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Three-dimensional potentials
producing families of straight lines (FSL)

GEORGE BOZIS (*), THOMASA. KOTOULAS (*)

Abstract. Weidentify a given two-parametric family of regular orbitsgivenintheform
f(x,y,2) = ¢, 9(x, ¥, 2 = ¢, inthe 3-D Cartesian space by two functions a(x, y, z) and
B(x, Y, 2) including first order derivativesof f and gin x, y, zand defined by the system:
dy/dx = a, dz/dx = 3 whose general solution is the family of orbits. Then, from the
inver se-problemviewpoint, wefind threenecessary and sufficient differential conditions
which the functions a(x, y, z) and B(x, y, 2) must satisfy when the given family { a, g} is
indeed a two-parametric family of straight lines (FSL) and is actually created by a
potential V(x, y, z). From the direct-problem viewpoint, we establish two differential
conditionswhich are satisfied by all genuine 3-D potential s producing two-parametric
(FSL). Some pertinent theorems are shown and certain examples are worked out.

Riassunto. In un sistema di riferimento inerziale, individuato da una terna cartesiana
ortogonale Oxyz, sia assegnata una famiglia a due parametri di orbite regolari di
equazioni f(x, y, 2 = ¢, g(x, ¥, 2 = c,. S dimostra che tale famiglia pud essere
identificata con due funzioni a(x, y, 2) e B(x, Y, 2), dipendenti dalle derivate parziali
primedi f e grispetto ad x, y, z e definite dal sistema di equazioni differenziali: dy/dx
= a, dz/dx = Blacui soluzione generale e la data famiglia di orbite. Ponendosi poi dal
punto di vista del problema inverso della Dinamica, si stabiliscono tre condizoni
differenziali necessarie e sufficienti a cui devono soddisfarelefunzioni a(x, y, z) e 8(x,
y, 2) affinchéla datafamigliadi curve siaunafamiglia di orbiterettilinee (FSL) creata
da un potenziale V(x, y, 2). S stabiliscono infine due condizioni differenziali, utili dal
punto di vista del problema diretto della Dinamica, che sono soddisfatte da tutti i
genuini potenziali 3-dimensionali capaci di produrre come orbite le rette della data
famiglia 2-parametrica (FSL). S dimostrano inoltre alcuni teoremi pertinenti e s
danno alcuni esempi.
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1. INTRODUCTION

I solated straight lines produced by two-dimensional potentialsV = V(x y) ininertial
frames Oxy have been found e.g. by Antonov and Timoshkova (1993), with the aid of
Szebehely’ sPDE (1974), by Van de Merwe (1991) with the aid of Rgjaraman’ sintegro-
differential equation (1979), by Contopoulos and Zikides (1980), by Caranicolas and
Innanen (1992) and, for three-dimensional potentials, by Caranicolas (1994). Such
isolated straight lines were used also in the reasoning of Yoshida's theorem (1987)
concerning nonintegrability of homogeneous 2-D potentials.

In the framework of the inverse problem of Dynamics, planar monoparametric
families of orbits

D fix.y)=c

areidentified as the general solution of an ordinary first order D.E.

dy 1

dx  y(xy)'

where «the slope function» y(X, y) is defined by

fy

i

2 y(x,y) =
In particular for families g(x, y) of straight lines (FL) it is

©) Yy, —Y,=0

Such families have been studied by Bozis and Anisiu (2001) as an exceptional case
of the general planar inverse problem. The main findings of this study are:

e (i) Only potentials V = V(x, y) satisfying the differential condition
4 V VY, = V,) =V (V2= V))
can create FS. among the other orbits.
* (ii) Toany genuinely 2-D potential, solution of the PDE (4), there correspondsthe

unique FSL defined by the slope function

VX
(5) y(xy) = _V_y
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e (iii) If V=u(x, y) isone particular solution of (4), then all functionsV(x, y) = F(u),
with F arbitrary C2-function, areal so solutions of (4) and they createthe same FSL which
u(x, y) creates.

o (iv) GivenaFSL y(x, y) which satisfies (3), there exist, according to (5), infinitely
many potentials which can create y(x, y).

Certain classes of solutions of the equation (4) (e.g. separablein Cartesian or in polar
coordinates, homogeneous etc.) were studied and several FSL were found.

In the present paper we address the question of finding compatible pairs of FSL and
potentials V = V(X, y, 2) in athree-dimensional inertial Cartesian Oxyz frame.

In Section 2 we give anew account of the basic factsregarding the three-dimensional
inverse problem. We introduce two functions a = a(x, y, 2 and 3 = (X, y, 2) which can
represent uniquely thetwo-parametric family of spatial curves(6) inamanner anal ogous
to that of the function y(X, y) representing the monoparametric family (1).

In Section 3we derive two differential conditionswhich the pair (a, ) hasto satisfy
in order to represent a spatial FS_ and an additional condition so that this FSL can be
created by a potential V(x, Y, 2).

In Section 4 we find certain easily detected pairs of FSL and potentials and we
comment on the meaning of complex potentials.

In Section 5 we look at the problem from the direct viewpoint and we derive two
conditionswhich all genuine 3-D potentialsV(X, y, ) producing FSL haveto satisfy. We
then compare them with the two-dimensional findings.

In Section 6 we present an example of a compatible FSL and a potential and a
counterexample of a FSL which is not produced by a potential.

Finally, Section 7 is devoted to certain comments regarding this work as awhole.

2. THE INVERSE PROBLEM IN THREE DIMENSIONS

After Newton'sera, Darboux, Dainelli, Suslov, Joukovski were some of the authors
who studied various versions of the inverse problem in Dynamics. An account of the
pertinent references may be found in Shorokov (1988) and in Ramirez and Sadovskaia
(1996).

Following Szebehely (1974), the general three-dimensional version of the inverse
problem for amonoparametric family of spatial orbits was first studied by Erdi (1982),
then, for atwo-parametric family, by Bozis (1983), by Véradi and Erdi (1983) and later,
fromadifferent viewpoint, by Bozisand Nakhla(1986), by Shorokov (1988) and by Puel
(1992). At amost the same period the group at Cagliari (Melis and Piras 1982, 1985,
Meélis and Borghero 1986, Borghero 1987 and Borghero and Melis 1990) generalized
Szebehely’ s equation to account for holonomic systems with n degrees of freedom.

Theversion of theinverse problem studied in the present paper isthefollowing: Inthe
inertial frameOxyz, let V=V(X,y, z) beapotential whichgivesrisetothepreassignedtwo-
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parametric family of regular orbits given in the form
(6) f(xy.9=c,0xy 2=c,
and traced by amaterial point P(X, y, z) of unit mass with total energy
) E=E(f, 9
which is constant on each member (c,, ¢,) of the family (6).
Remark 1: Two-parametric familiesgiven e.g. intheform @ (x,y, z,c)) = c,, @,(X, Y,
Z) =0areessentially two-dimensional entities(aset of curveson one specific surface) and
arenot considered inthe present study. A version of thisproblem was studied by Mertens

(1981) and by Bozis and Mertens (1985).
Fori=1,2,3,letd and A be respectively the components of the vectors

®) d=0fx OgandA =3 x a

wherea isthe vector with components

©)] a=96-03.
Before proceeding more, we note here that
Remark 2: The transformation X — y — z - xbringsd, - 3, -~ 8, - 0,.

Remark 3: Thetransformation: f — g — fbringsthetriplet (3, 5,,6,) to (-3,, -9,
—9,) and leaves unaltered the ratios (11) below, asit should.

Two basic facts for this problem are (e.g. Bozis and Nakhla, 1986):

(i) The potential satisfies the following linear in V(X, y, 2) PDE:

2Bs(E-v) and &V, -5V, =222 (E_v)

(10) A -
4 g

 (ii) The necessary and sufficient requirements for the above system (10) to be
compatiblelead to alinear system of PDESin E = E( f, g) with coefficients depending on
theorbital data. Asthese equationsin the unique unknown function E must becompatible
themselves, we conclude that: in general, a preassigned family (6) does not result from
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an autonomous potential V(X, y, 2) unless certain conditions are fulfilled by the «given»
functionsf (x, y, 2), 9(X, , 2).

We mentioned in the Introduction that, for the planar family (1), theratio fy/fx =y(x,
y) specifies the monoparametric family (1). Accordingly, we show here that the two-
parametric families (6) in the Oxyz space may be identified by the two ratios

(11) a(xy =2 and Blxy) =2

1 1

Thisis meant in the following sense: For all one dimensional curves
(12 F=x +y(X)] +z(x)k

(i, i k areunit vectors along the perpendicular axes Ox, Oy, Oz) parametrized by the
ordinate x and defined by (6), we have

(13) fx+fyy'+fzz’:0andgx+gyy+gzz’:0

where primesdenotedifferentation withrespect tox. Accordingto (8) and (11), weobtain
from (13)

(14) y=a(xy,2,Z=p(xY.2

The general solution of the system (14) of thetwo ordinary D.E. in the two unknown
functionsy =y (x) and z = z(x) includes two arbitrary constants ¢, and ¢, and, by itsvery
structure, is given by the two equations (6).

RemARK 4: Instead of the equations (6), let usrepresent the two-parametric family by
(what apparently is equivalent) the equations F(f, g) = ¢, G(f, g) = c, with

9F.G) z0.
a(f,9)

If we calculate now thetriplet (3, d,, 8,) from (8) andinsertinto (11), we seethat the
functions a(x, y, 2) and B(X, y, z) remain unaltered, as they should.

Remark 5: At any point P(x, y, 2), the tangent of the orbit = ' (x) passing through
P has the direction of the vector {1, Y, Z},={1, a, B} .

RemARK 6: Theregularity (already assumed) for the curves(6) impliesthenonzeroing
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of at least one of the functions &, 8,, 8,. Without loss of generality (and in view of the
above Remark 2) we can take 8, # 0, so that the ratios (11) may be defined. In addition
to that and because in this study we are searching for genuinely 3-D potentials V(X, Y, 2),
weassumethat 8, 8,0, # 0, i.e. we assumethat both o and 3 are not zero (see also Remark

7 in Section 3).

3. SZEBEHELY'SEQUATIONSFOR STRAIGHT LINESIN 3-D SPACE AND
CONDITIONSFOR THEM

We prove first that, if the equations (6) represent straight lines, the r.h.s. of both
equations (10) vanish. Indeed, for any selection of the pair (c,, c,), a curve (6) may be
thought of as given by (12). Let us then consider that (12) represents a straight line, in
which case, its curvature

)
X
-

™
@

must vanish. Thisleadsto (y'z' —y'Z)i —Z' ity k =0whichimpliesthaty’ =0, z'
=0and, inview of (14),

(15) ax+aay+[3az:0and BX+aBy+ BB,=0.

The equations (15) are the necessary and sufficient conditions which the «slope
functions» a(x, y, 2), B(X, v, 2 must satisfy so that the equations (6) represent a set of
straight lines. Inview of the notationsintroduced in the previous Section 2 and after some
straightforward algebra it can be shown that each of the two equations (15) impliesthe
vanishing of the corresponding numerator of the fraction appearing in each of the two
equations (10).

Indeed, from the second of equations (8), we have A, =& a,—d,a,, which, in view of
(9), iswritten as

5,0 . 05,0 . 05,08
Ay =8B O30 +0,020 +8:020 O
(16) 3 1a Haa( 25&5/ 3%%@
and, inview of (11), as
17 A, =& (a, +aa, +Ba).

Thus, because of the first of (15),
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(18) A, =0.

3

In asimilar manner one can show that

(19) A,=0.
Therefore, for familiesof straight lines (FSL), Szebehely’ sequations (10), according
to (15), reduce to

(20) aV,—V,=0,and BV, -V,=0.
or, inview of (11), to the system

(21) V,=9,V,=6,V,=9,
which is compatible if

(22) rotd =0

The total energy E no longer appearsin (20) and, in this sense, we are in front of a
special case of theinverse problem: In order to find the potential V(X y, Z), we need only
give in advance the FSL and not the energy dependence (7).

RemARk 7: Asstated in Remark 6 of Section 2, we keep assuming that af3 # 0. For a
FS. withe.g. =0, equation (20b) impliesthat V,=0, i.e. thepotential V=V(x, y) istwo-
dimensional. Equation (15b) is satisfied identically, whereas (15a) givesa + aa, = 0.
Combining this last result with (20a) we reobtain (4). As expected, potentials V(X, y)
generating FSL in the Oxy plane also alow for such families lying on planes parallel to

Oxy.

RemaRrk 8: For families given by the equations (6) the compatibility condition (22)
is tested directly, with the aid of (8a). For families given by the pair (a, B) (i.e. apair
satisfying (15)), it isnot sure that there existsindeed a potential V/(X, y, Z) which creates
this FSL; because, now, two equations (i.e. equations (20)) have to be satisfied by the
uniqueunknownfunctionV(x, y, ). All these statementsare, of course, inagreement with
the basic fact (ii) of Section 2.

Having in mind the previous Remark 8 let us ask: «Given an appropriate pair (a, B)
which satisfiestheequations(15), isthereapotential satisfying thetwo equations(20) ?».

For an affirmative answer to this question, athird linear PDE in V(X, y, Z) must by
necessity betrue (Favard 1963, Smirnov 1964 or the equation (6) of the article by Bozis
and Nakhla, 1986). For the case at hand, thisthird PDE reducesto: V (a3, — Bax—By+ a,)
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= 0 and consequently, sinceV, # 0, to
(23) op,—Bo, =B, —a,

Thisisanew restriction for the «given» pair (a, ), to be added to the two conditions
(153, b). Inconclusion, if thefamily isgivenintheform (6) and satisfies(22), thepotential
can be found also from (21). If, more generally (as we assumein this study), the family

isgiven by thepair { a, B} and satisfies the conditions (15a, b) and (23), the potential is
found from the two (compatible) equations (20).

4. CERTAIN COMPATIBLE PAIRSOF FSL AND POTENTIALS

Two easily detected cases of pairs (a, ) satisfying the three PDEs (154, b) and (23)
are the following:

+ Case(a): a=a,B=p,(a, B,not zero constants). As can be seen from the system
(14), these constants lead to a two-parametric set of parallel straight lines as the
intersections of the two sets of planes

(24) f(xy,2=a,x-y=c, 9V, 2=p,x-z=c,

In view of the Remark 4 of Section 2, the very same FSL (24) may be represented as
the intersection of the two sets of cylindrical surfaces

(25) F(a,x-y,B,x-2 =c, G(a,x-y,B,x-2) =c,
with generatrices parallel to the samedirection {1, a, B }.
Thepotentialswhich createEheabove FSL arefound either from (20) or (becausefrom
(8a) wehave d=i +0gj +Bk) from (21). So or otherwise there results
(26) V(X Y, 2 =A(x+a,y+B,2),

where A = arbitrary function of its argument.

e Case(b): a =y/x, B=2z/x: It correspondsto aFS. passing through the origin O and
is represented by the intersection of the planes

(27)

X |<

:C’l’ :CZ

or as the intersection of the conic surfaces
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oy 20_. gy 20_

According to (20), the corresponding (central) potential is:
(29 V(X Y, 2) = A + y2 + 2),
where A = arbitrary function of its argument.

Remark 9: Generalizing slightly the Case (a), let usexamineif linear expressionsin
X, Y, zfor the functions a(x, y, 2) and (X, y, 2) may be good choices to represent a FS_
produced by a potential. In treating the three equations (15a,b) and (23) with the aid of
MATHEMATICA, we cometo understand that, except for a = const., 3 = const., no other
real solution exists. There exist, however complex slopefunctionsa, 3 associated with
3D complex potentials. As an example consider the pair

(30 a=1+z+iy, B=y-i(1+2
corresponding to the potential
(3D V=2(x+y+y2) +i(y—2z-2).

Two-dimensional complex potentials are conceived asformal mathematical entities
(Contopoul os and Bozis, 2000) and they are met as such in the literature referring to the
problem of integrability (Hietarinta, 1984, Ramani et al., 1982) and to the inverse
problem (Bozis and Grigoriadou, 1993).

Remark 10: In generalizing the Case (b), we easily show that the only functions of
theforma = a(y/x), B = B(z/X) which satisfy (15a,b) and (23) arethose givenin Cases(a)
and (b), i.e. eithera =a, B=B,0or a =y/x, B=2ZX.

5.POTENTIALSADMITTING TWO-PARAMETRIC FSL

We now approach the problem from the direct point of view: We give an «appropria-
te» genuine 3-D potential V(x, Y, 2) and we ask for the FSL which this potential generates.
Intermsof a and 3, the answer is given directly from formulae (20). To find the family
intheform (6), we need solve the system (14) which isfeasible because the potential is
«appropriate». There remains the question: Which potentials are appropriate?

Solving equations(20) fora = Vy/Vx andB=V/V, andinsertinginto(15a, b), weobtain
correspondingly the two equations:
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V (V2 =V2)=VV(V -V )+V(VV_—VV)=0
Xy X y X yy XX yy* Z\ X yz Yy xz
(32)
V (V2 =V2)+VV(V -V )+ Vy(VZVxy — VXVyZ) =0.

We observe aso that (23) becomes an identity. Therefore, we state the following.

THeorem 1: Thetwo conditions(32a, b) arenecessary and sufficient sothat apotential
V = V(X, Y, 2) can produce a two-parametric FSL, given by the pair (a, B) in egs. (20).

Thefollowing theorem is analogousto that reported in Section 1 (iii) and isvalid for
the spatial case too:

THeorem 2: If V=u(X, Y, 2) isone particular solution of the system of PDES (323, b),
thenall functionsV =F(u(x, y, 2)), with F arbitrary C2-function areal so solutionsof (323,
b).

Thistheorem is shown easily by direct computations. In view of thistheorem and of
thetwo Casestreated in Section 4, we can verify that both equations (32a, b), asexpected,

are valid for the («linear») potentials (26) and for the (central) potentials (29). The
corresponding FSL are (25) and (28) respectively.

THeorem 3: For a, b, = constants (i = 1, 2, 3) and for potentials of the form
(33) V(X Y, 2) = ®(a, b),
where ® isan arbitrary function of the two arguments
(34) a=ax+ay+az and b=bx+b,y +bz
the two equations (323, b) reduce to the unique equation
(35) (KD, +LO)D,D_+ (MP2 —KD?)D, —(LD_+MD )P d =0
where
(36) K=& +a’,+a>,, L=ab+ab,+ab, M=b*+b?+b°.
Thisis shown by direct computations (aided by MATHEMATICA): We prepare, in
view of (33) and (34), thederivativesV,,V,, ...,V _(eg.V,=a,V, +b, V) andinsert them
both into (32a) and (32b). Asaresult, we obtain the unique second order nonlinear PDE

(35) with (constant) coefficients given by (36). We note here that the equipotential
surfaces of (33) are cylinders with generatrices parallel to the straight linesa=b =0.
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To pursue the solution of (35), let usintroduce the variable z= z (a, b) by
(37) P,=z0,
and express®_, ®_ intermsof ®_, ®_. Inserting into (35) we obtain the PDE
(38) (K+Lz)z, +(L+M2z =0
whose general solution is
(39 (L+M2a—-(K+Lzgb=A(2
where A(2) is arbitrary.
For any particular solutionz=z(a, b), resulting from (39) after selecting A(2), thePDE

(37) is solved to completion, provided that the ODE

db 1
da Z(a,b)

can be solved by quadratures. Thus, e.g., for A =0, from (39) we obtain

= Kb—La
Ma-Lb
and, from (35),
(40) (a, b) = B(Kb?— 2Lab + Ma2)

where 8 is arbitrary function of its argument.
Remark 11: For
(41) K=L=Mz0)

thegeneral solution of (35) can begivenwithtwo arbitrary functions. Indeed, thegeneral
solution of (38) isz=A(a—h), A= arbitrary and of (37) is:

®(a, b) = G(b + H(a—h))

where G, H arearbitrary functionsof their arguments. Inview of (36) it can be shownthat
only complex sets of values of the constants a, a,, a,, b,, b,, b, exist to account for (41).

R AL}
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Anindicative set of suchvaluesis. a =i,a,=-1,a,=1,b =-1,b 1, b, =i.

2T T M3 T

6. EXAMPLES

Theexamplesof thissection serveto verify the formulae established in the paper and
also to indicate how one can try to establish analytically compatible pairs of FSL (a, )
and potentials V(x, Y, 2).

ExampLE 1: For a = a = const # 0, equation (15a) is satisfied identically, whereas
equation (23) implies that

(42) B=h(e 2

where bisan arbitrary function of @ =x+ o,y and of z. We now try to specify b so that
the condition (15b) is also satisfied. To this end, we must have

(43) (1+a%)b,+bb,=0
with solutions b = b(¢, z) given implicitly by the relation
(44) b =B(bp—(1+0a?)2),

where B isan arbitrary function of the unique argument w = bg— (1 + a? )z Selecting B
=win (44), we get the FSL

(1+a3)z
a=a 1 :—1
(45) o B X+ agy-1
which, with the aid of (20), leads to the potential
(46) VXY, 2 =(x+o,y—1)72+(1+0?)Z

and, of course (according to the Theorem 2 of Section 5), to any function of (46).
Let usnow select B= 2w in (44). We obtain the two pairs of FSL

(47) a=a, B=[(x+a,y) £ Vx+ay)?— 21+ a2,

for whichweknow that potential sV/(X, y, 2) creating thesefamiliesdo exist but we cannot
find them analytically.

ExampLE 2: Asacounterexample, let usconsider the positive parametersc, and ¢, and
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the (monoparametric) family of hyperboloids of one sheet
(48) A +y —7=c,.
Itisknownthat, for any definite ¢, >0, each surface(48) contai nsthe(monopar ametric)
set of straight lines

1
(49) 2x+2=0,(/ey +y), 2=z == (e )
2

parametrized by c, > 0. If we free ¢, asa parameter, the two-parametric FSL (49) may
be written in the form (6) as follows:

,4x2+y2—22 -y _

2X-2

(80)  f(xy,2)=4x*+y* -Z% =c;, O(X,,2) = C

Itis

_Axy+22\/4x% +y? -7 _Axz+2y\4x% +y? -2
a= Z-y , B= >

-y

andtheconditions(15a, b) arefulfilled, meaning that, indeed, theequations (50) represent
aFSL. However, the condition (23) isnot satisfied and thisisinterpreted to mean that no
potential V(X y, 2) exists which can create the FSL (50).

ReamARK 12: In view of (8a) we can check that the (vectorial) condition (22), as
expected, is not satisfied for the family (50). However, this negative result gives us no
information asto whether (50) isnot aFSL or if perhaps (50) isa FSL but not traced by
apotential.

7. CONCLUDING COMMENTS

» (a) Theliteratureintheversonof thethree-dimensional inverseproblemconsidered
here (already reported in Section 2) usesthetwo families (6) to represent the orbital data.
Inthe present study wereplaced f and g by thefunctionsa and 3, givenin (11), the merits
of which are:

(i) Lower order partial derivatives enter into the calculations and into the
pertinent formulaease.g.: formulae (15a,b) and (23). Asaresult we have an appreciable
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simplification in direct problem considerations, i.e. when the FSL is demanded.
(if) Astheequations(14) imply, thefunctionsa, (3 givethe curvature of theorbits.
For the present study of the FSL, this curvature

|F|XF|I|
[T

K=

is zero; for any other familiesitis

o V(OETP- BED of @ o’ T B)°

(1+ GZ +[32)3/2

(51)

where € =i +a i +B k and the dot (-) denotes the scalar product of two vectors.

(iif) Using a and 3, we can writedown the system of PDEs(20) in order tofind the
potential V(X, Y, 2), even if we do not possess the family (6) itself. It suffices to have at
our disposal the system of ODEs (14) which may or may not be solvable to give usits
solution in the form (6).

(iv) The three conditions (153, b) and (23) are more informative compared to
the three (analytic) conditions implied by (22). This was explained in Remark 12 of
Section 6.

e (b) Thisstudy, asawhole, answers the following two questions:

(1) Direct problem: The three-dimensional potential V = V(x, v, 2), allowing for
the creation of «o® orbitsis given. |s there, among these orbits, a two-parametric set of
straight lines? (The answer is given by the conditions (32)). In case that the answer is
affirmative, weobtainthefunctionsa(x, y, 2) and (X, y, 2) from (20). If possible, wesolve
the system (14) to find the FSL in the form (6).

(2) Inverse problem: Either the family (6) or thefirst order system of ODES (14)
whichissolvableor notinthetwo unknown functionsy = y(x) and z= z(x) isgiven. Then,
atwo-parametric set of spatial orbitsisat our disposal or hidden behind the given system.
Dotheseorbitsrepresent aFSL? (Theanswer isgiven by the conditions(15a, b)). If so, is
thisFSL generated by apotential ? (The answer isgiven by the condition (23)). If so, then
the pertinent potential is found from the system (20). We note here that the conditions
(153, b) arewrittenas. € -[d =0, € -[B =0andthecondition(21) as. € - (0 x £€)=0.
So, if the vector ¢ satisfiestheserelations, the pair { o, B} representsa FSL created by a
potential.

e (c) Inorder to establish compatible FSL (a, B) and potentials V(x, y, 2) we act as
follows: Either (i) wefind adequate pairs(a, B) satisfying the system (15a,b) and (23), in
which case the equations (20) are also compatible and give the corresponding potential
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(inverseproblem) or (ii) wefind an appropriate potential satisfyingthe system (32a,b) in
which case the same equations (20) offer the corresponding FSL (a, B) (direct problem).
So or otherwise, aswe have more partia differential equationsto be satisfied by less
unknown functions, the problem generally is not expected to admit of a solution. Under
these circumstances, it isusual to try to determine simpler functionstofit into aforeseen
formof solution. Thisise.g. what wedid in the Example 1 of Section 6. We may also use
(successfully or not) the method of the determination of constants, aswe do below.

e (d) Foranindicativenumerical check of theresultsof thepresent study, weworked
with the potential (46) for

2z
a=do =L P “X+y-1

For aparticle P of unit massand with initial conditions
(52) X0=1 Yo=1 7 =1 X, =1 Yyo=1 2z =1
weintegrated numerically the (linear) system
(53) X==2(x+y-1, y=-2(x+y 1), z =-4z
and wefound, indeed, abounded rectilinear motion of total energy E= (T + V), =6. The
initial conditionsfor thevelocity U, (1, 1, 2) in (52) weretaken sothat U, isparallel tothe
vector {1, a, B} calculated at thepoint P(1,1, 1). It isunderstood that any multiple of G,
could beused. Thematerial point P would thentracethesamestraight liney =x,z=2x—1
with other values of thetotal energy

* (e) Linear asitis, the system (53) can be solved aso analytically. For the initial

conditions (52) it is

x(t) = 1 (I+cos(2t) +sin(2t)), y(t) :1(1 +cos(2t) +sin(2t)),
(54) 2 2
z(t) = cos(2t) +sin(2t).

The linear oscillation (54) lies in the box

(55) %(1—V5)sx,ys%(1+N5), -2 <z<42.
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Judging from the general solution of the system (53) we can tell that all rectilinear
motionsareoscillatory. Wehaveal so checked that there exi st unbounded motionsbut not
rectilinear.

e (f) If,instead of (46), andin view of the Theorem 2 of Section 5, we had used the
potential /V(X,Y,2) , the (non-linear) system integrated numerically for the sameinitial
conditions (52), would give the same rectilinear motion, now traced with total energy

E=3++3.
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