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Abstract. We identify a given two-parametric family of regular orbits given in the form
f(x, y, z) = c

1
, g(x, y, z) = c

2
 in the 3-D Cartesian space by two functions α(x, y, z) and

β(x, y, z) including first order derivatives of f and g in x, y, z and defined by the system:
dy/dx = α, dz/dx = β whose general solution is the family of orbits. Then, from the
inverse-problem viewpoint, we find three necessary and sufficient differential conditions
which the functions α(x, y, z) and β(x, y, z) must satisfy when the given family {α, β} is
indeed a two-parametric family of straight lines (FSL) and is actually created by a
potential V(x, y, z). From the direct-problem viewpoint, we establish two differential
conditions which are satisfied by all genuine 3-D potentials producing two-parametric
(FSL). Some pertinent theorems are shown and certain examples are worked out.

Riassunto. In un sistema di riferimento inerziale, individuato da una terna cartesiana
ortogonale Oxyz, sia assegnata una famiglia a due parametri di orbite regolari di
equazioni f(x, y, z) = c

1
, g(x, y, z) = c

2
. Si dimostra che tale famiglia può essere

identificata con due funzioni α(x, y, z) e β(x, y, z), dipendenti dalle derivate parziali
prime di f e g rispetto ad x, y, z e definite dal sistema di equazioni differenziali: dy/dx
= α, dz/dx = β la cui soluzione generale è la data famiglia di orbite. Ponendosi poi dal
punto di vista del problema inverso della Dinamica, si stabiliscono tre condizioni
differenziali necessarie e sufficienti a cui devono soddisfare le funzioni α(x, y, z) e β(x,
y, z) affinché la data famiglia di curve sia una famiglia di orbite rettilinee (FSL) creata
da un potenziale V(x, y, z). Si stabiliscono infine due condizioni differenziali, utili dal
punto di vista del problema diretto della Dinamica, che sono soddisfatte da tutti i
genuini potenziali 3-dimensionali capaci di produrre come orbite le rette della data
famiglia 2-parametrica (FSL). Si dimostrano inoltre alcuni teoremi pertinenti e si
danno alcuni esempi.
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1. INTRODUCTION

Isolated straight lines produced by two-dimensional potentials V = V(x ,y) in inertial
frames Oxy have been found e.g. by Antonov and Timoshkova (1993), with the aid of
Szebehely’s PDE (1974), by Van de Merwe (1991) with the aid of Rajaraman’s integro-
differential equation (1979), by Contopoulos and Zikides (1980), by Caranicolas and
Innanen (1992) and, for three-dimensional potentials, by Caranicolas (1994). Such
isolated straight lines were used also in the reasoning of Yoshida’s theorem (1987)
concerning nonintegrability of homogeneous 2-D potentials.

In the framework of the inverse problem of Dynamics, planar monoparametric
families of orbits

(1)   f(x, y) = c

are identified as the general solution of an ordinary first order D.E.

dy

dx x y
= –

( , )
,

1

γ

where «the slope function» γ(x, y) is defined by

(2) γ( , )x y
f

f
y

x

=

In particular for families g(x, y) of straight lines (FSL) it is

γγ
x
 – γ

y 
= 0

Such families have been studied by Bozis and Anisiu (2001) as an exceptional case
of the general planar inverse problem. The main findings of this study are:

• (i) Only potentials V = V(x, y) satisfying the differential condition

(4) V
x
 V

y
(V

xx
 – V

yy
) = V

xy
(V

x
2 – V

y
2)

can create FSL among the other orbits.
• (ii) To any genuinely 2-D potential, solution of the PDE (4), there corresponds the

unique FSL defined by the slope function

(5) γ( , ) –x y
V

V
x

y

=

(3)
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• (iii) If V = u(x, y) is one particular solution of (4), then all functions V(x, y) = F(u),
with F arbitrary C2-function, are also solutions of (4) and they create the same FSL which
u(x, y) creates.

• (iv) Given a FSL γ(x, y) which satisfies (3), there exist, according to (5), infinitely
many potentials which can create γ(x, y).

Certain classes of solutions of the equation (4) (e.g. separable in Cartesian or in polar
coordinates, homogeneous etc.) were studied and several FSL were found.

In the present paper we address the question of finding compatible pairs of FSL and
potentials V = V(x, y, z) in a three-dimensional inertial Cartesian Oxyz frame.

In Section 2 we give a new account of the basic facts regarding the three-dimensional
inverse problem. We introduce two functions α = α(x, y, z) and β = β(x, y, z) which can
represent uniquely the two-parametric family of spatial curves (6) in a manner analogous
to that of the function γ(x, y) representing the monoparametric family (1).

In Section 3 we derive two differential conditions which the pair (α, β) has to satisfy
in order to represent a spatial FSL and an additional condition so that this FSL can be
created by a potential V(x, y, z).

In Section 4 we find certain easily detected pairs of FSL and potentials and we
comment on the meaning of complex potentials.

In Section 5 we look at the problem from the direct viewpoint and we derive two
conditions which all genuine 3-D potentials V(x, y, z) producing FSL have to satisfy. We
then compare them with the two-dimensional findings.

In Section 6 we present an example of a compatible FSL and a potential and a
counterexample of a FSL which is not produced by a potential.

Finally, Section 7 is devoted to certain comments regarding this work as a whole.

2. THE INVERSE PROBLEM IN THREE DIMENSIONS

After Newton’s era, Darboux, Dainelli, Suslov, Joukovski were some of the authors
who studied various versions of the inverse problem in Dynamics. An account of the
pertinent references may be found in Shorokov (1988) and in Ramirez and Sadovskaia
(1996).

Following Szebehely (1974), the general three-dimensional version of the inverse
problem for a monoparametric family of spatial orbits was first studied by Érdi (1982),
then, for a two-parametric family, by Bozis (1983), by Váradi and Érdi (1983) and later,
from a different viewpoint, by Bozis and Nakhla (1986), by Shorokov (1988) and by Puel
(1992). At almost the same period the group at Cagliari (Melis and Piras 1982, 1985,
Melis and Borghero 1986, Borghero 1987 and Borghero and Melis 1990) generalized
Szebehely’s equation to account for holonomic systems with n degrees of freedom.

The version of the inverse problem studied in the present paper is the following: In the
inertial frame Oxyz, let V = V(x ,y, z) be a potential which gives rise to the preassigned two-
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parametric family of regular orbits given in the form

(6) f (x, y, z) = c
1
, g(x, y, z) = c

2

and traced by a material point P(x, y, z) of unit mass with total energy

(7) E = E(f, g)

which is constant on each member (c
1
, c

2
) of the family (6).

REMARK 1: Two-parametric families given e.g. in the form φ
1
(x, y, z, c

1
) = c

2
, φ

2
(x, y,

z) = 0 are essentially two-dimensional entities (a set of curves on one specific surface) and
are not considered in the present study. A version of this problem was studied by Mertens
(1981) and by Bozis and Mertens (1985).

For i = 1, 2, 3, let δ
i
 and ∆

i
 be respectively the components of the vectors

(8)   
r
δ  = ∇  f � ∇ g and  

r
∆  =  

r
δ �   

r
a

where  
r
a  is the vector with components

(9) a
i
 =  

r
δ  · ∇  δ

i
.

Before proceeding more, we note here that

REMARK 2: The transformation x → y → z → x brings δ
1
 → δ

2
 → δ

3
 → δ

1
.

REMARK 3: The transformation: f → g → f brings the triplet (δ
1
, δ

2
, δ

3
) to (– δ

1
, – δ

2
,

– δ
3
) and leaves unaltered the ratios (11) below, as it should.

Two basic facts for this problem are (e.g. Bozis and Nakhla, 1986):

• (i) The potential satisfies the following linear in V(x, y, z) PDE:

(10)

  

δ δ
δ

δ δ
δ

2 1
3

2 1 3
2

2

2 2
V V E V V V E Vx y z x– ( – ) – ( – )= =∆ ∆

r rand

• (ii) The necessary and sufficient requirements for the above system (10) to be
compatible lead to a linear system of PDEs in E = E( f, g) with coefficients depending on
the orbital data. As these equations in the unique unknown function E must be compatible
themselves, we conclude that: in general, a preassigned family (6) does not result from
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an autonomous potential V(x, y, z) unless certain conditions are fulfilled by the «given»
functions f (x, y, z), g(x, y, z).

We mentioned in the Introduction that, for the planar family (1), the ratio f
y
/f

x
 = γ(x,

y) specifies the monoparametric family (1). Accordingly, we show here that the two-
parametric families (6) in the Oxyz space may be identified by the two ratios

(11) α δ
δ

β δ
δ

( , , ) ( , , )x y z x y z= =2

1

3

1

and

This is meant in the following sense: For all one dimensional curves

(12)   
r r r r
r xi y x j z x k= + +( ) ( )

(  
r
i ,   

r
j ,  

r
k  are unit vectors along the perpendicular axes Ox, Oy, Oz) parametrized by the

ordinate x and defined by (6), we have

(13) f 
x 
+ f

y
 y′ + f

z
 z′ =0 and g

x
 + g

y
 y′ + g

z
 z′ = 0

where primes denote differentation with respect to x. According to (8) and (11), we obtain
from (13)

(14) y′ = α(x, y, z), z′ = β(x, y, z)

The general solution of the system (14) of the two ordinary D.E. in the two unknown
functions y = y (x) and z = z(x) includes two arbitrary constants c

1
 and c

2
 and, by its very

structure, is given by the two equations (6).

REMARK 4: Instead of the equations (6), let us represent the two-parametric family by
(what apparently is equivalent) the equations F(f, g) = c

1
, G(f, g) = c

2
 with

∂
∂
( , )

( , )
.

F G

f g
≠ 0

If we calculate now the triplet (δ
1
, δ

2
, δ

3
) from (8) and insert into (11), we see that the

functions α(x, y, z) and β(x, y, z) remain unaltered, as they should.

REMARK 5: At any point P(x, y, z), the tangent of the orbit  
r
r  =   

r
r (x) passing through

P has the direction of the vector {1, y′, z′}
P
 = {1, α, β}

P
.

REMARK 6: The regularity (already assumed) for the curves (6) implies the nonzeroing
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of at least one of the functions δ
1
, δ

2
, δ

3
. Without loss of generality (and in view of the

above Remark 2) we can take δ
1
 ≠ 0, so that the ratios (11) may be defined. In addition

to that and because in this study we are searching for genuinely 3-D potentials V(x, y, z),
we assume that δ

1
 δ

2
 δ

3
 ≠ 0, i.e. we assume that both α and β are not zero (see also Remark

7 in Section 3).

3. SZEBEHELY’S EQUATIONS FOR STRAIGHT LINES IN 3-D SPACE AND
CONDITIONS FOR THEM

We prove first that, if the equations (6) represent straight lines, the r.h.s. of both
equations (10) vanish. Indeed, for any selection of the pair (c

1
, c

2
), a curve (6) may be

thought of as given by (12). Let us then consider that (12) represents a straight line, in
which case, its curvature

  

κ =
×

r r

r
r r

r

' ' '

' 3

must vanish. This leads to ( y′z′′ – y′′ z′)  
r
i  – z′′   

r
j  + y′′   

r
k  = 0 which implies that y′′ = 0, z′′

= 0 and, in view of (14),

(15) α
x
 + αα

y
 + βα

z
 = 0 and β

x
 + αβ

y
 + ββ

z
 = 0.

The equations (15) are the necessary and sufficient conditions which the «slope
functions» α(x, y, z), β(x, y, z) must satisfy so that the equations (6) represent a set of
straight lines. In view of the notations introduced in the previous Section 2 and after some
straightforward algebra it can be shown that each of the two equations (15) implies the
vanishing of the corresponding numerator of the fraction appearing in each of the two
equations (10).

Indeed, from the second of equations (8), we have ∆
3
 = δ

1
a

2
 – δ

2
a

1
, which, in view of

(9), is written as

(16) ∆3 1
2

1
2

1
2

2

1
3

2

1

=






+






+

















δ δ δ

δ
δ δ

δ
δ δ

δ
x y z

and, in view of (11), as

(17) ∆
3
 = δ3

1
(α

x
 + αα

y
 + βα

z
).

Thus, because of the first of (15),
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(18) ∆
3
 = 0.

In a similar manner one can show that

(19) ∆
2
 = 0.

Therefore, for families of straight lines (FSL), Szebehely’s equations (10), according
to (15), reduce to

(20) αV
x
 – V

y
 = 0, and βV

x
 – V

z
 = 0.

or, in view of (11), to the system

(21) V
x 
= δ

1
, V

y 
= δ

2
, V

z 
= δ

3
,

which is compatible if

(22)   rot
r r
δ = 0

The total energy E no longer appears in (20) and, in this sense, we are in front of a
special case of the inverse problem: In order to find the potential V(x, y, z), we need only
give in advance the FSL and not the energy dependence (7).

REMARK 7: As stated in Remark 6 of Section 2, we keep assuming that αβ ≠ 0. For a
FSL with e.g. β = 0, equation (20b) implies that V

z
 = 0, i.e. the potential V = V(x, y) is two-

dimensional. Equation (15b) is satisfied identically, whereas (15a) gives α
x
 + αα

y
 = 0.

Combining this last result with (20a) we reobtain (4). As expected, potentials V(x, y)
generating FSL in the Oxy plane also allow for such families lying on planes parallel to
Oxy.

REMARK 8: For families given by the equations (6) the compatibility condition (22)
is tested directly, with the aid of (8a). For families given by the pair (α, β) (i.e. a pair
satisfying (15)), it is not sure that there exists indeed a potential V(x, y, z) which creates
this FSL; because, now, two equations (i.e. equations (20)) have to be satisfied by the
unique unknown function V(x, y, z). All these statements are, of course, in agreement with
the basic fact (ii) of Section 2.

Having in mind the previous Remark 8 let us ask: «Given an appropriate pair (α, β)
which satisfies the equations (15), is there a potential satisfying the two equations (20)?».

For an affirmative answer to this question, a third linear PDE in V(x, y, z) must by
necessity be true (Favard 1963, Smirnov 1964 or the equation (6) of the article by Bozis
and Nakhla, 1986). For the case at hand, this third PDE reduces to: V

x
(αβ

x 
– βα

x
 – β

y 
+ α

z
)
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= 0 and consequently, since V
x
 ≠ 0, to

(23) αβ
x
 – βα

x
 = β

y
 – α

z

This is a new restriction for the «given» pair (α, β), to be added to the two conditions
(15a, b). In conclusion, if the family is given in the form (6) and satisfies (22), the potential
can be found also from (21). If, more generally (as we assume in this study), the family
is given by the pair {α, β} and satisfies the conditions (15a, b) and (23), the potential is
found from the two (compatible) equations (20).

4. CERTAIN COMPATIBLE PAIRS OF FSL AND POTENTIALS

Two easily detected cases of pairs (α, β) satisfying the three PDEs (15a, b) and (23)
are the following:

• Case (a): α = α
0
, β = β

0
 (α

0
, β

0
 not zero constants): As can be seen from the system

(14), these constants lead to a two-parametric set of parallel straight lines as the
intersections of the two sets of planes

(24) f (x, y, z) = α
0
 x – y = c

1
,    g(x, y, z) = β

0 
x – z = c

2
.

In view of the Remark 4 of Section 2, the very same FSL (24) may be represented as
the intersection of the two sets of cylindrical surfaces

(25) F(α
0 
x – y, β

0 
x – z) = c

1
,  G(α

0 
x – y, β

0 
x – z) = c

2

with generatrices parallel to the same direction {1, α
0
, β

0
}.

The potentials which create the above FSL are found either from (20) or (because from
(8a) we have   

r r r r
δ α β= + +i j k0 0 ) from (21). So or otherwise there results

(26) V(x, y, z) = A(x + α
0 
y + β

0 
z),

where A = arbitrary function of its argument.

• Case (b): α = y/x, β = z/x: It corresponds to a FSL passing through the origin O and
is represented by the intersection of the planes

(27)
y

x
c

z

x
c= =1 2,

or as the intersection of the conic surfaces
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(28) F
y

x

z

x
c G

y

x

z

x
c, , , .



 = 



 =1 2

According to (20), the corresponding (central) potential is:

(29) V(x, y, z) = A(x2 + y2 + z2),

where A = arbitrary function of its argument.

REMARK 9: Generalizing slightly the Case (a), let us examine if linear expressions in
x, y, z for the functions α(x, y, z) and β(x, y, z) may be good choices to represent a FSL
produced by a potential. In treating the three equations (15a,b) and (23) with the aid of
MATHEMATICA, we come to understand that, except for α = const., β = const., no other
real solution exists. There exist, however  complex slope functions α, β associated with
3D complex potentials. As an example consider the pair

(30) α = 1 + z + iy,  β = y – i(1 + z)

corresponding to the potential

(31) V = 2(x + y + yz) + i( y2 – 2z – z2).

Two-dimensional complex potentials are conceived as formal mathematical entities
(Contopoulos and Bozis, 2000) and they are met as such in the literature referring to the
problem of integrability (Hietarinta, 1984, Ramani et al., 1982) and to the inverse
problem (Bozis and Grigoriadou, 1993).

REMARK 10: In generalizing the Case (b), we easily show that the only functions of
the form α = α(y/x), β = β(z/x) which satisfy (15a,b) and (23) are those given in Cases (a)
and (b), i.e. either α = α

0
, β = β

0
 or α = y/x, β = z/x.

5. POTENTIALS ADMITTING TWO-PARAMETRIC FSL

We now approach the problem from the direct point of view: We give an «appropria-
te» genuine 3-D potential V(x, y, z) and we ask for the FSL which this potential generates.
In terms of α and β, the answer is given directly from formulae (20). To find the family
in the form (6), we need solve the system (14) which is feasible because the potential is
«appropriate». There remains the question: Which potentials are appropriate?

Solving equations (20) for α = V
y 
/V

x
 and β = V

z
/V

x
  and inserting into (15a, b), we obtain

correspondingly the two equations:
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V
xy

(V 2
x
 – V 2

y
) – V

x
V

y
(V

xx
 – V

yy
) + V

z
(V

x
V

yz
 – V

y
V

xz
) = 0

V
xz
(V 2

z
 – V 2

x
) + V

x
V

z
(V

xx
 – V

zz
) + V

y
(V

z
V

xy
 – V

x
V

yz
) = 0.

We observe also that (23) becomes an identity. Therefore, we state the following.

THEOREM 1: The two conditions (32a, b) are necessary and sufficient so that a potential
V = V(x, y, z) can produce a two-parametric FSL, given by the pair (α, β) in eqs. (20).

The following theorem is analogous to that reported in Section 1 (iii) and is valid for
the spatial case too:

THEOREM 2: If V = u(x, y, z) is one particular solution of the system of PDEs (32a, b),
then all functions V = F(u(x, y, z)), with F arbitrary C 2-function are also solutions of (32a,
b).

This theorem is shown easily by direct computations. In view of this theorem and of
the two Cases treated in Section 4, we can verify that both equations (32a, b), as expected,
are valid for the («linear») potentials (26) and for the (central) potentials (29). The
corresponding FSL are (25) and (28) respectively.

THEOREM 3: For a
i
, b

i 
= constants (i = 1, 2, 3) and for potentials of the form

(33) V(x, y, z) = Φ(a, b),

where Φ is an arbitrary function of the two arguments

(34) a = a
1
x + a

2 
y + a

3
z   and   b = b

1
x + b

2 
y  + b

3
z,

the two equations (32a, b) reduce to the unique equation

(35) (KΦ
a
 + LΦ

b
)Φ

b
Φ

aa
 + (MΦ2

b
 – KΦ2

a
)Φ

ab
 – (LΦ

a
 + MΦ

b
)Φ

a
 Φ

bb
 = 0

where

(36) K = a2
1
 + a2

2 
+ a2

3
,   L = a

1
b

1 
+ a

2
b

2
 + a

3
b

3
,   M = b2

1 
+ b2

2 
+ b2

3
.

This is shown by direct computations (aided by MATHEMATICA): We prepare, in
view of (33) and (34), the derivatives V

x
, V

y 
, ..., V

zz
 (e.g. V

x
 = a

1
 V

a
 + b

1
 V

b
) and insert them

both into (32a) and (32b). As a result, we obtain the unique second order nonlinear PDE
(35) with (constant) coefficients given by (36). We note here that the equipotential
surfaces of (33) are cylinders with generatrices parallel to the straight lines a = b = 0.

(32)
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To pursue the solution of (35), let us introduce the variable z = z (a, b) by

(37) Φ
b 
= z Φ

a

and express Φ
ab

, Φ
bb

 in terms of Φ
a
, Φ

aa
. Inserting into (35) we obtain the PDE

(38) (K + Lz)z
a
 + (L + Mz)z

b
 = 0

whose general solution is

(39) (L + Mz)a – (K + Lz)b = A(z)

where A(z) is arbitrary.
For any particular solution z = z (a, b), resulting from (39) after selecting A(z), the PDE

(37) is solved to completion, provided that the ODE

db

da z a b
= − 1

( , )

can be solved by quadratures. Thus, e.g., for A = 0, from (39) we obtain

z
Kb La

Ma Lb
= –

–

and, from (35),

(40) Φ(a, b) = �(Kb2 – 2Lab + Ma2)

where � is arbitrary function of its argument.

REMARK 11: For

(41) K = L = M (≠ 0)

the general solution of (35) can be given with two arbitrary functions. Indeed, the general
solution of (38) is z = A(a – b), A = arbitrary and of (37) is:

Φ(a, b) = G(b + H(a – b))

where G, H are arbitrary functions of their arguments. In view of (36) it can be shown that
only complex sets of values of the constants a

1
, a

2
, a

3
, b

1
, b

2
, b

3
 exist to account for (41).
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An indicative set of such values is: a
1 
= i, a

2 
= – 1, a

3 
= 1, b

1
 = – 1, b

2
 = – 1, b

3
 = i.

6. EXAMPLES

The examples of this section serve to verify the formulae established in the paper and
also to indicate how one can try to establish analytically compatible pairs of FSL (α, β)
and potentials V(x, y, z).

EXAMPLE 1: For α = α
0
 = const  ≠ 0, equation (15a) is satisfied identically, whereas

equation (23) implies that

(42) β = b(φ, z)

where b is an arbitrary function of φ = x + α
0
 y and of z. We now try to specify b so that

the condition (15b) is also satisfied. To this end, we must have

(43) (1 + α2
0
)bφ + bb

z
 = 0

with solutions b = b(φ, z) given implicitly by the relation

(44) b = B(bφ – (1 + α2
0
)z),

where B is an arbitrary function of the unique argument w = bφ – (1 + α2
0
)z. Selecting B

= w in (44), we get the FSL

(45) α α β α
α

= = +
+ −0

0
2

0

1

1
,

( )
,

z

x y

which, with the aid of (20), leads to the potential

(46) V(x, y, z) = (x + α
0
 y – 1)2 + (1 + α2

0
)z2

and, of course (according to the Theorem 2 of Section 5), to any function of (46).
Let us now select B = 2w  in (44). We obtain the two pairs of FSL

(47) α = α
0
,  β = [(x + α

0 
y) ± √(x + α

0 
y)2 –  2(1 + α2

0
)z],

for which we know that potentials V(x, y, z) creating these families do exist but we cannot
find them analytically.

EXAMPLE 2: As a counterexample, let us consider the positive parameters c
1
 and c

2
 and
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the (monoparametric) family of hyperboloids of one sheet

(48) 4x2 + y2 – z2 = c
1
.

It is known that,  for any definite  c
1  
> 0, each surface (48) contains the (monoparametric)

set of straight lines

(49) 2 2
1

2 1
2

1x z c c y x z
c

c y+ = + − = −( ), ( )

parametrized by c
2
 > 0. If we free c

1
 as a parameter, the  two-parametric FSL (49) may

be written in the form (6) as follows:

(50) f x y z x y z c g x y z
x y z y

x z
c( , , ) , ( , , )= + − = =

+ − −
−

=4
4

2
2 2 2

1

2 2 2

2

It is

α β=
+ + −

−
=

+ + −
−

4 2 4 4 2 42 2 2

2 2

2 2 2

2 2

xy z x y z

z y

xz y x y z

z y
,

and the conditions (15a, b) are fulfilled, meaning that, indeed, the equations (50) represent
a FSL. However, the condition (23) is not satisfied and this is interpreted to mean that no
potential V(x, y, z) exists which can create the FSL (50).

REAMARK 12: In view of (8a) we can check that the (vectorial) condition (22), as
expected, is not satisfied for the family (50). However, this negative result gives us no
information as to whether (50) is not a FSL or if perhaps (50) is a FSL but not traced by
a potential.

7. CONCLUDING COMMENTS

• (a) The literature in the version of the three-dimensional inverse problem considered
here (already reported in Section 2) uses the two families (6) to represent the orbital data.
In the present study we replaced f and g by the functions α and β, given in (11), the merits
of which are:

(i) Lower order partial derivatives enter into the calculations and into the
pertinent formulae as e.g.: formulae (15a,b) and (23). As a result we have an appreciable
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simplification in direct problem considerations, i.e. when the FSL is demanded.
(ii) As the equations (14) imply, the functions α, β give the curvature of the orbits.

For the present study of the FSL, this curvature

  
κ = ×| ' ' ' |

| ' |

r r

r
r r

r 3

is zero; for any other families it is

(51)
  
κ

αε β βε α ε α ε β
α β

=
⋅ ∇ − ⋅ ∇ + ⋅ ∇ + ⋅ ∇

+ +
( ) ( ) ( )

( ) /

r r r r2 2 2

2 2 3 21

where   
r
ε  =   

r
i  + α  

r
j  + β   

r
k  and the dot (·) denotes the scalar product of two vectors.

(iii) Using α and β, we can write down the system of PDEs (20) in order to find the
potential V(x, y, z), even if we do not possess the family (6) itself. It suffices to have at
our disposal the system of ODEs (14) which may or may not be solvable to give us its
solution in the form (6).

(iv) The three conditions (15a, b) and (23) are more informative compared to
the three (analytic) conditions implied by (22). This was explained in Remark 12 of
Section 6.

• (b) This study, as a whole, answers the following two questions:
(1) Direct problem: The three-dimensional potential V = V(x, y, z), allowing for

the creation of ∞5 orbits is given. Is there, among these orbits, a two-parametric set of
straight lines? (The answer is given by the conditions (32)). In case that the answer is
affirmative, we obtain the functions α(x, y, z) and β(x, y, z) from (20). If possible, we solve
the system (14) to find the FSL in the form (6).

(2) Inverse problem: Either the family (6) or the first order system of ODEs (14)
which is solvable or not in the two unknown functions y = y(x) and z = z(x) is given. Then,
a two-parametric set of spatial orbits is at our disposal or hidden behind the given system.
Do these orbits represent a FSL? (The answer is given by the conditions (15a, b)). If so, is
this FSL generated by a potential? (The answer is given by the condition (23)). If so, then
the pertinent potential is found from the system (20). We note here that the conditions

(15a, b) are written as:   
r
ε  · ∇α = 0,   

r
ε  · ∇β = 0 and the condition (21) as:   

r
ε  · (∇  ×   

r
ε ) = 0.

So, if the vector ε satisfies these relations, the pair {α, β} represents a FSL created by a
potential.

• (c) In order to establish compatible FSL (α, β) and potentials V(x, y, z) we act as
follows: Either (i) we find adequate pairs (α, β) satisfying the system (15a,b) and (23), in
which case the equations (20) are also compatible and give the corresponding potential
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(inverse problem) or (ii) we find an appropriate potential satisfying the system (32a, b) in
which case the same equations (20) offer the corresponding FSL (α, β) (direct problem).

So or otherwise, as we have more partial differential equations to be satisfied by less
unknown functions, the problem generally is not expected to admit of a solution. Under
these circumstances, it is usual to try to determine simpler functions to fit into a foreseen
form of solution. This is e.g. what we did in the Example 1 of Section 6. We may also use
(successfully or not) the method of the determination of constants, as we do below.

• (d) For an indicative numerical check of the results of the present study, we worked
with the potential (46) for

α α β= = =
+ −0 1
2

1
, .

z

x y

For a particle P of unit mass and with initial conditions

(52) x y z x y z0 0 0 0 0 01 1 1 1 1 1= = = = = =, , , ˙ , ˙ , ˙ ,

we integrated numerically the (linear) system

(53) ˙̇ ( ), ˙̇ ( ), ˙̇x x y y x y z z= − + − = − + − = −2 1 2 1 4

and we found, indeed, a bounded rectilinear motion of total energy E = (T + V)
P
 = 6. The

initial conditions for the velocity   
r
u0(1, 1, 2) in (52) were taken so that   

r
u0  is parallel to the

vector {1, α, β} calculated at the point P(1 ,1, 1). It is understood that any multiple of   
r
u0

could be used. The material point P would then trace the same straight line y = x, z = 2x – 1
with other values of the total energy

• (e) Linear as it is, the system (53) can be solved also analytically. For the initial
conditions (52) it is

(54)
x t t t y t t t

z t t t

( ) ( cos( ) ( )), ( ) ( cos( ) ( )),

( ) cos( ) ( ).

= + + = + +

= +

1

2
1 2 2

1

2
1 2 2

2 2

sin sin

sin

The linear oscillation (54) lies in the box

(55)
1

2
1 2

1

2
1 2 2 2( ) , ( ), .− ≤ ≤ + − ≤ ≤x y z
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Judging from the general solution of the system (53) we can tell that all rectilinear
motions are oscillatory. We have also checked that there exist unbounded motions but not
rectilinear.

• (f) If, instead of (46), and in view of the Theorem 2 of Section 5, we had used the
potential V x y z( , , ) , the (non-linear) system integrated numerically for the same initial
conditions (52), would give the same rectilinear motion, now traced with total energy
E = 3 + 3.
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