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1. Introduction

As it is now widely recognised, technology differences and diffusion do not receive enough attention in

the current empirical literature on economic growth in spite of the fact that they are likely to be

important factors in convergence. 1  For instance, a widely used assumption in the literature is that there

are no systematic technological differences across economies, so that convergence is entirely due to

capital deepening as in the influential paper by Mankiw, Romer and Weil (1992). Other papers allow for

differences in individual technologies, as in Islam (1995),2 but assume that such differences are

stationary, so that again technology diffusion is ruled out rather than tested.  As Bernard and Jones

(1996) put it, a consequence of this state of affairs is that we do not know enough about “how much of

the convergence that we observe is due to convergence in technology versus convergence in capital-

labour ratios” [p. 1043]. 3

One reason for the insufficient attention given to this specific question is that it is difficult to

distinguish empirically between the role of technology diffusion and that of capital deepening, especially

in the context of aggregate growth models4 and in the absence of reliable data on technology levels, as

in the case of the European regions. In this paper we addresses this difficulty explicitly. We use a simple

model developed in Pigliaru (1999)5, in which capital accumulation proceeds as in Solow’s growth

model, while technology accumulation depends on a propensity to innovate, which may vary across

economies. Stationary technology gaps can emerge as the result of such differences. The difference

between stationary and current gaps generates technology diffusion, which in turn explain part of the

growth rate differentials across economies. The influence exerted by capital deepening and catch-up in

convergence along the transitional path can be identified.

This model yield the analytical framework we need to test, in the absence of TFP data, whether

(i) technology differences play no systematic role in convergence, as in Mankiw et al. (1992); or, in case

they exist, whether (ii) they are stationary, as in Islam(1995), or whether (iii) they are an active source of

income convergence through technology diffusion.

The transitional dynamics of our model shows that the main problem for empirical analysis is to

assess the precise role played by technological heterogeneity in convergence – that is, distinguishing

                                               
1 See among many others Bernard and Jones (1996), Parente and Prescott (1994), Jones (1997), de la Fuente (1997) and Lee,
Pesaran and Smith (1998). See also the seminal paper by Abramovitz (1986).
2 See also Islam (1998).
3 Another line of research on convergence in which this question tends to be ignored is represented by papers such as
Dowrick and Nguyen (1989) and Fagerberg and Verspagen (1996). Again, the whole observed convergence is assigned to
one source (catch-up, in this case) in a context where the other (capital deepening) is neglected on a priori grounds, rather
than tested.
4 As it is well known, simple models of catch-up (in which the sources of technology accumulation are left unexplained) and
the Solow model may turn out to yield predictions that are indistinguishable in cross-section and panel data [Barro and Sala-
i-Martin (1995), p. 275].
5 As far as the leader economy is concerned, the model is a modified version of Shell (1966).
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between hypotheses (ii) and (iii) above. This is so because if individual propensities to innovate

determine stationary technological differences, the former may act as a proxy for the latter whenever

catch-up is absent or exhausted. As a consequence, the panel data formulations corresponding to the

two hypotheses are very similar. We suggest that one way to discriminate between (ii) and (iii) would be

to test whether estimates of fixed-effects in sub-periods show the pattern implied by either hypothesis.

We use this model to obtain preliminary evidence on the role of technological differences and

catch-up in the observed regional convergence in Europe. We use data on 109 European regions for

the 1978-93 period.  As a measure for the regions’ propensities to innovate, we compute an index based

on the data on patents collected by the European Patent office (EPO). Each patent is then assigned to

its region of origin according to the inventors’ residence [see Paci and Usai (1999) for details on the

adopted methodology].  Our panel estimates show that both the initial value of regional GDP per

worker and the regional propensity to innovate, as defined above, are statistically significant with the

expected signs (negative and positive, respectively).  In terms of our model, this evidence corroborates

the hypothesis that technological differences are explained by propensity to innovate, and that they are

relevant for the analysis of convergence across European regions.  This evidence is consistent with

convergence being (partly) due to technological catch-up.

As for the related literature, a number of paper deal with the role of technology heterogeneity in

European regional convergence but, to the best of our knowledge, no one tries to detect the presence

of technology diffusion in a context in which capital-deepening is also considered.6 De la Fuente (1995)

develops an approach to convergence analysis similar to the one used here, but he does not discuss

how to detect technology diffusion with no TFP data.

The rest of the paper is organised as follows.  In section 2 we discuss our model. In section 3

we study its transitional dynamics and discuss how to discriminate among the competing hypotheses

about the sources of convergence. Our empirical evidence is presented and discussed in section 4.

Conclusions are in section 5.

2. A growth model with exogenous propensity to innovate

In this section we sum up the model developed in Pigliaru (1999), in which the long run growth rate of

the leader economy depends on its propensity to innovate7 and the technological catch-up of the

follower depends on its own propensity to innovate. Stationary differences in technology levels emerge

as long as propensity to innovate differs across economies.  These differences are taken as given, and

no attempt is made to explain how they come about and what policies can modify a given situation.

                                               
6 See for instance Fagerberg and Verspagen (1996).
7 Since in our model technology is regarded as a public good, strictly speaking the differences in the fraction of output
allocated to innovation should reflect differences in the policies adopted by the individual economies. See Shell (1966) and
Romer (1990).
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Since our aim is to evaluate the consequences of technology heterogeneity on convergence, this limited

approach suits us well enough.

In the following, we first describe growth in the leader country, and then we turn to the

mechanism of catch-up.

2.1 The leader economy

We assume that good Y is produced by means of a Cobb-Douglas technology:

(2.1) ( ) αα −= 1ALKY ,

where K is capital, L labour and A an index of technology. Some definitions associated with this

production function will be used often in the following. They are as follows:

., ,  ,1 αααα zAyyALKzLKkAzAkLYy =≡′≡≡==≡ −

As for how innovation is accumulated, we start with the propensity to innovate, defined as

YR≡θ , where R is the total amount of the existing resources allocated to innovation, and 10 <≤ θ

[the further restriction ( ) 1<+ θs , where s is the propensity to save, is required for consumption to be

allowed in each period].  Technological knowledge increases in proportion to R, according to yA θ=& ,

so that the growth rate of technology is:

 (2.2) ααα θθ zAk
A

A
== − 

&
.

Technological progress is therefore a function of the per capita amount of resources allocated to

innovation in the economy8. Countries with similar propensities to innovate but with different levels of

per capita output have different innovation rates.

It is easy to show that a stable steady-state exists and that in this steady-state9 
θ
s

z =~  and

therefore:

(2.3) ααθ s
A

A −= 1
&

.

In steady-state the leader economy grows at a constant rate endogenously determined by the

parameters that describe the technology and the propensities to invest in physical capital and in

innovation.

                                               
8 The flow of innovation depends on y rather than on the absolute value of output to avoid the counterfactual growth effect
associated to the scale of the labour force, which is typical of this class of models [see Barro and Sala-i-Martin (1995) p. 151-
2].
9 For the sake of simplicity we assume that capita depreciation and population growth are both absent. See Pigliaru (1999)
for an analysis in which they are both positive.
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2.2 The follower economy

Few changes are necessary to characterise the follower economy.  In this economy, the flow of

technological spillovers accruing from the leader country depends on the resource allocated by the

follower to innovate or imitate, as in the following formulation:

(2.4) αθ z
A

A

A

A
 

.









=

∗

where now * refers to the leader. In the absence of any effort, there are no spillovers to be gained, and

no economic growth10.  In the following we assume that *0 θθ ≤< .  The balance growth of this

system is characterised by the following stationary values:

(2.5)
α

α

θ
θ −









=Α

∗∗ 1~
s

s
.

where ≡Α~ A*/A.  Clearly, if all the parameters are uniform across the economies, the stationary value

of the gap is one. Moreover,

 (2.6)
α−









=

∗∗ 1

1

~

~

s

s

z

z
.

As for g~ , ∗∗−∗ == gsg ~~ 1 ααθ . To sum up, in the long run, the two economies grow at the same rate

(with the growth rate of the follower converging to that of the leader); differences in the propensity to

innovate ( θθ >∗ ) translate into the leader having a stationary technological advantage over the

follower; finally, economies with different propensities to innovate, but similar propensity to save, end

up with the same stationary value of k/A. The system is globally stable around its intertemporal

equilibrium defined by the above stationary values of z , ∗z  and of AA∗ .11

A follower economy off its steady-state is generally characterised by ∗∗ < zzzz ~~  and

Α>∗ ~
AA .  As a consequence, its convergence path is influenced simultaneously by the capital

deepening mechanism emphasised by the Solow model, and by the technological catch-up process. In

the following section, we use a log-linear approximation of the system to assess the role of each

component along the transitional path.

                                               
10 For a similar assumption in a different context – where technology adoption depends on the level of the stock of human
capita – see Benhabib and Spiegel (1994). See also Bernard and Jones (1996).
11 See Pigliaru (1999).
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3. Transitional dynamics

In this section, our aim is to assess the influence exerted by the two effects on labour productivity

growth in a cross-section or panel of economies. Since our purpose is not to identify the parameters of

the model exactly, but rather to show how the presence of catch-up can be detected, in the following

we present a simplified version of the transitional dynamics of our model. This version is obtained by

ignoring the interaction between z and the gap along the transitional path. While some precision is lost,

the picture we get is sufficiently detailed for our purpose.

We first log-linearize the system around the steady-state values of z and AA∗ , and then find

the solution to the resulting differential equations. In addition to this, we simplify the notation by

assuming that the propensity to save in all economies is equal to the leader’s one, *s . In this case,

θθ ∗=Α~  [see (2.5)] and ∗∗= θsz~ in all economies. We obtain:

(3.1)
( ) ( ) ( ) ( ) ( )[ ] ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( )θθθα

τ
ττατα

τατ

∗−−−∗∗−−

−−∗−∗

∗∗∗

∗∗

−−−−−+

+−+−+=−

ln1ln1ln1

ln1ln1~lnln
~

1

~1~1

1

~1
11

~

12

ggg

gg

etyese

tAetAtAegtyty

where 1t  is an initial point of time, 12 tt > , 12 tt −≡τ . In cross-section, 2t  and 1t  are respectively the

final and the initial period. In panel data formulation, τ defines the length of the time spans in which

the total period of observation is divided.   Equation (3.1) can be used to assess the role of

heterogeneous propensity to innovate and of technological catch-up in convergence.

3.1 Detecting technological catch-up when TFP data are not available

In this case, using (3.1) to distinguish between hypothesis (i) and hypotheses (ii)-(iii) turns out to be

simpler than distinguishing between (ii) and (iii).

Since we assume that reliable data on technology levels are not available in the case under

analysis, we follow Islam’s (1995) methodology in order to allow for individual heterogeneity in those

levels. Using the panel data notation we can rewrite equation (3.1) as:

(3.2)
1111112

lnlnlnln ititittititit yyy ωθϕβκµ ++−+=− ,

where

( )( ) ( )
( ) ( ) ( )( ) ( )( )ln2ln1ln1~

ln

1

~1~~1
1

~

1

~1~

~

1

1

ταττατ

τατ

τ

ατκ

µ

ϕ

∗∗∗∗

∗∗

∗

−−−∗−−∗−∗

−−−

−

−−−−+−+≡

−≡

−≡

gggg
t

gg
it

g

eesetAeg

tAee

e
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One general problem with this approach is that, if hypothesis (iii) is true, then 
1itµ cannot

properly defined as a strictly time-invariant individual fixed-effect. The reason is that under hypothesis

(iii) technology growth rates differ along the transitional path leading to their common steady-state

value. Proper fixed-effects can be obtained under hypothesis (ii), as in Islam (1995).  We will come back

to this problem later.

Clearly, hypothesis (i) implies that the propensity to innovate is irrelevant for convergence

analysis, and therefore predicts that the coefficient of such a variable is zero. Consequently,

distinguishing between hypothesis (i) and hypotheses (ii)-(iii) turns out to be a simple task, at least in

principle.

As for distinguishing between hypotheses (ii) and (iii), this task is far less simple. Indeed, while a

statistically significant positive value of ϕ  is consistent with the catch-up hypothesis, it does not

corroborate it unambiguously12. To see why, let us consider explicitly the alternative hypothesis (ii) in

which technological differences are at their stationary values. In this case, convergence is due entirely to

capital-deepening. More specifically, ( ) ( ) θθ ∗∗ =Α= ~
tAtA  in each period of time (including t=0) 13,

( ) ( ) ( )11
~0lnln tgAtA ∗+= , so that:

(3.3)
11112

lnlnln itittiitit vyyy +−+=− βχρ

where

( )

( )( ) ( )
( )( ) ( )( ) ( )∗∗−−−−∗

−−

−−

∗∗

∗

∗

−+−≡

−≡

−≡

θαχ

ρ

β

τατα

τα

τα

setetg

Ae

e

gg
t

g
i

g

ln1~

0ln1

1

~1
1

~1
2

~1

~1

1

and 
1itv  is the error term with mean equal to zero. Notice that iρ  is a proper fixed-effect that

incorporates the not available index of technology level at time zero.

The problem of discriminating between (ii) and (iii) depends on the fact that, since in steady-

state θθ ∗=Α~ , in principle ( )0A  and θ  are perfectly correlated across economies. As a consequence,

a statistically significant positive value of ϕ  does not yield clear-cut evidence in favour of the

hypothesis that technology diffusion is part of the observed convergence.

                                               
12 More generally, finding that a technological variable such as R&D or patents exert a statistically significant positive effect
on growth does not offer indisputable evidence that catch-up is part of the observed convergence. See Fagerberg,
Verspagen and Caniels (1997) and Fagerberg and Verspagen (1996), among many others, for a different viewpoint on the
interpretation of evidence of this type.
13 Recall that we are assuming that the propensity to save is uniform across all economies.
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To discriminate between the two hypotheses, therefore, we have to search for other testable

implications of the two models.  Consider again the term 
1itµ  associated with hypothesis (iii).  We have

already noticed that 
1itµ  cannot be regarded as a proper fixed-effect, so that we cannot obtain reliable

indirect measures of it by means of the individual intercepts in LSDV estimates over a long period of

time.  However, suppose that splitting the whole period under observation in several sub-periods made

1itµ  a semi-permanent term in (3.2).  This is a crucial assumption for our purposes, because in this case

we could obtain LSDV estimates of  (3.2) for properly defined sub-periods, and then use the estimated

individual intercepts to test the following implications of the model.

First, since under hypothesis (iii) technology gaps are not at their stationary values, in general we

should expect that 22 ~
µµ σσ ≠ .14 As a consequence, convergence of 2

µσ  to its stationary value should be

detectable over subsequent periods if hypothesis (iii) is true – abstracting from random disturbances.

On the other hand, under hypothesis (ii) 2
ρσ  is time-invariant, since – abstracting again from random

disturbances – it is assumed to be at its steady-state value 2~
ρσ .

Second, the correlation between the individual intercepts and the growth rates of y is positive

under hypothesis (ii) [Islam (1995)], and negative under hypothesis (iii). Third, under hypothesis (iii) the

correlation between the fixed-effects and the propensity to innovate should increase over time, as the

system approaches its balanced growth path.

Estimating (3.2) [and (3.3)] by means of LSDV regressions over different sub-periods should

therefore significantly enhance our chances of discriminating between the two hypotheses. In practice,

however, implementing this test may turn out to be difficult due to the small number of observations

for each individual economy contained in the typical panel data on economic growth (on this more

below). 15

4. Empirical evidence

Data.  Data on regional GDP and employment are obtained by the CRENoS data set on 109 regions of

12 European countries for the period 1978-93. [see Paci (1997) for details on the data set].  A more

complex problem is how to compute an index of regional propensities to innovate. In our paper, such

an index is obtained as follows.  First, patents collected by the European Patent office (EPO) are

                                               
14 However, in the absence of “absolute convergence” in technology levels the case 22 ~

aa σσ =  is not ruled out (similarly, β-

convergence does not necessarily imply σ-convergence unless steady-state values are uniform across individuals).
15 The use of LSDV estimates for convergence analysis has been criticised by Durlauf and Quah (1999) on the grounds that
allowing A(0) to differ across economies makes it particularly difficult to understand whether β-convergence implies a
reduction of the gap between the poor and the rich (p. 52-3).  This criticism does not necessarily apply to our case, in which
we concentrate on how to discriminate between two sources of convergence.
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assigned to individual regions by identifying the region of residence of the inventor.16 Second, the total

numbers of patents in a region are divided by the same region’s GDP. By doing so, we obtain an index

of propensity to innovate at the regional level for the years 1978-93.  We use the inventor’s residence,

rather than the proponent’s residence, because the latter generally corresponds to the firms’

headquarters, and therefore it might underestimate the peripheral regions’ propensity to innovate.  For

the same reason, the index we use is likely to be more adequate than an alternative one based on

expenditure in R&D [for further discussion see Paci and Usai (1999)]. Moreover, the correlation

between our index and an index based on regional R&D in 1990 turns out to be equal to 0.91.

Our index of the regional propensity to innovate appears to be far from uniform across the

European regions.  This feature is apparent in Figure 1, where European regions are classified into five

groups according to the average value of the index recorded for the period 1978-93. Some clusters of

more innovative regions are evident in the Figure, especially in Germany, southern Britain, central

France and northern Italy. Moreover, most southern European regions (Portugal, Spain, Greece and

southern Italy) show a very low propensity to innovate.  In the present paper, we do not try to build

this specific spatial feature into our analysis of convergence, but this spatial component is likely to be

crucial for future research on European regional convergence. From the point of view adopted in this

paper, the major consequence of the observed heterogeneity of our index across regions is that

discriminating between (i) and (ii)-(iii) should be possible even in spite of the absence of data on TFP.

Estimation results. Our LSDV estimates, based on (3.2), are presented in Table 117. We have defined three

five-year panels for the periods 1978-83, 1983-88, 1988-93. The dependent variable y is the average

growth rate of GDP per worker over each time span. The explanatory variables – labour productivity

and propensity to innovate – are included as levels in the initial year of each time span.

Regression results for the entire period are shown in Regression 1 of Table 1. The initial level of

labour productivity has the expected negative coefficient and is highly significant. More importantly,

our index of propensity to innovate turns out to be statistically significant with the expected positive

sign. In terms of our model, this evidence yields some preliminary support to the idea that

technological differences are explained by heterogeneity in propensity to innovate, and that they are

relevant for the analysis of convergence across European regions. The relevance of the propensity to

innovate as an explanatory variable in the growth equation is confirmed by the regressions included in

Table 2, based on the hypotheses (i) and (ii): their explanatory power appears remarkably lower than in

regressions 1-3 in Table 1.

                                               
16 For the case of patents with more than one inventors, we have proportionally assigned a fraction of each patent to the
different inventors' regions of residence.
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Discussion. We begin by noticing that our result is at odds with hypothesis (i).  Indeed, to reconcile this

specific hypothesis with our evidence, the following conditions are required. First, the technology levels

(assumed to be uniform) should be unrelated to the number of patents generated locally; second,

propensity to accumulate human capital should differ across regions; third, human capital should be

strongly correlated with our measure of the propensity to innovate. In such a context, our technology

variable would simply act as a proxy of human capital heterogeneity. While the latter condition is likely

to hold in reality18, it is hard to rationalise the existence of such a correlation in a world in which

technology growth is exogenous and technology levels are homogeneous across space.

As for the other hypotheses, we should note that the positive and significant coefficient of the

propensity to innovate is consistent both with convergence being (partly) due to technological catch-up,

and with the alternative hypothesis (ii), in which technological differences are stationary.

As we maintained above, it is not easy to distinguish between these two hypotheses on the basis

of our regression equation. In the following, we will analyse the pattern of the estimated fixed-effects in

order to try to assess whether it is possible to reach a conclusion along the lines suggested in section 3.

In order to assess the stationarity of technological differences included in the fixed effects, we

have estimated our model for two sub-periods – 1978-88 and 1983-93. The results are reported in

regressions 2 and 3 in Table 1. The variance of the fixed effects for our 109 European regions shows

remarkable changes over time; more precisely, it decreases from 0.0047 in the first sub-period to 0.0024

in the second one. This result must be interpreted with caution, since there are other random or

systematic factors (heterogeneity in the propensity to save and in human capital, for instance) that may

affect the variance of the fixed-effects over time. Moreover, due to the limited number of time-series

observations, we have estimated our model using only two time spans for each regression, with the

overlapping of the central years 1983-88. However, the change over time of the fixed-effect variance is

high and this is hardly consistent with the hypothesis of technological differences being stationary over

time. Moreover, the observed decrease in the variance is consistent with the main prediction of the

model, since we expect the initial variance in technology levels to be larger than the steady-state one in

a typical process of technology catch-up.

                                                                                                                                                           
17 Since we are dealing with a dynamic model, the LSDV estimator is asymptotically consistent. Given that our panel is
characterised by τ=3, our estimates are likely to be biased. In particular, the absolute value of the coefficient on capital
deepening is likely to be biased upward [see Hsiao (1986)].
18 To measure the magnitude of this correlation across European regions, we have used the human capital data collected by
Lodde (1999) for a sample of 67 regions belonging to Belgium, Italy, France, UK and Germany defined as average number
of schooling of the labour force over the eighties. The correlation coefficient between this measure of human capital and
our index of propensity to innovate - for the same regions and time period - turns out to be positive and significant (r =
0.65).
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This pattern is confirmed when we estimate equation (3.3), which is obtained explicitly under

the hypothesis that differences are stationary. In this case too (regressions 7-9 in Table 2) the variance

of the individual intercepts decreases over time contradicting hypothesis (ii).

Finally, we find further support for hypothesis (iii) by observing that the correlation between

individual intercepts and growth rates is not significatly negative for the whole sample, and significantly

negative for the lagging regions; and that the correleation between the individual intercepts and

propensities to innovate does increase over time (from 0.61 to 0.70).

All this said, the short time span of our data set does not allow us to reach a clear-cut

conclusion regarding hypothesis (ii) v hypothesis (iii). What we can say is that the evidence discussed so

far is likely to be generated by a process that does involve technological catch-up. In addition to this,

we can offer the following consideration. Transitional dynamics in which technological gaps and factor

intensities are both off their steady-state values (as in our model) are easy to rationalise – our model

being just one particularly simple way among many others. On the contrary, rationalising transitional

paths in which factor intensities are off their steady state values, while technology gaps do exist but are

stationary, seems to pose a much harder task, and to refer to a much less general case.

Further evidence on the individual intercepts. Finally, it is interesting to analyse the estimated fixed-effects

coefficients derived from regression 1 in Table 1. Under the (strong) hypothesis that the other elements

captured by the fixed effects are uniform across all economies, these coefficients offer a measure of the

technology level of each individual economy. In Table 3 we report the ten highest and lowest fixed

effects coefficients for the whole period 1978-93. It appears that the European region with highest

technology level is Hamburg, followed by Brussels and Ile the France. Among the top ten economies

there are also 4 northern Italy regions. All the regions with low technology belong to southern

European countries like Portugal (3 regions) Greece (6 regions) and Spain (1 region). We have also

reported the average coefficient values for each country (we have excluded the one-region countries).

Germany displays the highest value, followed by Belgium, while in the bottom positions we find Spain,

Portugal and Greece.

5. Conclusions

In this paper we have developed a simple growth model where technology accumulation in lagging

economies depends on their propensity to innovate and on inter-regional spillovers, and convergence is

due to both capital-deepening and catch up. We have used the model to show how to generate

unambiguous evidence on the role of technology diffusion in the observed convergence.

In the empirical part of the paper, we have used data on 109 European regions for the 1978-93

period. Our findings reject the hypothesis that technology is uniform across European regions, and are
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consistent with the hypothesis that convergence is partly due to technological catch-up. However, the

transitional dynamics of our model shows that, in the absence of data on TFP, it is difficult to

discriminate between the catch-up case and the alternative case based on the existence of stationary

technology differences. Therefore, additional research on this specific empirical problem is required.

One interesting development of the approach proposed in this paper would be to explore the

possibility that the stock of human capital take part in the determination of the stationary technology

gap – as in Benhabib and Spiegel (1994) –, together with the propensity to innovate. Finally, the

possibility that there exist a spatial component in the distribution of the propensity to innovate across

individual economies should also be considered within the framework adopted here.
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Figure 1. Propensity to innovate across the European regions. 1978-93

θ = patents / GDP (in 10.000 units of PPP); annual average

Ranges and (frequency); European Union average: θ = 28.6):

θ<4 (22) 4<θ<10 (19) 10≤ θ<28.6 (26) 28.6<θ<50 (25) θ>50 (17)
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Table 1.
Propensity to innovate, capital deepening  and growth in the European regions

Estimation method: LSDV (least squares dummy variables)
Panels: 1978-83, 1983-88, 1988-93.  Cross-section observations:109
Dependent variable: annual average growth rate of labour productivity in each time span
yi t1 = labour productivity in the initial year of each time span
θi t1 = propensity to innovate in the initial year of each time span
t statistics in parentheses
significance levels: a=1%, b=5%

Explanatory variables Regr. 1 Regr. 2 Regr. 3

1978-93 1978-88 1983-93
[hypothesis (iii)]

yi t1 -0.163 -0.239 -0.167
(-14.1)a (-11.2)a (-13.2)a

θi t1 0.0085 0.0082 0.0026
(13.1)a (9.27)a (1.14)

adj. R2 0.51 0.69 0.59
F-test 447a 592a 416a

Fixed effects' variance 0.0019 0.0047 0.0024

Number of panels 3 2 2
Number of observations 327 218 218
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Table 2.
Capital deepening  and growth in the European regions

Panels: 1978-83, 1983-88, 1988-93. Cross-section observations:109;
Dependent variable: annual average growth rate of labour productivity in each time span
yi t1 = labour productivity in the initial year of each time span
t statistics in parentheses
significance levels: a=1%, b=5%

Explanatory variables Regr. 4 Regr. 5 Regr. 6 Regr. 7 Regr. 8 Regr. 9

1978-93 1978-88 1983-93 1978-93 1978-88 1983-93
[hypothesis (i)] [hypothesis (ii)]

Constant 0.02 0.02 0.03
(3.51)a (2.12)b (4.69) a

yi t1 -0.008 -0.004 -0.009 -0.14 -0.34 -0.16
(-2.77)a (-1.61) (-2.89)a (-9.40)a (-14.0)a (-14.9)a

adj. R2 0.02 0.01 0.03 0.12 0.44 0.58
F-test 7.6a 2.6 8.34a

Fixed effects' variance 0.0019 0.011 0.0024

Estimation method: OLS OLS OLS LSDV LSDV LSDV

Number of panels 3 2 2 3 2 2
Number of observations 327 218 218 327 218 218
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Table 3
Descriptive statistics of the fixed effects coefficients from Regr. 1 Table 1.

10 highest coefficients 10 lowest coefficients
(proxy for high technological levels) (proxy for low technological levels)

RANK REGIONS F.E. COEFF. RANK REGIONS F.E. COEFF.

1 HAMBURG 0.487 109 ALENTEJO 0.259
2 BRUXELLES-BRUSSEL 0.467 108 VOREIO AIGAIO 0.260
3 ILE DE FRANCE 0.462 107 IPEIROS 0.271
4 BREMEN 0.455 106 CENTRO (P) 0.284
5 VALLE D'AOSTA 0.442 105 EXTREMADURA 0.285
6 EMILIA-ROMAGNA 0.439 104 IONIA NISIA 0.295
7 LUXEMBOURG 0.437 103 DYTIKI ELLADA 0.296
8 LOMBARDIA 0.431 102 ALGARVE 0.301
9 TRENTINO-ALTO ADIGE 0.431 101 THESSALIA 0.307
10 HESSEN 0.428 100 KRITI 0.308

Ranking of European Countries in decreasing order of estimated fixed effects coefficients

RANK COUNTRY F.E. COEFF.

1 Germany 0.411
2 Belgium 0.411
3 Italy 0.394
4 France 0.386
5 United Kingdom 0.374
6 Netherlands 0.370
7 Spain 0.357
8 Portugal 0.310
9 Greece 0.309


