocated to R&D15, with 10 <≤ θ .
Technological knowledge increases in proportion to R, according
to the following relation:

                                               
15 Technology in this model is a pure public good available for free to all existing
firms. As a consequence, it would be more appropriate to define our
“propensity to innovate” as the fraction of resources allocated to innovation by
the state, through some non-market mechanism [see Shell (1966)]. We do not
elaborate on this since we are interested in the consequences of a given
heterogeneity in innovative activity, rather than in the mechanism that generate
such heterogeneity.
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(2.2)
εε θ







=






=

L

Y

L

R
A& ,

where 10 ≤ε< . In the following, we assume that 1=ε , so that
endogenous growth is obtained, with the growth rate being a
function of the propensity to innovate. Using (2.1) in (2.2), we
have:

(2.3) ααα θθ zAk
A

A
== − 

&
.

Technological progress is therefore a function of the per-capita
amount of resources allocated to innovation in the economy16.
Countries with similar propensities to innovate but with different
levels of per-capita output have different innovation rates.

To characterise the long run rate of innovation in this economy,
we now turn to the endogenous determination of the stationary
value of z, the index of capital per efficiency unit. For the sake of
simplicity, we assume that (δ + n)=017.  Then:

(2.4) αα θzsz
z

z −= −1&
,

where s is the exogenous saving rate, 0<s<1.  For consumption to
be allowed in each period, the restriction ( ) 1<+θs  is required. In
steady-state,

(2.5)
θ
s

z =~

                                               
16 An alternative would be to make the flow of innovation depend on the
absolute value of R. This however would generate a counterfactual growth
effect associated to the scale of the labour force. This problem (as well as the
solution adopted in the text) is typical of endogenous models based on simple
learning-by-doing mechanisms [see Barro e Sala-i-Martin (1995) p. 151-2].
17  See Appendix A.
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and therefore:

(2.6) ααθ s
A

A −= 1
&

.

In steady-state the leader economy grows at a constant rate
endogenously determined by the parameters that describe the
technology and the propensities to invest in physical capital and in
innovation.

2.2 The follower economy

Few changes are necessary to characterise the follower economy.
As we have suggested above, we would like to model the
dependence of the intensity of technological spillovers accruing
from the leader country on the resource allocated by the follower
to innovate or imitate.  One way of modelling this feature is simply
by multiplying the propensity to innovate by a measure of the
current technology gap, as in the following formulation:

(2.7) αθ z
A

A

A

A
 

.









=

∗

where now * refers to the leader. Here the impact of a given gap
on the growth rate is proportional to the follower’s effort in
innovation. In the absence of any effort, there are no spillovers to
be gained, and no economic growth18. In the following we assume
that *0 θθ ≤< . Then

(2.8) αα θ z
A

A
sz

z

z








−=

∗
−1&

                                               
18 For a similar assumption in a different context – where technology adoption
depends on the level of the stock of human capital – see Benhabib and Spiegel
(1994). See also Bernard and Jones (1996).
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and the stationary value of z is:

(2.9)

1

~
−∗









=

A

As
z

θ

where *0 ss ≤< . The long run rate of innovation is equal to:

(2.10)

αα

θ
θ

−∗















=

1

A

As

A

A&

It is now possible to define the stationary value of the
technology gap as a function of the exogenous parameters of the
model.

2.3 Intertemporal equilibrium

With θ >0, the stationary value of A*/A ( Α
~

 hereafter) is:

(2.11)
α

α

θ
θ −









=Α

∗∗ 1~
s

s
.

Clearly, if all the parameters are uniform across the economies,
the stationary value of the gap is one. Differences in the propensity

to innovate ( θθ >∗ ) translate into the leader having a stationary
technological advantage over the follower.

As for the values of z~  and g~ , we use (2.11) respectively in
(2.9) and in (2.10). As regards (2.9), we find:

(2.12)
α
α

θ

−
−









=

∗

∗

1

~
s

ss
z .

And therefore:
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(2.13)
α−









=

∗∗ 1

1

~

~

s

s

z

z
.

Economies with different propensities to innovate, but similar
propensity to save, end up with the same stationary value of k/A.

As for g~ , we find ∗∗−∗ == gsg ~~ 1 ααθ . In the long run, the two
economies grow at the same rate (with the growth rate of the
follower converging to that of the leader).  Finally, the relative per-

capita income in the long run is equal to ( )( ) α
α

θθ −∗∗∗ = 1

2

~~ ssyy .

Dynamic stability

The system is globally stable around its intertemporal equilibrium
defined by the stationary values of z , ∗z  and of AA∗ . We

analyse dynamic stability by means of a two-variable ( ∗zz , AA∗ )
phase diagram. Given equations (2.4) and (2.8) above, the
condition 0== ∗zz &&  implies:

(2.14)

1−∗

∗

∗

∗ 







=

A

A

s

s

z

z

θ
θ

.

The isocline defined by (2.14) is negatively sloped and convex.
Given the equations (2.3) and (2.7) above, the condition

( ) 0=∗ dtAAd  implies:

(2.15)
αα

θ
θ

11
−

















=

∗∗

∗ A

A

z

z
.

The isocline defined by (2.15) is also negatively sloped and convex.
Therefore, the dynamic stability of the intertemporal equilibrium
depends on how the two functions intersect in the phase space.
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Let us define zφ  the right hand side of (2.14), Aφ  the right hand
side of (2.15).  Figure 1 shows the case in which the intertemporal
equilibrium is globally stable. Since α <1, the case depicted in the
figure is indeed the relevant one for our model.

More formally, let us define zA φφφ ≡ . Figure 1 shows that

global stability implies ( ) 0<∗ AAddφ . This condition is always

satisfied in our model since ( ) α
α

πφ
1−

∗= AA , where

( )( ) α
α

θθπ
−

∗∗≡
1

ss .
A follower economy off its steady-state is generally

characterised by ∗∗ < zzzz ~~  and Α>∗ ~
AA  (as for instance in

point B in Figure 1). As a consequence, its convergence path is
influenced simultaneously by the capital deepening mechanism
emphasised by the Solow model, and by the technological catch-up
process. In the following section, we use a log-linear
approximation of the system to assess the role of each component
along the transitional path.

3. Transitional dynamics

In this section, our aim is to assess the influence exerted by the
two effects on labour productivity growth in a cross-section or
panel of economies. To do this, we start by log-linearizing the
system around the steady-state values of z and AA∗ . Since our
purpose is not to identify the parameters of the model exactly, but
rather to show how the presence of catch-up can be detected, in
the following we present a simplified version of the transitional
dynamics of our model. This version is obtained by ignoring the
interaction between z and the gap along the transitional path.
While some precision is lost, the picture we get is sufficiently
detailed for our purpose.

We start with the log-linearization of the growth rate of z
around its stationary value. From equation (2.8), we have:
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(3.1)  1
Agsz

z

z −= −α&

where  AAg A
&≡ . Keeping Ag  constant for the time being, log-

linearization yields:

(3.2) ( ) ( )[ ]ztyg
dt

yd ~lnln~1
ln

 αα −′−=
′ ∗

where  Ayy ≡′ . After finding the solution to this differential
equation and some manipulations (see Appendix B) we get:

(3.3)
( )( ) ( )

( )( ) ( )( ) ( )1

~1
1

~1

~1
12

ln1)(ln1

ln1)(ln)(ln

tAetye

setyty
gg

g
A

τατα

τα θαγ
∗∗

∗

−−−−

∗−−

−+−−

−−+=−

where 1t  is an initial point of time, 12 tt > , 12 tt −≡τ  and

( ) ( )12 lnln tAtAA −≡γ . In cross-section, 2t  and 1t  are respectively
the final and the initial period. In panel data formulation, τ defines
the length of the time spans in which the total period of
observation is divided. Equation (3.3) shows the growth rate of
labour productivity between two periods as a function of the
distance of z, in the initial period, from its stationary value. In
other words, it describes the capital deepening component of
convergence – the one emphasised by the Solow model.

As observed earlier, another component is simultaneously at
work. This component enters equation (3.3) through the term Aγ ,
which is a function of the distance of the gap in the initial period

from its stationary value Α
~

. This relationship can be made precise
as follows. Assuming that the leader is in steady-state, the rate of
change of the gap measures the deviation of the current rate of
technology growth in the follower country from its steady-state

rate: ( ) ( )AAzgAAd ∗∗∗ −= αθ~ln . Taking a log-linear

approximation of ( )AAd ∗ln  around its steady-state, we have:
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(3.4) ( ) ( ) ( )( )[ ]Α~lnln~ln −−= ∗∗∗ tAtAgAAd .

Using the general solution of (3.4), after a few passages (see
Appendix B) we find:

(3.5)
( ) ( ) ( ) ( ) ( )[ ]

( ) Α

τ
τ

τ

~
ln1

ln1~lnln
~

11

~

12
∗

∗

−

∗−∗

−−

−−+=−
g

g

e

tAtAegtAtA

Finally, substituting (3.5) in (3.3) we get an equation in which
both components affecting convergence are present
simultaneously.

(3.6)

( ) ( ) ( )[ ]
( )( ) ( ) ( )( ) ( )
( )( ) ( ) Α

θα

τ

ττα

τατα

τ

~
ln1)(ln1

ln1ln1

ln1~)(ln)(ln

~

1

~1

~1
1

~1

11

~

12

∗∗

∗∗

∗

−−−

∗−−−−

∗−∗

−−−−

−−+−+

+−+=−

gg

gg

g

etye

setAe

tAtAegtyty

Equation (3.6) can be used to assess the role of heterogeneous
propensity to innovate and of technological catch-up in
convergence. Two different cases are discussed below.  In both
cases, we assume that measures for the propensity to innovate are
available.  However, while in the first case an index of total factor
productivity does exist, in the second it does not. Detecting catch-
up in the second case turns out to be a far more complex task,
even when the propensity to innovate θ of individual economies
can be measured accurately – as we assume it is the case from now
on.

Before discussing the two cases in detail, we simplify the
notation with no loss of generality by setting all individual
countries’ propensity to save equal to the leader’s one, *s . In this

case, θθΑ ∗=~
 [see (2.12)] and ∗∗= θsz~ [see (2.13)] in all

economies. Modifying equation (3.6) accordingly, we obtain:
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(3.7)

( ) ( ) ( ) ( ) ( )[ ]
( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )θθ

θα

τ

ττα

τατα

τ

∗−−−

∗∗−−−−

∗−∗

∗∗

∗∗

∗

−−−−

−




−+−+

+−+=−

ln1ln1

ln1ln1

ln1~lnln

~

1

~1

~1
1

~1

11

~

12

gg

gg

g

etye

setAe

tAtAegtyty

3.1 Detecting technological catch-up when TFP data are
available

In case total factor productivity can be measured accurately,
equation (3.7) can be rewritten as:

(3.8)

( ) ( ) ( )( ) ( )
( )( ) ( ) ( ) θ

υ
ττα

τατ

ln1ln1

lnlnln
~

1

~1

1

~1~

12
∗∗

∗∗

−−−

−−−

−+−

−−+=−
gg

gg

etye

tAeetyty

where

( ) ( ) ( )( )
( )( ) ∗−−−

∗−−∗−∗

∗∗

∗∗

−−−

−−+−+≡

θ

ατυ
τατ

τατ

ln2

ln1ln1~

~1~

~1
1

~

gg

gg

ee

setAeg

Equation (3.8) shows that simple cross-section regressions can be
used in this specific case19, with υ  being defined as constant across
individual economies.  The presence of a catch-up process would
be detected by a significantly negative coefficient of Aln  and, in
the case that the propensity to innovate is not uniform, by a
significantly positive coefficient of θln . The other competing
hypotheses considered above would be at odd with such an
outcome. First, hypothesis (i) implies that Aln  is uniform across
all economies at all periods, included the initial one. Moreover,
since technology is assumed to be exogenous, the propensity to
                                               
19 Assuming that the other unobservable variables are homogeneous across
economies.
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innovate is not an explanatory variable of the observed differences
in the growth rates of per-capita income.  Second, the “stationary
technological differences” hypothesis adopted by Islam (1995)
implies that θln  is again not relevant (on this more below), and
that Aln  is expected to be significantly positive.

3.2 Detecting technological catch-up when TFP data are not
available

More complex is the interpretation of the cross-sectional or panel
evidence whenever data for TFP are not available, especially as far
as discriminating between hypotheses (ii) and (iii) is concerned, as
we will see presently.

A preliminary problem is how to estimate (3.7) in the current
case. Given the presence of unobservable technology
heterogeneity, we should use a dynamic panel data model fixed-
effects, since such individual intercepts would yield an indirect
measure of the technology level of each economy [Islam (1995)].
Let us rewrite (3.7) using a panel data formulation:

(3.9)

ittititittiit yyy ωθϕβκµ ++−+=− −−− 1,1,1, lnlnlnln ,
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In this formulation, tκ  varies across time periods and is constant

across individual economies, itµ  describes the degree of

technology heterogeneity at a certain point in time, and itω  is the
error term with mean equal to zero. We should soon notice that
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itµ  is not a strictly time-invariant individual intercept, 20 so that the
use of fixed-effect estimators in this case could be problematic. 21

We will come back to this below. For the time being let us assume
that fixed-effects (LSDV) estimates of (3.9) can be obtained, with
the individual intercepts yielding an approximate measure of itµ .
For the sake of our discussion on how to distinguish among the
various hypotheses, let us also assume that the signs of the
coefficients of the explanatory variables are significant and in
accordance with the predictions of the model.22

What conclusions should we draw from this type of evidence?
First, since hypothesis (i) implies that the propensity to innovate is
irrelevant for convergence analysis, it predicts that its coefficient is
zero. So we can rule out hypothesis (i) in favour of the other
hypotheses. Second, since (3.9) is obtained under hypothesis (iii),
the above quoted result would clearly support this hypothesis.
However, it also yields support for hypothesis (ii), so that at this
stage the latter cannot be ruled out in favour of hypothesis (iii).23

To see how this problem arises, the main step is to impose that
technology diffusion is exhausted in our model [hypothesis (ii)], so
that convergence is due entirely to capital-deepening (see point C

in Figure 1). Under this assumption, ( ) ( ) θθΑ ∗∗ == ~
tAtA  in

                                               
20 Under hypothesis (iii) the initial degree of technology heterogeneity cannot be
regarded as strictly time-invariant. The reason is that technology diffusion is
present, technology growth rates differ along the transitional path leading to
their common steady-state value. Consequently, itµ  includes the term ( )1tA
and cannot be properly defined as an individual intercept.
21 The problem we discuss here is different from the one raised by Lee, Pesaran
and Smith (1998) in their comment on Islam (1995) about the use of panel data
for convergence analysis. The approach they propose is based on the idea that
technology growth rates tend to differ in the long- as well as in the short-run.
22 We obtain an outcome of this type using data on 109 European regions, 1980-
93. See Paci and Pigliaru (1999).
23 To the best of our knowledge, up to now this problem has not yet been
discussed in the empirical literature on convergence.
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each period of time (t=0), ( ) ( ) ( )11
~0lnln tgAtA ∗+= , and the

following panel data formulation can be obtained:

(3.10) itittitiit vyyy +−+=− −− 11, lnlnln βχρ

where ( )( ) ( )( ) ( )∗∗−−−−∗ ∗∗

−+−≡ θαχ τατα setetg gg
t ln1~ ~1

1

~1
2 ,

( )( ) ( )0ln1
~1 Ae g

i
ταρ

∗−−−≡ , and itv  is the error term with mean
equal to zero. Notice that in this case the initial distribution of
technology levels correctly reflects time-invariant individual
differences, because the growth rate of technology is now assumed
to be uniform across economies. As a consequence, iρ  can be
properly defined as an individual fixed-effect [Islam (1995), p.
1149].

The source of our problem can be easily unveiled now. Since
under hypothesis (ii) technological differences are supposed to be

at their stationary values θθΑ ∗=~ 24, then in principle ( )0A  and
θ  are perfectly correlated across economies. As a consequence, a
significant positive value of ϕ  does not yield clear-cut evidence in
favour of the hypothesis that technology diffusion is part of the
observed convergence. 25 All we could say at this stage is that
technology heterogeneity, due to differences in propensity to
innovate, is relevant for convergence analysis.

To test whether technology diffusion is active or exhausted, we
have to search for other distinct testable implications of the model
under the two alternative hypotheses.  To this aim, consider again

                                               
24 Recall that we are assuming that the propensity to save is uniform across all
economies.
25 More generally, finding that a technological variable such as R&D or patents
exert a statistically significant positive effect on growth does not offer
indisputable evidence that catch-up is part of the observed convergence. See
Fagerberg, Verspagen and Caniels (1997) and Fagerberg and Verspagen (1996),
among many others, for a different viewpoint on the interpretation of evidence
of this type.



20

the term itµ  associated with hypothesis (iii). We have already

noticed that itµ cannot be regarded as a proper fixed-effect, so that
we cannot obtain reliable indirect measures of it by means of the
individual intercepts in LSDV estimates over a long period of time.
However, suppose that splitting the whole period under
observation in several sub-periods made itµ a semi-permanent
term in (3.9). This is a crucial assumption for our purposes,
because in this case we could obtain LSDV estimates of (3.9) for
properly defined sub-periods, and then use the estimated
individual intercepts to test the following implications of the
model.

First, since under hypothesis (iii) technology gaps are not at
their stationary values, in general we should expect that

22 ~
µµ σσ ≠ .26 As a consequence, convergence of 2

µσ  to its stationary

value should be detectable over subsequent periods if hypothesis
(iii) is true – abstracting from random disturbances. On the other
hand, under hypothesis (ii) 2

ρσ  is time-invariant, since –

abstracting again from random disturbances – it is assumed to be
at its steady-state value 2~

ρσ . Second, the correlation between the

individual intercepts and the growth rates of y is positive under
hypothesis (ii) [Islam (1995)], and negative under hypothesis (iii).
Finally, under hypothesis (iii) the correlation between the fixed-
effects and the propensity to innovate should increase over time,
as the system approaches its balanced groth path.

Estimating (3.9) [and (3.10)] by means of LSDV regressions
over different sub-periods should therefore significantly enhance
our chances of discriminating between the two hypotheses. 27

                                               
26 However, in the absence of “absolute convergence” in technology levels the
case 22 ~

aa σσ =  is not ruled out (similarly, β-convergence does not necessarily

imply σ-convergence unless steady-state values are uniform across individuals).
27 The use of LSDV estimates for convergence analysis has been criticised by
Durlauf and Quah (1999) on the grounds that allowing A(0) to differ across
economies makes it particularly difficult to understand whether β-convergence
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4. Conclusion

In this paper we have developed a simple growth model where
technology accumulation in lagging economies depends on their
propensity to innovate and on inter-regional spillovers, and
convergence is due to both capital-deepening and catch up. We
have used the model to show how to generate unambiguous
evidence on the role of technology diffusion in the observed
convergence.

The transitional dynamics of our model shows that, in the
absence of data on TFP, the most compelling task is to
discriminate between the catch-up case and the alternative case
based on the existence of stationary technology differences. Future
research should address this important empirical problem along
the lines suggested in section 3, where we have showed that the
pattern of the fixed-effects in panel data regressions can be
usefully analysed in order to distinguish between the two
hypotheses.

As for the model of growth used in this paper, one interesting
development would be to explore the possibility that the stock of
human capital take part in the determination of the stationary
technology gap – as in Benhabib and Spiegel (1994) –, together
with the propensity to innovate analysed in this paper. Finally, the
possibility that there exist a spatial component in the distribution
of the propensity to innovate across individual economies should
also be considered within the framework adopted here.

                                                                                                    
implies a reduction of the gap between the poor and the rich (p. 52-3).  This
criticism does not necessarily apply to our case, in which we concentrate on how
to discriminate between two sources of convergence.
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Appendix A: Relaxing the assumption (n+δδ)=0

Relaxing the assumption ( ) 0=+ δn  in (2.4) yields:

(A.1)  1








++−= −

A

A
nsz

z

z &&
δα .

We begin with the solution based on the assumption 0=+ δn
and then assess how changes in n determine changes in the
stationary value of z.  First, we totally differentiate (A.1) and
impose the condition 0=zzd& . We obtain:

(A.2) ( )[ ] ( ) 0 1 12 =+−−− −− δαθα αα nddzzsz

Now we use the stationary value taken by z for 0=+ δn  in (A.2).
By doing so, we obtain the value of the change of z~ associated
with the increase of δ+n from zero to ( )δ+nd :
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Therefore, 0<dz  for ( ) 0>+ δnd . Since we started with

0=+ δn , then ( ) δδ +=+ nnd . Consequently, we can define the
value of z~  for the case 0>+ δn  as a function of the parameters
of the model as follows:
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Appendix B: Transitional Dynamics

Log-linearization of equation (3.1) yields:

( ) ( )[ ] ~lnln~1
lnln

ztzg
dt

zd

dt

yd −−==
′ ∗ααα ,

from which equation (3.2) is obtained. The solution of this
differential equation and subsequent passages leading to equation
(3.3) are as follows:
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Finally, equation (3.5) is obtained as follows.  The general

solution of (3.4) is:
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Rearranging terms in this latter equation we get (3.5).
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