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1 Main Summary 
 

 
This PhD Thesis is focussed in the study of spiking neural 

networks. In this framework the presented work presents different 
hardware architectures that are implemented in reconfigurable 
devices (FPGAs). Different approaches are proposed adopting time-
driven or alternatively event-driven processing schemes.  
 
The work presents alternative control approaches in the field of 
robotics and studies computing architectures for the simulation of 
massive spiking neural networks of millions of neurons processing 
sensorimotor information in real-time. These proposed approaches 
have been implemented in two hybrid Hardware/Software platforms 
with different levels of autonomy  of the hardware (stand-alone and 
co-processing strategy) with respect to the software modules (in a 
PC as a host computer) that simulated in real-time these large scale 
networks. 
In a second stage, this Thesis focuses on experiments with real-
robots, as validation methodology of the control neural networks 
under study. The choice of working with real robots instead of 
simulated ones in motivated by the difficulty of describing in a 
realistic way the interaction with the real-world in a simulated 
framework. Therefore, the work here also adopts the “Embodiment 
concept” which stresses the necessity of having a physical body as 
learning mechanism for the knowledge emergence generation.  
 
In this field, the Thesis describes two robotic platforms built and 
adapted for being controlled by spiking neural systems. The obtained 
results show that imitating in more or less detail the biology is 
feasible building neural circuits which represent valid alternatives to 
be considered for control of biomorphic robots with complex 
physical structures. 
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1.1 Introduction and motivation 
 

Building artificial machines capable of performing tasks with 
“certain level of intelligence” (as humans do) has been one of the 
scientific goals in recent scientific history. Even having computers 
capable of performing millions of computations per second and 
diverse programming languages this goal remains as an open 
challenge. This is partly because current computing technology 
adopts mainly sequential processing strategies while natural systems 
(animals) use massive parallel computing in their central nervous 
systems for multi-sensorial perception tasks. 

 
The interaction between artificial systems and the world is a 
challenge for classical problem solving methods in computation. 
Most of these interactions cannot be described as algorithms (nor can 
be simulated). Building an artificial model of the world or 
“environment” with a certain level of complexity is beyond current 
computers capabilities. Instead of building a global model of the 
environment, biological systems have developed mechanisms to 
dynamically adapt to the “experimented environment” and how to 
interact with it. Biological systems learn dynamically how to 
optimize their interactions with the environment through experience. 
This is done in the Central Nervous System (CNS) through neural 
circuits that receive, exchange, process and send information to their 
environment. This is done by means of spikes that encode all the 
signals being transferred or processed in the CNS. Spikes represent a 
good way of transmitting information with a low power cost and 
robust to noise. Building computing systems inspired in biological 
systems is not straightforward since we are trying to emulate a 
massive parallel computing system. For this purpose in this work we 
have chosen reconfigurable hardware (FPGA devices) that allows 
implementing parallel computing schemes. Even so, the number of 
computing elements that can be implemented with this technology is 
much reduced (far from the millions of units of biological systems). 
Nevertheless, we describe how to adopt opportunistic computing 
strategies to exploit efficiently certain characteristics of current 
technology (for instance using multiplexing techniques to take full 
advantage of high clock frequencies of current digital circuits). 
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1.2 Framework of research task 
 

Before starting the work of this PhD different robotic 
platforms were developed that helped the author to gain expertise in 
this field. Furthermore we realised about the inherent difficulty of 
“creating new agents” and the challenge of devising new control 
schemes. This previous creative effort has highly motivated the work 
presented in this Thesis.  

 
The Thesis has been done in the framework of two EU 

projects: 
  

• SpikeFORCE: Real-Time Spiking Networks for Robot 
Control (FP5-IST-2001-35271). (01-05-2002 till 30-09-2005) 

 
• SENSOPAC: Sensory motor structuring of perception and 

action for emerging cognition (FP6-IST-028056). (01-01-
2006 till 30-12-2010) 

 
The goal of SpikeFORCE was to develop models of spiking neural 
structures biologically plausible and study mechanisms for their 
utilization in robot control tasks. SENSOPAC represents a step 
beyond the control task and addresses the study of how, using 
biomorphic robots and bio-inspired control schemes we can evaluate 
efficient control and active sensing strategies for exploration tasks. 
In this project is studied how “cognitive notions” are structured by 
means of abstracted models in biological models, for instance in 
olivo-cerebellar structures and other neural subsystems.   

 
For both projects the development of efficient spiking neural 
network simulation technologies to be used in real-time robot control 
tasks represents an issue of critical importance. Furthermore, the 
study of new computation schemes radically different to the 
conventional sequential processors based techniques remains as 
breaking through point in itself. The new “computing architectures” 
presented in this work can be considered as scalable architectures in 
which the input/output information is represented by means of neural 
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spikes. The processing architecture is a specific purpose processor 
with a single “instruction”: process a spike. 
 
In this kind of architectures in possible to study the scalability issue 
and new parallelization techniques that become of specific interest 
provided the large number of computing resources currently 
available on single chips (reconfigurable hardware devices). 

1.3 Objectives and organization  
 

This Thesis presents different alternatives for designing 
massively hardware architectures. These architectures allow building 
neural circuits that emulate with a certain level of abstraction 
biological cell properties. Concretely, we will focus on simulating 
the cerebellum, due to its importance for coordination, movement 
control and motor learning.  
 
Contrary to other classic artificial neural models, in which the 
internal dynamics of cells are just described by a predefined 
activation function (for instance a sigmoid function) the research 
work presented here focus on biological models of cells 
characterized by properties such as passive membrane potential 
decay, electrical coupling, gradual injection of charge, etc. In this 
way, it is possible replicating certain functionalities that seem to 
have a functional role in biological systems. 
 
Many authors support the idea that the real potential of biological 
neural systems is facilitated by the network topologies and not by 
specific cell properties [23][1]. We think that both characteristics 
(cell temporal dynamics and network topologies) play 
complementary roles in the computing capabilities of biological 
nervous systems. This continuously motivates interdisciplinary 
works that try to build bridges between technology and 
neurobiology. Simulating biologically plausible cells and networks 
suggest new system properties that can open new research lines in 
the neurophysiologic field. 
 
This thesis represents an effort also in building and dealing with real 
robots for evaluating and validating the neural computing engines 
that are described. This effort is partially motivated by the 
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“embodiment” concept [16][15] that suggest that is necessary a 
physical body to study mechanism of how knowledge emerges. 
Another important aspect that is addressed in this work is the 
computing complexity of simulating massive neural systems 
(thousands to millions of neurons). To give an order of magnitude 
the human brain consists in approximately 20 thousand millions of 
neurons (with at least 1000 different types and 60 to the power of 14 
synapses). Interestingly enough the cerebellum has 5 times this 
number of neurons (approximately one hundred thousand millions of 
neurons). The cerebellum is described as a set of computing 
elements with a well defined structure (climbing fibers, mossy fibers 
reaching granular cells, parallel fiber interconnecting Purkinge cells, 
etc). Diverse studies prove that only between a 5 to 10% of the cells 
are active at the same time (that brain uses sparse coding, especially 
in certain areas such as the Granular layer) which is also limited by 
the power consumption.  

 
With the goal of simulating biological neural systems this work 
describes high performance computing engines for spiking neural 
networks and also how they deal with real robots. 

 
For facilitating the easy reading of the Thesis, here we briefly 
describe a summary of the different chapters: 

 
• Chapter 1: We briefly introduce the objectives and problems 

addressed in the different chapters of the work for the simulation 
of bio-inspired control systems. 

 
• Chapter 2: We introduce different models of bio-inspired 

neurons (integrate and fire model, Spike Response Model, etc) 
and it briefly describes also certain Spike Time Dependent 
Plasticity (learning rules). This chapter tries to clearly distinguish 
conventional artificial neural networks and bio-inspired spiking 
neural networks with a certain level of biological plausibility. 

 
• Chapter 3: We describe a co-processing computing architecture 

defined in reconfigurable hardware. We address in detail the 
characterization of the computing platform and its performance 
evaluation compared to sequential processing schemes. This 
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computing engine addresses time-driven simulations of spiking 
neural networks. 

 
• Chapter 4: We describe in detail an event-driven computing 

engine with a pipelined datapath. We analyze its performance 
and the computing risks in its computing datapath and how the 
affect the system performance. One of the major contributions of 
this chapter is the parallel event selection architecture that 
enhances significantly the performance of the platform.  

 
• Chapter 5: The robotics and its utilization to evaluate the 

hardware computing engines is one significant contribution of 
this Thesis described in this chapter. Here we describe different 
mechanic systems (robotic platforms) developed to study specific 
issues such as how to deal with robotic dynamics. 

 
• Chapter 6 and Chapter 7: In these chapters we briefly describe 

the main contributions of the research work presented in this 
Thesis. We also indicate the scientific production of this research 
effort. 

 
Note:  
Since a more detailed description can be found in the Spanish 
version of the PhD we try to follow the same structure and refer to 
specific chapters along the summary. 

 

The main contributions of this Thesis are described in Chapter 3 and 
Chapter 4.  

In Chapter 3, a computing platform is described for simulating 
arbitrary networks of spiking neurons in real time. A hybrid 
computing scheme is adopted that uses both software and hardware 
components to manage the trade-off between flexibility and 
computational power; the neuron model is implemented in hardware 
and the network model and the learning are implemented in 
software. The incremental transition of the software components into 
hardware is supported. We focus on a Spike Response Model (SRM) 
for a neuron where the synapses are modelled as input-driven 
conductances. The temporal dynamics of the synaptic integration 
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process are modelled with a synaptic time constant that results in a 
gradual injection of charge. This type of model is computationally 
expensive and is not easily amenable to existing software-based 
event-driven approaches. As an alternative we have designed an 
efficient time-based computing architecture in hardware, where the 
different stages of the neuron model are processed in parallel. 
Further improvements occur by computing multiple neurons in 
parallel using multiple processing units. This design is tested using 
reconfigurable hardware and its scalability and performance 
evaluated. Our overall goal is to investigate biologically realistic 
models for the real-time control of robots operating within closed 
action-perception loops, and so we evaluate the performance of the 
system on simulating a model of the cerebellum where the emulation 
of the temporal dynamics of the synaptic integration process is 
important. 

In Chapter 4 we have proposed a new simulation scheme for 
efficient simulation of spiking neural networks (SNN). Current SNN 
computing engines are still far away from simulating systems of 
millions of neurons efficiently. This chapter describes a computing 
scheme that takes full advantage of the massive parallel processing 
resources available at FPGA devices. The computing engine adopts 
an event-driven simulation scheme and an efficient next-event-to-go 
searching method to achieve high performance. We have designed a 
pipelined datapath in order to compute several events in parallel 
avoiding idle computing resources.  

The system has a good performance and is able to compute 
approximately 2.5 million spikes per second although, how we will 
see, this performance will be decreased due to risks found in the 
pipeline data-path. 

 The whole computing machine is composed only by an FPGA 
device and five external memory SRAM chips. Therefore, the 
presented approach is of high interest for simulation experiments that 
require embedded simulation engines (for instance, in robotic 
experiments with autonomous agents). 
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Each chapter (3 and 4) focuses on the study of two different 
processing schemes (time driven and event-driven).  
The first one uses a global clock for processing each neuron state, 
step by step. On the second one, the spikes are updated on 
chronological order avoiding the neuron processor to waste time 
between events. The global time clock is defined by the spike time 
label and therefore, the simulation engine is able to jump from one 
spike to the next one. 
In this way, we can have a global vision about the best way for 
developing efficient hardware neuron processors (time and event-
driven ones).  
 
Since a more detailed description can be found in the Spanish 
version of the PhD we try to follow the same structure and refer to 
specific chapters along the summary. 
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2 Summary of chapter 3 
 

A computing platform is described for simulating arbitrary 
networks of spiking neurons in real time. A hybrid computing 
scheme is adopted that uses both software and hardware components 
to manage the trade-off between flexibility and computational 
power; the neuron model is implemented in hardware and the 
network model and the learning are implemented in software. The 
incremental transition of the software components into hardware is 
supported. We focus on a Spike Response Model (SRM) for a 
neuron where the synapses are modelled as input-driven 
conductances. The temporal dynamics of the synaptic integration 
process are modelled with a synaptic time constant that results in a 
gradual injection of charge. This type of model is computationally 
expensive and is not easily amenable to existing software-based 
event-driven approaches. As an alternative we have designed an 
efficient time-based computing architecture in hardware, where the 
different stages of the neuron model are processed in parallel. 
Further improvements occur by computing multiple neurons in 
parallel using multiple processing units. This design is tested using 
reconfigurable hardware and its scalability and performance 
evaluated. Our overall goal is to investigate biologically realistic 
models for the real-time control of robots operating within closed 
action-perception loops, and so we evaluate the performance of the 
system on simulating a model of the cerebellum where the emulation 
of the temporal dynamics of the synaptic integration process is 
important. 

 

2.1 Computing scheme 
 

We have developed a hybrid software-hardware computing 
platform. The hardware component consists of an add-on board 
providing memory resources and an FPGA device that works as a 
reconfigurable neuro-processor. The software component runs on the 
host computer and the communication between the two is via the 
PCI bus. Currently the hardware component is restricted to 
computing the evolution of single-neuron state variables. The 
software component is responsible for maintaining the network 
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connectivity, for routing spikes between neurons, and for learning 
(defined as the plasticity of maximal synaptic efficacies). 
Communication between the hardware and software components is 
restricted to spike events; the software component sends packets of 
addressed pre-synaptic spikes to the hardware, and receives back 
packets of generated post-synaptic spikes. The neural states are 
stored in the co-processor board and do not need to be 
communicated at each epoch. 
 
 
The communication between the software and hardware components 
is through packets of spike events. The software component 
generates pre-synaptic events and the hardware component generates 
post-synaptic events: 
 
In the current implementation each neuron can have two types of 
synapses, one that is excitatory and one that is inhibitory. This will 
be extended in future implementations, where the pre-synaptic event 
structure will allow a model with a variety of distinct synaptic types 
such as AMPA, NMDA, GABAa or GABAb.  
 

2.2 Neuron Model 
 

The chosen neural model consists of terms to calculate the 
membrane potential together with a spike generation mechanism 
[24]. For a neuron with excitatory and inhibitory synapses, the 
subthreshold membrane potential Vx is given by:  
 

( ) ( )minxinhxmaxexcrestingx
r

xx UVSGVUSGVVVV −⋅⋅−−⋅⋅+−−= )(1
τ  

Equation 1 
 

This follows SRM in which the synapses are modelled as spike-
driven conductance terms with synaptic efficacies that depend on the 
time elapsed since the received pre-synaptic spike (emulating the 
receptor mediated injection of charge). 
 
The neuron is implemented using a processing unit (see Figure 1) 
with the following components: 
 



 

11 

 

sexc 

… 
Iexc_1

Iexc_n

τexc τinh 

( )
( ) ( )minxinhxmaxexc

restingx
r

xx

UVSGVUSG

VVVV

−⋅−−⋅

+−−=
τ
1

sinh 

 τrefract G 

Output 

Input module: 
Pre-synaptic  

Spikes 

Synaptic  
Filters 

Membrane  
Potential 

Output module: 
Post-synaptic 

Spikes 

Refractory 
Gain Term 

Iinh_1 

Iinh_n

… 

Vx 

inhibitory weights
winh 

excitatory weights
 wexc 

⎩⎨
⎧

<
≥

=
thresholdUxVif
thresholdUxVif

Output
0
1

 
Figure 1: Processing unit scheme. The pre-synaptic events are summed up in 
software to reduce the communication costs. The computations indicated in this 
diagram can be pipelined as described in the next section.   
 

2.3 Parallel computing strategies 
 

A sequential implementation of the neuron model requires 17 
time steps for all the computations. This is optimised by adopting a 
design strategy that efficiently exploits the parallel computing 
resources of FPGA devices. 
 
Implementing algorithmic parallelism, or pipelining, is a frequently 
used technique in hardware design to reduce the number of time 
steps needed to perform complex operations.  
In order to exploit the inherent parallelism of the FPGA devices, we 
have designed a pipelined computing structure with Nstages = 5 
stages (S1 to S5) that iteratively updates the neural state variables.  
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These stages are: 
 
1. State fetch: retrieves the neural state for each neuron from the 

neural state table (stored in the EMBs). This stage also takes the 
cell input, which can be an input spike from the pre-synaptic 
event table (stored in the embedded memory blocks, EMB) or 
zero in the absence of pre-synaptic events.  

 
2. Neural computation I: calculate the synaptic gain terms using 

the IIR filters (Sexc and Sinh). 
 

3. Neural computation II: calculate the membrane potential (Vx) 
 

4. Neural computation III: calculate the resting and refractory 
components (G), and generate a post-synaptic spike if required. 

 
5. State write-back: store the output spike and the neural state in 

the tables. 
 
 
It is worthwhile to note that further neural features such as NMDA 
channels, firing threshold oscillations, etc; can be processed in this 
pipeline structure in specific stages.  
 
Since all the stages are computed in parallel, we could include new 
neural features without degrading significantly the computation 
speed by processing them in extra pipelined stages (provided that the 
maximum number of cycles per stage is kept low).  
 

2.4 Computational resources consumption 
 

The computational load has been distributed into different 
pipelined stages to allow parallel processing along the datapath. The 
computational resources of each of these stages are summarized in 
Table 1 We have used the RC1000 board of Celoxica [3] as 
prototyping platform to evaluate the computation scheme. This is a 
PCI board with 4 banks of SRAM memory on board (2MB each) and 
a Xilinx device with two million gates (Virtex- 2000E) [26]. 
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# 
PUs 

#  
EMB 

%  
EMB  

 
# slices % slices 

# 
equivalent 
gates 

#time 
steps 

1 80 50 4581 23.86 1389247 6 

 
Table 1: Computational resources of a complete pipelined processing unit. 
Total amount of resources used and as a percentage of the Xilinx device 
XCV2000-E. This device includes only general purpose processing circuitry 
(slices) and embedded memory resources (160 blocks of  4 Kbits each). This 
processing unit is able to compute 6 neurons in parallel using a pipeline processing 
scheme. 
  

2.5 Computing Performance 
 
 

In previous subsections we described the computing scheme. 
On this case the system adopts a hybrid architecture 
(hardware/software). The communication between 
hardware/software is made over the PCI-bus and adopts an epoch-
driven computing strategy. 
 
The time taken by the hardware to compute each epoch to epoch is 
given by: 

∑∑
−

=

−

=

==
1

0

1

0

1 tN

i

i
TimeCycle

clk

tN

i

i
TimeCycleepoch NTS

F
tt  

Equation 2: ti
TimeCycle is the computing time of the time cycle i (i = 0... Nt −1). 

NTSi 
TimeCycle is the number of time steps to compute time cycle i, and Fclk is the 

clock frequency. 
 

On the other hand, the time taken by the processing units is fixed and 
depends on the number of neurons (Nneurons), the number of 
processing units (NPU), the number of time steps of the longest stage 
of the pipeline structure (NTSlps), and the latency (L = Nstages · 
NTSlps). The computing time of each epoch tepoch can be given by 
Equation 3. 
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( ) ( )( )
PUN

lpsNTSneuronsN
LpreLoadNTSi

synapticpreNi
TimeCycleNTS

⋅
+−⋅−+= ,1MAX  

Equation 3 
 
 
For instance choosing the following configuration: Nt = 20 cycles, 
Nneurons = 1024 neurons, NTSlps = 6 time steps and Fclk = 25 Mhz, 
then the time taken by the hardware using a single processing unit to 
compute one epoch is tepoch ≈ 4.94 ms.  
 
A suitable integration step for biologically plausible neurons based 
on the chosen neuron model is 100µs. For a simulation to be in real 
time, an epoch of 20 time cycles must be computed in less than 2 ms.  
 
To achieve this we use several computing processing units in 
parallel. In this way, the computing time decreases with the number 
of processing units (given for 1024 neurons, 20 time cycles per 
epoch, an integration time step of 100 µs, and variable numbers of 
pre-synaptic events). The results show that the design is scalable and 
the processing inherently parallel when the number of pre-synaptic 
events is not too high.  
 

2.6 Real-time Cerebellar simulations 
 

The performance of the system is dependent on the network 
connectivity and the load given as the number of pre-synaptic events 
per epoch. It is therefore important to test its performance within a 
biologically realistic context. 
For this we simulate a model of the olivary-cerebellar system applied 
to a simple tracking task (visual smooth pursuit). 
 
Movement in one dimension is modelled using two olivary-
cerebellar microcircuits, each representing movement in opposite 
directions.  
 
Full details of the model and its application to visual smooth pursuit 
are given in [9].  
 
Of significance to this discussion are the following points: 



 

15 

 
1. The number of connections to each neuron varies greatly. The 

cerebellum does not represent a heterogeneous network of 
neurons, but contains both extremely low and extrememely high 
patterns of connectivity. Each granule cell receives less than ten 
inputs whilst each Purkinje cell receives hundreds of thousands.  

 
2. The number of pre-synaptic events per epoch (and the 

computational load) is widely distributed in the simulations.The 
cells in the inferior olive fire at around 1Hz, those in the granular 
layer appear to be mostly silent with short bursts up to 100Hz, 
whilst the Purkinje cells may average around 80Hz.  

 
3. The cerebellum is an example of a brain system that needs to be 

modelled in real time. The cerebellum is involved in the fine 
control and coordination of timed movement (amongst much 
else) but its exact role in the brain is unknown. The simplified 
and artificial version of the smooth pursuit problem used for this 
demonstration of the hardware can be easily simulated and is not 
a difficult task for the cerebellum to learn. Providing the realistic 
and sufficiently rich context that will be needed to elucidate 
cerebellar function implies being able to study cerebellar models 
operating in real time in the real world. 

 

2.7 Discussion 
 

We have described a hybrid hardware-software platform for 
the real time simulation of spiking neurons based on the Spike 
response neural model including a gradual injection of charge and 
synapses modelled as input-driven conductances.  
 
The computation scheme is without any of the restrictions on the 
model imposed by current event-driven schemes. 
 
The hardware co-processor is based on reconfigurable hardware 
(FPGA) and we have adopted a computing strategy that makes 
exhaustive use of the processing parallelism resources of the FPGA 
device. 
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Different hardware and software accelerators for simulating spiking 
neural networks simulations are difficult to compare since the time 
resolution of the integration, their objectives and the neuron models 
are all different. Compared to other specific computing platforms [7]  
[2]    [14] [21] [11] our approach addresses the simulation of smaller 
scale networks but with a higher time resolution (100µs) because 
focus on real-time applications. 
 
Our simulation platform has been designed for robotic applications 
and sensorimotor studies. Here is critical the capability of simulating 
different network topologies of small and medium size. Furthermore, 
the possibility of easily testing different networks for specific 
processing tasks makes FPGA technology the best choice for our 
approach.   
 
The cell model includes the gradual injection of charge in the 
synaptic modules. This feature allows the study of synchronization 
processes. How synchronization arises from specific topology 
instead of intrinsic cell synchronisation mechanisms is an important 
topic.  
 
FPGA technology has experienced great advances in recent years 
and is continuously evolving. We have described the circuits with a 
high level hardware description language [22], which facilitates the 
efficient management of the memory and computational resources. 
The design is modular and can be easily customized with different 
levels of parallelism.  
 
The computing scheme is fully scalable, even though the analysis of 
the consumption of resources is based on a specific prototyping 
platform and a reduced number of neurons. There are two main 
factors that limit the scalability to very large scale simulations:  
 
• The software/hardware communication bandwidth (that 

motivates the future use of PCI-X boards)  
 
• The limited computing parallelism (that increases with more 

powerful FPGA devices, provided that the on-chip computing 
scheme is scalable).  
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The comparison of the proposed computing platform with event-
driven simulation schemes is not easy, since the adopted neuron 
model implements mechanisms for the gradual injection necessary 
for defining synapses with different time constants. This feature is 
difficult to incorporate into an event-driven simulation schemes 
although some approaches are exploring this possibility with 
different restrictions [17]. 
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3 Summary of chapter 4  

3.1 Introduction 
The simulation of spiking neural networks using standard 

integration methods on conventional computational architectures 
(single- or multiprocessor platforms) is inefficient. This has 
motivated the implementation of specific hardware platforms to 
perform neural integration. 
 
The neuron model described on this contribution is the same as in 
Chapter 3, but the platform presented here adopts an event-driven 
scheme entirely simulated in hardware using parallel resources of 
FPGA devices. We implement a pipelined processing structure to 
further accelerating the simulator, but this requires the consideration 
of inter-spike dependency risks.  
 
In this work, we present a specific purpose computing architecture to 
efficiently simulate spiking neural networks by adopting an event-
driven scheme. The common approach is based on a queue of events 
ordered chronologically [20][13][8][18]. In this case, the goal is to 
reduce the number of accesses required for the correct insertion of a 
new spike in its correct position in a chronologically ordered lists. 
Contrary to this approach, we use a disordered event list, Our 
processing scheme searches for the next-event-to-go before each 
computing loop. For this purpose, we implement a parallel searching 
strategy that takes full advantage of the parallel processing resources 
available in FPGA devices.  

3.2 Description of the Computing Scheme 
 

The computing scheme is illustrated in Figure 2. The event 
list is stored on embedded memory resources in order to facilitate the 
insertion and searching processes. On the other hand, the neural state 
variables and the network topology are stored on external memory 
SRAM.  
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Figure 2: Computing Architecture Schematic 
 

3.3 Next-Event Selection strategies 
 
In order to take the “next even to go” we use a disordered 

event list. In this case, every time we need to extract an event, we 
search for the one with a minimum time label. We have implemented 
a parallel searching strategy taking full advantage of the parallel 
computing resources of the FPGA devices.  It uses parallel 
comparator circuits of 4 and 8 elements each (see Figure 3). With 
this scheme we are able to manage event lists of up to 214 elements 
consuming up to 69 clock cycles to take the next event to go.  
Note that in order to pipeline this processing datapath we need to 
store in buffers (distributed memory) not only the time labels but 
also an index to identify the original spike (in the embedded memory 
block that is being processed). 
 
Note that it is possible to use another selection algorithms such as 
Heap-Short, Quick-Short, etc., but these are inefficient when 
implemented in FPGA devices since they do not take advantage of 
parallel devices. In this chapter we have establish a comparative 
between Heap-Short algorithm and how despite the difference 
between the efficiency order, the parallel searching strategies 
becomes more efficient. 
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Figure 3: Parallel Searching Tree. 

3.4 Store Memory Resources strategies: 
 
On this chapter we have tested different Next-event to go 

selection strategies. Two factors become important to achieve high 
performance during the searching and retrieval of the next-event-to-
go:  
 
1. Maximum parallelism on the next time label searching. 
2. Maximum parallelism on the next-event-to-go data fields reading. 
 
There are different strategies that can be adopted as discussed in the 
chapter: 
 

• Complete Events on External Memory Resources. 
• Complete Events on Embedded Memory Blocks. 
• Time Labels on Specific EMBs. 
• Event Fields on Interleaved Embedded Memory. 
• Some Event Fields stored on Specific Embedded Memory 

Blocks. 
 

In this subsection a whole of strategies has been analyzed. We show 
a couple of measurements efficiency equations. 



 

22 

Finally we have adopted a “Complete Events on Embedded Memory 
Blocks” strategy for developing our neuron processor because it 
achieved a good trade-off between efficiency and hardware resource 
consumption. 

3.5 Pipelined Event-processing Datapath 
 
We have implemented a pipelined event-processing datapath 

consisting of the 9 stages: 
 
SS: Shift stage (intermediate register with the partial results are 
updated). 
 
S0: the next-event-to-go is searched (this is done through a parallel 
searching tree, as described in the previous section) 
 
 
S1: Access to external memory is gained in order to retrieve the 
source neuron state variables and the connection characteristics: 
 
• Access to external memory to recover the state source neuron. 
• Recover state of the target neuron.   
• Gets the connection between source and target neuron 

(topology). 
 
S2: The spikes of the output pre-buffer are shifted (spikes thrown 
out)  
 
S3: Spikes of the input pre-buffer are shifted (new input spikes 
produced during datapath processing). If there remains any spike of 
the output connection tree to be processed of this source neuron 
connection tree is inserted into the event list. 
 
S4: Learning, the learning rule is processed. 
 
S5: The target neuron state is updated (synaptic contribution 
processing) 
 
S6: “Axon Hillock”. The Axon-Hillock is processed (spike firing 
decision) 
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S7: The connections states between source and target neuron are 
stored. 
 
S8: The target neuron state and connection weight is stored. 
 
Note: When a neuron fires, it produces multiple spikes that will 
reach different target neurons according to the network topology. In 
order to restrict the number of spike insertions (due to the neuron fan 
out), we consult the output connection tree in each computation 
cycle (ordered according to the synaptic delays) of a neuron that has 
fired, and we insert just the next-event according to the synaptic 
delay. This keeps the event list at a manageable size. 
 
On this subchapter we estimate the performance of the system and 
degradation for a specific neural model due to datapath risks. This 
risks have been analyzed establishing management strategies.  
 
We have defined the next management strategies: 
 
1. Synchronization strategies (between stages) 
 
2. Risk resolutions strategies (inter-block between different 

process that try to pick up share resources, blocks due to data 
dependency risk and give up the datapath). 

 
3. Load swinging strategies (between the different datapath 

stages). 
 

3.6 Neural Model 
 
The described general architecture is valid for multiple 

neuron models. In fact, the neural state computation is a single 
processing stage that can be seen as a black box. 

 
The only restriction is that the neural model allows the neural state 
variables to be updated discontinuously. Currently, we are using the 
proposed platform to test bio-inspired robotic control experiments. 
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We have proved the system with four different neural cells 
(Purkinge, Granuler, Golgi and Interneuron), following a cerebellar 
architecture. The general model includes (STPD) “Spike Time 
Dependent Plasticity” and passive decay terms. 
 

3.7 Simulation Performance and Hardware Resources 
 
It is difficult to compare the performance with other 

approaches, since each of them use different neural models. 
Currently, one of most efficient event-driven software versions [18] 
is able to compute up to 0.8 Mspikes/second using an AMD 
processor at 2.8 GHz. It is significant to note that, through the design 
of a specific purpose datapath working at a clock rate about 2 orders 
of magnitude lower than conventional computers; we are able to 
outperform in more than a factor of 2 the processing performance. 
Other simpler spiking neurons simulators are able to process higher 
rates [4] [5] but only including simplified neural models network 
topologies. 
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Figure 4 Performance vs. Global Network Activity and Network Size 

 
It is also remarkable that the exploration of other neural models 
(even of a higher complexity) would not significantly degrade the 
system performance if the computation can be done in less than 27 
independent steps or split in several pipelined processing stages.  
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Pipeline 
State 

#System 
Gates EMBs 

# Clock 
Cycles 

 
S0 4,823,495 64 10-69 
S1 2450 - 9 
S2 919 - 9 
S3 1172 - 12 
S4 1955 - 9 
S5 1182 - 13 
S6 1451 - 9 

 
Table 2 Hardware Resources Consumption: Design Compiled on a Virtex II 

6000 of Xilinx. 
 
The data throughput (Dt) follows Ecuación 4, which is independent 
from the network size and includes a degradation term (Arisks) 
dependent on the inter-spike risks. This factor will not be significant 
in realistic networks in which spikes of output connection trees will 
be almost consecutively processed.  
 

[ ]searchcyclesclkrisks

clk
t NA

fD
__,27max+

=  

Ecuación 4 
 
The performance follows rigorously the characterization expression 
outlined above. The surface in Figure 4 has been done using a 
network topology (all-to-all connectivity with short synaptic delays). 
In this case, the inter-spike risks do not affect significantly the 
system performance. As can be seen, the performance does not 
depend on the network size, only on the global activity achieving a 
maximum performance of 2.5 millions spikes per second. The 
hardware resources consumption is summarized in Table 2. 
 

3.8 Discussion 
 
The main innovation of the presented approach is the 

efficient use of the parallel computing resources of FPGA devices 
for an event-driven processing scheme. We have adopted a strategy 
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that handles efficiently disordered event lists, which is a completely 
novel approach in the framework of event-driven spiking neural 
network simulation. We have used extensively parallel computing in 
the next-event-to-go searching structure that has been implemented 
with a finely pipelined searching tree.  
 
The whole computing scheme is also implemented in a coarse 
pipelined datapath of 9 stages. Here, we need to handle inter-spike 
risks and this depends of the network characteristics. The 
performance degradation is not significant in realistic networks in 
which spikes of specific output connection trees will be processed 
almost consecutively.  

 
Another important point is that, since the described computing 
platform is very general and can be easily adapted for different 
neural models, it becomes of interest  in the framework of massive 
simulations and real-time experiments (for instance, in robotic 
experiments learning with sensory-motor integration schemes).  
Finally two main aspects are considered i.e. accessing time and 
scalability: We can conclude that storing the events on embedded 
memory blocks maximizes the parallel access. Therefore, this 
represents the most powerful choice for an event list of a moderate 
size (several thousands of events), keeping in mind that the restricted 
number of embedded memory blocks limits its scalability.  
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4 Brief summary of chapter 5 

The validation of spiking neural networks using standard 
simulators on conventional environments (non realistic 
environments) is incomplete. According to the “embodiment” 
concept, that suggest that it is necessary a physical body to study 
mechanism of how knowledge emerges,  we have built and adapted  
two robots: A bio-inspired robots arm and a humanoid (see Figure 5 
and Figure 6). 
 
For both of them, a completed hardware platform description is 
made. With the first one, we use a standard PID controller and single 
experiments. We use genetic algorisms for to tuning the PID 
variables. The system is able to learn witch constants are the best for 
tuning the PID on specific trajectory learning the dynamic model. 
 
This platform is bio-inspired and was developed trying to emulate a 
human-arm. It has no rigid joins (to allow taking advantage of the 
inertial components) and we can control directly through applied 
forces, while getting positions and the consumption of the of the 
motors system. 
 
The robot arm is handled by FPGA platform that could be an 
interface with the PC or a Hardware neural simulator. With this 
platform we have fix the requirement of the real physic systems and 
we have a look on the field bio-robotics. 
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Figure 5: Bio-inspired robot arm. 
 
The second platform is humanoid. With this platform we have 
studied the relationship between the human sensor systems (in 
particular the vestibular systems)  and the industrial sensors 
performing the same task (maintenance balancing). 
 
In this case we have described the controller based on actuador 
servo-systems emulating a real muscle. We have defined a neuron 
net for that behaves as a small GPG (General Patterns Generator). 
With this neuron net we have obtained a set of movements patterns 
that  allows handling of the robots joins. 
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 Different hypotheses are used in the field of the learning and how 
the real biological systems adapt themselves to changes in the 
environments conditions.  
On the other hand, the interface between hardware robot and neuron 
simulators is presented. Finally, a vestibular sense response together 
with motor response during movements  is presented to validate the 
system. 
 

 
 

Figure 6: Adapted humanoid platform with a giro system. 
 





 

31 

5 Conclusions 
 

The main contribution of this work consists in the 
development of two efficient processing architectures for real-time 
medium-scale spiking neural networks simulations (of biologically 
plausible neural systems). A time-driven approach has been 
developed with a hybrid Hardware/Software implementation. Here 
we have designed hardware computing modules as specific purpose 
hardware in FPGA and software modules that are run on a host 
conventional computer in which the hardware co-processing board is 
plugged in. 
 
The other approach driven by events is radically different. In this 
case all the system is simulated in the co-processing board and the 
host computer is only used as initialization and monitorization tool. 
This second approach allows embedding the simulation engine in 
real robots without requiring the connection to conventional 
computers. Therefore it represents a stand-along platform.  
 
The concepts that are studied, with this kind of simulation engines, 
require real-time robot control technologies. For this purpose, the 
work here presented describes how two robotic platforms have been 
developed and complemented with the communication modules to 
interface in real time the simulation engines. This contribution is a 
good example of the work that needs to be faced to integrate the 
different robotic technologies (motors and sensors), high 
performance computing technologies (reconfigurable hardware and 
parallel processing) and bio-inspired control schemes.  

 
The main results of this Thesis are not specific simulations, but 
rather the performance of the simulation engines developed and the 
validation of the robotic platforms presented (including the 
communication schemes). 
 
The work presented in this PhD Thesis opens the door to future 
research issues related with biologically plausible systems such as 
the cerebellum as simulation goal.  
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6 Main original contributions 
 

The main original contributions of this work are the following: 
 

1. Based on biologically plausible neural models a reference model 
has been adopted. This constitutes a trade-off between biological 
plausibility, computation complexity and customization 
capability adjusting specific functions and parameters (passive 
membrane potential decay, gradual injection of charge, etc.). 

 
2. Based on the previous model, a time-driven processing 

architecture for simulating spiking neurons has been developed. 
This has been done designing a segmented datapath in order to 
take full advantage of the inherent parallelism of the computing 
resources of the FPGA devices. The system data (mainly neural 
spikes) has been structured in diverse configurations based on 
on-chip embedded memory and extended SRAM memory chips 
on-board. This allows the architecture to be fully scalable and the 
performance can be multiplied replicating functional units on the 
same chip. 

 
3. A hybrid Software/Hardware platform has been designed for the 

utilization of the time-driven simulation engine. The network 
topology and the learning are simulated in software while the 
neural state variables are updated through dedicated hardware in 
the co-processing board (developed processing architecture). The 
gain in performance provided by the use of the co-processing 
board has been evaluated simulating in real-time an artificial 
cerebellum.   

 
4. A spiking neural processing architecture driven by events has 

been developed. In this case the whole system has been 
implemented in the FPGA device (supported by several external 
memory chips). Software modules have been developed for 
monitoring the simulations. The different risks in the segmented 
datapath have been debugged. The whole system has been 
implemented in the reconfigurable platform. This facilitates its 
use as embedded control system. Outstanding performance rates 
(with more than two million spikes per second) have been 
obtained. 
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5. Two robotic platforms have been designed and complemented 
with specific communication modules for the developed 
simulation engines. In these platforms the direct access in real-
time to sensors and motors has been facilitated. These platforms 
constitute very useful validation tools for bio-inspired processing 
schemes in which the continuous (real-time) interaction of the 
agent with its environment is required.   

 
6. Making an analogy between the muscle functions in motor tasks 

and the dynamics of systems based on servo motors, a 
conversion mechanism of signals has been implemented to allow 
the movement control of the biped robot through the simulation 
engine. 

 

7 Future work 
 

The future work in this field is very diverse. On one hand, the 
presented work constitutes a very valid tool for the simulation of 
biologically plausible neural systems. In this work, the simulation 
technology developed has been presented (specific purpose 
processing architectures) and as future work remains its utilization 
for further concrete simulations of systems such as the cerebellum, 
the inferior olive, etc. Besides, robotic platforms have been 
developed and complemented allowing the experimentation of 
schemes for abstracting models of sensorimotor primitives and 
control schemes based on closed-loop perception-action cycles using 
real agents (“Embodiment”). This gives this technology a high 
potential in the robotic field and the exploration of bio-inspired 
control schemes with active agents. 
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