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1. Introduction 
The availability of a reliable and accurate econometric-quantitative 

method for forecasting the behaviour of inflation is of primary 
importance, given the emphasis that the European Central Bank s – in 
particular the European one - pose on to price stability. In the 
literature there is no consensus and the debate is very lively as 
emphasised for example by the recent symposium on “The Return of 
the Phillips Curve” in The Journal of Monetary Economics, 1999. 
Even more important, and maybe more difficult, is to build a 
quantitative model to forecast inflation, in order to give guidance to 
the monetary policy authorities.  

The traditional approach to the analysis of inflation dynamics is 
based on the Phillips Curve and on the concept of non-accelerating-
inflation-rate-of-unemployment (NAIRU). The fundamental relation 
is estimated by regressing the inflation change on a constant, its own 
lagged values, lagged unemployment rate, on a set of exogenous 
control variables and supply shock variables. Different versions of a 
regression of the type described above have been often used in the 
literature both to estimate the level of the NAIRU and to describe 
and forecast the dynamics of inflation (see Staiger et al., 1997, and 
reference therein).  

From a theoretical perspective, both the Phillips Curve and the 
concept of NAIRU have been the subject of very well known 
critiques. Besides, also from an empirical perspective, both the 
stagflation of the '70s and the simultaneous occurrence in the second 
half of the '90s in US of low and falling inflation and low 
unemployment (Brayton et al., 1999) appear to be at odds with the 
properties of a standard Phillips Curve.  

With respect to the theoretical modelling, new models have been 
proposed. These models are based on the synthesis between typical 
elements of the real business cycle literature (microfoundations and 
intertemporal optimisation) and typical elements of the new-
keynesian literature, such as monopolistic competition and nominal 
rigidities (Ascari, 2000). In particular, by introducing in a stochastic 
dynamic general equilibrium model the staggering of price decisions 
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by monopolistic competitive firms, the so-called New-Keynesian Phillips 
Curve (Galí-Gertler, 1999) is obtained: the inflation rate depends on 
marginal cost and on the expected inflation rate for next period. 
Under some conditions it exists a log-linear relationship between 
marginal costs and the output gap. Thus including the latter in the 
expression for the inflation rate yields a form similar to a traditional 
Phillips Curve. The main and substantial difference between a 
standard Phillips Curve and the New-Keynesian Phillips Curve rests on 
the forward-looking nature of the latter. Current inflation depends on 
future expected inflation and not from the previous inflation level. 
The attempts to use such formulation for an empirical model of 
inflation dynamics, however, have encountered serious problems, 
substantially due to the strong persistence properties of the inflation 
time-series.  

From an empirical perspective and following the traditional 
Phillips Curve approach, Staiger et al. (1997) use a specification that 
allows for time variation in the NAIRU. However, one questions the 
value added and signif icance of a concept as NAIRU, if this sort of 
"natural" rate shifts largely in time. The suspect is that the shifts in 
the NAIRU are necessary to catch the strong persistence and non-
linearity (or structural instability) typical of the inflation time series 
(Stock-Watson, 1996). As suggested by Stock and Watson (1996), the 
class of linear and log-linear models reported above proved 
inadequate to capture inflation dynamics, due to the high degree of 
non-linearity and to the presence of "jumps" in correspondence with 
some crucial dates and historical episodes.  

This aspects of inflation behaviour have been also documented 
for other countries. With reference to the Italy, for example, Gallo 
and Otranto (1997) stress how the previous works, which analysed 
the dynamics of inflation in Italy through the use of the VARs, had to 
conclude that the problem of regime shifts will cause great difficulties 
in the inference because the resulting models exhibit structural 
instability. In a linear methodology as the VAR one, the problem is 
unsatisfactorily circumvent or by the use of dummy variables to try to 
catch the shifts (Favero-Spinelli, 1996) or by dividing the sample in 
sub-samples (Marcellino-Mizon, 1997). It hence seems that the use of 
non-linear models to describe adequately the dynamic behaviour of 
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inflation rate in Italy and in the others OECD countries has great 
potential. Such models in fact have been proved successful in the 
identification of different regimes and in uncover the determinants of 
the transition between them. 

This paper is an attempt to contribute to the international debate 
by carrying out a forecasting exercise in order to compare the 
forecasting performance of alternative models for the US inflation 
over the period 1950.1-2002.7. NAIRU Phillips curve models 
forecasts are contrasted with those obtained by a special class of 
nonlinear time series models, namely the threshold autoregressive 
models. Time series analysis has recently witnessed interesting 
developments in the modelling of nonlinearities, asymmetries and 
cyclical phenomena. The need to apply this class of models, as 
emphasized above, derives from the consideration that traditional 
econometric models and vector autoregressive models have rarely 
proved successful in describing and forecasting inflation dynamics; 
this is mainly due to the intrinsic characteristics of the inflation rate 
series, consistently documented across different countries and over 
different time periods, namely high persistence and presence of 
several structural breaks. Nonlinear models are therefore expected to 
provide noticeable gains in terms of higher forecast accuracy.  

The forecasting performance of the estimated models is evaluated 
at horizons as far as two years ahead. Forecasts of inflation are 
intrinsically relevant not only for monetary policy purposes, but also 
to assess the usefulness and applicability of the new forecast 
evaluation tools, namely density forecasts, in relatively small samples 
as those available for most macroeconomic time series (see Diebold 
et al., 1998 and Wallis, 2003). The evaluation based on such tools will 
be accompanied by the one based on traditional Mean Square 
Forecast Error (MSFE) metric and the Diebold and Mariano (1995) 
test.  

The rest of the paper is organised as follows. In section 2 we 
present the statistical properties of the data and the results of the 
linearity tests. In section 3 we report the results from the modelling 
procedures. The forecasting exercise is reported and discussed in 
section 4, while in section 5 we summarise the results and make some 
concluding remarks. 
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2. Data description and linearity tests 
In this paper we analyse the dynamic behaviour of the US 

Consumer Price Index (CPI) for the period 1950.1-2002.7. More 
precisely the study focuses on the 12-month changes in the 12-month 
inflation rate. The 12-month inflation rate, 12

tπ , is defined as the 12-
month change of the price index, pt (CPI)1: 

 
)ln()ln( 12

12
−−= ttt ppπ  

 
The 12-month changes in the 12-month inflation, ∆12πt12, is 

graphed in Figure 1. It is evident that the series is characterized by a 
changing degree of volatility, with the later two decades featuring very 
low volatility. This is coincident with the change in the monetary 
policy implemented in the mid-1980s and might be a possible 
explanation for the results reported in Atkenson-Ohanian (2001), 
who argue that modern inflation forecasting models are not able to 
provide forecasts more accurate than the ones obtained from a simple 
naïve model. 

The statistical properties of the series are reported in table 1 for 
entire sample period, the estimation period and the forecasting 
period. The estimation sample refer to the period 1950.1-1985.12, 
while the forecasting sample cover the period 1986.1-2002.7.  

The splitting of the entire sample between estimation and 
forecasting period allows us to withhold around 30% of the total 
number of observations in order to evaluate the forecasting 
performance of the nonlinear models, as suggested by Granger 
(1993). 

The 12-month changes in the 12-month inflation series ∆12πt12 is 
mean stationary, kurtosis is particularly high over the entire period, 
while the forecasting period exhibits a lower variance with respect to 
the estimation one.  

In order to detect nonlinearities in the ∆12πt12 series, we 
performed the RESET test and the S2 test proposed by Luukkonen-

                                                 
1 DATASTREAM is the source of all the variables included in this study. 
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Saikkonen-Teräsvirta (1988a, 1988b). Both tests are devised for the 
null hypothesis of linearity. While the RESET test is devised for a 
generic form of misspecification, the S2 test is formulated for a 
specific alternative hypothesis, i.e. smooth transition autoregressive 
(STAR)-type nonlinearity. Luukkonen-Saikkonen-Teräsvirta, 
however, show that the S2 test has reasonable power even when the 
true model is a SETAR one. The RESET test has been computed in 
the traditional version and in the modified version found to be 
superior by Thursby and Schmidt (1977)2. The S2 test is performed 
assuming that the variable governing the transition from one regime 
to the other is yt-d with the delay parameter d in the range [1,6]3. 

Table 2 reports the results of the linearity tests computed for the 
whole sample period, the estimation period and the forecast period. 
The selected lag order p ranges from 3 to 5 in order to check for the 
effects of different dynamic structures. The tests applied to the entire 
sample period and to the estimation period lead to the rejection of 
the null in a large number of cases, indicating that there is strong 
evidence of nonlinear components for the data. However, when the 
tests are applied to the forecast period the evidence based on the 
RESET tests indicates that nonlinearities are present with less 
intensity, while the S2 test (d=3,4), on the other hand, is highly 
significant at almost all lags. 

 
 

                                                 
2 In the traditional form, the RESET test is computed by running a linear autoregression of 

order p, followed by an auxiliary regression in which powers of the fitted values obtained in the first 
stage are included along with the initial regressors. The modified RESET test requires that all the 
initial  regressors enter linearly and up to a certain power h in the auxiliary regression; Thursby and 
Schimdt suggest using h=4. The Lagrange Multiplier form (Granger and Teräsvirta, 1993) of the test 
is adopted in this study, thus the test is distributed as a χ2 with up to 3p degrees of freedom for the 
modified version. 

3 The auxiliary regression for the LM S2 test is computed as follows:  
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distribution with 3p degrees of freedom. 
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3. Models specification 
As mentioned in the introductio n the forecasting exercise is based 

on the evaluation of the performance of linear models of the Phillips 
curve type and nonlinear threshold models. A naïve and a simple 
autoregressive model, AR(12), are also estimated as alternative 
benchmarks. 

 
3.1 The Phillips curve linear models 
In a recent paper Atkenson and Ohanian ( 2001) analysis whether 

NAIRU Phillips curve models could be appropriate to forecast US 
inflation in periods characterised by low and stable inflation, as it was 
the case in the US in the 1990s. They compare the NAIRU models 
which include the unemployment gap with a simple naïve model over 
the period 1984-1999 and found that the naïve models is always 
superior in terms of RMSE. AO replicate the estimation in SW (1999) 
in which the change in the inflation rate depends on lagged values 
and on some demand side indicators (unemployment rate and activity 
index). Overall they specify 132 different models which turn out to be 
outperformed by the naïve models in the forecasting exercise. This 
result calls for a more adequate specification of the NAIRU models 
which accounts also for supply-side determinants of the inflation and 
for possible nonlinear features present in the data. However, Fisher-
Liu-Zhou (2002) point out that the results in  Atkenson and Ohanian 
(2001) are forecasting-period dependent, as the naïve model prove to 
be adequate only in period of low volatile inflation, in other periods 
(for instance 1977-84) Phillips curve models provide forecasting gains 
and exhibit predictive power in anticipating the direction of future 
inflation changes. 

The Phillips curve models used by Atkenson and Ohanian ( 2001) 
include only lagged inflation and the unemployment rate or the 
activity index as excess demand variables, ignoring the supply-side of 
the economic system. In this research the traditional Phillips curve 
model is respecified following the triangular model in Gordon (1997) 
which includes three different kinds of variables: inertia (lagged 
inflation), excess demand, and supply shocks. The general 
representation is as follows: 
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where xt is a vector of excess demand proxies variables, zt collects 

supply-side variables and α(L), β(L) and γ(L) are the usual 
polynominals  in the lag operator and the error term ε t is assumed 
n.i.d. 

The aim is to check whether the triangular models turn out to be 
superior from a forecasting perspective. As already mentioned the 
excess demand is represented, in turn, by the unemployment rate, the 
change in industrial production, capacity utilisation rate and the 
Chicago activity index; the latter is a weighted average of 85 monthly 
indicators of real economic activity. The oil price and the import 
prices should capture the supply component. By using the US data we 
estimate 12 models, four belong to the class of traditional PC models, 
while 8 are triangular specifications. In general the dynamics was 
specified including twelve lags of the dependent variable and of the 
demand variable and 13 lags for the supply variable4. The “best” 
model was selected according to the Akaike and Schwarz criteria.  

 
3.2 Threshold autoregressive models 
The threshold autoregressive models were first proposed by Tong 

(1978), Tong and Lim (1980) and Tong (1983). The basic idea of the 
TAR models is that the behaviour of a process is described by a finite 
set of linear autoregressions. The appropriate AR model that 
generates the value of the time series at each point in time is 
determined by the relation of a conditioning variable to the threshold 
values. If the conditioning variable is the dependent variable itself 
after some delay d (yt-d), the model is known as self-exciting threshold 
autoregressive (SETAR) model.  

The SETAR model is piecewise-linear in the space of the 
threshold variable, rather than in time. An interesting feature of 
SETAR models is that the stationarity of yt does not require the 
model to be stationary in each regime, on the contrary, the limit cycle 

                                                 
4 Note that the models which include the Chicago Activity Index, due to data availability are 

estimated starting from 1967.3 
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behaviour that this class of models is able to describe arises from the 
alternation of explosive and contractionary regimes. 

In this study we choose a two-regime (SETAR-2) and a three-
regime (SETAR-3) SETAR models, which can be represented as 
follows:  
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where ε t(j) is assumed IID(0,σ2(j)),  rj represent the threshold values 

and d the delay parameter. 
The models are estimated by following the three-stage procedure 

suggested by Tong (1983) for the case of a SETAR-2 (p1 , p2; d) model. 
For given values of d and r, separate AR models are fitted to the 
appropriate subsets of data, the order of each model is chosen 
according to the usual AIC criteria. In the second stage r can vary 
over a set of possible values while d has to remain fixed, the re-
estimation of the separate AR models allows the determination of the 
r parameter, as the one for which AIC(d) attains its minimum value. 
In stage three the search over d is carried out by repeating both stage 
1 and stage 2 for d=d1, d2, ..., dp. The selected value of d is, again, the 
value that minimises AIC(d). 
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As potential candidate for the threshold variable in describing the 
inflation dynamics we allow not only for the lagged variable but also 
for the demand and supply variables which are included in the 
Phillips curve specifications, such unemployment rate, the change in 
industrial production, capacity utilization rate and the Chicago activity 
index. In these cases we assume that the regime alternation is 
governed by exogenous variables and the models are labelled TAR-2 
and TAR-3. 

The models show clear evidence that the annual change in the 
inflation rate is strongly characterised by nonlinearities as the dynamic 
structure, the estimated coefficients and the error variance differ 
across regimes5.  

 

4. Forecasting comparison results 
In this section we conduct two different forecasting exercises 

intended to evaluate the models on their ability to produce point 
forecasts and density forecasts.  

 
4.1 Point forecasts evaluation 
As reported in section 2, the forecasting sample covers the period 

1986.1-2000.7; the models are specified and estimated over the first 
estimation period, 1950.1-1985.12, and the first set of 1 to 24 steps 
ahead forecast (h=1, 2,…24) computed. The models are then 
estimated recursively keeping the same specification but extending 
the sample with one observation each time. In this way 176 point 
forecasts are obtained for each forecast horizon. These forecasts can 
be considered genuine forecasts as in the specification stage we 
completely ignore the information embodied in the forecasting 
period. The computation of multi-step-ahead forecasts from 
nonlinear models involves the solution of complex analytical 
calculations and the use of numerical integration techniques, or 
alternatively, the use of simulation methods. In this study the 
forecasts are obtained by applying the Monte Carlo method with 
                                                 

5 Given the large number, estimated models are not reported in order to save space, but are 
available from the authors upon request.  
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regime-specific error variances, so that each point forecast is obtained 
as the average over 500 replications. 

In table 3A we report the MSFEs normalised with respect to the 
naïve model, while table 3B reports the comparison with respect to 
the linear AR(12) model. We select these two models as alternative 
candidates in order to compare our results with those reported in 
Atkenson-Ohanian (2001) and to check the conclusion reached by 
Staiger et al. (1997), i.e. that a forecaster who used only lags of 
inflation would have produced more accurate two-year ahead 
forecasts of inflation than those based on the unemployment rate. 

The values are calculated as the ratio of the competing model 
(Phillips Curve linear-type or threshold model) MSFE with respect to 
the MSFE of the benchmark model. Therefore, a value less than 1 
denotes a better forecast performance of the competing model. We 
have also applied the Diebold and Mariano (DM) test for equality of 
forecasting accuracy, and indicated with stars the cases for which the 
MSFEs  are statistically significantly between the benchmark and the 
competing model.  

In contrast to what we expected the triangular models Phillips 
curve models proved marginally superior only when the specification 
includes the activity index and the import prices. All the other 
specifications provide a forecasting performance which on the bases 
of the Diebold-Mariano test turned out to be indistinguishable from 
that of the traditional PC models. This result may be due to an 
overfitting problem, while the triangular models are more adequate to 
capture the in-sample behaviour of the inflation variable, this cannot 
be exploited to improve forecasting accuracy. In table 3A and 3B we 
focus on the traditional Phillips curve model where the excess 
demand is represented by the unemployment rate or, in turn, by one 
of the exogenous variables, namely the capacity utilisation rate, the 
change in industrial production, the Chicago activity index and the 
unemployment rate.  

Focusing on the Phillips curve models, although there seem to be 
some forecasting gains for the specification which includes the 
Chicago Activity Index at all forecasting horizon considered (a 
reduction of almost 30% for h=24), the Diebold-Mariano test is not 
significant. Therefore, the evidence reported in table 3A highlights 
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the fact that the forecasting accuracy of Phillips curve models is not 
significantly different from the one exhibited by the naïve model. 
This finding is in contrast with previous results presented in 
Atkenson-Ohanian (2001), who claimed that naïve model was never 
outperformed by the Phillips curve competitors. It is worth noting 
that in the study by Atkenson-Ohanian (2001) the difference in 
RMSEs was not assessed by means of the Diebold-Mariano (1995) 
test. When the forecasting comparison is carried out with respect to 
the simple AR(12) model (table 3B), it turns out that all the Phillips 
curve models yield noticeable gains for medium and long forecasting 
horizons, i.e for h=6, 9, 12 and 24. The significant reductions in the 
MSFE metrics range from 49% to 25%. 

Turning to nonlinear threshold models some interesting results 
emerge. This class of models - both in the self-exciting specification, 
i.e. when the transition variable is dependent variable lagged d times, 
and in the specifications for which the transition from one regime to 
the other is governed by one of the exogenous variables – are able to 
outperform the naïve model only for short run forecasts (h=3, 6). For 
short term forecasting horizons the accuracy gains, as measured by 
the reduction in the MSFE, range from 82% to 25%. For medium 
and long term horizon the threshold models performance deteriorates 
quite dramatically. However, with respect to the AR(12) evidence of 
forecasting gains is found starting from the 6 steps-ahead horizon. 
The only model that is always outperformed by the linear model is 
the two- and three- regime TAR model which include the Chicago 
Activity Index as a transition variable. The specification which yields 
the highest forecasting gains is the one which include the 
unemployment rate for both the TAR-2 and TAR-3 model.  

 
4.2 Density forecasts evaluation 
A density forecast is an estimate of the complete probability 

distribution of the possible future values of a variable. Density 
forecasts are becoming increasingly used in real time forecasting in 
macroeconomics and finance as they provide a full description of the 
uncertainty which accompanies point forecasts. In particular, central 
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banks are interested in the uncertainty surrounding inflation forecasts 
in order to devise optimal monetary policies.6 

Moreover, in a recent paper Clements and Smith (1998) show that 
the relative performance of non-linear time series models depends on 
how forecast accuracy is assessed (see also Boero and Marrocu, 20029 
for the evaluation of exchange rate forecasts). Traditional measures, 
such as root mean squared forecast errors, on which evaluation is 
often based, may mask the superiority of non-linear models with 
respect to a simple random walk model. Such superiority becomes 
evident when forecasting accuracy is evaluated in terms of density or 
interval forecasts.  

In this section, we evaluate the one-step-ahead density forecasts 
of the models by applying the methods suggested by Diebold et al. 
(1998) and surveyed by Tay and Wallis (2000).  

The evaluation of the density forecasts is based on the analysis 
of the probability integral transforms of the actual realisations of the 
variables with respect to the forecast densities of the models. These 
are defined as zt=Ft(yt), where F(.) is the forecast cumulative 
distribution function and yt is the observed outcome. Thus, zt is the 
forecast probability of observing an outcome no greater than tha t 
actually realized. If the density forecasts correspond to the true 

density, then the sequence of probability integral transforms N
ttz 1}{ =  

is i.i.d. uniform (0,1). To check whether the sequence of probability 
integral transforms departs from the i.i.d. uniform hypothesis, the 
distributional properties of the zt series are examined by visual 
inspection of plots of the empirical distribution function of the zt  
series, which are compared with those of a uniform (0,1). To 
supplement these graphical devices, the Kolmogorov-Smirnov test7 
can be used on the sample distribution function of the zt series (see 
Diebold et al ., 1999, and Tay and Wallis, 2000). The independence 
part of the i.i.d. uniform (0,1) hypothesis can be assessed by studying 

                                                 
6 the Bank of England, for instance, publishes density forecasts of inflation in its quarterly 

Inflation Report since February 1986 (see Wallis, 2003 for a discussion on alternative methods to 
evaluate the Bank of England density forecasts). 

7 The maximum absolute difference between the empirical distribution function and the 
distribution function under the null hypothesis of uniformity. 
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the correlograms of the zt series and of powers of this series (to 
establish the existence of dependence in higher moments) and 
applying formal tests of autocorrelation.  

In our analysis below, we use the Kolmogorov-Smirnov test 
and the Ljung-Box test for autocorrelation on ( )tz z− , 2( )tz z− , 

3( )tz z− , 4( )tz z− . A well known limitation of this approach is that the 
effects of a failure of independence on the distribution of the tests for 
unconditional uniformity is unknown. Moreover, failure of the 
uniformity assumption will affect the tests for autocorrelation.  

The one-step-ahead density forecasts of the annual change in 
the 12-month inflation rate are obtained under the assumption of 
Gaussian errors, with the appropriate regime-specific variances for 
the SETAR models. In figure 2 we report some selected plots of the 
empirical distribution function of the zt series against the theoretical 
uniform distribution function. We omit the 45° line to avoid over-
crowding the plots. The 95% confidence intervals along side the 
hypothetical 45° line are calculated using the critical values of the 
Kolmogorov Smirnov test, reported in Lilliefors (1967, Table 1, p. 
400), in the presence of estimated parameters8. In table 4 we report 
the results of the Ljung-Box test for autocorrelation of the zt series 
and its powers. 

For the class of threshold models with an exogenous transition 
variable we select the ones which includes the unemployment rate as 
these models exhibit an adequate performance in terms of MSFE.   

As we can see from and figure 2, only the threshold model 
specifications seem to produce density forecasts which are 
unconditionally correct as suggested by the Kolmogorov Smirnov 
test. However, as shown in table 2 the SETAR-2 model and the 
SETAR-3 fail the location and the skewness moments; the two 
regime TAR model which includes the unemployment rate do not 
satisfy the independence part of the joint hypothesis, with the Ljung-
Box test showing significant dependencies in the first and higher 

                                                 
8 The formula reported in Lilliefors (1967) for T>30, level of significance 0.05, is given by 

0.886/ T . The standard critical values of the Kolmogorov-Smirnov test are probably a conservative 
estimate of the ‘correct’ critical values when certain parameters of the distribution must be estimated 
from the sample 
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moments of the zt series. The three regime TAR model with the same 
transition variable passes the Ljung-Box test only for the second 
moment. 

It is interesting to note that both the AR (12), although 
marginally, and more significantly the Phillips curve models fail the 
unconditional uniformity test in the evaluation over the entire 
forecasting sample. The plots of the cdf of the zt series versus the 
uniform (0,1) distribution, in figure 2, show that the empirical cdf of 
the Phillips curve models crosses the bounds in various regions of the 
distribution. Moreover, table 4 clearly shows that the density forecasts 
from the PC models violate the independence assumption, violations 
occur with respect to almost all the powers of zt transforms.  

By combining the information in table 4 and figure 2, overall 
the threshold models have shown better able to capture the 
distributional aspects of the annual change in the 12-month inflation 
rate. This result is in line with previous evidence (Clements and 
Smith, 2000 and Boero-Marrocu, 2002) that nonlinear time series 
models are capable to yield forecasting accuracy gains when the 
forecasting evaluation is conducted by means of density forecasts and 
not only in terms of MSFEs. Our results also show that nonlinear 
models are indeed adequate to capture the intrinsic features of the 
inflation rate series. 

 

5. Conclusions 
This paper is an attempt to contribute to the international debate 

on how and when is possible to forecast inflation by means of 
traditional Phillips curve models or by adopting new forecasting 
devices, such as NAIRU models on one hand and nonlinear time 
series specification on the other. The latter models are expected to 
prove adequate in forecasting comparison as they device to capture 
features that are reported to characterize inflation rates across 
different countries, such jump-fenomena, regime alternation and 
persistence.  

The traditional approach to the analysis of inflation dynamics is 
based on the Phillips Curve and on the concept of non-accelerating-
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inflation-rate-of-unemployment (NAIRU). The fundamental relation 
is estimated by regressing the inflation change on a constant, its own 
lagged values, lagged unemployment rate, on a set of exogenous 
control variables and supply shock variables. Different versions of a 
regression of the type described above have been often used in the 
literature both to estimate the level of the NAIRU and to describe 
and forecast the dynamics of inflation (see Staiger et al., 1997, and 
reference therein).  

From both a theoretical and an empirical perspective the Phillips 
Curve and the concept of NAIRU have been the subject of very well 
known critiques. Besides, also from an empirical perspective, both the 
stagflation of the '70s and the simultaneous occurrence in the second 
half of the '90s in US of low and falling inflation and low 
unemployment (Brayton et al., 1999) appear to be at odds with the 
properties of a standard Phillips Curve. The new models – the so 
called New-Keynesian Phillip s Curve models (Galí-Gertler, 1999) - 
are based on the synthesis between typical elements of the real 
business cycle literature (microfoundations and intertemporal 
optimisation) and typical elements of the new-keynesian literature 
(monopolistic competition and nominal rigidities). The main and 
substantial difference between a standard Phillips Curve and the 
New-Keynesian Phillips Curve rests on the forward-looking nature of 
the latter. Current inflation depends on future expected inflation and 
not from the previous inflation level. The attempts to use such 
formulation for an empirical model of inflation dynamics, however, 
have encountered serious problems, substantially due to the strong 
persistence properties of the inflation time-series.  

From an empirical perspective, Stock and Watson (1996) pointed 
out the traditional linear Phillips curve models are inadequate to 
capture inflation dynamics, due to the high degree of non-linearity 
and to the presence of "jumps" in correspondence with some crucial 
dates and historical episodes.  

In this study we carried out a forecasting exercise in order to 
compare the forecasting performance of alternative models for the 
US inflation over the period 1950.1-2002.7. NAIRU Phillips curve 
models forecasts are contrasted with those obtained by a special class 
of nonlinear time series models, namely the threshold autoregressive 
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models. The forecasting performance of the estimated models is 
evaluated at horizons as far as two years ahead by means of 
traditional metrics, such as the MSFE, and by assessing the whole 
density forecasts obtained by the competing models.  

In terms of MSFE , the Phillips curve models yield noticeable 
gains for medium and long forecasting horizons when compared to 
the AR(12) model, while their forecasting accuracy turn out to be 
indistinguishable from that of the naïve model.  

The threshold models outperformed the naïve models only for 
short term horizons and proved to yield superior forecasts with 
respect to the linear AR(12) for medium and long term horizons. 

The evaluation of one-step-ahead density forecasts highlight the 
superiority of threshold models with respect to their linear 
counterparts, both the AR(12) model and the Phillips Curve 
specifications. This result is in line with previous evidence (Clements 
and Smith, 2000 and Boero-Marrocu, 2002) that nonlinear time series 
models are capable of yielding forecasting accuracy gains when the 
forecasting evaluation is conducted by means of density forecasts and 
not only in terms of MSFEs. Our results also show that nonlinear 
models are indeed adequate to capture the intrinsic features of the 
inflation rate series. 

Overall the results reported are promising and the inflation 
forecasting analysis can be extended in a number of direction. First, it 
would be interesting to check the robustness of our results by replicating 
the forecasting exercise for other countries and Union of countries. As a 
matter of fact, we think that the issue of aggregation deserve attention, in 
particular in the context of the European Union. Finally, it seems 
relevant to check whether it is possible to combine forecasts from 
different forecasting devices in order to improve their accuracy.  
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TABLES AND FIGURES 

 

 

 

TABLE 1 DESCRIPTIVE STATISTICS 

 Entire sample 
1950.1-2002.7 

T=631 

Estimation sample 
1950.1-1985.12 

T=432 

Forecasting sample 
1986.1-2002.7 

T=199 
 Mean -0.1171 -0.1205 -0.1103 
 Median -0.0171 -0.0170 -0.0679 
 Maximum 5.7513 5.7513 3.2470 
 Minimum -6.9933 -6.9933 -3.2204 
 Std. Dev. 1.9500 2.2237 1.2143 
 Skewness -0.2988 -0.2934 -0.0462 
 Kurtosis 4.1373 3.5003 3.3458 
    
Jarque-Bera 41.749 10.108 1.0626 
 Probability 0.0000 0.0000 0.0000 

 



 22 

TABLE 2  LINEARITY TESTS - P-VALUES 

 Entire sample 
1950.1-2002.7 

T=631 

Estimation sample 
1950.1-1985.12 

T=432 

Forecasting sample 
1986.1-2002.7 

T=199 
p 3 4 5 3 4 5 3 4 5 

RESET,    h=2 0.1479 0.2394 0.1034 0.1112 0.2266 0.1096 0.8586 0.8343 0.8867 

RESET,    h=3 0.2222 0.3376 0.0766 0.1007 0.2014 0.0396 0.8461 0.8621 0.8605 

RESET,    h=4 0.3876 0.5338 0.1395 0.1987 0.3529 0.0842 0.8961 0.8442 0.8915 

Mod.  RESET,   h=2 0.0019 0.0073 0.0004 0.0031 0.0147 0.0013 0.3142 0.4459 0.6092 

Mod.  RESET,   h=3 0.0158 0.0538 0.0034 0.0115 0.0562 0.0034 0.5728 0.6482 0.6248 

Mod.  RESET,   h=4 0.0568 0.1780 0.0050 0.0428 0.2024 0.0080 0.1344 0.1883 0.2073 

S2,     d=1 0.2206 0.0580  0.1883 0.1882 0.0824 0.1959 0.7078 0.3652 0.3233 

S2,     d=2 0.0954 0.0137 0.0425 0.0947 0.0292 0.0648 0.1203 0.0436 0.1236 

S2,     d=3 0.0094 0.0079 0.0019 0.0055 0.0079 0.0025 0.0203 0.0186 0.0084 

S2,     d=4 0.0005 0.0028 0.0015 0.0004 0.0041 0.0038 0.0199 0.0357 0.0265 

S2,     d=5 0.0035 0.0055 0.0076 0.0036 0.0117 0.0176 0.0693 0.1048 0.1804 

S2,     d=6 0.0002 0.0012 0.0025 0.0004 0.0029 0.0058 0.0992 0.1741 0.2896 

p denotes the lag order under the null hypothesis of linearity 
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TABLE 3A  NORMALIZED MSFE WITH RESPECT TO THE NAÏVE MODEL 

Steps-ahead 1 3 6 9 12 18 24 

Linear Models         

 Exogenous variables        

Phillips Curve  manufacturing capacity 
utilization rate 

1.023 1.017 1.072 1.104 1.140 1.077 0.915 

Phillips Curve  
change in industrial 
production (∆) 

1.126 1.114 1.157 1.170* 1.196* 1.076 1.119 

Phillips Curve  unemployment rate 1.073 1.063 1.106 1.142 1.184 1.132 1.202 

Phillips Curve Chicago Activity Index 0.946 0.946 0.951 0.950 0.922 0.842 0.726 

Non linear models        

 Exog. transition variables         

SETAR-2 (d=6) -- 0.127** 0.556** 0.931 1.153** 1.432** 1.108 1.074 

TAR-2 (d=6) manufacturing capacity 
utilization rate 

0.121** 0.559** 1.049 1.373* 1.656** 1.600* 1.452* 

TAR-2 (d=1) 
change in industrial 
production (∆) 

0.132** 0.606** 1.080 1.484** 1.805** 1.604** 2.012** 

TAR-2 (d=6) unemployment rate 0.146** 0.652** 1.078 1.205 1.223** 1.057 1.078* 

TAR-2 (d=5) Chicago Activity Index 0.128** 0.659** 1.418* 2.165** 2.838** 2.209** 1.910** 

SETAR-3 (d=1) -- 0.126** 0.546** 0.924 1.138** 1.378** 1.085 1.042 

TAR-3 (d=6) manufacturing capacity 
utilization rate 

0.119** 0.548** 1.032 1.360* 1.658** 1.524* 1.387* 

TAR- 3 (d=4) 
change in industrial 
production (∆) 

0.127** 0.562** 0.994 1.251 1.522* 1.359* 1.243 

TAR-3 (d=5) unemployment rate 0.152** 0.745** 1.167 1.094 1.069* 1.033 1.011 

TAR-3 (d=2) Chicago Activity Index 0.136** 0.624** 1.231 1.661* 2.201** 1.670 1.379 

*, ** indicates significance of the Diebold-Mariano (1995) test at 10% and 5% respectively.  
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TABLE 3B  NORMALIZED MSFE WITH RESPECT TO THE AR(12) MODEL 

Steps-ahead 1 3 6 9 12 18 24 

Linear Models         

 Exogenous variables        

Phillips Curve  manufacturing capacity 
utilization rate 

8.732** 1.873** 0.950 0.707** 0.633** 0.952 0.871 

Phillips Curve  
change in industrial 
production (∆) 

9.610** 2.052** 1.025 0.750** 0.665** 0.951 1.065 

Phillips Curve  unemployment rate 9.161** 1.958** 0.980 0.732** 0.658** 1.001 1.145 

Phillips Curve Chicago Activity Index 8.080** 1.743** 0.842 0.608** 0.512** 0.745* 0.691* 

Non linear models        

 Exog. transition variables         

SETAR-2 (d=6) -- 1.087** 1.024** 0.825* 0.739** 0.796* 0.980 1.022 

TAR-2 (d=6) manufacturing capacity 
utilization rate 

1.029 1.029 0.930 0.880 0.920 1.414 1.383 

TAR-2 (d=1) 
change in industrial 
production (∆) 

1.125** 1.117 0.957 0.951 1.003 1.418** 1.915** 

TAR-2 (d=6) unemployment rate 1.247** 1.201 0.955 0.772** 0.679** 0.935 1.026 

TAR-2 (d=5) Chicago Activity Index 1.089** 1.215** 1.256* 1.387** 1.577** 1.953** 1.818** 

SETAR-3 (d=1) -- 1.080* 1.005 0.818* 0.729** 0.766* 0.959 0.992 

TAR-3 (d=6) manufacturing capacity 
utilization rate 

1.020 1.010 0.914 0.871 0.921 1.347 1.321 

TAR- 3 (d=4) 
change in industrial 
production (∆) 

1.083** 1.035 0.881 0.802 0.846 1.202 1.183 

TAR-3 (d=5) unemployment rate 1.301** 1.373* 1.034 0.701* 0.594* 0.913 0.962 

TAR-3 (d=2) Chicago Activity Index 1.165** 1.150 1.091 1.064 1.223 1.476 1.313 

*, ** indicates significance of the Diebold-Mariano (1995) test at 10% and 5% respectively.  
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TABLE 4  P-VALUES OF THE LJUNG-BOX Q-STATISTICS FOR SERIAL 
CORRELATION (FIRST TWENTY-FOUR AUTOCORRELATIONS) 

  Moments 

  )( zz −  2)( zz −  3)( zz −  4)( zz −  

 Exogenous variables     

AR(12)  -- 0.000 0.009 0.000 0.006 

Phillips Curve  
manufacturing capacity 
utilization rate 0.000 0.000 0.000 0.000 

Phillips Curve  
change in industrial 
production (∆) 0.000 0.000 0.000 0.000 

Phillips Curve  unemployment rate 0.000 0.000 0.000 0.000 

Phillips Curve Chicago Activity Index 0.000 0.000 0.000 0.000 

SETAR-2 (d=6) -- 0.000 0.126 0.000 0.114 

TAR-2 (d=6) unemployment rate 0.000 0.002 0.000 0.000 

SETAR-3 (d=6) -- 0.000 0.215 0.000 0.208 

TAR-3 (d=5) unemployment rate 0.000 0.208 0.000 0.000 
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FIGURE 1 

ANNUAL CHANGE OF THE US INFLATION RATE 
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FIGURE 2 

DENSITY FORECASTS  
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FIGURE 2 

DENSITY FORECASTS  (CONT.ED) 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Phillips curve - Chicago activity index

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Phillips curve - unemployment rate

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SETAR-2 model

 



 29

FIGURE 2 

DENSITY FORECASTS  (CONT.ED) 
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