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Preface

In this thesis the problem of the combination of binary classifiers ensam-

ble is faced. For each pattern a binary classifier (or binary expert) assigns

a similarity score, and according to a decision threshold a class is assigned

to the pattern (i.e., if the score is higher than the threshold the pattern is

assigned to the “positive” class, otherwise to the “negative” one). An ex-

ample of this kind of classifier is an authentication biometric expert, where

the expert must distinguish between the “genuine” users, and the “impos-

tor” users. The combination of different experts is currently investigated by

researchers to increase the reliability of the decision. Thus in this thesis the

following two aspects are investigated: a score “selection” methodology, and

diversity measures of ensemble effectiveness.

In particular, a theory on ideal score selection has been developed, and

a number of selection techniques based on it have been deployed. Moreover

some of them are based on the use of classifier as a selection support, thus

different use of these classifier is analyzed.

The influence of the characteristics of the individual experts to the final

performance of the combined experts have been investigated. To this end

some measures based on the characteristics of the individual experts were

developed to evaluate the ensemble effectiveness. The aim of these measures

is to choose which of the individual experts from a bag of experts have to be

used in the combination.

Finally the methodologies developed where extensively tested on biomet-

ric datasets.

VIII
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Outlook of this thesis

This thesis is organised as follows.

In Chapter 1 an introduction on Pattern Recognition is outlined. More-

over the problem of binary classifiers (or experts) is faced, in particular the

problem of the score based binary classifiers that is treated in this thesis. Fi-

nally an introduction on biometric authentication is given as it rappresents

one of the most important research topics dealing with binary classifiers based

on scores.

In Chapter 2 an ideal framework for score selection is given through the

definition of an “ideal score selector”. Moreover some properties of the “ideal

score selector” are shown.

In Chapter 3 are shown the methods developed during this thesis to im-

plement a “practice” score selection, and a possible use of a generic classifier

to improve the score combination.

In Chapter 4 some performance measures and combination rules are de-

scribed. In particular some measures to evaluate the ensemble effectiveness

of a bag of experts are described. Moreover a description of some fixed score

combination rules is given.

Finally Chapter 5 shows different experiments on the methodologies pro-

posed on two biometric dataset. The conclusions are drawn in Chapter 6.



Chapter 1

Introduction

In this Chapter an introduction to the Pattern Recognition field is given.

Afterwards the problem of binary experts is faced, in particular the case of

expert that doesn’t output a class label for a classified pattern. Finally a brief

description of the biometric field is given as it is one of the most relevant

field for binary classifiers (or binary experts).

1.1 Introduction to Pattern Recognition

Every human being is able to use his senses to recognize the world around

him: for example every one of us is able to recognize a known person by its

face or its voice. Pattern Recognition is the scientific discipline dealing with

theories and methodologies for designing machines capable to automatically

recognise “patterns” (i.e., objects) in noisy environments [1, 2]. Another

definition is: Pattern Recognition studies “how machines can observe the

environment, learn how to distinguish patterns of interest from their back-

ground, and make sound and reasonable decisions about the categories of the

patterns” [3]. A pattern can be for example a fingerprint image, a human

face, a voice signal, a text document, a fish type, a spam email etc. An ex-

ample of recognising a pattern in noisy environments is finding the face of a

known person in a picture. Some typical applications of Pattern Recognition

1
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are hand-written character recognition, remote-sensing image classification,

people identification on the basis of biometric features such as fingerprints.

At the end Pattern Recognition combines different disciplines (mathematics,

statistic, physics, etc.) from the “engineer” point of view.

Statistical Pattern Recognition techniques have been the most studied

and applied in practice [3]. The statistical Pattern Recognition studies and

develops methodologies to create a classifier (or expert)1 to recognize some

patterns generalising the information retrieved from a set of example pat-

terns. The learning approach can be distinguished into supervised and unsu-

pervised learning2. The supervised approach learns the concepts from labeled

examples: in practice for every example pattern its class label (or category)

is known and the classifier is trained using these information3. Afterwards

the classifier is used to label the unlabeled patterns, the class label is picked

from those learned by the classifier. The unsupervised approach learns con-

cepts from unlabeled data. In unsupervised classification new patterns are

assigned to an unknown class, the unsupervised approach try to learn the

classes by analyzing the feature of the example patterns and grouping them

for similarity. In the following only the supervised approach will be taken

into account.

Let be ωk (k = 1, . . . , l) the possible classes, and C a classifier. The

classifier C can be viewed as a function

C : Rn 7→ Ω, Ω = {ω1, ω2, .., ωl}

Given a pattern x, the classifier C assigns it to a class E(x) = ω ∈ Ω. Thus,

given a set of labeled data X = {xi} (with i = 1, . . . ,m), then the following

1The two terms are indistinctly used in the Pattern Recognition field, usually the term
“classifier” is used if it associates a class to a pattern, while the term “expert” is generally
used in a more generic context

2In literature exists also a semi-supervised that its a mixture of the two previous learn-
ing approach

3Usually the set of example patterns is named training set
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set is available

D = {(x1, L(x1)), (x2, L(x2)), . . . , (xm, L(xm))}

where L : Rn 7→ Ω is an unknown function that assigns a pattern xi to its

true belonging class ωxi
. The aim of a supervised learning algorithms is to

build a classifier C that can correctly classify new patterns. In practice C

is trained over D to replicate L. After that C has been trained, it can be

used to classify a generic new pattern y /∈ D. In doing so, the classifier C

computes supports µk(y) that rappresent how much y belongs to the class

ωk according to C. Afterwards, a decision rule is applied on the supports

µk(y), in order to assign a label to the pattern y. These supports can be

simply a score which indicates a “similarity” or they can be an estimation

of the posterior probability P (ωk|y) that y belongs to the class ωk. Given a

set of unlabeled data Y = {yp} (p = 1, . . . , t), C assigns to all the patterns

Y a class ωk ∈ Ω. If to a pattern yp the assigned class ωk is equal to

the true belonging class ωyp , the pattern is correctly classified. Thus, the

performance of an expert C is measured through the accuracy who measures

the percentage of the patterns correctly classified over the total number of

the patterns classified by C.

Accuracy =
numcor

numcor + nummis

where numcor is the number of the patterns correctly classified, and nummis

is the number of the patterns misclassified.

In Pattern Recognition the combination of different classifiers had been

vastly studied in the last years [4, 5, 6, 7, 8, 9, 10, 11, 12], the combination of

different classifiers is named Multiple Classifier System (MCS). Approaches

based on ensemble of classifiers are widely used in many applications as they

avoid the choice of the “best” classifier, and typically provide better perfor-

mance than those provided by individual classifiers [5]. Ensemble approaches

also allow “combining” classifiers based on different input sources, so that
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complementary information can be exploited, and the resulting classifier is

robust with respect to noise [5]. Two main kind of classifier combination

exist: the “fusion” approach, and the “selection” approach. The “fusion”

approach combines the classes ωj
k assigned to a pattern yp from an ensemble

of classifiers Ej into a “new” class ωfus
k , this class can be different from the

classes ωj
k [5]. The “selection” approach combines the classes ωj

k assigned to

a pattern yp from an ensemble of classifiers Ej selecting a class among those

classes, ωsel
k ∈ ωj

k [13, 14].

1.2 Binary experts

One interesting type of Pattern Recognition problem is when only two

class are involved. They can be two real class, or a single class vs “the rest

of the world”4. Examples of binary (two-class) classification problem are

biometric authentication, spam filtering, medical test, intrusion detection

etc.

In the case of binary classification problem the two class are usually de-

noted with the terms positive class p, and negative class n. Thus, given a

binary experts5 four possible outcomes can be obtained. If a positive pattern

is classified with a positive class, then it is true positive (TP); otherwise if

it is classified with a negative class, then it is false negative (FN). If a nega-

tive pattern is classified with a negative class, then it is true negative (TN);

otherwise if it is classified with a positive class, then it is false positive (FP).

true positive rate =
positives correctly classified

total positivies

false positive rate =
negatives incorrectly classified

total negatives

4This problem is also known as One-class classification problem, for this problem dif-
ferent techniques exists from those used for binary classifier

5In this case the term “expert” is preferred to “classifier” as in this situation a class is
not always directly assigned to the pattern by the expert
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it is worth noting that

true positive rate + false negative rate = 1

true negative rate + false positive rate = 1

Depending from the disciplines object of the study, different terminology

are used. In some Pattern Recognition application the terms “hit rate”

(true positive rate), and “false alarm rate” (false positive rate) are used. In

biometric authentication the terms “false non matching rate” (false negative

rate), “false matching rate” (false positive rate), and “true matching rate” or

“genuine matching rate” (true positive rate) are used, as they are obtained

by comparing the unknown pattern yp to a known pattern xi to verify if their

identities match (if so, the pattern correspond to a “genuine” user).

For the binary experts another way to evaluate and compare the perfor-

mance is by means of the Receiver Operating Characteristic curve (ROC)

and the Area Under the ROC Curve (AUC) [15]. The ROC curve is a plot

of the false positive rate against the true positive rate. The study of the

relation between ROC curves and experts, and the combination of experts

to improve the ROC is also known as ROC analysis [16].

Also for the binary experts the MCS are used to improve performance.

A binary expert, as a generic expert, for a given pattern yp can output

1. a class (i.e., positive or negative)6

2. a posterior probability P (p|yp), and P (n|yp) = 1 − P (p|yp), then the

class is chosen according to these posterior probabilities

3. a support or a similarity score (usually) to the positive class, then the

class is chosen according to this score

In the following the third case is considered, as it is the main subject of study

of this thesis.

6In this case the term of classifier is usually preferred to the term expert
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Let E = {E1 . . . Ej . . . En} be a set of n experts and X = {xi} (i =

1, . . . ,m) be the set of patterns. Let also fj(·) be the function associated

to expert Ej that produces a score sij for each pattern xi, sij = fj(ui). Let

sj be the set of all the score produced by an expert Ej for all the patterns

in X . Let be th a decision threshold. If the score sij is higher than th

then the pattern xi is assigned to the positive class, otherwise is assigned to

the negative class. This threshold is usually tuned to fulfil the requirements

of the problem. Generally only two errors are taken into account the false

positive rate (FPR), and the false negative rate (FNR)

FPRj(th) =

∫ ∞

th

p(sj|n)dsj = P (sj ≥ th|n) (1.1)

FNRj(th) = 1− TPRj(th) =

∫ th

−∞
p(sj|p)dsj = P (sj < th|p) (1.2)

where the probabilities of belonging to the positive or negative classes are

taken into account to compute these errors as the decision threshold th varies.

In this case, the higher the value of sij, the more similarly xi belongs to the

positive class. These errors are computed taking into account the two distinct

distribution of the probabilities for the positive and the negative classes, or

the two distribution of the similarity scores for the positive and the negative

classes if the probabilities are not available.

Thus the ROC curve is a plot of the FPR against the TPR (1− FNR)

as the threshold varies for all its possible values. An example of the ROC

curve, and the ideal ROC curve are plotted in Figure 1.1. The dotted line in

Figure 1.1 rappresents a situation where the true positive rate is equal to the

false positive rate, this means that the two distributions of the scores of the

positive and negative patterns are completely overlapped. In this case it is

equivalent to a random classifier. Thus the more closer to the ideal ROC, the

better the ROC. While the more closer to the “random” ROC, the worse the

ROC. If a ROC curve lies beyond the “random” ROC its performance are

very low, but it can be said that it has useful information, but it is applying
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Figure 1.1: Examples of ROC curves: the ideal ROC curve (red), and a
generic ROC curve (blue).

them incorrectly.

Another measure to compare two binary experts is the Area Under the

ROC curve (AUC). This is a measure that summarizes the performance of

the binary expert for all the values of the decision threshold.

AUC =

∫
(TPR(th))dFNR(th)

The area of the dotted ROC curve in Figure 1.1 is equal to 0.5, while the

area of an ideal ROC curve is equal to 1. A typical ROC curve has an AUC

between 0.5 and 1. Thus the higher the value of the AUC, the better the

performance.

Another measure, typically used in the biometric field, is the Equal Er-

ror Rate (EER) that rappresent the point where the false positive rate and

the false negative rate are equal. The ROC, the AUC, and the EER are

summarized in Figure 1.2.
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Figure 1.2: An example of a ROC curve, its AUC and its EER.

1.2.1 Area Under the ROC Curve

In ROC analysis the Area Under the Curve (AUC) is the most widely

used measure for assessing the performance of a two-class system because it

is a more discriminating measure than the accuracy [17]. The AUC can be

computed by the numerical integration of the ROC curve, or by the Wilcoxon-

Mann-Whitney (WMW) statistic [18]. In this thesis the WMW statistic

is used to estimate the AUC as it is theoretically equivalent to the value

computed by integrating the ROC curve, but in real cases (finite samples)

it allows attaining a more reliable estimation of the AUC than that of the

numerical integral of the ROC curve, as the integral computations depends

on the numerical technique employed [19].

According to the WMW statistic, the AUC can be computed as follows.

Let us divide into two sets all the scores {sij} produced by an expert Ej for

all the xi patterns: {spos
p,j }, i.e. the set made up of the scores produced for

the positive patterns, and {sneg
q,j }, i.e. the set made up of the scores produced
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for the negative patterns.

AUC =

∑n+

p=1

∑n−
q=1 I(s

pos
p,j , s

neg
q,j )

n+ · n−

where n+ is the number of positive patterns and n− is the number of negative

patterns, and the function I(spos
p,j , s

neg
q,j ) is7:

I(spos
p,j , s

neg
q,j ) =

{
1 spos

p,j > sneg
q,j

0 spos
p,j < sneg

q,j

This formulation of the AUC can be also interpreted as follows: given two

randomly chosen patterns, one from the set of positive patterns, and one

from the set of negative patterns, the AUC is the probability P (spos
p,j > sneg

q,j ),

i.e. the probability of correct pair-wise ranking [19].

1.3 The biometric problem

Nowadays the security problem is one of the hottest problems. One of

the problems is to obtain a correct, and reliable verification of the identity of

a person in today’s networked society. However, “traditional” methods, like

password, PIN (Personal Identification Number), ATM (Automatic Transac-

tion Machine), are unreliable because a personal code (a sequence of letters or

digits) can be stolen or duplicated, and used by other people for illegal aims.

In this context, the biometric field is a very active research field. Its aim is

to find reliable personal identification techniques based on human character-

istics like face, fingerprint, retina, signature, iris, gait and so on. A biometric

system assures a more reliable identification of a person, since fingerprint,

face etc. are unique for each person and cannot be stolen or duplicated [20].

A biometric system can be built to face two different problems: the “au-

thentication” (or verification) of a user, or the “recognition” (or identifica-

tion) of a user. The authentication refers to the problem of confirming or

7for discrete values I(spos
p,j , sneg

q,j ) = 0.5 if spos
p,j = sneg

q,j
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denying a person’s identity. Recognition refers to the problem of establishing

a subject’s identity: for example in forensic applications.
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Figure 1.3: A schema of how an authentication biometric system works.

The functioning of a biometric expert for an “authentication” purpose is

illustrated in Figure 1.3. At first a biometry is acquired by the biometric

expert, and the raw data are extracted (e.g. the image of a fingerprint or a

face). After the raw data acquired is enhanced through the use of different

algorithms to improve the quality of the data and remove the noise. From

this enhanced data the expert extracts the features (for example from a

fingerprint image features regarding the minutiae can be extracted). When

the features are available a matching algorithm is performed. This matching

algorithm, with respect to the identity the user want to be authenticated,

compares the features extracted to those stored as template. The output of

a matcher is a score that indicates how the data acquired is similar to the

template stored (i.e., a similarity score). The higher the value of a similarity

score, the more similar are the data acquired to the template. Sometimes,

instead of similarity score, distance scores are used, these scores indicates

how much the data acquired is closer to the template. For a distance score

the lower the value, the more similar are the data acquired to the template8.

After that the biometric expert Ej outputs a score sij this is processed by

a “decision module”. In the decision module an acceptance threshold th is

8In the following only similarity scores are used.
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stored: if sij ≥ th the user is accepted (i.e., assigned to the so-called genuine

class), otherwise he is rejected (i.e., assigned to the so-called impostor class).

At the score level, the performance of a biometric expert is evaluated in terms

of the False Matching Rate (FMR, i.e., the percentage of impostors whose

score is larger than the decision threshold) and the False Non-Matching Rate

(FNMR, i.e., the percentage of genuines whose score is smaller than the

decision threshold). Thus the Equations (1.1) and (1.2) can be rewritten as

FMRj(th) =

∫ ∞

th

p(sj|impostor)dsj = P (sj ≥ th|impostor) (1.3)

FNMRj(th) =

∫ th

−∞
p(sj|genuine)dsj = P (sj < th|genuine) (1.4)

then they can be reported to a Receiver Operating Characteristic (ROC)

curve, where the value of 1 - FNMR is plotted against the value of FMR. It

is easy to see that the genuine class correspond to the positive class, and that

the impostor class correspond to the negative class described for the binary

experts in Section 1.2.

As it has been assessed above, in the Pattern Recognition field the combi-

nation of experts is widely used in many applications as it avoids the choice

of the “best” expert, and typically provide better performance than those

provided by individual experts [5]. The combination of experts also allows

“fusing” experts based on different input sources, so that complementary

information can be exploited, and the resulting combination is robust with

respect to noise [5]. For the same reasons, in the biometric field there is

an increasing interest in multi-biometrics, i.e., the combined use of different

biometric traits and/or processing algorithms, as in many application the

performance attained by individual sensors or processing algorithms does

not provide the necessary reliability [21, 22, 23]. An example of all possible

kinds of multi-biometric are illustrated in Figure 1.4.

Combination of multiple biometric systems can be performed at differ-

ent representation levels, i.e, the sensor level, the feature level, the score (or
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Figure 1.4: Different kind of multi-biometric systems.

rank) level, and the decision level. Sensor level combination is the combina-

tion of multiple raw data before they are subject to the feature extraction

phase. This combination level can be used in those systems who capture

multiple snapshot of the same biometric (e.g., multiple snapshot of the same

fingerprint) and combine them into a new snapshot that is a combination

of the others [24, 23]. Feature level combination combines different features

sets extracted from multiple biometric sources. These features sets can be

form the same feature extraction module, or they can be from different fea-

ture extraction modules, in this case same features can be incompatible [23].

Usually this level is low used because the biometric commercial systems don’t

provide access to the feature modules used in the their devices. Decision level

combination is the simplest combination in the biometric problem as it relays

only to the final class decision. Thus this combination level can be treated

as generic expert combination that had been vastly treated by the Pattern

Recognition literature [4, 5, 6, 7, 8, 9, 10, 11, 12].
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The score level is the most used in multi-biometrics as it allows to com-

bine completely different biometric traits in relatively easy way, and the score

can be easily retrieved from a biometric system. A wide variety of score com-

bination algorithms have been proposed in literature [23, 25, 26, 27, 22, 28,

29, 30, 31, 21]. The majority of them are based on the “fusion” combination

strategy: i.e., for each user the scores from the individual biometric experts

are combined through a fusion function into a “new” score, the aim of this

function is to maximize the separation between the two distributions of gen-

uine and impostor users. The main part of the research developed during this

thesis was focused to the development of a “selection” combination strategy

for scores [32, 25]. The aim of the score selection is to select for each user one

score from the user’s scores generated by the individual biometric experts.

This selection strategy is described in Chapters 2, and 3.



Chapter 2

Ideal Score Selection

In the previous chapter the two class problem have been presented, and

some performance measures used to evaluate the performance have been

exposed. It was also pointed out that the combination of a bag of experts can

improve the final performance. The aim of combining the scores is to produce

“new” scores whose distributions for positive and negative1 patterns exhibit

a larger degree of separation than those produced by individual experts.

Thus, if a “fusion” strategy is applied, its aim is to develop a fusion function

that maximize the separation between the two distributions. In this way

new scores are obtained, different from those of the individual experts. If a

“selection” strategy is applied, the combined score have to be chosen among

those of the individual experts [32, 25].

2.1 The Ideal Score Selector

Let E = {E1, E2, . . . Ej . . . EN} be a set of N experts and X = {xi} be

the set of patterns, let also fj(·) be the function associated to expert Ej that

produces a score for each pattern xi, sij = fj(xi). Let sj be the set of all the

score produced by an expert Ej for all the patterns X. Let th be a decision

1For biometric issues the positive and negative class are named genuine and impostor
respectively

14
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threshold so that the patterns whose score is higher than th are assigned to

the positive class, while the patterns whose score is lower than th are assigned

to the negative class.

It is easy to see that, in the worst case, the largest degree of separation

can be obtained by selecting for a positive pattern the highest of the scores

assigned to that pattern by individual experts, and for a negative pattern the

lowest of the scores assigned to that pattern by individual experts. In order

to produce distribution of positive and negative scores that allows attaining

lower errors than those of individual experts, the ideal score selector is defined

as the ideal expert selector that selects the maximum score for the positive

patterns, and the minimum score for the negative patterns [32, 25].

In this thesis similarity scores are used: i.e., a high value of score implies a

high similarity of the pattern to the positive class. If distance scores are used

what is described in the following can easily adapted inverting the selection of

the scores (i.e., low values for positive patterns, and high values for negative

patterns). It is worth noting that the same result in terms of degree of

separation could be achieved not selecting the highest and the lowest score

in some cases, but this is not generally true. In the following the ideal score

selection algorithm based on the above goal of combination at the score level

is described.

In other words, the output si,∗ of the ideal score selector for the pattern

xi is computed as follows:

si,∗ =

{
max{sij} if xi is a positive pattern

min{sij} if xi is a negative pattern
(2.1)

An example of the result of this kind of selection is shown in figure 2.1.

Although the ideal score selector looks intuitively better than the indi-

vidual experts, the proof is given in the following.

In the following the prove that the above defined ideal score selector

allows attaining lower errors than those of the individual experts is given. In
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Figure 2.1: An example of ideal score selector with two biometric experts
from a real dataset.

particular, for any given value of FMR2, the ideal score selector provides a

value of FNMR lower than those provided by each individual expert.

By defining

smax = max
j

[sj]

The following property holds for the distribution of the maximum of N ran-

dom variables sj [33]

P (smax ≤ th) = P (s1 ≤ th; s2 ≤ th; . . .) ≤ P (sj ≤ th) , ∀j
2In the following the terms FMR and FNMR are going to be used instead of FPR or

FNR, as they are equivalent
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By recalling the definition of FNMR

FNMRj(th) = P (sj ≤ th|sj ∈ positive)

and the definition of the ideal score selector that always select the maximum

score for positive patterns, the above property can be rewritten as follows for

the positive patterns:

FNMR∗(th) ≤ FNMRj(th) (2.2)

Analogously, let

smin = min
j

[sj]

The following property holds for the distribution of the minimum of N ran-

dom variables sj [33]

P (smin > th) = P (s1 > th; s2 > th; . . .) ≤ P (sj > th) , ∀j

Thus, the above property can be rewritten as follows for the negative pat-

terns:

FMR∗(th) ≤ FMRj(th) (2.3)

It can be proved that for any value of FMR, the ideal score selector exhibit

a value of FNMR lower than that provided by any individual expert. Given

two threshold values, th′ and th′′, the following relationship holds

FMR∗(th′) = FMRj(th
′′)

then it is possible to state that

FNMR∗(th′) ≤ FNMRj(th
′′) ∀j

From equations (1.3) and (2.3), it is easy to see that th′ ≤ th′′, so that the

proof can be subdivided into two cases:
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1. th′ = th′′. This is the simplest case, from equation (2.2) the following

relationship is obtained

FNMR∗(th′) = FNMR∗(th′′) ≤ FNMRj(th
′′)

2. th′ < th′′. Equation (1.4) implies that FNMR∗(th′) ≤ FNMR∗(th′′).

By recalling equation (2.3), FMR∗(th′′) ≤ FMRj(th
′′) holds, conse-

quently

FNMR∗(th′) ≤ FNMR∗(th′′) ≤ FNMRj(th
′′)

Thus the proposed ideal score selector always perform better than any expert

in the ensemble, and it provides a better ROC curve than the individual

experts combined. By recalling that the Area Under the ROC Curve is

computed as

AUC =

∫
(1− FNMR(th))dFMR(th)

it is possible to conclude that the AUC of the ideal score selector is always

higher than that of any expert in the ensemble.

By using the above results, it is easy to see that the selection methodology

described in equation (2.1) is the best score selection strategy. If with 4
another selection strategy is indicated, by using the above formulas it is easy

to see that for a given threshold th the following relations holds:

FMR∗(th) ≤ FMR4(th)

FNMR∗(th) ≤ FNMR4(th)

and for a fixed value of FMR

FMR∗(th′) = FMR4(th′′)
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we obtain that

FNMR∗(th′) ≤ FNMR4(th′′)

2.2 Ideal Selector VS Linear Combination:

combination of two experts

As it has been shown in Section 1.2.1 the Wilcoxon-Mann-Whitney statis-

tic [18] can be used to compute the value of the AUC. Recalling, the AUC

can be computed as follows:

AUC =

∑n+

p=1

∑n−
q=1 I(s

pos
p,j , s

neg
q,j )

n+ · n− (2.4)

This formulation of the AUC is also usefull to compare the AUC attained

by the ideal score selector with the AUC attained by an optimal linear com-

biner. To this aim, let us consider two experts, E1 and E2, and all the

possible pairs {{spos
p,1 , s

neg
q,1 }, {spos

p,2 , s
neg
q,2 }} obtained from these experts. Let us

divide these pairs into four subsets

Suv =
{
(p, q)|I(spos

p,1 , s
neg
q,1 ) = u and I(spos

p,2 , s
neg
q,2 ) = v

}

where u, v ∈ {0, 1}.
Thus, S11 is made up of all the pairs where spos

p,1 > sneg
q,1 and spos

p,2 > sneg
q,2 ,

S00 is made up of all the pairs where spos
p,1 < sneg

q,1 and spos
p,2 < sneg

q,2 , S10 is made

up of all the pairs where spos
p,1 > sneg

q,1 and spos
p,2 < sneg

q,2 , and S01 is made up

of all the pairs where spos
p,1 < sneg

q,1 and spos
p,2 > sneg

q,2 . These subdivision are

summarized in Table 2.1.

Using the previous notation the AUC of the two experts, E1 and E2, can

be written as follows:

AUC1 =
card(S11) + card(S10)

n+ · n− , AUC2 =
card(S11) + card(S01)

n+ · n−

where card(Suv) is the cardinality of the subset Suv.
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Subset Pairs from Expert 1 Pairs from Expert 2

S11 spos
p,1 > sneg

q,1 spos
p,2 > sneg

q,2

S00 spos
p,1 < sneg

q,1 spos
p,2 < sneg

q,2

S10 spos
p,1 > sneg

q,1 spos
p,2 < sneg

q,2

S01 spos
p,1 < sneg

q,1 spos
p,2 > sneg

q,2

Table 2.1: Summary of the subdivision of the scores in the Suv subsets.

Let us consider now this linear combination flc(·) = f1(·)+α ·f2(·), where

the fused output is computed as follows:

ξp = spos
p,1 + α · spos

p,2

ηq = sneg
q,1 + α · sneg

q,2

Subset Relations AUC contrib

S11 ξp > ηq ∀α card(S11)
S00 ξp < ηq ∀α 0

S10 spos
p,1 + α · spos

p,2 > sneg
q,1 + α · sneg

q,2

α dependant
max = card(S10)

S01 spos
p,1 + α · spos

p,2 > sneg
q,1 + α · sneg

q,2

α dependant
max = card(S01)

Table 2.2: Summary of the contribution given from the Suv subsets to
the AUC using the ideal linear combiner.

The AUC attained by the ideal linear combiner, say AUClc can be com-

puted by estimating the contribution of the pairs of outputs belonging to

each of the four subsets Suv, u, v ∈ {0, 1} [34]. They are summarized in Ta-

ble 2.2. Some cases are intuitively, some not. They are described in the

follows. All the pairs belonging to S11 do not depend on the value of α, as

ξp > ηq is always verified, so that the contribution to the AUClc from the

pairs belonging to S11 is equal to card(S11). Similarly, it is easy to see that

all the pairs belonging to S00 do not depend on the value of α, as ξp < ηq is

always verified, so that the pairs belonging S00 give a nil contribution to the

AUClc. All the pairs belonging to S10 depend on α, and their contribution
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to the AUClc is equal to card(S10) only if there is a value of α such that

for all the pairs spos
p,1 + α · spos

p,2 > sneg
q,1 + α · sneg

q,2 . The same reasoning can be

used to estimate the contribution to the AUClc of pairs in S01. It is worth

noting that the value of α such that the contributions of S10 and S01 are

equal respectively to card(S10) and card(S01) may not exists. Summing up,

the attainable value of AUC for the linear combination can be computed as

follows:

AUClc ≤ card(S11) + card(S10) + card(S01)

n+ · n− (2.5)

Let us now consider the ideal score selector defined according to equation

(2.1), whose outputs are:

ϕp = max {spos
p,1 , s

pos
p,2 }

ψq = min {sneg
q,1 , s

neg
q,2 }

(2.6)

Subset Relations AUC contrib

S11 ϕp > ψq card(S11)

S00 for some β cases:
spos

p,1 < sneg
q,1 < spos

p,2 < sneg
q,2

spos
p,2 < sneg

q,2 < spos
p,1 < sneg

q,1

card(β)

S10
sneg

q,1 ≥ sneg
q,2 ⇒ max {spos

p,1 , s
pos
p,2 } > sneg

q,2

sneg
q,1 < sneg

q,2 ⇒ max {spos
p,1 , s

pos
p,2 } > sneg

q,1

card(S10)

S01
sneg

q,1 ≤ sneg
q,2 ⇒ max {spos

p,1 , s
pos
p,2 } > sneg

q,1

sneg
q,1 > sneg

q,2 ⇒ max {spos
p,1 , s

pos
p,2 } > sneg

q,2

card(S01)

Table 2.3: Summary of the contribution given from the Suv subsets to
the AUC using the ideal score selector.

In Table 2.3 the contributions given to the AUC by the ideal score selec-

tion , say AUCsel. Some cases are intuitively, some not. They are described

in the follows. It is easy to see that for all the pairs belonging to S11 the

following relationship holds: ϕp > ψq. Thus the contribution to the AUCsel

of S11 is equal to card(S11), as for the optimal linear combiner. By examin-

ing the pairs belonging to S00, two cases have to be taken into account. One

case is when ϕp and ψq come from the same expert. Thus it follows that
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ϕp < ψq. The other case is when ϕp and ψq come from different experts. In

this case, two subcases have to be considered. If ϕp = spos
p,1 and ψq = sneg

q,2 ,

then the following majority chain holds sneg
q,1 > spos

p,1 > spos
p,2 . In addition, if

spos
p,1 > sneg

q,2 holds, then ϕp > ψq. Analogously if ϕp = spos
p,2 and ψq = sneg

q,1 ,

then the following majority chain holds sneg
q,2 > spos

p,2 > spos
p,1 . In addition, if

spos
p,2 > sneg

q,1 holds, then ϕp > ψq. Let β be the ensemble of those pairs that

verify the above relations. It is easy to see that the contribution to the AUC

of the pairs belonging to β is equal to card(β). For the subsets S10 and S01

using majority chains it is easy to see that the following relationship holds

for every pair. ϕp > ψq. As a consequence the contribution of S10 and S01 to

the AUC is always card(S10) + card(S01), while for the optimal linear com-

bination this is an upper bound. Summing up, the AUC of the ideal score

selector can be computed as follows:

AUCsel =
card(S11) + card(S10) + card(S01) + card(β)

n+ · n− (2.7)

By comparing equations (2.5) and (2.7), it easy to see that

AUCsel ≥ AUClc (2.8)

a comparison of the contributions given using the ideal score selector, and

the ideal linear combiner are presented in Table 2.4.

Subset Linear combination Score selection

S11 card(S11) card(S11)
S00 0 card(β)
S10 depends on α, max=card(S10) card(S10)
S01 depends on α, max=card(S01) card(S01)

Table 2.4: Contributions given to the AUC from the Suv subsets when
the ideal linear combination, and the ideal score selection are used.
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2.3 Ideal Selector VS Linear Combination:

combination of N experts

In the previous subsection the resulting AUC for ideal score selection and

optimal linear combination when two experts are combined have been shown

. In the following is shown what happens with this two ideal methods when

more than two experts are used. Let us consider the case when three experts

are available, (E1, E2, E3). In this case the following subdivision into subsets

is obtained:

Suvz =
{
(p, q)|I(spos

p,1 , s
neg
q,1 ) = u , I(spos

p,2 , s
neg
q,2 ) = v , I(spos

p,3 , s
neg
q,3 ) = z

}

where u, v, z ∈ {0, 1}. Suppose now that the expert E3 have been added to

the pair (E1, E2). In this case is possible obtain the subsets Suvz from Suv,

as it is shown by Table 2.5.

2 experts 3 experts

S11 =⇒ S111

S110

S00 =⇒ S001

S000

S10 =⇒ S101

S100

S01 =⇒ S011

S010

Table 2.5: How the Suv subsets splits into Suvz when a third z expert is
added to the combination.

Now the linear combination becomes:

ξp = α1 · spos
p,1 + α2 · spos

p,2 + α3 · spos
p,3

ηq = α1 · sneg
q,1 + α2 · sneg

q,2 + α3 · sneg
q,3
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and the score selection changes into:

ϕp = max {spos
p,1 , s

pos
p,2 , s

pos
p,3 }

ψq = min {sneg
q,1 , s

neg
q,2 , s

neg
q,3 }

Subset Linear combination Score selection

S111 card(S111) card(S111)
S110 depends on {α1, α2, α3}, max=card(S110) card(S110)
S001 depends on {α1, α2, α3}, max=card(S001) card(S001)
S000 0 card(β′)
S101 depends on {α1, α2, α3}, max=card(S101) card(S101)
S100 depends on {α1, α2, α3}, max=card(S100) card(S100)
S011 depends on {α1, α2, α3}, max=card(S011) card(S011)
S010 depends on {α1, α2, α3}, max=card(S010) card(S010)

Table 2.6: Contributions given to the AUC from the Suvz subsets when
the ideal linear combination, and the ideal score selection are used.

In Table 2.6 the contributions given to the AUC by the ideal linear com-

bination are summarized, and the ideal score selection. Some cases are in-

tuitively, some not. Let us describe them. For the ideal linear combination

the contribution given to the AUC from the subset S101 (S011) depends from

{α1, α2, α3} only if doesn’t exists an {α1, α2} that allow to fully recover the

subset S10 (S01) considering only the first two experts, in this case α3 is

meaningless for this combination. The other cases depends on {α1, α2, α3},
but S111 and S000. When the ideal score selector is considered, it is easy to

see what happens for the subsets that comes from S11, S10, and S01. For

the subset S00 and two experts, as already showed, some β cases could be

present and they can be recovered. When S00 splits into S000 and S001, also

β splits: say β(000) those who go with S000, and β(001) those who go with S001.

The subset S001 is fully recovered as spos
p,3 > sneg

q,3 . While for S000 exist some β′

cases so that max (spos
p,1 , s

pos
p,2 , s

pos
p,3 ) > min (sneg

q,1 , s
neg
q,2 , s

neg
q,3 ). It is worth noting

that β(000) ⊆ β′.

Thus, for three experts, the AUC obtained with ideal linear combination
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and ideal score selection in the following way can be written as follows:

AUClc ≤ card(S111 ⊕ S110 ⊕ S001 ⊕ S101 ⊕ S100 ⊕ S011 ⊕ S010)

n+ · n− (2.9)

AUCsel =
card(S111 ⊕ S110 ⊕ S001 ⊕ β′ ⊕ S101 ⊕ S100 ⊕ S011 ⊕ S010)

n+ · n− (2.10)

=
card(S11 ⊕ S001 ⊕ β′ ⊕ S10 ⊕ S01)

n+ · n− (2.11)

This reasoning can be iteratively repeated for k experts. It is easy to see

that the following relations hold:

AUC
(2)
lc Q AUC

(3)
lc Q . . . Q AUC

(k−1)
lc Q AUC

(k)
lc

AUC
(2)
sel ≤ AUC

(3)
sel ≤ . . . ≤ AUC

(k−1)
sel ≤ AUC

(k)
sel

where AUC
(j)
∗ is the AUC obtained combining j experts. Thus, when you

combine more than two experts with the ideal score selector, what you can

obtain is an increase in performance in terms of AUC. If you combine through

the ideal linear combination you could obtain a worst AUC than using only

two experts as there is an uncertainty due to the increase of the degree of

freedom of the combination (i.e., the number of the α).



Chapter 3

Score Selection

In Chapter 2 has been defined the ideal score selector : an ideal methodol-

ogy to combine the scores from different experts using a “selection” strategy.

Thus the ideal score selector selects the maximum score value if the pattern

belongs to the positive class, or selects the minimum score value if the pat-

tern belongs to the negative class. The ideal score selector is based on the

knowledge of the state of nature of the pattern (i.e., if the pattern belongs

to the positive or to the negative class), but in practice the state of nature

is unknown and it is the target of a classification task.

In this Chapter are shown the methods developed during this thesis to

implement a “practice” score selection.

3.1 Error based estimation

In this section are explained two methods based on some measures whose

aim is to estimate the error of wrongly assign the pattern to the positive or

to the negative class. The methods described in the following are named

Dynamic Score Selection (DSS) methods as they dynamically (i.e., for each

pattern) select the scores. All these methods needs a training set to tune

their parameters.

26
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3.1.1 Minimum expected error

This methodology was presented in [32]. Given a pattern xi, and a expert

Ej for any value of sij ∈ sj, the following relation holds

∫ sij

0

p(sj|negative)ds >

∫ sij

0

p(sj|positive)ds (3.1)

i.e., in the range [0, sij] negative patterns outnumber positive patterns. This

is usually true for a wide range of values of sij.

In order to compute the expected error in assigning a pattern to one of

the classes negative or positive given the output score sj of the j– th expert,

by setting the acceptance threshold to sj and compute the difference

Dj = |FNMR(sj)− FMR(sj)| (3.2)

By substituting Equations (1.3) and (1.4) in (3.2),

∣∣∣∣
∫ sij

0

p(sj|positive)ds− 1 +

∫ sij

0

p(sj|negative)ds

∣∣∣∣

If FNMR(sj) > FMR(sj), then
∫ sij

0
p(sj|positive)ds−1+

∫ sij

0
p(sj|negative)ds =

Dj > 0. According to the assumption in Equation (3.1) the following relation

is obtained

∫ sij

0
p(sj|negative)ds >

∫ sij

0
p(sj|positive)ds = Dj + 1− ∫ sij

0
p(sj|negative)ds

∫ sij

0
p(sj|negative)ds >

Dj+1

2

FMR(sj) = 1− ∫ sij

0
p(sj|negative)ds <

1−Dj

2

Thus it follows that by accepting the input pattern as a positive pattern

an error smaller than (1 − Dj)/2 is expected. As a consequence the input

pattern is likely to be a positive pattern.

Analogously, if FMR(sj) > FNMR(sj), thus it follows that FNMR(sj) <

(1−Dj)/2, and the input pattern is likely to be annegative. The highest the

value of Dj computed according to Equation (3.2), the most likely the deci-
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sion, as it leads to the minimum expected error. Summing up, the state of

nature ω for pattern x can be estimated as follows:

1. for each expert Ej compute the value of Dj using the training set

2. let k = argmaxj(Dj)

3. then

ω =

{
positive if FNMR(sj) > FMR(sj)

negative if FMR(sj) > FNMR(sj)
(3.3)

The difference in Equation (3.2) can be estimated by assuming Gaussian

distributions for the score of positive patterns and negative patterns. Let

µG (µI) and σG (σI) be the mean and the standard deviation of positive

(negative) distribution estimated from the training set. By considering the

first-order approximation of the integral used to compute the errors

P (s < sij) =
1

2

(
1 +

2√
π

sij − µ√
2σ

)
(3.4)

Thus, substituting Equation (3.4) in Equation (3.2), the following relation is

obtained:

Dj = |FNMR(sj)− FMR(sj)| =

= |P (s < sj|positive)− P (s > sj|negative)| =

= |P (s < sj|positive)− [1− P (s < sj|negative)]| =

=

∣∣∣∣
1

2

(
1 +

2√
π

sj − µG√
2σG

)
− 1 +

1

2

(
1 +

2√
π

sj − µI√
2σI

)∣∣∣∣ =

=
1√
2π

∣∣∣∣
sj − µG

σG

+
sj − µI

σI

∣∣∣∣
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3.1.2 Relative minimum expected error

The previous method requires the type of distribution to estimate the

necessary parameters for the score selection. The following method is an

evolution of the previous one and uses an estimation measure different from

theDj measure described above. The estimation measure used is the Relative

Minimum Error (RME) measure. The RME takes into account two terms:

the error committed accepting a negative pattern, through the difference

FMRj(−∞)− FMRj(sij) (i.e., a measure of how likely xi is a positive pat-

tern), and the error committed when a positive pattern is rejected, through

the difference FNMRj(∞) − FNMRj(sij) (i.e., a measure of how likely xi

is a negative pattern). These quantities are estimated from a training set.

In detail, the Relative Minimum Error is computed as follows:

RMEij =
[FMRj(−∞)− FMRj(sij)]− [FNMRj(∞)− FNMRj(sij)]

|[FMRj(−∞)− FMRj(sij)] + [FNMRj(∞)− FNMRj(sij)]| =

=
FNMRj(sij)− FMRj(sij)

FNMRj(sij) + FMRj(sij)

Summing up, the algorithm of Dynamic Score Selection is made up of

the following steps:

1. Compute for each expert Ej the value of RMEij for the pattern xi

2. Estimate the most reliable state of nature for xi by selecting the max-

imum value of |RMEij|. Let k = argmaxj(|RMEij|)

3. Select the score using RMEik as

ssel =

{
maxj(sij) if RMEik > 0

minj(sij) if RMEik < 0
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3.2 Using a classifier to estimate the state of

nature

In the previous section two methods for the Dynamic Score Selection were

presented. From these methods it is clear that the score selection faces the

problem of the estimation of a pattern’s state of nature. One way to over-

come this problem could be the use of a classifier (i.e., k-Nearest Neighbour,

Quadratic Bayes, Parzen Windows, etc). Through the use of a classifier it is

possible to estimate both the state of nature of a pattern and the posterior

probabilities of belonging to the positive or to the negative class.

So, for the estimation of the state of nature, a vector space could be built

where, for each pattern, the vector components are the scores assigned to

that pattern by an ensemble of experts. Thus, given an ensemble made up

of N experts, for each pattern xi, it is possible to construct the following

feature vector vi = {si1, . . . sij . . . siN}. Then, a classifier can be trained on

this N -dimensional vector space, using a training set of scores related to

positive and negative patterns. This classifier is thus used to estimate the

state of nature of the patterns to be authenticated.

At this point,the outputs of a classifier can be used in different ways:

1. Using directly the state of nature of a pattern assigned by a classifier

2. Using the state of nature of a pattern assigned by a classifier to select

the score through a Dynamic Score Selection

3. Using the posterior probabilities assigned to the pattern by a classifier

these methodologies are detailed in the following.

3.2.1 The direct use of a classifier’s output

The direct use of the state of nature (i.e, the class) outputted by a clas-

sifier C for each pattern xi, is likely if a threshold have been fixed, and
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singles fixed FMR and FNMR are assigned to the combination of the bag

of experts.

The advantage of this methodology is that a fixed classification in terms

of positive and negative class is given, and no decision threshold have to be

tuned. The disadvantage is that the use a decision threshold is usefull to fit

the classification requirements in term of FMR and/or FNMR. Moreover

if the classifier don’t exhibit a classification accuracy of 100%, as usually

appens in practice, the classification errors can’t be “fixed” as it is possible

tuning a decision threshold.

3.2.2 The use of a classifier for Dynamic Score Selec-

tion

This methodology uses the output of a classifier C to apply a Dynamic

Score Selection [25]. Thus, the aim is to select one of the scores sij available

for each pattern xi using the state of nature of each pattern outputted by a

classifier. After the computation of the state of nature, the pattern’s score

is selected according to Equation (2.1).

Summing up, the proposed algorithm for DSS is made up of the following

steps:

1. Construct the N -dimensional vector space using the training scores

dataset

2. Train a classifier C in the N -dimensional vector space

3. Classify the pattern to be authenticated with the classifier C

4. Select the score ssel based on the output class of classifier C as follows

ssel =

{
maxj(sij) if class = positive

minj(sij) if class = negative

This methodology, as all the score combination algorithms, requires to

tune a decision threshold.
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3.2.3 The use of a classifier’s posterior probabilities

This methodology can’t be used with all kind of classifiers because not

all classifiers computes the posterior probabilities for a pattern. In practice

this methodology is less “general” than the previous two methodologies.

The posterior probabilities can be used in two ways:

• finding an optimal probability threshold to output a state of nature for

the pattern, and after appling one of the two previous methodologies1

• using the posterior probabilities as a “fused” score

While the first point is a score selection methodology, the second is a

score fusion methodology.

1This aspect is not treated in the experiments.



Chapter 4

Measures of performance, and

Combination rules

In Chapter 1 the ROC curve have been introduced as a “graphic” per-

formance measure, and the AUC, the FMR, and the FNMR as performance

measures. The ROC and the AUC give a view of the global performance of

an expert, infact they take into account all the possible values of the decision

threshold. These measures give to the user an idea how good is globally the

expert or the combination method used. Sometimes specific performance are

required like a specific value of FMR or FNMR. In these cases it is usefull to

use some measures that correspond to specific ROC points like: the Equal

Error Rate (EER), the 1% FMR, the 1% FNMR, the 0% FMR, and the 0%

FNMR.

The Equal Error Rate (EER) is the point of the ROC curve where the

two errors, i.e. the FMR and the FNMR, are equal. The lower the value of

EER, the better the performance of an expert. This performance measure

is widely used in the biometric field to assess the performance of biometric

systems [20], as it can be used to give a single performance measure. In

certain biometric systems the EER is used to tune the threshold to be used

in the system.

The 1% FMR is the value of the FNMR when the FMR is equal to 1%,

33
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respectively the 1% FNMR is the value of the FMR when the FNMR is equal

to 1%. Same thing for the 0% FMR, and the 0% FNMR.

Another global performance measure is the d’. The d-prime (d’ ) is a

measure of discrimination between the distributions of two signals, that has

been proposed within the Signal Detection Theory [35] [2]. This measure

has been also proposed in the biometric field to measure the separability of

the distributions of genuine and impostor scores. Given the distributions of

the scores produced respectively by positive and negative patterns, the d’ is

defined as

d′ =
|µpos − µneg|√

σ2
pos

2
+

σ2
neg

2

(4.1)

where µpos and µneg are the means of the two distributions, while σpos and

σneg are the related standard deviations. It is easy to see that the larger

the d’, the better the performance. In addition, if the scores are normally

distributed, the d’ can be directly related to the AUC and the ROC curve as

it is shown in figure 4.

4.1 Measures of Ensemble Effectiveness

Besides the use of the previous measures as performance measures for a

single expert or a combined system, they can be used also as measures of

ensamble effectiveness. Thus, the combination of the performance measures

of the single experts can be used to estimate the effectiveness of a bag of

experts. One way is to use the mean value of the performance measure

taken into account to estimate this effectiveness [36]. In the following for

three of these measures ( AUC, EER, and d’) another way to measure the

effectiveness is shown. It is worth noting that these way to measure can be

easily adapted to every performance measure.
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Figure 4.1: ROC curves with different d’ values derived from Gaussian
distributions. The larger the d’, the better the ROC and consequently the
AUC.

4.1.1 Ensemble Effectiveness based on AUC

The effectiveness of an ensemble of experts can be evaluated by the av-

erage AUC of the individual experts, the highest the average, the better the

performances. However, the average value by itself does not take into ac-

count the difference in performance among the experts. Thus, we propose

to weight the average AUC µAUC with the standard deviation of the AUC

σAUC , according to the following definition:

AUCδ = µAUC × (1− tanh(σAUC))
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where the hyperbolic tangent is used to “normalize” the value of σAUC be-

tween 0 and 1. This normalization is needed because the aim is to give a

general formulation to this measure for every kind of performance measure

(e.g., in some cases the standard deviation can be higher than 1):

pmδ = µpm × (1− tanh(σpm))

The choice of tanh it has been made after comparing it with other different

normalization functions, and find it more suitable according to the extensive

experiments made.

4.1.2 Ensemble Effectiveness based on EER

Another measure of the effectiveness of an ensemble is the average EER of

the individual experts, the lowest the average, the better the performances.

As the average value by itself does not take into account the difference in

performance among the experts, we propose to weight the average EER µEER

with the standard deviation of the EER σEER, according to the following

definition:

EERδ = µEER × (1− tanh(σEER))

4.1.3 Ensemble Effectiveness based on d’

This measure is based on the average d’ of the individual experts, the

highest the average, the better the performances. To use an analogous for-

mulation of those expressed above, instead of the use of the d’ the following

normalized value is used

D′ = logb(1 + d′)

the aim of this normalization is to take into account the nature of the d’ that

can assume values larger than 1, and so high variance can be present also if

high d’ values are taken into account. Thus by means of the normalization

of the similar values of the d’ this aspect can be taken into account (i.e., for
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high performance experts with high d’ its standard deviation is less important

than the same value obtained by low d’ values). The value of the base b can

be tuned, in the experiments a base equal to 10 is used according to the

general values of d’ obtained in the experiments.

In accordance to the previous reasoning, the proposed measure is based

on the average d’ µD′ weighted by the standard deviation of the d’ σD′ ,

according to the following definition:

D′
δ = µD′ × (1− tanh(σD′))

4.2 Score Dissimilarity index

The score dissimilarity (SD) index [37] is an index based on the WMW

formulation of the AUC, and is designed to measure the amount of improve-

ment in AUC of the combination of an ensemble of experts with respect to

the AUC of the individual experts. From this point of view, this index is a

measure of the amount of AUC that can be “recovered” by exploiting the

complementarity of the experts.

The SD index is computed according to the AUC formulation described

in Equation (2.4). By considering two experts, E1 and E2, and all the possi-

ble pairs {{spos
p,1 , s

neg
q,1 }, {spos

p,2 , s
neg
q,2 }} made up by the positive and the negative

scores {spos
p,1 , s

neg
q,1 } generated by the expert E1, and the positive and the nega-

tive scores {spos
p,2 , s

neg
q,2 } generated by the expert E2, we can divide these pairs

into four subsets S00, S10, S01, and S11 as it have been shown in Section 2.1

and it is summarized in Table 2.1.

Suv =
{
(p, q)|I(spos

p,1 , s
neg
q,1 ) = u and I(spos

p,2 , s
neg
q,2 ) = v

}
u, v ∈ {0, 1}

Remembering that using this notation, the AUC of the two individual experts

can be expressed as:

AUC1 =
card(S11) + card(S10)

n+ · n−
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AUC2 =
card(S11) + card(S01)

n+ · n−
where card(Suv) is the cardinality of the subset Suv.

The diversity of the two experts in terms of AUC is represented by the

terms card(S10) and card(S10), as they are related to the pairs where the two

experts disagree. Thus, SD index is defined as

SD =
card(S10) + card(S01)

card(S11) + card(S10) + card(S01)
(4.2)

this formulation differs from that proposed in [37]: i.e., the denominator

have been added as a normalization factor to take into account also the

performance of the experts in terms of AUC.

The higher the value of SD, the higher the maximum AUC that could be

obtained by the combined scores with respect to the AUC of the individual

experts. Otherwise, if the value of SD is low, the maximum AUC obtained by

the combined scores is close to the AUC obtained by the individual experts.

It is worth noting that actual increments of the value of the AUC depends on

the combination method, and that very high values of SD are usually related

to low performance experts.

In order to take into account the difference in AUC of the combined

experts, a measure of ensemble effectiveness like those described previously

can be obtained propose weighting the above SD value according to the

standard deviation of the AUC values of the individual experts:

SDδ = SD × (1− tanh(σAUC))

4.3 Combination Rules

In Chapter 1 it has pointed out that the combination of experts is used

to improve the performance as they avoid the choice of the “best” expert,

and typically provide better performance than those provided by individual

experts [4, 5, 6, 7, 8, 9, 10, 11, 12, 23]. In the case of the experts that output
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a similarity score for a pattern the choice of the “best” expert is harder as

the performance of the expert are not only related to the score, but also to

the decision threshold needed for the application to be realized.

In the following some combination rules are described. These rules are

rules usually used, especially in the biometric field, to compare the other

methods with [23]. The following methods (i.e., Mean rule, Product rule,

Max rule, and Min rule) where developed for a general combination of classi-

fiers taking into account the posterior probabilities estimated for the patterns

[4]. In the following they are described in the form that is generally used to

combine scores.

4.3.1 Mean or Sum rule

The Mean (Sum) rule is applied directly to the scores produced by the

set of N experts, and the resulting score is computed as follows:

si,mean =
1

N

N∑
j=1

sij

or in the Sum form

si,sum =
N∑

j=1

sij

4.3.2 Product rule

Similarly to the Mean rule, this fusion rule is applied directly to the

matching scores produced by the set of N experts:

si,prod =
1

N

N∏
j=1

sij
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4.3.3 Max rule

Similarly to the Mean rule, this fusion rule is applied directly to the

matching scores produced by the set of N experts:

si,max = max(sij) ∀j

4.3.4 Min rule

Similarly to the Mean rule, this fusion rule is applied directly to the

matching scores produced by the set of N experts:

si,min = min(sij) ∀j

4.3.5 Linear Combination by Linear Discriminant Anal-

ysis

The Linear Discriminant Analysis (LDA) can be used to compute the

weights of a linear combination of the scores [2]. The goal of this fusion rule

is to attain a fused score such that the within-class variations are minimised,

and the between-class variations are maximised. The fused score is computed

as follows:

si,LDA = W t · si

where si is the vector of the scores assigned to the user ui by all the experts

Ej, and W t is the transformation vector that takes into account the within

and between class variations as

W = S−1
w (µpos − µneg)

where µpos is the mean of the genuine distribution, and µneg is the mean of

the impostor distribution, and Sw is the within-class scatter matrix. The W

transformation vector is computed using a training set.



Chapter 5

Experiments

For the experiments multimodal biometric datasets are used. The choice

of this kind of dataset is driven by the fact that the biometrics are one of

the most relevant application nowadays of binary classifiers. In the following

the typical biometric terminology will be used, in particular, as explained

in Section 1.3, the possible classes of an user (i.e., a pattern in the general

case) are identified by the terms genuine user (i.e., the positive class), and

impostor user (i.e., the negative class).

For the experiments the following combination methods are used1:

• the ideal score selector described in Chapter 2

• a linear combiner whose the “optimal” weight have been determined to

maximize the AUC of the combined scores by performing an exhaustive

search on the value of the combination weight α, using values between

0 and 100 with a step of 0.01.

• the Mean rule described in Chapter 4

• the Max rule described in Chapter 4

• the Min rule described in Chapter 4

1they are not all used in all the experiments

41
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• the Product rule described in Chapter 4

• the linear combination based on the LDA described in Chapter 4

• the DSS based on RME described in Chapter 3

• the DSS based on classifiers described in Chapter 3

• using the posterior probabilities assigned by classifiers described in

Chapter 3

As performance measures those described in Chapters 1 and 4 are used.

In each experiment the measures used are specified.

5.1 Biometric datasets setup

In this section the datasets used in the experiments and some of the

experiments modalities are described.

5.1.1 FVC2004 score dataset

This dataset is composed by a large number of experts (fingerprint match-

ing algorithms) during the third Fingerprint Verification Competition2 FVC2004

[38]. The competitors were divided into two categories Open and Light. The

Open category is composed by 41 experts, while the Light category is com-

posed by 26 experts with restricted computing and memory usage. Four

databases of fingerprint images have been used in the competition: three of

them were acquired with different sensors, while the fourth was created using

a synthetic fingerprint generator. For each sensor and for each expert, a total

of 7750 scores is available related to 2,800 authentication attempts of genuine

users and to 4,950 authentication attempts of impostors. For the details on

how the scores where obtained and normalised, the reader is referred to [38].

2Web site: http://bias.csr.unibo.it/fvc2004/
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In order to create a training set for the LDA fusion rule, and the DSS

algorithm, the set has been randomly divided into four subsets of the same

size, each subset made up of 700 “genuines” and 1238 “impostors”. Each

of the four subsets has been used for training, while the remaining three

subsets have been used for testing. Using this partitioning of the dataset,

an exhaustive multi-algorithmic combination experiment was performed: for

each of the four partitioning, and for each sensor, all the possible pairs of

experts are considered. Thus, for each partitioning 3,280 distinct pairs are

obtained , so that the reported experiments are related to a total of 13,120

pairs of experts.

5.1.2 NIST BSSR1 score dataset

This score dataset is the Biometric Scores Set Release 1 (BSSR1) of the

National Institute of Standards and Technology (NIST). This dataset is avail-

able from the NIST web site for free3. The dataset contains similarity scores

from two face recognition systems and one fingerprint system on left and

right index fingerprints. For aim of this thesis, the set containing the face

and the fingerprint systems were used. In this multimodal dataset are present

517 subjects. For each subject, the set contains one score from the compar-

ison of two right index fingerprints, one score from the comparison of two

left index fingerprints, and two scores (from two separate matchers) from

the comparison of two frontal faces. The non-matching scores from the full

cross-comparison are also included in the dataset.

In the following the matchers are named as follows: FaceC, FaceG, Fin-

gerL, and FingerR, where C and G indicate two different face matchers, and

L and R stand for the left and right fingerprint. In the experiments the scores

were normalized using the Min-Max rule

snorm
i,j =

si,j −min(sj)

max(sj)−min(sj)
, si,j ∈ sj

3Web site: http://www.itl.nist.gov/iad/894.03/biometricscores/
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As for the FVC2004 dataset, the BSSR1 dataset were subdivided in 4 parts,

and one partition at a time was used as training set and the other three

as test set. The performance of these individual matchers in the four test

partitioning are exposed in Table 5.1.

FaceC FaceG FingerL FingerR

AUC 0.9891(±0.0025) 0.9828(±0.0023) 0.9629(±0.0062) 0.9823(±0.0035)
EER 0.0439(±0.0031) 0.0580(±0.0043) 0.0821(±0.0090) 0.0482(±0.0055)
d’ 2.2301(±0.7404) 3.3264(±0.0688) 1.9027(±0.0588) 2.2127(±0.0383)

FMR 1% 0.0838(±0.0105) 0.1083(±0.0075) 0.1218(±0.0130) 0.0696(±0.0105)
FNMR 1% 0.2453(±0.0775) 0.4886(±0.0553) 0.7705(±0.0910) 0.6066(±0.1616)
FMR 0% 0.5519(±0.0525) 0.4030(±0.0049) 0.3469(±0.0428) 0.2037(±0.0257)

FNMR 0% 0.9086(±0.1829) 0.7745(±0.1292) 0.9362(±0.0528) 0.9985(±0.0030)

Table 5.1: Mean and standard deviation of different performance mea-
sures for the individual experts in NIST BSSR1 dataset.

5.2 Experimental results on the use of a clas-

sifier to estimate the state of nature

In Section 3.2 different methodologies on the use of a classifier to estimate

the state of nature have been illustrated. This section presents a comparison

between these methodologies to focus their properties.

5.2.1 Estimated state of nature vs Dynamic Score Se-

lection

The first use of a classifier proposed in Section 3.2 is that of using the

class assigned to an user xi by a classifier C. Thus, the user is assigned to

the genuine class or to the impostor class. In this case we can compute the

accuracy of the classifier C, the “true positives” rate, and the “false positives”

rate that are not threshold dependant. It is easy to see that if the classifier

always exhibits an accuracy of 100%, than the direct use of the class assigned

by a classifier is always better than the other methodologies described because
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they need always at least an extra step (e.g. using a decision threshold). In

practise the accuracy of a classifier is lesser than 100%. In this case the use

of the class assigned by classifier by itself is still the most convenient?

In Figures (5.1 - 5.2), the graphs on the experiments made using the

FVC2004 dataset are shown. For these experiments four classifiers have

been used: the k-Nearest Neighbour (kNN), the Linear Discriminant Clas-

sifier (LDC), the Quadratic Discriminant Classifier (QDC), and the Parzen

windows. The comparison is made in the following way:

• each classifier is trained on the four subdivision of the dataset described

above.

• for each classifier C the FMR and FNMR are computed as follows

considering the estimated state of nature

FMR =
impostors classified as genuines

total impostors

FNMR =
genuines classified as impostors

total genuines

• for each classifier a DSS is built using the state of nature estimated

• for each classifier and subdivision, the value of FMR is computed for

its DSS when the FNMR of the classifier and the DSS are equal. After

this FMR is compared to those obtained by the classifier.

• for each classifier and subdivision, the value of FNMR is computed for

its DSS when the FMR of the classifier and the DSS are equal. After

this FNMR is compared to those obtained by the classifier.

In Figure (5.1) the results on the Open dataset are shown. While in

Figure (5.2) the results on the Light dataset are reported. From these figures

is clear that the use of a Dynamic Score Selector is generally preferable to

the direct use of a classifier. Moreover from the figures is clear that this

advantages are related to the classifier used. The more simple the classifier,
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(a) (b)

Figure 5.1: Comparison between the estimated state of nature by a clas-
sifier and the Dynamic Score Selection using the Open FVC2004 dataset.
In white are reported the occurrences when the DSS exhibits lower errors
than the classifier. In black is reported the opposite situation. In (a)
FNMRclass = FNMRDSS . In (b) FMRclass = FMRDSS .

(a) (b)

Figure 5.2: Comparison between the estimated state of nature by a clas-
sifier and the Dynamic Score Selection using the Light FVC2004 dataset.
In white are reported the occurrences when the DSS exhibits lower errors
than the classifier. In black is reported the opposite situation. In (a)
FNMRclass = FNMRDSS . In (b) FMRclass = FMRDSS .

the better the performance of the DSS are with respect to the classifier: e.g.

the performance of a LDC are very low respect its DSS, while for a QDC

they are closer.
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5.2.2 Dynamic Score Selection vs the use of the pos-

terior probabilities as a “fused” score

If a classifier assigns to a pattern not only a class, but also estimates for

that pattern a posterior probability of belonging to that class, these proba-

bilities can be used as a “fused” score. These case differs from the previous

because while in that case both the use are always possible, in this case are

related to the potentiality of the classifier.

Figure 5.3: Comparison between the DSS and the use of the posterior
probabilities.

In Figure (5.3), the graphs on the experiments made using the NIST

Biometric Scores Set Release 1 dataset are shown. For these experiments

three classifiers have been used: the k-Nearest Neighbour (kNN), the Linear

Discriminant Classifier (LDC), and the Quadratic Discriminant Classifier

(QDC). The comparison is made in the following way: in “white” are reported

the number of times that the DSS exhibits better performance than the

use of the posterior probabilities using the same classifier for all possible

combinations, in “black” are reported the opposite situation. In this case it

is clear that no one of the two methodologies is better than the other when
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taking into account the AUC and EER.

Finally it is important to remark that the DSS can be always used, also

with a “crisp” classifier (i.e., a classifier that outputs only the class with-

out other information), while the other methodology is necessary that the

classifier is able to estimate the posterior probabilities.

5.3 Experimental results on measures of en-

semble effectiveness

For these experiments the experts from the Open category of the FVC2004

dataset was used. The results on the Light category are not reported as the

obtained results are equal to those obtained with the Open category.

For each pair of experts, the measures of effectiveness based on the values

of the AUC, the EER, the d’ and the SD index were computed, according

to the formulation described in Section 4.1. Then, after combining the pairs

of experts using four combination rules (i.e., the Mean rule, the Product

Rule, the LDA, and a DSS based on a Quadratic Discriminant Classifier) the

related values of AUC and EER was computed, as they better represent the

performance.

The aim of the reported experiments is to investigate the correlation

between the measures of the effectiveness of the ensemble, and the final

performance achieved by the combined system. In order to evaluate this

correlation a graphical representation of the results of the experiments was

used. On the X axis is represented the performance of the pair of individual

experts expressed in terms of AUCδ, EERδ, D
′
δ, and SDδ, while on the

Y axis is reported the performance of their combination. The results are

reported in Figures (5.4 - 5.11), where are shown the graphics of the four

combination rules grouped by the ensemble effectiveness measures, and the

performance measure of the combination rules. It is worth remarking that

for the AUCδ, and the D′
δ the higher the value the better the performance,

while the reverse holds for the EERδ. Moreover the higher the value of the
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SDδ index, the higher the maximum increment in terms AUC that can be

achieved by the combination of the experts.

In Figures (5.4) and (5.5) the value of AUCδ of any pair of experts is

plotted against the AUC and the EER of all the considered combination

methods, respectively. The inspection of Figure (5.4) allows to conclude

that the value of AUCδ is not an useful measure to select the pair of experts

whose combination may provide performance improvements. In fact for all

the combination rules , there is no clear relationship between the value of

AUCδ of the pair of experts and the AUC of their combination. It is easy to

see that for very high values of AUCδ the combination attains high values

of AUC, but for other (lower) values of AUCδ, the AUC of the combination

is in a wide interval of values. This can be explained by the fact that high

values of AUCδ are related to pair of experts with high performance, and

thus with similar behaviour. Finally, the graphics in Figure (5.4) show that

AUCδ is best correlated to the AUC of the combination when the Mean

rule is employed. On the other hand, if the performance of combination in

terms of the EER (Figure (5.5)) is evaluated, it is clear that the value of

AUCδ of the pair of experts is uncorrelated with the EER attained by the

combination. In fact, for any value of AUCδ, the EER of the combination

spans over a wide range of values for all the combination techniques. Thus, is

not possible to predict the performance of the combination in terms of EER

by taking into account the value of AUCδ.

In Figures (5.6) and (5.7) the value of EERδ attained by each pair of

experts is plotted against the AUC and the EER attained by the consid-

ered combination methods. The graphics in Figure (5.6) exhibit a better

behaviour than those in Figure (5.4), but, as for AUCδ, there is no clear

relationship between the value of EERδ and the AUC of their combination

In this case too, the graphics show that EERδ is best correlated to the AUC

of the combination when the Mean Rule is employed. Finally, as far as the

correlation of EERδ with the EER of the combination is considered, the

analysis of Figure (5.7) shows that there is no correlation between the two
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values. By comparing Figure (5.7) with Figure (5.5) it is easy to see that

the corresponding graphics exhibit similar behaviour. Therefore, despite the

fact that the AUC and the EER are widely used as performance measures

to evaluate biometric systems, they are not suited as measures to select the

experts to combine.

Figures (5.8) and (5.9) show the value of D′
δ of any pair of experts and

the corresponding values of the AUC and the EER of their combinations,

respectively. It is easy to see that for all combination methods, higher values

of D′
δ guarantee smaller ranges of values of the performance of the combina-

tion. Thus, according to these graphics it can be concluded that the value

of D′
δ is a good measure to evaluate the effectiveness of candidate ensembles

of biometric experts. If we compare D′
δ with AUCδ and EERδ, it can be

seen that D′
δ is more correlated to the performance of the combination than

AUCδ and EERδ.

Figures (5.10) and (5.11) show the value of SDδ attained by any pair

of experts and the corresponding values of the AUC and the EER of their

combinations, respectively. It seems that this measure exhibits a better cor-

relation with the AUC rather than with the EER. This behaviour can be

explained by the fact that the SD is a measure designed to predict the max-

imum improvement in AUC that could be attained by the combination of

experts. By comparing these results with those obtained using AUCδ as a

measure of the effectiveness of the ensemble, it can be seen that they exhibit

a similar behaviour. In particular, small values of SDδ guarantee large values

of performance of the ensemble, because they are related to pairs of individ-

ual experts that can “recovery” a small amount of AUC, and generally they

are experts that have large values of AUC. As SDδ measures the degree of

complementarity of the experts, it is easy to see that the higher the AUC of

the individual experts, the smaller the complementarity.

As far as the evaluation of the considered combination methods is con-

cerned, Figures (5.4 - 5.11) allows to conclude that any combination tech-

nique allows attaining high performance regardless the performance of the



5.3 Experimental results on measures of ensemble effectiveness 51

individual experts. On the other hand, if the interest is in predicting the

performance improvement, then it can be easily seen that the Product rule

exhibits the worst performance, as in general the performance of the combi-

nation are not clearly correlated to the performance of the individual experts.

On the other hand the Mean rule is the best combination method, while the

LDA and the DSS4 exhibit a similar behaviour not far from the performance

achieved by the Mean rule.

In conclusion the D′
δ, among the measures analyzed, is the best measure

to estimate the ensamble effectiveness. This results are similar to those

proposed in [36] where the d’ was the best measure. The results of [36] are

not proposed in the thesis as the results previously described are more recent

and complete5.

4Remember that in this experiments the DSS is based on the state of nature estimated
using a Quadratic Bayes classifier

5This new results are going to be published in a journal version of the paper [36] during
the 2008
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(a) (b)

(c) (d)

Figure 5.4: In these figures the AUCδ attained by each pair of experts
is plotted against the AUC computed with the (a) DSS, (b) the LDA, (c)
the Mean rule, and (d) the Product rule.
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(a) (b)

(c) (d)

Figure 5.5: In these figures the AUCδ attained by each pair of experts
is plotted against the EER computed with the (a) DSS, (b) the LDA, (c)
the Mean rule, and (d) the Product rule.
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(a) (b)

(c) (d)

Figure 5.6: In these figures the EERδ attained by each pair of experts
is plotted against the AUC computed with the (a) DSS, (b) the LDA, (c)
the Mean rule, and (d) the Product rule.
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(a) (b)

(c) (d)

Figure 5.7: In these figures the EERδ attained by each pair of experts
is plotted against the EER computed with the (a) DSS, (b) the LDA, (c)
the Mean rule, and (d) the Product rule.
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(a) (b)

(c) (d)

Figure 5.8: In these figures the D′
δ attained by each pair of experts is

plotted against the AUC computed with the (a) DSS, (b) the LDA, (c)
the Mean rule, and (d) the Product rule.
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(a) (b)

(c) (d)

Figure 5.9: In these figures the D′
δ attained by each pair of experts is

plotted against the EER computed with the (a) DSS, (b) the LDA, (c)
the Mean rule, and (d) the Product rule.
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(a) (b)

(c) (d)

Figure 5.10: In these figures the SDδ attained by each pair of experts
is plotted against the AUC computed with the (a) DSS, (b) the LDA, (c)
the Mean rule, and (d) the Product rule.
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(a) (b)

(c) (d)

Figure 5.11: In these figures the SDδ attained by each pair of experts
is plotted against the EER computed with the (a) DSS, (b) the LDA, (c)
the Mean rule, and (d) the Product rule.
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5.4 Experimental results on FVC2004

In this section the methods and performance measures described in this

thesis are applied to the FVC2004 score dataset. The setup of these experi-

ments is the same of the experiments described in Section 5.3, but it is run

both on the Open and Light category.

These experiments are made comparing the following methods: the aver-

age values computed on the two individual experts combined, the ideal score

selector, the optimal linear combiner, the Mean rule,the Product rule, the

LDA, the DSS based on the RME, the DSS based on four classifier (k-NN,

Linear Discriminant, Quadratic Discriminant, and Parzen windows), and the

use of posterior probabilities of the four classifier (k-NN, Linear Discrimi-

nant, Quadratic Discriminant, and Parzen windows). The performance are

assessed using the following measures: the AUC, and the EER.

In these experiments the pairs of experts were sorted using the measures

of effectiveness described in Section 4.1. For each measure the first ten pairs

with the highest value of each measure are considered, and the last 10 pairs

with the smallest value of each measure are taken into account.

Tables (5.2 - 5.5) show the results of the experiments run on the Open

category. In Table (5.2) the pairs of experts are sorted according to their

AUCδ values. When the value of the AUCδ is high the performance of all

the combined methods (except the ideal score selector and the optimal linear

combiner) is closer for both the performance measures taken into account.

With respect of the average values computed from the individual experts

an evident improvement is achieved when the EER is considered, while the

improvements in terms of AUC (when present) are small. When the value

of the AUCδ is small the performance of all the combined methods present

improvements with respect to the “average expert”. In this case all the DSS

methods, and the combination methods based on the posterior probabilities

(except those based on the LDC) have better performance than the other

methods in terms of AUC and EER. In terms of AUC, the DSS based on

k-NN and QDC exhibit closer performance to those of the optimal linear
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large AUCδ AUC EER

Average Expert 0.9938 (±0.0040) 0.0208 (±0.0094)
Ideal Selector 0.9996 (±0.0011) 0.0035 (±0.0041)

Optimal Linear Combiner 0.9981 (±0.0024) 0.0529 (±0.0707)
Mean 0.9977 (±0.0026) 0.0132 (±0.0085)

Product 0.9933 (±0.0057) 0.0169 (±0.0094)
LDA 0.9961 (±0.0056) 0.0164 (±0.0093)

DSS RME 0.9933 (±0.0051) 0.0165 (±0.0098)
DSS k-NN 0.9930 (±0.0055) 0.0168 (±0.0101)
DSS LDC 0.9931 (±0.0056) 0.0177 (±0.0102)
DSS QDC 0.9942 (±0.0051) 0.0156 (±0.0093)

DSS Parzen 0.9932 (±0.0054) 0.0164 (±0.0096)
k-NN Ppost 0.9933 (±0.0057) 0.0127 (±0.0069)
LDC Ppost 0.9929 (±0.0127) 0.0174 (±0.0115)
QDC Ppost 0.9960 (±0.0046) 0.0134 (±0.0072)

Parzen Ppost 0.9943 (±0.0072) 0.0150 (±0.0090)

small AUCδ AUC EER

Average Expert 0.7108 (±0.0395) 0.3290 (±0.0483)
Ideal Selector 0.9823 (±0.0210) 0.0419 (±0.0483)

Optimal Linear Combiner 0.8173 (±0.0700) 0.3338 (±0.3253)
Mean 0.8084 (±0.0783) 0.2606 (±0.0847)

Product 0.7805 (±0.0862) 0.2597 (±0.1052)
LDA 0.8038 (±0.0696) 0.2583 (±0.1329)

DSS RME 0.7756 (±0.0842) 0.2515 (±0.0962)
DSS k-NN 0.8151 (±0.0759) 0.2391 (±0.0849)
DSS LDC 0.7794 (±0.0881) 0.2604 (±0.1055)
DSS QDC 0.8057 (±0.0720) 0.2371 (±0.0905)

DSS Parzen 0.8155 (±0.0776) 0.2310 (±0.0962)
k-NN Ppost 0.8548 (±0.0647) 0.2222 (±0.0660)
LDC Ppost 0.8040 (±0.0697) 0.2617 (±0.0759)
QDC Ppost 0.8487 (±0.0615) 0.2318 (±0.0851)

Parzen Ppost 0.8624 (±0.0661) 0.2103 (±0.0686)

Table 5.2: Open category, AUCδ sorted. Mean and standard deviation
among the experiments using for each experiment the 10 pairs of experts
with the highest AUCδ, and the 10 pairs of experts with the lowest AUCδ.



5.4 Experimental results on FVC2004 62

large EERδ AUC EER

Average Expert 0.6960 (±0.0360) 0.3502 (±0.0357)
Ideal Selector 0.9749 (±0.0217) 0.0605 (±0.0500)

Optimal Linear Combiner 0.7822 (±0.0444) 0.4415 (±0.3101)
Mean 0.7707 (±0.0490) 0.2996 (±0.0583)

Product 0.7367 (±0.0521) 0.3168 (±0.0529)
LDA 0.7709 (±0.0470) 0.3223 (±0.0971)

DSS RME 0.7311 (±0.0474) 0.3035 (±0.0457)
DSS k-NN 0.7791 (±0.0658) 0.2799 (±0.0642)
DSS LDC 0.7352 (±0.0579) 0.3156 (±0.0564)
DSS QDC 0.7674 (±0.0480) 0.2884 (±0.0475)

DSS Parzen 0.7786 (±0.0637) 0.2821 (±0.0631)
k-NN Ppost 0.8312 (±0.0662) 0.2420 (±0.0651)
LDC Ppost 0.7710 (±0.0469) 0.2934 (±0.0536)
QDC Ppost 0.8234 (±0.0578) 0.2531 (±0.0531)

Parzen Ppost 0.8364 (±0.0651) 0.2394 (±0.0631)

small EERδ AUC EER

Average Expert 0.9914 (±0.0052) 0.0219 (±0.0111)
Ideal Selector 0.9991 (±0.0017) 0.0038 (±0.0049)

Optimal Linear Combiner 0.9968 (±0.0038) 0.0498 (±0.0453)
Mean 0.9966 (±0.0039) 0.0140 (±0.0094)

Product 0.9896 (±0.0068) 0.0202 (±0.0120)
LDA 0.9935 (±0.0074) 0.0178 (±0.0112)

DSS RME 0.9902 (±0.0060) 0.0187 (±0.0115)
DSS k-NN 0.9909 (±0.0061) 0.0175 (±0.0108)
DSS LDC 0.9895 (±0.0068) 0.0208 (±0.0129)
DSS QDC 0.9914 (±0.0062) 0.0176 (±0.0120)

DSS Parzen 0.9910 (±0.0060) 0.0175 (±0.0108)
k-NN Ppost 0.9913 (±0.0070) 0.0129 (±0.0072)
LDC Ppost 0.9880 (±0.0165) 0.0234 (±0.0151)
QDC Ppost 0.9940 (±0.0059) 0.0145 (±0.0090)

Parzen Ppost 0.9917 (±0.0090) 0.0157 (±0.0097)

Table 5.3: Open category, EERδ sorted. Mean and standard deviation
among the experiments using for each experiment the 10 pairs of experts
with the highest EERδ, and the 10 pairs of experts with the lowest EERδ.
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large SDδ AUC EER

Average Expert 0.7156 (±0.0460) 0.3169 (±0.0581)
Ideal Selector 0.9899 (±0.0153) 0.0245 (±0.0387)

Optimal Linear Combiner 0.8401 (±0.0791) 0.2684 (±0.3224)
Mean 0.8312 (±0.0857) 0.2403 (±0.0877)

Product 0.8018 (±0.0904) 0.2283 (±0.1129)
LDA 0.8294 (±0.0810) 0.2369 (±0.1433)

DSS RME 0.7990 (±0.0912) 0.2227 (±0.1066)
DSS k-NN 0.8228 (±0.0764) 0.2245 (±0.0900)
DSS LDC 0.8051 (±0.0906) 0.2248 (±0.1128)
DSS QDC 0.8244 (±0.0777) 0.2076 (±0.1002)

DSS Parzen 0.8253 (±0.0800) 0.2066 (±0.1036)
k-NN Ppost 0.8609 (±0.0556) 0.2215 (±0.0571)
LDC Ppost 0.8298 (±0.0812) 0.2370 (±0.0871)
QDC Ppost 0.8539 (±0.0599) 0.2325 (±0.1021)

Parzen Ppost 0.8708 (±0.0608) 0.2031 (±0.0624)

small SDδ AUC EER

Average Expert 0.9939 (±0.0040) 0.0207 (±0.0095)
Ideal Selector 0.9998 (±0.0005) 0.0027 (±0.0027)

Optimal Linear Combiner 0.9985 (±0.0016) 0.0752 (±0.1647)
Mean 0.9982 (±0.0019) 0.0121 (±0.0072)

Product 0.9943 (±0.0049) 0.0159 (±0.0081)
LDA 0.9965 (±0.0055) 0.0165 (±0.0091)

DSS RME 0.9940 (±0.0043) 0.0153 (±0.0079)
DSS k-NN 0.9942 (±0.0045) 0.0149 (±0.0079)
DSS LDC 0.9943 (±0.0047) 0.0156 (±0.0086)
DSS QDC 0.9953 (±0.0040) 0.0138 (±0.0071)

DSS Parzen 0.9943 (±0.0046) 0.0147 (±0.0078)
k-NN Ppost 0.9932 (±0.0059) 0.0121 (±0.0063)
LDC Ppost 0.9933 (±0.0127) 0.0171 (±0.0111)
QDC Ppost 0.9964 (±0.0044) 0.0129 (±0.0069)

Parzen Ppost 0.9946 (±0.0072) 0.0142 (±0.0085)

Table 5.4: Open category, SDδ sorted. Mean and standard deviation
among the experiments using for each experiment the 10 pairs of experts
with the highest SDδ, and the 10 pairs of experts with the lowest SDδ.
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large D′
δ AUC EER

Average Expert 0.9942 (±0.0033) 0.0171 (±0.0053)
Ideal Selector 1.0000 (±0.0000) 0.0026 (±0.0013)

Optimal Linear Combiner 0.9993 (±0.0005) 0.0912 (±0.1967)
Mean 0.9990 (±0.0006) 0.0098 (±0.0042)

Product 0.9918 (±0.0070) 0.0176 (±0.0089)
LDA 0.9992 (±0.0005) 0.0094 (±0.0020)

DSS RME 0.9948 (±0.0032) 0.0109 (±0.0042)
DSS k-NN 0.9962 (±0.0022) 0.0097 (±0.0029)
DSS LDC 0.9942 (±0.0035) 0.0143 (±0.0052)
DSS QDC 0.9964 (±0.0022) 0.0097 (±0.0032)

DSS Parzen 0.9962 (±0.0023) 0.0097 (±0.0031)
k-NN Ppost 0.9961 (±0.0017) 0.0092 (±0.0032)
LDC Ppost 0.9974 (±0.0017) 0.0096 (±0.0026)
QDC Ppost 0.9992 (±0.0005) 0.0082 (±0.0024)

Parzen Ppost 0.9988 (±0.0007) 0.0080 (±0.0025)

small D′
δ AUC EER

Average Expert 0.7049 (±0.0452) 0.3407 (±0.0471)
Ideal Selector 0.9820 (±0.0204) 0.0426 (±0.0506)

Optimal Linear Combiner 0.8062 (±0.0832) 0.3959 (±0.3387)
Mean 0.7944 (±0.0873) 0.2762 (±0.0945)

Product 0.7787 (±0.1010) 0.2775 (±0.1029)
LDA 0.7933 (±0.0824) 0.3068 (±0.1228)

DSS RME 0.7524 (±0.0900) 0.2775 (±0.0931)
DSS k-NN 0.7911 (±0.0919) 0.2634 (±0.0943)
DSS LDC 0.7690 (±0.1059) 0.2810 (±0.1045)
DSS QDC 0.7922 (±0.0856) 0.2605 (±0.0909)

DSS Parzen 0.7920 (±0.0915) 0.2646 (±0.0953)
k-NN Ppost 0.8314 (±0.0719) 0.2391 (±0.0785)
LDC Ppost 0.7935 (±0.0826) 0.2744 (±0.0850)
QDC Ppost 0.8276 (±0.0709) 0.2425 (±0.0788)

Parzen Ppost 0.8369 (±0.0722) 0.2337 (±0.0795)

Table 5.5: Open category, D′
δ sorted. Mean and standard deviation

among the experiments using for each experiment the 10 pairs of experts
with the highest D′

δ, and the 10 pairs of experts with the lowest D′
δ.
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combiner, while the methods based on the posterior probabilities (i.e., k-NN,

QDC, and Parzen) outperforms optimal linear combiner. By considering the

two ideal methods the ideal score selector always outperforms the optimal

linear combiner. Moreover, if the EER is considered, the optimal linear

combiner is outperformed by all the methods. Remember that the optimal

linear combiner is built to optimize the AUC, thus can happen, as in this

case, that its performance in terms of EER can be lower than those achieved

using other linear combination methods (e.g., Mean rule and LDA).

Table (5.3) shows the pairs of experts sorted using their EERδ values.

When the value of the EERδ is high (low performance) the performance of

all the combined methods present improvements with respect to the “average

expert”. In the combination methods based on the posterior probabilities (k-

NN, QDC, and Parzen) have better performance than the other methods in

terms of AUC and EER. While the DSS based on k-NN and Parzen exhibits

better performance than the other rules except those cited above. When the

value of the EERδ is small (high performance) the performance of all the

combined methods exhibits a similar behaviour when in table (5.2) AUCδ

is high. With respect of the average values computed from the individual

experts a global improvement is achieved when the EER is considered, while

the improvements in terms of AUC (when present) are small. Also in this

case, by considering the two ideal methods the ideal score selector always

outperforms the optimal linear combiner.

In Table (5.4) the pairs of experts sorted using their SDδ values are

reported. When the value of the SDδ is high the performance of all the com-

bined methods present improvements with respect to the “average expert”.

In the combination methods based on the posterior probabilities (based on

k-NN, QDC, and Parzen) have better performance than the other methods

in terms of AUC and also better than the optimal linear combiner. While

in terms of EER both the methods based on the Parzen (DSS, and Ppost)

and the DSS based on QDC exhibit the better performance with respect to

the other combination rules. Moreover all the DSS methods have a better
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(lower) EER than the other methods used for comparison (i.e., the Mean

rule, the Product rule, and the LDA) and than two methods based on the

posterior probabilities (i.e., LDC, and QDC). When the value of the SDδ

is small the performance of all the combined methods exhibits closer per-

formance in terms of AUC and EER. The vast majority of all the combined

methods present improvements in terms of AUC with respect to the “average

expert”, while it is outperformed by all the combination methods in terms

of EER. If these results are compared with those exposed in Table (5.2) for

high values of AUCδ it is clear that the score dissimilarity allows to achieve

better results in terms of AUC than the use of the AUC itself. This result is

due to the nature of the score dissimilarity index, that find the complemen-

tary of the experts in terms of AUC. In this case some of the DSS methods

exhibits better performance than the correspondant methods with posterior

probabilities (e.g., DSS LDC and Ppost LDC). Again, when considering the

two ideal methods the ideal score selector always outperforms the optimal

linear combiner.

Table (5.5) shows the pairs of experts sorted using their D′
δ values. When

the value of the D′
δ is high the performance of all the combined methods, but

the Product rule, present improvements in terms of AUC with respect to the

“average expert”. If the results obtained for an high value of the D′
δ are

compred with the results exposed in Tables (5.2 - 5.4) for large AUCδ, small

EERδ, and small SDδ it is easy to see that the D′
δ allows to choose the best

experts to be combined, and thus the combination methods achieve better

performance (e.g., this is the only case than the ideal score selector achieves

a perfect AUC as mean results among all the experiments run). Moreover

the DSS methods, but that based on LDC, and the methods that use the

posterior probabilities allow to obtain better results than the other methods

in terms of EER. When the value of the D′
δ is small the performance of all

the combined methods present improvements with respect to the “average

expert”. In this case the DSS methods (except that based on the LDC)

have closer performance in terms of AUC to the Mean rule and the LDA,
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while in terms of EER the DSS are better than the Mean rule and the LDA.

While the methods based on the posterior probabilities (i.e., k-NN, QDC, and

Parzen) outperforms the other methods and the optimal linear combiner in

terms of AUC. By considering the two ideal methods the ideal score selector

always outperforms the optimal linear combiner. In terms of EER, the DSS

methods and those that uses the posterior probabilities (except those based

on the LDC) outperforms the other methods.

In Tables (5.6 - 5.9) the results of the experiments run on the Light

category are presented. Table (5.6) shows the results on the pairs of experts

sorted according to their AUCδ values. When the value of the AUCδ is

high, the results exhibit a similar behaviour to those reported in Table (5.2)

(obviously some value of the AUC and the EER are worse than those, because

in the Light category the experts exhibits lower performance than in the

Open category). In this case the posterior probabilities based on the QDC

outperforms the other methods. All the combined methods, but the DSS

based on LDC, exhibit an EER smaller than that of the “average expert”.

When the value of the AUCδ is small the performance of all the combined

methods present improvements with respect to the “average expert”. The

DSS based on the k-NN and Parzen exhibits better performance than the

optimal linear combiner. Moreover all the posterior probabilities methods,

but that based on LDC, outperform the optimal linear combiner. All the

previous methods exhibit better performance in terms of AUC and EER

than the other methods. In this case the best results in terms of AUC is

reached by the posterior probabilities based on Parzen, while the best result

in terms of EER are achieved by the ideal score selector.

In Table (5.7) the results on the pairs of experts sorted according to

their EERδ values are presented. When the value of the EERδ is high the

performance of all the combined methods present improvements with respect

to the “average expert”, but the Product rule and the DSS RME. Some of

the DSS (based on k-NN, QDC, and Parzen) and posterior probabilities

methods (based on k-NN, QDC, and Parzen) exhibits better performance
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large AUCδ AUC EER

Average Expert 0.9824 (±0.0048) 0.0449 (±0.0110)
Ideal Selector 0.9972 (±0.0022) 0.0139 (±0.0082)

Optimal Linear Combiner 0.9911 (±0.0049) 0.0722 (±0.0436)
Mean 0.9904 (±0.0048) 0.0331 (±0.0109)

Product 0.9821 (±0.0059) 0.0400 (±0.0112)
LDA 0.9883 (±0.0053) 0.0437 (±0.0140)

DSS RME 0.9831 (±0.0058) 0.0387 (±0.0121)
DSS k-NN 0.9840 (±0.0060) 0.0383 (±0.0127)
DSS LDC 0.9812 (±0.0059) 0.0450 (±0.0127)
DSS QDC 0.9865 (±0.0057) 0.0336 (±0.0127)

DSS Parzen 0.9844 (±0.0057) 0.0379 (±0.0125)
k-NN Ppost 0.9797 (±0.0075) 0.0313 (±0.0105)
LDC Ppost 0.9883 (±0.0053) 0.0370 (±0.0105)
QDC Ppost 0.9909 (±0.0049) 0.0299 (±0.0100)

Parzen Ppost 0.9883 (±0.0065) 0.0328 (±0.0104)

small AUCδ AUC EER

Average Expert 0.7106 (±0.0715) 0.3307 (±0.0694)
Ideal Selector 0.9299 (±0.0904) 0.0765 (±0.0904)

Optimal Linear Combiner 0.8666 (±0.1456) 0.3437 (±0.2874)
Mean 0.8558 (±0.1415) 0.1945 (±0.1538)

Product 0.5752 (±0.0634) 0.4550 (±0.0710)
LDA 0.8642 (±0.1476) 0.1718 (±0.1495)

DSS RME 0.6489 (±0.0962) 0.3737 (±0.0910)
DSS k-NN 0.8680 (±0.1001) 0.1472 (±0.0970)
DSS LDC 0.8330 (±0.0874) 0.1830 (±0.0860)
DSS QDC 0.8504 (±0.0930) 0.1660 (±0.0978)

DSS Parzen 0.8683 (±0.0868) 0.1460 (±0.0842)
k-NN Ppost 0.9109 (±0.0721) 0.1335 (±0.0889)
LDC Ppost 0.8650 (±0.1458) 0.1817 (±0.1575)
QDC Ppost 0.9244 (±0.0664) 0.1385 (±0.1032)

Parzen Ppost 0.9359 (±0.0477) 0.1174 (±0.0654)

Table 5.6: Light category, AUCδ sorted. Mean and standard deviation
among the experiments using for each experiment the 10 pairs of experts
with the highest AUCδ, and the 10 pairs of experts with the lowest AUCδ.
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large EERδ AUC EER

Average Expert 0.7031 (±0.0778) 0.3442 (±0.0699)
Ideal Selector 0.9088 (±0.0924) 0.1032 (±0.0941)

Optimal Linear Combiner 0.8195 (±0.1381) 0.3872 (±0.2281)
Mean 0.8113 (±0.1323) 0.2456 (±0.1351)

Product 0.6034 (±0.0622) 0.4405 (±0.0716)
LDA 0.8154 (±0.1424) 0.2383 (±0.1389)

DSS RME 0.6573 (±0.0723) 0.3798 (±0.0720)
DSS k-NN 0.8289 (±0.0912) 0.1953 (±0.0869)
DSS LDC 0.8059 (±0.0934) 0.2187 (±0.0972)
DSS QDC 0.8220 (±0.0823) 0.2033 (±0.0858)

DSS Parzen 0.8353 (±0.0818) 0.1885 (±0.0790)
k-NN Ppost 0.8951 (±0.0669) 0.1693 (±0.0815)
LDC Ppost 0.8162 (±0.1409) 0.2391 (±0.1453)
QDC Ppost 0.9042 (±0.0631) 0.1711 (±0.0963)

Parzen Ppost 0.9215 (±0.0431) 0.1459 (±0.0593)

small EERδ AUC EER

Average Expert 0.9833 (±0.0063) 0.0409 (±0.0131)
Ideal Selector 0.9968 (±0.0025) 0.0144 (±0.0077)

Optimal Linear Combiner 0.9911 (±0.0052) 0.0702 (±0.0474)
Mean 0.9905 (±0.0052) 0.0307 (±0.0113)

Product 0.9818 (±0.0079) 0.0382 (±0.0146)
LDA 0.9877 (±0.0059) 0.0398 (±0.0135)

DSS RME 0.9831 (±0.0071) 0.0365 (±0.0139)
DSS k-NN 0.9841 (±0.0070) 0.0358 (±0.0134)
DSS LDC 0.9814 (±0.0076) 0.0418 (±0.0145)
DSS QDC 0.9867 (±0.0064) 0.0309 (±0.0129)

DSS Parzen 0.9845 (±0.0069) 0.0353 (±0.0136)
k-NN Ppost 0.9788 (±0.0098) 0.0288 (±0.0112)
LDC Ppost 0.9877 (±0.0059) 0.0355 (±0.0114)
QDC Ppost 0.9904 (±0.0061) 0.0288 (±0.0114)

Parzen Ppost 0.9882 (±0.0073) 0.0311 (±0.0120)

Table 5.7: Light category, EERδ sorted. Mean and standard deviation
among the experiments using for each experiment the 10 pairs of experts
with the highest EERδ, and the 10 pairs of experts with the lowest EERδ.
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large SDδ AUC EER

Average Expert 0.7167 (±0.0628) 0.3049 (±0.0718)
Ideal Selector 0.9540 (±0.0815) 0.0467 (±0.0813)

Optimal Linear Combiner 0.9171 (±0.1252) 0.3106 (±0.3261)
Mean 0.9169 (±0.1252) 0.1253 (±0.1435)

Product 0.5173 (±0.0056) 0.4827 (±0.0056)
LDA 0.9135 (±0.1283) 0.1106 (±0.1304)

DSS RME 0.5718 (±0.0290) 0.4283 (±0.0290)
DSS k-NN 0.9059 (±0.0827) 0.1019 (±0.0809)
DSS LDC 0.8585 (±0.0746) 0.1445 (±0.0727)
DSS QDC 0.8942 (±0.0926) 0.1201 (±0.0963)

DSS Parzen 0.9018 (±0.0744) 0.1029 (±0.0732)
k-NN Ppost 0.9254 (±0.0573) 0.1074 (±0.0694)
LDC Ppost 0.9154 (±0.1261) 0.1273 (±0.1442)
QDC Ppost 0.9391 (±0.0580) 0.1084 (±0.0916)

Parzen Ppost 0.9428 (±0.0423) 0.0972 (±0.0527)

small SDδ AUC EER

Average Expert 0.9828 (±0.0058) 0.0433 (±0.0128)
Ideal Selector 0.9968 (±0.0028) 0.0147 (±0.0096)

Optimal Linear Combiner 0.9907 (±0.0059) 0.0637 (±0.0371)
Mean 0.9900 (±0.0057) 0.0323 (±0.0121)

Product 0.9830 (±0.0063) 0.0377 (±0.0120)
LDA 0.9878 (±0.0059) 0.0406 (±0.0133)

DSS RME 0.9836 (±0.0066) 0.0367 (±0.0131)
DSS k-NN 0.9846 (±0.0063) 0.0365 (±0.0130)
DSS LDC 0.9820 (±0.0062) 0.0429 (±0.0134)
DSS QDC 0.9867 (±0.0063) 0.0321 (±0.0131)

DSS Parzen 0.9847 (±0.0063) 0.0363 (±0.0133)
k-NN Ppost 0.9789 (±0.0085) 0.0322 (±0.0139)
LDC Ppost 0.9878 (±0.0059) 0.0364 (±0.0121)
QDC Ppost 0.9907 (±0.0056) 0.0297 (±0.0117)

Parzen Ppost 0.9876 (±0.0068) 0.0320 (±0.0118)

Table 5.8: Light category, SDδ sorted. Mean and standard deviation
among the experiments using for each experiment the 10 pairs of experts
with the highest SDδ, and the 10 pairs of experts with the lowest SDδ.
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large D′
δ AUC EER

Average Expert 0.9906 (±0.0014) 0.0274 (±0.0044)
Ideal Selector 0.9985 (±0.0012) 0.0066 (±0.0025)

Optimal Linear Combiner 0.9962 (±0.0015) 0.0258 (±0.0132)
Mean 0.9960 (±0.0016) 0.0152 (±0.0039)

Product 0.9904 (±0.0022) 0.0205 (±0.0033)
LDA 0.9951 (±0.0024) 0.0215 (±0.0071)

DSS RME 0.9919 (±0.0021) 0.0173 (±0.0033)
DSS k-NN 0.9929 (±0.0020) 0.0169 (±0.0038)
DSS LDC 0.9908 (±0.0018) 0.0227 (±0.0041)
DSS QDC 0.9941 (±0.0020) 0.0147 (±0.0037)

DSS Parzen 0.9931 (±0.0020) 0.0165 (±0.0040)
k-NN Ppost 0.9912 (±0.0026) 0.0146 (±0.0067)
LDC Ppost 0.9951 (±0.0024) 0.0182 (±0.0065)
QDC Ppost 0.9958 (±0.0016) 0.0143 (±0.0035)

Parzen Ppost 0.9952 (±0.0022) 0.0151 (±0.0035)

small D′
δ AUC EER

Average Expert 0.6913 (±0.0664) 0.3304 (±0.0757)
Ideal Selector 0.9083 (±0.0912) 0.0967 (±0.0959)

Optimal Linear Combiner 0.8419 (±0.1525) 0.2798 (±0.1927)
Mean 0.8412 (±0.1527) 0.1968 (±0.1679)

Product 0.5436 (±0.0439) 0.4632 (±0.0392)
LDA 0.8352 (±0.1552) 0.1847 (±0.1701)

DSS RME 0.5995 (±0.0396) 0.4063 (±0.0329)
DSS k-NN 0.8539 (±0.1080) 0.1552 (±0.1116)
DSS LDC 0.7884 (±0.0814) 0.2188 (±0.0920)
DSS QDC 0.8591 (±0.1084) 0.1571 (±0.1148)

DSS Parzen 0.8529 (±0.0937) 0.1552 (±0.0991)
k-NN Ppost 0.9000 (±0.0691) 0.1380 (±0.0954)
LDC Ppost 0.8376 (±0.1547) 0.2016 (±0.1704)
QDC Ppost 0.9124 (±0.0700) 0.1441 (±0.1119)

Parzen Ppost 0.9240 (±0.0486) 0.1249 (±0.0719)

Table 5.9: Light category, D′
δ sorted. Mean and standard deviation

among the experiments using for each experiment the 10 pairs of experts
with the highest D′

δ, and the 10 pairs of experts with the lowest D′
δ.
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than the optimal linear combiner, and consequently better than the other

remaining methods. Also in this case the posterior probabilities method

based on Parzen exhibits an AUC larger than the ideal score selector, but the

ideal score selector is the best method if the EER is considered. If the small

values of the EERδ are taken into account the best combination methods in

terms of AUC are the Mean rule and the posterior probabilities based on the

QDC and the Mean rule. While in terms of EER all the combination rules

outperform the “average expert”, for this measure the best performance are

achieved by the posterior probabilities based on the k-NN and the QDC.

In Table (5.8) the pairs of experts sorted using their SDδ values are

reported. When the value of the SDδ is high the performance of all the com-

bined methods present improvements with respect to the “average expert”.

In these results the best combination method is that one that uses the poste-

rior probabilities based on the Parzen. Considering the remaining methods,

the DSS based on the k-NN allows to obtain the highest performance in terms

of EER. When the value of the SDδ is small the vast majority of all the com-

bined methods present improvements in terms of AUC with respect to the

“average expert”, while it is outperformed by all the combination methods

in terms of EER. In this results the best method is the one that uses the

posterior probabilities based on the QDC.

Table (5.9) shows the pairs of experts sorted using their D′
δ values. When

the value of the D′
δ is high the performance of all the combined methods, but

the Product rule, present improvements in terms of AUC with respect to the

“average expert”. If the results obtained for an high value of the D′
δ are

compred with the results exposed in Tables (5.6 - 5.8) for large AUCδ, small

EERδ, and small SDδ it is easy to see that the D′
δ allows to choose the best

experts to be combined, and thus the combination methods achieve better

performance, as it happens when the Open category is taken into account.

in these results the DSS methods, but that based on LDC, the methods that

use the posterior probabilities, and the Mean rule have closer performance

in terms of EER. When the value of the D′
δ is small the performance of all
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the combined methods present improvements with respect to the “average

expert”. In this case the DSS methods and the methods based on the pos-

terior probabilities (except those based on the LDC) outperform the other

combination rules and the optimal linear combiner.

Finally, reported results show that the ideal score selector always outper-

forms the optimal linear combiner, thus confirm that the selection strategy is

an alternative to linear combination strategies. In some cases in the Light cat-

egory, the methods based on the posterior probabilities outperform the ideal

score selector, this fact can be explained as follows. The ideal score selector

depends from the “quality” of the scores produced by the individual experts,

and in the case of the Light category this “quality” is very low in some cases6.

Thus, the influence of the score distribution is evident from Table (5.7) where

very high values of EER implies that the two distributions are highly over-

lapped, and the ideal score selector works in a “one-dimensional” space (i.e.,

the score space). Instead the methods based on the posterior probabilities

produce scores that can be different from those produced by the individual

experts relying on a “N-dimensional” space (where N is the number of the

experts combined). Thus, exploiting extra information in some cases the

performance of this “fusion” methods can outperform the ideal “selection”

methods that relies only on scores. It is also clear that this behaviour also

depends by the sorting measure used, infact when the D′
δ is used the ideal

score selector outperforms all the other methods as the “best” experts are

chosen according to the results exposed in Section 5.3. Taking into account

the DSS methods when the experts with high performance are combined

(i.e., large AUCδ, small EERδ, small SDδ, and large D′
δ) the best method is

that based on the QDC. While in the case of low performance the best DSS

methods are those based on the QDC and the Parzen windows. While when

the methods that use the posterior probabilities are used the best methods

are those based on the QDC and the Parzen windows. While these methods

take advantages of the posterior probabilities obtained as “fused” score, the

6Cases of low “quality”: high number of cases where the negative scores are higher
than the positive scores, score distributions highly overlapped, etc.
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DSS methods show their best performance especially when the low “quality”

scores are used, and in some cases they also outperforms the optimal linear

combiner. From these results it is also clear that their performance varies

also according to the performance of the classifier used.

5.5 Experimental results on NIST BSSR1

In this section the methods and performance measures described in this

thesis are applied to the NIST Biometric Scores Set Release 1.

These experiments are made comparing the following methods: the ideal

score selector, the linear combiner, the Mean rule, the Max rule, the Min rule,

the Product rule, the LDA, the DSS based on three classifier (k-NN, Linear

Discriminant, Quadratic Discriminant), and the use of posterior probabilities

of the three classifier (k-NN, Linear Discriminant, Quadratic Discriminant).

The performance are assessed using the following measures: the AUC,

the EER, the d’, the FMR 1%, the FNMR 1%, the FMR 0%, and the FNMR

0%.

In these experiments the experts have not been sorted in a particular way

because they are only four in number, so all the possible combinations have

been tested. Thus, Tables (5.10) and (5.14) presents the results obtained

combining two experts at a time. Tables (5.11) and (5.15) show the results

when three experts at a time are combined. Tables (5.12) and (5.16) presents

the results obtained combining all four the experts. Tables (5.13) and (5.17)

contain the results obtained taking into account all the possible combinations

(i.e., all the combination of two experts, all the combination of three experts,

and all the combination of four) and give a summary snapshot of the global

experiment. The experiments were run using the subdivisions described at

the beginning of this chapter. The results are expressed by mean of the

average value and the standard deviation among the experiments run.

Tables (5.10 - 5.12) show the results in terms of AUC, EER, and d’ when

increasing number of experts is combined. The results exposed in the tables
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AUC EER d’

Ideal Selector 0.9996(±0.0010) 0.0026(±0.0061) 13.9975(±10.0984)
Optimal Linear Combiner 0.9968(±0.0035) 0.0162(±0.0121) 2.8193(±0.3729)

Mean 0.9951(±0.0043) 0.0217(±0.0151) 3.1184(±0.5626)
Max 0.9887(±0.0029) 0.0445(±0.0092) 2.9053(±0.5193)
Min 0.9732(±0.0098) 0.0655(±0.0159) 2.2459(±0.4712)

Product 0.9856(±0.0089) 0.0469(±0.0166) 2.1821(±0.6278)
LDA 0.9887(±0.0073) 0.0431(±0.0166) 2.2538(±0.3116)

DSS k-NN 0.9859(±0.0068) 0.0377(±0.0153) 4.6801(±1.4672)
DSS LDC 0.9743(±0.0103) 0.0634(±0.0162) 2.7359(±0.5278)
DSS QDC 0.9833(±0.0112) 0.0453(±0.0228) 5.3653(±2.9463)
k-NN Ppost 0.9699(±0.0226) 0.0340(±0.0238) 5.4099(±1.7641)
LDC Ppost 0.9891(±0.0076) 0.0429(±0.0164) 2.4899(±0.3568)
QDC Ppost 0.9953(±0.0047) 0.0214(±0.0161) 6.2254(±2.6977)

Table 5.10: Mean and standard deviation of AUC, EER and d’ for the
combination methods in NIST BSSR1 dataset using all possible score com-
binations using two experts at a time.

AUC EER d’

Ideal Selector 1.0000(±0.0000) 0.0000(±0.0000) 25.4451(±8.7120)
Optimal Linear Combiner 0.9997(±0.0004) 0.0050(±0.0031) 3.1231(±0.2321)

Mean 0.9982(±0.0013) 0.0096(±0.0059) 3.6272(±0.4850)
Max 0.9892(±0.0022) 0.0450(±0.0048) 3.0608(±0.3803)
Min 0.9708(±0.0085) 0.0694(±0.0148) 2.0068(±0.1636)

Product 0.9919(±0.0036) 0.0309(±0.0102) 1.7205(±0.3705)
LDA 0.9945(±0.0040) 0.0296(±0.0123) 2.3802(±0.2036)

DSS k-NN 0.9917(±0.0050) 0.0236(±0.0072) 6.4094(±0.9884)
DSS LDC 0.9728(±0.0088) 0.0647(±0.0148) 2.7256(±0.2699)
DSS QDC 0.9919(±0.0086) 0.0243(±0.0182) 8.7278(±3.0557)
k-NN Ppost 0.9928(±0.0075) 0.0101(±0.0051) 7.4304(±1.0463)
LDC Ppost 0.9947(±0.0038) 0.0300(±0.0116) 2.5632(±0.2712)
QDC Ppost 0.9985(±0.0005) 0.0094(±0.0050) 9.3220(±2.6571)

Table 5.11: Mean and standard deviation of AUC, EER and d’ for the
combination methods in NIST BSSR1 dataset using all possible score com-
binations of three experts.

point out that when an increasing number of expert is combined generally

there is an improvement of the performance if compared to the performance

of the single experts exposed in Table (5.1). From the experiments it is also

clear that the classifier based methodologies and the selection methodologies

allows to increase the d’ more than the other performance measures taken
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AUC EER d’

Ideal Selector 1.0000(±0.0000) 0.0000(±0.0000) 31.1087(±0.6621)
Optimal Linear Combiner 1.0000(±0.0000) 0.0017(±0.0010) 3.3325(±0.3414)

Mean 0.9996(±0.0003) 0.0045(±0.0013) 3.9444(±0.0599)
Max 0.9898(±0.0026) 0.0427(±0.0035) 3.0807(±0.1952)
Min 0.9700(±0.0054) 0.0742(±0.0080) 1.9082(±0.0421)

Product 0.9934(±0.0027) 0.0218(±0.0062) 1.3643(±0.0137)
LDA 0.9977(±0.0019) 0.0200(±0.0068) 2.5846(±0.0686)

DSS k-NN 0.9955(±0.0023) 0.0199(±0.0067) 7.4568(±1.1288)
DSS LDC 0.9744(±0.0055) 0.0632(±0.0098) 2.8457(±0.2316)
DSS QDC 0.9966(±0.0050) 0.0138(±0.0124) 11.1721(±3.1888)
k-NN Ppost 0.9973(±0.0051) 0.0058(±0.0033) 8.6911(±1.1626)
LDC Ppost 0.9973(±0.0017) 0.0206(±0.0069) 2.7273(±0.2211)
QDC Ppost 0.9986(±0.0001) 0.0070(±0.0013) 11.2798(±2.7403)

Table 5.12: Mean and standard deviation of AUC, EER and d’ for the
combination methods in NIST BSSR1 dataset using all possible score com-
binations from all four experts.

AUC EER d’

Ideal Selector 0.9998(±0.0007) 0.0014(±0.0047) 19.7158(±11.1171)
Optimal Linear Combiner 0.9981(±0.0030) 0.0108(±0.0109) 2.9764(±0.3673)

Mean 0.9966(±0.0037) 0.0158(±0.0134) 3.3785(±0.5849)
Max 0.9890(±0.0026) 0.0445(±0.0074) 2.9778(±0.4515)
Min 0.9721(±0.0089) 0.0677(±0.0150) 2.1283(±0.3820)

Product 0.9886(±0.0076) 0.0388(±0.0165) 1.9399(±0.5833)
LDA 0.9916(±0.0068) 0.0361(±0.0165) 2.3298(±0.2774)

DSS k-NN 0.9889(±0.0068) 0.0310(±0.0143) 5.5614(±1.6175)
DSS LDC 0.9738(±0.0093) 0.0639(±0.0150) 2.7421(±0.4234)
DSS QDC 0.9876(±0.0110) 0.0348(±0.0234) 7.1159(±3.5801)
k-NN Ppost 0.9807(±0.0210) 0.0227(±0.0217) 6.4429(±1.8893)
LDC Ppost 0.9919(±0.0068) 0.0362(±0.0160) 2.5382(±0.3194)
QDC Ppost 0.9967(±0.0038) 0.0157(±0.0137) 7.8109(±3.2018)

Table 5.13: Mean and standard deviation of AUC, EER and d’ for the
combination methods in NIST BSSR1 dataset using all possible score com-
binations.

into account.

In Tables (5.10) and (5.11) the best combination method (excluding the

ideal score selector and the optimal linear combiner) is the QDC using its

posterior probabilities as combined score, followed by the Mean rule. While

generally all the other methods exhibits closer performance in terms of AUC
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and EER. In Table (5.12) the best results in terms of AUC and EER are

achieved by the Mean rule followed by the QDC using its posterior prob-

abilities as “fused” score. Table (5.13) gives a global snapshot of all the

experiments in terms of AUC, EER, and d’. Thus among the “fixed”(i.e.,

Mean rule, Max rule, Min rule, Product rule) combination rules and the LDA

the best performance are achieved by the Mean rule followed by the LDA.

Among the DSS methodologies the global better performance in terms of

AUC and EER are obtained when a k-NN classifier is used (but the QDC

based is closer in performance), while in terms of d’ better performance are

achieved when a QDC classifier is used. Between the methods that use the

estimated posterior probabilities the best performance are achieved by those

estimated using a QDC classifier.

Tables (5.14 - 5.16) show the results in terms of FMR 1%, FNMR 1%,

FMR 0%, and FNMR 0% when increasing number of experts is combined7.

As for the results exposed in Tables (5.10 - 5.13), these results exposed in

the tables point out that when an increasing number of expert is combined

generally there is an improvement of the performance if compared to the

performance of the single experts exposed in Table (5.1). Also in this case

the best performance (except the ideal score selector and the optimal lin-

ear combiner) are achieved by the QDC using its posterior probabilities as

combined score, and the Mean rule.

In Table (5.14) the best combination method (excluding the ideal score

selector and the optimal linear combiner) in terms of FMR 1% is Mean rule,

followed by the QDC using its posterior probabilities as combined score.

Moreover the DSS based on k-NN and QDC, the k-NN with the posterior

probabilities exhibits similar behaviour, they are followed in performance

by the others. In the case of FMR 0% the DSS methods exhibits better

performance than the methods based on the posterior probabilities. Tables

(5.15 - 5.16) exhibit a similar behaviour than Table (5.14), in these tables

better performance are achieved by using the posterior probabilities using the

7For these performance measures, as for the EER, the smaller the value, the better the
performance
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QDC in terms of FMR 1% and FNMR 0%, instead the Mean rule have better

performance in term of FMR 0%. Table (5.17) gives a global snapshot of all

the experiments in terms of FMR 1%, FNMR 1%, FMR 0%, and FNMR 0%.

Thus among the “fixed”(i.e., Mean rule, Max rule, Min rule, Product rule)

combination rules and the LDA the best performance are achieved by the

Mean rule. Among the DSS methodologies the global better performance

in terms of FMR 1%, FNMR 1% and FMR 0% are obtained when a k-

NN classifier is used, while in terms of FNMR 0% better performance are

achieved when a QDC classifier is used. Between the methods that use the

estimated posterior probabilities the best performance are achieved by those

estimated using a QDC classifier if the FMR 1%, FNMR 1% and FNMR 0%

are considered, while the best performance in terms of FMR 0% are achieved

when a LDC classifier is used. Moreover in Tables (5.16 - 5.17) in some cases

the Mean rule exhibits better performance than the linear combiner, this is

due to the fact that the linear combiner is built to optimize the AUC, as

explained in the previous section.

From all the Tables (5.10 - 5.17) it is clear that the ideal score selector

always outperforms the optimal linear combiner. For the other combination

methods, globally it can be said that method based on the posterior prob-

abilities using the QDC is the best combination method of those based on

the use of classifiers, and is mostly comparable with the Mean rule that for

this dataset is a good combination rule. Moreover generally the DSS based

on k-NN and QDC exhibits better performance than the Max rule and the

Min rule, this aspect is important because the ideal selection can be viewed

as a function that “switches” between these two combination rules.
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Chapter 6

Conclusions and future work

Binary classifiers (or binary experts) is one of the interesting problems of

the Pattern Recognition field. In particular, this thesis focuses on the cases

when a similarity score is assigned by binary experts to a pattern. Examples

of this situation are biometric authentication, spam filtering, medical test etc.

In the experimental phase, this thesis focus its attention on the biometric

authentication problem.

Ensemble of binary experts are used to improve the performance of a sys-

tem. Infact the combination of different experts is generally used to exploit

different information provided by the individual experts. Two main combi-

nation approaches exist: “fusion” and “selection”. Fusion approaches aim at

producing a new output as a function of the outputs (crisp or continuous)

of the experts. On the other hand, selection approaches aim at selecting,

for each input pattern, the most suited expert for that pattern. Usually for

ensemble of experts that output similarity scores, “fusion” approach is used.

This thesis introduce the selection approach for this kind of experts. In

particular the problem of selecting scores is outlined. Thus, an ideal frame-

work of the selection of scores is proposed by means of the ideal score selector

(Chapter 2). This ideal score selector selects the maximum score for the posi-

tive patterns, and the minimum score for the negative patterns. In particular,

the properties of this ideal selector are derived, showing that the ideal score
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selector always outperforms the optimal linear combiner developed to max-

imize the value of the Area Under the ROC Curve in a linear combination

of scores. These properties are also evident in the experimental phase. This

confirms that the selection strategy is an alternative to linear combination

strategies.

In order to implement the score selection, different Dynamic Score Selec-

tion methods are proposed. These methods estimate the state of nature of a

pattern, and select the scores accordingly. The state of nature is estimated

in two ways: one estimating the error of making the wrong selection (e.g.,

selecting the highest score for a negative pattern), the other use a classifier

trained on a feature space where the features of each pattern are the scores

assigned to that pattern by the experts. Among the methods proposed, those

that rely on the use of classifier are the best suited. The proposed Dynamic

Score Selection prove its effectiveness especially in the case of low “quality”

scores are used (e.g., high number of cases where the negative scores are

higher than the positive scores, score distributions highly overlapped, etc.),

and in some cases they also outperforms the optimal linear combiner. In the

majority of cases the performance generally are close to those achieved by

the other methods used for comparison. From the results it is also clear that

their performance varies also according to the performance of the classifier

used.

Moreover, the use of the posterior probabilities assigned by a classifier as a

“fused” score is proposed and investigated. Generally these methods achieve

better results than the other methods. In some experiments, these methods

outperform the ideal score selector. This fact can be explained as follows.

The ideal score selector depends from the “quality” of the scores produced

by the individual experts, and in that cases the “quality” of the score is

very low. This means that the two score distributions are highly overlapped.

While the ideal score selector works in a “one-dimensional” space (i.e., the

score space), the methods based on the posterior probabilities can exploit

extra information because they rely on a “N-dimensional” space (where N is
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the number of the experts combined). This behaviour also depends by the

potential of the classifier used, and by the effectiveness of the ensemble of

experts to be combined.

In this thesis it is also investigated the problem of how to measure the

effectiveness of the ensemble of experts to be combined. This aspect is highly

relevant when, instead of all the experts in the ensemble, only a subset of

the ensemble is used (e.g., in practice only a few number of experts is com-

bined). Thus, different measures of ensemble effectiveness have been pro-

posed (Section 4.1). The proposed measures are based on the Area Under

the ROC Curve, the Equal Error Rate, the d’, and the Score Dissimilarity

index. These measures are tested in an extensive experimental test. This

experimental test clearly indicates that the measure based on d’ is a good

measure to estimate the ensamble effectiveness, as the larger the measure,

the better the performance of the methods that combine the ensemble of

experts.

Moreover from the experiments can be observed that the “selection” and

the “fusion” approach are two alternatives. No one on them is better than

the other, as it is well known in the Pattern Recognition field. Infact both

of them have pros and cons, and the use of one or the other approach it is

mainly characterized by the faced problem.

6.1 Future work

Future work is needed along all the methods and the theories developed

during this thesis. Although the ideal score selector described in Chapter

2 seems mature as an ideal “selection” methodology, other work is needed

to improve the some parts of the theoretical aspects of the methods that

approximate this methodology. Along with this research newer Dynamic

Score Selection methodologies have to be researched.

As it has pointed out above, from the experiments is clear that neither

the “selection” approach, neither the “fusion” approach is the best generally
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speaking. Thus, one direction for future research is to develop methods that

combine these approaches. The starting point is to use some of the measures

developed to measure of ensemble effectiveness to decided when “select” or

when “fuse” the scores.

Moreover the study of the generic use of classifiers for the combination of

scores need a more deep study, in particular a better way of exploiting the

information of the posterior probabilities when they are present. The aim of

this future study is to obtain improvements in the Dynamic Score Selection

or, as already said, to develop “mixed” methodologies that use both the

“selection” and the “fusion” approach.
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