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Abstract. The notion of k-symplectic structures was introduced by A. Awane in his
dissertation in 1984 ([2], [14]). Here we are interested by the classification of Lie
algebras provided with such a structure. We introduce also the notion of affine structure
associated to a k-symplectic structure on a Lie algebra.
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1. INTRODUCTION AND DEFINITIONS

Let G be a Lie group of dimension n(k + 1). A left invariant k-symplectic structure (θ1,
…, θk; E), is given by an integrable left-invariant n-codimensional subbundle E of TG and
θ1, …, θk, left-invariant closed 2-forms on G vanishing on the cross sections of E with
transversal characteristic spaces [6]. The left-invariance conditions show that we can
define a such structure on the corresponding Lie algebras.

DEFINITION 1.1. Let G be a n(k + 1)-dimensional Lie algebra over K (K = �  or  �), θ1,
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…, θk closed 2-forms of Λ2(G) and H a Lie subalgebra of G  of codimension n. We recall
that (θ1, …, θk; H) is a k-symplectic structure on G if the following conditions are satisfied:

1. The system (θ1, …, θk) is non degenerated, that is

A(θ1) ∩ … ∩ A(θk) = (0)

where A(θ p) is the associated space to θ p:

A(θ p) = {X ∈  G such that i (X) θ p = 0}

2. H is a totally isotropic subspace of G relative to the system {θ1, …, θk}, that is,
θ p(x, y) = 0 for all x, y ∈  H and p = 1, …, k.

We recall also, that G is an exact k-symplectic Lie algebra if in addition, the following
properties are satisfied:

i(i) H is an ideal of G,
i(ii) the 2-forms defining the k-symplectic structure are exact: θ1 = dω1, …, θk = dωk,

where ω1, …,ωk are independent linear forms on the Lie algebra G,
(iii) G = H + (ker ω1 ∩ … ∩ ker ωk).

In this paper we complete the study presented in [2] on the k-symplectic Lie algebras
and one gives some properties, existence theorems and classifications of the k-symplectic
Lie algebras in 1-codimensional case.

In the second part of this work, we introduce and studie the left symmetric k-
symplectic Lie algebras that is k-symplectic Lie algebras provided with an associated
affine structure.

Let us remind here that the introduction of k-symplectic structures was led by the local
study of Pfaffian systems and Nambu’s statistical mechanics [2] and [6]. By the
Heisenberg group of rank k in the sense of Goze-Haraguchi ([4] and [9]), we see that the
k-symplectic geometry is related to the k-contact systems in analogy with the well known
relationship between symplectic and contact structures. Let us note also that Kostant-
Souriau’s geometric prequantization is obtained in the context of these structures [14].
Also, we recall that the left symmetric algebras appeared for the first time, in the literature,
in the works of E. Cartan, they were used in the bounded homogeneous domains by J.L.
Koszul and in the convex homogeneous domains by E.B. Vinberg. The left symmetric
algebras were the object of the thesis of D. Burde ([7], and M. Goze and E. Remm [11],
[15]) studied these algebras with the operads point of view.

2. (k + 1)-DIMENSIONAL k-SYMPLECTIC LIE ALGEBRAS

We will call a Lie algebra G provided with a k-symplectic structure a k-symplectic Lie
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algebra. The general classification of k-symplectic Lie algebras in a given dimension is
still hard (the simplest case corresponding to k = 1 is not completely solved [8] or [12]).

We propose in this section to classify real or complex k-symplectic Lie algebras when
the dimension is equal to k + 1. Thus the codimension of the subalgebra H is equal to 1.

2.1. Case H abelian

Let G be a n(k + 1)-dimensional Lie algebra over �(� = � or �), θ1, …, θk closed 2-
forms of Λ2(G) and H a Lie subalgebra of G of codimension n.

THEOREM 2.1. Let G be a (k +1)-dimensional Lie algebra provided with a k-symplectic
structure (θ1, …, θk; H) with dimH = k. If H  is abelian then G is an extension by derivation
of a k-abelian Lie algebra.

Proof. Let (X
i
)

1 ≤ i ≤ k +1
 be a basis of G and (ωi)

1 ≤ i ≤ k +1
 its dual basis. We suppose that

the subalgebra H is defined by the equation ωk +1 = 0. In these conditions the Maurer-
Cartan equations of G are written:

dωp = (
q

k

=
∑

1

ap
q
 ωq) ∧  ωk +1 (1 ≤ p ≤ k) and dωk +1 = (

q

k

=
∑

1

b
q 
ωq) ∧  ωk +1.

As the forms θ1, …, θk vanish on H, then

θp = (
q

k

=
∑

1

 Ap
q
ωq) ∧   ωk +1, p = 1, ..., k.

The exterior system {θ1, …, θk} is nondegenerated which implies that the determinant
det (Ap

q
)

1 ≤ p, q ≤ k
 is non zero. As the 2-forms of the system are closed, we have

(
q

k

=
∑

1

 Ap
q
ωq)∧  dωk +1 = 0, for p = 1,... ,k.

But det (Ap
q
)

1 ≤ p, q ≤ k
 ≠ 0 implies that dωk +1 = 0. We have proved that the Maurer-Cartan

equations of G are

(*) dωp = (
q

k

=
∑

1

 ap
q 
ωq) ∧  ωk +1, 1 ≤ p ≤ k,  dωk +1 = 0

and the k-symplectic structure is given by
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θp = (
q

k

=
∑

1

Ap
q
ωq)∧  ωk +1 ,  1 ≤ p ≤ k,  with  det (Ap

q
)

1 ≤ p, q ≤ k
 ≠ 0

and H  = ker ωk +1. This proves that adX
k +1

 acts as an external derivation on H. �

COROLLARY 2.1. With the previous hypothesis, the subalgebra H is an abelian ideal
of G.

Let  f  be a derivation of H  of matrix A = (a
ij
). Then the structural constants of the Lie

algebra G defined as a 1-dimensional extension of H by the derivation f  are given in (*).
On the algebra M

k
(�) of matrices of order k we define the equivalence relation:

A R B ⇔ ∃α  ∈  �*, ∃  P ∈  GL
k
(�) | B = α PAP–1, ∀ A, B ∈  M

k
(�).

For A ∈  M
k
(�) we note by G

A
 the Lie algebra defined by the structural equations:

  

d

d

A

a

a

d
k

k

k k

q
q

q

k

k
q

q

q
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k k
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ω ω

ω

ω

ω ω

1 1 1

1

1

1

1

1 1 0M M L















=
∧

∧















=























∧ =

+

+

=

=

+ +

∑

∑
 and .

PROPOSITION 2.1. If A R B then the Lie algebras G
A
 and G

B
 are isomorphic.

Proof. It is clear that if B = αA with α ∈  �*, then G
A
 and G

B
 are isomorphic. It is

sufficient to consider the change of basis: X
i 
→ X

i
 (1 ≤ i ≤ k) and X

k +1   aαX
k +1

. If B =
PAP–1, with P = (p

ij
)

1 ≤ i,j ≤ k
 ∈  GL

k
(�), then the isomorphism whose matrix is

P 0

0 1






is an isomorphism of Lie algebras between G
A
 and G

B
. �

The following proposition, which is the converse of theorem 2.1, ends the description
of this family of k-symplectic Lie algebras.

PROPOSITION 2.2. Every one-dimensional extension by derivation of a k-dimensional
abelian Lie algebra H
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0 → H → G → � → 0

is provided with a k-symplectic structure.

Proof. Let  f  be in Der(H) and G the corresponding extension of H . The Maurer-
Cartan equations are given by (*). For every regular matix M = (m j

i
), the exterior

2-forms given by

θp = (
q

k

=
∑

1

 mp
q
ωq) ∧  ωk +1,   p = 1,...,k,

and H  = ker ωk +1 define a k-symplectic structure on G associated to H . In particular, if
A, the matrix of f  is nondegenerated we take M = A and in this case the k-symplectic
structure constructed on G is exact. �

REMARKS

1. The Lie algebra G is nilpotent if and only if the matrix A is nilpotent. In fact, the
matrix A is the matrix of the derivation associated to the one dimensional extension of the
abelian lie algebra. The extension is nilpotent if and only if the derivation is nilpotent.

2. The classification of the (k +1)-dimensional k-symplectic abelian Lie algebras is
reduced to the classification of the endomorphisms of �n.

2.2. Case H non-abelian

Let us begin by an example. Let G be the 4-dimensional Lie algebra whose Maurer-
Cartan equations are:

d

d p

d

p p

ω
ω ω ω
ω ω ω

1

1

4 1 4

0

2 3

=
= ∧ =
= − ∧









,

, ,

From the previous calculus, this Lie algebra admits a 3-symplectic structure, the
corresponding subalgebra H  being abelian and generated by X

2
, X

3
, X

4
. A such Lie algebra

admits also another 3-symplectic structure given by θ
1 
= = ω1 ∧  ω4,  θ

2 
= = ω2 ∧ ω 4, θ

3 
=

= ω3 ∧  ω4 and H  = X
1
, X

2
, X

3
. In this case the subalgebra H is nonabelian. We will see

that this example is generic.

LEMMA 2.1. There exists a basis  ω1,…,ωk +1  of  G* such that:
1. The k-symplectic structure of G  is given by:
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θp = (
q

k

=
∑

1

 Ap
q
 ωq) ∧  ωk +1,   1 ≤ p ≤ k,

with  det (Ap
q
)

1 ≤ p, q ≤ k
 ≠ 0  and H  = ker ωk +1.

2. The Maurer-Cartan equations of G are:

d C C p k

d C

p
ik
k i p

ik
p i k

i

k

i

k

k
ik
k i k

i

k

ω ω ω ω ω

ω ω ω

= − ∧ + ∧ ≤ ≤

= ∧











+
+

+
+

==

+
+
+ +

=

∑∑

∑

( ) ( ) ,

( )

1
1

1
1

11

1
1
1 1

1

1for

with

(a) ∑k
i =1, i ≠ p

 Ck+1
ik+1

 Ci
jk+1 

= 0  if  j ≠ p,
(b) Ck+1

ik+1
 Cp

jk+1
 – Ck+1

ik+1
 Cp

ik+1
 = 0  if  i ≠ p and ∂ ≠ p.

Proof. Let (X
i
)

1 ≤ i  ≤ k +1
 be a basis of G and let (ωi)

1 ≤ i  ≤ k +1
 be the dual basis.

We suppose that the subalgebra H  is defined by the equation ωk +1 = 0. Then we have

dωp = – 
1≤ < ≤
∑
i j k

k

 Cp
ij
 ωi ∧  ωj – (

i

k

=
∑

1
 Cp

ik +1
 ωi) ∧  ωk +1

for 1 ≤ p ≤ k and

dωk +1 = – (
i

k

=
∑

1
Ck +1

ik +1
 ωi) ∧  ωk +1.

As H  is in the kernel of the 2-forms θp and as the exterior system θ1,...,θk is non-
degenerated, we have:

θp = (
q

k

=
∑

1
Ap

q
 ωq) ∧  ωk +1,  1 ≤ p ≤ k,  and  det(Ap

q
)

1 ≤  p, q ≤ k
 ≠ 0.

At last let us prove that C l
ij
 = 0 if l ≠ i and l ≠ j and Ci

ij
 = Ck +1

jk +1
.
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The 2-forms θp = (
i

k

=
∑

1
Ap

i
 ωi) ∧  ωk +1  are closed, then for all p we have:

d A C A C A Cp
l
p

ij
l

i
p

jk
k

j
p

ik
k i

l

k

i j k

j kθ ω ω ω= − + − ∧ ∧ =+
+

+
+

=≤ < ≤

+∑∑ (( ) ( ))1
1

1
1

11

1 0

which implies:

Ap
1
 C1

ij
 + ... + Ap

i
(Ci

ij
 – Ck +1

jk+1
) + ... + Ap

j
(Cj

ij
 + Ck +1

ik +1
) + ... + Ap

k
 Ck

ij
 = 0

for all 1 ≤ i < j ≤ k. But det (Ap
q
) ≠ 0. Thus Cl

ij
 = 0 if l ≠ i, l ≠ j and Ci

ij
 = Ck +1

jk +1
.

These relations give:

d C C

d C

p
ik
k i

i

k
p

ik
p i

i

k
k

k
ik
k i k

i

k

ω ω ω ω ω

ω ω ω

= − ∧ − ∧

= − ∧











+
+

=
+

=

+

+
+
+ +

=

∑ ∑

∑

( ) ( )

( ) .

1
1

1
1

1

1

1
1
1 1

1

The Jacobi relations imply:

(a) ( ) ,C C C C j pik
k

jk
i

jk
k

pk
p

i p

i

k

+
+

+ +
+

+≠
=

+ = ≠∑ 1
1

1 1
1

1
1

0 if

(b) C C C C i p j pik
k

jk
p

jk
k

ik
p

+
+

+ +
+

+− = ≠ ≠1
1

1 1
1

1 0 if and .

As Cp
pk +1

 = Ck +1
k +1, k +1

 = 0, we have proved the lemma. �

Consequences

1. The subalgebra H  is solvable (D2(H) = {0}). If it is non-abelian then it is non
nilpotent.

2. H  is an ideal if and only if it is abelian.

In fact, from the previous lemma, we have:

[X
i
, X

j
] = Ck +1

jk +1
  X

i
 – Ck +1

ik +1
  X

j
,  for all  1 ≤ i < j ≤ k

and H is solvable. Moreover the equations
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[X
r
, [X

i
, X

j
]] = Ck +1

jk +1
[X

r
, X

i
] – Ck +1

ik +1
[X

r
, X

j
] = – Ck +1

rk +1
[X

i
, X

j
]

show that H  is not nilpotent. �

THEOREM 2.2. Let G be a real or complex (k +1)-dimensional Lie algebra provided
with a k-symplectic structure (θ1, …, θk; H ) where H  is a non abelian subalgebra. Then
G is isomorphic to sl(2) or is a one dimensional extension by derivation of an abelian k-
dimensional Lie algebra. In this last case, it admits another nonisomorphic k-symplectic
structure whose associated subalgebra H

1
 is abelian.

Proof. From the lemma there exists a basis {X
1
,..., X

k+1
} of G satisfying:

[ , ] ,

[ , ] , .

X X C X C X i j k

X X C Xj C X i k

i j jk
k

i ik
k

j

i k ik
j

ik
k

k
j

k

= − ≤ < ≤

= + ≤ ≤









+
+

+
+

+ + +
+

+
=
∑

1
1

1
1

1 1 1
1

1
1

1

1

Let us put a
i
 = Ck +1

ik +1
 and bj

i
 = C j

ik +1
. As H is non-abelian, we can suppose that a

1 
≠

0. If we note

Y
X

a
Y X a Y i ki i i1

1

1
1 2= − = + ≤ ≤and , ,

then, in the basis Y
1
,..., Y

k
, X

k +1
}, the brackets of G are given by

[Y
1
, Y

i
] = Y

i
,   2 ≤ i ≤ k

[Y
1
, X

k +1
] = α1

1
Y

1 
+ ... + αk

1
Y

k 
– X

k +1

[Y
i
, X

k +1
] = α1

i
Y

1 
+ ... + αk

i
Y

k 
+ α

i
k +1X

k +1
,   2 ≤ i ≤ k.

The matrix of ad
Y1

 is written:

  

0 0 0

1

0

1

0 1

1
1

1

α

α

k

k
k

+

+

−





















M O M M

Let Y
k +1

 be a nonzero eigenvector of ad
Y1

 associated to the eigenvalue – 1. We have:

{
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[Y
1
, Y

i
] = Y

i
,   2 ≤ i ≤ k

[Y
1
, Y

k +1
] = – Y

k +1

and the Jacobi identities give [Y
i
, Y

k +1
] = α

i
Y

1
,  2 ≤ i ≤ k. If the dimension of G is equal to

3, then we have the two possibilities  a
2
 ≠ 0  or  a

2 
= 0.  The first case corresponds to sl(2).

If the dimension is greater than 3, then the Jacobi conditions imply that the constants α
i

are null, then G contains a 1-codimension abelian ideal and H  is an abelian subalgebra.
This case concerns the first part of this study. But the associated k-symplectic structure

is not isomorphic to the given one. �

REMARK: a 2-symplectic structure on sl(2)
We have proved that sl(2) admits a 2-symplectic structure. We describe briefly this

structure. Let {X
1
, X

2
, X

3
} the classical basis of sl(2), that is satisfying

[X
1
, X

2
] = – 2X

2
,  [X

1
, X

3
] = 2X

3
,  [X

2
, X

3
] = X

1
.

Let  ω
1
, ω

2
, ω

3
  the dual basis. The two-forms

 θ
1 
= ω

2
 ∧  ω

1
,  θ

2 
= ω

2
 ∧  ω

3

are closed and define a 2-symplectic structure with H generated by  X
1
, X

3
  which is not

abelian.

2.3. Classification in dimension 3

Let  G  be a real or complex 3-dimensional 2-symplectic Lie algebra and let (θ1, θ2;
H) be its 2-symplectic structure. If H is an abelian subalgebra then, from the previous
results, it is an abelian ideal and G is solvable. But every 3-dimensional solvable Lie
algebra admits a such ideal. Then every 3-dimensional solvable Lie algebra admits a 2-
symplectic structure. If H is not abelian, from the previous theorem G is isomorphic to
sl(2).

PROPOSITION 2.3. Every 3-dimensional complex Lie algebra admits a 2-symplectic
structure. Every 3-dimensional real Lie algebra non isomorphic to so(3) is provided with
a 2-symplectic structure.

We can note that it does not exist classical symplectic structure on semi-simple Lie
algebra. On other hand sl(2, �)  is provided with a 2-symplectic structure but it is the only
one which is n-dimensional and endowed to a (n – 1)-symplectic structure.

2.4. Classification in dimension 4

If a 4-dimensional Lie algebra is provided with a 3-symplectic structure then G is

{
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solvable. From the classification of Levy-Nahas ([18]), such an algebra is isomorphic to
one of the following one:

01. (G
1
)4 the abelian algebra

02. (G
1
)2 x G

2
 defined by: [X

3
, X

4
] = X

4

03. G
1
 x G

3,1
 defined by: [X

2
, X

3
] = X

4

04. G
1
 x G

3,2  
(α) defined by: [X

2
, X

3
] = X

3
 and [X

2
, X

4
] = α X

4
, with |α| ≥ 1

05. G
1
 x G

3,3
 defined by: [X

2
, X

3
] = X

3 
+ X

4
 and [X

2
, X

4
] = X

4

06. G
1
 x G

3,4
 (α) defined by: [X

2
, X

3
] = α X

3 
– X

4
 and [X

2
, X

4
] = X

3 
+ α X

4
, with α ≥ 0

07. G
4,3

 defined by: [X
1
, X

2
] = X

3
 and [X

1
, X

3
] = X

4
,

08. G
4,4

 defined by: [X
1
, X

2
] = X

3
 and [X

1
, X

4
] = X

4
,

09. G
4,5

(α, β) defined by: [X
1
, X

2
] = X

2
, [X

1
, X

3
] = α X

3
 and [X

1
, X

4
] = β X

4
, with

– 1 < α ≤ β < 0 or (– 1 ≤ α < 0 and 0 < β ≤ 1) or (0 < α ≤ β ≤ 1)
10. G

4,6
(α) defined by: [X

1
, X

2
] =α X

2
, [X

1
, X

3
] = X

3 
+ X

4
 and [X

1
, X

4
] = X

4
 with α ≠ 0

11. G
4,7

 defined by: [X
1
, X

2
] = X

2 
+ X

3
, [X

1
, X

3
] = X

3 
+ X

4
 and [X

1
, X

4
] = X

4
.

12. G
4,8 

(α, β) defined by: [X
1
, X

2
] = α X

2
, [X

1
, X

3
] = β X

3
 – X

4
 and [X

1
, X

4
] = X

3 
+ β  X

4
,

with α > 0.

We have seen that every (k +1)-dimensional Lie algebra which has a 1-codimension
abelian ideal admits a k-symplectic structure. From the above classification we can
deduce:

PROPOSITION 2.4. A 4-dimensional real Lie algebra G which has a k-symplectic
structure is isomorphic to one of the following: (G

1
)4, (G

1
)4 × G

2
, G

1
 x G

3,1
, G

1
 x G

3,2 
(α),

G
1
 x G

3,3
, G

1
 x G

3,4 
(α), G

4,3
, G

4,4
, G

4,5 
(α , β) , G

4,6
(α), G

4,7
 and G

4,8 
(α , β).

3. LEFT-SYMMETRIC k-SYMPLECTIC LIE ALGEBRAS

3.1. Affine structures on Lie algebras

Let A be a vector space on the field �(� = � or �). A bilinear mapping ∇ : (X, Y)   a
∇

X
Y = X.Y, of A x A with values into A is called left-symmetric product if it satisfies:

(X · Y) · Z – X · (Y · Z) = (Y · X) · Z – Y · (X · Z),

for all X, Y, Z ∈  A. In this case (A, ∇ ) is called a left-symmetric algebra or a Vinberg
algebra.

If ∇  is a left-symmetric product then the bracket [X, Y] = X · Y – Y · X, satisfies the
identities of Jacobi, that is (A,[,]) is a Lie algebra subordinated to the left-symmetric
algebra (A, ∇ ).

Let us consider a Lie algebra G. We say that G is endowed with an affine structure if
there exists on the underlying vector space of G a left-symmetric product ∇  such that (G,
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[,])  is the Lie algebra subordinated to the Vinberg algebra (G, ∇ ).

3.2. Affine structures associated to a k-symplectic structure

Let us recall that if G is a symplectic Lie algebra, then there always exists an affine
structure associated to the symplectic form:

θ(Y,[X, Z]) = – θ(∇
X
Y, Z).

Here we study the analogous existence problem for the k-symplectic case.
Let G be a n(k +1)-dimensional Lie algebra on �, provided with a k-symplectic

structure (θ1, …, θk; H ).

DEFINITION 3.1. We say that an affine structure ∇  on the k-symplectic Lie algebra G
is compatible with the k-symplectic structure θ1, …, θk; H) if it satisfies the following
property:

θp(∇
X
Y, Z) = – θp(Y, [X, Z])

for all p = 1, …, k and X, Y, Z ∈  G.

We denote by j the mapping of G with values in Hom(G, �k) given by:

j(Z) = (i(Z) θ1, …, i(Z)θk).

Let be f
X, Y

 ∈  Hom (G, �k) defined by:

f
X, Y

(Z) = – (θ1(Y, [X, Z]), …, θk(Y, [X, Z])) ∀ X, Y ∈  G and Z ∈  G.

As the k-symplectic system is a nondegenerated exterior system, the map j is injective.
Thus the following properties are equivalent:

1. ∇  is compatible with the k-symplectic structure (θ1, … , θk; H),
2. j(∇

X
Y) = f

X,Y 
 for all X, Y ∈  G.

THEOREM 3.1.  Let G be a n(k +1)-dimensional k-symplectic Lie algebra. We suppose
that there exists on G an affine structure compatible with the k-symplectic structure. Then
if k ≥ 2, we have the following properties:

1. H is an abelian ideal for the Lie algebra structure of G.
2. H is an ideal of the Vinberg algebra (G, ∇ ).
3. ∇

H
H    = 0.
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Proof. Let us suppose that ∇  is an affine structure compatible with the k-symplectic
structure (θ1, …, θk; H). From the classification theorem [6] there exists a basis
(e

pi
, e

i
)

1 ≤ p ≤ k,1 ≤ i ≤ n
 of G, called the k-symplectic basis, such that

θp = 
i

n

=
∑

1
 ωpi ∧  ωi,   (p = 1, …, k)

and
H = ker ω1 ∩ … ∩ ker ωn,

where (ωpi, ωi)
1 ≤ p ≤ k, 1 ≤ i ≤ n

 is the dual basis of (e
pi
, e

i
)

1 ≤ p ≤ k, 1 ≤ i ≤ n
. �

LEMMA 3.1. If k ≥ 2 then the subalgebra H is abelian.

Proof of the lemma. For all p = 1,…, k, let H
 p
 be the subspace of G generated by the

vectors (e
pi
)

1 ≤ i ≤  n. As H  = ⊕
p
 H

p
 we can show that [H

p
,    H

q
] = {0} for all p, q.  As the affine

structure is adapted to the k-symplectic structure we have for all p and for all r ≠ p:

θp(∇
eli

 e
j
, e

rs
) = 0 = – θp(e

j
, [e

li
, e

rs
]).

Then ω([e
li
, e

rs
] = 0 for all li  and rs with r ≠ p. This is equivalent to

[H
p
,   H

q
]  = {0}

with p ≠ q and

[H
p
,   H

p
] ⊂  H

p
.

Now consider e
pi
 ∈  H

 p
 and e

qj
 ∈  H 

q
. We have

θ(∇
epi

 e
k
, e

qj
) = 0 = – θp(∇

eqj
 e

k
, e

pi
).

Thus ∇
epi 

e
k
 ∈  H and

θq(∇
eqj 

e
k
, e

qs
) = 0 = – θq(e

k
, [e

qj
, e

qs
]).

As [e
qj
, e

qs
] ∈  H

q
, the previous identity shows that [e

qj
, e

qs
] = 0 and

[H
q
, H

q
] = {0}.

LEMMA 3.2. The following properties are equivalent:
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1. H is an ideal for the structure of Lie algebra of G.
2. 2H p    

p
 is a left ideal for the structure of Vinberg algebra (G, ∇ ).

3. ∇  is trivial on H.

Proof. Let us suppose that H is an ideal for the Lie algebra structure and let h, h′ ∈
H, x ∈  G. We have θp(x.h, h′) = – θp (h, [x, h′]) = 0. This shows that x.h ∈  H, that is H
is a left ideal for the Vinberg structure.

Conversely if H is a left ideal for the Vinberg structure given by ∇ , then θp(h.h′, x)
= – θp(h′, [ h, x])  = θp(h′, [x, h]) = θp(x.h′, h) = 0, for all h, h′ ∈  H, and x ∈  G. Thus
∇

H
 H = 0.
Now if we suppose that ∇  is null on H, thus θp(h.h′, x) = – θp(h′, [h, x]) = 0, for all h,

h′ ∈  H and x ∈  G, that is [h, x] ∈  H.
We prove by similar arguments:

LEMMA 3.3. The following properties are equivalent:
1. H is a Lie abelian subalgebra.
2. H is a right ideal for the Vinberg structure.

Let us take again the proof of the theorem. Using the previous lemmas, it is enough
to prove that H is an abelian ideal for the Lie structure. As H is an abelian Lie
subalgebra, let us prove that Cl

pi,j
 = 0. But for p ≠ q, we have 0 = θq(e

j
.e

ql
, e

pi
) = – θq(e

ql
,

[e
j
, e

pi
]) = Cl

pi,j
. �

REMARK. The case k = 1.
In the theorem we consider k ≥ 2. This hypothesis is fundamental and the theorem is

false for k = 1. For example let us consider the 2n-dimensional solvable Lie algebra G
given by the Maurer-Cartan equations:

d

d

d i n

n n

i

ω ω ω
ω ω ω
ω

1 1 2

1 2 1

0 1 1

= ∧
= ∧

= ≠ +









+ +
,

,

,for and

and H the Lie subalgbera of G defined by the equations ωn +1 = … = ω2n = 0, {ω1,…, ω2n}
being a basis of G*. We verify that the pair (θ ,H), where θ  = ω1∧  ωn +1 + … + ωn ∧  ω2n

is a 1-symplectic structure. Then G admits an affine structure compatible with the
symplectic structure and H is not abelian.

EXAMPLE

1. Let G be the solvable 6-dimensional Lie algebra given by the Maurer-Cartan
equations:
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d

d

d

d

d

d

ω ω ω ω ω
ω ω ω ω ω
ω ω ω
ω ω ω
ω
ω

1 1 5 3 6

2 2 5 4 6

3 3 5

4 4 5

5

6

0

0

= ∧ + ∧
= ∧ + ∧
= ∧
= ∧
=
=














 ,

{ω1,…, ω6} being a basis of G*. Let us consider

θ ω ω ω ω ω
θ ω ω ω ω ω

1 1 1 5 3 6

2 2 2 5 4 6

= = ∧ + ∧
= = ∧ + ∧





d

d

and H  = ker ω5 ∩ ker ω6. Then (θ1, θ2, H) is a 2-symplectic structure on G. It is also
provided with a compatible affine structure defined by:

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

1 5 1

2 5 2

3 5 3

3 6 1

4 5 4

4 6 2

5 5 5

5 6 6

6 5 6

.

.

.

.

.

.

.

.

.

=
=
=
=
=
=
=
=
=




















where {X
1
,…, X

6
} is the basis of G whose dual basis is {ω1,…, ω 6}. We can note that G

is not a symplectic Lie algebra.

3.3. Affine structures on (k +1)-dimensional k-symplectic Lie algebras

Suppose that G is a (k +1)-dimensional Lie algebra provided with a k-symplectic
structure (θ1,…, θk; H). If there is an affine structure adapted to the k-symplectic structure
then H is an abelian ideal. From the description of these Lie algebras proposed in the
previous section, G is a one dimensional extension by derivation of H. Let (e

1
,…, e

k +1
) a

basis of G such that H is generated by (e
1
,…, e

k
). Let (ω

1
,…, ω 

k +1
) the dual basis. Then,

if we put θi = ω
1 
∧  ω

k +1
), the system
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(θ1,…, θk, G)

is a k-symplectic system on G. Let us put

e e i j k

e e e e i k

e e i k

e e e

i j

i k i k

k i

k k k

• = ≤ ≤
• = ≤ ≤

• = ≤ ≤
• =










+ +

+

+ + +

0 1

1

0 1
1 1

1

1 1 1

, ,

[ , ],

,

.α

This product satisfies

e
i
 • e

j
 – e

j
 • e

i
 = [e

i
, e

j
].

If we denote by (x, y, z) the associator of the product • concerning the vectors x, y, z,
we have

(e
i
, e

j
, e

k +1
) = (e

i
, e

k +1
, e

j
) = (e

k +1
, e

j
, e

i
) = 0

for all i, j ≤ k. Moreover

(e
k +1

, e
k +1

, e
i
) = (e

k +1
, e

i
, e

k +1
) = 0

for all i ≤ k, and

(e
i
, e

k +1
, e

k +1
) = α[e

i
, e

k +1
] – [[e

i
, e

k +1
], e

k +1
].

If the product • is left symmetric, we can have α = 0 and ad(e
k +1

)2 = 0 or ad(e
k +1

)2 =
α ad(e

k +1
).

In the last case, if α ≠ 0 , then ad(e
k +1

) is diagonalizable and α = 1 or – 1.
Then a such Lie algebra G is provided with an affine structure. Moreover

θp(e
i
 • e

k +1
, e

k +1
) = θp([e

i
, e

k +1
], e

k +1
) = – θp(e

k +1
, [e

i
, e

k +1
])

and

θp(e
k +1

 • e
i
, e

k +1
) = 0 = – θp(e

i
, [e

k +1
, e

k +1
]).

At last
θp(e

k +1
 • e

k +1
, e

p
) = θp(e

p
, αe

k +1
) = α = – θp(e

k +1
, [e

p
, e

k +1
]).
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Then the affine structure is associated to the k-symplectic structure.

THEOREM 3.2. Every (k +1)-dimensional k-symplectic Lie algebra which admits an
affine structure associated to the k-symplectic structure if it is isomorphic to a one
dimensional extension by derivation of a k-dimensional abelian Lie algebra such that the
derivation is nilpotent and it is not nilpotent and satisfies f = Id.

Proof. Let (θ1, …, θk, H) the k-symplectic structure on G. If H is abelian, we have
construct above the corresponding affine structure. If H is not abelian, if G is not
isomorphic to sl(2), then it is a one dimensional extension of an abelian ideal and G admits
another k-symplectic structure (�1,…, �k, H′) with H′ abelian. In this case e find again
the first case. �
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