

DDDOOOCCCTTTOOORRRAAALLL
TTTHHHEEESSSIIISSS::: SSSUUUMMMMMMAAARRRYYY

RRROOODDDRRRIIIGGGOOO CCC... AAAGGGIIISSS MMMEEELLLEEERRROOO

HHHAAARRRDDDWWWAAARRREEE AAARRRCCCHHHIIITTTEEECCCTTTUUURRREEESSS FFFOOORRR
NNNEEEUUURRRAAALLL PPPRRROOOCCCEEESSSSSSIIINNNGGG SSSYYYSSSTTTEEEMMMSSS FFFOOORRR BBBIIIOOO---

IIINNNSSSPPPIIIRRREEEDDD RRROOOBBBOOOTTT CCCOOONNNTTTRRROOOLLL

University of Granada
Department of Architecture
and Technology of Computers

Granada, 200

Main index

1 Main Summary ...1
1.1 Introduction and motivation...2
1.2 Framework of research task ...3
1.3 Objectives and organization...4

2 Summary of chapter 3 ...9
2.1 Computing scheme...9
2.2 Neuron Model ..10
2.3 Parallel computing strategies ...11
2.4 Computational resources consumption ..12
2.5 Computing Performance ..13
2.6 Real-time Cerebellar simulations...14
2.7 Discussion..15

3 Summary of chapter 4 ...19
3.1 Introduction..19
3.2 Description of the Computing Scheme ..19
3.3 Next-Event Selection strategies ...20
3.4 Store Memory Resources strategies: ..21
3.5 Pipelined Event-processing Datapath ..22
3.6 Neural Model ...23
3.7 Simulation Performance and Hardware Resources24
3.8 Discussion..25

4 Brief summary of chapter 5 ..27
5 Conclusions...31
6 Main original contributions...33
7 Future work...34
8 References...37

1

1 Main Summary

This PhD Thesis is focussed in the study of spiking neural

networks. In this framework the presented work presents different
hardware architectures that are implemented in reconfigurable
devices (FPGAs). Different approaches are proposed adopting time-
driven or alternatively event-driven processing schemes.

The work presents alternative control approaches in the field of
robotics and studies computing architectures for the simulation of
massive spiking neural networks of millions of neurons processing
sensorimotor information in real-time. These proposed approaches
have been implemented in two hybrid Hardware/Software platforms
with different levels of autonomy of the hardware (stand-alone and
co-processing strategy) with respect to the software modules (in a
PC as a host computer) that simulated in real-time these large scale
networks.
In a second stage, this Thesis focuses on experiments with real-
robots, as validation methodology of the control neural networks
under study. The choice of working with real robots instead of
simulated ones in motivated by the difficulty of describing in a
realistic way the interaction with the real-world in a simulated
framework. Therefore, the work here also adopts the “Embodiment
concept” which stresses the necessity of having a physical body as
learning mechanism for the knowledge emergence generation.

In this field, the Thesis describes two robotic platforms built and
adapted for being controlled by spiking neural systems. The obtained
results show that imitating in more or less detail the biology is
feasible building neural circuits which represent valid alternatives to
be considered for control of biomorphic robots with complex
physical structures.

2

1.1 Introduction and motivation

Building artificial machines capable of performing tasks with
“certain level of intelligence” (as humans do) has been one of the
scientific goals in recent scientific history. Even having computers
capable of performing millions of computations per second and
diverse programming languages this goal remains as an open
challenge. This is partly because current computing technology
adopts mainly sequential processing strategies while natural systems
(animals) use massive parallel computing in their central nervous
systems for multi-sensorial perception tasks.

The interaction between artificial systems and the world is a
challenge for classical problem solving methods in computation.
Most of these interactions cannot be described as algorithms (nor can
be simulated). Building an artificial model of the world or
“environment” with a certain level of complexity is beyond current
computers capabilities. Instead of building a global model of the
environment, biological systems have developed mechanisms to
dynamically adapt to the “experimented environment” and how to
interact with it. Biological systems learn dynamically how to
optimize their interactions with the environment through experience.
This is done in the Central Nervous System (CNS) through neural
circuits that receive, exchange, process and send information to their
environment. This is done by means of spikes that encode all the
signals being transferred or processed in the CNS. Spikes represent a
good way of transmitting information with a low power cost and
robust to noise. Building computing systems inspired in biological
systems is not straightforward since we are trying to emulate a
massive parallel computing system. For this purpose in this work we
have chosen reconfigurable hardware (FPGA devices) that allows
implementing parallel computing schemes. Even so, the number of
computing elements that can be implemented with this technology is
much reduced (far from the millions of units of biological systems).
Nevertheless, we describe how to adopt opportunistic computing
strategies to exploit efficiently certain characteristics of current
technology (for instance using multiplexing techniques to take full
advantage of high clock frequencies of current digital circuits).

3

1.2 Framework of research task

Before starting the work of this PhD different robotic
platforms were developed that helped the author to gain expertise in
this field. Furthermore we realised about the inherent difficulty of
“creating new agents” and the challenge of devising new control
schemes. This previous creative effort has highly motivated the work
presented in this Thesis.

The Thesis has been done in the framework of two EU

projects:

• SpikeFORCE: Real-Time Spiking Networks for Robot
Control (FP5-IST-2001-35271). (01-05-2002 till 30-09-2005)

• SENSOPAC: Sensory motor structuring of perception and

action for emerging cognition (FP6-IST-028056). (01-01-
2006 till 30-12-2010)

The goal of SpikeFORCE was to develop models of spiking neural
structures biologically plausible and study mechanisms for their
utilization in robot control tasks. SENSOPAC represents a step
beyond the control task and addresses the study of how, using
biomorphic robots and bio-inspired control schemes we can evaluate
efficient control and active sensing strategies for exploration tasks.
In this project is studied how “cognitive notions” are structured by
means of abstracted models in biological models, for instance in
olivo-cerebellar structures and other neural subsystems.

For both projects the development of efficient spiking neural
network simulation technologies to be used in real-time robot control
tasks represents an issue of critical importance. Furthermore, the
study of new computation schemes radically different to the
conventional sequential processors based techniques remains as
breaking through point in itself. The new “computing architectures”
presented in this work can be considered as scalable architectures in
which the input/output information is represented by means of neural

4

spikes. The processing architecture is a specific purpose processor
with a single “instruction”: process a spike.

In this kind of architectures in possible to study the scalability issue
and new parallelization techniques that become of specific interest
provided the large number of computing resources currently
available on single chips (reconfigurable hardware devices).

1.3 Objectives and organization

This Thesis presents different alternatives for designing
massively hardware architectures. These architectures allow building
neural circuits that emulate with a certain level of abstraction
biological cell properties. Concretely, we will focus on simulating
the cerebellum, due to its importance for coordination, movement
control and motor learning.

Contrary to other classic artificial neural models, in which the
internal dynamics of cells are just described by a predefined
activation function (for instance a sigmoid function) the research
work presented here focus on biological models of cells
characterized by properties such as passive membrane potential
decay, electrical coupling, gradual injection of charge, etc. In this
way, it is possible replicating certain functionalities that seem to
have a functional role in biological systems.

Many authors support the idea that the real potential of biological
neural systems is facilitated by the network topologies and not by
specific cell properties [23][1]. We think that both characteristics
(cell temporal dynamics and network topologies) play
complementary roles in the computing capabilities of biological
nervous systems. This continuously motivates interdisciplinary
works that try to build bridges between technology and
neurobiology. Simulating biologically plausible cells and networks
suggest new system properties that can open new research lines in
the neurophysiologic field.

This thesis represents an effort also in building and dealing with real
robots for evaluating and validating the neural computing engines
that are described. This effort is partially motivated by the

5

“embodiment” concept [16][15] that suggest that is necessary a
physical body to study mechanism of how knowledge emerges.
Another important aspect that is addressed in this work is the
computing complexity of simulating massive neural systems
(thousands to millions of neurons). To give an order of magnitude
the human brain consists in approximately 20 thousand millions of
neurons (with at least 1000 different types and 60 to the power of 14
synapses). Interestingly enough the cerebellum has 5 times this
number of neurons (approximately one hundred thousand millions of
neurons). The cerebellum is described as a set of computing
elements with a well defined structure (climbing fibers, mossy fibers
reaching granular cells, parallel fiber interconnecting Purkinge cells,
etc). Diverse studies prove that only between a 5 to 10% of the cells
are active at the same time (that brain uses sparse coding, especially
in certain areas such as the Granular layer) which is also limited by
the power consumption.

With the goal of simulating biological neural systems this work
describes high performance computing engines for spiking neural
networks and also how they deal with real robots.

For facilitating the easy reading of the Thesis, here we briefly
describe a summary of the different chapters:

• Chapter 1: We briefly introduce the objectives and problems

addressed in the different chapters of the work for the simulation
of bio-inspired control systems.

• Chapter 2: We introduce different models of bio-inspired

neurons (integrate and fire model, Spike Response Model, etc)
and it briefly describes also certain Spike Time Dependent
Plasticity (learning rules). This chapter tries to clearly distinguish
conventional artificial neural networks and bio-inspired spiking
neural networks with a certain level of biological plausibility.

• Chapter 3: We describe a co-processing computing architecture

defined in reconfigurable hardware. We address in detail the
characterization of the computing platform and its performance
evaluation compared to sequential processing schemes. This

6

computing engine addresses time-driven simulations of spiking
neural networks.

• Chapter 4: We describe in detail an event-driven computing

engine with a pipelined datapath. We analyze its performance
and the computing risks in its computing datapath and how the
affect the system performance. One of the major contributions of
this chapter is the parallel event selection architecture that
enhances significantly the performance of the platform.

• Chapter 5: The robotics and its utilization to evaluate the

hardware computing engines is one significant contribution of
this Thesis described in this chapter. Here we describe different
mechanic systems (robotic platforms) developed to study specific
issues such as how to deal with robotic dynamics.

• Chapter 6 and Chapter 7: In these chapters we briefly describe

the main contributions of the research work presented in this
Thesis. We also indicate the scientific production of this research
effort.

Note:
Since a more detailed description can be found in the Spanish
version of the PhD we try to follow the same structure and refer to
specific chapters along the summary.

The main contributions of this Thesis are described in Chapter 3 and
Chapter 4.

In Chapter 3, a computing platform is described for simulating
arbitrary networks of spiking neurons in real time. A hybrid
computing scheme is adopted that uses both software and hardware
components to manage the trade-off between flexibility and
computational power; the neuron model is implemented in hardware
and the network model and the learning are implemented in
software. The incremental transition of the software components into
hardware is supported. We focus on a Spike Response Model (SRM)
for a neuron where the synapses are modelled as input-driven
conductances. The temporal dynamics of the synaptic integration

7

process are modelled with a synaptic time constant that results in a
gradual injection of charge. This type of model is computationally
expensive and is not easily amenable to existing software-based
event-driven approaches. As an alternative we have designed an
efficient time-based computing architecture in hardware, where the
different stages of the neuron model are processed in parallel.
Further improvements occur by computing multiple neurons in
parallel using multiple processing units. This design is tested using
reconfigurable hardware and its scalability and performance
evaluated. Our overall goal is to investigate biologically realistic
models for the real-time control of robots operating within closed
action-perception loops, and so we evaluate the performance of the
system on simulating a model of the cerebellum where the emulation
of the temporal dynamics of the synaptic integration process is
important.

In Chapter 4 we have proposed a new simulation scheme for
efficient simulation of spiking neural networks (SNN). Current SNN
computing engines are still far away from simulating systems of
millions of neurons efficiently. This chapter describes a computing
scheme that takes full advantage of the massive parallel processing
resources available at FPGA devices. The computing engine adopts
an event-driven simulation scheme and an efficient next-event-to-go
searching method to achieve high performance. We have designed a
pipelined datapath in order to compute several events in parallel
avoiding idle computing resources.

The system has a good performance and is able to compute
approximately 2.5 million spikes per second although, how we will
see, this performance will be decreased due to risks found in the
pipeline data-path.

 The whole computing machine is composed only by an FPGA
device and five external memory SRAM chips. Therefore, the
presented approach is of high interest for simulation experiments that
require embedded simulation engines (for instance, in robotic
experiments with autonomous agents).

8

Each chapter (3 and 4) focuses on the study of two different
processing schemes (time driven and event-driven).
The first one uses a global clock for processing each neuron state,
step by step. On the second one, the spikes are updated on
chronological order avoiding the neuron processor to waste time
between events. The global time clock is defined by the spike time
label and therefore, the simulation engine is able to jump from one
spike to the next one.
In this way, we can have a global vision about the best way for
developing efficient hardware neuron processors (time and event-
driven ones).

Since a more detailed description can be found in the Spanish
version of the PhD we try to follow the same structure and refer to
specific chapters along the summary.

9

2 Summary of chapter 3

A computing platform is described for simulating arbitrary
networks of spiking neurons in real time. A hybrid computing
scheme is adopted that uses both software and hardware components
to manage the trade-off between flexibility and computational
power; the neuron model is implemented in hardware and the
network model and the learning are implemented in software. The
incremental transition of the software components into hardware is
supported. We focus on a Spike Response Model (SRM) for a
neuron where the synapses are modelled as input-driven
conductances. The temporal dynamics of the synaptic integration
process are modelled with a synaptic time constant that results in a
gradual injection of charge. This type of model is computationally
expensive and is not easily amenable to existing software-based
event-driven approaches. As an alternative we have designed an
efficient time-based computing architecture in hardware, where the
different stages of the neuron model are processed in parallel.
Further improvements occur by computing multiple neurons in
parallel using multiple processing units. This design is tested using
reconfigurable hardware and its scalability and performance
evaluated. Our overall goal is to investigate biologically realistic
models for the real-time control of robots operating within closed
action-perception loops, and so we evaluate the performance of the
system on simulating a model of the cerebellum where the emulation
of the temporal dynamics of the synaptic integration process is
important.

2.1 Computing scheme

We have developed a hybrid software-hardware computing
platform. The hardware component consists of an add-on board
providing memory resources and an FPGA device that works as a
reconfigurable neuro-processor. The software component runs on the
host computer and the communication between the two is via the
PCI bus. Currently the hardware component is restricted to
computing the evolution of single-neuron state variables. The
software component is responsible for maintaining the network

10

connectivity, for routing spikes between neurons, and for learning
(defined as the plasticity of maximal synaptic efficacies).
Communication between the hardware and software components is
restricted to spike events; the software component sends packets of
addressed pre-synaptic spikes to the hardware, and receives back
packets of generated post-synaptic spikes. The neural states are
stored in the co-processor board and do not need to be
communicated at each epoch.

The communication between the software and hardware components
is through packets of spike events. The software component
generates pre-synaptic events and the hardware component generates
post-synaptic events:

In the current implementation each neuron can have two types of
synapses, one that is excitatory and one that is inhibitory. This will
be extended in future implementations, where the pre-synaptic event
structure will allow a model with a variety of distinct synaptic types
such as AMPA, NMDA, GABAa or GABAb.

2.2 Neuron Model

The chosen neural model consists of terms to calculate the
membrane potential together with a spike generation mechanism
[24]. For a neuron with excitatory and inhibitory synapses, the
subthreshold membrane potential Vx is given by:

() ()minxinhxmaxexcrestingx
r

xx UVSGVUSGVVVV −⋅⋅−−⋅⋅+−−=)(1
τ

Equation 1

This follows SRM in which the synapses are modelled as spike-
driven conductance terms with synaptic efficacies that depend on the
time elapsed since the received pre-synaptic spike (emulating the
receptor mediated injection of charge).

The neuron is implemented using a processing unit (see Figure 1)
with the following components:

11

sexc

…
Iexc_1

Iexc_n

τexc τinh

()
() ()minxinhxmaxexc

restingx
r

xx

UVSGVUSG

VVVV

−⋅−−⋅

+−−=
τ
1

sinh

 τrefract G

Output

Input module:
Pre-synaptic

Spikes

Synaptic
Filters

Membrane
Potential

Output module:
Post-synaptic

Spikes

Refractory
Gain Term

Iinh_1

Iinh_n

…

Vx

inhibitory weights
winh

excitatory weights
 wexc

⎩⎨
⎧

<
≥

=
thresholdUxVif
thresholdUxVif

Output
0
1

Figure 1: Processing unit scheme. The pre-synaptic events are summed up in
software to reduce the communication costs. The computations indicated in this
diagram can be pipelined as described in the next section.

2.3 Parallel computing strategies

A sequential implementation of the neuron model requires 17
time steps for all the computations. This is optimised by adopting a
design strategy that efficiently exploits the parallel computing
resources of FPGA devices.

Implementing algorithmic parallelism, or pipelining, is a frequently
used technique in hardware design to reduce the number of time
steps needed to perform complex operations.
In order to exploit the inherent parallelism of the FPGA devices, we
have designed a pipelined computing structure with Nstages = 5
stages (S1 to S5) that iteratively updates the neural state variables.

12

These stages are:

1. State fetch: retrieves the neural state for each neuron from the

neural state table (stored in the EMBs). This stage also takes the
cell input, which can be an input spike from the pre-synaptic
event table (stored in the embedded memory blocks, EMB) or
zero in the absence of pre-synaptic events.

2. Neural computation I: calculate the synaptic gain terms using

the IIR filters (Sexc and Sinh).

3. Neural computation II: calculate the membrane potential (Vx)

4. Neural computation III: calculate the resting and refractory
components (G), and generate a post-synaptic spike if required.

5. State write-back: store the output spike and the neural state in

the tables.

It is worthwhile to note that further neural features such as NMDA
channels, firing threshold oscillations, etc; can be processed in this
pipeline structure in specific stages.

Since all the stages are computed in parallel, we could include new
neural features without degrading significantly the computation
speed by processing them in extra pipelined stages (provided that the
maximum number of cycles per stage is kept low).

2.4 Computational resources consumption

The computational load has been distributed into different
pipelined stages to allow parallel processing along the datapath. The
computational resources of each of these stages are summarized in
Table 1 We have used the RC1000 board of Celoxica [3] as
prototyping platform to evaluate the computation scheme. This is a
PCI board with 4 banks of SRAM memory on board (2MB each) and
a Xilinx device with two million gates (Virtex- 2000E) [26].

13

PUs

EMB

%
EMB

slices % slices

equivalent
gates

#time
steps

1 80 50 4581 23.86 1389247 6

Table 1: Computational resources of a complete pipelined processing unit.
Total amount of resources used and as a percentage of the Xilinx device
XCV2000-E. This device includes only general purpose processing circuitry
(slices) and embedded memory resources (160 blocks of 4 Kbits each). This
processing unit is able to compute 6 neurons in parallel using a pipeline processing
scheme.

2.5 Computing Performance

In previous subsections we described the computing scheme.
On this case the system adopts a hybrid architecture
(hardware/software). The communication between
hardware/software is made over the PCI-bus and adopts an epoch-
driven computing strategy.

The time taken by the hardware to compute each epoch to epoch is
given by:

∑∑
−

=

−

=

==
1

0

1

0

1 tN

i

i
TimeCycle

clk

tN

i

i
TimeCycleepoch NTS

F
tt

Equation 2: ti
TimeCycle is the computing time of the time cycle i (i = 0... Nt −1).

NTSi
TimeCycle is the number of time steps to compute time cycle i, and Fclk is the

clock frequency.

On the other hand, the time taken by the processing units is fixed and
depends on the number of neurons (Nneurons), the number of
processing units (NPU), the number of time steps of the longest stage
of the pipeline structure (NTSlps), and the latency (L = Nstages ·
NTSlps). The computing time of each epoch tepoch can be given by
Equation 3.

14

() ()()
PUN

lpsNTSneuronsN
LpreLoadNTSi

synapticpreNi
TimeCycleNTS

⋅
+−⋅−+= ,1MAX

Equation 3

For instance choosing the following configuration: Nt = 20 cycles,
Nneurons = 1024 neurons, NTSlps = 6 time steps and Fclk = 25 Mhz,
then the time taken by the hardware using a single processing unit to
compute one epoch is tepoch ≈ 4.94 ms.

A suitable integration step for biologically plausible neurons based
on the chosen neuron model is 100µs. For a simulation to be in real
time, an epoch of 20 time cycles must be computed in less than 2 ms.

To achieve this we use several computing processing units in
parallel. In this way, the computing time decreases with the number
of processing units (given for 1024 neurons, 20 time cycles per
epoch, an integration time step of 100 µs, and variable numbers of
pre-synaptic events). The results show that the design is scalable and
the processing inherently parallel when the number of pre-synaptic
events is not too high.

2.6 Real-time Cerebellar simulations

The performance of the system is dependent on the network
connectivity and the load given as the number of pre-synaptic events
per epoch. It is therefore important to test its performance within a
biologically realistic context.
For this we simulate a model of the olivary-cerebellar system applied
to a simple tracking task (visual smooth pursuit).

Movement in one dimension is modelled using two olivary-
cerebellar microcircuits, each representing movement in opposite
directions.

Full details of the model and its application to visual smooth pursuit
are given in [9].

Of significance to this discussion are the following points:

15

1. The number of connections to each neuron varies greatly. The

cerebellum does not represent a heterogeneous network of
neurons, but contains both extremely low and extrememely high
patterns of connectivity. Each granule cell receives less than ten
inputs whilst each Purkinje cell receives hundreds of thousands.

2. The number of pre-synaptic events per epoch (and the

computational load) is widely distributed in the simulations.The
cells in the inferior olive fire at around 1Hz, those in the granular
layer appear to be mostly silent with short bursts up to 100Hz,
whilst the Purkinje cells may average around 80Hz.

3. The cerebellum is an example of a brain system that needs to be

modelled in real time. The cerebellum is involved in the fine
control and coordination of timed movement (amongst much
else) but its exact role in the brain is unknown. The simplified
and artificial version of the smooth pursuit problem used for this
demonstration of the hardware can be easily simulated and is not
a difficult task for the cerebellum to learn. Providing the realistic
and sufficiently rich context that will be needed to elucidate
cerebellar function implies being able to study cerebellar models
operating in real time in the real world.

2.7 Discussion

We have described a hybrid hardware-software platform for
the real time simulation of spiking neurons based on the Spike
response neural model including a gradual injection of charge and
synapses modelled as input-driven conductances.

The computation scheme is without any of the restrictions on the
model imposed by current event-driven schemes.

The hardware co-processor is based on reconfigurable hardware
(FPGA) and we have adopted a computing strategy that makes
exhaustive use of the processing parallelism resources of the FPGA
device.

16

Different hardware and software accelerators for simulating spiking
neural networks simulations are difficult to compare since the time
resolution of the integration, their objectives and the neuron models
are all different. Compared to other specific computing platforms [7]
[2] [14] [21] [11] our approach addresses the simulation of smaller
scale networks but with a higher time resolution (100µs) because
focus on real-time applications.

Our simulation platform has been designed for robotic applications
and sensorimotor studies. Here is critical the capability of simulating
different network topologies of small and medium size. Furthermore,
the possibility of easily testing different networks for specific
processing tasks makes FPGA technology the best choice for our
approach.

The cell model includes the gradual injection of charge in the
synaptic modules. This feature allows the study of synchronization
processes. How synchronization arises from specific topology
instead of intrinsic cell synchronisation mechanisms is an important
topic.

FPGA technology has experienced great advances in recent years
and is continuously evolving. We have described the circuits with a
high level hardware description language [22], which facilitates the
efficient management of the memory and computational resources.
The design is modular and can be easily customized with different
levels of parallelism.

The computing scheme is fully scalable, even though the analysis of
the consumption of resources is based on a specific prototyping
platform and a reduced number of neurons. There are two main
factors that limit the scalability to very large scale simulations:

• The software/hardware communication bandwidth (that

motivates the future use of PCI-X boards)

• The limited computing parallelism (that increases with more

powerful FPGA devices, provided that the on-chip computing
scheme is scalable).

17

The comparison of the proposed computing platform with event-
driven simulation schemes is not easy, since the adopted neuron
model implements mechanisms for the gradual injection necessary
for defining synapses with different time constants. This feature is
difficult to incorporate into an event-driven simulation schemes
although some approaches are exploring this possibility with
different restrictions [17].

18

19

3 Summary of chapter 4

3.1 Introduction
The simulation of spiking neural networks using standard

integration methods on conventional computational architectures
(single- or multiprocessor platforms) is inefficient. This has
motivated the implementation of specific hardware platforms to
perform neural integration.

The neuron model described on this contribution is the same as in
Chapter 3, but the platform presented here adopts an event-driven
scheme entirely simulated in hardware using parallel resources of
FPGA devices. We implement a pipelined processing structure to
further accelerating the simulator, but this requires the consideration
of inter-spike dependency risks.

In this work, we present a specific purpose computing architecture to
efficiently simulate spiking neural networks by adopting an event-
driven scheme. The common approach is based on a queue of events
ordered chronologically [20][13][8][18]. In this case, the goal is to
reduce the number of accesses required for the correct insertion of a
new spike in its correct position in a chronologically ordered lists.
Contrary to this approach, we use a disordered event list, Our
processing scheme searches for the next-event-to-go before each
computing loop. For this purpose, we implement a parallel searching
strategy that takes full advantage of the parallel processing resources
available in FPGA devices.

3.2 Description of the Computing Scheme

The computing scheme is illustrated in Figure 2. The event
list is stored on embedded memory resources in order to facilitate the
insertion and searching processes. On the other hand, the neural state
variables and the network topology are stored on external memory
SRAM.

20

Figure 2: Computing Architecture Schematic

3.3 Next-Event Selection strategies

In order to take the “next even to go” we use a disordered

event list. In this case, every time we need to extract an event, we
search for the one with a minimum time label. We have implemented
a parallel searching strategy taking full advantage of the parallel
computing resources of the FPGA devices. It uses parallel
comparator circuits of 4 and 8 elements each (see Figure 3). With
this scheme we are able to manage event lists of up to 214 elements
consuming up to 69 clock cycles to take the next event to go.
Note that in order to pipeline this processing datapath we need to
store in buffers (distributed memory) not only the time labels but
also an index to identify the original spike (in the embedded memory
block that is being processed).

Note that it is possible to use another selection algorithms such as
Heap-Short, Quick-Short, etc., but these are inefficient when
implemented in FPGA devices since they do not take advantage of
parallel devices. In this chapter we have establish a comparative
between Heap-Short algorithm and how despite the difference
between the efficiency order, the parallel searching strategies
becomes more efficient.

21

Figure 3: Parallel Searching Tree.

3.4 Store Memory Resources strategies:

On this chapter we have tested different Next-event to go

selection strategies. Two factors become important to achieve high
performance during the searching and retrieval of the next-event-to-
go:

1. Maximum parallelism on the next time label searching.
2. Maximum parallelism on the next-event-to-go data fields reading.

There are different strategies that can be adopted as discussed in the
chapter:

• Complete Events on External Memory Resources.
• Complete Events on Embedded Memory Blocks.
• Time Labels on Specific EMBs.
• Event Fields on Interleaved Embedded Memory.
• Some Event Fields stored on Specific Embedded Memory

Blocks.

In this subsection a whole of strategies has been analyzed. We show
a couple of measurements efficiency equations.

22

Finally we have adopted a “Complete Events on Embedded Memory
Blocks” strategy for developing our neuron processor because it
achieved a good trade-off between efficiency and hardware resource
consumption.

3.5 Pipelined Event-processing Datapath

We have implemented a pipelined event-processing datapath

consisting of the 9 stages:

SS: Shift stage (intermediate register with the partial results are
updated).

S0: the next-event-to-go is searched (this is done through a parallel
searching tree, as described in the previous section)

S1: Access to external memory is gained in order to retrieve the
source neuron state variables and the connection characteristics:

• Access to external memory to recover the state source neuron.
• Recover state of the target neuron.
• Gets the connection between source and target neuron

(topology).

S2: The spikes of the output pre-buffer are shifted (spikes thrown
out)

S3: Spikes of the input pre-buffer are shifted (new input spikes
produced during datapath processing). If there remains any spike of
the output connection tree to be processed of this source neuron
connection tree is inserted into the event list.

S4: Learning, the learning rule is processed.

S5: The target neuron state is updated (synaptic contribution
processing)

S6: “Axon Hillock”. The Axon-Hillock is processed (spike firing
decision)

23

S7: The connections states between source and target neuron are
stored.

S8: The target neuron state and connection weight is stored.

Note: When a neuron fires, it produces multiple spikes that will
reach different target neurons according to the network topology. In
order to restrict the number of spike insertions (due to the neuron fan
out), we consult the output connection tree in each computation
cycle (ordered according to the synaptic delays) of a neuron that has
fired, and we insert just the next-event according to the synaptic
delay. This keeps the event list at a manageable size.

On this subchapter we estimate the performance of the system and
degradation for a specific neural model due to datapath risks. This
risks have been analyzed establishing management strategies.

We have defined the next management strategies:

1. Synchronization strategies (between stages)

2. Risk resolutions strategies (inter-block between different

process that try to pick up share resources, blocks due to data
dependency risk and give up the datapath).

3. Load swinging strategies (between the different datapath

stages).

3.6 Neural Model

The described general architecture is valid for multiple

neuron models. In fact, the neural state computation is a single
processing stage that can be seen as a black box.

The only restriction is that the neural model allows the neural state
variables to be updated discontinuously. Currently, we are using the
proposed platform to test bio-inspired robotic control experiments.

24

We have proved the system with four different neural cells
(Purkinge, Granuler, Golgi and Interneuron), following a cerebellar
architecture. The general model includes (STPD) “Spike Time
Dependent Plasticity” and passive decay terms.

3.7 Simulation Performance and Hardware Resources

It is difficult to compare the performance with other

approaches, since each of them use different neural models.
Currently, one of most efficient event-driven software versions [18]
is able to compute up to 0.8 Mspikes/second using an AMD
processor at 2.8 GHz. It is significant to note that, through the design
of a specific purpose datapath working at a clock rate about 2 orders
of magnitude lower than conventional computers; we are able to
outperform in more than a factor of 2 the processing performance.
Other simpler spiking neurons simulators are able to process higher
rates [4] [5] but only including simplified neural models network
topologies.

0

1

2
x 104

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3

x 106

nº neurons

nº spikes in Spike-list

sp
ik

es
 p

er
 s

ec
on

d

Figure 4 Performance vs. Global Network Activity and Network Size

It is also remarkable that the exploration of other neural models
(even of a higher complexity) would not significantly degrade the
system performance if the computation can be done in less than 27
independent steps or split in several pipelined processing stages.

25

Pipeline
State

#System
Gates EMBs

Clock
Cycles

S0 4,823,495 64 10-69
S1 2450 - 9
S2 919 - 9
S3 1172 - 12
S4 1955 - 9
S5 1182 - 13
S6 1451 - 9

Table 2 Hardware Resources Consumption: Design Compiled on a Virtex II

6000 of Xilinx.

The data throughput (Dt) follows Ecuación 4, which is independent
from the network size and includes a degradation term (Arisks)
dependent on the inter-spike risks. This factor will not be significant
in realistic networks in which spikes of output connection trees will
be almost consecutively processed.

[]searchcyclesclkrisks

clk
t NA

fD
__,27max+

=

Ecuación 4

The performance follows rigorously the characterization expression
outlined above. The surface in Figure 4 has been done using a
network topology (all-to-all connectivity with short synaptic delays).
In this case, the inter-spike risks do not affect significantly the
system performance. As can be seen, the performance does not
depend on the network size, only on the global activity achieving a
maximum performance of 2.5 millions spikes per second. The
hardware resources consumption is summarized in Table 2.

3.8 Discussion

The main innovation of the presented approach is the

efficient use of the parallel computing resources of FPGA devices
for an event-driven processing scheme. We have adopted a strategy

26

that handles efficiently disordered event lists, which is a completely
novel approach in the framework of event-driven spiking neural
network simulation. We have used extensively parallel computing in
the next-event-to-go searching structure that has been implemented
with a finely pipelined searching tree.

The whole computing scheme is also implemented in a coarse
pipelined datapath of 9 stages. Here, we need to handle inter-spike
risks and this depends of the network characteristics. The
performance degradation is not significant in realistic networks in
which spikes of specific output connection trees will be processed
almost consecutively.

Another important point is that, since the described computing
platform is very general and can be easily adapted for different
neural models, it becomes of interest in the framework of massive
simulations and real-time experiments (for instance, in robotic
experiments learning with sensory-motor integration schemes).
Finally two main aspects are considered i.e. accessing time and
scalability: We can conclude that storing the events on embedded
memory blocks maximizes the parallel access. Therefore, this
represents the most powerful choice for an event list of a moderate
size (several thousands of events), keeping in mind that the restricted
number of embedded memory blocks limits its scalability.

27

4 Brief summary of chapter 5

The validation of spiking neural networks using standard
simulators on conventional environments (non realistic
environments) is incomplete. According to the “embodiment”
concept, that suggest that it is necessary a physical body to study
mechanism of how knowledge emerges, we have built and adapted
two robots: A bio-inspired robots arm and a humanoid (see Figure 5
and Figure 6).

For both of them, a completed hardware platform description is
made. With the first one, we use a standard PID controller and single
experiments. We use genetic algorisms for to tuning the PID
variables. The system is able to learn witch constants are the best for
tuning the PID on specific trajectory learning the dynamic model.

This platform is bio-inspired and was developed trying to emulate a
human-arm. It has no rigid joins (to allow taking advantage of the
inertial components) and we can control directly through applied
forces, while getting positions and the consumption of the of the
motors system.

The robot arm is handled by FPGA platform that could be an
interface with the PC or a Hardware neural simulator. With this
platform we have fix the requirement of the real physic systems and
we have a look on the field bio-robotics.

28

Figure 5: Bio-inspired robot arm.

The second platform is humanoid. With this platform we have
studied the relationship between the human sensor systems (in
particular the vestibular systems) and the industrial sensors
performing the same task (maintenance balancing).

In this case we have described the controller based on actuador
servo-systems emulating a real muscle. We have defined a neuron
net for that behaves as a small GPG (General Patterns Generator).
With this neuron net we have obtained a set of movements patterns
that allows handling of the robots joins.

29

 Different hypotheses are used in the field of the learning and how
the real biological systems adapt themselves to changes in the
environments conditions.
On the other hand, the interface between hardware robot and neuron
simulators is presented. Finally, a vestibular sense response together
with motor response during movements is presented to validate the
system.

Figure 6: Adapted humanoid platform with a giro system.

31

5 Conclusions

The main contribution of this work consists in the
development of two efficient processing architectures for real-time
medium-scale spiking neural networks simulations (of biologically
plausible neural systems). A time-driven approach has been
developed with a hybrid Hardware/Software implementation. Here
we have designed hardware computing modules as specific purpose
hardware in FPGA and software modules that are run on a host
conventional computer in which the hardware co-processing board is
plugged in.

The other approach driven by events is radically different. In this
case all the system is simulated in the co-processing board and the
host computer is only used as initialization and monitorization tool.
This second approach allows embedding the simulation engine in
real robots without requiring the connection to conventional
computers. Therefore it represents a stand-along platform.

The concepts that are studied, with this kind of simulation engines,
require real-time robot control technologies. For this purpose, the
work here presented describes how two robotic platforms have been
developed and complemented with the communication modules to
interface in real time the simulation engines. This contribution is a
good example of the work that needs to be faced to integrate the
different robotic technologies (motors and sensors), high
performance computing technologies (reconfigurable hardware and
parallel processing) and bio-inspired control schemes.

The main results of this Thesis are not specific simulations, but
rather the performance of the simulation engines developed and the
validation of the robotic platforms presented (including the
communication schemes).

The work presented in this PhD Thesis opens the door to future
research issues related with biologically plausible systems such as
the cerebellum as simulation goal.

33

6 Main original contributions

The main original contributions of this work are the following:

1. Based on biologically plausible neural models a reference model
has been adopted. This constitutes a trade-off between biological
plausibility, computation complexity and customization
capability adjusting specific functions and parameters (passive
membrane potential decay, gradual injection of charge, etc.).

2. Based on the previous model, a time-driven processing

architecture for simulating spiking neurons has been developed.
This has been done designing a segmented datapath in order to
take full advantage of the inherent parallelism of the computing
resources of the FPGA devices. The system data (mainly neural
spikes) has been structured in diverse configurations based on
on-chip embedded memory and extended SRAM memory chips
on-board. This allows the architecture to be fully scalable and the
performance can be multiplied replicating functional units on the
same chip.

3. A hybrid Software/Hardware platform has been designed for the

utilization of the time-driven simulation engine. The network
topology and the learning are simulated in software while the
neural state variables are updated through dedicated hardware in
the co-processing board (developed processing architecture). The
gain in performance provided by the use of the co-processing
board has been evaluated simulating in real-time an artificial
cerebellum.

4. A spiking neural processing architecture driven by events has

been developed. In this case the whole system has been
implemented in the FPGA device (supported by several external
memory chips). Software modules have been developed for
monitoring the simulations. The different risks in the segmented
datapath have been debugged. The whole system has been
implemented in the reconfigurable platform. This facilitates its
use as embedded control system. Outstanding performance rates
(with more than two million spikes per second) have been
obtained.

34

5. Two robotic platforms have been designed and complemented
with specific communication modules for the developed
simulation engines. In these platforms the direct access in real-
time to sensors and motors has been facilitated. These platforms
constitute very useful validation tools for bio-inspired processing
schemes in which the continuous (real-time) interaction of the
agent with its environment is required.

6. Making an analogy between the muscle functions in motor tasks

and the dynamics of systems based on servo motors, a
conversion mechanism of signals has been implemented to allow
the movement control of the biped robot through the simulation
engine.

7 Future work

The future work in this field is very diverse. On one hand, the
presented work constitutes a very valid tool for the simulation of
biologically plausible neural systems. In this work, the simulation
technology developed has been presented (specific purpose
processing architectures) and as future work remains its utilization
for further concrete simulations of systems such as the cerebellum,
the inferior olive, etc. Besides, robotic platforms have been
developed and complemented allowing the experimentation of
schemes for abstracting models of sensorimotor primitives and
control schemes based on closed-loop perception-action cycles using
real agents (“Embodiment”). This gives this technology a high
potential in the robotic field and the exploration of bio-inspired
control schemes with active agents.

35

37

8 References

[1] A. Delorme, S. Thorpe, “SpikeNET: An event-driven
simulation package for modelling large networks of spiking
neurons,” Network: Computation in Neural Systems, vol. 14,
pp.613-627, 2003.

[2] A. Janke, U. Roth, H. Klar, “A SIMD/dataflow architecture for

a neurocomputer for spike-processing neural networks
(NESPINN),” Proc. MicroNeuro’96, pp. 232-237, 1996.

[3] Celoxica, 2001-2004. [Online]. Available:

http://www.celoxica.com

[4] Delorme, A., Gautrais, J. van Rullen, R., Thorpe, S.

SpikeNET: A simulator for modelling large networks of
integrate and fire neurons. Neurocomputing, Vols. 26-27, pp.
989-996. 1999.

[5] Delorme, A., Thorpe, S. SpikeNET: An event-driven

simulation package for modelling large networks of spiking
neurons. Network: Computation in Neural Systems, Vol. 14,
pp. 613-627. 2003.

[6] E. Ros, R. Carrillo, E. M. Ortigosa, B. Barbour, R. Agís,

“Event-driven simulation scheme for neural network models
based on characterization look-up tables. Submitted to Neural
Computation, 2005.

[7] G. Hartmann, G. Frank, M. Schaefer, C. Wolff, “SPIKE128K-

An Accelerator for Dynamic Simulation of Large Pulse-Coded
Networks,” MicroNeuro’97, pp. 130-139, 1997.

[8] Glackin B., McGinnity T.M., Maguire L.P., Wu Q.X.,

Belatreche A., “A Novel Approach for the Implementation of
Large Scale Spiking Neural Networks on FPGA Hardware”,
LNCS, pp. 552-563, 2005.

38

[9] L. Steels. “Emergent Functionality in Robotic Agents through
On-Line Evolution”, in Brooks R.A., Maes, P.(eds.): Artificial
Life IV, Proc. of the Fourth Int. Workshop on the Synthesis
and Simulation of Living.

[10] M. Arnold, “Feedback learning in the olivary-cerebellar
system,” PhD Thesis, The University of Sydney, 2001.

[11] M. Shaefer, T. Schoenauer, C. Wolff, G. Hartmann, H. Klar,
U. Rueckert, “Simulation of Spiking Neural Networks –
architectures and implementations”, Neurocomputing, vol. 48,
647-679, 2002.

[12] Manwani, A. and Koch, C. (1999). “Detecting and estimating

signals in noisy cable structures“, I: Neuronal noise sources.
Neural Comput., 11: pp.: 1797-1829.

[13] N. Mehrtash, D. Jung, H.H. Hellmich, T. Schoenauer, V.T. Lu,
H. Klar, “Synaptic Plasticity in Spiking Neural Networks
(SP2INN): A System Approach,” IEEE Trans.Neural
Networks, Vol. 14(5), 2003.

[14] N. Mehrtash, D. Jung, H.H. Hellmich, T. Schoenauer, V.T. Lu,

H. Klar, “Synaptic Plasticity in Spiking Neural Networks
(SP2INN): A System Approach,” IEEE Transactions on Neural
Networks, vol. 14(5), 2003.

[15] R. Eckhorn, H.J. Reitboeck, M. Arndt, and P. Dicke, “Feature

linking via stimulus evoked oscillations: Experimental results
from cat visual cortex and functional implication from a
network model,” in Proc. ICNN I, pp. 723–720, 1989.

[16] R. Eckhorn, R. Bauer, W. Jordan, M. Brosh, W. Kruse, M.

Munk, H.J. Reitboeck, “Coherent oscillations: A mechanism of
feature linking in the visual cortex?,” Biol. Cyber. Vol. 60, pp.
121-130, 1988.

[17] R. J. Vogelstein, U. Mallik and G. Cauwenberghs, “Beyond

event-driven communication: dynamically-reconfigurable
spiking neural systems”, The Neuromorphic Engineer, vol.
1(1), pp. 1,9, 2004.

39

[18] Ros, E., Carrillo, R., Ortigosa, E. M., Barbour, B., Agís, R.,
2006 Event-driven Simulation Scheme for Spiking Neural
Models based on Characterization Look-up Tables. Neural
Computation, Vol. 18(12), pp. 2959-2993, 2006.

[19] Systems, MIT Press, 1994 L. Steels y P. Vogt, “Grounding

adaptative language games in robotic agents”, European
Conference on Artificial Life, 1997.

[20] T. Schoenauer, S. Atasoy, N. Mehrtash, H. Klar, “NeuroPipe-
Chip: A Digital Neuro-Processor for Spiking Neural
Networks,” IEEE Trans. Neural Networks, Vol. 13(1), pp. 205-
213, 2002.

[21] T. Schoenauer, S. Atasoy, N. Mehrtash, H. Klar, “NeuroPipe-

Chip: A Digital Neuro-Processor for Spiking Neural
Networks,” IEEE Trans. Neural Networks, vol. 13(1), pp. 205-
213, 2002.

[22] Technical Library, Celoxica. [Online].

[23] V. Dante, P. Del Giudice and A. M. Whatley, “Hardware and

software interfacing to address-event based neuromorphic
systems”, The Neuromorphic Engineer, vol. 2(1), pp. 5-6,
2005.

[24] W. Gerstner, W., Kistler, “Spiking Neuron Models,”
Cambridge University Press, 2002.

[25] White, J. A., Rubinstein, J. T., and Kay, A. R. (2000).

“Channel noise in neurons”. Trends Neuroscience. 23: pp.:
131-137.

[26] Xilinx, 1994-2003. [Online]. Available:
http://www.xilinx.com.

41

42

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 >>
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [612.000 792.000]
>> setpagedevice

